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Abstract 

 

Burdens of Per- And Polyfluoroalkyl Substances (PFAS) In U.S. Public Water Systems 

 

By Madison Gabriella Lee 

 

Objective: Identify relationships between the detection of per- and polyfluoroalkyl substances (PFAS) in 
public water systems and county-level sociodemographic characteristics across the United States. 

Methods: Drinking water and concentrations of six per- and polyfluoroalkyl substances were obtained from 
the United States Environmental Protection Agency’s (U.S. EPA) Third Unregulated Contaminant 
Monitoring Rule (UCMR3), and county-level characteristics were obtained from the 2010 U.S. Census.  The 
data from these two sources were used to construct classification trees to identify predictors of PFAS 
detection. 

Results: The detection frequency of the six PFAS ranged between 0.05% and 1.00%.  With these low 
detection frequencies, only PFHxS, PFOA, and PFOS data produced classification trees.  The main 
predictors for the PFHxS, PFOA, and PFOS included different measures of household income, facility water 
type, population size, and residential mobility.  Surface water as the facility water type was a common split 
among all three of the contaminants.  

Conclusions: The classification trees were a novel approach to identifying disparities in the detection of 
PFAS in drinking water; however, the low detection frequencies from the 2012 – 2015 data limited potential 
subgroups of importance.  The same approach should be used in future PFAS drinking water data to better 
predict which demographic characteristics predict PFAS burden. 
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1. INTRODUCTION 

Poly- and perfluoroalkyl substances (PFAS) are a group of chemicals from commercial and industrial 

processes found to be ubiquitous in the environment.1,2  Prior studies on PFAS contamination have largely 

focused on distribution in specific regions or states based on proximity to point sources (i.e. commercial and 

industrial sites) rather than nationwide distribution.  For instance, a study focused on New Hampshire 

community drinking water near a former U.S. Air Force base concluded that PFHxS, PFOA, and PFOS were 

significantly higher in the water samples and serum samples of the community compared to NHANES 2013 

– 2014 data.3  Hu et al. found that to be indicative not just in New Hampshire but nationally; the number of 

industrial sites, military fire training areas, and wastewater treatment plants were significant predictors of 

PFAS detection in community drinking water.1 

Human exposure to PFAS has also been established in the general population.4  The major exposure 

pathways to PFAS include ingestion and inhalation; ingestion of contaminated drinking water and food, and 

inhalation of contaminated air.2  Serum samples from participants of NHANES revealed serum 

concentrations of PFHxS, PFNA, PFOA, and PFOS in over 98% of samples.4  Human exposure was then 

found to be associated with several human health effects, such as increased risk of thyroid disease, increased 

risk of decreased fertility, and increased risk of kidney and testicular cancer.5   

Even though research has established PFAS exposure in the general population, there are limited 

studies investigating potential disparities in its presence in drinking water.  The Study of Women’s Health 

Across the Nations (SWAN) concluded that site and race/ethnicity were significant predictors of PFAS; 

however, their study was limited to women aged 45-56 years in seven cities.6  Additional research is needed 

with a wider scope of demographics to fully elucidate the distribution of PFAS in community drinking water 

on a national scale and potentially identify vulnerable populations.  This study used publicly available drinking 

water data and demographic variables on the county-level to address any burdens of six perfluorinated 

compounds, including perfluorobutanesulfonic acid (PFBS), perfluoroheptanoic acid (PFHpA), 

perfluorohexanesulphonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), 

and perfluorooctanesulfonic acid (PFOS). 



2. MATERIALS AND METHODS 

2.1 Data Sources 

Public water system (PWS) data was obtained from the Third Unregulated Contaminant Monitoring 

Rule (UCMR3) in the U.S. EPA’s National Occurrence Database (NCOD).  The UCMR3 data provided 

information about public water systems and monitoring of 30 contaminants between January 2013 and 

December 2015.  All large water systems, defined as serving more than 10,000 customers, were required to 

monitor the contaminants, in addition to a representative sample of small water systems, defined as serving 

10,000 or fewer customers.   

Only public water systems within the 50 states.  Other relevant characteristics from the UCMR3 data 

included the PWS ID, facility size, facility water type, state, and zip code.  The PWS ID, state, and zip code 

were used to retrieve the county served by the water system.  A total of 1,878 counties were represented. 

County demographics were obtained from the 2010 data by the U.S. Census Bureau.  The 

demographics were assumed to be constant between census data collection and UCMR3 sampling.  

Demographics included variables on age and sex; education; businesses; computer and internet use; economy; 

families and living arrangements; health; housing; income and poverty; population size; race and Hispanic 

origin; and transportation. 

2.2 Perfluorinated Contaminants 

This analysis was restricted to the six perfluorinated contaminants included in UCMR3.  Three of the 

perfluorinated contaminants were perfluoroalkyl carboxylic acids (PFCAs): PFHpA, PFNA, and PFOA.  The 

other three were perfluoroalkane sulfonates (PFSAs): PFBS, PFHxS, and PFOS.  Each of the contaminants 

were analyzed individually.  Only 0.52% of the samples had concentrations of perfluorinated contaminants 

above the minimum reporting limit (MRL) using EPA Method 537 (0.05% for PFBS; 0.56% for PFHpA; 

0.56% for PFHxS; 0.05% for PFNA; 1.00% for PFOA and 0.79% for PFOS).  Therefore, a binary variable 

was created to assess whether the public water system had ever detected the individual contaminant between 

2013 and 2015. 

 



2.3 Statistical Analyses  

Classification trees were used to assess which county characteristics were predictive of detected 

contaminants.  Statistical analyses were conducted in R version 4.0.2.  The goal was to predict which public 

water systems would have detectable levels of each contaminant based on the county demographic variables.  

The rpart program uses recursive partitioning for classification, regression, and survival trees.  The “method” 

was specified as “class” to building classification models for each of the contaminants.  Additional parameters 

required that the minimum number of observations in a node prior to splitting be 30 (minsplit = 30) and the 

complexity factor by 0.001 (cp  = 0.001).  With the complexity factor set at 0.001, a split will not be made if it 

does not increase the fit by a factor of 0.001. 

The trees were built through splitting the data into sub-groups.  Each sub-group was further split 

until no improvement could be made to the sub-group and/or the sub-group reached the minimum sample 

size.   

Each of the county demographic variables were continuous; the program assessed the optimal split 

point for each of these variables. 

 

3. RESULTS 

Each of the perfluorinated contaminants were detected with a frequency ranging between 0.05% and 

1.00%.  PFBS and PFNA had the lowest detection frequencies at 0.05%, while PFOA had the highest 

detection frequency at 1.00%.  There were 379 total samples with detected PFOA representing 117 PWSs.  

The summary of each perfluorinated contaminant are presented in Table 1. 

The classification trees were created to predict the relationships between detectable compounds and 

county-level sociodemographic characteristics.  However, no subgroups were created for PFBS, PFHpA, and 

PFNA due to the low detection frequencies and variation in sociodemographic characteristics.  Therefore, 

only the classification trees for PFHxS, PFOA, and PFOS are presented.  The classification trees for PFHxS 

is displayed in Figure 1.   



 
Living in the same house as one year ago was the root node (Partition I) for PFHxS detection.  The 

public water systems with the highest predicted probability of detection of PFHxS (0.83) were those with less 

than 78% of the population living in the same house as one year ago (Partition I), population greater than or 

equal to 483,700 (Partition II), and not solely using surface water as the source for their facility (Partition III).  

There were 0.7% observations in that end node, or 54 out of 7,760 public water systems.  The classification 

tree for PFOA is displayed in Figure 2. 

Monthly owner costs without mortgage was the root node (Partition I) for PFOA.  The public water 

systems with the highest predicted probability of detection of PFOA (0.76) were those with monthly owner 

costs without mortgage less than $1,002 (Partition I), median value of owner-occupied housing units between 

$254,100 and $254,800 (Partition II and III), and not solely using surface water as the source for their facility 

(Partition IV).  There were 0.6% of observations in the end node, or 48 out of 8,044 public water systems.  

The classification tree for PFOS is displayed in Figure 3. 

The number of veterans was the root node (Partition I) for PFOS.  The public water systems with 

the highest predicted probability of detection of PFOS (0.79) were those with greater than or equal to 83,930 

veterans (Partition I), greater than or equal to 67% white (Partition II), and not solely using surface water as 

the source for their facility (Partition III).  There were 0.48% of observations in the end node, or 37 out of 

7,867 public water systems. 

 

4. DISCUSSION 

Given the detection frequencies for PFBS and PFNA at 0.05%, classification trees could not be 

produced.  As presented in Table 1, PFBS was only detected in 8 PWSs and PFNA was only detected in 14 

PWSs.  However, the geometric mean concentration of PFNA in those 14 PWSs was 0.034 ppb, which 

exceeds the Minimum Risk Levels (MRLs) for children (0.021 ppb) set by the Agency for Toxic Substances 

and Disease Registry (ATSDR).7  Additionally, the geometric mean concentrations of detected PFOA and 

PFOS exceeded MRLs.  The geometric mean concentration for PFOA was 0.031 ppb, exceeding the MRL 



for children (0.021 ppb); the geometric mean concentration for PFOS was 0.081 ppb, exceeding the MRL for 

adults (0.052 ppb) and children (0.014 ppb).  Therefore, while the detectable concentrations represent a small 

sample of public water systems, these exceedances require further evaluation and public health notice. 

There was also no classification tree produced for PFHpA; despite the detection frequency (0.56%), 

there were no optimal subgroups found to be predictive of detection or non-detection.  However, the data 

for PFHxS, PFOA, and PFOS were all successfully ran with the rpart program.  Living in the same house as 

one year ago was an important overall predictor for the detection of PFHxS.  It should be noted that the 

characteristic of living in the same house as one year ago is measured by the U.S. Census Bureau to assess 

residential stability and to understand the extent of residential migration and mobility.  Higher residential 

mobility rates are higher among low-income households.8  Additional factors contributing to higher 

residential mobility are household characteristics, housing unit conditions, metropolitan area and housing 

market dynamics, neighborhood dynamics, etc.8  The optimal split for living in the same house as one year 

ago was 78%; the end node with the highest predicted probability for detection of PFHxS were public water 

systems with greater than 78% living in the same house as one year ago.  In addition to residence on year ago, 

facility water type and population size were also important predictors for detection of PFHxS. 

For PFOA, median selected monthly owner costs for housing units without a mortgage was an 

important overall predictor.  The other important predictors were the median value of owner-occupied 

housing units and facility water type.  Similarly, the important predictors for PFOS were veteran status, 

median value of owner-occupied housing units, population size, and facility water type.  Given the option for 

veterans to reside on military bases and/or reside in the neighboring area of military bases, veteran status 

could be indicative of military sites which Hu et al. concluded to be predictive of PFAS detection in 

community drinking water.1  However, additional data is needed to fully elucidate the link between the two. 

The classification trees for PFHxS, PFOA, and PFOS all included facility water type.  The UCMR3 

data provided four different designations for water type: SW (surface water), GW (ground water), GU 

(ground water under the direct influence of surface water), and MX (any combination of SW, GW, and GU).  



PFHxS and PFOS both split based on surface water, while PFOA had two splits: one based on surface water 

and one based on ground water.  Much of the literature surrounding point sources of PFAS and drinking 

water support the finding of surface water being a predictor of PFHxS, PFOA, and PFOS detection.9,10  

Additionally, ground water has been subject to accumulation of PFAS containing aqueous film-forming 

foams (AFFF) used at firefighting training sites and military bases.2  AFFF contamination in drinking water 

was identified as a nationally significant challenge in the United States.2  

In contrast to Park et al., this study did not identify ethnicity or race to be major predictors of all 

PFAS chemicals analyzed.6  Only the classification tree for PFOS identified that greater than or equal to 

67.15% white (not Hispanic) was predictive of detection.  However, the classification tree for PFOA 

identified monthly owner costs without mortgage and median value of owner-occupied housing units as 

predictive of detection.  Those two predictors are proxies to household income and overall socio-economic 

status (SES).  While SES has several contributing economic and educational patterns, it is also related to 

race.11  However, it should be noted that SES and race are not interchangeable; Williams et al. notes that race 

is significant in addressing health disparities because SES indicators are not equivalent across racial groups.11 

4.1 Limitations 

There were several limitations to acknowledge in this study.  There were low detection frequencies of 

all perfluorinated contaminants in this analysis, which could be attributed to the detection limit of the 

analytical techniques throughout the analysis period (2013 – 2015) and/or to low concentrations of the 

perfluorinated contaminants in the public drinking water systems.  The lowest minimum reporting limit 

during the collection of UCMR3 data was 0.010 ppb and has seen been improved to as low as 0.001 ppb.  

This study also only analyzes the data provided from the public water systems; the majority of exposure of 

PFAS has been linked to oral ingestion, including fish and shellfish, however, only drinking water is 

considered here.12,13  Sunderland et al. noted that exposure to PFAS from drinking water and shellfish are 

increasing or stable in several regions.2 

Additionally, the analyses assume that the sociodemographic characteristics provided by the 2010 

Census remained constant throughout the sampling period.  Even though a single county may be served by 



more than one public water system, the analyses assume that the county is homogenous, and its 

demographics are representative of each of the individuals served by public water systems.   

The UCMR3 data also excludes private drinking water systems or wells that are also at risk for PFAS 

contamination.  The UCMR3 data also only addressed six perfluorinated compounds; however, there are 

several more emerging PFAS threatening safe drinking water. 

 

5. PUBLIC HEALTH IMPLICATIONS 

The detection of PFAS in public drinking water systems given the analytical methods between 2013 

and 2015 is significant for public health; of the public water systems with detectable concentrations, the 

geometric means for PFNA, PFOA, and PFOS exceeded Minimum Risk Levels sets by the Agency for Toxic 

Substances and Disease Registry.  Additional attention is needed for those public water systems.   

The classification tree analysis was a novel approach for disparities research than can be used with 

data using analytical methods with lower minimum reporting limits for PFAS.  With potentially higher 

detection frequencies among the perfluorinated compounds more subgroups may be identified to better 

understand the disparities in drinking water. 
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TABLES AND FIGURES 

 

Table 1. 

Summary Statistics of Perfluorinated Contaminants in Public Water Systems (PWSs) 

   parts per billion (ppb) 

Contaminant 
Detection 

Frequency, n 
(%) 

PWSs with 
Detect 

Minimum 
Reporting 

Limit (MRL) 

Geometric Mean  
(Standard Deviation) 

PFBS 19 (0.05) 8 0.09 0.154 (1.453) 

PFHpA 236 (0.56) 86 0.01 0.012 (1.728) 

PFHxS 207 (0.56) 55 0.03 0.092 (2.209) 

PFNA 19 (0.05) 14 0.02 0.034 (1.337) 

PFOA 379 (1.00) 117 0.02 0.031 (1.600) 

PFOS 292 (0.79) 95 0.02 0.081 (2.164) 

 

  



Fig 1 

Classification Tree for Detection of PFHxS.  Classification tree for detection of PFHxS with each end 

node specifying non-detection (0) or detection (1), predicted probability, and percent of observations in the 

end node.  Each binary split labeled by Roman numerals are detailed in Table 2. 

 

 

  



Table 2. 

Detection of PFHxS for Each Node in the Classification Tree 

Partition Node 
End 

Node 
Split 

Predicted 
Class 

Predicted 
Probability 

Observations 
in Node (%) 

I Root No 
Living in Same House 1 
Year Ago < 77.55% 

0 0.03 100.0 

I L Yes 
Living in Same House 1 
Year Ago ≥ 77.55% 

0 0.02 96.2 

II L Yes Population < 483,700 0 0.01 3.0 
II R No Population ≥ 483,700 1 0.73 0.8 

III L Yes 
Facility Water Type = 
Surface Water 

0 0.20 0.1 

III R Yes 
Facility Water Type ≠ 
Surface Water* 

1 0.83 0.7 

Node – L: Left Node, R: Right Node 

Predicted Class – 0: No detection of PFHxS, 1: Detection of PFHxS 
* Other facility water types include ground water, ground water under the direct influence of surface water, and a combination of 

surface water and ground water 

 

  



Fig 2.  

Classification Tree for Detection of PFOA.  Classification tree for detection of PFOA with each end node 

specifying non-detection (0) or detection (1), predicted probability, and percent of observations in the end 

node.  Each binary split labeled by Roman numerals are detailed in Table 3. 

 

 



Table 3. 

Detection of PFOA for Each Node in the Classification Tree 

Partition Node 
End 

Node 
Split 

Predicted 
Class 

Predicted 
Probability 

Observations 
in Node (%) 

I Root No 
Monthly Owner Costs 
without Mortgage < $1,002 

0 0.07 100.0 

II L Yes 
Median Value of Owner-
Occupied Housing Units < 
$ 254,100 

0 0.04 67.8 

II R No 
Median Value of Owner-
Occupied Housing Units ≥ 
$ 254,100 

0 0.08 27.0 

III L Yes 
Median Value of Owner-
Occupied Housing Units ≥ 
$ 254,800 

0 0.07 26.2 

III R No 
Median Value of Owner-
Occupied Housing Units < 
$ 254,800 

1 0.61 0.8 

IV L Yes 
Facility Water Type = 
Surface Water 

0 0.18 0.2 

IV R Yes 
Facility Water Type ≠ 
Surface Water* 

1 0.76 0.6 

V L Yes 
Facility Water Type = 
Ground Water  

0 0.08 1.8 

V R No 
Facility Water Type ≠ 
Ground Water  

1 0.54 3.4 

VI L Yes Population ≥ 911,000 0 0.09 0.6 
VI R Yes Population < 911,000 1 0.64 2.8 

Node – L: Left Node, R: Right Node 

Predicted Class – 0: No detection of PFOA, 1: Detection of PFOA 
* Other facility water types include ground water, ground water under the direct influence of surface water, and a combination of 

surface water and ground water 

 

  



Fig 3.  

Classification Tree for Detection of PFOS.  Classification tree for detection of PFOS with each end node 

specifying non-detection (0) or detection (1), predicted probability, and percent of observations in the end 

node.  Each binary split labeled by Roman numerals are detailed in Table 4. 

 

 

 



Table 4. 

Detection of PFOS for Each Node in the Classification Tree 

Partition Node 
End 

Node 
Split 

Predicted 
Class 

Predicted 
Probability 

Observations 
in Node (%) 

I Root No Veteran Count < 83,930 0 0.04 100.0 
I L Yes Veteran Count < 83,930 0 0.12 10.6 

II L Yes 
White (Not Hispanic) < 
67.15% 

0 0.09 10.0 

II R No 
White (Not Hispanic) ≥ 
67.15% 

1 0.66 0.6 

III L Yes 
Facility Water Type = 
Surface Water 

0 0.11 0.1 

III R Yes 
Facility Water Type ≠ 
Surface Water* 

1 0.79 0.48 

Node – L: Left Node, R: Right Node 

Predicted Class – 0: No detection of PFOS, 1: Detection of PFOS 
* Other facility water types include ground water, ground water under the direct influence of surface water, and a combination of 

surface water and ground water 

 


