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Abstract

Statistical Methods for Estimating and Analyzing Brain Functional

Connectivity

By

Ixavier A. Higgins

In recent years, network science has become an increasingly popular approach for
investigating interdependencies between spatially distinct brain regions. The network
based paradigm is particularly useful in neuroimaging applications because of the ease
of representing complex spatiotemporal relationships via a finite set of regions. Analy-
ses of functional and structural architecture have elucidated the mechanisms by which
neurological disorders distort local and global functional organization, inhibiting nor-
mal brain processes.

In chapter two, we propose a Differential Degree Test (DDT) which detects regions
of interest (ROIs) incident to a statistically significant number of edges that are
differentially weighted across healthy and depressed populations. We achieve this by
generating null networks in which edge weights match distributional properties of
edges in the observed difference network. Extensive numerical studies demonstrate
superior performance relative to popular network comparison methods. We apply the
method to major depressive disorder patients and age-matched healthy controls. Our
method selects ROIs commonly implicated in studies of depression.

In chapter three, we propose a structurally informed Gaussian Graphical Model
(siGGM) that incorporate structural connectivity into the estimation of functional
connections between all region pairs. Although the exact relationship between brain
function and structure is not completely known, anatomical wiring certainly con-
strains cortical activity. Our multimodal approach requires rs−fMRI and diffusion
tensor imaging (DTI) which maps the orientation of all white matter fiber tracks in
the brain. Our efficient optimization algorithm admits a MAP solution of subject-
specific functional brain networks. Numerical studies and an application to sixty-nine
individuals in the Philadelphia Neurodevelopment Cohort demonstrate our method’s
superior performance to state of the art competitors.

In chapter four, we investigate rapidly changing functional connectivity. Recent
work suggests that the brain utilizes a finite set of connectivity states that are com-
mon across all health conditions. We propose a semi-parametric dictionary learning
method to simultaneously estimate the shared set of brain networks as well as clas-
sify individuals into disease groups based upon usage of the basis set. We assess the
method’s performance on simulated data and detect biologically meaningful brain
networks in a study of posttraumatic stress disorder.
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Chapter 1

Introduction



2

1.1 Overview

Mental health disorders is an oft used umberella term encompassing a heteroge-

nous pool of illnesses impacting an individual’s mood, behavior, and ability to think.

Recent estimates indicate that these disorders affect as many as one in five adults

and children in a given year, while one in two will experience a mental disorder at

least once in life. The disorders can diminish one’s quality of life, increasing the risk

of other health problems, poverty, social problems, and financial strain. Sadly, those

that suffer from depression are at an increased risk of suicide, the second leading

cause of death for individuals ages 10 to 34. The side effects of mental disorders are

not the sole responsibility of affected individuals. In 2010, mental health disorders

produced a $200 billion burden on the US economy (Roehrig, 2016). Clearly, mental

health disorders are a public health crisis requiring comprehensive investigations into

the biological mechanisms of diseases and the identification of biomarkers that can

guide treatment.

Mental health disorders are thought to be caused by a nebulous combination of

inherited genetic abnormalities, environmental exposures, and chemical imbalances

in the brain. Since the disorders are generally characterized by poor mood and de-

creased cognitive abilities, many efforts have investigated the structure and function

of the human brain in health and disease. The brain is a small organ weighing ap-

proximately three pounds and is composed of 75% water. As the primary operating

system in the body, the brain is responsible for all bodily functions, interpretation

of the external world, response to external stimuli, emotion regulation, and cognitive

functioning. Many of these duties are the responsibility of the cerebrum, which is

subdivided into four lobes— frontal, temporal, parietal, occipital— in the left and

right hemispheres. The outermost layer of the cerebrum, called the cortex, is com-

posed of approximately 16 billion neurons densely packed into the gray matter brain

tissue (https://mayfieldclinic.com/pe-anatbrain.htm). Neurons are specialized nerve
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cells that are responsible for communicating information via chemical and electrical

signals. All brain function results from coordinated communication between these

small cells. Myelinated shafts attached to each neuron transmit the cell body’s ac-

tion potential to other local or long range neurons in the brain. These bundles of

axons compose the white matter tissue.

Figure 1.1: The brain is composed of grey matter, white matter, and cerebrospinal
fluid.

(https://medlineplus.gov/ency/imagepages/18117.htm)

Our understanding of the brain’s anatomy and function has rapidly expanded

over the last century due to the rapid development of advanced imaging technologies.

Consequentially, we have invaluable insights into the complexity of human cognition.

Prior to the advent of powerful brain imaging machines, analysis of the human brain

was only a possibility postmortem, when the brain could be safely removed and

dissected. While this produced crucial insights into the brain’s structural architecture,

little was known about brain function in health and in disease.

Within the last fifty years, non-invasive imaging technologies have provided well
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defined, in vivo images of the brain. In the 1970s, computerized axial tomography

(CAT) was introduced to define anatomic structures based on differential absorption

of x-rays into the three brain tissues (grey matter, white matter, and cerebrospinal

fluid (CSF)) . Similarly, T1-weighted images derived from fMRI provide high res-

olution visuals of the tissues in the brain and diffusion weighted imaging permits

estimation of the direction of white matter fiber bundles connecting cortical brain

regions.

During the 1970s, the discovery of radioligands led to the development of positron

emission tomography (PET). PET scans measure the emitted signal from radioac-

tively labelled chemicals injected into the patient’s blood stream. Emissions within

brain tissue indicate functional activity within the region. During this same era, mag-

netic resonance imaging (MRI) was developed to measure functional activity in the

brain. MRI gained significant traction in the 1990s and has become the dominant

imaging modality due to its low invasiveness, limited radiation exposure, and ease of

acquisition across a wide spectrum of disorders.

Although PET and fMRI leverage blood flow as a proxy for functional activity,

other technologies exist to measure brain function. Magnetoencephalography (MEG)

quantifies brain activity via changes in the magnetic field due to altered electrical

currents in the brain. Electroencephalography (EEG) detects electrical currents in

neurons, which are considered the basic functional processing unit in the brain. While

MEG and EEG do not expose patients to radiation, they lack spatial specificity

and signal detection can be hindered by the skull. Each of these modalities provide

different insights into brain function.

With these tools, researchers have begun to enumerate the processes involved in

simple motor control such as finger tapping to more complex tasks such as encoding

memories. In healthy populations, spatially remote regions efficiently communicate

in order to accomplish the various tasks. However, in many disorders, the brain does



5

not relay signals efficiently which can severely impact cognitive ability. Imaging tech-

nologies permit localization of irregular functional activity and damage to structural

pathways that define various mental health disorders and diseases.

1.1.1 Basics of functional magnetic resonance

Functional magnetic resonance imaging (fMRI) is a noninvasive method for mea-

suring neuronal activity in the brain. Due to the ease of data acquisition, it has

become one of the most popular imaging techniques. Functional magnetic reso-

nance imaging is a technique for measuring the quantity of oxygenated blood present

throughout the brain. Biologically, neurons require oxygen to perform any action.

Thus, demands for oxygen rich blood, which fMRI is designed to detect, serves as a

proxy for functional activity.

Measuring changes in the blood oxygen level dependent (BOLD) signal is an ex-

tension of magnetic resonance imaging (MRI). Hydrogen atoms, which are abundant

in water that is widespread throughout the brain, are key to the success of MRI. In

MRI, a strong magnetic field (B0) causes hydrogen atoms to orient parallel to the

direction of field and imposes a constant phase rate on all atoms. The strength of

the magnetic field is typically 1.5T or 3T, although higher Tesla fields have been

safely applied to human subjects to acquire images with finer spatial and temporal

resolution. The alignment of the atoms creates a net magnetization in the direction

of (B0). Subsequently, a radio frequency (RF) pulse is repeatedly applied to the field

to “excite” the atoms. In this excited state, atoms are oriented perpendicular to (B0)

and exhibit different phases rate. Between RF pulses, atoms attempt to reorient to

the low energy state parallel to (B0), which produces signals that are detected by

the scanner coils. These signals are referred to as the T1 relaxation time, T2 and

T2∗ relaxation measures. T1 relaxation defines the rate at which the atoms become

reoriented to (B0) following a RF pulse and T2/T2∗ measure the rate of signal decay
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transverse to the constant magnetic field. The three brain tissues exhibit different T1

and T2/T2∗ relaxation times, producing images that clearly delineate their locations

throughout the brain. T1-weighted images have high spatial resolution but take sig-

nificantly more time to acquire than T2-weighted images. Conversely, T2-weighted

images can be acquired quickly at regular intervals, making them highly useful in

studies of the brain over time, i.e. a scanning session.

As previously mentioned, fMRI works by measuring fluctuations in the BOLD sig-

nal. The consumption of glucose by active neurons requires an influx of oxygenated

blood, which creates an overabundance of oxygenated hemoglobin relative to deoxy-

genated hemoglobin. Hemoglobin has differential responses to magnetic fields that

is directly related to whether it is bound to oxygen. Deoxygenated hemoglobin is

attracted to magnetic fields, leading to distortions in the magnetic field, (B0). How-

ever, oxygenated hemoglobin loses magnetization slower via the T2∗ decay, leading to

stronger signals in areas where the oxygen is in abundance. Contrasts in this BOLD

signal over time are key to the success of fMRI in measuring neuronal activity.

The change in the fMRI BOLD signal is assumed to be a smooth process, termed

the hemodynamic response function (HRF) in the imaging community. Interestingly,

the HRF reaches its peak value approximately five seconds after stimulus onset. The

delayed response is a result of the vascular system requiring time to respond to the

demand for resources. Ideally, the HRF is perfectly observed for active neurons in the

brain. Unfortunately, the true signal is mixed with various sources of noise. First, the

hardware introduces noise, such as scanner drift, heat up, and inhomogeneities in the

magnetic field, that can produce BOLD fluctuations unrelated to neuronal activity. A

second source of noise severely impacting BOLD fMRI is that of physiological noise.

Patient movement, cardiovascular and respiratory processes lead to incorrect voxel-

to-neuron mapping during the scanning session. These noise artifacts can completely

obscure the signals of interest. In a 1.5T scanner, neuronal induced fluctuations in the
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BOLD signal rarely exceed 3%. Thus, it is of extreme importance to appropriately

clean the data to reduce the influence of noise prior to analysis.

Traditional preprocessing pipelines include many steps to increase the signal-to-

noise ratio. Although there are variations in which steps are performed, most prepro-

cessing pipelines include the following steps: (1) extraction of the brain matter from

the skull; (2) slice timing correction; (3) motion correction to align all images to a

reference image; (4) co-registration of the T2∗-weighted image to the T1 anatomical

image; (5) spatial registration to map the brain volumes to a standard space; (6)

spatial smoothing to blur residual differences and boost signal-to-noise ratio; and (7)

temporal smoothing to remove system and physiological noise artifacts. Software,

such as FSL and AFNI, provide a suite of functions for performing these steps. Ad-

ditionally, researchers often standardize the preprocessed BOLD signals to reflect a

% change in the signal.

Ideally, the processed data reflects the desired signal in each voxel sampled at a

regular interval across the duration of the scan. At each acquisition point (i.e. brain

volume), there are signals for hundreds of thousands of voxels, each of which is a

volumetric unit containing thousands of spatially proximal neurons densely packed

in the cortex. A typical fMRI dataset consists of 100-200 brain volumes for each

subject, where each volume contains signals for hundreds of thousands of voxels.

Clearly, fMRI data is high dimensional and requires significant storage capacity for

even moderately-size sample populations. These factors must be accounted for when

developing statistical methods. The network-based methods presented in this disser-

tation do not sacrifice data quality in order to reduce the computational burdens of

working with these large datasets. To accomplish this, we harness network theory

(see section 1.2 for an overview).



8

1.1.1.1 Resting state fMRI

Thus far, we refer to neuronal activity in response to stimuli. While task based

study designs elicit response from targeted brain regions, BOLD signal fluctuations

persist at rest (i.e. task-free). This paradigm, referred to as resting-state fMRI (rs-

fMRI), reflects spontaneous neuronal activity. Despite the absence of a regulated ex-

ternal stimulus, various studies have shown that the brain organizes into well defined

subcomponents at rest. Smith et al. (2009a) show that the brain at rest organizes

into well defined subcomponents that are consistent with modules observed in sub-

jects engaged in cognitive tasks. More specifically, the authors present convincing

evidence of the following functional modules: medial, visual, and occipital visual net-

work; default mode network; sensorimotor network; cerebellum; auditory network;

executive control network; frontoparietal task control network. In recent years, the

default mode network, which is active in the resting state, has been implicated in

several disorders such as depression, schizophrenia, and ADHD. Resting state fMRI

is also very useful because it is amenable to a variety of research hypotheses because

of the task-free study design. As such, rs-fMRI has become a highly utilized technique

for studying irregular brain function of many mental disorders and diseases. In this

dissertation, we exclusively focus on rs-fMRI.

1.1.2 Basics of Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is a MRI technique for measuring the orientation

of white matter fiber tracts in the brain. Although T1-weighted images are excellent

at defining the white matter, it does not provide information on the orientation of

the myelinated axons that transmit signals between neurons. Similarly to fMRI, the

success of DTI is due to the abundance of water molecules in the brain. In DTI,

magnetic gradients are applied to the brain in different directions to induce move-

ment in the water molecules which diffuse randomly in unrestricted environments.
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The three brain tissues constrain water diffusion in distinctly differet manners and

it is these differences that make DTI successful. The high density of gray matter

prohibits diffusion whereas water generally moves freely in all directions in the CSF.

Importantly, water diffusivity in the white matter tissue is constrained by the axons.

Molecules diffuse very slowly across a bundle of axons but quickly parallel to a fiber.

As with fMRI, raw DTI data contains substantial sources of noise created by the

subject and the shifting magnetization inside the scanner. Soares et al. (2013) state

that the two main artifacts severely impacting tensor estimation are eddy currents and

head motion, which can both be corrected by registering all acquired volumes to the

diffusion free brain volume. Although there are many variations in DTI preprocessing

pipelines, most include the following steps too removal nuisance signals in the data:

(1) skull stripping; (2) eddy current correction; (3) motion correction; (4) registration

to a standard brain space (i.e. MNI, Talairach); (5) fit diffusion tensors at each

voxel in the brain; (6) build up a distribution of tensors at each voxel via Markov

Chain Monte Carlo sampling; (7) perform tractography to estimate the fiber bundles

connecting all user-defined seed regions (i.e. voxel, a collection of voxels).

We take a closer look at the tensor estimation step, that is required to transform

signal changes along each gradient to information on the orientation of fiber bun-

dles. At each voxel, a tensor, which is a three dimensional ellipsoid, is estimated.

Mathematically, the tensor is defined by three eigenvectors (e1, e2, e3) and associated

eigenvalues (λ1, λ2, λ3) (Le Bihan et al., 2001). The first eigenvector is the principle

direction of diffusivity and the associated eigenvalue is the rate of diffusivity along

that direction. The tensor is depicted as a three-dimensional ellipsoid, where a spher-

ical volume (isotropic) indicates equal diffusivity in all directions and an elongated,

slender volume (anisotropic) reflects directed diffusivity. In a simple environment,

this information should be sufficient for capturing the dominant direction of diffusion

at each voxel. However, voxels often contain crossing fibers. If the fibers are perpen-
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dicular, it is possible to estimate an isotropic tensor which erroneously indicates no

dominant direction of local diffusion. This local inaccuracy can potentially lead to

erroneous global structural connectivity estimates.

In recent years, advanced modeling techniques have been developed to mitigate

such issues, such as multi tensor models, High Angular Resolution Diffusion Imaging

(HARDI), Q-Ball imaging, and Spherical Deconvolution (Soares et al., 2013). From

the tensors estimates, tractography can be performed to estimate the number of

bundles connecting all pairs of voxels or brain regions. In deterministic tractography,

tensor orientations are fixed and fully determine the directiion in which streamlines

can pass through spatially proximal voxels. In probabilistic tractography, tensors

at each voxel are sampled from a voxel-specific distributiion. The variability in the

tensor orientations allow the streamlies to evolve along different paths over many

samples. Hence, probabilistic tractography permits quantification of the probability

of structural connectivity between any two brain regions.

1.1.3 Brain structure and function

The previous sections discuss the acquisition and preprocessing of functional and

structural MRI datum. In recent years, the neuroimaging community has begun to

investigate the relationship between brain function and structure Honey et al. (2009,

2010); Skudlarski et al. (2008). Figure 1.2 shows how neurons, the fundamental

functional processing units in the brain, relay messages along myelinated axons. This

arrangement permits communication between spatially remote cortical areas. Many

studies agree that brain function is constrained by structure. Kemmer et al. (2018)

show that coherent functional activity in patients at rest is strongest among brain

areas with strong structural connections. However, strong functional connections

have also been observed between structurally disconnected brain areas and weak

functional connectivity between strongly connected regions (Greicius et al., 2009;
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Van Den Heuvel and Pol, 2010).

Although the relationship is apparent, quantifying brain function co-activity as a

deterministic function of structural connectivity has proven difficult. Correct specifi-

cation should not only lead to more robust estimates of functional connectivity, but

also will usher new insights into the physiology of disease in the brain. We investigate

the structure-function relationship in chapter three.

Figure 1.2: Communication between neurons in the brain.

(https://mayfieldclinic.com/pe-anatbrain.htm)

1.2 Brain Connectome

The high definition images acquired from modern MRI scanners offer important

insights into cortical activity. Shortly after the invention of fMRI, the first connec-

tivity studies examined the level of co-activity in the time courses of brain regions

(Van Den Heuvel and Pol, 2010). Biswal et al. (1995, 1997) were the first to report

a high degree of correlation between regions in the motor network at rest, suggesting

that the brain is functionally organized even at rest. Subsequent investigations found

similar patterns in the visual and auditory networks as well as higher order cognitive

networks (Greicius et al., 2003; Damoiseaux et al., 2006; Cordes et al., 2000). Recent
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efforts seek to link cognition with functional connectivity patterns. However, this

is extremely difficult due to the complexity of interactions in the brain responsible

for human actions and behaviors. Over the last twenty years, researchers have in-

vestigated the brain as an integrative network of functionally coupled brain regions

(Van Den Heuvel and Pol, 2010). In this simplistic representation of functional co-

activitation, spatio-temporal relationships between brain regions can be accounted

for by a network structure, G =< V,E >. The vertex set, V, enumerates the brain

regions of interest (ROI) and should be defined based upon the research hypothesis.

Many parcellation schemes exist for defining V, including the Automated Anatomical

Labelling Atlas, which consists of 90 contiguous cortical regions, as well as cluster-

ing based approaches to group voxels into homogenous regions based on functional

similarity (Power et al., 2011a; Craddock et al., 2012; Yeo et al., 2011; Shen et al.,

2013). In rare instances, each voxel could serve as a ROI, although this would lead to

computational complications in downstream analyses as well as spurious interregional

associations that are byproducts of in spatially smoothing raw MRI data.

The edge set, E, reflects all pairwise associations between nodes in V. In resting-

state analysis, we acquire the BOLD signals in every brain region at T discrete,

regularly sampled timepoints throughout the scan acquisition. Without loss of gen-

erality, assume that v1, v2 ∈ V where for each region we have v1(1), ..., v1(T ) and

v2(1), .., v2(T ). E can represent any desired association measure such as between

Pearson correlation, partial correlation, mutual information, or lag-t correlation co-

efficient. Functional connectivity can generally be classified into two domains: (a)

undirected measures of association and (b) directed measures of association. Through-

out this dissertation, we focus on undirected functional connectivity whereby there is

no associated direction of information flow between two regions. Two popular undi-

rected measures are Pearson and partial correlations. Pearson correlation is easiest

to calculate, but suffers from correlation transitivity, which is excess correlation be-



13

tween two ROIs due to associations with tertiary brain regions (Zalesky, Fornito and

Bullmore, 2012). Subsequent edge sets are often overly dense, masking biologically

and statistically meaningful functional connections.

Partial correlations quantify the association between any two regions conditional

on all brain regions, which inherently reduces the influence of correlation transitivity.

Friedman et al. (2008) were the first to estimate partial correlations via optimization

of a penalized likelihood

Ω̂ = arg min
Ω

− log(det(Ω))− tr(SΩ) + λ
∑
i,j

|ωij| (1.1)

where Ω is the precision matrix. Whittaker (1990) provide the explicit function for

transforming the precision matrix into interregional partial correlation estimates. The

tuning parameter, λ, controls the sparsity of Ω̂ and controls the fit of the model to

observed data. Partial correlation based approaches such as this have gained favor in

the neuroimaging community due to the widely accepted hypothesis that the brain

maintains a small set of interregional connections to increase overall network efficiency

(Bassett et al., 2009). Although eq 1.1 has many merits, selection of an appropriate

tuning parameter is notoriously difficult. Specifically, tuning parameters that opti-

mize model fit criteria such as BIC and AIC may not produce biologically consistent

network estimates. There is clearly a need to modify this powerful technique for brain

imaging applications. We tackle this problem in chapter 3.

Networks have led to valuable insights on the brain’s functionality in health and

disease. For example, irregular communication between regions in the default mode

network have been implicated in depression populations, while impaired activity of

the fronto-parietal task control network has been implicated in various disorders (Cole

et al., 2014). Statistical methods for identifying connectivity based biomarkers of dis-

ease are very diverse. Broadly, the methods fall into one of two categories. In the first,
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it is assumed that regional time series are stationary over time (static functional con-

nectivity (sFC)). The second category assumes that the time series are non-stationary

(dynamic functional connectivity (dFC)). While early work was devoted to analysis

of static functional connectivity, increasing evidence suggests that functional connec-

tions dynamically transition on a small time scale. In fact, methods sensitive to dFC

have highlighted the connections between stable dFC and cognitive performance (Co-

hen, 2018) as well as higher prediction accuracy of individuals suffering from post

traumatic stress disorder (Jin et al., 2017).

1.2.1 Static Functional connectivity Methods

(i) Mass Univariate

Many methods for comparing brain networks across populations are classified as mass

univariate tests. For this general approach, linear models are fit to each edge in

the network, where the regressors are a disease indicator variable and confounding

variables such as age or gender (Nichols and Holmes, 2002). These intuitively simple

methods are in widespread use in the clinical investigations of functional connectivity

(Athanasiou et al., 2018; Greicius et al., 2007a; Hasenkamp and Barsalou, 2012).

Although intuitively simple, statistical issues arise in selecting edges with statistically

different weights across the two populations. Post hoc methods which adjust for the

large number of tests substantially reduce the power of mass univariate tests to detect

meaningful edges (Zalesky, Cocchi, Fornito, Murray and Bullmore, 2012).

Methods such as the network-based statistic (Zalesky et al., 2010) attempt to cir-

cumvent the multiple testing problem by seeking the largest connected component of

differentially weighted edges and assessing the statistical significance by permutation

tests. Although this method is the most widely used network comparison approach,

it performs very poorly if edge-wise differences are scattered across the network and

do not form a connected component. Other approaches, such as the spatial pariwise
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clustering (Hipp et al., 2011), sum of powered score (SPU) and adaptive sum of pow-

ered (aSPU) (Pan et al., 2014), attempt to leverage information at the edge level

to determine the statistical significance of brain graphs across populations. These

methods generally do not suffer from the multiplicity problem inherent in the mass

univariate tests, but can be extremely sensitive to the selected tuning parameter.

(ii) Network summary statistics

Network summary statistics are a class of methods to detect differences in the topolog-

ical structure of the brain network, G. The primary motivation for these approaches

is to circumvent the multiple comparison issue inherent in the edge-level statistics.

Further, network topology has been directly related to neural efficiency, robustness,

integration capabilities and communication capacity (Van Den Heuvel and Pol, 2010).

Importantly, functional connectivity graphs have been shown to exhibit pronounced

topological properties characteristic of small-world networks. As such, graphs can be

summarized via a small set of network metrics, such as the average path length, clus-

tering coefficient, or assortativity (see Wang et al. (2015a) for functions to calculate

the metrics). With these metrics, one could compare the network topology across

populations to detect difference in network architecture attributed to disease. Lord

et al. (2012) found that the community structure , in addition to several other network

metrics, accurately predicted whether an individual was healthy or depressed. Many

network analyses study find altered local and global network topologies in other stud-

ies of depression (Leistedt et al., 2009) as well as in meditators (Ginestet et al., 2014).

Simpson et al. (2013a) propose a general suite of permutation tests for assessing global

differences in networks as well as differences in the nodal degree distribution.

The exponential random graph model (ERGM) is a model-based approach for

estimating the conditional effect of a set of network metrics on an observed network

structure. Simpson et al. (2011, 2012) investigate these models and demonstrate

their effectiveness in representing brain graphs. Furthermore, they propose post hoc
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inference for the network features. The primary appeal of such an approach is that

it jointly estimates the effect of graph-based features on the observed network. In

spite of the advantages, the ERGM has several limitations. It is computationally

demanding and prone to degenerate solutions if the network metrics are not carefully

selected based on the application.

1.2.2 Dynamic functional connectivity Methods

Dynamic function connectivity methods are still in their infancy. Over the last

five years, the dominant method for calculating dynamic functional connectivity is

sliding window correlations (SWC). In SWC, functional networks are calculated over

a window of fixed or varying width. These correlation networks provide a glimpse of

fluctuations in functional connectivity throughout a scanning session. Although there

are suggestions for selecting the window lengths (Leonardi and Van De Ville, 2015;

Zalesky and Breakspear, 2015), this parameter has been shown to to have substantial

effects on the network estimates (Cohen, 2018). From the sliding window estimates,

centroids are calculated using k-means clustering to detect the basis brain states

common to all subjects. Many studies have show that disease classification becomes

clear based upon the frequency in which a subject utilizes the “brain states” (Allen

et al., 2014a).

Recently, more complex models have been used to detect dynamic changes in func-

tional connectivity. Hidden Markov models (Jurafsky and Martin, 2014) are being

implemented as a model-based approach to estimating the brain states shared across

subjects as well as the probabilities of state transitions (Andersen et al., 2018; Vidau-

rre et al., 2017). The simplest implementation assumes that the observed regional

time-series are generated by multivariate Gaussian distributions, where the covari-

ance matrix of each Gaussian component represents a brain state. Unfortunately,

these models do not scale well as the number of brain regions increases. An emerging
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Figure 1.3: Estimation of sliding windows correlations.

(Hutchison et al., 2013)

method for estimating dFC are based on dictionary learning techniques, which were

originally developed in the compressed sensing literature. Early explorations indicate

that dictionary learners can successfully extract basis brain states from observed data

(Li et al., 2014; Yaesoubi et al., 2018). Furthermore, the penalized optimization al-

gorithms can detect the states contributing to the observed connectivity pattern at

each time point throughout the scanning session.

1.2.3 Challenges in functional connectivity

Although network-based methods have led to important discoveries about cortical

activity, various statistical and computational challenges persist. A large issue with

many static connectivity analysis is how to threshold the edge set to detect meaning-

ful connections. Network density has a non-trivial impact on many network metrics

which can lead to ineffective group comparisons. As previously discussed, there are

many different imaging modalities, each capturing different aspects of functional ac-
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tivation in the brain. Hutchison et al. (2013) suggest that EEG, which has high

temporal resolution, can be used to interrogate resting-state fMRI. Further, it is well

known that brain anatomy constrains functional connectivity. Methods that flexibly

incorporate complementary information are needed in to improve current functional

connectivity methodologies. Dynamic functional connectivity also presents several

challenges which will require advanced techniques. As Cohen (2018) suggest, dFC

methods must disentangle neuronal activity from noise attributed to physiological,

respiratory, and cardiovascular processes. Additionally, methods must be able to ac-

count for subject specific arousal, which has been suggested to reduce state transitions

(Haimovici et al., 2017). Preprocessing can minimize most data artifacts, but methods

must be developed which can adjust for such occurrences. Additionally, individual

specific characteristics, such as intelligence, have been shown to modify co-activity

patterns. In total, these effects may obscure dFC estimates, increasing the difficulty

of distinguishing disease-related effects on functional connectivity. Available methods

do not account for such effects. In the following sections, we present methods that

overcome these limitations and apply them to populations exhibiting strong differ-

ences compared to healthy individuals. Fallani et al. (2014) and (Hutchison et al.,

2013) provide excellent overviews of the challenges of static and dynamic functional

connectivity.

1.3 Motivating Data

In recent years, network science tools have been increasingly applied in studies

of brain function in health and disease. A large body of literature investigating

diseases such as schizophrenia, autism, epilepsy, and depression has shown that most

are identified by hyper- and hypo- connectivity between brain regions. Despite stark

differences in how and where the diseases manifest in the brain, many have been
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generically classified as “dysconnectivity syndromes” in the functional connectivity

literature (Catani and Ffytche, 2005). In two chapters, we apply our methods to

disorders where functional connectivity is a well-known and strong biomarker for

disease. However, in chapter three we focus upon mentally healthy individuals and

exclude populations in which disease potentially confounds the relationship between

brain structure and function.

1.3.1 Major Depressive Disorder dataset

Major depressive disorder (MDD) is a severe mental condition and is the leading

cause of disability in Americans aged 15-44. Although it is prevalent in every subpop-

ulation, it disproportionately affects women and individuals 18-29 years old. MDD

is often co-morbid with other serious conditions, such as anxiety disorders, obsessive-

compulsive disorder, and psychotic disorder (Papan Thaipisuttikul et al., 2014), and

is the second leading cause of death in 15-29 year olds in the United States. Despite

the pervasiveness of the disorder, it is difficult to diagnose (Agrawal and Rickards,

2011), in part because the symptoms are similar to other neurological disorders. Var-

ious studies have indicated that major depressive disorder is typically associated with

increased activity in the default mode network and induces cognitive deficits resulting

from suppressed activity in the frontoparietal task control network (Brzezicka, 2013).

We acquire resting-state fMRI scans from twenty MDD subjects and nineteen

healthy subjects from the Mayberg Lab in the Emory University Department of Psy-

chiatry. MDD patients are on average 45.8 years old (SD: 9.6 years) and fifty percent

male. The age and gender matched healthy participants are 47% male and 43 years

old (SD: 8.9 years). MDD patients were evaluated with the 17-item, clinician-rated

Hamilton Rating Scale for Depression and had an average score of 19, which corre-

sponds to severe depression (Brown et al., 2008). Study participants were instructed

to lie motionless and thoughtless in the scanner for the duration of the data acquis-
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tion. Data were acquired on a 3T Tim Trio MRI scanner with a twelve-channel head

array coil. fMRI images were captured with a z-saga sequence to minimize artifacts

in the medial PFC and OFC due to sinus cavities (Heberlein and Hu, 2004). Z-saga

images were acquired interleaved at 3.4x3.4x4 mm resolution in 30 4-mm thick axial

slices with the parameters FOV=220x220 mm, TR=2920 ms, TE=30 ms for a total

of 150 acquisitions and total duration 7.3 min. Several standard preprocessing steps

were applied to the rs-fMRI data, including despiking, slice timing correction, motion

correction, registration to MNI 2mm standard space, normalization to percent signal

change, removal of linear trend, regressing out CSF, WM, and 6 movement param-

eters, bandpass filtering (0.009 to 0.08), and spatial smoothing with a 6mm FWHM

Gaussian kernel.

1.3.2 Philadelphia Neurodevelopmental Cohort dataset

The Philadelphia Neurodevelopmental Cohort is a large study funded by the

NIMH to investigate brain and behavior interaction with genetics. 9500 individu-

als in the greater Philadelphia area, ages 8-21, were neuropsychiatrically evaluated

via structured interviews and completed the Computerized Neurocognitive Battery. A

smaller subset of 1445 participants received imaging that includes functional imaging

tasks of working memory and emotion identification, resting state imaging of func-

tional activity, T1-weighted structural images, diffusion tension imaging, and perfu-

sion neuroimaging using arterial spin labeling. Our analysis relies upon the resting

state fMRI and DTI images acquired on sixty-nine healthy, right handed children

exhibiting normal cognitive development.

Resting-state fMRI scans were acquired on a single-shot, interleaved multi-slice,

gradient-echo, echo planar imaging (GE-EPI) sequence (Satterthwaite, Elliott, Ru-

parel, Loughead, Prabhakaran, Calkins, Hopson, Jackson, Keefe, Riley et al., 2014).

Nominal voxel size is 3x3x3mm with full brain coverage achieved with the following
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parameters: TR/TE=3000/32 ms, flip=90◦, FOV=200 × 220 mm, matrix= 64 × 64,

46 slices, slice thickness/gap=3 mm/0 mm for a total of 6.2 minutes. Participants

were instructed to remain awake, motionless, and fixated on a crosshair through-

out the duration of the data acquisition. Several standard preprocessing steps were

applied to the rs-fMRI data, including despiking, slice timing correction, motion cor-

rection, registration to MNI 2mm standard space, normalization to percent signal

change, removal of linear trend, regressing out CSF, WM, and 6 movement param-

eters, bandpass filtering (0.009 to 0.08), and spatial smoothing with a 6mm FWHM

Gaussian kernel. Subsequent voxel level data is aggregated into 90 regions of interest

(ROI) based on the Automated Anatomical Labelling atlas (Tzourio-Mazoyer et al.,

2002). For each ROI, the average time series of all constituent voxels represents the

region’s temporal BOLD signal.

Diffusion weighted images permit us to localize and orient white matter fiber bun-

dles via the diffusion of water in the brain. Images were acquired on a twice-refocused

spin-echo (TRSE) single-shot EPI sequence for a total of 64 diffusion-weighted direc-

tions with b=1000 s/mm2 and 7 scans with b=0 s/mm2 (Satterthwaite, Elliott, Ru-

parel, Loughead, Prabhakaran, Calkins, Hopson, Jackson, Keefe, Riley et al., 2014).

Acquisition parameters were TR/TE=8100/82ms, matrix=128×128, FOV=240mm,

slice thickness=2mm, GRAPPA factor=3. Due to gradient induced vibrations dis-

turbing image quality, DWI images were acquired in two imaging runs to reduce the

continuous duration in which subjects tolerate the scan. Standard pre-processing

procedures, such as eddy current correction and bias-field correction are applied to

the diffusion weighted data. Subsequently, we use the FSL functions bedpostx and

probtracx2 to estimate the distribution of fiber tensors at each voxel and the count of

white matter fibers tracts connecting all pairs of brain regions, respectively. In order

to obtain the SC scores, we compute pjk = average{Njk/Nj∗, Nkj/Nk∗} ∈ (0, 1), where

Njk equals the number of permissible tracts initiated at region j that pass through
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region k and Nj∗ refers to the total number of permissible tracts initiated at region j.

Fiber tracks passing through gray matter or cerebrospinal fluid are discarded. These

SC scores can be interpreted as the probability of structural connectivity between

regions j and k, which we often refer to as the strength of SC.

1.3.3 Grady Trauma Project dataset

All images were acquired on a Siemens Tim Trio 3T scanner (z-saga interleaved

echo-planar sequence). fMRI images were captured with a z-saga interleaved se-

quence. In total, 150 volumes are acquired with scanning parameters TR 2950 ms,

TE 67.04 ms, flip angle 90°, FOV 220x220 mm, matrix 64 x 64, and voxel resolution

3.4375mm x 3.4375mm x 4mm. Raw images were preprocessed using the script re-

leased with the 1000 Functional Connectomes Project. Skull stripping was performed

on the T1 image to remove extra-cranial tissues followed by removal of the first four

volumes to stabilize the signal. The anatomical image was registered to the 8th vol-

ume of the rs-fMRI image sequence and normalized to the MNI standard brain space.

The functional scans were registered to standard space with these normalization pa-

rameters and subsequently subsequently smoothed using a 6 mm FWHM Gaussian

kernel. The functional images were further cleaned by regressing out nuisance signals

including motion artifacts, global effects, white matter and cerebrospinal fluid signals.

Finally, the functional time series data was band-pass filtered—.01 Hz to .1 Hz—to

retain frequencies relevant to rs-fMRI.

We extract 266 regions from the preprocessed rs-fMRI data of which 264 are

defined in the Power brain atlas (Power et al., 2011a). Although the Power atlas

provides coverage of cortical and subcortical brain regions, it does not include the

amygdala, which is critical in emotion processing and highly implicated in PTSD.

Consequently, we include two subdivisions of the amygdala—basolateral (BLA) and

centromedial (CEN) —as defined in the California Institute of Technology (CIT68)



23

probabilistic high-resolution in vivo atlas of the human amygdala (Tyszka and Pauli,

2016). Each brain region is a 10mm diameter sphere containing approximately 81

voxels. Regional time courses are the average of the constituent voxels’ time course.

The Grady PTSD dataset consists of 99 subjects. We remove 41 subjects exhibit-

ing movement in ≥ 55% of the scans. All subsequent analyses are carried out on 42

healthy controls and 14 PTSD patients. PTSD status was determined by the modified

PTSD Symptom Scale (PSS), which has high internal consistency and strong valid-

ity for diagnosing PTSD consistent with DSM-IV (Kilaru et al., 2016). All PTSD

patients exhibit at least one symptom in the re-experiencing cluster, three symptoms

in the avoidance cluster, and two symptoms in the hyperarousal cluster. Although

all subjects have experienced at least one traumatic event, PTSD patients exhibit

PTSD symptoms at the time of study. The study protocols were approved by the

Institutional Review Board of Emory University School of Medicine and the Grady

Health Systems Research Oversight Committee.

1.4 Proposed Research

This dissertation proposes a suite of network-based methods for elucidating com-

plex functional activity in the brain and, subsequently, relating that to clinical out-

comes. Methods presented in chapter two and four provide distinctly different ap-

proaches for addressing a fundamental, yet fleeting question in neuroimaging statis-

tics: where and by which mechanisms do mental diseases produce irregular functional

co-activity. Yet another fundamental question that is of particular interest in the neu-

roimaging community is the relationship between function and structure in the brain.

Although various studies agree that brain anatomy constrains function (Honey et al.,

2009, 2010; Messé et al., 2014), few methods exist that incorporate brain structure

into the estimation of functional connectivity. We propose such an approach in chap-
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ter three.

1.4.1 Topic 1: Difference degree test for comparing brain

networks

In chapter two, we develop a test to detect brain regions exhibiting disease-related

irregularities in local functional connectivity. Our method relies upon an appropriate

set of null, random networks that serve as random realizations of the observed differ-

ence network. In our approach, the nulls permit isolation of true network topology

from that induced by correlation transitivity. Extensive simulation studies highlight

the advantages of our method over existing approaches. The test also allows us to

detect brain regions implicated in major depressive disorder in the real data applica-

tion.

1.4.2 Topic 2: Anatomically informed estimation of brain

functional networks

In chapter three, we propose a structurally-informed Gaussian graphical model

(siGGM) that incorporates the strength of structural connectivity between distinct

brain regions into the procedure for estimating functional co-activity. Our hierarchical

model flexibly incorporates structural connectivity information and produces a max-

imum a posteriori (MAP) solution of the partial correlations. The siGGM is applied

to the publicly available Philadelphia Neurodevelopmental Cohort study, whereby

we leverage available rs-fMRI and DTI data on sixty-nine cognitively healthy, right

handed patients.
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1.4.3 Topic 3: Semi-parametric Bayesian hierarchical dictio-

nary learning

In chapter four, we propose a Bayesian hierarchical dictionary learning method

that simultaneous estimates a set of brain network common to a population and

classifies patients into subpopulations based on utilization of the states. Our model

flexibly incorporates covariates that can confound dynamic functional connectivity

estimates. We apply the method to a rs-fMRI acquired on healthy and PTSD patients.
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Chapter 2

Comparison of nodal differential

degree centrality
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2.1 Introduction

In recent years, graph theoretical tools have become increasingly important in the

analysis of brain imaging data. In particular, evaluations of the associations between

spatially distinct regions has led to valuable insights into the brain’s organization in

health and disease. Functional connectivity (FC), which measures the coherence be-

tween neurophysiological time series (Friston, 1994), has been extremely valuable in

identifying disease-induced modifications to cortical and subcortical communication.

In fact, altered cortical activity has been observed in major depressive disorder (MDD)

(Craddock et al., 2009; Drysdale et al., 2017), Alzheimer’s disease (Stam et al., 2006),

and schizophrenia (Liu et al., 2008; Rubinov et al., 2009). While Pearson correlation

is a widely used FC measure, alternate association metrics such as partial correla-

tions (Wang et al., 2016), mutual information (Salvador et al., 2005), and coherence

(Bassett et al., 2011) are finding favor. Brain networks have become particularly im-

portant since the FC measures offer different perspectives on co-activation between

brain regions, and many studies agree that psychiatric disorders and neurodegen-

erative diseases manifest as disruptions in local and global functional connectivity

(Pandya et al., 2012).

Many methods exist for comparing brain networks and connectivity patterns

across populations. The earliest approach tests for group differences at each edge

in the network (Nichols and Holmes, 2002). For a network with N regions, this re-

quires multiple testing corrections since N(N-1)/2 unique edges must be assessed.

Unfortunately, controlling the family-wise error rate or false discovery rate leads to a

reduction in power to detect group differences at the edge level. The sum of powered

score (SPU) and adaptive sum of powered score (aSPU) tests (Pan et al., 2014) lever-

age edge level differences to assess overall deviation in the networks (Kim et al., 2015).

While they can lead to high powered tests, there are practical difficulties in selecting

the optimal tuning parameter. Furthermore, the tests do not specifically identify
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edges, regions, or structures contributing to overall network differences, which leads

to a loss in interpretability in the brain functional aspect.

Other approaches assume differences in brain connectivity result in large devia-

tions in the network’s topology. The network-based statistic (NBS) (Zalesky et al.,

2010) and the parsimonious differential brain connectivity network detection method

(PARD) (Chen et al., 2015) are useful for identifying collections of differentially

weighted edges (DWEs) forming interconnected subcomponents, but have limited

exploratory value. A key assumption in these methods is that altered edges form

connected subnetworks (Kim et al., 2015). The NBS is severely underpowered to

detect differences in the networks if this assumption is violated (Zalesky et al., 2010).

Furthermore, the NBS does not provide a principled approach for thresholding sig-

nificant DWEs. As shown in Kim et al. (2014a), the NBS performance is reported

across a grid of thresholds. In simulations, one can heuristically tune the threshold

to produce the best performance. However, threshold selection becomes substantially

more difficult in real data applications. In simulations and real data applications, we

find that the NBS (extent) is unable to detect connected components spanning the

difference network across a wide range of thresholds. For these reasons, we exclude

the NBS results. We note that the NBS is a complementary method to the DDT.

If the connected component assumption is valid, we expect the NBS to exceed the

performance of the DDT. However, when the DWEs form small isolated clusters, we

expect the DDT to perform much better.

Other methods (Rudie et al., 2013; Wang et al., 2015a) have focused on comparing

graph metrics across networks, using two sample t-tests to test for differences. Un-

fortunately, these tests may often be underpowered to detect group differences (Kim

et al., 2014a), and there are doubts on the suitability of two-sample t-tests to compare

some network metrics (Fornito et al., 2010; Hayasaka and Laurienti, 2010). Alterna-

tively, nonparametric approaches utilize permutation tests (Zalesky et al., 2010) or
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generate random networks (Bullmore et al., 1999) in order to construct distributions

for network metrics of interest under the null hypothesis and then use these reference

distributions to evaluate the significance of the observed network features. However,

generating the appropriate null network is non-trivial. Existing approaches attempt

to randomly rewire edges while preserving the degree distribution and the clustering

coefficient (Bansal et al., 2009; Maslov and Sneppen, 2002; Volz, 2004). Unfortu-

nately, the network generation schemes are sensitive to the desired network measure

(see Fornito et al. (2013) for an overview) and may not provide a complete picture of

the network differences reflected by alternate summary measures.

In this paper, we propose a Differential Degree Test (DDT) to identify brain re-

gions that demonstrate significant between-group differences in neural connections.

Despite the naming convention, the DDT is not a comparison of the nodal degree

across populations. Instead, it assesses the count of DWEs incident to each node. We

incorporate the former into our simulations to verify that it leads to markedly inferior

results compared to the DDT. The proposed testing approach facilitates the compar-

ison of brain networks across populations while bypassing the limitations of current

methods. Our method is based on the difference network, in which the edges repre-

sent the statistical significance of between-group differences. The observed difference

network is compared to a set of null networks that are carefully constructed, via the

Hirschberger-Qi-Steuer (HQS) algorithm, to maintain both the first and second mo-

ment characteristics of the observed difference network. Preservation of these two

moments allows the null network to retain the nuisance topology present in the ob-

served difference network, ignoring all intrinsic structures. Such a null network reflects

the topology induced by the correlation measure encoding the brain connectivity as-

sociated with the observed network. In contrast, naively generated random networks,

i.e. random edge rewiring and random edge sampling, can produce nulls which are do

not reflect the intrinsic nor nuisance topologies present in the observed network. This
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will likely lead to the detection of spurious, meaningless features. Clearly, such ran-

dom null networks potentially provide inappropriate assortments of random network

configurations nor are they guaranteed to replicate the relevant structures embedded

in the observed network. As such, traditional null network generation schemes can

lead to falsely identified edges and artificial structures. Our approach overcomes these

shortcomings and identifies intrinsic structures in the observed network by explicitly

accounting for the nuisance topology embedded in the graph.

We adapt the null network generation scheme of Hirschberger et al. (2007) to repli-

cate networks retaining only the nuisance structure in the difference network, which

enables the separation of the network’s true topology from the nuisance topology.

We note that while Zalesky, Fornito and Bullmore (2012) utilize HQS to examine the

impact of nuisance topology on local network features, our approach is the first to use

the HQS algorithm for the assessment of network differentiation across populations.

We further propose an adaptive thresholding procedure to identify significant DWEs

by comparing against the generated null difference networks using the HQS algorithm.

Based on the thresholded difference adjacency matrix, the proposed Differential De-

gree Test (DDT) identifies nodes or brain regions that demonstrate a significantly

higher number of DWEs as compared to the null distribution.

Through extensive simulations, we illustrate that the proposed method has greater

power to detect differentially connected nodes across networks compared to standard

multiple testing procedures, while also maintaining reasonable control over false pos-

itives. Furthermore, the adaptive threshold selection procedure leads to increased

power to detect DWEs across the network as compared to Bonferroni and false discov-

ery rate (FDR) correction procedures. Additionally, the adaptive threshold approach

under the proposed method can automatically adapt to different network settings and

hence is more generalizable compared to ‘hard’ thresholding approaches assuming a

fixed threshold. Finally, we apply the proposed approach for the analysis of a ma-
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jor depressive disorder (MDD) dataset, which leads to meaningful findings regarding

disrupted brain connectivity due to MDD.

The rest of the paper is organized as follows. In sections 2.2, we discuss the

construction of null difference networks and the proposed DDT procedure. We present

simulation results in Section 2.3, MDD data analyses in Section 2.4, and conclude

with a discussion of the findings in Section 2.5.

2.2 Method

In the following, we discuss the construction of subject-specific functional brain

networks, formulation of the difference network, and the details of the proposed DDT.

Our analysis investigates connectivity disruptions across the entire brain, but is also

amenable to hypothesis-driven investigations of functional connectivity containing a

number of pre-selected brain regions.

2.2.1 Brain network construction

In network analysis of neuroimaging data, the brain can be represented as a graph

defined by a finite set of nodes (brain regions) and edges showing the statistical

association between pairs of nodes. For N nodes, the network is represented as a

symmetric N × N connectivity matrix, G, which can be thresholded to obtain the

adjacency matrix A, representing the edge set of the network. For selection of the

node system, the naive approach is to treat each voxel as a putative region of interest.

This approach results in an extremely high-dimensional connectivity matrix that not

only poses challenges for subsequent analyses, but also tends to be unreliable and

noisy. A more common approach is to define nodes based on anatomically defined

brain structures, e.g. Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002) and Harvard-Oxford atlases (Fischl et al., 2004; Frazier et al., 2005).
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When analyzing brain functional networks, it is suggested to parcellate the brain

into putative functional areas based on clusters of voxels exhibiting similar signals

in resting-state functional imaging data (Craddock et al., 2012). Some widely used

examples of functionally defined node systems are the Power 264 node system (Power

et al., 2011a), Yeo (Yeo et al., 2011), and Gordon (Gordon et al., 2014) atlases, among

others.

For brain network based on functional magnetic resonance imaging (fMRI), the

edges represents the coherence in the temporal dynamics between the blood oxygen-

level dependent (BOLD) signal between node pairs. In this paper, we utilize undi-

rected measures of connectivity such as Pearson and partial correlation, where Pearson

correlation measures the marginal association between two regions and partial cor-

relation measures their association conditioned on all other regions in the network.

Given the heavy debate on the merits and disadvantages of each correlation measure

in brain network analysis (Kim et al., 2015; Liang et al., 2012), we investigate both

and compare the findings.

The resulting network, G, is a weighted graph representing undirected statistical

associations between all pairs of nodes. Often, a thresholding procedure is applied

to produce a binary adjacency matrix, A, where a value of 1 in the (i, j)th entry

indicates a connection between the respective regions. This network formulation is

particularly advantageous as it simplifies calculations of graph metrics and leads to

intuitive metric definitions (see Bullmore and Bassett (2011); Rubinov and Sporns

(2010a) for more details).

Since we are interested in between-group differences in functional networks, we

consider a difference network which is defined on the same node system as the func-

tional network but the edges represent the strength of between-group differences in the

functional connections. Details of the difference network construction are presented

in the following section. We focus on the number of thresholded edges incident to each
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region in the difference network, which we call the differential degree. Similar to the

interpretation of nodal degree in connectivity matrices, we focus upon this metric as

it suggests regions contributing to local differences in the network architecture across

diseases or conditions. We believe that a brain region incident to a large number

of differentially weighted edges (DWEs) is potentially responsible for overall differ-

ences in brain network topology, without being sensitive to any particular network

summary measure commonly used to capture connectome differences.

2.2.2 Differential Degree Test

In this section, we present the DDT method for identifying brain nodes whose

connections demonstrate significant differences between group.

2.2.2.1 Difference Network Construction

Suppose we are comparing networks between two groups with nr subjects in group

r (r = 1, 2). Denote Gkr = {gkrr,ij} (kr = 1, . . . , nr) as the estimated brain connec-

tivity matrices for the krth subject in the rth group (r = 1, 2) and gkrr,ij denotes the

connectivity measure (such as the Pearson or partial correlation) between nodes i

and j (i, j ∈ N = {1, . . . , N}) for the kr-th subject in the rth group. The first step

of DDT is to construct a N × N difference network D = {dij : i, j ∈ N}, where dij

represents the statistical significance of population-level differences in the connection

strength between node i and j, i.e.

dij = 1− p({g1,ij}, {g2,ij}) ∈ [0, 1), (2.1)

where p({g1,ij}, {g2,ij}) is the p-value of a between-group difference test based on the

estimated connectivity measures at edge (i, j) across subjects in the two groups. For

example, one can obtain the p-value by applying two-sample t test to {gk1r,ij} and
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{gk2r,ij} . We will provide more detailed discussion on how to derive the p-values from

various types of between-group tests in section 2.2.2.2. From (2.1), each element in the

difference network dij serves as our measure of the difference of the edge connectivity

gr,ij between the two groups, with larger values (i.e. smaller p-values) corresponding

to larger group differences at the (i, j)th edge, and vice-versa. Note that D = {dij}

is a symmetric matrix where ∀i, j ∈ N dij = dji and dij = 0 for i = j given that we

are not interested in the diagonal elements.

From the difference network D = {dij}, we can derive the difference adjacency ma-

trix A= {aij} where aij represent the presence of group differences in the connection

between nodes i and j, i.e.

aij = I(dij > τ), (2.2)

where τ is a threshold for selecting edges which are differentially weighted. When dij

exceeds the threshold τ , or equivalently the p-value for the group test is smaller than

1− τ , we obtain aij = 1 indicating the presence of group difference at the edge (i, j).

Otherwise, aij = 0 represents no group difference at the edge (i, j). In the following

section, we will present a data-driven adaptive threshold selection method for finding

τ .

Based on the difference adjacency matrix A, we define the following differential

degree measure for the ith node (i = 1, . . . , N),

di =
∑

j∈N ,j 6=i

aij (2.3)

The differential degree measure di represents the number of connections to node i

that demonstrate significant differences between the two groups as captured by edge-

wise p-values without multiplicity adjustments. In subsequent steps of the DDT, di

will be used as the test statistic for investigating node i’s contribution to disrupted
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communication in the brain. While the difference network provides edge-level infor-

mation on between group differences, it is widely accepted that cognitive deficits in

mental diseases are demarcated by disruptions in systems (Catani and Ffytche, 2005).

Thus, collections of connected DWEs are more consistent with the systemwide disrup-

tion paradigm than evaluation of individual DWEs. The DWEs incident to each node

form a locally connected component and indicate that irregular activity at the node

of interest contributes to differentiated co-activation with adjacent regions. Investi-

gation at the nodal level not only has biological justification, but also substantially

improves the multiple testing problem. The number of statistical tests scales lin-

early with the network’s size rather than quadratically at the edge level. The notion

of disruptions in sub-systems has also been used in previous work to mitigate the

multiplicity problem common to network comparisons (Zalesky et al., 2010).

2.2.2.2 Deriving p-value from between-group tests

The p-value used to define the difference network in (2.1) can be derived based

on various between-group testing procedures. The p-values fall into two categories:

model-free and model-based. The model-free p-values are derived based on paramet-

ric or nonparametric tests between the two groups of subjects without accounting

for the subjects’ biological or clinical characteristics. The common choices of such

tests include the two-sample t test, the nonparametric Wilcoxon rank sum test or

the permutation test. The model-based p-values are derived from regression models

where the subject-specific connectivity measure (or some transformation) is modeled

in terms of group membership and other relevant factors such as age and gender that

may affect the brain connectivity. These p-values for between-group differences can

then be derived based on the test of the parameter in the model associated with the

group covariate. This model-based p-value reflects the degree of group differences

while controlling for potential confounding effects. In many neuroimaging studies,
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subjects’ group memberships are not based on randomization but rather based on

observed characteristics. In this case, the distribution of subjects’ demographic and

clinical variables tend to be unbalanced between the groups and there often exist

some potential confounding factors in between group comparisons (Satterwaite et al.,

2014a). For such studies, it may not be the case that the model-based p-values more

accurately reflect group-induced variation in functional connectivity as compared with

model-free p-values.

We note that when computing the difference network in (2.1), the proposed ap-

proach does not apply a multiple testing correction to the edge-wise between-group

test p-values. Such multiplicity adjustment often reduces the power to detect DWEs.

Additionally, since our goal is to detect differentially expressed nodes in the brain

network, a multiplicity adjustment on the edge-wise tests is not crucial, provided the

falsely identified DWEs are more or less uniformly distributed across the nodes with-

out systematic differences. In such a case, the threshold τ in (2.2), which is chosen

using an appropriately constructed null distribution as in Section 2.2.4, automatically

adjusts for falsely identified DWEs occurring across nodes. Indeed, extensive simula-

tion studies illustrated that the proposed method is able to control false positives at

a nominal value.

2.2.2.3 Null distribution generation

After constructing the difference network D = {dij} and deriving the differential

degree measure, di, for each node, the next step in the DDT procedure is to conduct

a statistical test to evaluate whether there is significant group difference in the con-

nections to the node. As a standard strategy in hypothesis testing, we will evaluate

the test statistic, di, with respect to its null distribution under the hypothesis that

there are no between-group differences. For this purpose, we first derive the null

distribution by generating difference networks under the null hypothesis.
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We present a procedure for generating null difference networks that maintain some

of the fundamental characteristics of the observed difference networks but has a ran-

dom pattern of between-group differences which is expected under the null hypothesis.

Since the elements in the difference network lie within a restricted range, i.e. (0, 1),

we first apply a logit transformation, i.e.

D̄ = {d̄ij : d̄ij = logit(dij) ∈ (−∞,∞), i < j, i, j ∈ N}. (2.4)

We define the first and second moment characteristics for the observed difference

network as follows,

ē = E[d̄ij] and v̄ = V ar[d̄ij] for i<j, e = E[d̄ij] for i=j

where ē represents the mean of the off-diagonal elements, e represents the mean of

the diagonal element and v̄ is the variance of the off-diagonal elements.

In the following, we present a procedure for generating a null difference network

C ∈ IRNxN whose first and second moment characteristics matches that of the observed

difference network, and preserves its true topology. Motivated by the Hirshberger Qi-

Steuer (HQS) algorithm (Hirschberger et al., 2007), we propose to generate C based

on the multiplication of a random matrix and its conjugate transpose

C = L ∗ LT , (2.5)

where L =∈ RN×m. Based on the formulation of (Hirschberger et al., 2007), we gener-

ate lij ∼ N(µ, σ2) where µ =
√

ē
m

and σ2 = −µ2+
√
µ4 + v̄

m
and m = min{2, b e2−ē2

v
c}

where b·c is the floor function. Based on this specification, we can show that

E[cij] = ē, V ar[cij] = v̄ and E[cii] = e,

Please see equations A.1 for details. The generated null difference network C̄ main-
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tains the first and second moment characteristics of the observed difference network

D̄. Finally, we transform C̄ through the inverse logit function to obtain a null differ-

ence network C such that cij ∈ (0, 1).

The proposed generation procedure has several appealing features. First, it is

a very fast algorithm for generating null networks. Second, the generated null dif-

ference network, C̄, preserves the first and second moment characteristics of the

observed difference network D̄. An important advantage in maintaining these fun-

damental properties of the observed network is that it will help make the generated

null network a meaningful reference for comparison with the observed network. For

example, to perform meaningful comparison of the connectivity structure between

two networks, a critical condition is that the two networks must have similar number

of edges (Fallani et al., 2014). This condition would be violated if there exists a sig-

nificant difference in the average connectivity measure between the two networks in

the sense that the network with higher average connectivity is associated with larger

number of edges. By generating null networks with the same first and second moment

as the observed network, the proposed procedure makes sure the comparison between

the observed network against the null networks would not be confounded by the their

differences in the fundamental characteristics. More importantly, replication of the

first and second moments allows the null networks to preserve the nuisance topology

of the observed difference network while annihilating intrinsic group structures of the

observed network. As discussed in Zalesky, Fornito and Bullmore (2012), benchmark-

ing against such null networks permits identification of the intrinsic topology in the

observed network.

2.2.2.4 An adaptive threshold selection method

Recall that after obtaining the difference network D̄ = {d̄ij}, we need to threshold

it to derive the difference adjacency matrix A = {āij}. If d̄ij > γ, āij = 1 indicating
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the presence of a group difference at the edge (i, j) where γ = logit(τ). Otherwise,

āij = 0 represents no group difference at the edge (i, j).

In the existing between-group network tests, the threshold value is typically se-

lected by a multiple comparison method that controls the family-wise error rate or the

false discovery rate. Others select a pre-specified cutoff or grid over a range of cutoffs

(Zalesky et al., 2010). We propose to adaptively select the threshold based on the

distribution of the between-group test statistic. Specifically, the c̃ij are independent

and identical samples from the mixture distribution,H(.),

H(c̃ij) =
2σ2

4
T − 2σ2

4
Q, (2.6)

where T and Q are non-central χ2 and central χ2 random variables, respectively.

Each variable in the mixture distribution depends only on the mean and variance

of the observed data. We propose two ways to select the threshold, γ as the 95th

quantile: (1) aDDT which uses the theoretical critical value based on the parametric

mixture distribution in (2.6), and (2) eDDT which uses the empirical critical value

based on the empirical distribution. The numerical advantages and disadvantages

of each of the two thresholding methods will be addressed in the simulation studies.

Since the null difference network, C̄, is generated in a way that it matches the first

and second moments of the observed difference network, D̄, the selected threshold

value γ will automatically adapt to the properties of the observed difference net-

work. Compared to hard thresholding approaches which use a fixed cut-off value, our

threshold selection method can potentially provide an adaptive and general approach

for choosing suitable threshold values for different studies. Once the threshold value

γ is computed as above, one can apply it to the generated null difference networks C̄

to obtain difference adjacency matrices Ā = {āij} such that āij = 1 if c̄ij > γ and 0

otherwise.

The proposed threshold selection procedure controls the selection of false positive
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edges, while circumventing the loss of power inherent in existing multiplicity correc-

tions methods. This is achieved by adaptively selecting the threshold based on the

distribution of the elements in the difference network. Similar approaches (Newton

et al., 2004; Kundu et al., 2018) have effectively controlled type I error by using the

empirical distribution of edge probabilities to select a threshold in order to detect im-

portant connections. We do note that this thresholding procedure does not guarantee

a universally optimal choice. The selected threshold is only utilized to control the

type I error in the weak sense at the edge level and may be suboptimal with respect

to other manual or automatic thresholding procedures. However, simulations show

that it leads to superior performance in detecting the nodes of interest.

2.2.2.5 The DDT Test

In this section, we present a statistical test for the difference degree measure,

di, for node i based on the generated null difference networks. Recall that di =∑
j∈N ,j 6=i aij where aij is a binary variable indicating the presence of group difference

at the connection between node i and j. d̄i essentially is a count variable representing

the number of connections out of a total of N − 1 connections of node i that show

between group difference. Therefore, we can model di with a binomial distribution.

Under the null, di ∼ fnull = Binomial(N − 1, pnulli ) where pnulli is the the expected

probability for each connection of node i to demonstrate between group difference

under the null hypothesis. We can estimate the null probability pnulli based on the

generated null difference networks, that is,

p̂i
null =

1

M(N − 1)

M∑
m=1

∑
j∈N ,j 6=i

ā
(m)
ij ,

where M is the total number of null networks and ā
(m)
ij are elements of mth thresholded

null network, Ā
(m)

. By comparing the observed di against the null distribution, we
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identify all regions incident to more DWEs than is expected by chance.

In the following algorithm, we summarize the procedure of the DDT.

Algorithm 1 DDT Procedure

1: Construct the difference network D̄ = {d̄ij} where d̄ij = logit(1− p({gk1
ij }, gk2

ij }))
2: Obtain the first and second moment of D̄, i.e. ē = E(d̄ij) and σ2 = V ar(d̄ij)
3: Generate M null Difference Networks C̄

m
(m = 1, . . . ,M) based on ē and σ2 using

the proposed procedure such that C̄
m

preserves the first and second moment
characteristics of D̄

4: Apply the adaptive threshold selection method to find γ based on the percentile of
the non-central chi-square distribution of the null difference networks. Specifically,
aDDT uses parametric percentiles and eDDT uses empirical percentiles in the
adaptive thresholding.

5: Apply threshold γ to D̄ to obtain the difference adjacency matrix A = {āij} and
the difference degree measure di for node i ∈ N

6: Derive the null distribution for di, i.e. fnull based on the generated null difference
networks. Specifically, fnull = Binomial(N− 1, pnull

i ), where pnulli is obtained from
{Ām} based on equation 2.2.2.5.

7: Compare the observed difference degree measure, di, against its null distribution,
fnull, to evaluate the significance of between-group differences in the connections
of node i.

2.3 Simulation

We conduct extensive simulation studies to assess the proposed method’s ability

to detect regions with significantly different connections between two groups of sub-

jects. Unless otherwise noted, the generated networks contain N = 35 nodes, and

we consider sample sizes of 20 and 40 for each of the two groups. For the first set of

simulations, we consider the case where there is only one node in the network incident

to a specified number of DWEs. Without loss of generality, we refer to it as node 1,

and assess whether the proposed DDT can accurately identify this node. We consider

both DDT methods, i.e. aDDT based on parametric percentiles and eDDT based

on empirical percentiles in the adaptive thresholding step. Three network structures

are considered in the simulation: (1) random (2) small world (3) hybrid. Random



42

networks contain edges that are equally likely to be positive or negative for all con-

nections. We generate this structure by sampling edge weights independently from a

N(0, .04) distribution, which produces a connectivity matrix with no structural zeros.

The small world network retains the cliquishness of the regular lattice and the short

path length of the random network. This structure retains small world properties

observed in functional and structural brain networks (Bassett and Bullmore, 2006;

Hilgetag and Goulas, 2016; Salvador et al., 2005). The hybrid network seeks to fuse

the block diagonal structure observed in real brain networks, while maintaining the

small world-ness inherent to human brains. The “blocks” correspond to functional

modules observed in the brain such as the default mode and visual networks.

In order to evaluate the performance of our method, we simulate data similar to

that of Chen et al. (2015) and Zalesky et al. (2010). All subjects share a common base

brain network, B, which is a correlation matrix generated according to the random,

small world and hybrid network structure. We perturb the edge weights in B to induce

subject-level correlation network while controlling the distribution of DWEs across

the populations. For subjects i1 = 1, ..., n1 and i2 = 1, ..., n2 in the two groups, we

generate the subject-level networks, Hi1 and Hi2 , as follows: for n1 subjects in group

1, Hi1 = B + Wi1 , where Wi1 ∈ RN×N , wij,i1 ∼ N(0, .02) for 1 ≤ i < j ≤ N = 35

and wij,i1 = 0 ∀i = j; for n2 subjects in population two, Hi2 = B + Wi2 where

Wi2 ∈ RN×N . Let I be the set of differentially connected nodes where I= {1} for the

first set of simulation. For i ∈I, we generate q off-diagonal elements corresponding to

the DWEs in the i-th row and column edges connected with i fromN(.1, .02) and other

edges of i from N(0, .02). For i 6∈I, we have wij,i2 ∼ N(0, .02). We consider q =4, 7

and 11 to assess our method’s power to detect differentially connected region(s) when

the number of DWEs increases. We construct the difference network with model-free

p-values, where we conduct a two sample t-test and record one minus the p-value as

the weight for each edge.
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We compare the performance of DDT to that of two other tests. The first com-

parison method (T(10%)) is a standard two sample t-test of local nodal degree. For

this test, we threshold the subject-specific correlation matrices to attain 10% density,

evaluate the subject-level degree measure at each node and then perform a two sample

t-test to compare the nodal degree across groups. We also investigated but did not

include the results obtained from 15% density and 1% network density, which were

less powerful in detecting differentially connected regions than 10% density. We also

consider two binomial tests which are similar to DDT in that they directly assess the

number of differentially weighted edges incident to a node but differ from DDT in that

they apply some multiple comparison corrections to detect the DWEs. Specifically,

the first binomial test, BinB, applies a Bonferroni correction to detect the DWEs

(Tyszka et al., 2013) and the second binomial test, BinF, implements a less stringent

FDR multiple testing correction. For both binomial tests, each node’s differential

degree is the sum of all DWEs incident to it. We do not report the performance of

the NBS since it is fundamentally a different test. Consequently, it performs poorly

under the desired simulation settings.

In the second set of simulations, we assess the methods’ performances when there

are 3 differentially connected regions. We consider two scenarios in this setting. First,

the network size is fixed while the number of DWEs varies with q = 4, 7 and 11. Sec-

ond, we fix the proportion of DWEs for the differentially connected nodes to be 30%

while increasing the size of the network. We report various metrics to quantify the

methods’ accuracy in detecting differentially connected nodes across the simulations.

The false positive rate (FPR) is calculated as
∑S

s=1

∑N
n=1 I(R̂n,s = 1, Rn = 0)/(S ∗N)

and quantifies the chance that each method incorrectly identifies a differentially con-

nected region. The true positive rate (TPR) is calculated as
∑S

s=1

∑N
n=1 I(R̂n,s =

1, Rn = 1)/(S ∗ N)) and measures the correct identification. Here, S is the total

number of simulations. R̂n,s takes the value 1 if region n in simulation s is selected
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as differentially connected and 0 otherwise. Rn is a binary indicator of whether

region n is differentially connected in the ground truth. We compare accuracy in

selecting truly differentially connected regions by Matthews correlation coefficient

(MCC) (Johnstone et al., 2012), which is a popular measure for accessing the cor-

respondence between predicted and true class labels. MCC, which is computed as

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, takes values in [−1, 1] where 1 indicates perfect

agreement between the predicted and true class labels, 0 no agreement, and -1 in-

verse agreement. In this formula, TP, TN, FP, FN denote the number of nodes that

are true positives, true negatives, false positives and false negatives, respectively. In

a supplementary analysis of the simulation results, we assess the performance of the

adaptive thresholding procedures presented in section 2.2.2.4 in correctly detecting

DWEs. We compare the MCC in selecting the true DWEs based on the proposed

aDDT and eDDT thresholding procedures with that based on two hard thresholds at

.95 and .99 as well as based on multiple comparison corrections thresholds using the

Bonferroni and FDR methods.

2.3.1 Results

Table 2.1 displays accuracy measures for identifying one differentially connected

node across two populations in the first set of simulations. Generally, the proposed

DDT methods, i.e. aDDT and eDDT, exhibit larger TPR than the T-tests and

the Binomial tests across various sample sizes and network structures. The Binomial

tests achieve the lowest FPR, which is attributed to the Bonferroni and FDR multiple

testing corrections. However, the multiplicity corrections reduce the power to detect

the correct region. The T-test attains the nominal type I error rate (α = .05). For

all methods, the TPR improves when the sample size increases and the number of

differentially connected edges increase. Overall, the two proposed DDT approaches

exhibit superior performance as compared to the other tests. Among the two DDT
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methods, eDDT typically exhibits higher TPR, but the latter has a slightly higher

FPR, although the FPR under both approaches is less than the nominal level of .05.

Table 2.1: False positive and true positive rates for the Random, Small World, and
Hybrid network structures considered.

n1 =n2 =20 n1 =n2 =40

DDT Binomial T-test DDT Binomial T-test
Network Structure DWE* aDDT eDDT BinB BinF 10% aDDT eDDT BinB BinF 10%

F
A

L
S

E
P

O
S

IT
IV

E
R

A
T

E Random 4 .021 .046 .002 .001 .052 .019 .046 .002 .002 .052
7 .022 .047 .002 .002 .051 .017 .044 .002 .002 .054
11 .020 .046 .002 .002 .052 .014 .044 .003 .002 .055
20 .017 .045 .0004 .003 .057 .008 .033 .0008 .004 .060

Small world 4 .022 .046 .001 .001 .050 .019 .045 .002 .002 .054
7 .023 .046 .002 .002 .051 .016 .044 .002 .002 .051
11 .020 .045 .002 .002 .052 .012 .042 .003 .002 .055
20 .019 .045 .0004 .003 .054 .008 .033 .0005 .003 .058

Hybrid 4 .024 .042 .001 .002 .054 .019 .045 .001 .001 .055
7 .022 .045 .002 .001 .055 .018 .045 .002 .002 .059
11 .020 .046 .002 .002 .054 .015 .046 .002 .002 .064
20 .017 .045 .0005 .003 .058 .009 .034 .0006 .003 .063

T
R

U
E

P
O

S
IT

IV
E

R
A

T
E Random 4 .370 .458 .036 .049 .111 .710 .891 .123 .112 .203

7 .631 .767 .240 .292 .230 .977 .991 .747 .738 .379
11 .893 .885 .694 .686 .450 1.00 .999 .999 .998 .619
20 .994 .991 .981 .999 .791 1.00 1.00 1.00 1.00 .962

Small world 4 .287 .505 .040 .034 .131 .699 .913 .113 .123 .227
7 .639 .738 .274 .226 .155 .982 .994 .784 .764 .307
11 .895 .908 .696 .692 .551 1.00 .999 .998 .999 .840

20 .994 .991 .981 .999 .791 1.00 1.00 1.00 1.00 .962

Hybrid 4 .284 .423 .042 .052 .255 .650 .884 .136 .114 .435
7 .571 .675 .225 .222 .524 .974 .995 .707 .719 .650
11 .874 .888 .693 .693 .681 .999 1.00 .997 . 994 .739
20 .996 .988 .975 .993 .820 1.00 1.00 1.00 1. 00 .978

*Number of Differentially Weighted Edges incident to node 1
BinB =Binomial, bonferroni correction; BinF = Binomial, FDR correction
aDDT =DDT, theoretical threshold; eDDT = DDT, empirical threshold

The advantages of proposed aDDT and eDDT over the alternative methods persist

in the second set of simulations where three regions are differentially connected. In

Figure 2.1, across all network structures with a fixed number of nodes (N=35) and

with four, seven, or eleven DWEs incident to each of the three nodes of interest,

the DDT methods have the highest power to detect the regions of interest while

attaining FPR comparable to that of T(10%). We note that our method is superior

to the multiplicity corrected Binomial tests when the differentially connected regions

are incident to a small to moderate number of DWEs and is comparably powered to
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detect differentially connected nodes as the FDR corrected tests when the number

of DWEs is large. Furthermore, as in the first simulation setting, eDDT typically

exhibits higher TPR than aDDT, but the former has slightly higher FPR compared

to aDDT. Notably, both methods exhibit FPR values close to the nominal level of

0.05.

Figure 2.1: Comparison of eDDT, aDDT, t-test (T(10%)), binomial tests (BinF , BinB) in

the second set of simulations with three differentially connected nodes incident to four (first

row), seven (second row), and eleven (third row) DWEs. The true positive rate (TPR),

false positive rate (FPR) and Matthew’s correlation coefficient (MCC) is presented for all

methods across the three network structures considered and the red dashed line demarcates

the nominal significance level (.05). DDT exhibits superior performance in detecting the

differentially connected nodes while not exceeding the allowable type I error rate.

We also examine at the performance of the approaches as the number of nodes

increases, while keeping the proportion of DWEs incident to the region of interest
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fixed at 30%. Figure 2.2 clearly illustrates the advantages of DDT for detecting

regions incident to DWEs, while having a comparable or lower FPR as the network’s

size increases. Consistent with Table 2.1 and Figure 2.1, eDDT exhibits the best

TPR while the multiplicity corrected binomial tests have the smallest FPR, although

the FPR levels under the DDT approaches are less than or equal to the nominal level

across varying numbers of nodes. However, the TPR for eDDT and aDDT becomes

increasingly similar as the number of regions is increased.

Figure 2.2: Performance of aDDT, eDDT, t-test(T10%), and binomial (BinB, BinF) tests in

identifying the differentially connected node as the network size increases and the proportion

of DWEs is fixed at 30%. (Note, the results of the BinB, BinF tests are very close and hence

the two lines overlap)

Although detection of regions incident to a significant number of DWEs is our

primary focus, we also investigate the performance of the thresholding procedure fir

detecting DWEs in a supplementary analysis in terms of the MCC values. Figure

2.3 indicates that aDDT’s and eDDT’s adaptive thresholding procedures outperform

the Bonferroni and FDR multiplicity corrections over varying proportion of DWEs.

Moreover, our method also exhibits superior MCC than the arbitrary hard threshold

of 0.95, and at least one of the aDDT and eDDT approaches perform as well as the

conservative hard threshold set at 0.99 as the proportion of DWEs across the network

increases.
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Figure 2.3: Comparison of thresholding procedures implemented in aDDT and eDDT as
well as four competitors (.95 and .99 hard threshold; FDR and Bonferroni multiplicity
corrections) in detecting differentially weighted edges.

2.4 Data Application

Existing literature has identified multiple brain regions implicated in major depres-

sive disorder (MDD). For example, MDD patients experience reduced connectivity in

the fronto-parietal network as well as modified activity in areas such as the insula

(Deen et al., 2010), amygdala (Sheline et al., 1998), hippocampus (Lorenzetti et al.,

2009; Schweitzer et al., 2001), dorsomedial thalamus (Fu et al., 2004; Kumari et al.,

2003), subgenual and dorsal anterior cingulate cortex (Mayberg et al., 1999). We ap-

ply the DDT to a MDD resting-state fMRI study (Dunlop et al., 2017) to investigate

brain regions contributing to differences in overall functional network organization in

the affected population.

To construct the brain network, we choose the 264-node system defined by (Power

et al., 2011a). Each node is a 10mm diameter sphere in standard MNI space represent-

ing a putative functional area consistently observed in task-based and resting-state

fMRI meta-analysis. We focus upon 259 nodes located in cortical and subcortical re-

gions, excluding a few nodes lying in the cerebellum. Each node is assigned to one of
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twelve functional modules defined in Power et al. (2011a): sensor/somatomotor (SM),

cingulo-opercular task control (CIO), auditory (AUD), default mode (DMN), mem-

ory retrieval (MEM), visual (VIS), fronto-parietal task control (FPN), salience (SAL),

subcortical (SUB), ventral attention (VAN), dorsal attention (DAN), and uncertain

(UNC).

We measure the functional association between all pairs of brain regions with

Pearson correlation and partial correlation. Partial correlations are estimated using

the DensParcorr R package (Wang et al., 2016). For both correlation measures, we

conduct the between-group tests on the Fisher Z-transformed correlation coefficient

at each edge and derive both the unadjusted p-values when confounding variables are

not accounted for and also the adjusted p-values when they are accounted for.

We construct the difference networks based on the model-free and model-based

between-group test p-values for connectivity measured by both Pearson correlation

and partial correlation. We apply the proposed eDDT method to identify brain

regions incident to a statistically significant number of DWEs. Subsequently, we

investigate the distribution of the DWEs across the networks as well as between and

within functional modules. We also comment on the differences identified by the NBS.

We apply a threshold of three as used in the seminal paper on the method (Zalesky

et al., 2010).

2.4.1 Data

Our data consists of resting state fMRI scans for twenty MDD patients and nine-

teen healthy subjects. Details on the data acquisition and preprocessing prior to

analysis can be found in 1.3.1.
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2.4.2 Results

Table 2.2(A) and 2.2(B) list the top twenty differentially connected nodes for

model-based Pearson and partial correlations. Pearson correlation generally leads

to more DWEs incident to nodes. Thirty percent of the regions identified in Table

2.2(A) are located in the SM module while twenty percent are in the DMN. Simi-

larly, Table 2.2(B) shows DMN nodes are extremely prominent (35%) as well as the

FPN and CIO which compose the task control system. Similar trends are observed

for BinB and BinF. Additionally, these two competing methods detect five regions

that are also found by our method (Temporal Sup L, Insula R, Frontal Inf Orb L,

Supp Motor Area R, Frontal Sup Medial L). Jointly, these results suggest that altered

connectivity in the DMN differentiates the brain networks in the MDD population

from healthy controls.

Figure 2.4 displays the distribution of DWEs across the respective difference net-

work. Here, we group the nodes based on the functional module assignment provided

in Power et al. (2011a). The diagonal blocks represent within-module connections

while the off-diagonal blocks represent between-module connections. For Pearson

model-free and model-based analyses, we identified 793 and 776 DWEs, respectively.

For partial correlations, we identified 458 DWEs based on model-free p-values and

772 DWEs for model-based p-values. The Pearson correlation derived difference net-

works exhibit spatial clustering of DWEs, specifically within the SM and between the

SUB and VIS functional modules. Table 2.3 reports the consistently and inconsis-

tently detected DWEs when comparing the four difference networks investigated, i.e.

model-free/model-based Pearson correlation networks and model-free/model-based

partial correlation networks. Insignificant edges persist across all the difference net-

works considered and account for as much as 90% of the edges in the networks.

Generally, the findings are more consistent between the model-free and model-based

p-values within the same correlation measure and less consistent across correlation



51

Table 2.2: Top twenty differentially connected nodes in the major depressive disorder
study based on (a) model-based Pearson correlations and (b) model-based partial
correlations.

(A) model-based Pearson correlations
X Y Z Name Module #DWE
-53 -22 23 SupraMarginal L (aal) Auditory 29
52 7 -30 Temporal Pole Mid R (aal) Default mode 27
46 16 -30 Temporal Pole Mid R (aal) Default mode 26
29 1 4 Putamen R (aal) Subcortical 26
47 -30 49 Postcental R (aal) Sensory/somatormotor Hand 23
10 -46 73 Precuneus R (aal) Sensory/somatormotor Hand 19
-24 -91 19 Occipital Mid L Visual 19
-54 -23 43 Parietal Inf L Sensory/somatomotor Hand 18
31 33 26 Frontal Mid R Salience 18
51 -29 -4 Temporal Mid R (aal) Ventral attention 18
13 -33 75 Postcentral R (aal) Sensory/somatomotor Hand 16
-46 31 -13 Frontal Inf Orb L (aal) Default mode 16
23 10 1 Putamen R (aal) Subcortical 15
-44 12 -34 Temporal Pole Mid L (aal) Default mode 15
31 -14 2 Putamen R (aal) Subcortical 15
-38 -27 69 Postcentral L (aal) Sensory/somatomotor Hand 14
-60 -25 14 Temporal Sup L (aal) Auditory 14
27 16 -17 Insula R (aal) Uncertain 14
52 -2 -16 Temporal Mid R (aal) Default mode 14
50 -20 42 Postcentral R (aal) Sensory/somatomotor Hand 13

(B) model-based partial correlations
-31 19 -19 Frontal Inf Orb L (aal) Uncertain 15
24 32 -18 Frontal Sup Orb R (aal) Uncertain 13
-38 -15 69 undefined Sensory/somatomotor Hand 13
-26 -40 -8 ParaHippocampal L (aal) Default mode 13
-31 -10 -36 Fusiform L (aal) Uncertain 13
17 -91 -14 Lingual R (aal) Uncertain 12
-16 -46 73 Parietal Sup L (aal) Sensory/somatomotor Hand 11
23 33 48 Frontal Sup R (aal) Default mode 11
-28 -79 19 Occipital Mid L (aal) Visual 11
37 -81 1 Occipital Mid R (aal) Visual 11
-42 -55 45 Parietal Inf L (aal) Fronto-parietal Task Control 11
-54 -23 43 Parietal Inf L (aal) Sensory/somatomotor Hand 10
7 8 51 Supp Motor Area R (aal) Cingulo-opercular Task Control 10
-45 0 9 Rolandic Oper L (aal) Cingulo-opercular Task Control 10
-60 -25 14 Temporal Sup L (aal) Auditory 10
-13 -40 1 Precuneus L (aal) Default mode 10
-68 -23 -16 Temporal Mid L (aal) Default mode 10
-10 39 52 Frontal Sup Medial L (aal) Default mode 10
22 39 39 Frontal Sup R (aal) Default mode 10
-8 48 23 Frontal Sup Medial L (aal) Default mode 10

measure.

The distribution of DWEs within and between functional modules provides in-

sight into disrupted communication among functionally segregated sub-systems in

the brain. We conduct analysis to identify functional modules that are associated
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Figure 2.4: Differentially weighted edges detected by eDDT in the major depressive dis-
order study under the four difference network configurations: (a) model-free Pearson and
(b) model-based Pearson (c) model-free partial (d) model-based partial. Red edges indicate
the average edge weight in the MDD population is statistically smaller than in healthy
adults whereas blue edges demarcate the edge is statistically larger. The network is de-
composed into 12 functional modules: Sensor/somatomotor (SM), Cingulo-opercular Task
Control (CO), Auditory( Aud), Default Mode (DMN), Memory Retrieval (Mem), Visual
(Vis), Fronto-parietal Task Control (FP), Salience (SN), Subcortical (Sub), Ventral atten-
tion (VAN), Dorsal attention (DAN), Uncertain (Un).

with higher number of DWEs as compared with other modules. Specifically, we pro-

pose the following chi-square statistic to help identify functional module pairs for

which there are unusually high number of DWEs than what is expected by chance,

X2
g1,g2

=
(Q(g1,g2) − E(g1,g2))

2

E(g1,g2)

, (2.7)
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Table 2.3: Consistency of DWEs identified based on four difference networks. Values
presented in the table are the number of network edges for each results consistency classi-
fication.

Difference Network Sig in I Insig in I Sig in I Insig in I
I II Sig in II Insig in II Insig in II Sig in II

Pearson model-free Pearson model-based 662 32504 131 114
Pearson model-free Partial model-free 51 32392 691 406
Pearson model-based Partial model-based 73 31936 703 699
Partial model-based Partial model-free 454 32936 4 318
The total number of edges in the network is 33411.

where g1 ∈ {1, . . . ,G} and g2 ∈ {1, . . . ,G} are indices corresponding to one of the

G = 12 functional modules. When g1 = g2, (g1, g2) represents a within module block,

whereas it represents a between-module block when g1 6= g2. Q(g1,g2) represents the

observed number of DWEs in the (g1, g2) block and E(g1,g2) represents the expected

number of DWEs in the (g1, g2) block when the edges distribute randomly across the

module blocks in the network. Let |g| represent the total number of nodes within the

gth module, and p∗ represent the proportion of DWEs among all the edges across the

network. It is straightforward to see that Eg1,g2 = p∗ ∗ [ |g1|∗(|g2|−1)
2

] for within module

blocks, i.e. g1 = g2, and Eg1,g2 = p∗ ∗ [|g1| ∗ |g2|] for between-module blocks.

Figure 2.5 displays functional modules and module pairs exhibiting a significantly

high number of DWEs based on the thresholded chi-square test statistic. The results

are derived from the model-free Pearson correlations (Figure 2.5(A)) and model-based

Pearson correlations (Figure 2.5(B)), respectively. Based on model-free Pearson cor-

relations (Figure 2.5(A)), there are significantly high number of DWEs within the

sensorimotor module and between the module pairs of sensorimotor-ventral attention,

sensorimotor-dorsal attention, visual-auditory, subcortical-auditory and subcortical-

visual. After accounting for age and gender, the model-based Pearson correlations

(Figure 2.5(B)) also exhibit a large number of DWEs within the sensorimotor module

and between the module pairs of sensorimotor-ventral attention, visual-auditory and

subcortical-visual. However, the model-based Pearson correlations no longer show
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significantly high number of DWEs between the sensorimotor-dorsal attention and

subcortical-auditory module pairs. Instead, the model-based correlations find signif-

icant number of DWEs between the subcortical-memory module pair which is not

identified by the model-free Pearson correlations.

Figure 2.5: Heat map of the X2
(g1,g2) statistic for (A) model-free Pearson correlations and

(B) model-based Pearson correlations. Red squares indicate modules with more statistically

significant DWEs than that consistent with the null hypothesis. We control the overall false

discovery rate by only selecting module pairs with a multiplicity corrected p-value < .05 .



55

2.5 Discussion

While the estimation of brain networks is gaining increasing attention in the neu-

roimaging literature, the fundamental question of how brains differ in functional or-

ganization across disease populations is not yet resolved. Our proposed method ex-

hibits two strengths. First, our automated threshold selection permits identification

of DWEs without sacrificing power as is the case with many methods dependent upon

multiplicity corrections. Second, we use the generated null networks to test if each

brain region is incident to more DWEs than would be expected by random chance.

We hypothesize that network wide disconnectivity is driven by brain regions that

irregularly communicate with other regions. The results from the real data analysis

suggest that the DDT appropriately identifies problematic brain regions in major

depressive disorder. The existence of differential connectivity between nodes in the

auditory and visual networks (Figure 2.5) has previously been observed (Eyre et al.,

2016). Further, multivariate pattern analyses have suggested that the most discrim-

inative functional connectivity patterns lie within and across the visual network,

DMN, and affective network (Zeng et al., 2012). The parahippocampal gyrus, which

we detect as a problematic region (Table 2.2), has also suggested as a region with

differentiated connectivity patterns in depressed populations.

Our simulation results demonstrate superior performance of the proposed DDT

tests. Although the binomial test’s false positive rate is smaller than DDT, its abil-

ity to detect differentially connected nodes is severely attenuated. DDT maintains

the desired false positive rate while achieving higher true positive rates than the t-

test across all network structures and sample sizes considered. Simulations indicate

DDT’s adaptive threshold selection is superior to conservative FDR and Bonferroni

adjustments.

An obvious limitation to this work is the i.i.d. assumption on edge weights in the

null networks. Although the independence assumption did not severely impact the
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method’s performance relative to suitable competitors, it is likely that incorporation

of inter-edge dependence structures will lead to better power to detect differentially

connected nodes.
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Chapter 3

Anatomically Informed Estimation

of Functional Brain Networks
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3.1 Introduction

In the previous chapter, we developed a method to compare functional brain net-

works. Although many methods compare functional connections across populations,

it is well known that brain functional connectivity (FC) exhibits substantial within

subject variability. This variability, which is typically unaccounted for, can contribute

to erroneous edge detection and negatively impact network comparisons. In this chap-

ter, we propose a new method for estimating functional connectivity when structural

connectivity (SC) knowledge is available. Our motivation for such an approach is two

fold: (1) evidence that brain structure constrains function and (2) potential increases

in the reliability of functional connectivity estimates in the presence of structural

knowledge. Various studies have demonstrated the suggestive relationship between

brain function and structure.

Despite strong evidence regarding the role of white matter fiber tracts in regu-

lating FC (Damoiseaux and Greicius, 2009; Honey et al., 2010; Sporns, 2013) and

considerable progress in separately estimating FC and SC, there have been compara-

tively limited advances in FC approaches which are guided by underlying anatomical

knowledge. Incorporating anatomical knowledge in estimating FC is clearly desir-

able since it is expected to produce more accurate estimates of the network, which

translates to greater reproducibility of the findings as illustrated via our fMRI data

analysis. However, several considerations need to be taken into account, such as the

complexity of the structure-function relationship (Hermundstad et al., 2013), hetero-

geneity in FC for a given SC strength, which presumably is attributed to the fact

that FC is only partially dependent on SC (Damoiseaux and Greicius, 2009; Messé

et al., 2014) and regulated by unobservable dynamics in underlying neuronal activity

(Bressler and Tognoli, 2006).

Recently, Venkataraman et al. (2012) and Xue et al. (2015) proposed ap-

proaches to jointly model the probability of co-activation based on fMRI data while
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incorporating direct structural connections. They provide measures of functional

co-activation deviating from standard measures of FC such as Pearson or partial

correlations. Hinne et al. (2014) proposed a Bayesian approach which uses fMRI

data to model the distribution of partial correlations for edges determined by the

given SC information. The assumption that FC only exists between anatomically

connected regions ignores the contributions of indirect anatomical pathways and does

not capture the complexity of the relationship between brain structure and function

(Honey et al., 2009, 2010; Messé et al., 2014). Moreover, the above approaches use

multi-subject data which requires registration of images to a shared template under

the assumption that the volumes are similar and can be matched. Unfortunately,

this assumption has limitations for human brain images considering the substantial

variability in cortical anatomy and function (Zhu et al., 2012) . This variability is

especially pronounced during the developmental phases of childhood and adolescence

as is the case with our motivating Philadelphia Neurodevelopmental Cohort (PNC)

study. Ng et al. (2012) and Pineda et al. (2014) proposed approaches for estimating

sparse functional networks for individual subjects via an adaptive graphical lasso. In

both models, edge specific shrinkage parameters are deterministic functions of the

SC information. Under these approaches, FC with less anatomical support are more

heavily penalized, and vice-versa. However, the parametric form of the shrinkage

parameters may not adequately capture the complex underlying structure-function

relationships and does not account for heterogeneity in FC for a given SC strength

resulting from non-anatomical sources of variation such as BOLD signal sensitivity to

proximity to blood vessels (Zhang et al., 2016) as well as cardiac, acquisition and pre-

processing effects (Skudlarski et al., 2008). Moreover, such a parametric relationship

may lead to network estimates which are not robust and more sensitive to the mis-

specification of anatomical knowledge. Figure 3.1 illustrates a representative FC-SC

relationship in the PNC study (refer to section 3.3.2.1 for details on the calculation
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of SC strengths).

Figure 3.1: Plots of the associations between partial correlation (FC) and direct structural
connectivity (SC) for all males (top row) and females (bottom row) in our study. While
mild positive correlations—approximately .16—are observed between SC and FC, FC ex-
ists between regions with little to no direct structural connections. We also observe large
variation in FC for a given SC level (median standard deviation ≈ .275). The red dashed
line is the line of best fit and r is the Spearman correlation coefficient between direct SC
and FC.

The above discussions highlight a serious need for integrative modeling approaches

which adaptively estimate FC by incorporating structural knowledge in an appropri-

ate manner. In designing such an approach, our primary goals for the method are

that it will (a) correctly identify true interregional functional connections and identify

which connections are absent in the true network; (b) lead to reproducible estimates of

FC such that the estimated brain network can be replicated across multiple scanning

sessions, which is a topic of great importance in current literature (Varoquaux et al.,

2010); and (c) specify a flexible structure-function relationship which is robust to mis-

specification of SC information (arising from limitations in existing image acquisition

technology) and can accommodate heterogeneity in FC for a given SC. We propose
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a novel hierarchical Bayesian Gaussian graphical modeling approach for estimating

FC based on single subject fMRI data which incorporates given SC information in a

manner that addresses the aforementioned objectives. The FC is computed via sparse

precision matrices whose elements are estimated under Laplace type priors having

edge specific shrinkage parameters that are random variables modeled using SC in-

formation and an independent baseline component. The prior encourages stronger

FC given a large SC (and vice-versa), but also accounts for edge specific variations in

FC unrelated to the brain anatomy, via the baseline component. Thus, the approach

is flexible in accounting for anatomical knowledge with the FC being guided by, but

not completely determined by, the SC information. Our method is motivated by the

variable selection approach in Chang et al. (2016), which incorporates prior graph

knowledge in a linear regression setting, but is distinct in addressing graphical model

selection and precision matrix estimation, as well as the manner in which the prior

knowledge is incorporated. Under certain choices of model parameters, the proposed

approach reduces to an adaptive shrinkage approach specifying a parametric relation-

ship between the shrinkage parameters and the anatomical information, similar to Ng

et al. (2012) and Pineda et al. (2014).

While Markov chain Monte Carlo (MCMC) can be used to implement the pro-

posed approach, it is not scalable to large networks needed for whole brain connec-

tome analysis as in our application. Moreover, an additional thresholding step is

often needed for model selection. We propose an optimization algorithm to obtain

the maximum a posteriori (MAP) estimate, which is computationally efficient, scales

to a large dimensions, and does not require post-hoc thresholding. Under various

simulation studies, we observe superior performance of the proposed method as com-

pared to alternative approaches with or without SC information. The advantages of

our approach become more evident as the degree of misspecification of anatomical

knowledge increases, and/or the number of nodes grows larger which is particularly
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relevant for whole brain connectome analysis.

Our efforts are motivated by data from the PNC study, a large-scale, NIMH funded

initiative to understand the developmental trajectory of the brain from childhood to

adolescence (Satterthwaite et al., 2014). The PNC data contains both DTI and

resting state fMRI measurements from boys and girls ages 8-21 years, with suggestive

but unclear SC-FC relationships (Figure 3.1). We fuse multimodal brain imaging

data to examine gender differences in brain networks across three age brackets—pre-

teens (ages 8-12), teens (ages 13-17), and young adults (ages 18-21)—and discover

several gender based differences in FC within and across the age brackets. We also

assess the reliability of computed network metrics across scanning sessions and find

that the proposed approach yields strong reproducibility in the estimation of network

metrics, which is almost always higher than alternative approaches. While other

studies have separately examined the reproducibility of functional and structural

brain networks (see Welton et al. (2015) for a review), ours is one of the first to

examine the reproducibility of anatomically informed functional networks to the best

of our knowledge.

Section 2 describes the proposed methodology and the optimization routine for

estimating networks, while sections 3 presents numerical studies and application of

our method to PNC data. We conclude with a brief discussion in Section 4.

3.2 Materials and methods

3.2.1 Gaussian graphical model for brain networks

While early work on brain network estimation utilized Pearson correlation to mea-

sure undirected interregional dependencies, recent literature has focused on Gaussian

Graphical Models (GGMs) which are parametrized by the inverse covariance matrix

and measure functional connectivity via partial correlations. The precision matrix
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has often been reported to result in more accurate and robust estimation of underly-

ing brain network structures as compared to other methods such as thresholding of

the covariance matrix (Smith et al., 2011). Compared to the covariance approach,

the precision matrix can distinguish a true, direct functional connection between two

regions from those that exist because of confounding with other nodes in the network.

GGMs assume observations are normally distributed and that zeros in the inverse

covariance matrix correspond to absent edges in the network, G. A standard GGM

specifies yt ∼ Np(0,Ω
−1) where yt is a vector containing the fMRI signal at each

of the p ROIs for the tth time-index, where t=1,..,T and T is the total number

of image volumes acquired during the scanning session. In everything that follows,

YT×p = {y1, ..., yT} is the data matrix where each row contains the fMRI signals across

all brain regions at time index t. Ω is the inverse covariance matrix (or precision

matrix) which belongs to the cone of p × p symmetric positive definite matrices,

denoted by M+
p . Under this framework, estimating G is equivalent to estimating

structural zeros in the positive definite precision matrix Ω.

Due to tradeoffs between the cost and efficiency of information transfer, it is

typically assumed that the brain seeks efficient organization favoring a sparse set of

active connections at any point in time (Eavani et al., 2015). The GGM approach

is well equipped to handle such sparse networks by imposing penalties that shrink

sufficiently weak functional connections to zero, where the L1 penalty under the

graphical lasso (Friedman et al., 2008) is a popular choice (Ng et. al, 2012; Monti

et. al, 2014 ; Pineda-Pardo et. al, 2014). The graphical lasso can be thought of as

an extension of the Lasso approach in regression settings and penalizes the full data

likelihood to estimate the inverse covariance matrix as

Ω̂ = arg max
Ω∈M+

p

log det(Ω)− tr(SΩ)− λ
∑
j≤k

|ωjk|, (3.1)

where S =
∑T

t=1(y′tyt)/T is the sample covariance matrix, |x| denotes absolute value

of x, det(.) is the determinant operator, tr(.) is the matrix trace operator, and λ > 0
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is the penalty parameter controlling overall network sparsity. If λ = 0, one obtains the

maximum likelihood estimate, while large values of λ shrinks an increasing number

of off-diagonal elements to zero. The typical graphical lasso approach fits a series

of graphs under various choices of the tuning parameter λ and chooses the optimal

network as the one minimizing some goodness of fit criteria (Yuan and Lin, 2006).

3.2.2 Structurally informed Bayesian Gaussian graphical model

Bayesian GGM approaches have been successfully used for estimating brain net-

works (see Mumford and Ramsey (2014) for a review). One such approach is the

Bayesian graphical lasso (Wang, 2012), which has similarities with the graphical lasso

approach in the sense that the maximum a posteriori (MAP) estimator is equivalent

to the penalized likelihood estimate. This approach assumes that the p dimensional

fMRI signal at time index t is distributed as yt ∼ Np(0,Ω
−1), t = 1, .., T, with the

prior on the inverse covariance as

π(Ω | λ) = C−1
λ

p∏
k=1

Exp(ωkk;λ)
∏
j<k

DE(ωjk;λ)I(Ω ∈ M+
p ), (3.2)

where π(.) represents the prior distribution and I(x) is an indicator function that takes

the value one when condition x is true. The diagonal element ωkk is modeled under

an exponential prior distribution Exp(λ), the off-diagonal element ωjk is modeled

with double exponential or Laplace prior distribution DE(λ), and λ is the shrinkage

parameter. In a fully Bayesian paradigm, λ is typically assigned a prior distribution,

and is thus learned from the data, resulting in an adaptive shrinkage of the elements

in Ω.

In order to incorporate anatomical knowledge in functional connectivity estima-

tion, we propose a hierarchical Bayesian structurally informed Gaussian graphical

model (siGGM). It is based on the generic Bayesian GGM in eq. (3.2), but involves
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edge specific shrinkage parameters which are modeled using anatomical knowledge.

Throughout this article, we will denote the structural connectivity metric as pjk for

edge (j, k), where a larger value denotes a stronger anatomical connection and vice-

versa. For example, in our data application, pjk corresponds to the probability of SC

obtained via probabilistic tractography (please see section 3.3.2.1 for details). The

proposed approach to estimating the brain functional network incorporating anatom-

ical knowledge is defined as follows

π(Ω | λ) = C−1

λ,ν

p∏
k=1

Exp(ωkk;
ν

2
)
∏
j<k

DE(ωjk; νλjk)I(Ω ∈ M+
p ),

π(λ|µ, η) = Cλ,ν

∏
j<k

LN(µjk − ηpjk, σ
2
λ), (3.3)

where (i) λ = {λjk, j < k, j, k = 1, . . . , p} denotes the collection of edge specific

shrinkage parameters having a log-normal (LN) type distribution which restricts the

shrinkage parameters to non-negative values; (ii) ν refers to the tuning parameter

controlling the network’s overall sparsity and also corresponds to the scale parameter

for the exponential prior on the diagonals; (iii) η is a positive random variable which

controls the average effect of SC on FC; (iv) µjk denotes the random edge specific

baseline component representative of non-anatomical sources of variations regulating

FC; and (v) Cλ,ν is the intractable normalizing constant for the prior on the precision

matrix depending on λ and ν. This constant assures a proper prior distribution on

Ω; however, it is not possible to analytically evaluate it due to the constraint that

Ω ∈ M+
p , as described in Wang (2012). We utilize the trick introduced in that paper

where the intractable constant is included in the prior on λ such that it cancels with

the term in π(Ω|λ), leading to a closed form full posterior that facilitates computation.

We note that in the extreme case when log(λjk) = µjk − ηpjk, the model specifies a

parametric relationship which has similarities with Ng et. al (2012) and Pineda-Pardo
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et. al (2014).

The anatomically informed prior on the shrinkage parameters in (3.3) specifies

a probabilistic relationship between the edge specific shrinkage parameters and the

given SC knowledge via η. In particular, increasing positive values of η implies an in-

creasing dependence on the given SC, potentially resulting in a functional connection

even for small SC weights. Figure 3.2 illustrates that for large η and increasing SC,

the Laplace prior has heavier tails and less mass around zero, which is interpreted

as increased probability of strong FC. In contrast, small values of η do not result in

a noticeable change in the prior distribution under varying SC strengths, implying

a negligible relationship between SC and FC. Moreover, the shrinkage parameters

are stochastically monotonically decreasing with respect to the SC strength, under

the restriction η > 0. This implies that as the SC strength (pjk) for the edge (j, k)

is increased, the corresponding shrinkage parameter λjk will take smaller values in

probability, resulting in values of ωjk which are away from zero. Hence, the presence

of FC at edge (j, k) is encouraged for large values of pjk, and similarly small values

of pjk will encourage greater shrinkage for ωjk resulting in the absence of FC at edge

(j, k).

Additionally, the baseline effect, µjk, corresponds to variations in underlying neu-

ronal activity that are independent of the brain anatomy. This formulation enables

(a) more flexibility in the FC-SC relationship by allowing the possibility of strong FC

when an anatomical connection is not obvious, and vice-versa; and (b) heterogeneity

in FC across edges which possesses similar SC strength that is often encountered in

practice. Overall, increasing(decreasing) absolute values of the baseline effect dis-

courages(encourages) the presence of an edge in a manner that is independent of the

anatomical information. Although one could also accommodate variations in FC for

a given SC strength via σλ while keeping µ fixed, our formulation incorporating an

edge specific baseline effect confers several advantages. First, it permits the accom-
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Figure 3.2: Prior distribution of ωjk when λjk = µjk − ηpjk. µjk is fixed at zero with
varying values of η and SC. Solid, dashed and dotted lines correspond to pjk =0.01,0.5, and
1, respectively. Left panel (a): for large η values (η = 1), the prior places increasing mass at
the tails, which encourage stronger functional connectivity; right panel (b): for small values
(η = 0.1), the prior on ω does not change noticeably with the change in SC information.

modation of edge specific tuning of the shrinkage parameters while σλ controls global

variation in FC. Second, µjk can be used to differentiate edge specific variation in

FC that is not attributed to direct SC, and can be used to characterize edges with

enhanced or trivial SC influences. The hyperparameters µ and η are unknown and

are learned in a data-adaptive manner under the following priors

π(µjk) = N(µ0, σ
2
µ) for j < k, j, k = 1, . . . , p

π(η) = Ga(aη, bη) (3.4)

where (µ0, σ
2
µ), and (aη, bη), are typically pre-specified. In equation (3.4), Ga(aη, bη)

is the gamma distribution with scale parameter aη, rate parameter bη, and expected

value aη/bη. We select these distributions for µjk and η because they are conjugate and

provide adequate performance under the proposed method. Hyperparameters govern-

ing these priors are discussed in Appendix C.1. We note that the scale parameter ν
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controls the overall network sparsity and is treated as a tuning parameter, enabling

the estimation of a series of networks with varying sparsity levels. The optimal net-

work is chosen as the point estimate corresponding to the value of ν minimizing the

Bayesian Information Criteria.

YΩ

ωjj

ωjk

λjkµjk

η

pjkσ2
µµ0

bηaη

ν

σ2
λ

Observed Data

fMRI

DTI

Edge WeightsHyperparameters

Figure 3.3: Graphical illustration of model parameters and their contribution to
estimation of anatomically informed functional connectivity based on resting state
fMRI data Y. Circles represent observed data, diamonds represent parameters to be
updated, and squares represent fixed values. Hyperparameters contained in rectangles
jointly inform the distribution of the associated edge weight parameter. Parameters
in the red, dashed edge weights pane are estimated outputs of the siGGM.

3.2.3 Model Estimation

Although the proposed model can be implemented using MCMC, it is not scalable

to high dimensional settings involving a large number of nodes. Moreover, MCMC

samples require a post hoc thresholding step to select important edges since esti-

mates cannot take exact zeros under a Laplace prior. We bypass these limitations

by computing a MAP estimate for the parameters of interest. Our iterative op-

timization approach employs an existing graphical lasso algorithm to sample the

precision matrix given all other parameters, coupled with additional optimization

steps to sample the shrinkage parameters and associated hyperparameters inherent

in the Bayesian specification (3.3). In order to fit the proposed model, we esti-
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mate Θ = (Ω,α, η,µ) by maximizing the log-posterior distribution in (3.6), where

α = log(λ) = {log(λjk), j < k} and µ = {µjk, j < k} denotes the vector of edge

specific log-shrinkage parameters and baseline effects in (3.3), respectively. Note that

α is normally distributed due to the log-normal prior placed on λ. The posterior

distribution can be written as

P (Θ|y1, . . . , yT ) ∝ P (Θ)P (y1, . . . , yT |Θ)

= P (Ω, α, µ, η)
T∏
t=1

P (yt|Θ)

= P (Ω|α, µ, η)P (α|µ, η)P (µ, η)
T∏
t=1

P (yt|Ω−1)

= P (Ω|λ)P (α|µ, η)P (µ)P (η)
T∏
t=1

P (yt|Ω−1)

= P (η)
T∏
t=1

P (yt|Ω−1)
∏
j,k

P (Ω|λ)P (α|µ, η)P (µ)

= Ga(η; aη, bη)
T∏
t=1

Np(yt; 0,Σ)

p∏
k=1

Exp(ωkk; ν/2)

∏
j<k

DE(ωjk; νλjk) N (αjk;µjk − ηpjk, σ2
λ) N (µjk;µ0, σ

2
µ) (3.5)

We find the MAP solution for the model parameters by maximizing over the the

posterior log-likelihood as Θ̂ = arg max
Θ

l̇(Θ), where

l̇(Θ) = −T

2
log|Ω|+ 1

2
tr(S|Ω|) + ν

∑
j<k

eαjk|ωjk|+
∑
j<k

(αjk − (µjk − ηpjk))2

2σ2
λ

− (aη − 1) log(η) + bηη +
∑
j<k

(µjk − µ0)2

2σ2
µ

− p log(
1

2
ν) +

1

2
ν

p∑
k=1

ωkk. (3.6)

All parameters in the posterior distribution are updated iteratively until conver-

gence. The precision matrix is updated given other parameters using the existing



70

graphical lasso algorithm, whereas µjk and η are updated via closed form expressions

and α is updated via a Newton-Raphson step since a closed form solution does not

exist. The iterative updates continue until |l̇(Θ(m)) − l̇(Θ(m+1))| < ε|l̇(Θ(m+1))| for

ε = 10−4. At convergence, Θ̂ = (Ω̂, α̂, η̂, µ̂) is the solution, where Ω̂ is the anatomi-

cally informed functional brain network based on single subject data. In general, the

method makes its largest improvements within the first three iterations (see Figure

3.6) and converges rapidly. We note that one could alternatively treat µ and η as

tuning parameters and compute a range of networks over a grid of (µ, η) values, and

then select the optimal network as the one minimizing some goodness of fit criteria.

However, this strategy did not result in adequate numerical performance, highlighting

the advantages of specifying suitable priors on hyperparameters in order to estimate

them in a data-adaptive manner. The computational steps for updating the model

parameters are detailed in Appendix A. The method was developed in R version 3.3.0

and is available on github (https://github.com/IxavierHiggins/siGGMrepo).

3.3 Results and Discussion

3.3.1 Simulations

3.3.1.1 Simulation Setting

We conduct numerical studies to assess the performance of siGGM relative to SC

naive and SC informed competitors. SC naive approaches are representative of meth-

ods that do not incorporate auxiliary information, and includes the graphical lasso or

Glasso (Friedman et al., 2008), the partial correlation approach Space proposed by

Peng et al. (2009), and the proposed approach in (3.3) without structural information

obtained by setting η = 0, denoted siGGM (η = 0). SC informed approaches incor-

porate anatomical information into the estimation routine. We consider the Bayesian
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G-Wishart approach by Hinne et. al (2014) which treats FC as completely deter-

mined by SC and is denoted by G-Wishart as well as the adaptive graphical lasso

approach by Pineda-Pardo et. al (2014) which specifies a parametric relationship be-

tween the shrinkage parameters and SC, and is denoted by aGlasso. All of the above

approaches, except Space which estimates partial correlations, calculate sparse inverse

precision matrices, where a zero off-diagonal entry implies the absence of an edge. The

Glasso and Space approaches are implemented via the R packages glasso and space,

respectively. We estimate the precision matrix under the G-Wishart approach using

Matlab scripts available on the author’s website and incorporate adaptive weights in

the glasso algorithm to implement aGlasso.

Data Generation: In order to assess the performance of our approach, we simu-

late data under three assumed network structures and consider various relationships

between SC and FC. The network structures are (a) Erdos-Renyi (ER) networks

consisting of edges randomly generated with probability 0.15; (b) small-world (SM)

networks generated under the Watts-Strogatz model (Watts and Strogatz, 1998) in

which most nodes may not be directly connected, but can reach other nodes via a

small number of steps, and (c) scale-free (SF) networks generated using the preferen-

tial attachment model (Barabási and Albert, 1999), in which nodes are more likely

to link to a highly connected node than to a node with few connections, resulting

in a hub network. For each network, we consider varying the number of nodes cor-

responding to p = 100, 200. The data were generated using a Gaussian graphical

model yt ∼ Np(0,Ω
−1
G ) with T = 200 time points (t = 1, . . . , 200), where ΩG is the

precision matrix with zero off-diagonal elements corresponding to absent edges in

the binary network G, and non-zero off-diagonal elements otherwise. Conditional on

G, ΩG is constructed as follows: the non-zero off-diagonal elements corresponding to

important edges are generated from a Uniform(-1,1) distribution, and the diagonal

elements were fixed to be one. In order to ensure positive definiteness, we subtracted
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the minimum of the eigenvalues from each diagonal element of the generated precision

matrix.

We also assess the methods’ performance for non-Gaussian data which are gener-

ated using realistic fMRI time series under spatiotemporal separability assumptions of

independent component analysis (ICA), using the framework in the SimTB (Allen et.

al, 2011) Matlab toolbox. We generate YT×p = AT×qSq×p + ET×p where the columns

of A represent the temporal dynamics of functional networks and contain realistic

BOLD-type resting state fMRI time courses sampled using the neuRosim R package

(Welvaert et al., 2011); S is the source map representing the spatial distribution of

functional subnetworks constructed under small-world networks replicating proper-

ties of realistic brain networks; and E is a matrix of zero mean white noise. The true

precision matrix, Ω0, can be computed theoretically as (S′cov(A′)S + ε2I)−1, where

ε= .5 and I is the p× p identity matrix. Although this simulation approach produces

realistic time series data, it results in dense precision matrices with no off-diagonal

zeros. Given strong support in the literature of the sparsity of brain networks (Eavani

et al., 2015; Kim et al., 2015; Power et al., 2013), we calculate the true network as

having 10% density by retaining only those edges for which the corresponding partial

correlation was in the top 10th percentile. However, we note that the results under

the proposed method are stable over varying true network densities.

Prior SC Knowledge: Conditional on ΩG, we construct several types of SC infor-

mation according to the following schemes, where the SC strengths were generated

randomly between (0, 1) and FC is measured by partial correlations. For scenario

MI, we specify that 50% of those edges with strong FC (partial correlation > .06)

also have strong SC(> 0.7), while 25% of those edges with strong FC have mod-

erate SC(0.3 − 0.7), and the remaining 25% have weak SC(0 − 0.3). For scenario

MII, the proportion of edges that have strong FC, coupled with strong SC, moder-

ate SC, and weak SC, are 30%, 35% and 35% respectively. For each of the scenarios
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MI and MII, we also consider two levels of misspecification of the SC informa-

tion, which are denoted as MI(a),MI(b), and MII(a),MII(b), respectively. For

MI(a)/MII(a), we specify that 10% of those edges with zero FC have non-zero SC,

while for MI(b)/MII(b), we fix 20% of those edges with zero FC to have non-zero

SC. All the other edges with zero or weak FC are assumed to have small SC, while

remaining edges with moderate FC have non-zero SC strengths. We note that edges

having zero FC but non-zero SC represent potential misspecification of anatomical

knowledge, based on the notion that strong SC typically underlies robust non-zero

FC (Shen et al., 2015; Kemmer et al., 2017). For the non-Gaussian data based on the

ICA model, we generate the SC information as in scenario MI, and consider varying

levels of misspecification.

Comparison Metrics: To assess the performance under different approaches, we

compute the area under the curve (AUC), which is a measure of the estimated sen-

sitivity versus specificity over different network sparsity levels. Sensitivity is com-

puted as TP/(TP + FN), while specificity is defined as TN/(TN + FP ), where

TP, TN, FP, FN denote the number of edges that are true positives, true negatives,

false positives and false negatives, respectively. These measures are derived by com-

paring the true binary network structure, G, to Ĝ which contains edges corresponding

to non-zero elements in the estimate Ω̂. To evaluate the point estimate of the network

obtained under the Bayesian information criteria (BIC), we compute the Matthews

Correlation Coefficient (MCC), which is a scalar measure combining sensitivity and

specificity and is defined as MCC= TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(Matthews,

1975; Wang, 2012). We compute the relative L1 norm error, (|Ω̂−Ω|1)/|Ω|1, to assess

accuracy in estimating the precision matrix encapsulating the FC strengths. Since

brain networks are also often evaluated in terms of summary statistics reflecting net-

work organization, we evaluate the accuracy in estimating the global efficiency which

is a commonly used measure for global integration of brain connectivity.
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Since the true precision matrix is dense for the ICA generated data, we consider

two alternate measures of performance under this scenario—the inverse error (Pad-

manabhan et al., 2016) and Kullback-Leibler divergence (Hinne et al., 2014). The

inverse error captures the accuracy of the estimated precision matrix, and is defined as

||Ω−1
0 Ω̂− I||F where Ω0 is the true inverse covariance matrix, Ω̂ is the estimated preci-

sion matrix, I is a p×p identity matrix, and ||.||F is the Frobenius norm. On the other

hand, the Kullback-Leibler divergence is defined as 1/{2(log(2))}[log(det(Ω0)/det(Ω̂))

+ tr(Ω̂Ω−1
0 ) - p ], with a larger divergence corresponding to a poorer fit.

3.3.1.2 Results

The results under siGGM and SC naive approaches under MI(a) are presented

in Table B.1, and Table 3.1 displays results for SC informed approaches under vari-

ous levels of misspecification. Table B.1 illustrates that either the proposed siGGM

approach, or the variant of the proposed approach with no prior knowledge (η = 0),

have the lowest bias in estimating the global efficiency (Eglob) across all network sizes

(p=100, 200). Moreover, the proposed approach always has higher MCC and AUC

values, and lower L1 error norm compared to all other SC naive approaches. These

results demonstrate the advantages of using structural knowledge to guide network

estimation.

When the misspecification levels are varied, Table 3.1 illustrates that the proposed

method has a consistently lower bias in estimating the global efficiency for both 10%

and 20% misspecification levels, compared to alternative SC informed approaches.

Moreover, while the G-Wishart approach may have a higher MCC for p = 100 when

the misspecification level is 10% (cases MI(a) and MII(a)), the proposed method

has a comparable or higher MCC for 20% misspecification levels (cases MI(b) and

MII(b)). Moreover under p = 200, the MCC under the proposed approach is the

highest for small-world and scale-free networks, and comparable to the G-Wishart
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method for the Erdos-Renyi network. We also note that while aGlasso often has

the lowest MCC values, it may sometimes yield a higher AUC under small-world

and scale-free networks for p = 100. However, the proposed approach is shown to

have the highest AUC for p = 200 for all scenarios, highlighting the advantages of

incorporating prior knowledge in a flexible manner in higher dimensions. Finally,

siGGM consistently has the lowest L1 error in estimating the precision matrix across

all networks and dimensions. The above results illustrate a robust performance of the

proposed method for p = 100 and a superior performance for p = 200 under the small-

world and scale-free networks, which closely resemble brain networks encountered in

practical applications.

Although Table 3.1 provides some idea about the relative performance under mis-

specification, it is of interest to look at the effects of misspecification in more detail.

Hence, we examined the AUC and L1 error values as the misspecification level was

gradually increased from 4% to 50%, under different networks for p = 100. The

results, presented in Figure 3.4, illustrate that the proposed method has a signifi-

cantly higher AUC under the Erdos-Renyi network across all misspecification levels,

and registers a significantly higher AUC for larger misspecification levels under the

small-world network. The differences in AUC between siGGM and aGlasso are not

significant for p = 100, but we note that siGGM has a higher AUC for larger dimen-

sions (p = 200) as in Table 3.1. For all networks, the proposed method is seen to have

a significantly lower L1 error across all misspecification levels, while the error under

the G-Wishart increases sharply as the misspecification level is increased.

The superior performance of siGGM relative to SC informed and SC naive ap-

proaches is also observed in the ICA based simulated data exhibiting the spatiotem-

poral dynamics of the BOLD signals. In Figure 3.5, siGGM exhibits the largest or

comparable AUC across all levels of SC misspecification, with significant improve-

ments in AUC for p = 100. Our method also has significantly lower inverse error
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Figure 3.4: Comparison of siGGM (red), G-Wishart (blue), and aGlasso (green) simula-
tion results for different network structures with p=100 regions under scenario MI (top row)
and MII (bottom row). Each panel displays the AUC or L1 relative error as the percentage
of conditionally independent edges with non-zero anatomical connectivity increases. The
AUC is significantly higher under siGGM for higher misspecification levels under the small-
world network and for all misspecification levels for the Erdos-Renyi network. The L1 error
is significantly lower under siGGM for non-trivial misspecification levels and all networks.

and Kullback-Leibler divergence scores across misspecification levels. On the other

hand, the AUC for aGlasso drops sharply for p = 100 for higher misspecification

levels. Moreover, G-Wishart’s strict adherence to the SC information contributes

to poor detection and estimation of edges, with the AUC declining sharply and the

inverse error and Kullback-Leibler divergence increasing steeply as the misspecifi-

cation proportion increases. The above discussions clearly illustrate the ability of

siGGM to recover the true network of connection strengths via flexible incorporation

of anatomical information under both Gaussian and non-Gaussian settings, with a

robust performance under varying SC misspecification levels.

Finally, we note that the siGGM can be implemented fairly quickly. On a 2.5Gz

Intel Core i5 processor, the procedure estimates the optimal graph structure in ap-

proximately three seconds for p=40, twenty seconds for p=100, and approximately

four minutes for p=200. While these computation times are slightly slower compared

to generic graphical modeling approaches naive to anatomical knowledge, the overall
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Figure 3.5: Results from the simulation studies for non-Gaussian ICA data for 100 (top row)
and 200 (bottom row) brain regions. We compare the performance of siGGM(red), aGlasso
(green), G-Wishart (blue), glasso(black), and Space (orange) with respect to AUC,
inverse error, and Kullback-Leibler divergence. The AUC under siGGM is significantly
higher for most misspecification levels under p = 100, while the inverse error and Kullback-
Leibler divergence is significantly lower under siGGM under all misspecification levels, for
p = 100 and p = 200.

computation is sufficiently quick and feasible for practical implementation in whole

brain connectome analysis. Moreover, the siGGM approach converges fairly quickly

over a wide range of simulation scenarios, as illustrated in Figure 3.6.

Figure 3.6: Convergence of the log posterior likelihood for the structurally informed Gaus-
sian graphical model (siGGM) under the three network structures (small-world, scale-free,
Erdos-Renyi) and sizes (p=100, 200) investigated. The method typically makes the most
substantial improvements within the first three iterations.
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Table 3.1: Performance of SC informed methods on simulated network data with p=100
and 200 nodes. Eglob is the bias in global efficiency.

p=100 p=200
Eglob MCC AUC L1 Eglob MCC AUC L1

Small World
G-Wishart MI(a) 0.120 0.592 0.698 1.345 0.175 0.468 0.865 1.510
G-Wishart MI(b) 0.173 0.447 0.574 1.498 0.224 0.337 0.819 1.801
G-Wishart MII(a) 0.117 0.567 0.676 1.319 0.174 0.447 0.842 1.506
G-Wishart MII(b) 0.171 0.424 0.650 1.492 0.224 0.318 0.797 1.788
aGlasso MI(a) -0.145 0.522 0.903 0.724 -0.234 0.454 0.800 0.773
aGlasso MI(b) -0.240 0.407 0.869 0.782 -0.258 0.396 0.788 0.801
aGlasso MII(a) 0.183 0.477 0.889 0.720 -0.221 0.439 0.735 0.770
aGlasso MII(b) -0.279 0.364 0.840 0.805 -0.272 0.376 0.775 0.814
siGGM MI(a) 0.078 0.590 0.889 0.478 0.121 0.526 0.906 0.532
siGGM MI(b) 0.112 0.500 0.880 0.531 0.166 0.419 0.875 0.603
siGGM MII(a) 0.075 0.576 0.879 0.486 0.125 0.514 0.901 0.563
siGGM MII(b) 0.122 0.490 0.846 0.547 0.169 0.406 0.870 0.633
Scale Free
G-Wishart MI(a) 0.104 0.590 0.695 1.410 0.146 0.471 0.864 1.503
G-Wishart MI(b) 0.159 0.446 0.671 1.483 0.196 0.339 0.822 1.583
G-Wishart MII(a) 0.102 0.568 0.675 1.397 0.145 0.452 0.846 1.442
G-Wishart MII(b) 0.156 0.424 0.650 1.481 0.196 0.323 0.801 1.604
aGlasso MI(a) 0.223 0.509 0.905 0.719 -0.311 0.375 0.701 0.730
aGlasso MI(b) -0.195 0.460 0.864 0.697 -0.312 0.336 0.685 0.736
aGlasso MII(a) -0.256 0.442 0.901 0.739 -0.333 0.351 0.690 0.739
aGlasso MII(b) -0.252 0.404 0.877 0.740 -0.303 0.320 0.658 0.746
siGGM MI(a) 0.054 0.562 0.853 0.428 -0.075 0.473 0.868 0.442
siGGM MI(b) 0.093 0.467 0.822 0.457 0.131 0.359 0.843 0.492
siGGM MII(a) 0.061 0.552 0.845 0.447 0.078 0.459 0.865 0.457
siGGM MII(b) 0.099 0.451 0.812 0.469 0.132 0.346 0.839 0.523
Erdos-Renyi
G-Wishart MI(a) 0.174 0.505 0.821 1.300 0.140 0.519 0.860 1.572
G-Wishart MI(b) 0.239 0.368 0.765 1.491 0.187 0.380 0.821 1.976
G-Wishart MII(a) 0.171 0.483 0.807 1.277 0.139 0.501 0.838 1.560
G-Wishart MII(b) 0.237 0.349 0.747 1.464 0.186 0.365 0.805 1.956
aGlasso MI(a) -0.335 0.404 0.810 0.741 -0.424 0.171 0.596 0.712
aGlasso MI(b) -0.339 0.353 0.803 0.761 -0.423 0.176 0.600 0.708
aGlasso MII(a) -0.362 0.333 0.824 0.764 -0.424 0.162 0.631 0.707
aGlasso MII(b) -0.360 0.318 0.815 0.759 -0.424 0.147 0.648 0.709
siGGM MI(a) 0.124 0.442 0.861 0.624 0.049 0.514 0.862 0.689
siGGM MI(b) 0.186 0.363 0.838 0.646 0.110 0.380 0.826 0.697
siGGM MII(a) 0.122 0.421 0.852 0.638 0.050 0.499 0.846 0.690
siGGM MII(b) 0.171 0.344 0.825 0.665 0.106 0.367 0.810 0.706
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3.3.2 PNC Data Application

Existing literature has examined various neural substrates for age related changes

using structural and functional neuroimaging (Gur et al., 2012; Shaw et al., 2008; Raz-

nahan et al., 2011). Moreover, gender differences have been extensively documented

in behavioral measures (Halpern et al., 2007; Hines, 2010), structural neuroimaging

(Lenroot et al., 2007), and functional imaging measures (Lenroot and Giedd, 2010).

However, gender related differences in the developmental trajectory of the brain func-

tional network from childhood to adolescence are still not understood well (Gur et al.,

2012), and further, limited attempts have been made to investigate such differences by

fusing functional and structural neuroimaging data. We use resting state fMRI and

DTI data from the Philadelphia Neurodevelopment Cohort (PNC) study to obtain

preliminary answers to these questions. After estimating brain functional connectiv-

ity based on SC knowledge, we examine FC differences between boys and girls across

different age groups.

We perform the analysis separately for each gender within the three age groups

8-12 (pre-teen), 13-17 (teen), 18-21 (young adult), where each age group contains

approximately 9 to 12 individuals, and is constructed as in Ingalhalikar et al. (2014).

All subjects are right-handed, and physically and mentally healthy, enabling a fair

comparison between the groups. In addition to assessing gender based network differ-

ences, we also perform a secondary analysis to assess our method’s ability to reliably

estimate functional networks. For this analysis, we split each subjects’ resting state

fMRI time series into two equally sized scanning sessions (60 scans each) and cal-

culate the intraclass correlation coefficient or ICC (refer to equation (B.4.0.1)) for

seven network metrics which are widely used to summarize brain networks. The net-

work metrics include clustering coefficient, characteristic path length, local efficiency,

global efficiency, modularity, hierarchy, and degree, and they were calculated with

the Matlab toolboxes Brain Connectivity Toolbox (Rubinov and Sporns, 2010b) and
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GRETNA (Wang et al., 2015b). Mathematical definitions for each metric are pre-

sented in Appendix B.6. We note that the ICC is a commonly used measure designed

to assess the similarity of network estimates across scanning sessions (Braun et al.,

2012; Choe et al., 2017; Niu et al., 2013), and it is usually derived by calculating

the proportion of the total variation attributed to variability across scanning ses-

sions. Thus, small variation across sessions relative to variation between individuals

produces high ICC values, indicating strong reproducibility.

3.3.2.1 Data preprocessing

For details on data cleaning and acquisition, please see 1.3.2

3.3.2.2 Results

In Figure 3.7, we see that for males (top left panel) and females (top right panel),

the estimated association between FC and SC along structurally connected regions

is largest for aGlasso, indicating close adherence with the anatomical information.

However, the literature suggests that FC is not fully explained by direct structural

connections and thus a large association is not realistic. This strong dependence

on SC contributes to aGlasso’s inferior correlation with the empirical FC (bottom

row in Figure 3.7). On the other hand, siGGM’s flexible incorporation of SC while

accounting for non-anatomical sources of variation produces desirable results since it

adheres to the SC information while maintaining an association with the empirical

FC observed in SC-naive approaches. Additionally, we also discover that siGGM

leads to larger shrinkage and smaller variance for conditional dependencies between

anatomically isolated brain regions compared to the generic graphical lasso without

prior knowledge. This yields a smaller number of functional connections between

anatomically disconnected ROIs.

For network analysis, we classify each ROI into one of eight functional modules
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Figure 3.7: Correlation between structural and functional connectivity males(left column)
and females (right column). The top row displays the correlation between FC estimates and
SC for regions structurally connected, and the bottom row displays the correlation between
the estimated FC and the empirical FC for structurally connected regions. We note that
aGlasso closely adheres to the SC information due to its shrinkage parameter specification.

corresponding to resting state networks as defined in Smith et. al (2009) . These

functional modules include a medial visual network, an occipital pole and lateral

visual network (“VIS”, 18 nodes), the default mode network (“DMN”, 8 nodes), a

sensorimotor network (“SM”, 9 nodes), an auditory network (“AUD”, 10 nodes), an

executive control network (“EC”, 19 nodes), right and left frontoparietal modules

(“FPR” and “FPL”, 11 and 10 nodes, respectively) and an unknown module contain-

ing unassigned nodes (“UNK”, 5 nodes). Figure 3.8 shows that males and females

have similar connectivity patterns with primarily positive connections within func-

tional modules. Further comparisons of male and female brain networks within each

age group reveals that consistent connections across age groups persist within module

while inconsistent connections mainly exist between modules. After standardizing by

the number of nodes in each module, the SM and AUD were found to be the two

most highly connected functional modules in males and females across all age groups.

Figure 3.9 (A) illustrates the similarity in network architecture for males and females
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with all metrics having non-significant differences across genders (except for local

efficiency for teens and young adults), which implies shared patterns in brain orga-

nization across gender and age groups. Figure 3.9 (B) illustrates that males exhibit

greater (but non-significant) between module but smaller within-module connectivity

differences in teens and young adults. These findings are supported by previous work

and has been linked to variations in emotional identification and spatial cognitive

tasks (Satterthwaite et al., 2016).

(A) Female

(B) Male

Figure 3.8: Network estimates for females (top row) and males (bottom row) in each of
the age ranges, illustrating those connections corresponding to absolute partial correlations
> 0.005. While both sexes have similar network structures across the three age groups and
have network densities close to 13%, female networks exhibit slightly increased connectivity
relative to the networks of males.

As a second level of the analysis, we are also interested in the distribution of differ-

entially weighted edges between males and females within each of the eight functional

modules. Differentially weighted edges were identified as connections for which the
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(A) (B)

Figure 3.9: Topological features of estimated networks in males and females across the
three age groups. (A) displays five network properties—Clust (clustering coefficient), Eloc
(local efficiency), Eglob (global efficiency), Mod (modularity), Hier (hierarchy)—averaged
over the respective gender and age group; (B) displays differentially weighted edges within-
and between- module stratified by gender. In teens and young adults, females have more
within module connections and fewer between module connections than males. In (A), the
local efficiency is statistically significantly different between males and females in teens and
young adults (p¡.05). In (B), there are no significant results at the .05 level of significance.

FC strength was significantly different between genders under a permutation test. To

evaluate if the number of differentially weighted edges within and between modules

occur more often than allowed by chance, we define a goodness of fit measure (equa-

tion (B.3.0.1) in Appendix A) which represents the deviation between observed and

expected numbers of differentially weighted edges for each module block, standard-

ized by the expected number. This measure captures whether a given module block

has unusually high or low occurrence of differentially weighted edges and enables us

to identify modules with the most pronounced differences across gender. From the

results presented in Table 3.2, we discover statistically significant differences in the

number of differentially weighted edges occurring in the executive control (EC) mod-

ule in pre-teens and young adults, which is supported by previous results on gender

related differences in the EC (Hyde, 1981; Mansouri et al., 2016). Table 3.2 also

suggests that gender based differences attenuate with development, with the largest
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number of differentially weighted edges in the pre-teen group (377) and the smallest

in the young adult group (272). We also find the differentially weighted edge between

the cingulum ant L in the EC and parietal inf L in the DMN exists in pre-teens,

teens, and young adults, which suggests consistent gender based differences during

the developmental phase. These regions are known to have brain volume differences

between males and females which may point to subtle cognitive variations (Frederikse

et al., 1999; Ruigrok et al., 2014).

A major challenge in resting state connectivity studies is to ensure reproducibility

of the findings (Griffanti et al., 2016). We demonstrate that appropriately incor-

porating anatomical connectivity information leads to stable topological features of

estimated networks across scanning sessions. Figure 3.10 displays the ICC of seven

network metrics under different approaches, where the details for computing the ICC

are outlined in equation (B.4.0.1) in Appendix A. It is clear that the proposed siGGM

produces estimates that have notably larger ICC measures for all the network met-

rics compared to all the other approaches considered. The reproducibility under the

proposed approach is substantial for the clustering coefficient, global efficiency, and

degree, and is moderate for all the other metrics. Moreover, it is reassuring to see that

these three metrics with the highest ICC values under the proposed approach have

been shown to be the most reproducible network metrics in independent studies (Niu

et al., 2013; Telesford et al., 2010; Wang et al., 2011). In contrast, reproducibility is

barely moderate under aGlasso for most metrics and weak under SC naive approaches.

We note that siGGM has significantly higher ICC (p¡.001) than Glasso and Space with

respect to all network metrics, and a significantly higher ICC compared to aGlasso

for all network metrics (p<.004) except local efficiency and degree (p>.05). These

findings highlight the benefits of incorporating anatomical information in a flexible

manner. Although not presented, we note that the G-Wishart approach leads to an

unrealistic ICC value of one in all cases, which is starkly different than the reliability
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Table 3.2: Within- and between- module differences in functional connectivity be-
tween males and females. Bolded values with an asterisk indicate statistically signif-
icant modules at the .05 level of significance (FDR correction for multiplicity) and
values within parenthesis are the number of differentially weighted edges where the
average edge weight is larger in males than females. The total number of differentially
weighted edges decrease across the age groups (pre-teen 377 DWE, teen 312 DWE,
young adult 272 DWE).

Pre–Teen
Unknown Visual DMN SM Aud EC FP left FP right

Unknown 0(0)
Visual 8(3) 24(12)
DMN 7(3) 15(7) 0
SM 3(1) 14(7) 3(1) 2(2)
Aud 2(1) 17(8) 13(8) 5(2) 4(0)
EC 6(5) 32(17) 9(4) 20(9) 21(13) 42∗(26)
FP left 2(1) 14(7) 8(5) 4(4) 10(5) 13(6) 0(0)
FP right 5(2) 18(9) 9(6) 11(8) 11(8) 16(10) 3(1) 6(0)

Teen
Unknown Visual DMN SM Aud EC FP left FP right

Unknown 2(2)
Visual 6(3) 22(14)
DMN 3(2) 8(3) 2(0)
SM 1(1) 11(8) 9(4) 4(2)
Aud 3(0) 7(3) 7(4) 13(6) 4(2)
EC 8(5) 22(11) 13(6) 12(8) 12(5) 18(10)
FP left 3(1) 16(9) 7(3) 6(4) 9(4) 13(3) 0(0)
FP right 2(1) 12(6) 9(4) 5(5) 15(5) 18(10) 8(3) 2(2)

Young Adult
Unknown Visual DMN SM Aud EC FP left FP right

Unknown 2(0)
Visual 1(1) 10(4)
DMN 1(1) 14(4) 2(0)
SM 1(0) 10(3) 9(4) 4(4)
Aud 1(1) 15(5) 5(2) 5(3) 8(4)
EC 5(4) 16(8) 10(3) 12(4) 12(6) 26∗(16)
FP left 1(1) 7(4) 5(3) 7(4) 11(8) 9(5) 6(6)
FP right 1(1) 8(4) 7(2) 9(5) 7(6) 17(7) 8(5) 0(0)

values reported in previous studies (Welton et al., 2015). The perfect reliability is

due to the fact that G-Wishart relies entirely on the SC information for specifying
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the functional network structure, resulting in the exact same network for both the

sessions. Hence the reproducibility results under G-Wishart are not comparable.

Figure 3.10: Reliability of network metrics across scanning sessions for siGGM, aGlasso,
Space, and glasso. We estimate seven network attributes (clustering coefficient (Clus.),
characteristic path length (C.P.), local efficiency (Eloc), global efficiency (Eglob), modular-
ity (Mod), hierarchy (Hier), and degree (Degree)) and report ICC(3,1) for all subjects. ICC
values are classified according to the agreement scale 0 < ICC ≤ .2 (poor), .2 < ICC ≤ .4
(fair), .4 < ICC ≤ .6 (moderate), .6 < ICC ≤ 8 (strong), and .8 < ICC ≤ 1 (near perfect)
as suggested by Telesford et. al (2010). siGGM has significantly higher ICC (p¡.001) than
Glasso and Space with respect to all network metrics, and a significantly higher ICC com-
pared to aGlasso for all network metrics (p¡.004) except local efficiency and degree (p¿.05).
Generally, anatomically informed FC estimates produce more reliable networks than SC
naive methods.

3.4 Conclusion

In this chapter, we propose a novel Bayesian method that allows brain structure

to guide the estimation of functional connectivity. Our siGGM flexibly incorporates

a priori known anatomical connectivity information, bypassing the limitations of ex-

isting approaches by accommodating complex structure-function relationships while

also permitting unknown sources of variation independent of underlying anatomi-

cal structure. Our method is more biologically plausible than existing methods and
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outperforms alternative SC-informed and -naive approaches as illustrated via exten-

sive numerical studies. In regard to SC-informed approaches, the advantages of the

siGGM become more evident as the misspecification levels for the anatomical knowl-

edge and/or the number of nodes is increased, which is important given limitations

of current imaging technologies. In the real data application, our method estimates

networks with more reproducible topological features compared to popular competi-

tors. Incorporating structural information not only has the advantages discussed in

this chapter, but also can have tremendous influences on network comparison meth-

ods presented in the previous chapter as well as methods to predict clinical outcomes

from functional connectivity biomarkers. Original source material can be found in

NeuroImage.
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Chapter 4

Semi-parametric Bayesian

hierarchical dictionary learning
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4.1 Introduction

In chapters two and three, we proposed methods that assume that cortical co-

activation is fixed at rest. In this chapter, we develop a method that allows brain

coupling patterns to vary across time in the resting state. Critically, we assume that

the functional activity patterns are a linear mixture of a finite basis of elements. For

this work, we work with resting-state fMRI data, which quantifies cortical activity via

fluctuations in the blood oxygen level dependent (BOLD) signal when subjects are at

rest. From these signals, networks can be inferred by cross correlating the temporal

activity patterns between all pairs of brain regions. In fact, this very simple approach

has led to substantial insights on the functional architecture of the human brain

(Rogers et al., 2007; Smith et al., 2009b). Further, functional connectivity analyses

have elucidated how diseases such as depression (Cheng et al., 2018; Greicius et al.,

2007b) and schizophrenia (Lynall et al., 2010) are characterized by irregular functional

connectivity in the brain.

Early studies (Biswal et al., 1997; Cordes et al., 2000; Lord et al., 2012) focused

exclusively on static functional connectivity, whereby it is assumed that the regions

exhibit fixed co-activity. More recently, researchers have observed temporally evolv-

ing co-activation patterns between brain regions, indicating the brain does not idle

in a fixed state as assumed in static functional connectivity analyses. Consequently,

there has been rapid development of methods for estimating dynamic functional con-

nectivity (dFC) in the human brain. Dynamic functional connectivity, defined as

“rapid, time-varying changes in functional activation” (Cohen, 2018), relaxes the sta-

tionarity assumption and has led to new insights into the architecture of the brain.

Furthermore, analyses based on dFC have highlighted how many diseases and dis-

orders can be identified by overuse of specific co-activation patterns. For example,

(Damaraju et al., 2014a; Sun et al., n.d.) have shown how schizophrenic populations

frequently exhibit globally segregated functional co-activations. The authors explain
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that this functional organization is also present in healthy individuals, although at

dramatically reduced rates. Other studies have shown that dFC produces signif-

icantly higher classification accuracy of disorders as compared to static functional

connectivity measures (Cohen, 2018; Jin et al., 2017).

Various methods exist for measuring dFC. Model-free approaches such as sliding

window correlations (SWC) (Allen et al., 2014b, 2012) dominate the networking lit-

erature. In SWC, pairwise associations between all regional time-series are estimated

within a window of fixed length. This window is repeatedly slid forward one time step

until the entire scan length has been covered. Despite its widespread use, SWC is very

sensitive to noise and physiological artifacts (Handwerker et al., 2012). Additionally,

the width of window is difficult to select and often produces non-zero connectivity

between uncorrelated regions (Lindquist et al., 2014). Further, SWC is ill-equipped

to handle abrupt changes in functional connectivity and applies equal weight to all

time points in the window (Lindquist et al., 2014). In total, these limitations can

lead to poor estimates of dFC. Co-activation patterns (Liu and Duyn, 2013) and

multiplication of temporal derivatives (Shine et al., 2015) are two other model-free

approaches that cluster regions based on similar changes to the BOLD signal across

consecutive time points.

Model-based approaches, such as psychophysiological interaction (Friston et al.,

1997) and dynamical conditional correlations (DCC) (Allen et al., 2014b, 2012), do

a better job of minimizing the influence of noise artifacts as well as relating time-

varying changes in functional connectivity to behavioral outcomes. DCC, proposed

by Engle (2002), is a multivariate volatility model that treats observed time series as

a GARCH process, where the “conditional variance at time t is a linear combination

of past values of the conditional variance and of the square of the process” (Lindquist

et al., 2014). Lebo and Box-Steffensmeier (2008) show that DCC effectively estimates

time-varying variances and Choe et al. (2017) demonstrate its superior performance in
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separating true signal from noise artifacts. Unfortunately, DCC is prohibitively slow

to use in practice. Hidden Markov models (Vidaurre et al., 2017; Woolrich et al.,

2013) are another approach for estimating the dynamics in BOLD signals. While

this approach circumvents well documented limitations of SWC (i.e. selection of the

window length), it is computationally demanding and scales poorly as the number of

brain regions increases (Rydén et al., 2008).

Recent findings suggest that dynamics in functional activity detected by these

methods are the result of the brain traversing a fixed set of cognitive states (Cohen,

2018; Damaraju et al., 2014b). These cognitive states are distinguished by func-

tional organization of the brain regions. Smith et al. (2012a) show that the latent

cognitive states are spatially overlapping but temporally independent. Hutchison

and Morton (2015) and Shine et al. (2016) show that a relatively small number of

states adequately captures dFC in resting-state and task-based fMRI studies as well

as across age and mental health condition. Cohen (2018) suggest that it is not the

form of the states that differ across populations, but rather the frequency and form

of transitions between them that differentiates healthy and affected populations. For

many of the methods previously discussed, k-means clustering is regularly applied to

dFC estimates to uncover latent states producing the dynamics. Additionally, princi-

pal component analysis has been applied to SWC to detect the “eigenconnectivities”

which are analogous to the latent brain states (Leonardi et al., 2013). Hidden Markov

models estimate the latent network structures as the covariance matrices governing

the latent emission distributions and also provide information about the transitions

between states.

Critically, these approaches assume the brain occupies exactly one state at any

point in time. Despite the appeal of this simplification, recent investigations suggest

that the human brain supports the concurrent activity of multiple states. Leonardi

et al. (2014) show that FC patterns are a combination of those observed during
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individual tasks rather than rapid changes between the individual states. Although

at rest, the brain actively recruits multiple cognitive states in order to generate and

maintain predictions about forthcoming external stimuli (Deco and Corbetta, 2011)

as well as moderate internal activities such as day dreaming, free association, stream

of consciousness and inner rehearsal (Ghosh et al., 2008). Further, there is evidence

that the latent states evolve continuously throughout the scan duration, rather than

discretely as enforced in hitherto discussed methods (Andersen et al., 2018; Smith

et al., 2012b).

We pursue dictionary learning (DL) methods to simultaneously explore the dy-

namics of rs-fMRI and classify individuals based on usage of the latent states. Orig-

inally proposed by Olshausen and Field (1997) to examine the neurobiological impli-

cations of sparse coding, DL has been widely applied in the engineering community

for reconstructing and classifying images (Aharon et al., 2006; Naumova and Schnass,

2018; Zhou et al., 2012). Recently, DL methods have successfully decomposed com-

plex spatio-temporal relationships in neuroimaging data into linear combinations of

a finite set of basis elements (Dohmatob et al., 2016; Eavani et al., 2012; Yuan et al.,

2017). Furthermore, the framework permits investigation of subpopulations in het-

erogenous diseases such as posttraumatic stress disorder (PTSD). While DL has been

used in the neuroimaging community to confirm the dynamics of BOLD signals, this

is the first attempt to use this information to classify subjects to the best of our

knowledge.

We propose a hierarchical Bayesian dictionary learning method that permits joint

activation of latent brain states. A Gaussian process prior on the mixing coefficients

imposes smoothly varying activation of states as a function of time. Our goal is

twofold: (1) recover the common set of latent states and (2) classify the subjects

based on utilization of the states. A mixture of Gaussian processes on the mixing

coefficients imposes disease-specific smoothness on the states’ time courses for each
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subject. The mixture distribution allows us to exploit findings in the literature that

mental disorders can be detected based upon utilization of brain states that are

common across healthy and diseased populations.

In what follows, we elaborate on the proposed method. In section 4.2, we discuss

the model and provide details on parameter estimation. In section 4.3, we report the

performance of our method on synthetic data and resting-state fMRI from a study

of posttraumatic stress disorder (PTSD). We conclude with a brief discussion of the

model and suggest future directions in section 4.4.

4.2 Methodology

4.2.1 Dictionary learning

We pursue dictionary learning methods to reconstruct observed signals using a

finite basis of elements (Mairal et al., 2009). Dictionary learning methods typically

solve

(D̂, Â) = arg min
(D,A)
||X −DA||F + λ||A||q s.t. ||dk||2 = 1 ∀k (4.1)

where X is the observed signal; the columns of the over-complete dictionary, D, are

the dictionary elements (basis signals); A is the matrix of mixing coefficients (en-

coders); ||.||F denotes the Frobenius norm; ||.||q is the `-0 (q = 0) or `-1 (q = 1)

norm which imposes sparsity on the mixing coefficient matrix; and λ is a regular-

ization parameter. Sparsity on A ensures that only the most relevant basis signals

in the over-complete dictionary are recruited to uniquely reconstruct the observed

signals. In image processing, eq. 4.1, and its variants, have successfully denoised and

reconstructed images (Sadeghi et al., 2014). Dictionary learning has been successfully

applied to neuroimaging data, specifically fMRI where its been shown that DL can

detect time-varying changes in functional connectivity (Yaesoubi et al., 2018). Addi-
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tionally, Yaesoubi et al. (2018) show that DL has higher accuracy in recovering the

latent connectivity states, represented by the basis signals, compared to SWC.

While Bayesian analogues to eq 4.1 exist in the image processing literature (Yang

et al., 2016; Zhou et al., 2012), we are not aware of any methods proposed for neu-

roimaging applications. Although computationally demanding, Bayesian approaches

circumvent the difficulty in selecting an appropriate regularization parameter. In

theory, knowledge of the sparsity level or noise/residual variance are necessary for

selecting the optimal parameter (Yang et al., 2016); in practice, this is rarely ever

known and poor “guesses” at the quantity will lead to suboptimal estimates of the

dictionary and matrix of mixing coefficients. Furthermore, Bayesian approaches can

easily account for variability in the basis dictionary elements. Practically, that allows

for variation in the latent brain states observed in individuals. We build upon the

sparse Gaussian hierarchical DL model proposed by Yang et al. (2016) where training

signals are reconstructed as a linear combination of a fixed dictionary.

4.2.2 Bayesian Dictionary Learning (BayDiL)

Our proposed Bayesian Dictionary Learning (BayDiL) method extends the method

of Yang et al. (2016) to incorporate covariates while imposing temporal smoothness

on the mixing coefficients. This restriction is critical to our hypothesis that the la-

tent states transition smoothly across time rather than discrete state switching as

commonly implemented in the literature.

Further, our BayDiL model can incorporate covariates such as IQ (Song et al.,

2008) and personality (Adelstein et al., 2011) that potentially modulate spontaneous

functional activity. Our model is
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X i; cit

∣∣∣∣D,Ai,B, σε ∼
T∏
t=1

N(xit;Da
i
t +Bcit, σεIM)

D

∣∣∣∣σd ∼ K∏
k=1

N(dk; 0, σdIM)

B

∣∣∣∣σβ ∼ C∏
c=1

N(βc; 0, σβIM)

Ai

∣∣∣∣ρ ∼
G∑
g=1

ρg

K∏
k=1

N(aik; 0,R`gk
)

ρ ∼ Dirichlet(1, .., 1)

log(`gk) ∼ N(0, 10)

σε ∼ InvGamma(ασε , bσε), σβ ∼ InvGamma(ασβ , bσβ)

σd ∼ InvGamma(αd, bd) (4.2)

where i=1,...,n subjects, k=1,..,K dictionary elements, t=1,..,T time points, and

g=1,..,G groups. For the ith subject, X i ∈ Rm×T is the observed signals at m lo-

cations across T timepoints, Ai ∈ RK×T is the matrix of mixing coefficients that

linearly combines the dictionary elements to reconstruct the covariate-adjusted re-

gional time series, and cit is a p-dimensional vector of covariates. As formulated,

covariate effects are time-independent (i.e. cit = ci ∀t). D ∈ Rp×K is a dictionary

shared by all subjects, where the kth column, dk, is a basis dictionary element and

B ∈ Rp×T is a matrix of covariate effects. Other parameters in the model are the

vector of group inclusion probabilities, ρ ∈ RG and the variance parameters σµ, σε,

σd, and σβ.

We impose temporal structure on the mixing coefficient in each component via

parametric covariance kernel functions. We make the assumption that observed sig-

nals close in the time domain should be strongly correlated in the signal domain.

The covariance function for the kth dictionary element, R
`g
′
k

which is based on the

set of parameters (`g
′

k , τ
g′

k ); `k > 0 is the characteristic length scale parameter for the
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kth component in the gth, and τ g
′

k > 0 is the signal variance. In this work, we set

τ g
′

k = 1 ∀k, g′ to help uniquely identify the dictionary and mixing coefficients. In all

that follows, we utilize the squared exponential kernel function to define R
`g
′
k

where,

R
`g
′
k

(t, t′) = τ g
′

k exp

(
−(t− t′)2

2`g
′2
k

)
= exp

(
−(t− t′)2

2`g
′2
k

)
. (4.3)

As formulated, the prior on Ai ∀i poses various computational issues. If the ith

subject’s group membership were known, this prior would simplify to product of mul-

tivariate normal distributions for the gth group. We exploit this idea by augmenting

the data to include group membership as missing information. Thus, if the ith indi-

vidual is in the g′ group, i.e. zi = g′, then the prior on Ai and the group membership

is

Ai

∣∣∣∣ zi = g′ ∼
K∏
k=1

N(aik; 0,R
`g
′
k

) (4.4)

zi ∼ Multinomial(1; ρ1, ..., ρG)

4.2.3 Posterior Sampling

Due to the conjugacy of the priors, most parameters can be easily sampled from

posterior distributions via a Gibbs sampling routine. For the covariance kernel, we

sample the set of hyperparameters, {θk}Kk=1, and the residual noise of the mixing

coefficients, σa, using a gradient-based Monte Carlo method. Note that P (ω|−) is

the posterior of ω conditional on the data and all other parameters. The posterior

distributions are defined as follows:

• Sample D

We sequentially update the columns of the dictionary, dk for k=1,..,K. Yang

et al. (2016) suggest that sequential updates lead to faster convergence com-

pared to simultaneous sampling of all dictionary elements. For the rth iteration,
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we update the kth column as follows:

P (dk|−) ∼ N(Σdk(
∑n

i=1 X̃
i(aik)

′),Σdk) for k=1,..,K

where Σdk = (
∑n

i=1

aik(aik)′

σε
+ 1

σd
)−1Im.

Also note that X̃ i = X i−B(Ci⊗1′T )-D/kA
i, whereD/k = [d1, ..,dk−1,0,dk+1, ..,dK ]

• Sample Ai ∀i

Since we want to incorporate temporality into the mixing weights for each of

the K network components, we update the kth row of Ai as follows

P (aik|−) ∼ N(Σaik
((X̃ i)′dk),Σaik

)

where Σaik
= ( 1

σε
d′kdkIT +R`gk

)−1, X̃ i = X i −B(Ci ⊗ 1′T )−DAi, and the kth

row of Ai is replaced by 0 ∈ RT .

• Sample B

We jointly update the rows of the coefficient matrix. For row w of B, the

posterior is

P(bw|−) ∼ N(LwW ,W ) where

– L =
∑n

i=1

∑T
t=1 x̃

i
tc
′
i

– W = (T
∑n

i=1
1
σε
cic
′
i + 1

σβ
Ip)−1

where x̃it = xit −Dait.

• Sample ρ

P (ρ|−) ∼ Dirichlet(δ∗1, .., δ
∗
G) where δ∗g = 1 + ng for ng =

∑n
i=1 I(zi = g)

• Sample σε

P (σε|−) ∼ Γ−1(αε + nmT
2
, bε + 1

2

∑n
i=1

∑T
t=1(xit −Dait −Bci)′(xit −Dait −Bci))

• Sample σd

P (σd|−) ∼ Γ−1(αd + pK
2
, bd + 1

2

∑K
k=1 d

′
kdk)

• Sample σβ

P (σβ|−) ∼ Γ−1(αβ + pC
2
, bβ + 1

2

∑p
j=1 β

′
jβj)
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• Sample Θ = {`1
1, .., `

G
1 , `

1
2, ...., `

G
K}

We jointly update the covariance kernel parameters using Metropolis-adjusted

Langevin algorithm (Besag et al., 1995). We fix the step size as .001 and choose

a diagonal matrix for the mass matrix. Partial derivatives with respect to each

parameter are derived from the log posterior,

g(Θ) = log

(
n∏
i=1

K∏
k=1

N(aik; 0,R
`g
′
k

|zi = g′)
G∏
g=1

K∏
k=1

N(log(`gk); 0, 10)

)

We sample Θ∗ from the proposal distribution, q(Θ∗|Θ) ∼ N(Θ + h
2
∇g(Θ), hI)

for stepsize h > 0 and accept it with probability

r = min

{
1,
π(Θ∗)q(Θ|Θ∗)
π(Θ)q(Θ∗|Θ)

}
,

where π(Θ) = exp(g(Θ)) is the target distribution.

• Sample zi∀ i

P (zi = g′|−) =
ρg′

∏K
k=1GP (aik;0,R

`
g′
k

)
∏T
t=1N(Xi

t |D,Ai,zi=g′)∑G
g=1 ρg

∏K
k=1GP (aik;0,R

`
g
k

)
∏T
t=1N(Xi

t |D,Ai,zi=g)

A full description of our sampling procedure is available in algorithm 2, where

the posterior distributions are as previously defined.

4.2.4 Subcase: Regional time series as Observed Signal

The flexibility of our approach allows the observed data,X i, to take various forms.

If sliding windows correlations or DCC are calculated, the observed signal would be

composed of the upper diagonal elements of each network estimate over the time do-

main. For p brain regions, X i ∈ RmxH where m=p(p-1)/2 and H is the number of

windows estimated. Due to the limited availability of robust dFC methods, we use

the regional time series as the observed information. Critically, we assume that the

signal observed at time t is a linear combination of basis signals of dimension p. The
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Algorithm 2 Parameter Sampling

Let X = [X1, ..,Xn] and A(r) = [A1(r), ..,An(r)] be the collection of observed data
and mixing coefficients, respectively, for all subjects in the rth MCMC sample. Sim-
ilarly, let Θ(r) = {`1(r)

1 , .., `
G(r)
1 , `

1(r),
2 ...., `

G(r)
K }.

Assign initial values for all model parameters, A(0), D(0), B(0), Θ(0),
σ

(0)
err, σ

(0)
d , σ

(0)
β , {z(0)

i }ni=1.
For r=1,..,10000 repeat the following steps

1: Block Gibbs sampling for B(r)

b(r)
ω ∼ P (bω|X,A(r−1),D(r−1), σ

(r−1)
β ) ∀ω = 1, ..,m

2: Gibbs sampling for σ
(r)
β

σ
(r)
β ∼ P (σβ|B(r))

3: Iterative Gibbs sampling for D(r)

d
(r)
k ∼ P (dk|X,A(r−1),D

(r)
/k ,B

(r), σ
(r−1)
d ), k = 1, ..., K

where D
(r)
/k = [d

(r)
1 , ..,d

(r)
k−1,0,d

(r−1)
k+1 , ..,d

(r−1)
K ]

4: Gibbs sampling for σ
(r)
d

σ
(r)
d ∼ P (σd|D(r))

5: Block Gibbs sampling for Ai(r) ∀i = 1, .., n

a
i(r)
k ∼ P (aik|X,D(r),B(r), z

(r−1)
i ,Θ(r−1)), k = 1, .., K

6: Gibbs update for σ
(r)
err

σ(r)
err ∼ P (σerr|X,A(r),D(r),B(r))

7: MALA update for Θ(r)

• Use all available updated information: A(r), D(r), Θ(r−1)

8: Posterior sampling for zi = g

z
(r)
i ∼ P (zi = g|X,A(r),D(r),B(r), σ(r)

err, σ
(r)
d , σ

(r)
d , σ

(r)
β ,ρ(r−1))

9: Gibbs sampling for ρ(r)

ρ(r) ∼ P (ρ|{z(r)
i }i)
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network connectivity associated with this basis vector is proportional to its self-outer

product. As argued in Yaesoubi et al. (2018), the outer product adequately captures

the variability observed in the data when the time dimension is ignored. Although

the authors formulate a model that considers only one basis vector to reconstruct the

signal at time t, we consider a linear combination of multiple basis vectors. Since we

have developed a Bayesian method, we can use the R MCMC samples to estimate the

covariance of the kth dictionary atom as (1/(R− 1))
∑R

r=1(d
(r)
k − d̄k)(d

(r)
k − d̄k)′. Un-

der the assumption that the dictionary elements are independent, the instantaneous

network connectivity at time t is the sum of the weighted covariance estimate for each

dictionary component. Thus, the instantaneous network connectivity generating the

observed signal at time t is at most a rank K, symmetric positive definite network.

Our model scales well since we will only need to consider p-dimensional basis vectors

rather than m-dimensional basis vectors. We also ignore the effect of covariates, B,

on the observed activity within each region.

4.3 Results and Discussion

4.3.1 Simulations

4.3.1.1 Simulation Setting

We conduct extensive simulations studies to assess the performance of the BayDiL

method relative to popular competitors. As previously discussed, sliding windows

correlations dominates the literature on dynamic functional connectivity. Conse-

quently, we select a SWC method (Jin et al., 2017) that is representative of the class

of methods. The first method, fixed sliding window correlation (fSWC), calculates

the network connectivity at time t as the Pearson correlation between all pairs of

regions over the previous m timepoints. fSWC represents standard SWC methods
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with fixed window widths. We consider window widths from 5 to 55 in intervals

of 10. Kmeans clustering is applied to the window estimates to determine the cen-

troids representative of the basis network states. We use the jump statistic to select

the optimal number of centers. Finally, we consider an online dictionary learning

method (Mairal et al., 2009) which is implemented in the DICTOL Matlab tool-

box (https://github.com/tiepvupsu/DICTOL). The functions in this toolbox solve eq.

(4.1), where we specify the tuning parameter, λ, over a grid of values, [0, .01, .1, .2,

.3, .4, .5, .6, .7, .8, .9, 1].

Data generation: We simulate data under various settings to assess the meth-

ods’ performance. Under the hypothesis that utilization of a common set of networks

differentiates disease populations, we simulate the regional time series for each subject

as a linear mixture of three basis network components. We enforce group differences

by setting by sampling the mixing coefficients for the third basis network from nor-

mal distributions where the characteristic scale length parameter is very small in

group one and large in group two. Formally, we have Xi,t =
∑K

k=1 ai,t,k,gdk + Ei,t,

where Xi,t ∈ Rp is the observed signal at time t for subject i; ai,t,k,g ∈ R is the mix-

ing weight on the kth dictionary element in the gth group; dk ∈ Rp is the the kth

basis signal; and Ei,t ∈ Rp is random Gaussian noise. For these simulations, we con-

sider p=20 regions, t=1,..,120 timepoints, k=1,..,3 dictionary elements, g∈{1, 2}, and

i=1,..,100 subjects. We are interested in the methods’ behavior in four scenarios: (1)

correct model specification; (2) mis-specified distribution on the mixing coefficients;

(3) incorrect number of a priori dictionary elements; and (4) spatially overlapping

and non-overlapping dictionary elements. We also consider the performance when

the mixing coefficients are sampled from four zero-mean Gaussian distributions with

the covariance function defined as: (a) squared exponential, (b) rational quadratic,

(c) squared exponential times periodic with fixed periodic parameter (SQ), and (d)

squared exponential times periodic with fixed square exponential parameter (PER).
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We also consider nonparametric mixing coefficients which are represented by phase

shifted sinusoidal curves with group constrained periodic effects.

Metrics: BayDiL detects basis atoms producing the observed signal and clusters

individuals based upon the utilization of those elements. In order to measure the

accuracy of estimated dictionary atoms, we measure the distance between each es-

timated dictionary atom (d̂j for j=1,..,K) and each true atom (dk for j=1,..,K) as

dist(d̂j, dk)=1 − |d̂′jdk|/(||d̂j||2 × ||dk||2) ∈ [0, 1]. As in Yang et al. (2016), we con-

sider dk to be fully recovered if the distance from it to any estimated atom is less

than .1. We report the recovery success rate as the proportion of true dictionary

atoms that are fully recovered. We also seek the clustering performance and measure

it with the adjusted rand index available in the mclust R package (Scrucca et al.,

2016). The adjusted rand index is a measure of the similarity of two partitions of

subjects into non-overlapping groups. It is invariant to the well known label switch-

ing problem in Bayesian mixture models. For two partitions, X = (x1, ..., xG) and

Y = (y1, .., yG), of the subjects into exactly G disjoint classes, the adjusted rand

index is calculated as
∑
ij (nij2 )−[

∑
i (
ai
2 )

∑
j (bj2 )]/(n2)

1
2

(
∑
i (
ai
2 )+(bj2 ))−[

∑
i (
ai
2 )

∑
j (bj2 )]

where n =
∑G

i=1 |xi| =
∑G

j=1 |yj|,

nij = |xi ∩ yj|, ai = |xi| for i=1,..,G, and bj = |yj| for j=1,...,G for |v|=cardinality of

set v. Note that the metric adjusts for the expected number of random pairings via

the term [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
and takes a value of 1 if the two partitions are exactly

the same and zero if the pairings are no better than random chance. It is possible

to calculate negative valued-indices, which indicates that the clustering results are

worse than random group assignments. In this work, we set negative adjusted rand

indexes to zero.

4.3.1.2 Results

We first evaluate the methods’ abilities to recover the true basis signals from the

regional time series. As seen in figure C.2.1 , BayDiL does an adequate job esti-
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mating the basis signals. The network estimates from the fixed sliding windows and

dictionary learner do not perform as well. Specifically, fSWC estimate similar basis

networks that each contain all true basis signals. This is reflective of SWC network

estimates presented in the literature that regularly exhibit spatially consistent basis

networks. As alluded to in the introduction, SWC averages the signals within the

respective window. Alterations in network structure on shorter timescales than the

window length will not be detected and can produce network estimates that are an

amalgamation of active subnetworks in the respective window. The traditional dic-

tionary learning method also struggles to detect the basis signals. The DL method’s

performance is closely tied to the prespecified tuning parameter, λ. For λ ∈ [.2, .7],

the DL recovers on average recovers two-thirds of the dictionary whereas recovery is

poor outside this range.

Table 4.1: Dictionary atom recovery success rate for the BayDiL, fixed SWC, and dictionary
learner. We compare the recovery success when the mixing coefficients are generated by
four parametrically defined covariance functions (Gaussian distributed) and a phase shifted
sinusoidal curve.

S.E. R.Q. S.E.×Per(SE) S.E.×Per(PER) Sin.
BayDiL 1.00 1.00 .999 1.00 1.00
DL .306 .055 .556 .139 .000
fSWC .000 .000 .000 0.00 .000

Given the suggestions that networks are spatially overlapping, we next investigate

the performance of BayDiL as basis states increasing share activated regions. In

figure 4.1 we see that the BayDiL is able to adequately recover the true dictionary

atoms despite the overlap. The DL also exhibits consistent performance. Next, we

evaluate the performance of BayDiL when the mixing coefficients are generated from

four covariance functions and a class of phase-shifted sinusoidal curves. Figure 4.1

shows the spatial consistency of the estimated basis signals relative to the truth under

these four specifications. For the first three parametric kernel specifications, BayDiL

classifies subjects with high accuracy even as the dictionary atoms increasingly overlap
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(Table 4.2). Our method exhibits poor classification if the group differences arise

from changes in the periodicity of the mixing coefficients, evidenced by the results for

Square exponential xPeriodic (PER) and Sin.

Figure 4.1: Comparison of the the BayDiL and DL methods in recovering the basis signals
when the signals share 1, 2 and 3 active regions in common.

Table 4.2: Average classification accuracy as measured by the adjusted rand index for the
BayDiL method.

Overlap S.E. R.Q. S.E.×Per(SE) S.E.×Per(PER) Sin.
1 1.000(0) 1.00(0) .999(.005) 0(0) .167(.059)
2 .996(.043) 1.00(0) .991(.018) 0(0) 0(0)
3 1.000(0) 1.00(0) .999(.005) 0(0) 0(0)

The BayDiL exhibits encouraging behavior when the true number of basis signals

is misspecified. Specifically, when the true number of atoms is three but we initialize

BayDiL with four or five latent components, our method is able to detect the dictio-

nary atoms with high success (.67 and 1, respectively) as well as classify individuals

with high probability (1 and 1, respectively). However, the performance is severely
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affected if the specified number of atoms underestimates the true number in the data.

Figure 4.2 depicts the spatial patterns of the estimated atoms relative to the true

atoms. In particular, we note that the four and five component fits produce spatially

consistent atoms with the addition of atoms recovering noise in the data. In total,

this emphasizes the necessity of allowing the data to inform the BayDiL about the

appropriate number of components. Specifying too few components impacts dictio-

nary recovery success as well as classification performance with providing too many

produces satisfactory performance at the expense of unnecessary computation time.

Figure 4.2: Basis elements estimates when the BayDiL is initialized with the incorrect
number of components.

(A) True atoms (outer product) (B) Estimated atoms (outer product)

BayDiL exhibits other pathological behavior related to the noise level and sample

size. As the sample size decreases, the dictionary elements are recovered less suc-

cessfully. Similarly, as the noise level increases, we note declines in the classification

accuracy and successfully recovered basis elements. Finally, we note that the BayDiL

successfully classifies patients as the length of the dictionary atoms grows. In the

most extreme setting, we assessed performance when the dictionary atoms each con-

tain 5,000 elements. Even in this high dimensional setting, the subjects are classified
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with high accuracy and the atoms are all fully recovered.

Finally, we evaluate the performance of the BayDiL when the input are sliding

windows estimates. Similar to the k-means clustering spatial maps, we find that

the BayDiL merges all true signals into one dictionary atom. All other estimated

dictionary atoms are noise artifacts associated with the window length. Interestingly,

the BayDiL is unable to linearly separate the signals in each sliding window despite

the linearity of the Pearson correlation. We think that this is likely due to the fact

that SWC averages the effect of active states within the respective window and the

sliding window technique introduces nonlinearities such that the true signals cannot

be linearly separated. Although intuitively simple and easy to calculate, we find that

SWC are a poor choice of observed signals.

4.3.2 Posttraumatic Stress Disorder Data Application

Please see study participant information and preprocessing details for the rs-fMRI

in Chapter 1. Figure C.2.3 presents the spatial locations of the twenty seven brain

regions investigated in this analysis.

4.3.2.1 Results

We investigate the rs-fMRI data for three, four, five, six and seven dictionary

atoms, assuming there are two subgroups. Allen et al. (2014a) and Yaesoubi et al.

(2018) have suggested that this number of latent networks sufficiently explain brain

dynamics at rest. We also find that five components are sufficient to reconstruct

the observed regional time series and produce interesting clustering results. In figure

4.3, we see that the five atoms are spatially overlapping but exhibit unique patterns.

The BayDiL and DL estimates of the covariance of the dictionary atoms are very

similar. Note that our our estimates are more noisy than those of the DL because we

do not impose any constraints on the norm of the dictionary atoms. However, our
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covariance structures are more informative because we can account for variation in

each atom, unlike the optimization routine of the DL that produces point estimates

only. Components two, three, and four demonstrate different connectivity patterns

between the subcortical and amygdala regions. Component one exhibits connectivity

primarily restricted to the mPFC while component five exhibits integration across

the subcortical and amygdala regions but a functional segregated mPFC. The DL

method’s estimates are spatially consistent with the BayDiL (figure 4.4) and exhibit

stronger within module co-activity patterns as well as more inter-modular activity.

Further, we note that the DL atoms exhibit consistent patterns across all grid values

investigated. Figure 4.5 displays the covariance of the first (A) and fourth (B) dictio-

nary atoms. In figure 4.5(A), we note the strong covariances between amygdala and

subcortical regions while figure 4.5(B) shows strong connections between within the

mPFC. As we discuss later, the utilization of these structures defines two interesting

subpopulations.
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Figure 4.3: The covariance matrices of the five basis components estimated by the BayDiL
method that linearly mix to produce the observed regional time series for 56 subjects in the
PTSD study.

Figure 4.4: The covariance matrices of the five basis components estimated by the DL
method (λ = .3) that linearly mix to produce the observed regional time series for 56
subjects in the PTSD study.
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Figure 4.5: The BayDiL covariance estimates between each of the twenty seven brain
regions in the first and fourth dictionary atoms. Edges are weighted by the magnitude of
the covariance between the regions and the color indicates if it is positive (red) or negative
(blue).

(A) First dictionary atom

(B) Fourth dictionary atom
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The BayDiL clusters the rs-fMRI data into two composed of 46 (group 1) and 10

(group 2) individuals based upon the subjects’ utilization of the dictionary atoms.

We study several characteristics of the groups and discover clinically relevant differ-

ences. Group 1 has lower median childhood trauma questionnaire scores compared

to the group 2 (36 and 44.9, respectively). This suggests that subjects assigned to

the second population experienced more traumatic childhoods, which was shown by

Cisler (2017) to produce irregular functional connectivity between the mPFC and

amygdala brain regions. Group based differences are also evident via the Beck De-

pression Inventory where group 1 on average exhibits minimal depressive symptoms

while group 2 has mild to moderate symptoms. Further, 13% of group 1 has received

depression treatment and 40% of group 2 (χ2 = 4.10, p-value=.049). Although our

method originally intends to discover PTSD specific modifications in dynamic func-

tional activity, twenty one percent of group 1 self report PTSD symptoms while thirty

percent of group 2 reports the symptoms.

We find that the length scale parameter governing the covariance functions is

similar in the groups for components two, three, and five (figure 4.6). Components

one and four depict mild differences in the length scale parameter, where group one

has a larger value (smoother temporal patterns) in the first component and smaller

value in component one. In figure 4.5, we see that component one exhibits positive

BOLD signals for all subcortical regions and the amygdala while the fourth component

exhibits positive signals in the mPFC region. We note that the bimodal densities

results from label switching issues inherent in Bayesian mixture modeling.

Finally, we assess three symptom clusters characterizing PTSD (intrusion, avoid-

ance/numbing, and hyperarousal). Table 4.3 shows that group 1 has a larger scores

in the intrusion domain while group 2 has higher scores in the avoidance and hyper-

arousal domains. Scher et al. (2008) find that the clinician administered PTSD scale

(CAPS), which is the gold standard for PTSD assessment (Weiss, 2004), “explicitly
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Figure 4.6: The posterior distribution of the length scale parameter for each component
for the two subgroups in the PTSD data application. Differences in the group’s component
parameter is evident in components one and four.

links numbing and hyperarousal symptoms to the experience of a traumatic event.”

The authors go on to suggest that high scores in the two domains may indicate symp-

toms of PTSD, depression, or “simply a tendency to startle easily.” This echos our

earlier findings that subjects assigned to group 2 have stronger depressive symptoms,

which is a condition frequently presenting in PTSD populations.

Table 4.3: Average score in the intrusion, avoidance/numbing, and hyperarousal domains.
Reported values are the mean and standard deviation.

Intrusion Avoid/Numb. Hyperarousal
Group 1 1.72(1.75) 1.89(1.99) 1.87(1.68)
Group 2 1.00(1.63) 2.30(2.40) 2.60(1.78)

As a check for the consistency and replicability of the results, we consider a larger

parcellation scheme encompassing 74 brain regions, where the added regions are in the

default mode network (DMN). We add these regions because the DMN has been highly

implicated in a wide range of neurological disorders impacting brain function (Mohan

et al., 2016). Further, the DMN has been shown to exhibit deficient connectivity in

adults with childhood maltreatment-related PTSD (Daniels et al., 2011). We find

that two clusters arise—48 subjects in group 1 and 8 subjects in group 2—that are
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strongly consistent with the clusters identified in the twenty seven region analysis.

Specifically, six subjects in group 2 also clustered together in group 2 for the 27 region

analysis.

4.4 Conclusion

In this chapter, we propose a semi-parametric hierarchical Bayesian dictionary

learning method that samples the model parameters via an efficient MCMC routine.

Our proposed model exhibits several strengths with regards to the detection of dic-

tionary atoms. Additionally, we have a simple framework for clustering individuals

into latent groups. In the numerical studies, the BayDiL does an excellent job re-

covering the dictionary atoms and assigning observations to the correct group. In

the data application, the BayDiL detects subgroups exhibiting suggestive, although

statistically insignificant group differences. Individuals diagnosed with PTSD often

present at least one other psychiatric disorder. While major depressive disorder is the

most common co-morbid condition, substance abuse and anxiety disorders frequently

exist in PTSD populations (Brady et al., 2000). Our unsupervised learning approach

doesn’t detect subgroups perfectly aligned with PTSD diagnoses, but does detect a

subgroup exhibiting depressive symptoms and higher scores in domains aligned with

PTSD as assessed by the CAPS.

We believe our method can be extended to address the more clinically relevant

but statistically challenging issue of differential disease classification. The persistence

of other psychiatric disorders in PTSD populations is regularly observed various con-

ditions. For example, there is a growing class of methods leveraging functional and

structural brain data to differentiate schizophrenia from depression and other mood

disorders (Koutsouleris et al., 2015; Yu et al., 2013) as well as depression from bipo-

lar disorder (Grotegerd et al., 2013; Serpa et al., 2014). As currently presented, the
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BayDiL will be useful to clinicians for evaluating functional activation patterns as

biomarkers to differentiate co-presenting disorders. Furthermore, the shared dictio-

nary permits direct comparison across subjects used in the analysis. We expect the

clustering results to help in the selection of treatment plans, for which success is

directly connected to a correct initial diagnosis.

Additionally, we think that the selection of regions more closely aligned with

the disorder of interest should lead to more clinically relevant findings. As previously

discussed, our atlas of twenty seven brain regions spans the mPFC, sub cortical areas,

and amygdala. Unfortunately, our atlas does not cover the hippocampus, which

is regularly cited as an important brain area in PTSD populations. Crucially, the

hippocampus is involved in memory of places and is likely intricately tied to the

avoidance/numbing domain characterizing PTSD.

Despite the strengths of our method, there are various computational and statisti-

cal challenges to overcome. An obvious limitation to our work that is well documented

in the matrix decomposition literature is that of identifiability. Specifically, the dic-

tionary and mixing matrices are approximate up to a finite positive constant. In

simulations, this led to numerical instabilities as the mixing matrices became increas-

ing non-Gaussian. In this work, we fix the global signal variance parameter for all

components to constrain the magnitude of the mixing coefficients. In our numeri-

cal studies, the dictionary was nearly fully recovered (i.e. positive constant ≈ 1).

Although this solved our numerical issues related to model identifiability, fixing the

global signal may be too restrictive in practice. Another potential solution to the

identifiability issue is to use a more restrictive prior on the columns of the dictionary

such as the von-Mises Fisher (vMF) distribution that samples dictionary atoms from

the space of vectors on the unit hypersphere. This is probabilistically equivalent to

unit norm constraints imposed on the dictionary atoms in optimization routines.

We also found that the clustering performance was severely impacted by periodic
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temporal mixing patterns. The BayDiL assumes that correlations overtime follow

a Gaussian process with a square exponential covariance kernel function. Although

commonly used, the square exponential kernel can miss local patterns that are likely

present in neuroimaging data. A potential solution to this is to expand the complexity

of the kernel function to incorporate global and local trends, such as the addition of

a global square exponential kernel to the product of square exponential and periodic

kernels. Williams and Rasmussen (2006) show that this composition produces a valid

kernel. This construction will capture local periodic temporal trends likely present in

fMRI data. We note that there should be negligible increases in computational time

attributed to the expanded number of kernel parameters due to the use of the MALA

sampling procedure. Another possible solution is to directly model the observed data

as a function of the Gaussian process distributed mixing coefficients. One approach

is to impose an orthogonality constraint on the columns of the dictionary such that

sampling of Ai is now based on the regression equation D′Xi = Ai+D
′B(Ci⊗1′T )+

D′Ei where D has been updated.

In future work, we would like to extend our model to task fMRI studies. Specif-

ically, it has been observed that individuals with lower cognitive functioning exhibit

irregular functional dynamics between task blocks (Cohen, 2018). While BayDiL

has been formulated for rs-fMRI, we can naturally extend it to task-based studies

by modifying the length scale parameter to reflect a population value shared by all

subjects and random subject specific variation attributed to the subgroup. The Bay-

DiL method requires the user to pre-specify the number of dictionary components

prior to analysis. In simulations, we found that the specification of correct number of

components is paramount to the classification performance. This was also evident in

the data application, where the BayDiL returned uninteresting clustering when three,

four, six or seven components was specified. We will incorporate a Dirichlet process

prior to have a data-informed selection of the appropriate number of components.
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Chapter 5

Summary and Future Directions
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In this dissertation, we have investigated the utility of networks for analyzing

functional connectivity in the human brain. Networks are an appealing approach for

studying the brain because they significantly reduce the complexity of cortical com-

munication. For instance, the brain contains millions of neurons which are densely

packed in the cortex. It is computationally infeasible to study the interactions be-

tween these small units. However, network based approaches simplify this problem

by aggregating the signals from spatially proximal neurons into one region. Thus, the

success of the network approaches depend in part on the manner in which the brain is

parcellated into non-overlapping regions or interest. Further, the parcellation scheme

allows for various scales of analysis (i.e. coarse to dense). Throughout this disser-

tation, we’ve used moderately coarse parcellation schemes providing full coverage of

the brain.

In Chapter 2, we proposed a difference degree test that detects brain regions in-

cident to a statistically significant number of differentially weighted edges. Current

network comparison methods detect global differences in network structure across two

populations and typically fall into one of two categories: (1) mass univariate testing

(2) differentially weighted edges form large, connected subcomponents spanning mul-

tiple brain systems. Our method is a modified mass univariate testing approach,

where first threshold meaningful edges with a statistically meaning cutoff and then

use the Hirshbaumer-Qi-Steuer (HQS) algorithm to generate meaningful null net-

works for the detection of functionally compromised brain regions. In application to

a study of Major Depressive Disorder, the DDT detects regions supported by litera-

ture on the disorder. The DDT is an excellent approach for detecting local differences

in network architecture, but can be significantly improved. First, we can extend the

HQS algorithm to generate null networks that incorporate edge-specific variability.

As currently implemented, the HQS procedure assumes that edges between regions

have a common variance. However, this is likely unrealistic due to heterogeneity
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of functional connectivity in the brain. Second, the DDT can be tremendously im-

proved by removing of the thresholding step. Network thresholding is a critical step

in nearly every human brain network application. Recently, Baggio et al. (2018) pro-

posed threshold-free network based statistics which reduce the impact of thresholding

by “averaging” over the tuning parameter. We can extend the DDT by assuming a

Markov random field over the nodes, where each region’s height is the last thresh-

old at which it is a statistically meaningful node. The DDT is easily modified to

incorporate this step and will not exhibit computational inefficiencies.

In Chapter 3, we proposed an approach that incorporates structural connectivity

into the estimation of functional connectivity. Logically, structures must be present to

permit the observed coordination in functional activation between spatially remote

neurons. In fact, a large body of literature suggests that structural connectivity,

as measured by white matter fiber tracks, constrains functional connectivity in the

brain. While various existing approaches enforce a deterministic relationship be-

tween brain function and structure, our siGGM is the first to flexibly incorporate

anatomical connectivity into estimation of functional connectivity. Although we note

superior performance relative to popular competitors, our approach only considers di-

rect structural connections between brain regions. Skudlarski et al. (2008) show that

the structure-function relationship is strongest when indirect structural connections

up to order four are accounted for. Our method readily extends to include indirect

structural connectivity. However, in simulation studies not presented, we found that

naively accounting for indirect structural connections lead to dense precision matrix

estimates. There are many options to ensure this does not occur. We could place

a Laplace prior on coefficients of the the indirect structural connections or a group

lasso prior if we want to impose structure.

Static connectivity dominates the brain network literature, primarily because it is

easily calculated and intuitively straightforward. As we discuss in chapter 4, increas-
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ingly researchers finding that communication between brain regions rapidly changes

during tasks and at rest. Subsequent studies of dynamic functional connectivity in-

dicate that it is a better predictor of various disorders than static connectivity. In

that chapter, we propose the BayDiL method, which detects a set of dictionary atoms

common to all subjects that linearly mix to reproduce the observed signals. Further,

our method classify individuals based upon the utilization of the atoms. There are

several innovations that can increase the effectiveness and reliability of results. First,

we want to incorporate constraints on the dictionary atoms as implemented in the

optimization routines, thereby allowing us to relax the constraint on the global signal

parameters governing the covariance kernel functions. In practice, it is likely that

that the global signal plays a significant role in how subgroups utilize the dictionary

atoms. Furthermore, we want to allow the method to detect the number of compo-

nents in the data rather than require a prior selection. As discussed in the chapter,

classification performance is intricately tied to the selection of the correct number of

dictionary atoms. Finally, we want to investigate an appropriate functional connectiv-

ity object as the observed signals. In unreported work, we investigated two measures

of dynamic functional connectivity–sliding windows and dynamical conditional cor-

relations. The BayDiL performed very poorly when sliding windows was input as the

observed signal. This is likely because the sliding windows merge the components

into one and average out the temporally varying changes that occur at smaller time

scales. Unfortunately, sliding windows breaks down when extremely short window

lengths are used due to an insufficient number of timepoints for calculating Pearson

correlations. The dynamical conditional correlations provide the temporal resolution

desired, but is prohibitively slow for practical use. We believe that advances in these

methods should allow us to fully incorporate covariate effects into the classification

of subjects based on usage of a common dictionary.
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Appendix A

Appendix for Chapter 2

A.1 Proof for HQS procedure

In section 2.2.2.2 we suggest that sampling fij ∼ N(µ,σ2) appropriately allows for

the condition that that E(cij) = ē and V ar(cij) = v̄. We now provide details for the

distribution of cij =
∑m

k fik × fkj. Consider fik,fkj
i.i.d.∼ N(µ, σ2) for k = 1, ..,m.

m∑
k=1

fikfkj =
1

4

m∑
k=1

(fik + fkj)
2 − 1

4

m∑
k=1

(fik − fkj)2 (A.1)

For X, Y
i.i.d.∼ N(µ, σ2),

(X + Y )√
2σ

∼ N(
2µ√
2σ
, 1) =⇒ (X + Y )2

2σ2
∼ χ2

1(
4µ2

2σ2
)

(X − Y )√
2σ

∼ N(0, 1) =⇒ (X − Y )2

2σ2
∼ χ2

1
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We can introduce constants and rewrite (A.1) as

m∑
k=1

fikfkj =
1

4

m∑
k=1

(fik + fkj)
2 − 1

4

m∑
k=1

(fik − fkj)2

m∑
k=1

fikfkj =
2σ2

4

m∑
k=1

(fik + fkj)
2

2σ2
− 2σ2

4

m∑
k=1

(fik − fkj)2

2σ2

m∑
k=1

fikfkj =
2σ2

4
T − 2σ2

4
Q

where T is a non-central χ2 with m df and non-centrality parameter m × (4µ2

2σ2 )

and Q is a central χ2 with m df. Utilizing the first moment of non-central χ2 and χ2

distributions, we see that

E[
2σ2

4
T − 2σ2

4
Q] =

2σ2

4
E[T ]− 2σ2

4
E[Q]

=
2σ2

4
(m+

4mµ2

2σ2
)− 2σ2

4
m

= mµ2

= ē

and

V ar[
2σ2

4
T − 2σ2

4
Q] =

4σ4

16
V ar[T ] +

4σ4

16
V ar[Q]− (

4σ4

16
)2Cov(T,Q)

=
4σ4

16
(2× (m+ 2(

4mµ2

2σ2
))) +

4σ4

16
(2m)

= mσ4 + 2σ2mµ2

= mσ4 + 2mσ2µ2 +mµ4 −mµ4

= m(σ2 + µ2)2 −mµ4

= v̄

To see the Cov(T,Q)=0, we note that (x,y)T ∼ MVN(µ̃, Σ̃) where µ̃ = µ× 12m

for 12m a vector of one’s in IR2m and Σ̃ = diag(Σ,Σ) is a block matrix with Σ =
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diag(σ2, ..., σ2) ∈ IR2m×2m. Multiplying the multivariate random vector by an appro-

priate matrix, P, we have (x1 + y1, ..,xm + ym, ..,x1 − y1, ..,xm − ym)′ ∼MVN((2µ, .., 2µ, 0, .., 0)′

,PΣP ′). By the partitioning of the full covariance matrix, we see that (x1+y1, . . . , xm+

ym)′⊥⊥(x1 − y1, . . . , xm − ym)′. Consider f(x) = 1
2σ2 (x2

1 + · · · + x2
m). Since f(.) is a

continuous function, we have f(x1 + ym, . . . , xm + ym)⊥⊥f(x1− ym, . . . , xm− ym). By

definition of f(.), we have T⊥⊥Q which implies Cov(T,Q) = 0.
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A.2 Tables

Table A.1: Within and between functional module DWE in the major depressive disor-
der study. Bolded values indicate statistically significant number of DWE between the
respective functional modules

(A) Pearson, model-free
SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 55
CIO 11 1
AUD 14 4 1
DMN 36 22 21 42
MEM 6 0 0 7 0
VIS 29 14 28 32 1 4
FPN 10 1 9 26 1 11 7
SAL 11 2 12 15 1 4 9 2
SUB 20 3 12 6 5 63 2 1 2
VAN 25 6 2 15 0 8 2 2 2 0
DAN 20 0 4 9 0 9 3 2 2 2 0
UNC 22 10 3 43 5 13 11 9 9 4 2 5

(B) Pearson, model-based
SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 46
CIO 9 1
AUD 12 4 1
DMN 27 25 22 45
MEM 3 0 0 5 0
VIS 29 14 27 26 4 3
FPN 9 0 7 30 1 12 7
SAL 10 2 8 16 1 6 12 4
SUB 16 3 9 10 6 54 1 1 2
VAN 23 5 2 15 0 6 2 2 2 0
DAN 17 0 2 9 0 14 3 3 1 2 0
UNC 20 9 1 48 4 14 10 12 9 4 3 5

(C) Partial, model-free
SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 6
CIO 2 0
AUD 2 3 3
DMN 25 6 12 21
MEM 2 1 0 6 0
VIS 12 5 7 16 1 7
FPN 13 4 5 19 1 7 3
SAL 9 6 1 16 0 5 6 1
SUB 4 0 0 11 1 8 5 5 1
VAN 2 3 0 11 0 4 0 3 1 0
DAN 6 3 1 9 0 4 1 5 3 1 1
UNC 15 6 2 32 2 11 10 8 9 2 4 6

(D) Partial, model-based
SM CIO AUD DMN MEM VIS FPN SAL SUB VAN DAN UNC

SM 9
CIO 7 0
AUD 8 4 3
DMN 47 15 17 36
MEM 3 1 1 9 0
VIS 16 8 11 30 5 11
FPN 20 8 7 40 3 19 7
SAL 14 10 2 22 1 9 11 4
SUB 7 4 2 18 2 12 8 8 1
VAN 8 3 1 19 1 8 2 6 2 0
DAN 6 4 4 17 0 6 4 7 4 3 3
UNC 30 13 7 49 5 22 16 10 13 7 7 10
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Appendix B

Appendix for Chapter 3

B.1 Parameter Updates

We optimize (3.6) by iteratively updating model parameters as follows.

Update Ω: Given the data, Y = {y1, ...,yT}, and current estimates for all other

model parameters, we solve

Ω̂(m+1) = arg min
Ω

− log det(Ω) + tr(SΩ) +
ν

2

∑
j<k

eα
(m+1)
jk |ωjk|+

1

2
ν
∑
j=k

|ωkk|

(B.1.0.1)

for Ω̂. This resembles the penalized likelihood framework of the traditional Gaussian

graphical model. Define δ
(k+1)
ij = 1

2
exp(α

(m+1)
jk ) for j 6= k and δ

(m+1)
jk = 1

2
for j = k.

We can re-express (B.1.0.1) as

Ω̂(m+1) = arg min
Ω

− log det(Ω) + tr(SΩ) + ν
∑
j<k

δ
(m+1)
jk |ωjk|,

where we update Ω using a quadratic approximation solver, QUIC (Hsieh et al.,

2011), available in R.
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Update µjk: Given Y, η(m+1), and α
(m)
jk , we update µjk via the closed form equation

µ
(m+1)
jk =

σ2
µ(α

(m)
jk + η(m+1)pjk) + σ2

λµ0

σ2
µ + σ2

λ

.

Update η: Given Y and α(m), we can update η via closed form equation

η̂(m+1) =
−β(m) +

√
(β(m))2 − 4γρ

2γ
,

where β(m) = bη +
∑
j<k α

(m)
jk pjk

σ2
λ

− 1
σ2
λ

∑
j<k µ

(m)
jk pjk, γ =

∑
j<k p

2
jk

σ2
λ

, and ρ = − 1
σ2
λ
(aη − 1)

Update α: Given Y, Ω(m), µ(m+1), and η(m+1), we can estimate α
(m+1)
jk for 1 ≤ j <

k ≤ p by solving

α̂(m+1) = arg min
α

ν
∑
j<k

eαjk |ω(m)
jk |+

∑
j<k

(αjk − (µ
(m+1)
jk − η(m+1)pjk))

2

2σλ

A closed form solution doesn’t exist, so we implement a Newton Raphson solver

to find the optimal choice of α. Re-expressing this problem, we have

arg min
α

exp(α)′|ω(m+1)| − 1

2σ2
λ

(α− (µ
(m+1)
jk − η(m+1)P̃ ))

′
(α− (µ

(m+1)
jk − η(m+1)P̃ ))

where α = {α12, α13, ..., α(p−1)p}, P̃ denotes the upper diagonal elements of the struc-

tural connectivity matrix P , eα is the element wise exponential for each component

of α, and 1 as a vector of 1’s of length p(p−1)
2

. Since Ω is symmetric and we do not

shrink diagonal elements, we simplify our estimation of α by only focusing upon the

upper diagonal elements.

The Newton Raphson updating equation based on step size ∆ is αm+1 = αm −

∆g(αm)H(αm)−1, where g(α) = νσ2
λD|ω(m)|e

α + [α − (µ(m+1) − η(m+1)P̃ )] and H(α) =

νσ2
λD|ω(m)|D|eα| + I, D|ω(m)| is a p(p−1)

2
× p(p−1)

2
diagonal matrix with elements as the

upper triangular elements of Ω, and similarly for D|eα|, and I is an identity matrix.

Since H is a diagonal matrix, it is easily inverted and serves as an appropriate Hessian
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matrix. We search for the step size (∆) using a back tracking line search for each

update of α as in Chang et. al (2017).

B.2 Hyperparameter Choice and Initial Values

The proposed siGGM approach iteratively solves for the MAP estimator and works

best when reasonable starting values are provided. We first find an initial estimate for

the graph structure and the sparse inverse precision matrix (Ω0), using the graphical

lasso. We initialize all edge specific penalty parameters as λ0, which is the global

tuning parameter corresponding to Ω0. We set σ2
µ = 5, corresponding to an uninfor-

mative prior which reflects our lack of knowledge regarding the baseline effects and

choose µ0 = 0 as a default setting. We randomly generate the edge specific baseline

effects µjk from the prior distribution N(µ0, σ
2
µ) and use these as initial values. The

initial value of η is chosen by averaging −
∑
l<k(exp(λ0)−µjk)/pjk

p(p−1)/2
, which is the average of

all possible η values under the relationship exp(λ0) = µjk− ηpjk, j < k corresponding

to σλ = 0. We choose σ2
λ = 1

p(p−1)/2

∑
j<k

∑p
j,k=1(exp(λ0)− µjk − ηpjk)2.

Finally, we found that choosing aη and bη to attain E[η] ≈ 6 and Var[η] ≈ 1 incor-

porates structural information in a flexible manner. However, larger first moments

for the prior on η may lead to increased false positives as our method places more

weight on smaller structural connections, and similarly, smaller first moment may

decrease the overall impact of structural information. For example, when aη > 1 and

bη →∞, we have E[η]→ 0, which makes the siGGM indistinguishable from SC naive

methods. In simulations, we found values selected for the set of hyperparameters—

(aη, bη, σµ, σλ)—led to fast estimation of model parameters and accurate results across

a wide array of settings.
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B.3 Measure for computing between module dif-

ferences

We define the goodness of fit measure

X2
g1,g2 =

(Q(g1,g2) − E(g1,g2))
2

E(g1,g2)
, (B.3.0.1)

where g1, g2 ∈ {1, . . . , G} are the indices corresponding to one of the G functional

modules, Qg1,g2 represents the observed number of differentially weighted edges in the

(g1, g2) block, Eg1,g2 represents the expected number of differentially weighted edges

in the (g1, g2) block when edges distribute randomly across the module blocks. X2
g1,g2

measures the goodness of fit for each within-module block (g1 = g2) or between-

module block (g1 6= g2). In equation (B.3.0.1), the expected value can be derived in

a straightforward manner as Eg1,g2 = 0.5p∗{|g1|(|g2| − 1)} for within module blocks

(g1 = g2) and Eg1,g2 = p∗|g1||g2| for between-module blocks (g1 6= g2), where |g|

represents the total number of nodes within the gth module, and p∗ represents the

proportion of differentially weighted edges among all the edges across the network.

Using 5000 permutations of group labels at each edge, the differentially weighted

edges are identified as those connections with significant FDR-adjusted p-values.

B.4 Calculation of ICC

The intraclass correlation coefficient is a widely used reliability metric for assessing

test-retest reliability of brain network topology in neuroimaging applications. Using

ICC(3,1), (two-way mixed single measures testing for consistency) we investigate the

reliability of graph metrics across two scanning session (Guo et al., 2012; Telesford

et al., 2010). The quantity is calculated as

ICC(3, 1) =
BMS− EMS

BMS + (k− 1)EMS
, (B.4.0.1)
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where k is the number of scanning sessions per participant, BMS is the between

mean square and EMS is the mean residual sum of squares. BMS captures the vari-

ability between subjects while EMS measures unexplained within-subject variation in

functional connectivity across scanning sessions (see Shrout and Fleiss (1979)). This

metric is commonly used to measure test-retest network stability in brain networks

(Braun et al., 2012) with agreement scale 0 < ICC ≤ .2 (slight), .2 < ICC ≤ .4

(fair), .4 < ICC ≤ .6 (moderate), .6 < ICC ≤ 8 (strong), and .8 < ICC ≤ 1 (near

perfect) as suggested by Telesford et al. (2010).

B.5 Tables

Appendix B presents the results for siGGM and SC naive approaches on simulated

data.

Table B.1: Performance of siGGM and SC naive approaches on simulated network data
with p=100 and 200 nodes. Eglob is the bias in global efficiency.

p=100 p=200
Eglob MCC AUC L1 Eglob MCC AUC L1

Small World
Glasso 0.177 0.327 0.827 0.575 0.128 0.333 0.757 0.668
Space -0.206 0.585 0.839 0.407 -0.374 0.597 0.763 0.430
siGGM(η =0) 0.061 0.538 0.847 0.509 -0.019 0.506 0.843 0.587
siGGM 0.078 0.590 0.884 0.478 0.121 0.526 0.906 0.532
Scale Free
Glasso 0.117 0.365 0.798 0.560 0.038 0.324 0.657 0.605
Space -0.219 0.495 0.772 0.491 -0.403 0.358 0.664 0.555
siGGM(η =0) 0.005 0.509 0.808 0.528 -0.100 0.411 0.769 0.573
siGGM 0.054 0.562 0.853 0.428 -0.075 0.469 0.868 0.442
Erdos-Renyi
Glasso 0.245 0.247 0.789 0.859 0.065 0.182 0.659 0.837
Space -0.125 0.580 0.824 0.465 -0.415 0.253 0.638 0.577
siGGM(η =0) 0.020 0.363 0.792 0.679 -0.204 0.208 0.661 0.700
siGGM 0.124 0.442 0.861 0.624 0.049 0.514 0.862 0.689
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B.6 Network Metrics

Network metrics quantify properties of graphs, such as the local connectedness

of regions and global connectivity across the network. These features distill complex

organizing principles into scalar values that have led to critical insights into the brain’s

functionality in health and disease (Lord et al., 2012). In the following section, we

provide interpretations and mathematical formulas for the seven network metrics

investigated in this work. All functions assume the brain network is a p × p binary

adjacency matrix, A, where aij is equal to one if there is an edge between regions i

and j or zero otherwise. We first describe two metrics that are building blocks for

our network features of interest. The first is the number of triangles around node i,

ti = 1
2

∑
j,m=1

paijaimajm, which measures connectivity among regions adjacent to region

i. The second is the shortest path length between regions i and j which is defined

as dij =
∑

auv∈gi↔j

auv, where gi↔j is the set of edges comprising the shortest geodesic

distance between the regions. This metric is a basis for quantifying global integration

across the brain (Rubinov and Sporns, 2010a). For additional details, please see

https://sites.google.com/site/bctnet/measures.

1. Degree

The degree of region i is the number of edges incident to it. Mathematically, it is

defined as ki =
∑p

j 6=i aij. Regions i and j are considered neighbors (or adjacent)

if aij = 1.

2. Characteristic Path Length

The characteristic path length is the average shortest path length in the network

and is defined as L = 1
p

∑
i Li = 1

p

∑
i

∑
j6=i dij

p−1
, where dij is the shortest path length

and Li is the characteristic path length of region i.

3. Clustering coefficient

The clustering coefficient measures the number of closed triangles contain-
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ing a ROI. It is equivalent to the number of neighbors of region i that are

also neighbors of each other (Watts and Strogatz, 1998). It is calculated as

C = 1
p

∑
i Ci = 1

p

∑
i

2ti
ki(ki−1)

, where Ci is the clustering coefficient of region i.

4. Local Efficiency

Braun et al. (2012) define local efficiency as “the efficiency of the local subgraph

of a node that only contains direct neighbors of the region” and is a measure of

local connectedness. It is defined as Eloc = 1
p

∑
i

Eloc,i =
1
p

∑
i

∑
j,m=1,j6=i aijaim[djm(Ni)]

−1

ki(ki−1)
,

where Eloc,i is the local efficiency of region i and djm(Ni) is the length of the

shortest path between regions j and m that contains only neighbors of i.

5. Global Efficiency

The global efficiency is the average inverse shortest path length in the network

and quantifies integration across spatially distant regions in the brain. It is

calculated as E = 1
p

∑
i

Ei = 1
p

∑
i

∑p
j=1,j6=i d−1

ij

p−1
, where Ei is the global efficiency of

region i.

6. Modularity

This metric measures how well the network decomposes into non-overlapping

clusters of connected regions and is calculated as Q =
∑

u∈M

[
euu −

(∑
v∈M euv

)2
]

,

where M constitutes the sets of non-overlapping modules, euv is the proportion

of all links that connect regions in module u with regions in module v.

7. Hierarchy

Network hierarchy is an ordering of regions such that high degree regions tend to

have lower local clustering coefficient than low degree regions. Mathematically,

this ratio is quantified as C ∼ k−β, where C is the clustering coefficient, k is

the region’s degree, and β is the hierarchy coefficient that is large for strongly

hierarchical structured networks. β is estimated as the slope coefficient from a

linear regression of log(C) on log(k) (Braun et al., 2012).
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Appendix C

Appendix for Chapter 4

C.1 Hyper-parameter selection and initial values

Our model has a few hyper-parameters that must be a priori selected. The set

of parameters are (ασε , ασβ , αd, bσε , bσβ , bd), which govern the variance parameters in

our model. Following Yang et al. (2016), we set ασε = ασβ = αd = .5 and bσε =

bσβ = bd = 1e−6, where these choices have been shown to induce sparsity promoting

marginal distributions on the respective higher level parameters.

We initialize the BayDiL method with random starting values for all parameters.

Since the mixing coefficient information is subject-specific and dependent upon group

membership, we randomly assign all subjects to a group and sample the Ai from a

zero-mean Gaussian distribution with common covariance R` ∀i. For a non-random

initialization, we utilize a two step procedure. First, using all subjects data, we

use k-means clustering to determine the K centroids which serve as the columns of

the shared dictionary. Next, we use the alternating direction method of multipliers

(ADMM) basis pursuit (Boyd et al., 2011) in the ADMM R package to solve

arg min
ait

||ait||1 s.t. Dait = xit for t = 1, .., T ; i = 1, .., n
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where D is fixed from step one, xit is the observed vector of signals at the tth time

step, and ait linearly mixes the basis dictionary to reproduce the observed signal. For

all implementations of the BayDiL, we acquire 25,000 MCMC samples with 10,000

burnin.
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C.2 Figures

Figure C.2.1 : Spatial maps of the true basis signal juxtaposed with the estimates from
the BayDiL, DL λ ∈ {.2, .3}, and k-means centroids. The mixing coefficients are generated
from a zero-mean gaussian distribution with square exponential covariance function. The
BayDiL does an adequate job recovering the true atoms whereas the dictionary learners
recover them with the addition of noise. K-means clustering produces estimates that merge
the three true signals.
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Figure C.2.2 : Spatial maps of the true basis signal juxtaposed with the estimates from the
BayDiL, DL λ ∈ {.2, .3}, and k-means centroids. The mixing coefficients are generated from
a zero-mean gaussian distribution with sinusoidal function. The BayDiL does an adequate
job recovering the true atoms whereas the dictionary learners recover them with the addition
of noise. K-means clustering produces estimates that merge the three true signals.
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Figure C.2.3 : The twenty seven brain regions analyzed in the PTSD data application
organized by the mPFC (purple), subcortical (yellow), and amygdala (green) functional
areas. Regions are superimposed on a brain template using the BrainNetViewer matlab
toolbox (Xia et al., 2013).
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