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Abstract

Indexing Moving Objects for Predictive Spatio-Temporal Queries
By Xiaofeng Xu

The rapid development of positioning techniques has enabled information
to be widely collected on continuously moving objects, such as vehicles and
mobile device users. Since moving object data is large and updates frequently,
database systems with spatio-temporal indexes that support massive updates
and predictive spatio-temporal queries are essential for modern location-based
services. In this dissertation, I present novel approaches that augment existing
tree-based and grid-based indexes for moving object databases with velocity in-
formation and prove that these approaches can significantly improve query per-
formance with comparable update performance in both in-disk and in-memory
scenarios. Predictive range query, which retrieves objects in a certain spatial re-
gion at some future time, is the most motivating type of spatio-temporal queries
in real world location-based services. Different from predicting future location
of a single moving object, performing predictive range queries over large moving
object databases incurs much heavier computational burden, which makes effi-
ciency as important as accuracy for real-time spatio-temporal enquiries. Motion
functions, which predict future object locations based on some analytic func-
tions, can efficiently process short-term predictive range queries but are not
suitable for long-term predictions since motions of the moving objects might
change over time. Other prediction functions such as trajectory patterns and
statistical graphic models are more accurate but less efficient. In this disser-
tation, I also present a pruning mechanism that improve the performance for
long-term predictive range queries based on (high-order) Markov chain mod-
els learned from historical trajectories. The key to our approach is to devise
compressed representations for sparse multi-dimensional matrices, and lever-
age efficient algorithms for matrix computations. We conduct experiments on
both simulated and real world datasets to demonstrate that our methods gain
significant improvements over other existing methods.
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Chapter 1

Introduction

Modern location-based services are collecting and processing spatio-temporal

information of huge amount of continuous moving objects. Database systems

supporting massive real time updates and efficient predictive queries [41, 49]

over the moving objects have been extensively studied and are becoming in-

creasingly important for the emerging location aware applications including

real-time ride sharing (e.g. Uber) and location based crowd sourcing (e.g.

Waze). One of the most extensively studied type of predictive queries is the

range query (e.g. [21, 48, 59]). A predictive range query retrieves the objects

locating within a spatial query region R at a future query prediction time t.

Another popular type of query in location-based services is the nearest neigh-

bors query (e.g. [3, 37,59]). A predictive k nearest neighbor (kNN) query with

a query point P retrieves the k objects that no other objects are nearer to P

at the query prediction time t.

The naive way of processing theses queries is to linearly scan all objects

and then check their validities regarding to the query predicates, which is slow

when the number of moving objects is huge. A typical strategy for efficiently
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answering a predictive query is first filtering out the objects that are likely

not in the query result via a pruning mechanism and then for each remaining

object, verifying its validity with the query predicate using a certain prediction

function [18,41,48,49]. We call objects surviving the pruning step the candidate

objects and the set of candidate objects the candidate set. The pruning step is

critical for efficiency purposes since the major computational burden resides in

the verification step. i.e. the more objects pruned, the less the query processing

time.

Spatial accessing or indexing mechanisms are usually applied on moving

object databases (MODs) to perform the pruning operation. Basically, these

indexing mechanisms can filtered out un-qualifying index nodes or grid cells for

predictive range searches based on objects’ motion functions [41,48,49]. Then

validities of the remaining objects regarding to the query predicate are com-

puted using their location and motion information. Existing indexes for MODs

can be categorized into tree-based indexes (e.g. [7, 8, 18, 19, 41, 47, 49, 57, 61])

and grid-based indexes (e.g. [36,44–46]) based on the underlying data structure

storing the moving object information. Since moving objects like vehicles in

the road networks have to frequently update their information in order to keep

the system up-to-date, the information update rates are usually very high in

real world location aware applications. Thus not only query performance but

also update overhead must be considered while indexing MODs.

I summarize a few challenges and limitations of existing indexing structures

for moving objects as below.

• First, tree-based indexes typically index object locations with tree struc-

tures like R-trees [14]. Consider that, real world moving objects like

vehicles have a variety of different velocities, partitioning the moving
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objects according to their velocities can reduce search space expansion of

the index tree, which measures the expanding area of all index nodes over

time, and thus reduce the query processing time. Although some exist-

ing works proposed velocity-based partitioning techniques on tree-based

indexes, they rely on some heuristics and did not provide an optimal

partitioning strategy.

• Second, although sophisticated maintenance mechanisms that optimize

disk I/Os make tree-based indexes considerably efficient in in-disk sce-

narios, however, they are inefficient in in-memory scenarios, especially

when the update rates are high. Simple (uniform) grids that require

minimal maintenance efforts, have been proved to be more efficient than

most tree-based structures for in-memory indexing. However, existing

grid-based indexes do not consider velocity information, which can sig-

nificantly affect the query performance. Moreover, the update operation

for existing grid-based indexes is also not optimized.

• Finally, existing approaches for processing predictive range queries use

motion function based pruning strategies with tree-based or grid-based

indexes, which is not effective for long-term predictive range queries, since

object velocities or motions can change over time and motion functions

cannot effectively capture the objects’ transition patterns far into the

future. Generally speaking, existing pruning strategies for long-term pre-

dictive range queries are based on transition models learned from objects’

historical trajectories. However, existing pruning approaches for long-

term predictive range queries suffer from limited effectiveness due to the

limited representation capacities of the underlying transition models.
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To address these challenges, we propose a few enhanced indexing structures

and pruning mechanisms for long-term predictive range queries.

• First, we proposed an optimal partitioning technique over speed values

and directions of the moving objects for tree-based indexes based on so-

phisticated analysis on the search space expansion. Our speed partition-

ing technique is generic and can be used to improve query performances

for various tree-based indexing structures.

• Second, we proposed the D-Grid, an in-memory uniform grid index in the

velocity-location dual space, which augments tradition (location) grid-

based indexes with a grid in the velocity domain. D-Grid significantly

outperforms existing uniform grid indexes in terms of query performance.

We also propose a lazy deletion and garbage cleaning mechanism that

reduces update costs for D-Grid as well as other uniform grid indexes.

• Finally, we proposed a (high-order) Markov chain based method that ef-

ficiently and effectively reduces the candidate set for long-term predictive

range queries, thus significantly reduces the query processing time. The

key to our approach is to devise compressed representations for sparse

multi-dimensional matrices, and leverage efficient algorithms for matrix

computations.

1.1 Velocity-Based Partitioning for Tree-Based

Indexes

In most real world applications, moving objects usually exhibit particular pat-

terns on velocities (including speed values and directions). Therefore, velocity-
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based partitioning can be applied to the indexes to improve performances of

the indexes. Zhang et.al. [58] proposed the first idea of velocity-based parti-

tioning for indexing moving objects. In their method, they first find k velocity

seeds which maximize the velocity minimum bounding rectangle (VMBR), then

partition the moving objects by assigning them to the nearest seed. In this

way, the moving objects are partitioned into k parts and the VMBR for each

part is minimized. Nguyen et.al. [33] proposed another velocity-based parti-

tioning technique that partitions the indexes based on directions of the moving

objects. This method partitions the moving objects based on their distance to

the so-called dominant velocity axes (DVAs) in the velocity domain.

Speed values of the moving objects are always characterized by both the

nature of the moving objects and the environment. For example, walking speeds

for human beings range from 0 mph to 4 mph; driving speeds for vehicles in

city road networks range from 0 mph to 100 mph; cruising speeds for airplanes

usually range from 500 mph to 600 mph. Moreover, in most city road networks,

speed values of the vehicles are also characterized by the categories of the

roads. For example, most vehicles drive between 50-80 mph on highways,

and 20-40 mph on street ways or even slower when the roads are busy. Such

distributions of speed values of the moving objects can have significant impacts

on query performances of the indexes. Query performances of typical tree-based

indexes for MODs can be estimated by the average number of node accesses [49].

However, high speed moving objects will significantly enlarge the spatial areas

of the index nodes containing them, which will likely incur unnecessary accesses

to the low speed ones within the same nodes while processing queries. Thus

partitioning the indexes by speed values of the moving objects can significantly

improve query performance. Moreover, partitioning will reduce the number of
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objects in each index partition, which also helps accelerate update operations.

Motivated by above observations, we proposed the novel speed partitioning

technique. The proposed method first computes the optimal points (ranges)

for speed partitioning. Then an optional second-level partitioning, based on di-

rections of the moving objects, is performed within each speed partition. Note

that the distributions of locations and speeds might change as time elapses that

leads to changes of the optimal speed partitioning. Our proposed system can

handle these changes through periodical partition update routines. Moreover,

the speed partitioning technique is generic and can be applied with various

tree-based indexes. The query performance of grid-based indexes depend on

different factors, as the grid cells might contain quite different number of ob-

jects. We explore velocity information with enhanced grid-based indexes in the

our next work.

1.2 Indexing with Uniform Grids

Earlier, most of the indexes resided in disks that have large storage capacity

and are economical. Tree based methods (e.g. [18,41,47,49]) are popular struc-

tures for in-disk indexes, due to sophisticated maintenance mechanisms that

optimize disk I/O. However, developments in computer hardware have made it

feasible and affordable to process data on millions of moving objects in main

memory. Moreover, in most moving object applications, such as traffic mon-

itoring, crowd tracking, and games, update rates are extremely high, which

requires the indexes to support both queries and updates efficiently. Therefore,

in-memory indexing for moving objects is rapidly gaining popularity in recent

research [44–46,52,53].
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Although many efforts have been devoted towards reducing the burden of

updates for tree based indexes [5,25,32,47,61] and extend them to in-memory

environments [16,22,38,44,52], recent works [44,45] imply that, with in-memory

settings, simple uniform grids are usually more efficient than tree based struc-

tures. The reason is that disk I/Os are eliminated for in-memory indexes,

consequently, the sophisticated designs that aim to reduce disk I/O costs be-

come cumbersome since they make update operations complicated and time

consuming. On the contrary, simple uniform grids require minimal mainte-

nance efforts, and thus are appropriate structures for in-memory indexes. The

u-Grid [44] is one of the first uniform grid indexing structure in main memory

for moving object databases. u-Grid achieves impressively high performance for

both update and query processing, benefiting from a lightweight but efficient

grid structure.

u-Grid uses only location information of the moving objects but disregards

the velocity information, which we believe can further improve query per-

formance. In this paper, we proposed a D-Grid (short for dual space grid)

structure, which augments u-Grid and indexes moving objects in the (location-

velocity) dual space. The dual space is a 2d-dimensional Euclidean space, with

the first d dimensions for velocity and the other d dimensions for location. Sim-

ilar to u-Grid, our proposed D-Grid is again based on a uniform grid structure.

We also propose a lazy deletion and garbage cleaning (LDGC) mechanism that

can be applied on generic grid based indexing structures and further improves

update performance for moving object databases. Although similar lazy update

mechanisms have been proposed for tree based indexes (e.g. [24,47,51,61]), to

the best of our knowledge, no existing work extends this technique to grid

based indexes. Through the LDGC mechanism, the object data to be deleted
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is marked as invalid but not immediately erased from the index. When the

number of invalid entries in the grid cell exceeds a predefined threshold, the

garbage cleaning operation is invoked to clear the corresponding invalid en-

tries. The LDGC mechanism significantly reduces the amortized computation

costs for non-local updates (see Chapter 4). Based on the D-Grid structure, we

propose algorithms for both predictive range queries and predictive k nearest

neighbor queries. D-Grid outperforms existing uniform grid indexes in terms

of query performance since it uses velocity information of the moving objects

to reduce the search space of range searches and consequently reduces the total

number of objects retrieved for answering the queries. In addition, D-Grid is

easy to parallelize similar to other uniform grid structures [45, 46]. We only

considered single threaded environments in this work and leave multi-threaded

versions of D-Grid to future work.

1.3 Processing Predictive Range Queries

The typical approach for answering a predictive range query is first filtering out

the objects that are likely not in the query result via a pruning mechanism and

then for each remaining object, verifying its validity with the query predicate

using a certain prediction function [18, 41, 48, 49]. We call objects surviving

the pruning step the candidate objects and the set of candidate objects the

candidate set. The pruning step is critical for efficiency purposes since the

major computational burden resides in the verification step. i.e. the more

objects pruned, the less the query processing time.

For short-term predictions (in the order of tens of seconds), motion func-

tions, including linear motion functions [41, 49] and recursive motion func-
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tions [48], are effective and efficient for answering predictive range queries via

various indexing techniques that usually augment R-trees [14] or grids. R-tree

based indexes use minimum bounding rectangles (MBRs) that evolve with the

underlying motion functions to group the moving object locations over time.

Objects in the MBRs that do not intersect with the range query window at

the prediction time are pruned. However, R-tree based indexing mechanisms

suffer from high update burden, despite many efforts (e.g. [24,47,51]) devoted

towards reducing update costs. A uniform grid, that partitions the predefined

space domain into grid cells with equal and fixed length, has recently been

proven efficient in terms of both queries and updates in main memory [44,45].

Grid based indexing methods use the query window enlargement technique [18]

for pruning and processing predictive range queries. Specifically, objects in the

cells that do not intersect with the enlarged query window are pruned. Af-

ter pruning, the underlying motion functions are used to estimate the object

locations at the prediction time for verification.

Unfortunately, motion functions cannot accurately perform long-term pre-

dictions (in the order of tens of minutes), since the motions of moving objects

can change over time. Trajectory pattern based methods (e.g. [20, 28–30, 40,

54–56]) and descriptive model based methods (e.g. [10, 13, 23, 26, 60]), which

learn from historical trajectories, can be used, instead, for long-term predic-

tions. However, trajectory pattern and descriptive model based predictions are

usually much more expensive, thus effective pruning is even more critical in

these scenarios. Motion function based pruning strategies [18, 41] as we dis-

cussed earlier are not effective for long-term predictive range queries since they

do not capture the motion changes over time. Other pruning methods, such

as the travel time grid that records the average travel time between grid cells
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in the space domain [15], rely on simple predicates and have limited pruning

capacities.

We proposed a (high-order) Markov chain based method for efficiently and

effectively pruning the search space for long-term predictive range queries.

Specifically, we partition the predefined space domain with a uniform grid,

where each grid cell is called a state. A path of a moving object is defined as

a sequence of states on the grid. We assume that the paths follow an order-k

Markov chain model, where the transition matrix, describing transition prob-

abilities between states, is off-line learned from historical trajectories. Given

a predictive range query, through certain matrix computations, we prune the

paths that are not promising to transit into the query window at the predic-

tion time and then use any state-of-the-art prediction method for verification.

Computation involving the Markov transition matrix can be very expensive in

terms of both CPU and memory. Based on the observation that, in real world

scenarios, the Markov transition matrices are extremely sparse, especially those

for high-order Markov chains, we proposed a novel approach to compactly store

the sparse transition matrices in main memory, novel algorithms for performing

the arithmetic operations involved in our pruning mechanism.

1.4 Contribution

The contributions of this dissertation are summarized as follows.

• The optimal speed partitioning technique.

– We proposed a novel method for estimating the search space expan-

sion which can be used as a generic cost metric to estimate query

performance of tree-based indexes for MODs.
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– We proposed the novel optimal speed partitioning technique which

minimizes search space expansion of the indexes using dynamic pro-

gramming.

• The dual space grid indexing structure.

– We proposed D-Grid, the first dual space uniform grid index in main

memory for moving object databases, which provides performance

improvements in query processing by almost an order of magnitude.

– We proposed the lazy deletion and garbage cleaning mechanism that

can be applied to both D-Grid and existing uniform grid indexes for

accelerated update processing.

• Markov chain based pruning approach for long-term predictive range

query.

– We proposed an effective and efficient pruning algorithm, based on

(high-order) Markov chain models, to reduce the search space for

predictive range queries.

– We proposed a novel approach to compactly store sparse multi-

dimensional matrices and efficiently support the arithmetic oper-

ations involved in our pruning mechanism.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews

the related work on indexing moving objects and processing predictive spatio-

temporal queries. Chapter 3 discuss velocity-based partitioning techniques
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on tree-based indexes of MODs for improving query performance. Chapter

4 discuss a uniform dual-space grid structure that indexes moving objects in

main memory and provide both efficient update and query operations. Chapter

5 discuss a (high-order) Markov chain based pruning mechanism for processing

long-term predictive range queries. Chapter 6 concludes this dissertation and

gives future works.
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Chapter 2

Related Work

In this chapter, I review related works on indexing moving objects and pro-

cessing predictive range queries.

2.1 Tree-Based Indexes for MODs

Saltenis et al. [41] proposed the TPR-tree (short for Time-Parameterized R-

tree) that augments the R‹-tree [2] (a variant of the R-tree [14]), with velocities

to index moving objects with motion functions. Specifically, an object in the

TPR-tree is indexed by its time-parametrized position with respect to its ve-

locity vector. A node in the TPR-tree is represented by a minimum bounding

rectangle (MBR) and the velocity on each side of the MBR which bounds all

moving objects contained in the corresponding MBR at any time in the fu-

ture. The TPR-tree uses time-parameterized metrics when choosing the target

nodes for insertion and deletion. The time-parameterized metric is calculated

as
ştl`H

tl
Aptqdt, where Aptq is the metric used in the original R-trees. H is

the horizon (the lifetime of the node) and tl is the time of an insertion or

the index creation time. The TPR-tree uses a step-wise greedy strategy to
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choose the MBR where a new object is inserted. Since the objects are moving

as time passes, the overlaps between MBRs become larger, which eventually

makes the step-wise greedy strategy ineffective. Tao et al. proposed the TPR‹-

tree [49] that uses the same data structure as the TPR-tree with optimized

insertion and deletion operations, which significantly reduce the overlaps be-

tween MBRs. Unfortunately, TPR-trees and TPR‹-trees are inefficient for

updates due to their sophisticated node splitting and data reinsertion opera-

tions. Many efforts have been devoted toward reducing the burden of updates

in R-tree based indexes. Kwon et al. proposed the LUR-tree [24] that updates

the R-tree structure only when an object leaves its MBR. Xiong et al. proposed

the Rum-tree [47,51] that performs lazy deletions on the R-tree through the so

called update memo, which keeps multiple versions of the same object. Zhu et

al. recently proposed the Rum`-tree [61] that is an extension of the Rum-tree

and further improves the update performance with a hash table.

Besides R-trees, B`-trees and quadtrees [11] can also be used to index mov-

ing objects. The Bx-tree, proposed by Jensen et al. [18], is the first indexing

approach based on B`-tree. The Bx-tree uses space-filling curves, such as Z-

curves and Hilbert curves, to map the d-dimensional locations into scalars that

can be indexed by B`-trees. The time axis is partitioned into intervals of du-

ration ∆tmu, which is the maximum duration in-between two updates of any

object location. Each such interval is further partitioned into n equal-length

phases and each phase is associated with a label timestamp. Instead of indexing

the object locations at their update timestamps, the Bx-tree indexes the loca-

tions at the nearest future label timestamp. After each ∆tmu{n timestamps,

one phase expires and another is generated. This rotation mechanism is essen-

tial to preserve the location proximity of the objects. The Bdual-tree [57] and
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STRIPES [36] index the moving objects in 2d-dimensional dual space, which

combines the d dimensional velocity space and the d-dimensional location space.

The Bdual-tree uses a 2d-dimensional Hilbert curve to map the underlying dual

space coordinates to scalars and then indexes the scalars with B`-trees, while

STRIPES indexes the dual space using a regular hierarchical grid decompo-

sition indexing structure, which is essentially an in-disk PR quadtree (P for

point and R for region) [42].

Velocity-based partitioning techniques, which utilize the velocity informa-

tion from a global perspective, are used to further improve the query perfor-

mance of MOD indexes. Intuitively, velocity-based partitioning can improve

query performance because search space expansion (defined as the enlarge-

ment of the index nodes) [33] of the partitioned indexes considerably decreases

in some scenarios. Zhang et.al. [58] firstly defined the VMBRs which represent

the minimal rectangles in the velocity domain that bound the velocity vectors

of all moving objects and proposed the partitioning method that minimizes

the VMBRs within each partition. At the first step of this method, given the

number of partitions k, the velocity vectors of exactly k moving objects that

form largest VMBR are selected as seeds for the k partitions. Then each object

is assigned to the partition with minimum VMBR increase. This method has

some limitations. Firstly, it is difficult to determine the number of partitions k.

Secondly, the partitioning might be far from optimum since this method relies

on very simple heuristics and does not perform any analysis on search space ex-

pansion. Thi et al. [33] proposed the partitioning technique based on DVAs in

the velocity domain. They applied principal component analysis and K-means

clustering on the velocities of the moving objects to find k-1 DVAs. Then the

velocity domain is partitioned into k partitions according to the DVAs, one



16

partition for each DVA plus one outlier partition. Each moving object is as-

signed to the nearest DVA partition if the distance between its velocity vector

and the DVA is smaller than a threshold, otherwise it will be assigned to the

outlier partition. Through this partitioning method, the velocity domain is

reduced to nearly 1-dimensional parts, which dramatically reduces the search

space expansion. However, this method still requires the number of partitions

k as a parameter. Moreover, the performance of this method will significantly

reduce if the velocity domain has no effective DVAs.

2.2 Grid-Based Indexes for MODs

In modern computing machines, large amounts of moving object data can be

stored in main memory, making in-memory indexes for moving object databases

effective. Although (tree based) in-disk indexes can be directly transfered to

main memory [8,44,52], recent research (e.g. [38,44,45]) indicates that a simple,

uniform grid might be the best choice for managing moving objects in main

memory. Sidlauskas et. al. proposed the u-Grid [44] coupling a uniform grid

as the primary index and a secondary index on object IDs. Since no grid

refinement or re-balancing needs to be performed during updates, uniform grids

require less maintenance efforts than adaptive grids, such as the grid file [34]

and hierarchical space partitioning methods, such as quadtrees [11]. Figure

2.1 illustrates the structure of u-Grid. The uniform grid covers a predefined

location space, stored as a 2-dimensional array, where each element of the array

corresponds to a grid cell with fixed side length. Each grid cell links to a list of

buckets that store the object information, including object ID and the spatial

coordinates. u-Grid uses buckets instead of a simple linked list since the data is
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Figure 2.1: Structure of u-Grid

loaded in blocks (cache lines) to the CPU cache and large buckets increase data

access locality thus provide more efficient data fetching [9]. Each bucket also

has a meta-data field containing a pointer to the next bucket and the current

number of entries (objects) in the bucket. To avoid expensive index searches

for updates, u-Grid employs a secondary index that uses object ID (oid) as

the index key and links to the corresponding data entry in the primary index

(u-Grid). Thus the secondary index provides direct access to the object data in

the primary index. As shown in Figure 2.1, in the secondary index, ptr1 points

to the bucket where the object data is stored, ptr2 points to the corresponding

grid cell, and the idx field stores the in-bucket position of the object data.

Another advantage of uniform grid indexes concerns the ease of parallelism.

Sidlauskas et. al. proposed the TwinGrid [43] and the PGrid [45] which aug-

ment u-Grid and provide highly parallel update and query algorithms. PGrid

solves problems of stale query results and wasted CPU cycles that exist in

TwinGrid by careful use of light-weight locking techniques. Ray et al. recently

proposed PASTIS [38] which decomposes the spatial domain into grid cells and,
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for each grid cell, maintains a partial temporal index for moving objects that

visited the cell. Updates for different grid cells are concurrently processed in

separate threads.

2.3 Processing Predictive Range Queries

R-tree based indexes use minimum bounding rectangles (MBRs) that evolve

with the underlying motion functions to group the moving object locations

over time and also MBRs to prune the search space for predictive range queries.

Specifically, a node is pruned if its MBR does not intersect with the range query

window at the prediction time. On the other hand, uniform grid based indexing

mechanisms apply the query window enlargement technique, proposed in [18],

instead of MBR enlargement to prune the search space for predictive range

queries. Grid cells that do not intersect with the enlarged query window are

pruned for the query. The query windows are enlarged with the enlargement

speeds on each side. Generating the enlargement speeds is accomplished in two

steps. Firstly, preliminary enlargement speeds are set as the maximum speeds

of all objects. Then, final enlargement speeds are computed with the aid of the

velocity histogram, which is a 2-dimensional grid that captures the maximum

and minimum projections of velocities onto each axis of the objects in each cell.

Unfortunately, enlarging MBRs or query windows cannot monitor posi-

tions of the objects far into the future, as their motions might change over

time. Hendawi et. al proposed the long-term predictive query processor named

Panda [15]. The pruning strategy employed by Panda is based on the travel

time grid (TTG), which is a 2-dimensional array where each cell TTGri, js

stores average travel time between two grid cells Ci and Cj that are learned
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from historical trajectories. According to TTG, objects in the cells that are un-

reachable to the query window within the prediction time are pruned. However,

the average travel time is far too simple a measure to capture the transition

patterns between these cells. For example, in real world applications, where

travel time are affected by traffic conditions, the average travel times might

be useless for real-time travel time estimation. Emrich et.al [10] proposed a

framework modeling and querying probabilistic spatio-temporal data. Specif-

ically, this method models possible object trajectories by time-homogeneous

order-1 Markov chains and computes, for each state s, the probability that s

transits into the query window within a specified time range. However, we will

discuss later in Chapter 5 that low order Markov chains are not suitable for

trajectory prediction but are appropriate for pruning, i.e. objects starting from

s can be pruned if the probability that s transits into the query window at the

prediction time is below a predefined threshold.
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Chapter 3

The Speed Partitioning

Technique

In this chapter, I present a novel speed partitioning technique based on a for-

mal analysis over speed values of the moving objects. We first formulate the

optimal speed partitioning problem based on search space expansion analysis

and then compute the optimal solution using dynamic programming. We then

build the partitioned indexing system where queries are duplicated and pro-

cessed in each index partition. Extensive experiments demonstrate that our

method dramatically improves the performance of indexes for moving objects

and outperforms other state-of-the-art velocity-based partitioning approaches.

3.1 The Optimization Speed Partitioning Prob-

lem

In this section, we introduce the notion of search space expansion which can

be used as a generic cost metric to estimate query performance of tree-based
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indexes for MODs. We then present the method for computing search space

expansion and formulate the optimal speed partitioning problem.

3.1.1 Search space expansion

Figure 3.1(a) shows a typical example of how the geometry area of an index

node expands. In this figure, the moving objects are originally located in a

square area (the inner one) and move in arbitrary directions. At some future

time, the objects will spread in a larger square area (the outer one). We model

the expansion of the node as a trapezoid prism where the top base is the

original area and the bottom base is the future area of the node. Figure 3.1(b)

illustrates such a trapezoid prism of the node in Figure 3.1(a). The volume of

the trapezoid prism corresponding to an index node is called the search space

expansion of this node. The sum of search space expansions of all index nodes

is called the search space expansion of the index. A formal definition of search

space expansion is given in Definition 3.1.

Definition 3.1. Search space expansion. Given any node in an MOD index I,

its area at time t is Sptq. The search space expansion of the node from time 0 to

any future time th is νpthq “
şth
0
Sptqdt. The search space expansion of the index

is the sum of the search space expansions of all nodes: V pthq “
ř

@nodePI νpthq

If queries are randomly generated in the predefined space domain, nodes

with larger search space expansions have higher probabilities to be accessed

to answer the queries [49]. Consequently, indexes with smaller search space

expansion enjoy better query performance. Thus we wish to find a partitioning

strategy that minimizes the search space expansion of the indexes, i.e. the

volumes of all trapezoidal prisms, in order to minimize query costs.
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(a) Index node (b) Search space expansion

Figure 3.1: Search space expansion of an index node

We propose the speed partitioning technique which partitions the indexes

based on speed values of the moving objects. Since the moving objects are

separated based on their speed values, thus fast growing nodes for high speed

objects will not affect those for low speed objects. Therefore the search space

expansion of an index will be dramatically reduced if we conduct appropriate

partitioning on speed values. In the next subsection, we will discuss how to

achieve the optimal index partitioning based on speed values. Note that in our

analysis, we only consider the search space expansions of leaf nodes, because in

most scenarios the number of leaf nodes significantly exceeds that of internal

nodes.

3.1.2 The optimal speed partitioning

Our speed partitioning technique is based on solving the optimal speed parti-

tioning problem, thus is different from and more generic than all state-of-the-art

velocity-based partitioning techniques [33,58] that rely on some kinds of heuris-

tics. We now formalize the optimal speed partitioning problem that minimizes

search space expansion.

Denote O “ to1, o2, ¨ ¨ ¨ , oNu as the set of moving objects and denote the

speed of object ol as vol . Let Ω “ tv1, v2, . . . , vqu represent the speed domain,
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where v1 ă v2 ă ¨ ¨ ¨ ă vq. Thus for all ol P O, we have vol P Ω. We note that in

most applications the speed domain can be easily discretized into finite number

of different speed values. Let v0 “ v1 ´ ε, where ε is a positive number and

εÑ 0. v0 is a dummy speed used for simplifying notations. Let Ω` “ Ω
Ť

tv0u.

Now let ∆ “ tδ0, δ1, ¨ ¨ ¨ , δku, 1 ď δi ď q, where δ0 “ 0 and δk “ q. Therefore

∆ partitions the speed domain into k (non-overlapping) parts, denoted as Ωi “

pvδi´1
, vδis, 1 ď i ď k. We say ∆ is a partitioning on Ω. Meanwhile, O is

partitioned accordingly into k parts: Pip1 ď i ď kq, where Pi “ tol : vol P

pvδi´1
, vδisu. We denote Ii as the corresponding indexing tree, such as the Bx-

tree or the TPR‹-tree, for Pi. Note that k is automatically computed rather

than an input of our method.

Our goal is to find the optimal partitioning, denoted as ∆‹, that minimizes

the overall search space expansion of all index partitions. We can achieve this

goal by solving the following minimization problem:

∆‹
“ arg min

∆
tvδ0 ă vδ1 ă ¨ ¨ ¨ ă vδk : V pthqu (3.1)

where V pthq “
ř

0ăiďk Vipthq represents the overall search space expansion of

all index partitions and Vipthq the search space expansion of partition Ii. th is

the maximum predict time for the predictive queries [41, 49]. Without loss of

generality, we present next how to compute Vipthq.

According to Definition 3.1, in order to compute Vipthq, we first need to

compute the search space expansion of every single index node in Ii which

requires 1) the initial node area, and 2) the expanding speed of each node. We

present the approach to compute Vipthq step by step in the following paragraphs.
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Generate uniform regions In most real world applications, the moving

objects may not be uniformly distributed. Thus before calculating the search

space expansion, we first divide the space domain into subregions such that the

moving objects in Pi are (close to) uniformly distributed within each subregion.

Uniformity will not only significantly reduce the complexity of calculation but

also help obtain more accurate estimations. We will introduce a quad tree

based method to find the uniform subregions in Section 3.2. We denote the set

of uniform subregions of Pi as Ri “ tRi1, Ri2, . . . , Rimiu.

Compute initial node area Now we compute the initial areas of the nodes

within subregion Rij, where 0 ă j ď mi. Without loss of generality, we assume

Rij to be a square area with side length of Dij. We also consider the index

nodes as square shaped with expected side length of dij and let c represent the

expected number of objects in each node. c is determined by the storage size

of each node which is a parameter in our method. Since moving objects are

uniformly distributed in Rij, we have
d2ij
c
9
D2
ij

Nij
where Nij represents the number

of objects in Rij. Thus dij can be estimated as dij “ Dij

b

c
Nij

.

Compute expanding speed Next we introduce the method for estimating

expanding speeds of the index nodes in Rij. Since we make no assumptions on

the patterns of the moving objects’ directions, we consider that the objects in

each node travel at arbitrary directions. Thus every single node expands with

equal speed in all directions while the expanding speed is the maximum speed

value of the moving objects in the corresponding node.

Let Hiju represent the number of moving objects in Rij whose speed values
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fall in the range pvδi´1
, vus, where vu P Ω and δi´1 ă u ď δi, formally

Hiju “ |ol P Rij : vδi´1 ă vol ď vu| (3.2)

Since the speed values of the moving objects are independent given a certain

speed distribution, expanding speed of any node in Rij is vu with the probability

ppi, j, uq “

`

Hiju´Hijδi´1
c

˘

´
`

Hijpu´1q´Hijδi´1
c

˘

`

Nij
c

˘ (3.3)

where
`

a
b

˘

is a combination number.

Compute search space expansion For each speed partition, we can apply

a second-level (direction-based) partitioning into 4 quadrants as illustrated in

Figure 3.2 if it further improves search space expansion. Hence we compute

the search space expansion of Rij both with and without the second-level par-

titioning and select whichever achieves smaller value. When no second-level

partitioning is performed, the search space expansion of a single node in Rij

can be calculated by

ν1
pthq “ νpth, vuq “

ż th

0

pdij ` 2vutq
2 dt (3.4)

When the second-level partitioning is further applied, we compute the search

space expansion for each quadrant. Expected side length of the nodes in the

quadrant partitions is 2d and the search space expansion is calculated by

ν2
pthq “ νpth, vuq “

ż th

0

p2dij ` vutq
2 dt (3.5)
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Therefore, the expected search space expansion of all nodes in Rij can be

calculated by

Vijpthq “

„

Nij

c



ÿ

vuPΩ,δi´1ăuďδi

νpthqppi, j, uq (3.6)

where
”

Nij
c

ı

computes the total number of nodes in Rij and νpthq represents

the minimum of ν1pthq and ν2pthq. Finally, the overall search space expansion

V pthq is calculated by

V pthq “
ÿ

1ďjďk

ÿ

0ăjďmi

Vijpthq (3.7)

3.2 The Partitioned Indexing System

Based on the above analysis on search space expansion, we propose the speed

partitioning technique (SP) for indexing moving objects. Figure 3.3 illustrates

the system architecture of SP. SP uses a centralized indexing system consisting

of three parts: the speed analyzer, the index controller, and the partitioned

indexes. The speed analyzer receives data from the moving objects and com-

putes the optimal speed partitioning. The index controller then creates the

corresponding partitioned indexes. Once receiving queries from users, the in-
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dex controller duplicates the queries and push them to the index partitions.

After all index partitions finish processing the queries, the index controller col-

lects and integrates the query results and sends them back to users. We will

discuss more details of SP in the remainder of this section.

3.2.1 The optimal speed partitioning

In this subsection, we discuss how to find the optimal speed partitioning

through dynamic programming. Let Λ‹r, 0 ă r ď q, be a sequence pλ0, λ1, ¨ ¨ ¨ , λrq

where vλi P Ω‹ and 0 “ λ0 ă λ1 ď ¨ ¨ ¨ ď λr´1 ď λr “ r. The set of distinct

values in Λ‹r form the optimal partitioning of the sub speed domain of pv0, vrs,

denoted as ∆‹
r. Thus our goal is to find ∆‹

q.

In order to compute ∆‹
q using dynamic programming, we need to maintain

two arrays V‹ and T‹, where V ‹r and T ‹r (the rth values of V‹ and T‹) store the

search space expansion of ∆‹
r and the rth value (λ‹r´1) in Λ‹r, respectively. V ‹r

and T ‹r can be computed by Equation (3.8) and (3.9), respectively.

V ‹r “

$

’

&

’

%

0 r “ 0

min
0ďsăr

tV ‹s ` Vpvs,vrsu 0 ă r ď q
(3.8)

T ‹r “ arg min
0ďsăr

tV ‹s ` Vpvs,vrsu, 0 ă r ď q (3.9)

where Vpvs,vrs is the search space expansion of partition Ppvs,vrs and Ppvs,vrs “

tol : vol P pvs, vrsu. Note that we define V ‹0 “ 0 in order to simplify denotations.

Next we discuss how to compute Vpvs,vrs, for all pvs, vrs Ă Ω.

In order to compute Vpvs,vrs using Equation (3.7), we first need to generate

the uniform subregions mentioned in Section 3.1. We propose a quad tree

[11] based method to generate the uniform subregions for every Ppvs,vrs. We
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Algorithm 3.1: Generate uniform subregions

input : Q: a set of quad tree nodes
output: R: a set of uniform subregions
/* check the uniformity of the current nodes */

1 if @Qj P Q, Qj is uniform then
2 add the region of Q to R;
3 else

/* explore the child nodes */

4 for iÐ 0 to 3 do
5 foreach Qj P Q do
6 CQj Ð Qj.childris;

7 generate uniform subregions on CQ;

first divide the objects into q layers, where moving objects within the same

layer have same speed values (represented by the average speed value in each

layer). Each layer is divided into square subregions using a quad tree such

that the objects in each subregion are uniformly distributed. We use χ2-test

(significance level 5%) to test the uniformity of each subregion. We also fix

5 as the maximum depth of the quad trees. In order to generate the uniform

subregions for Ppvs,vrs, we need to combine the corresponding layers, layer s` 1

through r. We choose the most fine grained division when the divisions of

different layers conflict, thus objects in the subregions of the combined layer

always contain uniformly distributed objects. Figure 3.4(left) shows an example

of such layers, where there are 3 different speed values v1, v2, v3 and the objects

in the 3 layers are represented as squares, diamonds, and dots, respectively.

Figure 3.4(right) shows the result of the merge operation.

Algorithm 3.1 shows the pseudo code for the merge operation. This is a

recursive algorithm which takes a set of r ´ s quad tree nodes (one node for

each layer) as input. If objects within all the current nodes are uniformly

distributed, we add the (square) spatial region represented by the quad tree
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Merge

Figure 3.4: An example of merge

nodes into the result set (lines 1-2). Otherwise, we recursively explore the 4

child nodes (each 2-dimensional quad tree node has 4 child nodes) at the next

level of the quad trees (lines 3-7). Note that the input nodes will always locate

at the same positions in the corresponding quad trees for all recursive calls,

since we set the root nodes of the quad trees as input of the initial call.

In order to find the optimal partitioning ∆‹
q, we need to compute V ‹r for

each r (0 ă r ď q). As shown in Equations (3.8) and (3.9), we iteratively find

the best s which leads to the optimal partitioning on pv0, vrs and stores it as

T ‹r . During the computation for V ‹r , we can use previously computed optimal

results on pv0, vss, i.e. the values of V ‹s for each s (0 ď s ă r). Finally, we can

obtain the optimal partitioning on pv0, vqs by tracking backwards the values in

T‹, i.e. each λi P Λ‹q (0 ď i ď q) can be computed by

λi “

$

’

’

’

’

&

’

’

’

’

%

0 i “ 0

T ‹λi`1
0 ă i ă q

q i “ q

(3.10)

Algorithm 3.2 shows the pseudo code of our dynamic programming based

algorithm to solve the optimal speed partitioning problem. Algorithm 3.2 first

creates the quad trees for uniform subregion generation (line 1). Then the

search space expansions of partition Ppvs,vrs, for all pvs, vrs, are calculated (lines
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Algorithm 3.2: Find the optimal speed partitioning

1 Create quad trees;
/* Pre-compute search space expansion for partition Ppvs,vrs

using Equation (3.7) */

2 foreach pvs, vrs P Ω do
3 Vpvs,vrs Ð the search space expansion of Ppvs,vrs;

/* Iteratively compute V ‹r and T ‹r using Equation (3.8) and

(3.9) */

4 V ‹0 Ð 0;
5 for r Ð 1 to q do
6 minÐ inf ;
7 for sÐ 0 to r ´ 1 do
8 if V ‹s ` Vpvs,vrs ă min then
9 minÐ V ‹s ` Vpvs,vrs;

10 T ‹r Ð s;

11 V ‹r Ð min;

/* Compute the final results using Equation (3.10) */

12 λq Ð q;
13 for iÐ q ´ 1 to 1 do
14 λi Ð T ‹λi`1

;

15 λ0 Ð 0;

2-3). Then dynamic programming is used to compute the values of V ‹r and

T ‹r based on Equations (3.8) and (3.9) (lines 4-11). Finally, λ0 through λq are

computed from T‹ using Equation (3.10) (lines 12-15). Note that we compute

the search space expansion (line 3) both with and without the second-level

partitioning as described in Section 3.1 and store the smaller value as Vpvs,vrs.

The corresponding speed partition in the final result is further partitioned

into four sub-partitions (one for each quadrant in the velocity domain) if it

achieves smaller search space expansion. Figure 3.2 shows an example of the

output of our algorithm. Actually, high speed partitions are more likely to

be further partitioned into quadrants since direction has more impact on high

speed partitions. The time complexity of Algorithm 3.2 is analyzed as follows.
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Complexity analysis

Execution time of Algorithm 3.2 consists of three parts: 1) creating the quad

trees takes OpNq time; 2) pre-computing the search space expansions for each

sub speed domain takes Opq2q time; and 3) the dynamic programming part

also takes Opq2q time. Thus the total time complexity of Algorithm 3.2 is

OpN ` q2q. Note that the analysis relies on the condition that maximum depth

of the quad trees is fixed, as mentioned earlier in this section.

3.2.2 Index update

Index update of our system consists of two parts: object update and partition

update. Object update corresponds to status (e.g. location and velocity) up-

dates of the moving objects, which is essential to keep the objects’ locations

up-to-date. When a moving object updates its status, the index controller will

determine whether it should be inserted into a different partition based on its

current velocity. Then the object will be either deleted from its previous parti-

tion and inserted into the new one or simply updated in the previous partition.

Note that each index partition contains only a portion of the moving objects,

thus object update in the partitioned indexes takes less CPU time than that

in the original index without partitioning.

Partition update corresponds to changes of the optimal speed partitioning.

Since the objects are continuously moving, both their location and speed dis-

tributions might change over time. Thus we need to re-compute the uniform

subregions as well as the optimal speed partitioning when necessary. We simply

conduct partition updates periodically with cycle time customized according to

the dataset. For example, in city road networks, location and speed distribu-



32

tions of the vehicles might be different between rush hours and regular hours,

for which we can use hourly partition update routines.

3.2.3 Query processing

In this work, we consider predictive time-slice queries [41, 49] which retrieve

tentative future locations of the moving objects. We evaluate both predictive

range queries and predictive k nearest neighbor (kNN) queries in the experi-

ments (Section 3.3). Specifically, a predictive range query is associated with

two coordinates (bottom-left point and upper-right point of the range query

window), while a predictive kNN query is associated with a coordinate (center

of the kNN query) and kNN-k. Both of the two kinds of queries are associ-

ated with a query predict (future) time, which indicates that the queries are

performed on the objects’ predicted locations at that time.

Query processing for SP is straightforward. The original queries are du-

plicated (with modifications if necessary) and processed within each partition

either concurrently or sequentially. In order to compare the performance be-

tween partitioned indexes and their unpartitioned counterparts, in this chapter,

we conduct the duplicated queries sequentially. Within each index partition,

queries are performed using the algorithm associated with the basic indexing

structure (e.g. the Bx-tree or the TPR‹-tree).

3.3 Experimental Study

In this section, we conduct extensive experiments to evaluate the performance

of our speed partitioning technique with both main memory indexes and disk

indexes. Both simulated traffic data and real world GPS tracking data are used
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Table 3.1: Experimental settings

Parameter Setting
Space domain(mˆm) 10,000ˆ10,000
Number of objects 100K, 200K, . . . , 500K
Query window size (mˆm) 200ˆ200, 400ˆ400, . . . , 1000ˆ1000
kNN - k 10, 20, 30, . . . , 50
Query predict time (ts) 0, 30, 60, . . . ,120
Node size (byte) 1K, 2K, 4K,¨ ¨ ¨ , 16K
datasets SEO, LD, BOS, SZ

in the experiments. We evaluate both update throughput (average number of

updates performed in a second) and query response time. Query response time

consists of I/O latency and CPU time for disk indexes while only CPU time

for main memory indexes.

We use the Bx-tree and the TPR‹-tree as the basic indexing structures. We

compare our approach of speed partitioning (SP-Bx and SP-TPR‹) with the

state-of-the-art approaches of DVA-based partitioning [33] (dVP-Bx and dVP-

TPR‹) and VMBR-based partitioning [58] (mVP-Bx and mVP-TPR‹) as well

as the baseline approaches (Bx and TPR‹). We set the number of partitions

k in DVA and VMBR-based partitioning techniques as 3 and 5, respectively,

which is consistent with the experimental settings in the original papers. All

algorithms are implemented with C++ language and all experiments are per-

formed with 2.93GHz Intel Xeon CPU and 1TB RAM in CentOS Linux. The

experimental settings are displayed in Table 3.1 where the default settings are

boldfaced.

3.3.1 Dataset description

In this subsection, we introduce datasets used in the experiments. Figure 3.5

shows city road networks corresponding to the datasets in the experiments.
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(a) Part of Seoul road network (b) Part of London road network

(c) Part of Boston road network (d) Part of Shenzhen road network

Figure 3.5: City road networks for traffic simulation

Simulated traffic data The simulation of city traffic consists of two parts:

road network generation and traffic generation. City road networks are gener-

ated from the XML map data downloaded from http://www.openstreetmap.org.

Our traffic generator is based on the digital representation of real road networks

and the network-based moving object generator of Brinkhoff [4]. A road is a

polyline consisting of a sequence of connected line segments. The initial loca-

tion of a moving object is randomly selected on the road segments. The object

then moves along this segment in either direction until reaching crossroads,

where it has a 25% chance to stop for several seconds due to the traffic and

then continues moving along another randomly selected connected segment.

We assume speed values of the moving vehicles in each road segment follow

a random variable X and X „ N pµ, σ2q, where N is the normal distribution, µ

and σ are set according to categories of the road segments. We divide the road

segments into three categories: C1) freeways/motorways with fastest traffic,

C2) primary roads with secondary fastest traffic, and C3) street ways or resi-
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Figure 3.6: Overhead for partition update

dential roads with slowest traffic. We randomly select the normal distribution

parameter µ from a range in terms of m/s for each category: C1) [25, 40], C2)

[5, 25], C3) [0, 15]. We set σ=10 m/s for all road segments.

GPS tracking data The SZ dataset contains 100K trajectories of taxis

within the urban area of Shenzhen, China. Each trajectory contains a se-

quence of GPS tracking data with timestamps in a single day. The trajectories

are not sampled with equal time intervals and the smallest sampling interval

is 15 seconds. The dataset can be accessed at http://mathcs.

emory.edu/aims/spindex/taxi.dat.zip.

Note that we generate 2 minutes traffic data for the simulated datasets,

where the distributions of locations and speeds do not change. On the other

hand, the SZ dataset has a much longer time span, thus is used to evaluated

the temporal factor that leads to distribution changes on locations and speeds.

3.3.2 Experimental results

Firstly, we show the execution time of Algorithm 3.2, which is the main over-

head for partition updates, with different number of objects (N) and number

of speed values (q). Figure 3.6 shows the results, which are consistent with the
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Figure 3.7: Disk indexes v.s. RAM indexes
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Figure 3.8: Varying datasets

complexity analysis for Algorithm 3.2 in Section 3.2. We find that the execu-

tion time is less then 2 second in all settings. Thus the overhead for partition

update is reasonably small. We set q equal 50 for the remaining experiments.

Next we compare the performances between disk indexes and main memory

indexes. Figure 3.7(a) through 3.7(c) show results on throughput, range query

response time and kNN query response time, respectively. We can see that

SP outperforms other methods for both disk and main memory indexes with

both Bx-trees and TPR‹-trees. Moreover, we found that main memory indexes

enjoy much better performance than disk indexes on both throughput and

query response time. In the remaining experiments, we report only the results

of main memory indexes since we have limited space.

Next we compare the experimental results across three simulated traffic
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Figure 3.9: Varying number of objects
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Figure 3.10: Varying node size

datasets (SEO, LD, and BOS), which are summarized in Figure 3.8. We can

see that SP enjoys better performance than other velocity-based partitioning

methods as well as the non-partitioning counterparts on a variety of datasets

(road networks from Asian, European, and American cities). This is because, as

shown in Figure 3.5, road networks for large space domain (10,000ˆ10,000 m2)

usually implies no explicit velocity seeds or DVAs which are used in VMBR-

based partitioning and DVA-based partitioning techniques, respectively. More-
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Figure 3.11: Varying query parameters

over, Boston road network has more high speed roads than other city road

networks thus nodes in the corresponding indexes expand faster, which makes

the BOS dataset has higher query costs than other datasets.

In the next experiment, we vary the number of moving objects from 100K

to 500K. Figure 3.9 shows the results about throughput, range query and kNN

query. We can see that when the number of objects increases, throughput de-

creases, query response time increases for both range queries and kNN queries.

Moreover, Bx-trees enjoy higher throughput due to the simple update process of

B`-tree but lower query utility due to the “false hits” caused by the space-filling

curves [18,57]. On the contrary, TPR‹-trees have more complicated update op-
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erations which makes query more efficient at a sacrifice of throughput. Finally,

SP indexes consistently outperform other indexes in all settings.

Next we vary the node size from 1KB to 16KB. Figure 3.10(a) through

3.10(c) show the experimental results. Generally speaking, performance de-

creases when node size increases, since index nodes with larger sizes require

more maintaining and retrieving efforts. However, query performance of Bx-

trees is not significantly affected by node size. This is because nodes of Bx-trees

store the values computed from space-filling curves, which makes the spatial

areas of Bx-tree nodes insensitive to their storage sizes. Note that the exper-

imental results are different from both those for disk indexes, where disk I/O

latency dominates the performance [6], and those for main memory indexes

with secondary index on object IDs, which enables constant time locating the

objects for updates [44]. Finally, SP significantly outperforms other methods

in this experiment.

Next we study the impact of query parameters including query predict time,

range query window size and kNN-k. The experimental results are summarized

in Figure 3.11. Figure 3.11(a) and 3.11(b) show the results about range queries

while Figure 3.11(c) and 3.11(d) show those about kNN queries. We can con-

clude from the figures that, generally speaking, TPR‹-trees perform better

than Bx-trees and SP outperforms other methods. Moreover, SP gains more

advantages when query predict time, query window size, and kNN-k increase.

Finally, we present the results on the real world dataset SZ, which contains

information of the taxis in a day long period. Since the distributions of locations

and speeds might change during the experiment time, we perform partition

updates every 1 hour. The experimental results are summarized in Figure 3.12.

We can see that query costs are lowest at early morning, since most cities have
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Figure 3.12: Varying hour of the day

least volume of traffic during that time period. We also find that query costs

raise at noon and night. This is because the taxis drive faster resulting in higher

expanding speeds of the index nodes. The variation of throughput during the

day is relatively small. Again, SP significantly and consistently outperforms

other partitioning methods and their unpartitioned counterparts.
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Chapter 4

Uniform Grid Index in Dual

Space

In this chapter, I present the D-Grid, an in-memory dual space grid index for

moving objects. Specifically, it indexes moving objects using grid structures

in both location and velocity spaces, which improves query performance by

almost an order of magnitude. We also propose a lazy deletion and garbage

cleaning mechanism that can be applied to both our dual space and existing

location space uniform grid based indexes and further improve update per-

formance. Extensive experiments demonstrate that our approach significantly

outperforms existing uniform grid based in-memory indexes.

4.1 Indexing with Dual Space Grids

In this section, we introduce the D-Grid, which is an in-memory indexing struc-

ture in the dual space for moving object databases.
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4.1.1 Structure overview

Intuitions of design

Before we introduce the structure of D-Grid, we first discuss intuitions behind

the design. The main purpose of D-Grid is to improve the performance of

uniform grid indexes for moving objects on predictive spatio-temporal queries

[31, 41, 52]. First, we briefly present how a predictive range query is processed

on the uniform grid. A predictive range query Q searches the objects located

within a spatial region S, which we call the query window, at a future times-

tamp tq, which we call the query prediction time. Consider the example as in

Figure 4.1(a), where the solid rectangle S denotes the query window. p1 and p2

(the dots) denote the indexed locations of two objects at the index timestamp,

denoted as tidx, while p11 and p12 (the circles) denote their locations at the query

prediction time tq. Note that the index stores object locations at the synchro-

nized index timestamp, which are derived from the last updated locations and

velocities of the objects. Obviously, both objects should be in the result of this

query. To obtain such result, the query window S should be enlarged to S 1 (the

dashed rectangle) to include objects that may move into the query window S

at the future time tq. This is achieved by attaching enlargement speeds, vu,

vd, vr, and vl on each side of S. We call the tuple tvu, vd, vr, vlu the query

window enlargement rectangle (QwER), which represents a rectangle in the

velocity space. We use the same approach as in [18] to compute QwERs (will

be explained in Section 4.1.3). The enlarged query window S 1, computed by

expanding S in four directions according to the QwER, is the minimum spatial

region that can bound the indexed locations of all objects that can possibly be
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in the result of query Q. Specifically

S 1u “ Su ` ptq ´ tidxq ˆ vu (4.1)

where Su and S 1u denote the upside bound of S and S 1. S 1d, S
1
r, and S 1l can be

calculated similarly.

Uniform grid. Consider a baseline uniform grid approach where the ob-

jects are partitioned with grid cells based on their locations. As shown in

Figure 4.1(a), let SJ denote the minimum rectangle with grid cell boundaries

that contains S 1. We call the set of objects within SJ the candidate set, denoted

as C. The actual answer set of query Q, denoted as A, is a subset of C. Given

a predictive range query Q, we first compute SJ and C. We then evaluate

whether each object in C, which we call a candidate object, will move into S at

timestamp tq based on its indexed location and velocity. Since no disk I/O is

invoked in main memory environment, the processing time of query Q is deter-

mined by the total number of candidate objects. We assume that the moving

objects are uniformly distributed in the predefined location space (otherwise we

can always partition the location space into uniform subregions [52]) and let σ

denote the density of objects. The number of candidate objects is |C| “ σ|SJ|,

where |SJ| denotes the spatial size of SJ. Let τ0 denote the processing time for

evaluating whether an object moves into S at timestamp tq. The processing

time for answering query Q using the uniform grid can be estimated by

τ “ τ0σ|S
J
| (4.2)

Dual space grid. A potential drawback of the above approach is that

QwER considers the “maximum” velocity of the objects when computing the
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Figure 4.1: Query window enlargement

enlarged query window. Hence some candidate objects in the enlarged query

window with small velocity values might not move into the query window at

tq. Motivated by this, we can partition the objects based on their velocities

and model the predefined velocity space as another uniform grid, which we

call the v-grid, and associate each v-grid cell with a location grid (l-grid). In

such structure, as shown in Figure 4.1(b), objects within the same v-grid cell

move with similar velocities restricted by the v-grid cell boundaries. Given a

predictive range query Q, we first compute the QwER. Then for each v-grid

cell that intersects with the QwER, we perform range search on the enlarged

query window in the corresponding l-grid. Let S 1i denote the enlarged query

window on the l-grid associated with the ith v-grid cell that intersects with

QwER and SJi the corresponding area with l-grid cell boundaries. Let σi

denote the density of objects in SJi , thus the processing time for answering Q

can be estimated by

τ̃ “ τ0

ÿ

@i

σi|S
J
i | (4.3)

According to Equations (4.2) and (4.3) and the facts that
ř

@i

σi “ σ, and |SJi | ď

|SJ|, we have τ̃ ď τ . Thus, query processing time is reduced by partitioning

the velocity space into the v-grid. Intuitively, by grouping objects with similar
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velocities together, the corresponding enlarged query windows are significantly

smaller, which reduces the overall candidate set for query processing. Based

on this observation, we propose the D-Grid that combines the v-grid and the

l-grid.

The structure of D-Grid

Figure 4.2 depicts the structure of D-Grid, which consists of three parts: the

v-grid, the l-grid, and the secondary index. As mentioned in Section 4.1.1,

the v-grid is a uniform grid on the velocity space and each cell in the v-grid

corresponds to an l-grid, where each l-grid cell points to a double-linked list of

buckets that stores the object data. Each bucket consists of data entries and a

meta data field that contains the current number of entries in the bucket and

two pointers that link to the next and previous buckets, respectively, when they

exist. The purpose of using double-linked lists instead of singly linked lists is

to support the garbage cleaning operation (see Section 4.1.2). Data entries in

the buckets contain not only location but also velocity information about the
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moving objects. An additional attribute flag stored in the data entries is used

for the lazy deletion and garbage cleaning mechanism, which will be discussed

in Section 4.1.2 in detail. Similar to u-Grid [44], we employ a secondary index

on oid (object ID) to provide constant time accessing on the object data for

update operations. As illustrated in Figure 4.2, the secondary index for D-

Grid contains three pointers with ptr1, ptr2, and ptr3 pointing to the bucket,

the l-grid cell, and the v-grid cell, respectively. The attribute idx stores the

in-bucket position of the corresponding data entry.

Time partition

Given a predictive range query, according to Equation (4.1), the query window

enlargement is determined by not only the QwER but also the index times-

tamp. Apparently, the more up-to-date the index is, the less the query window

enlarges. Thus, we apply the time partition technique, which was proposed

in [18], on D-Grid. Specifically, the time axis is partitioned into intervals of

∆t, which denotes the maximum allowed duration in-between two updates of

any object, and each such interval is sub-partitioned into equal-length phases.

Each phase is associated with a label timestamp, tlab “
k
n
∆t, where k is the

phase ID. Note that the index timestamp of each phase refers to the corre-

sponding label timestamp, i.e. tidx ” tlab. Each object update is associated

with a nearest future label timestamp and its location at the label timestamp

is calculated and stored in the corresponding phase. Note that only the most

recent n ` 1 phases are kept in main memory and that the outdated objects

are forced to update after ∆t timestamps since their last updates. Figure 4.3

shows an example of time partition when n “ 2. Specifically, updates issued in

the time ranges (0, 1
2
∆t] and (1

2
∆t, ∆t] are inserted into the first two phases
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Figure 4.3: Time partition

with label timestamps 1
2
∆t and ∆t, respectively. After timestamp ∆t, phase-1

expires and the objects that update between timestamp ∆t and 3
2
∆t will be

deleted from phase-1 and inserted into phase-3. Thus phase-1 will be empty

and be abandoned at timestamp 3
2
∆t. With time partition, indexed locations

of the objects can only be outdated by a maximum of ∆t. The method of

choosing n is described in [18] and we set n “ 2 in this paper.

4.1.2 Updates

In this section, we introduce the update algorithms of D-Grid as well as the

lazy deletion and garbage cleaning mechanism.

Local and non-local updates

Two different scenarios are considered for the update operation: local update

and non-local update. When an object issues an update, two fields ptr2 and

ptr3 in the secondary index are used to determine whether the object belongs

to the same grid cell (v-grid and l-grid) as its previous update. If so, local

update is performed by simply copying the updated data to the corresponding

data entry located by ptr1 and idx. Otherwise, non-local update is performed

instead, which first deletes the object from its previous position and then inserts
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Algorithm 4.1: Update

input : o (the object to be updated whose ID is oid)
/* check the grid cells for the coming update */

1 V Cold Ð SIoid.ptr3, LCold Ð SIoid.ptr2;
2 BUK Ð SIoid.ptr1, IDX Ð SIoid.idx;
3 V Cnew Ð new v-grid cell of o;
4 LCnew Ð new l-grid cell of o;
5 if V Cold “ V Cnew and LCold “ LCnew then

/* perform local update */

6 BUKrIDXs.coordsÐ o.coords;

7 else
/* perform non-local update */

8 if percentage of invalid entries in pV Cold, LColdq ă λ then
/* mark the data entry as invalid */

9 BUKrIDXs.f lag Ð false;

10 else
/* Garbage cleaning */

11 Garbage CleaningpV Cold, LColdq;

12 insert o into cell pV Cnew, LCnewq;
13 update SIoid;

the updated data into the new grid cell. The secondary index also needs to

be updated with non-local updates. Similar to u-Grid [44], update operations

ensure that all except the first bucket of the l-grid cells are full. Specifically, a

new object is always inserted at the end of the first bucket. If the first bucket

is full, a new bucket is allocated and becomes the first bucket. Moreover,

a deletion operation always moves the last object of the first bucket to the

position of the deleted object. When the first bucket becomes empty, it will

be removed and the second bucket becomes the first if it exists otherwise the

bucket list will be replaced by a null pointer.
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Lazy deletion and garbage cleaning

The local update and insertion operations are optimized since they involve only

unavoidable data copies, which is the theoretically minimum cost to update

the object data in any indexing structure. Next, we introduce the lazy deletion

and garbage cleaning mechanism that further optimizes the deletion operations

involved in non-local updates.

Theoretically, an optimal approach for the deletion operation is to mark the

objects to be deleted as invalid instead of actually erasing them from the index.

However, this will not only increase the storage size but also hurt query perfor-

mance, since invalid objects need to be filtered out while processing queries. In

order to improve update cost without sacrificing query performance, we propose

the LDGC mechanism, which reduces the amortized cost of deletion operations

in generic uniform grid based indexes. In our approach, the object to be deleted

is marked as invalid by turning off the flag attribute of the corresponding data

entry if the percentage of invalid objects in the corresponding l-grid cell is below

a predefined threshold, otherwise the garbage cleaning operation is performed

on this cell. Figure 4.4 illustrates the mechanism of garbage cleaning, where

the white (gray) rectangles represent the valid (invalid) data entries and the

bucket surrounded by a dashed rectangle is deleted during garbage cleaning.

Basically, valid data entries are copied to positions with invalid entries from

the end of the bucket list, which are illustrated by dashed arrows in Figure 4.4.

Next we briefly analyze the benefit of the LDGC mechanism. Let n denote

the total number of objects in a certain l-grid cell and λ the threshold that

triggers garbage cleaning, thus the number of valid and invalid data entries are

p1´λqn and λn, respectively, when garbage cleaning is triggered. Without loss

of generality, we assume the positions of valid entries are uniformly distributed
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Algorithm 4.2: Garbage Cleaning

input : (V C,LC) (grid cell to be cleaned)
1 pBUK1, IDX1q Ð first entry in last bucket;
2 pBUK2, IDX2q Ð last entry in first bucket;
3 while pBUK1, IDX1q ‰ pBUK2, IDX2q do

/* find the next invalid entry */

4 pBUK1, IDX1q Ð next invalid entry;
/* find the next valid entry */

5 pBUK2, IDX2q Ð next valid entry;
6 BUK1rIDX1s Ð BUK2rIDX2s;
7 BUK2rIDX2s.f lag Ð false;
8 update SIBUK1rIDX1s.oid;

9 delete empty buckets;

in the buckets and thus the expected number of valid entries in the first λn

positions is p1´ λqλn, which equals the expected number of data copies when

LDGC is in effect. On the other hand, if LDGC is not applied, the number of

data copies is λn (one for each deletion). For example in Figure 4.4, 6 data

copies are performed with regular deletion strategy, since there are 6 invalid

entries, while the number of data copies decreases to 2 with LDGC. Let µ0

denote the time cost for one data copy, thus LDGC can save µ0pλn ´ p1 ´

λqλnq “ µ0λ
2n time. On the other hand, traversing the data entries takes ν0n

time, where ν0 denotes the time cost for fetching one entry from the buckets.

Let Γ “ µ0λ
2n ´ ν0n, thus, when Γ ą 0, i.e. λ ą

b

ν0
µ0

, LDGC gains benefits.

We will also empirically show the benefits of LDGC in Section 4.2.
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Algorithm 4.1 summarizes the main steps for the update operation in D-

Grid. SI represents the secondary index. V C and LC represent the v-grid cell

and the l-grid cell, respectively. BUK and IDX represent the bucket and the

in-bucket position, respectively. After receiving an update, Algorithm 4.1 first

computes the old and new grid cells where the object is located (lines 1-4). If the

old and new grid cells are the same, local update is performed (line 6), otherwise

non-local update is performed (lines 8-13). In non-local update, if the number of

invalid entries in the corresponding grid cell is below the threshold λ, we simply

mark the entry as invalid (line 9), otherwise we perform the garbage cleaning

operation (line 11). The method Garbage Cleaning is described in Algorithm

4.2. Specifically, we use two pointers pBUK1, IDX1q and pBUK2, IDX2q to

locate the invalid and valid data entries involved in each data copy, respectively.

pBUK1, IDX1q and pBUK2, IDX2q iterate backwardly and forwardly from the

last and first bucket, respectively, and point to the corresponding entries for the

data copy (lines 4-5). The iterating is accomplished with the help of the double-

linked bucket list, mentioned in Section 4.1.1. After the data copy is finished

(lines 6-7), we turn off the flag of the data entry pointed to by pBUK2, IDX2q

(line 7) and update the corresponding entry in the secondary index (line 8).

Finally, the empty buckets, that contain only invalid entries, are deleted (line

9).

4.1.3 Query processing

In this section, we introduce the algorithms for processing predictive range

queries and k nearest neighbor (kNN) queries in D-Grid, respectively. Figure

4.5 illustrates the workflow of query processing in D-Grid.
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Figure 4.5: Query processing in D-Grid

Range queries

A predictive range query searches objects within a query window S (a square

area with side length qLen), at a (future) query prediction time tq. Since

objects are continuously moving, the queries must be performed with enlarged

query windows at the index timestamps, which are determined by QwERs

described in Section 4.1.1, in order to include all possible answers of the queries.

As introduced in [18], we first set the QwER with the maximum speed of all

objects in each direction. Then, the final enlargement speeds are computed with

the aid of the velocity histogram, which is a 2-dimensional grid that captures

the maximum projections of the object velocities onto each direction in each

l-grid cell.

After receiving the range query, our system first computes the QwER using

the velocity histogram and then generates the sub-queries with enlarged query

windows according to each v-grid cell that intersects with the QwER. After

the sub-queries are processed, the sub-query results are combined and returned

to the user. The pseudo code for predictive range query is shown in Algorithm

4.3, which takes the query Q as input and returns the answer set A as output.
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Algorithm 4.3: Range query

input : Q (range query)
output: A (answer set)
/* initialization */

1 AÐH, QwERÐVH(Q);
2 foreach V C P QwER do

/* compute the enlarged window */

3 QwER‹ Ð QwER
Ş

V C;
4 SJ Ð enlargepQ,QwERq;

/* compute the answer to Q */

5 foreach o located within SJ do
6 if o is answer to Q then
7 A.addpoq;

8 return A;

Algorithm 4.3 first initializes the answer set (line 1) and computes the QwER

of query Q via the velocity histogram V H [18] (line 2). Then it processes the

sub-queries according to each v-grid cell, where the enlarged query window SJ

is first computed (lines 3-4) and objects located within SJ are then retrieved

and filtered to get the final answer set (lines 5-7).

k nearest neighbor queries

A predictive k nearest neighbor (kNN) query with a query point at loc “

pqx, qyq, which is a coordinate in the location space, searches the k objects that

no other objects are nearer to the query point at the (future) query prediction

time tq. To answer the kNN query, we iteratively perform range queries around

the query point with gradually increasing window sizes until the k nearest

neighbors are found. The expected distance from the query point to its kth
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Algorithm 4.4: k nearest neighbor query

input : Q (kNN query)
output: A (answer set)
/* initialization */

1 AÐH, Dk Ð compute Dk, MH Ð create max heap;
2 RQÐ new range query (Q.loc, Dk);
3 while RQ.qLen ă D do

/* perform range query */

4 A0 Ð Range QuerypRQq;
5 foreach o P A0 do

/* replace the top of MH when necessary */

6 if MH.size ă k then
7 MH.insertpoq;
8 else
9 o1 ÐMH.top;

10 if dist(Q.loc, o)¡dist(Q.loc, o’) then
11 MH.deletepo1q, MH.insertpoq;

12 if MH.size “ k and distpQ.loc,MH.topq ď RQ.qLen then
13 break;

14 RQ.qLenÐ RQ.qLen`Dk;

15 A.addAllpMHq;
16 return A;

nearest neighbor can be estimated as

Dk “
2
?
π

»

–1´

d

1´

ˆ

k

N

˙
1
2

fi

fl (4.4)

where N represents the total number of objects [50]. The query window of

the ithpi ě 1q range query, denoted as Si, is a square with side length i ¨ Dk.

During the execution of the kNN query, a max-heap is used to keep track of

the k nearest neighbors as well as the distance from the query point to the kth

nearest neighbor at the current iteration.

Algorithm 4.4 summarizes the approach for processing predictive kNN queries
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in D-Grid. This algorithm first initializes the answer set (A), the estimated

distance of the kth nearest neighbor (Dk), the max heap (MH), and the range

query (RQ) (lines 1-2) and then enters the loop (lines 3-14) that repeats when

the side length of the query window RQ.qLen is smaller than that of the prede-

fined location space (D). During each iteration of the loop, RQ is first executed

and the answers are stored in A0. Then for each object in A0, if the size of

MH is smaller than k, we directly insert it into MH. Otherwise, we compare

the distances (to the query point) from o and the top element o1 in MH, which

is the kth nearest neighbor in the previous iteration. If o is nearer than o1, we

delete o1 from MH and insert o into MH. After all objects in A0 are processed,

we check whether the termination condition is satisfied (line 12). Then, we ei-

ther exit the loop or increase RQ.qLen and move forward to the next iteration.

Finally, the objects in MH are added to A as the query result (line 15).

4.2 Experimental Study

In this section, we conduct experiments on a variety of datasets and parameters

to evaluate the performance of D-Grid and compare with other state-of-the-art

uniform grid based indexing structures. Both update time and query processing

time are evaluated in the experiments. All algorithms are implemented with

C++ and all experiments are performed with 2.6 GHz Intel Core i7 CPU and

16GB RAM in OSX 10.11 operating system. The parameters in D-Grid will be

tuned in Section 4.2.2 and Table 4.1 shows the tuning results. The experimental

settings are displayed in Table 4.2 where the default settings are boldfaced.
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Table 4.1: D-Grid parameters

l-grid cell length (m) 2000
v-grid cell length (m/s) 50
Bucket size (byte) 2048
Garbage cleaning threshold 0.8

Table 4.2: Experimental settings

Space domain (mˆm) 100,000ˆ100,000
Maximum speed (m/s) 10, 20, 30, . . . , 100
Number of objects 100K, 200K, 300K, . . . , 1M
Window length (m) 10, 100, 1000, 10,000
kNN - k 1, 10, 100, 1000
Query prediction time (ts) 0, 30, 60, 90
Dataset Uniform, Gaussian, RN, GPS

4.2.1 Dataset description

We first describe the datasets used in the experiments.

Uniform: In the synthetic uniform dataset, the objects are uniformly dis-

tributed in the predefined location space and moves with random speeds at

arbitrary directions.

Gaussian: In the synthetic Gaussian dataset, the objects travel between

the predefined hotspots in the location space. The locations of the objects are

Gaussian distributed around the hotspots and the velocities are random. We

use a Gaussian dataset with 10 hotspots. Figure 4.6 illustrate a snapshot of

the objects in this dataset.

Road network: The road network (RN) dataset is generated with the

same method described in Chapter 3. Figure 4.7 shows a part of Los Angeles

road network, which is the underlying road network of the RN dataset.

GPS: The real GPS dataset contains one million trajectories of taxis within

the urban area of Shenzhen, China. Each trajectory contains a sequence of GPS

tracking data with timestamped locations in a single day. The trajectories are
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Figure 4.6: Gaussian Figure 4.7: Road network
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Figure 4.8: Vary grid cell length
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Figure 4.10: Vary GC threshold

not sampled with equal time intervals and the smallest sampling interval is 15

seconds. The dataset can be downloaded at http://mathcs.emory.

edu/aims/spindex/gps 1M.dat.zip. Note that GPS records in this dataset are

mapped to a 100,000 ˆ 100,000 location space.
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Figure 4.11: Vary number of objects
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Figure 4.12: Vary maximum speed value

4.2.2 Evaluation of our methods

We first evaluate the performance of D-Grid, with different settings of the

parameters including grid cell length (for both v-grid and l-grid), the bucket

size and the GC threshold λ.

Impact of grid cell length

In this experiment, we find the optimal settings for grid (both l-grid and v-

grid) cell lengths. Note that LDGC is not applied in this and next experiments.

Figure 4.8 summarizes the experimental results where the x-axis represents the

cell length of l-grid while each line in the figures represents a setting of v-grid

cell length. As shown in Figure 4.8(a), update costs reduce when l-grid cell
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Figure 4.13: Vary query parameters on uniform dataset

length increases. This is because local updates happen more frequently with

larger l-grid cells. Figure 4.8(b) and 4.8(c) show the results about range queries

and kNN queries, respectively. Both range query and kNN query obtain highest

performance when the l-grid is between 1000m and 10,000m. When the l-grid

cells are too large, the queries tend to be linear search and when they are too

small, the overhead for traversing the cells themselves increases dramatically.

Similarly, the v-grid cell length of 50m/s leads to the best performance for

overall performance. According to the experimental results, we set 2000m and

50m/s as the default l-grid and v-grid cell lengths, respectively.

Impact of bucket size

In this experiment, we study the impact of bucket size. Figure 4.9 shows that

query performance benefits from large bucket size. This is because large buckets
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Figure 4.14: Vary query parameters on Gaussian dataset

increase data access locality and enable more effective data fetching by CPU

caches [9]. However, as shown in Figure 4.9, large buckets lead to worse update

performance. Considering the trade-off between update and query costs, we

select 2048 bytes as the default bucket size.

Impact of GC threshold

In this experiment, we demonstrate the benefit of LDGC by varying the garbage

cleaning (GC) threshold, λ. Note that LDGC is not applied when λ “ 0. The

results are shown in Figure 4.10. We can see that query performances reduce

as λ increases since invalid data entries need to be filtered out while answering

queries. We also find that when LDGC is applied, larger values of λ lead to

lower update costs and the costs are below that without LDGC when λ ą 0.7.

This observation is consistent with the analysis in Section 4.1.2. Considering
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Figure 4.15: Vary query parameters on road network dataset

the impact of GC threshold on update and query performances, we select 0.8

as its default value.

4.2.3 Comparison with other methods

Finally, we compare our D-Grid with u-Grid, which is the state-of-the-art uni-

form grid indexing structure in single thread environment. The parameters in

u-Grids are consistent with those in the original paper [44]. We also compare

the performances of these methods with or without LDGC.

Impact of number of objects

Figure 4.11 shows the experimental results with varying number of objects.

We can see that costs for both range queries and kNN queries grow when the
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Figure 4.16: Vary query parameters on GPS dataset

total number of objects increases while update performance shows little changes

with different settings. Moreover, we find that the LDGC mechanism improves

update performances for both u-Grid and D-Grid with a trade-off on query

performances. Finally, D-Grids significantly outperform u-Grids in terms of

query processing but drop on update performance.

Impact of maximum speed value

In this experiment, we vary the maximum speed value of the objects. Figure

4.12 summarizes the results. From Figure 4.12(a) we conclude that the higher

speeds of the objects, the higher update costs for both u-Grids and D-Grids.

This is because high speed objects are more likely to incur non-local updates,

which are more expensive. Figure 4.12(b) and 4.12(c) show that high speed

values result in high query costs, since the query windows enlarge when speeds
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of the objects increase. Again, LDGC makes the indexes more update efficient

but slower for query processing and D-Grids enjoy lower query costs but higher

update costs than u-Grids.

Impact of query parameters

Finally, we compare the performances under different query parameters, includ-

ing query prediction time, range query window length and kNN-k on all the

four datasets. Update performances are not evaluated in this experiment, since

query parameters do not affect the update processing. Figure 4.13 through 4.16

show the experimental results for each dataset, respectively. We can conclude

from the results that D-Grid significantly and consistently outperforms u-Grid

in all settings of query parameters on a variety of datasets.
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Chapter 5

Markov Chain Based Pruning

In this chapter, I present a pruning mechanism that reduces the candidate set

for predictive range queries based on high order Markov chain models learned

from historical trajectories. The key to our approach is to devise compressed

representations for sparse multi-dimensional matrices, and leverage efficient

algorithms for matrix computations. Experimental evaluations show that our

approach significantly outperforms other pruning methods in terms of efficiency

and precision.

5.1 Preliminaries and Problem Definition

We introduce some preliminary definitions and our problem setting in this

section. Table 5.1 lists the notations used throughout this chapter.

5.1.1 Trajectory and path

The predefined space domain is partitioned into uniform grid cells and each

cell has an identifier, which is the sequence number of the grid cell in the
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Table 5.1: Notations

O moving object O set of all objects
N number of states Q predictive range query
q query vector R query window
tc current time tq prediction time
k order of Markov chain Mk Markov transition matrix
si{i state S state space
ρtk state matrix Ith h-backward path
φ diagonal ξ offset of diagonal
D diagonal matrix Ξ offset array
d diagonal array ι shift of projection
T trajectory I path/coordinate
ωφ valid range H number of phases

underlying space-filling curve (see Section 5.2.2). We call the grid cells states

and the set of all states, S “ ts0, s1, . . . , sN´1u, the state space, where N “ |S|

denoting the total number of states. In this chapter, we alternatively denote

si with its identifier i, @0 ď i ă N , when there is no ambiguity. A trajectory

of an object O P O is defined as a sequence of timestamped locations T “ă

O0, O1, . . . , Ot, ¨ ¨ ¨ ą, where Ot “ ppx, yq, tq denotes that O is located at px, yq

at time t. As each location is associated with a state, we call a sequence of

states of O, denoted as I “ă i0, i1, . . . , it ą, a path of O. Figure 5.4 shows

examples of paths on the left. We refer to the path of O in the h timestamps

from t´ h` 1 to t as an h-backward path ending at t and denote it as Ith, i.e.

Ith “ă it´h`1, it´h`2, . . . , it ą. Particularly, we call an h-backward path ending

at the current time tc, Itch , the base h-backward path.

5.1.2 Predictive range query

We define a predictive range query as follows.

Definition 5.1 (Predictive range query). Given a set of moving objects, O,
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with their recent trajectories, T , a spatial region R, and a prediction time tq,

the predictive range query, QpR, tqq, returns the set of objects in region R at

time tq.

Generally speaking, a predictive range query is processed in two steps:

pruning and verification [18, 41, 48, 49]. The pruning step aims to filter out

non-qualifying objects that will probably not be in the query result, via a fast

pruning mechanism. Candidate objects surviving the pruning step are fed to

the verification step that computes their probabilities of satisfying the query

predicate. We call the base h-backward paths of the candidate objects the

candidate paths. The verification step dominates the overall execution time for

query processing according to our experimental results (see Section 5.4). Hence

it is important to have effective pruning mechanisms to reduce the candidate

set.

5.1.3 The Markov chain model

In most real world scenarios, like vehicles in a city road network, objects’

(future) paths after tc are usually uncertain but follow certain patterns. We

use time-homogeneous Markov chains [27] to capture such mobility patterns.

Definition 5.2 (Order-k Markov chain). A stochastic process ot, is called an

order-k Markov chain if and only if @it, it´1, . . . , i0 P S

P pot “ it|o0 “ i0, . . . , ot´k “ it´k, . . . , ot´1 “ it´1q

“P pot “ it|ot´k “ it´k, . . . , ot´1 “ it´1q

(5.1)

We call Equation (5.1) the local Markov property of order-k Markov chains.

The conditional probability P pit|it´k, . . . , it´1q “ P pot “ it|ot´1 “ it´1, . . . , ot´k “
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it´kq is the transition probability, which indicates the probability for an object

moving to state it given its previous k states it´k, . . . , it´1. TheN ˆNˆ, . . . ,ˆN
l jh n

k+1 N’s

multi-dimensional matrix Mk is the transition matrix of the order-k Markov

chain where

Mkrit´k, it´k`1, . . . , its “ P pit|it´k, . . . , it´1q (5.2)

In the rest of this chapter, we denote N ˆNˆ, . . . ,ˆN
l jh n

d N’s

as N pdq for simplicity.

Note that the coordinate rit´k, it´k`1, . . . , its of an element in Mk inherently

forms a path Itk. The main goal of our proposed method is to effectively and

efficiently reduce the candidate set for predictive range queries with the aid of

(high order) Markov chains.

5.1.4 Sparse matrix storage

Transition matrices, especially those for high-order Markov chains, are usually

sparse in spatio-temporal settings (see Section 5.3.2). We review some clas-

sic storage formats for sparse matrices [17, 39]. The dictionary of keys (DOK)

format consists of a dictionary that maps (row, column)-pairs to values for non-

zero elements. The DOK format is ideal for incrementally constructing the ma-

trices but poor for arithmetic operations. The compressed row storage (CSR)

format stores a sparse matrix using three 1-dimensional arrays pA, IA, JAq,

where A holds all the nonzero entries in row-major order, IA records the start

and end indexes in A for each row, finally, JA contains the column index of

each element of A. The CSR format is efficient for arithmetic operations such

as inner-product, but inefficient for incremental construction. Therefore, one

typical strategy is to use DOK format for construction and then convert the
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Figure 5.1: Structure of the T-Grid

matrix to CSR format while performing arithmetic operations. For matrices

that consist of a few diagonals, the diagonal format (DIA) stores the diagonals

in a rectangular NdiagˆN array, where Ndiag is the number of diagonals and N

is the number of columns. Note that these formats only support 2-dimensional

matrices but are not applicable in high dimensional scenarios. We present new

data structures for storing the sparse high-dimensional transition matrices in

next section.

5.2 Data Structures

In this section, we introduce the data structures to store the object trajectories

and the sparse Markov transition matrices.
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5.2.1 The trajectory grid

Figure 5.1(a) shows part of a trajectory in the 2-dimensional uniform grid,

where the dots represent the sampled locations. Note that we assume that

all trajectories are sampled with equal intervals and synchronized timestamps.

Interpolation is performed when this assumption does not hold. The trajectory

grid (T -Grid) consists of a series of uniform grids aligned by timestamps, which

we call phases. Each phase stores only the sampled locations with a certain

timestamp. Figure 5.1(c) shows an example of the T -Grid and the trajectory

that is identical to the one in Figure 5.1(a). Note that only the most recent H

phases are kept in main memory and H ě k, where k is the order of the under-

lying Markov chain. The main purpose of introducing phases is to support fast

object/trajectory retrievals by timestamps, which is useful in query processing

(see Section 5.3).

Sampled locations of the trajectories are stored in the corresponding grid

cells. A grid cell is stored as a list of buckets where each bucket contains the

number of data entries stored, the pointer that links to the next bucket when

the number of entries in the current bucket exceeds a predefined capacity, and

an array of data entries. Each data entry stores a single trajectory record,

which consists of object ID (oid), spatial coordinate (x and y) and the pointer

that links to the position of the next record in the same trajectory. Each such

pointer contains two fields ptr1 and ptr2 that represent cell ID and in-bucket

position of the next record (data entry), respectively. Figure 5.1(b) illustrates

the storage structure of a grid cell. In this chapter, the capacity is 1000 by

default.
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(a) Hilber (b) Morton (c) Raster

Figure 5.2: Space-filling curves

5.2.2 The MDIA format

As mentioned in Section 5.1, we use Markov chains to encode consecutive states

of the moving objects. In order to store the Markov transition matrices as a

multi-dimensional arrays, we need to arrange the grid cells in 2-dimensional

space with a 1-dimensional sequence via space-filling. We explored three dif-

ferent shapes of space-filling curves: Hilbert, Morton, and Raster, which are

illustrated in Figure 5.2. The Markov transition matrices are usually extremely

sparse in spatio-temporal settings, especially those of high order Markov chains.

The reason is that, in real world scenarios, due to geographic restrictions and

velocity limitations, any moving object, for example vehicles or pedestrians,

can only move to nearby places rather than the entire predefined space domain

within one sampling interval.

Table 5.2 shows occupancy ratios of the Markov transition matrices derived

from the taxi data of Beijing city (see Section 5.4). In Table 5.2, the Element

column represents the element occupancy while the Hilbert, Morton, and Raster

columns represent the diagonal occupancy with the corresponding space-filling

techniques. Element occupancy and diagonal occupancy denote the ratio of

nonzero elements and that of (partially) occupied diagonals (see Definition 5.3),
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Table 5.2: Occupancy ratio of Markov transition matrices

Grid size Order Element Hilbert Morton Raster

64ˆ 64
order-1 0.003 0.175 0.093 0.008
order-2 6.39e-10 3.89e-4 2.563e-4 2.55e-5
order-3 5.56e-24 1.89e-7 1.308e-7 2.17e-8

128ˆ 128
order-1 8.59e-4 0.133 0.074 0.007
order-2 1.1e-11 9.04e-5 5.7e-5 7.72e-6
order-3 3.8e-28 1.36e-8 9.13e-9 1.33e-9

256ˆ 256
order-1 2.23e-4 0.096 0.054 6.15e-4
order-2 1.79e-13 2.31e-5 1.41e-5 1.81e-6
order-3 2.06e-32 9.29e-10 6.52e-10 8.72e-11

respectively. We find that the transition matrices become more and more sparse

when either the order of Markov chain or the grid size increases. The transition

matrices enjoy very low diagonal occupancy, which means that they can be fully

and compactly represented by only a small portion of diagonals. The intuition is

that moving objects transit to neighboring places, therefore non-zero transition

probabilities tend to be clustered around diagonals. Moreover, among the three

space-filling techniques, Raster gains the lowest diagonal occupancy, thus is

selected as the default space-filling technique in this chapter. Additionally, for

high-order Markov transition matrices, element occupancies are much lower

than diagonal occupancies, which means that the diagonals themselves might

be sparse as well.

Based on the above observations, we propose a multi-dimensional diagonal

(MDIA) representation for extremely sparse matrices. The MDIA format of a

sparse matrix consists of two components: 1) the diagonal matrix, D, which

is an Ndiag ˆ N matrix (using its CSR format [39] when sparse), where Ndiag

denotes the number of (major) diagonals, and 2) offsets (with respect to the

major diagonal starting from the origin) of the diagonals, which form an array

of tuples denoted as Ξ. We generalize the definition of diagonals and offsets
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from 2-dimensional matrices [17,39] to multi-dimensional matrices as follows.

Definition 5.3 (Diagonal and offset). Given an N pmq (m ě 2) matrix M , the

tuple φ “ pξ,dq is called a diagonal of M if and only if d is a 1-dimensional

array with dris “M ri` δ0, i` δ1, . . . , i` δm´2, is, where 0 ď i` δj ă N, @0 ď

i ă N, 0 ď j ă m and ξ “ pδ0, . . . , δm´2q is called the offset of φ.

According to this definition, the element dris is valid only when 0 ď i`δj ă

N , @0 ď j ă m, which is equivalent to maxp0,´δminq ď i ă minpN,N´δmaxq,

where δmin and δmax denote the minimum and maximum values of δi, 0 ď i ď

m´ 2. We denote ωφ “ rmaxp0,´δminq,minpN,N ´ δmaxqq as the valid range

of φ. Given a matrix coordinate I “ă i0, i1, . . . , im´1 ą, offset of the diagonal

where it resides and the in-diagonal position are computed by

ξ “ pi0 ´ im´1, i1 ´ im´1, . . . , im´2 ´ im´1q, κ “ im´1 (5.3)

On the contrary, given the offset ξ “ pδ0, . . . , δm´2q and the in-diagonal position

κ P ωφ, the corresponding coordinate is calculated by

I “ă κ` δ0, κ` δ1, . . . , κ` δm´2, κ ą (5.4)

We also define, for any 1-dimensional matrix/array M , d “ M as the only

diagonal with offset ξ “ H.

Figure 5.3 shows examples of diagonals, d1, d2, d3, and their offsets of a

2-dimensional matrix, where the solid part of d1 through d3 represent the valid

ranges. The following shows an example of a high dimensional MDIA matrix.
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Example 5.1. Let M be a 3-dimensional matrix where M r0, :, :s “

»

—

—

—

—

–

1 0 0

1 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

M r1, :, :s “

»

—

—

—

—

–

0 1 0

0 1 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

, M r2, :, :s “

»

—

—

—

—

–

0 0 0

0 0 1

0 0 1

fi

ffi

ffi

ffi

ffi

fl

. M has three diagonals

pp0, 0q, r1, 1, 1sq, pp0, 1q, r1, 1, 0sq, and pp0,´1q, r0, 1, 1sq. The MDIA format of

M is pD, Ξq where Ξ “

»

—

—

—

—

–

p0, 0q

p0, 1q

p0,´1q

fi

ffi

ffi

ffi

ffi

fl

and D “

»

—

—

—

—

–

1 1 1

1 1 0

0 1 1

fi

ffi

ffi

ffi

ffi

fl

. The CSR format

of D is pA, IA, JAq, where A “ r1, 1, 1, 1, 1, 1, 1s, IA “ r0, 3, 5, 7s, and JA “

r0, 1, 2, 0, 1, 1, 2s.

5.2.3 The transition trie

In dynamic environments where the transition patterns change over time and

new trajectories come into existence, the transition matrices need to be updated

periodically. Although the MDIA format stores multi-dimensional matrices

compactly and is efficient for arithmetic operations (see Section 5.3), unfortu-
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nately, it is inefficient for incremental construction or update, especially when

the diagonal matrix is in CSR format. The DOK format (see Section 5.1) with

a dictionary that maps matrix coordinates to values can be used to store multi-

dimensional matrices naively. However, such structure consumes large storage

sizes for large matrices especially when the dimension is high. We propose

the transition trie structure to store all the historical path information of the

moving objects which can be used to construct and update the transition ma-

trices. In a transition trie, a path from root to leaf, denoted as I, consists of a

sequence of states that is equivalent to a matrix coordinate and each leaf node

contains a value field that stores the count of occurrences of the corresponding

path. Figure 5.4 shows an example of transition trie with count information

for length-2 (sub)paths from path Ia (red) and Ib (blue), which can be used to

construct and update the order-1 Markov transition matrix. Implementations

of the insertion and deletion operations in transition trie are inherited from the

classic trie data structure [12] and are omitted here. Transition tries are stored

in disk and loaded in memory for generating transition matrices.
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Algorithm 5.1: Generate transition matrix

input : T (transition trie loaded from disk)
output: Mk (MDIA transition matrix)

1 D Ð dictionary (key: offset, value: diagonal array);
/* iterate paths and counts in leaf nodes */

2 forall the pI, cntq in T do
3 ξ, κÐ offset and position of I; /* Equation (5.3) */

4 if ξ not in data.keys then
5 Drξs Ð array of N 0’s;

6 Drξsrκs Ð cnt;

7 Ξ Ð D.keys;
8 if D.values is sparse then
9 D Ð csr matrixpD.valuesq;

10 else
11 D Ð 2d arraypD.valuesq;

12 normalizepDq; /* normalize D on the first k dimensions */

13 Mk Ð MDIA(D, Ξ);
14 return Mk;

5.3 Algorithms

In this section, we introduce our proposed pruning algorithm for predictive

range queries using Markov chains.

5.3.1 Markov chain based pruning

Generate transition matrix

We first introduce the approach of generating the Markov transition matrix

in MDIA format from the paths stored in the transition trie, as summarized

in Algorithm 5.1. Note that this operation is processed off-line periodically.

Algorithm 5.1 first creates a dictionary to store the diagonals with their offsets

as keys (line 1) and then iterates through paths in the transition trie T , where

I and cnt denote the path and count (lines 2-6). In each iteration, it finds
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the offset and in-diagonal position relating to the path/coordinate I using

Equation (5.3) and records cnt in the dictionary (lines 3-6). Then it serializes

the key-set of D as the offset array Ξ and sets the diagonal matrix D, which

is derived from the value-set of D. D is stored as a CSR matrix [39] if it is

sparse otherwise as an ordinary matrix (a 2-dimensional array) (lines 7-11).

Finally, D is normalized on the first k dimensions (line 12), so that it contains

the transition probabilities that can be used to find the candidate paths.

Generate candidate paths

Given a predictive range query QpR, tqq, a binary vector q represents the spatial

region R. Specifically, the ith position in q is set when state si intersects with

R. We call q the query vector of Q.

Definition 5.4 (State matrix). Given a predictive range query QpR, tqq with

query vector q, at any time t and tc ď t ď tq, a state matrix ρtk of an order-k

Markov chain is an N pkq matrix, where ρtkrit´k`1, . . . , its “ P pq|Itkq denoting

the probability that the k-backward path Itk “ă it´k`1, . . . , it ą moves into R

at time tq.

In order to reduce the candidate set, we need to compute the probability

for each object, given its base k-backward path, moving into R at time tq. Such

probabilities are stored in the state matrix ρtck , which is called the base state

matrix. Based on the local Markov property and Bayes rules, each element in
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ρtk, tc ď t ă tq, can be calculated by

P pq|Itkq “
ÿ

@it`1PS
P pq|It`1

k qP pIt`1
k |Itkq

“
ÿ

@it`1PS
P pq|It`1

k q
P pIt`1

k`1q

P pItkq

“
ÿ

@it`1PS
P pq|It`1

k qP pit`1|Itkq

(5.5)

Note that P pit`1|Itkq ” P pit`1|it´k`1, it´k`2, . . . , itq equals to Mkrit´k`1, it´k`1,

. . . , it`1s, where Mk is the order-k Markov transition matrix. Thus, we can

rewrite Equation (5.5) in the following matrix form

ρtk “

$

’

&

’

%

Mk d q t “ tq ´ 1

Mk d ρ
t`1
k , tc ď t ă tq ´ 1

(5.6)

where pdq represents the multiply operation, which is defined as follows.

Definition 5.5 (Multiply). Let M be an N pmq matrix, and L an N plq matrix,

where m ě 2 and 1 ď l ă k. K “M d L is computed by

Kri0, . . . , im´2s “
ÿ

0ďjăN

M ri0, . . . , im´2, jsLrim´l, . . . , im´2, js (5.7)

Note that when m “ 2, multiply degenerates to the classic inner-product

operation between a 2-dimensional matrix and a 1-dimensional array. The base

state matrix ρtck is computed by iteratively performing Equation (5.6).

Figure 5.5 visualizes the base state matrices computed with order-k (1 ď

k ď 3) Markov transition matrices learned from the Beijing dataset (see Section

5.4). Grayscales of the masks in Figure 5.5(b) through 5.5(d) reflect values of
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(a) Query window (b) Order-1

(c) Order-2 (d) Order-3

Figure 5.5: Base state matrices with different order of Markov chains

the corresponding elements in the base state matrices (probabilities of transit-

ing into R at time tq). We can see that the masks for high order Markov chains

largely follow the underlying road network, which also implies the transition

patterns of the vehicles. Intuitively, we prune the paths with lower probabilities

(lighter grayscales) to obtain the candidate paths.

The candidate paths are stored in a transition trie (with empty value fields),

which we call the candidate path trie (CPT). The CPT contains paths/coordinates

corresponding to the nonzero elements in the base state matrix with values

greater than a threshold ε, which we call the pruning sensitivity. Intuitively,

the CPT stores base k-backward paths that are promising to transit into R

at time tq according to the base state matrix. Algorithm 5.2 summarizes our

approach for computing the CPT. Given a query Q, an order-k Markov tran-
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Algorithm 5.2: Generate candidate path trie

input : Mk (Markov transition matrix)
Q (predictive range query)
ε (pruning sensitivity)

output: T (candidate path trie)
/* compute base state matrix */

1 q Ð query vector of Q;

2 ρ
tq´1
k ÐMk d q; /* Equation (5.6) */

3 for tÐ tq ´ 2 to tc do
4 ρtk ÐMk d ρ

t`1; /* Equation (5.6) */

5 T Ð empty transition trie;
/* iterate nonzero elements of ρtck */

6 foreach diagonal φpξ,dq in ρtck do
7 foreach nonezero element e in d do
8 κÐ position of e within d;
9 I Ð coordinate of pξ, κq; /* Equation (5.4) */

10 if M rIsq ą ε then
11 T.insertpIq;

12 return T ;

sition matrix Mk, and the pruning sensitivity ε, this algorithm first computes

the base state matrix ρtck using Equation (5.6) (lines 1-4). We will explain

the implementation details for the multiply operation in the next subsection.

Then it generates the coordinate for each nonzero element in ρtck according to

Equation (5.4) (lines 8, 9) and inserts it into the CPT P if its value is greater

than ε (lines 6, 7). We will empirically study the pruning effect with different

sensitivity levels in Section 5.4. Note that Algorithm 5.2 is generic and applies

for both ordinary and CSR diagonal matrices, which will be instantiated with

different iterating approaches over the nonzero elements (lines 6, 7). The fol-

lowing shows an example of computing the puring predicate with an order-1

Markov transition matrix.

Example 5.2. Given three historical paths, ă 0, 1, 1 ą, ă 2, 1, 1 ą, and
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Algorithm 5.3: Process predictive range query

input : TG (T-Grid)
Q (predictive range query)
Mk (transition matrix)

output: R (query result)
1 P Ð compute candidate path trie ; /* Algorithm 5.2 */

2 C Ð from phase tc of TG get objects in T ’s layer-1 states;
3 foreach object o in C do
4 I Ð from TG get o’s base k-backward path;
5 if I in P then
6 if PREDICT po,Qq is true then
7 R.addpoq;

8 return R;

ă 2, 0, 2 ą, the order-1 Markov transition matrix learned from these paths is

M1 “

»

—

—

—

—

–

0 0.5 0.5

0 1 0

0.5 0.5 0

fi

ffi

ffi

ffi

ffi

fl

. Given a query Q with query vector q “

»

—

—

—

—

–

0

0

1

fi

ffi

ffi

ffi

ffi

fl

and

prediction time tq “ 2 (note that current time tc “ 0). The state matrices are

computed by

ρ1
1 “

»

—

—

—

—

–

0 0.5 0.5

0 1 0

0.5 0.5 0

fi

ffi

ffi

ffi

ffi

fl

d

»

—

—

—

—

–

0

0

1

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0.5

0

0

fi

ffi

ffi

ffi

ffi

fl

(5.8)

ρ0
1 “

»

—

—

—

—

–

0 0.5 0.5

0 1 0

0.5 0.5 0

fi

ffi

ffi

ffi

ffi

fl

d

»

—

—

—

—

–

0.5

0

0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0

0

0.25

fi

ffi

ffi

ffi

ffi

fl

(5.9)

If ε “ 0.2, the candidate path trie is root ÝÑ 2 , which means only objects

in state 2 at the current time are considered in the verification step.



81

Process predictive range query

Now we discuss the query processing employing the CPT, as summarized in

Algorithm 5.3. This algorithm first generates the CPT P using Algorithm 5.2

(line 1). Then it constructs a set C that consists of objects located in layer-

1 states in P (see Figure 5.4) at time tc (line 2). This is accomplished by

retrieving objects from the latest phase of the T-Grid TG. Then each object

o P C is added to the result set if its base k-backward path is contained in

P and it passes the PREDICT test, which can be any prediction function

mentioned in Section 1 (lines 3-7).

5.3.2 Discussions

Pre-computing

Alternative to Equation (5.6), the base transition matrix can also be obtained

as follows

ρtck “M
tq´tc
k d q (5.10)

where Mn
k is power n of Mk and denotes the n-step transition matrix, which

records the probabilities of any base k-backward path ă i0, . . . , ik´1 ą transit-

ing to ik and is computed by

Mn`1
k ri0, . . . , ik´1, iks “

ÿ

0ďjăN

Mkri0, . . . , ik´1, jsM
n
k ri1, . . . , ik´1, j, iks

(5.11)

The powers of Mk can be pre-computed and, at runtime, only one multiply

operation (Equation (5.10)) needs to be performed to obtain the CPT. However,

the density (with respect to both element and diagonal occupancies) of Mn
k
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grows as n increases. The MDIA format will eventually lose effect when n

is large. On the other hand, the first k dimensions of Mn
k are always sparse,

since the computation in Equation (5.11) only affects the very last dimension

of Mn
k . Such a pattern can also be utilized to devise other formats instead of

MDIA to effectively represent Mn
k . Studying the sparse pattern as well as the

convergence property [27] of Mn
k are left as our future work.

Limitation of Markov chains

An order-k Markov chain assumes that the probability of transiting to the

next state is determined by k most recent states. Generally speaking, transi-

tion probabilities of low order Markov chains are usually biased for predicting

future states of the objects in real world scenarios. On the other hand, training

a high order Markov chain requires more data, otherwise reliability of the tran-

sition probabilities will be affected. Moreover, the computation cost grows as

the order of Markov chain increases (see Section 5.4). Therefore, the Markov

chain model is not appropriate as a prediction function in the verification step.

Other Markov models such as hidden Markov model [60] and hidden semi-

Markov model [1] are better choices, where observations for hidden states are

involved. However, Markov chains are effective for pruning i.e. reducing the

candidate sets for predictive range queries. Consider Example 5.2. The base

state matrix computed from order-1 Markov chain is

»

—

—

—

—

–

0

0

0.25

fi

ffi

ffi

ffi

ffi

fl

, while the correct

answer should be

»

—

—

—

—

–

0

0

0.5

fi

ffi

ffi

ffi

ffi

fl

(two of the three paths start from state 2 and one of
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them enters state 2 at time 2). Although the order-1 Markov chain generates

an incorrect result, it figures out that only objects in state 2 are possible to

enter state 2 at time 2, which successfully reduces the candidate set. Thus,

in this paper, we explore the pruning capabilities of Markov chains and leave

their predicting capabilities to future work.

5.3.3 Multiply with MDIA matrices

The major computational burden of computing the CPT resides in processing

the multiply operations (lines 2-4 in Algorithm 5.2), which cannot be com-

puted explicitly using Equation (5.7), since the matrices are stored in MDIA

format. The traditional inner-product operation for 2-dimensional matrices is

performed with row or column-major order, i.e. sequentially compute each row

or column of the result matrix. For example, while computing K “ M d L,

where M and L both are N ˆ N ordinary matrices, the jth column of K is

calculated by performing inner-products between the jth column of L and each

row of M . However, this strategy does not apply to MDIA matrices, since the

elements are arranged in diagonals instead of rows or columns. In this paper, we

propose an algorithm that efficiently performs the multiply operation between

MDIA matrices by using a diagonal-major strategy that computes diagonals of

the result matrix in a predefined order.

Projection table

We first introduce the projection table, which links diagonals with their projec-

tions defined as follows. The major usage of projection table is to help us find

the related diagonals during the multiply operation.

Definition 5.6 (Projection). Let φ “ pξ,dq be a diagonal of an N pmq matrix,
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where m ě 2 and ξ “ pδ0, δ1, . . . , δm´2q. φ
K “ pξK,dKq is an H-projection of φ

if

ξK “

$

’

&

’

%

H m “ 2

pδK0 , δ
K
1 , . . . , δ

K
m´3q m ą 2

(5.12)

where δKi “ δi ´ δm´2, @0 ď i ă m´ 1 and

dKri` ιs “ dris, @0 ď i, i` ι ă N (5.13)

where

ι “

$

’

&

’

%

δm´2 m “ 2

δm´2 ´ δm´3 m ą 2
(5.14)

is the shift of the projection. φJ “ pξJ,dJq is a T -projection of φ if

ξJ “

$

’

&

’

%

H m “ 2

pδJ0 , δ
J
1 , . . . , δ

J
m´3q m ą 2

(5.15)

where δJi “ δi`1, 0 ď i ă m´ 1 and

dJris “ dris, @0 ď i ă N. (5.16)

pKq and pJq are called the H and T -projectors, respectively. Intuitively,

the H and T -projections project a diagonal of an m-dimensional matrix onto

the first and last m ´ 1 dimensions, respectively. The projections themselves

are partial diagonals of a pm ´ 1q-dimensional matrix. Note that the array

elements of φ are not vertically projected onto its H-projection φK, but are

aligned according to a shift computed by Equation (5.14). Figure 5.6(a) shows

an example of projecting two diagonals φ1 (blue) and φ2 (red). The darker and
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Figure 5.6: Projections

Algorithm 5.4: Create projection table

input : M (an N pk`1q MDIA matrix)
output: PT (projection table)

1 PT,ΞK, ΞJ Ð empty arrays;
2 foreach diagonal φ in M do

/* compute projections of φ, φK “ pξK,dKq, φJ “ pξJ,dJ) */

3 φK, φJ Ð H and T -projections of φ;
4 if ξK not in ΞK then
5 ΞK.appendpξKq;

6 if ξJ not in ΞJ then
7 ΞJ.appendpξJq;

8 α, β, γ Ð index of ξ, ξK, ξJ in Ξ, ΞK, ΞJ;
9 PT.appendpα, β, γq;

/* create hash index */

10 create index IDXβ on PT pβq;
11 return PT ;

lighter areas denote the sweeping regions of projecting the diagonals onto the

xy and yz sub-spaces, respectively. Figure 5.6(b) and 5.6(c) show the H and

T -projections in the corresponding sub-spaces, respectively. The dashed line

in Figure 5.6(b) illustrates the shift over the H-projection of φ1.

The projection table associated with an MDIA matrix MpD, Ξq is obtained

by performing H and T -projections on every single diagonal of M and collecting

distinct offsets of the projections, denoted as ΞK and ΞJ. The projection table
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is a 2-dimensional array that stores one tuple pα, β, γq in each line, where α,

β, and γ represent the index of ξ, ξK, and ξJ, in Ξ, ΞK, and ΞJ, respectively.

The following shows an example of computing projections and generating the

projection table.

Example 5.3. Let MpD, Ξq be an MDIA matrix, where

D “

»

—

—

—

—

–

1 1 1

1 1 0

0 1 1

fi

ffi

ffi

ffi

ffi

fl

and Ξ “

»

—

—

—

—

–

p0, 0q

p1, 1q

p0,´1q

fi

ffi

ffi

ffi

ffi

fl

The H-projections are

DK “

»

—

—

—

—

–

1 1 1

0 1 1

1 1 0

fi

ffi

ffi

ffi

ffi

fl

and ΞK “

»

—

–

p0q

p1q

fi

ffi

fl

while the T -projections are

DJ “

»

—

—

—

—

–

1 1 1

1 1 0

0 1 1

fi

ffi

ffi

ffi

ffi

fl

and ΞJ “

»

—

—

—

—

–

p0q

p1q

p´1q

fi

ffi

ffi

ffi

ffi

fl

Finally, the projection table is

PT “

»

—

—

—

—

–

0 0 0

1 0 1

2 1 2

fi

ffi

ffi

ffi

ffi

fl

The main purpose of introducing the projection table is to instantly locate

the related diagonals during the multiply operation. For instance, when we

compute K “M dL, the projection table should help us find the correspond-

ing diagonals of M and L that contain all the data that is needed to compute

a certain diagonal of K. Thus, we create a hash index, IDXβ on the second
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Algorithm 5.5: Multiply

input : M (an N pk`1q MDIA matrix)
L (an N pkq MDIA matrix)
PT (projection table)

output: K (LdM)
1 Ndiag Ð number of distinct β in PT ;
2 Ξ Ð array of Ndiag tuples;
3 D Ð Ndiag ˆN array of 0’s;
4 for β Ð 0 to Ndiag ´ 1 do

/* get PT lines associated with β */

5 foreach (α, β, γ) in PT.IDXβrβs do
6 for iÐ 0 to N ´ 1 do
7 j Ð i` ι; /* Equation (5.14) */

8 if 0 ď j ă N then
9 Drβsrjs Ð Drβsrjs `M.Drαsris ˆ L.Drγsris;

10 Ξrβs ÐM.ΞrαsK ; /* Equation (5.12) */

11 K Ð MDIA(D, Ξ);
12 return K;

column of the projection table to support constant time retrievals by β. i.e.

for each diagonal φK of K, we can quickly find the diagonals of M that project

onto φK and their T -projections. Algorithm 5.4 summarizes the main steps of

generating the projection table. Next we present the approach for multiply-

ing Markov transition matrices and state matrices with the help of projection

tables. Multiplication between Markov transition matrices and query vectors

can be performed similarly, and is therefore omitted here.

Dense diagonal matrix

Algorithm 5.5 summarizes the approach to perform multiply operation when

the diagonal matrix D is dense and stored as a 2-dimensional array. In Al-

gorithm 5.5, we first allocate the memory for storing the MDIA format of

K (lines 1-3). Then we compute the array dK “ Drβs (lines 5-9) and offset
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Algorithm 5.6: Multiply (CSR)

input : M (an Npk`1q MDIA matrix)
L (an Npkq MDIA matrix)
PT (projection table)

output: K (LdM)
1 Ndiag Ð number of distinct β in PT ;
2 Ξ Ð array of Ndiag tuples;

/* pass one: compute IA */

3 IAÐ array of Ndiag ` 1 0’s;
4 mask Ð array of N -1’s;
5 nnz Ð 0;
6 for β Ð 0 to Ndiag ´ 1 do
7 foreach pα, β, γq in PT.IDXβrβs do
8 iiÐM.IArαs, jj Ð L.IArγs;
9 while ii ăM.IArα` 1s and jj ă L.IArγ ` 1s do

10 xÐM.JAriis, y Ð L.JArjjs;
11 if x “ y then
12 z Ð x` ι;
13 if maskrzs ‰ α then
14 maskrzs Ð α, nnz Ð nnz ` 1;

15 iiÐ ii` 1, jj Ð jj ` 1;

16 else if x ą y then
17 jj Ð jj ` 1;
18 else iiÐ ii` 1;

19 IArα` 1s Ð nnz;

/* pass two: compute A and JA */

20 AÐ array of nnz 0’s, JAÐ array of nnz 0’s;
21 nextÐ array of N 0’s, sumsÐ array of N -1’s;
22 nnz Ð 0;
23 for β Ð 0 to Ndiag ´ 1 do
24 headÐ -2, lenÐ 0;
25 foreach pα, β, γq in PT.IDXβrβs do
26 iiÐM.IArαs, jj Ð L.IArγs;
27 while ii ăM.IArα` 1s and jj ă L.IArγ ` 1s do
28 xÐM.JAriis, y Ð L.JArjjs;
29 if x “ y then
30 z Ð x` ι;
31 sumsrzs Ð sumsrzs `M.Ariis ˆ L.Arjjs; if nextrzs “ ´1 then
32 nextrzs Ð head, headÐ z;
33 lenÐ len` 1;

34 iiÐ ii` 1, jj Ð jj ` 1;

35 else if x ą y then
36 jj Ð jj ` 1;
37 else iiÐ ii` 1;

38 for j Ð 0 to len do
39 Arnnzs Ð sumsrheads, JArnnzs Ð head;
40 nnz Ð nnz ` 1;
41 tmpÐ head, headÐ nextrheads;
42 nextrtmps Ð -1, sumsrtmps Ð 0;

43 Ξrβs ÐM.ΞrαsK

44 D Ð csr matrixpA, IA, JAq;
45 sort indexpDq; /* sort diagonals in ascending order */

46 return MDIA(D, Ξ);

ξK “ M.ΞrαsK (line 10), projected from diagonals of M , for each diagonal of

K. Finally we create the MDIA format of K from D and Ξ and return the
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result (lines 11, 12).

Sparse diagonal matrix. As we mentioned in Section 5.2.2, the diagonal

matrix D of a Markov transition matrix might be sparse, in which scenario, it

is stored in CSR format. We also propose an approach, summarized in Algo-

rithm 5.6, to process the multiply operation between CSR diagonal matrices,

i.e. D is represented by three 1-dimensional arrays A, IA, and JA (see Sec-

tion 5.1). Specifically, Algorithm 5.6 employs a two-pass approach. In the

first pass (lines 3-19), it computes IA, which indicates the number of nonzero

elements in each diagonal of K; then in the second pass (lines 20-43) it fills

A and JA with the values and in-diagonal positions of the nonzero elements

of K. Finally, we sort the element indexes within each diagonal in ascending

order using the sort indexpq method (line 44). The sorting is an important

procedure that keeps the MDIA format valid during the multiply operation.

The implementation of sort indexpq is explained in [35,39] and omitted here.

Complexity analysis

Given an N pkq matrix, if no sparse storage format is applied, both space and

time complexity for processing the multiply operation is OpNkq. For example,

consider a 100ˆ100 uniform grid, thus N “ 10, 000. M2 is a 10, 000ˆ10, 000ˆ

10, 000 matrix which contains 1012 elements. If each element is a 4-byte float

number, M2 will require 3 terabytes memory. Processing a single multiply

operation will take hundreds of minutes on a 1GHz CPU. If M is in the MDIA

format with ordinary diagonal matrix, the space and time complexities reduce

to OpNdiag ¨ Nq, where Ndiag ! Nk´1 denotes the number of diagonals in M .

The diagonal matrix is stored in CSR format if it is sparse, i.e. the number

of nonzero elements NNZ ! N ˆ Ndiag, in which scenario, the space and
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Table 5.3: Experimental settings

Space domain (mˆm) 50,000ˆ50,000
Number of trajectories 50,000
Grid size 32ˆ 32, 64ˆ 64, 128ˆ 128, 256ˆ 256
Order of Markov chain 1, 2, 3, 4
Sampling interval (s) 30, 60, 90, 120
Pruning sensitivity 10´6, 10´5, . . . , 0,1, 0.2, . . . , 0.5
Window length (km) 1, 2, 3, . . . , 10
Query predict length (min) 10, 20, 30, . . . , 60
Dataset Beijing, Shenzhen

time complexities further reduce to OpNNZ `Ndiagq, which is the theoretical

optimum since any exact (in contrast to probabilistic) algorithm must iterate

through every single diagonal and nonzero element to perform the multiply

operations.

5.4 Experimental Study

In this section, we evaluated our proposed method and compare it with other

existing methods. The experimental goal is to demonstrate that our method is

effective and efficient in reducing the candidate set for predictive range queries.

All algorithms are implemented with Python/C. The experimental machine is

equipped with 2.6 GHz Intel Core i7 CPU and 16GB RAM and runs OSX

10.11.

5.4.1 Experimental setup

The experimental settings are shown in Table 5.3 where the default settings

are boldfaced.
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Datasets

We use two real world GPS tracking datasets: Beijing and Shenzhen. The

Beijing dataset contains 15 million records collected from 10,358 taxis between

Feb. 2, 2008 to Feb. 8, 2008 while the Shenzhen dataset contains 0.79 billion

records collected from 26,572 taxis between March 20, 2014 to March 29, 2014.

Each record includes the taxi ID, the location (longitude and latitude) and the

timestamp. We select an 50,000 ˆ 50,000 square meter area in the correspond-

ing road networks as the space domain. We sample vehicle trajectories from

the GPS records and perform interpolations to make all trajectories have equal

sampling intervals and synchronized timestamps. From each dataset, we col-

lect 50,000 one day long trajectories and divide them into two parts. The first

part contains 40,000 trajectories that are used for training the models. The

remaining 10,000 trajectories are prepared for testing. We sample 50,000 two

hour long trajectories from the testing data and insert them into the T-Grids.

Predictive range queries are randomly generated with the parameters specified

in each experiment.

Evaluation metrics

We consider three metrics to evaluate the effect of our pruning methods: se-

lectivity, precision and recall. Given the set of moving objects O with their

trajectories and a predictive range query Q, selectivity equals |O1|
|O| , where O1 is

the candidate set and | ¨ | denotes the cardinality of a set. Selectivity can be

used to evaluate the pruning effect of a pruning method. Precision and recall

are conventional measures of accuracy. Let R denote the result set of query

Q. Precision equals |O1XR|
|O1| while recall equals |O1XR|

|R| . In addition to these three

metrics, we also evaluate the time and space costs of performing the pruning
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Figure 5.7: Varying order of Markov chain

and query processing.

Competitors

We compared three alternative pruning methods with our proposed method.

They are (1) Maximum speed (MS). This is a naive method that uses the max-

imum possible speed of all objects to enlarge the query window. (2) Velocity

histogram (VH). This method is used in [18], which enlarges query windows by

the maximum speed values of the objects in every grid cell that are stored in a

2-dimensional histogram. (3) Travel time grid (TG). This method is proposed

in [15]. It tracks the average travel time between two grid cells, based on which

the objects are not reachable to the query window within the prediction time

are pruned.

5.4.2 Evaluation of our methods

We first evaluate the performance of our proposed method. We evaluate time

and space costs of computing the CPTs and the pruning effect of Markov

chains. We compare the baseline ordinary matrices (ORD) with two variants

of the proposed MDIA format, MDIA with ordinary diagonal matrices (ORD-
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Figure 5.8: Varying grid size
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Figure 5.9: Varying sampling interval

MDIA) and MDIA with CSR diagonal matrices (CSR-MDIA).

Time and space costs

Figure 5.7 shows time and space costs with varying order of Markov chains.

We find that both execution time and memory rapidly grow as the order in-

creases. Specifically, the size of Markov transition matrices grow exponentially,

which makes ORD and ORD-MDIA infeasible with high-order Markov chains.

However, CSR-MDIA is not as significantly affected by the order of Markov

chains as other approaches. This is because the time and space complexity of

CSR-MDIA is determined by the number of nonzero elements and that of oc-

cupied diagonals, which are far smaller than the size of the transition matrices.
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Figure 5.10: Pruning effects with different parameters

Figure 5.8 shows the effect of varying grid sizes. We omit ORD here since it

is not viable with order-2 (or greater) Markov chains. As before, both time

and space requirements grow as grid size increases, since larger grids result in

more states and larger transition matrices. Moreover, CSR-MDIA significantly

outperforms ORD-MDIA as grid size increases. Generally speaking, the or-

der of Markov chain has more impact on the transition matrix than grid size,

since growth in order increases the dimensions of the matrix instead of increas-

ing the scope of each dimension. Figure 5.9 shows the impact of varying the

sampling interval. We find that larger sampling intervals lead to higher com-

putation costs, since the transition matrices get denser as the sampling interval

increases. It is noteworthy that CSR-MDIA can accomplish the computation

for CPTs within one second and „10 megabytes of memory in all experimental

settings.
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Figure 5.11: Varying query prediction length on Beijing dataset
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Figure 5.12: Varying query prediction length on Shenzhen dataset
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Pruning effect

In this experiment, we evaluate the pruning capability of Markov chains by

comparing selectivity, precision and recall. The experimental results are sum-

marized in Figure 5.10. Figure 5.10(a) shows the impact of pruning sensitivity

(threshold), by varying its value from 10´6 to 0.5. We find that selectivity

significantly reduces when pruning sensitivity increases. Moreover, precision

climbs while recall drops as pruning sensitivity increases. The reason is that

the higher the pruning sensitivity, the more objects are likely to be filtered out,

resulting in smaller candidate set thus lower selectivity. Figure 5.10(b) shows

the results with different orders of Markov chain. We find that both selectivity

and recall significantly reduce while precision rises as order increases. There-

fore, high-order Markov chains are more powerful in pruning while scarifying

prediction rate. Similarly, as shown in Figure 5.10(c), larger grid sizes (more

finegrained grid cells) will result in fewer candidate paths, and thus result in

lower selectivity and recall but higher precision. Similar trends with different

sampling intervals are shown in Figure 5.10(d).

5.4.3 Comparison with other methods

In this set of experiments, we compare the performance of our proposed Markov

chain based method (MC) with three existing methods, maximum speed (MS),

velocity histogram (VH), and travel time grid (TG). We conduct experiments

on both Beijing and Shenzhen datasets. Besides pruning effects, we also evalu-

ate the overall query response time. We use the prediction approach introduced

in [60] (a hidden Markov model based approach) as the PREDICT pq function

in Algorithm 5.4.
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Figure 5.13: Varying query window size on Beijing dataset

Query prediction length

We first study the impact of query prediction length and vary its value from

10 to 60 minutes. Figure 5.11 and 5.12 show the results on Beijing and Shen-

zhen datasets, respectively. We find that selectivity and response time grow as

prediction length increases. This is because uncertainty of the object trajec-

tories increases for longer term prediction, thus we include a larger portion of

candidate objects. Moreover, the response time is nearly linear with selectiv-

ity, which implies that performing the PREDICT pq function with candidate

objects dominates the execution time for answering predictive range queries.

Precision drops as prediction time increases, since longer-term predictions are

more challenging. Recall of our method drops as prediction time increases while

those for other methods do not change much. This is because the main goal
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Figure 5.14: Varying query window size on Shenzhen dataset

of our method is to accurately and efficiently reduce the candidate set with a

trade-off of prediction rate, while other methods have less effects on pruning.

However, this trade-off can be adjusted by the pruning sensitivity. Similar

trends are displayed for Beijing and Shenzhen datasets. We find our method

works a little better on Shenzhen data. This is probably because vehicle speeds

in Shenzhen city are higher than those in Beijing city, thus the motions can

be better captured by the transition probabilities. In summary, our method

significantly outperforms other methods in terms of pruning capability.

Query window size

We also evaluate performance of the methods with different query window sizes.

Figure 5.13 and 5.14 show the results on Beijing and Shenzhen datasets, respec-

tively. Generally speaking, the pruning procedure becomes more effective as
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the query window increases. Similarly, we find that the response time is nearly

linear to selectivity and our method works better on the Shenzhen dataset in

different settings of query window sizes. Again, compared with other meth-

ods, our method enjoys significantly better performance in terms of selectivity,

precision, and response time but scarifies recall.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this dissertation, I present novel approaches for improving the efficiency of

predictive spatio-temporal queries on large MODs.

In Chapter 3, I present the speed partitioning technique that aims to im-

prove the query performances for tree-based indexes. We first formally defined

the search space expansion which can be used as a generic metric to evaluate

query performances for tree-based indexes on MODs. Via analyzing the im-

pact of object velocities on the search space expansion, we proposed a novel

and generic speed partitioning technique that significantly improves the query

performances of tree-based indexes in terms of both range queries and k nearest

neighbor queries. This method computes the optimal ranges for speed parti-

tioning and an optional second-level partitioning over directions of the moving

object velocities using dynamic programming. We applied the proposed speed

partitioning technique on the state-of-the-art indexing structures including the

Bx-tree and the TPR‹-tree for experimental studies, which demonstrated that
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our methods significantly outperforms the baseline approaches without consid-

ering velocity-based partitioning as well as other existing velocity-based parti-

tioning techniques.

Chapter 4 continues the topic of using velocity information to improve query

performance. Since the speed partitioning technique presented in Chapter 3

only applies on tree-based indexes, in this chapter, we explore the uniform

grid structure, which has been proved more efficient for indexing MODs in

main memory. We proposed the D-Grid, a novel dual space uniform grid that

indexes MODs in the location-velocity dual space. The dual space is a 2d-

dimensional Euclidean space, where the first d dimensions represent velocity

and the other d dimensions represent location. D-Grid leverages v-grids and l-

grids in a manner that query window enlargements are significantly reduced in

comparison with using location grids alone, thus is effective for improving query

performance. We also proposed a lazy deletion and garbage cleaning (LDGC)

mechanism which is effective in reducing update costs for uniform grid indexes,

including D-Grid and other existing uniform grid indexes. Algorithms for both

range queries and kNN queries on D-Grid are also discussed in this chapter.

Finally, in Chapter 5, we studied the usefulness of (high-order) Markov

chains as a pruning mechanism for long-term predictive range queries. Since the

verification step, which verifies validities of the objects with the query predicate,

contributes to the major computational burden in typical pruning-verification

strategy for processing predictive range queries, the more objects pruned in

the pruning step, the less the query processing time. Motion functions, which

are extensively used in performing short-term predictive range queries, are not

suitable for long-term predictions since motions of the objects can change over

time. Moreover, existing pruning techniques for long-term predictive range
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queries suffer from limited pruning capacities. We proposed a (high-order)

Markov chain based method that efficiently and effectively prunes the eearch

space for long-term predictive range queries. In order to resolve the explosion

of time and space costs arising with the computations of (high-order) Markov

transition matrices, we propose the multi-dimensional diagonal (MDIA) format

to compactly store the Markov transition matrices. The MDIA format stores

only the partially occupied major diagonals of multi-dimensional matrices. This

storage format is effective since non-zero probabilities in the transition matrices

usually cluster around major diagonals in spatio-temporal settings. We also

proposed efficient algorithms for arithmetic operations involved in our pruning

procedure with MDIA matrices.

6.2 Future Work

To end this dissertation, I present some future works in related fields.

Velocity information is featured in spatio-temporal settings and can be uti-

lized for performance improvement. Analytic methods such as kernel density

estimation (KDE), instead of empirical methods, can be used to estimate the

speed/velocity distributions, which helps find motion patterns of the moving

objects. Velocity-based partitioning on the indexes has been proved effective

in reducing query costs for spatio-temporal queries. An accurate estimation on

the search space expansion can always help find a better partitioning mecha-

nism. In dynamic scenarios, where the distributions of locations and speeds

change frequently, sophisticated partition update algorithms will be necessary

in maintaining the benefit of velocity-based partitioning on query performance.

Moreover, hierarchical grids with predefined sizes might enhance the perfor-
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mance of simple uniform grids in highly skewed datasets. Multi-threading can

always boost both query and update operations with multiple CPUs or cores.

We have proposed an effective pruning mechanism that improves the perfor-

mance for long-term predictive range queries via (high-order) Markov chains.

The key of our method is storing the sparse Markov transition matrices in a

compact manner. We will also seek efficient formats for representing the n-step

Markov transition matrices according to their sparse patterns and further ac-

celerate the multiply operations. Moreover, the convergence property of n-step

transition probabilities is another interesting problem in spatio-temporal set-

tings. Pre-computing popular queries according to the workload will further

improve performance of the system. We are interested in discovering effective

prediction functions using Markov chain models.

Finally, we will also consider privacy issues arisen with location sharing.
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[55] G. Yavas, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos. A data mining

approach for location prediction in mobile environments. Data Knowl.

Eng., 54(2), 2005.



112

[56] J. J. Ying, W. Lee, T. Weng, and V. S. Tseng. Semantic trajectory mining

for location prediction. In 19th ACM SIGSPATIAL International Sympo-

sium on Advances in Geographic Information Systems, ACM-GIS 2011,

November 1-4, 2011, Chicago, IL, USA, Proceedings, pages 34–43, 2011.

[57] M. L. Yiu, Y. Tao, and N. Mamoulis. The bdual-tree: indexing moving

objects by space filling curves in the dual space. VLDB J., 17(3):379–400,

2008.

[58] M. Zhang, S. Chen, C. S. Jensen, B. C. Ooi, and Z. Zhang. Effec-

tively indexing uncertain moving objects for predictive queries. PVLDB,

2(1):1198–1209, 2009.

[59] R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao. Optimized

algorithms for predictive range and KNN queries on moving objects. Inf.

Syst., 35(8), 2010.

[60] J. Zhou, A. K. H. Tung, W. Wu, and W. S. Ng. A ”semi-lazy” approach

to probabilistic path prediction. In The 19th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD 2013,

Chicago, IL, USA, August 11-14, 2013, pages 748–756, 2013.

[61] Y. Zhu, S. Wang, X. Zhou, and Y. Zhang. Rum+-tree: A new multidimen-

sional index supporting frequent updates. In Web-Age Information Man-

agement - 14th International Conference, WAIM 2013, Beidaihe, China,

June 14-16, 2013. Proceedings, pages 235–240, 2013.


	Introduction
	Velocity-Based Partitioning for Tree-Based Indexes
	Indexing with Uniform Grids
	Processing Predictive Range Queries
	Contribution
	Organization

	Related Work
	Tree-Based Indexes for MODs
	Grid-Based Indexes for MODs
	Processing Predictive Range Queries

	The Speed Partitioning Technique
	The Optimization Speed Partitioning Problem
	Search space expansion
	The optimal speed partitioning

	The Partitioned Indexing System
	The optimal speed partitioning
	Index update
	Query processing

	Experimental Study
	Dataset description
	Experimental results


	Uniform Grid Index in Dual Space
	Indexing with Dual Space Grids
	Structure overview
	Updates
	Query processing

	Experimental Study
	Dataset description
	Evaluation of our methods
	Comparison with other methods


	Markov Chain Based Pruning
	Preliminaries and Problem Definition
	Trajectory and path
	Predictive range query
	The Markov chain model
	Sparse matrix storage

	Data Structures
	The trajectory grid
	The MDIA format
	The transition trie

	Algorithms
	Markov chain based pruning
	Discussions
	Multiply with MDIA matrices

	Experimental Study
	Experimental setup
	Evaluation of our methods
	Comparison with other methods


	Conclusion and Future Work
	Summary
	Future Work


