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ABSTRACT 

 

Bioavailability of Vitamin D and Impact of Supplementation on  

Clinical and Inflammatory Outcomes in Cystic Fibrosis 

 By  

Ruth Elizabeth Grossmann 

 

 ABSTRACT 

Cystic fibrosis (CF) is the most common, heritable disease that significantly 

shortens life expectancy among Caucasians in the United States. Morbidity and mortality 

in CF is primarily related to respiratory failure, the result of chronic pulmonary infection 

and inflammation.  

 Vitamin D insufficiency may affect up to 90% of individuals with CF and may be 

related to the high prevalence of fat malabsorption in CF. Vitamin D insufficiency has 

been associated with an increased risk for low bone mineral density, diabetes, respiratory 

infection, reduced lung function and inflammation; as well as, mortality. Therefore, 

repletion of vitamin D may impact the primary causes of morbidity and mortality in CF 

and should be evaluated.  

 The study of the clinical impact of vitamin D supplementation in CF has been 

complicated by the identification of a reliable vitamin D repletion strategy. We conducted 

a systematic review to determine whether the vehicle of the supplement impacted 

bioavailability both in CF and non-CF populations. We concluded that vehicle substance 

does not appear to have an impact on supplement bioavailability in non-CF subjects, and 



there was inadequate research to determine whether vehicle substance impacts 

supplement bioavailability in CF subjects.  

 In a pilot study of vitamin D supplementation in CF, we randomized adults with 

CF, hospitalized for a pulmonary exacerbation, to either a high-dose, oral bolus of 

vitamin D in a non-lipid vehicle or placebo. Subjects were followed for up to 1-year and 

were evaluated for changes in vitamin D status, vitamin D toxicity, and clinical 

outcomes. We found a significant increase in vitamin D status; as well as, improved 

clinical outcomes in the vitamin D group compared to placebo without signs vitamin D 

toxicity. We also evaluated changes in markers of inflammation and the antimicrobial 

peptide, LL-37 for 12-weeks after randomization. We found a significant decrease in 

systemic concentrations of TNF-α and a trend for decreased IL-6 concentrations in the 

vitamin D group compared to placebo. 

 We have also shown that vitamin D supplementation in a non-lipid vehicle may 

improve clinical outcomes and markers of inflammation in CF.  
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CHAPTER 1: INTRODUCTION 

 

 Approximately thirty years ago, vitamin D deficiency was a disorder considered 

to only be associated with diseases of bone mineralization. Since then, many additional 

diseases have been linked with vitamin D deficiency. At the same time, the prevalence of 

vitamin D deficiency has come to the attention of the scientific community and the 

public. In spite of this, the prevalence of vitamin D deficiency and the diseases associated 

with vitamin D deficiency are increasing in prevalence in the US population (1-3).  

 Vitamin D has been well-known for its importance in the development of bone-

related disorders including rickets and osteomalacia. Recently, additional roles for 

vitamin D have been hypothesized from genetic and epidemiologic evidence. Genetic 

analysis has revealed that vitamin D may contribute to the regulation of 900 to more than 

1100 genes in the human genome (4, 5). The vitamin D receptor and the enzymes that 

activate vitamin D have been isolated from immune cells, skeletal and cardiac muscle, 

brain tissue, respiratory epithelium, pancreatic β-cells, among many others (6, 7). There 

has also been epidemiologic data that correlates markers of vitamin D status with the risk 

for many diseases, including; autoimmune disease, cancer, infectious disease, and 

cardiovascular disease (8-10). At this point, the exact role of vitamin D in these disorders 

and the intake necessary to reduce risk are still unknown. 

 The causes of vitamin D deficiency include dietary and lifestyle factors, as well 

as, physiologic factors (11-13). The US diet includes few vitamin D containing foods and 

US lifestyle habits have reduced sun exposure which together contribute to inadequate 

vitamin D status among Americans (3). In addition, physiologic factors common in the 



2 
 

US population such as obesity, age, and chronic conditions, increase the risk for vitamin 

D deficiency (14-16).   

 It is important to evaluate the bioavailability of supplemental vitamin D 

formulations, since a large proportion of vitamin D intake in the US is from fortified 

foods and supplements (17). There have been a large number of manuscripts addressing 

the impact of the form of vitamin D on supplement bioavailability, but few have 

addressed the issue of the vehicle of the supplement (18-21). Vehicle may impact 

bioavailability to a greater extent in individuals with disorders that impact nutrient 

absorption (22, 23).  

 Cystic fibrosis (CF) is a life-shortening disease that occurs in approximately 

1:3000 live births in the United States. It is caused an inherited mutation of the CF 

transmembrane conductance regulator gene that disrupts the function of many systems 

throughout the body (24, 25). The majority of the morbidity and mortality in CF is due to 

progressive lung disease that results in respiratory failure (26). This lung disease is 

characterized by chronic pulmonary infection and inflammation that leads to lung 

damage and respiratory failure. Vitamin D has been shown to reduce systemic 

inflammatory markers and their release from respiratory epithelium, as well as increase 

the production of antimicrobial peptides (27-29)   

 The CFTR mutation also causes macronutrient malabsorption. Reduced 

absorption of lipids may result in deficiencies of the lipid soluble nutrient, vitamin D. The 

prevalence of vitamin D insufficiency has been estimated to be from 70%-100% and the 

best method for vitamin D repletion continues to be debated (19, 30-35). Over the past 

ten years, the CF Foundation has updated their recommendations for vitamin D repletion 
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two times. The most recent recommendations will be published in March 2012 and have 

not yet been evaluated. A reliable method of vitamin D repletion is necessary to allow 

studies to evaluate the long term impact of vitamin D supplementation in CF. 

 Therefore, the primary focus of this dissertation is to evaluate the current 

literature regarding the impact of supplement vehicle on vitamin D bioavailability and to 

evaluate the impact of a single, bolus dose of cholecalciferol on vitamin D status, clinical 

outcomes and inflammatory markers in adults with CF. 

 The central hypothesis for this body of work is that the vehicle substance may 

contribute to the bioavailability of vitamin D supplements and that vitamin D 

supplementation of CF adults during pulmonary exacerbation will improve clinical 

outcomes and produce anti-inflammatory changes in markers of inflammation. There are 

three sub-hypotheses that were evaluated in this thesis project. 

 The first hypothesis of this thesis is that vitamin D supplements have equal 

bioavailability independent of the supplement vehicle in healthy subjects and that vitamin 

D supplements will have greater bioavailability in subjects with fat malabsorption when 

the primary substance of the supplement vehicle is non-lipid. The rationale for this 

hypothesis is that the absorption and bioavailability of vitamin D from a lipid vehicle 

supplement is reduced in subjects with fat malabsorption compared to healthy subjects.  

This hypothesis may explain the difficulty that has been encountered in reliably 

increasing the vitamin D status of individuals with nutrient malabsorption, such as those 

with CF. 

 The second hypothesis is that vitamin D supplementation during a CF pulmonary 

exacerbation will increase vitamin D status and improve clinical outcomes. The rationale 
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for this hypothesis is that adequate vitamin D status is associated with higher lung 

function in healthy persons and in persons with CF. Thus, improving vitamin D status 

may help improve recovery of lung function during a pulmonary exacerbation and 

improve clinical outcomes.  

 The third hypothesis is that vitamin D supplementation will reduce serum 

concentrations of inflammatory markers and increase serum concentrations of the anti-

microbial peptide, LL-37. The rationale of this hypothesis is that vitamin D 

supplementation has been demonstrated to reduce serum inflammatory cytokine 

concentrations in clinical trials, as well as in in vitro analyses. Vitamin D status has been 

positively correlated with serum concentrations of LL-37 and vitamin D supplementation 

has been found to increase the production of LL-37 in isolated immune and respiratory 

cells in vitro. Therefore, improving vitamin D status may reduce concentrations of 

inflammatory markers and increase LL-37 in individuals with CF during a pulmonary 

exacerbation. 

Specific Aim 1: Determine the impact of the vehicle substance on the bioavailability 

of vitamin D contained in supplements in healthy subjects and in subjects with 

cystic fibrosis-related fat malabsorption.  

The approach for this aim was a comprehensive literature search that identified 

manuscripts that directly compared the bioavailability of vitamin D from supplements 

with different vehicles. The hypothesis of this aim is that in healthy subjects, supplement 

vehicle has no impact on the bioavailability of vitamin D. However, in subjects with CF-

related fat malabsorption, vitamin D will have greater bioavailability from a non-lipid 

vehicle compared to a lipid vehicle.    
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Specific Aim 2: Evaluate the impact of a single, oral bolus of cholecalciferol on 

vitamin D status and clinical outcomes in adults with CF.  

 The approach for this aim was a double-blinded, controlled clinical trial that 

randomized adults with CF to either a single bolus dose of cholecalciferol or placebo. 

Serum 25(OH)D, PTH and calcium concentrations were assessed at baseline, 1-week and 

12-weeks. Clinical outcomes were evaluated up to a year post-randomization.  

Specific Aim 3: Evaluate the impact of cholecalciferol supplementation on 

circulating concentrations of inflammatory markers and the anti-microbial peptide, 

LL-37 in adults with CF.   

 The approach of this aim was a randomized, controlled clinical trial that 

randomized adults with CF to either a single bolus dose of cholecalciferol or placebo. 

Serum 25(OH)D, PTH and calcium concentrations were assessed at baseline, 1-week and 

12-weeks. Clinical outcomes were evaluated up to a year post-randomization. 
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CHAPTER 2: LITERATURE REVIEW 

 

VITAMIN D 

Vitamin D: History, structure and metabolism 

History of discovery 

 Physical descriptions of the disease that is now known as rickets date back to 

early Roman, Chinese and Greek writings (36). The disease of rickets was first described 

in Great Britain in 1645 by the physician, Daniel Whistler, but it was not until the late 

1800’s that the occurrence of rickets was associated with nutrition (37). Jules Guérin 

(1838) produced rickets in puppies by removing them from their mother’s milk and 

keeping them indoors. He concluded that a nutritional deficiency caused rickets (38).  

 Influenced by Guérin’s work, Armand Trousseau also determined that rickets was 

a nutritional deficiency. He recommended treatment with cod liver oil and sunlight. 

Trousseau also identified osteomalacia as an adult form of rickets (38). In 1890, 

Theobald Palm described the geographical distribution of rickets and concluded that the 

prevalence of rickets was inversely associated with the amount of sunlight the region 

received (39).  

 Kurt Huldshinsky determined that the UV spectrum of light was able to prevent 

rickets and used mercury vapor quartz lamps as therapy and prevention of rickets (39). In 

1919, Sir Edward Mellanby rediscovered the anti-rachitic activity of cod liver oil and 

proposed that this was due to the vitamin A content of the oil (40). However, Elmer 

McCollum, heated cod liver oil to destroy the vitamin A and found that the anti-rachitic 
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activity was not destroyed. He isolated the nutrient and named it vitamin D (41). Since 

then, it has become accepted the vitamin D deficiency is the most common cause of 

rickets and osteomalacia. 

Structure, synthesis and forms  

 Vitamin D is a secosteroid and is related to the other steroid hormones, such as 

estrogen, progesterone and testosterone (42). In the epidermis, endogenous 7-

dehydrocholesterol is converted to pre-vitamin D when UVB breaks (290-310 nm) the β-

ring of the cholesterol structure. Vitamin D is formed through thermal rearrangement of 

the pre-vitamin. The maximal concentration of pre-vitamin D in the skin is reached with 

a few hours of sun exposure, after which pre-vitamin D is reversibly converted into two 

inactive vitamin D compounds, lumisterol or tachysterol. This provides a natural limit on 

the amount of vitamin D produced (43).  

 There are several forms of vitamin D, but the two that are most biologically 

relevant are cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) (Figure 1). 

These two forms differ in their side chains; ergocalciferol contains a double bond (C22-

23) and an additional methyl group attached to C24. Physiologically, they are recognized 

by the same enzymes and receptors; and overall their metabolism is very similar (42). 

Cholecalciferol is synthesized in the epidermis and can be obtained from a limited 

number of animal food sources in the diet such as salmon, cod liver oil, and egg yolks. 

Ergocalciferol is primarily obtained from mushrooms that are irradiated to convert 

naturally occurring ergosterol to ergocalciferol (44). Both forms can be found in 

supplements and fortified foods, although the introduction of cholecalciferol fortification 

is more recent than ergocalciferol. 
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Figure 1. Structures of the two major forms of vitamin D: Ergocalciferol and 

cholecalciferol 

 

Bioavailability of vitamin D  

 After synthesis in the skin, vitamin D enters the circulation and binds to the 

vitamin D binding protein (DBP, also referred to as Gcglobulin) or albumin with high 

affinity leaving only a small portion of the vitamin D unbound (45). DBP binds 85-88% 

and albumin binds 12-15% of the vitamin D metabolites (46). Only a small proportion, 

approximately 2%, of DBP is associated with vitamin D and its metabolites; therefore 

DBP has other functions such as scavenging actin released from cells and activation of 

macrophages and osteoclasts (47). Blood concentrations of vitamin D increase slowly 

with cutaneous synthesis, peaking at 24 hours after UVB exposure and returning to pre-

exposure concentrations at approximately seven days. (45). 
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 Absorption of vitamin D from the gastrointestinal tract is dependent on its 

incorporation into mixed micelles. Increased micelle formation increases the absorption 

of vitamin D; and vitamin D supplements have often been formulated using a lipid 

vehicle to increase absorption (48). A large percentage of vitamin D that is absorbed from 

the digestive tract is initially associated with chylomicrons rather than DBP; and 

inhibition of chylomicron formation reduces vitamin D absorption by more than 40% 

(49-51). Over time, vitamin D in the circulation becomes more associated with DBP or 

enters hepatocytes to be metabolized.  

 Oral vitamin D produces an increase in blood concentrations of vitamin D more 

quickly than cutaneous synthesis, reaching peak concentrations at 10 hours and returning 

to baseline by approximately 2 days (45). Uptake of vitamin D by hepatocytes is 

impacted by the method by which vitamin D is transported in the blood and reaches the 

liver. Vitamin D transported in chylomicrons is more rapidly taken up by hepatocytes 

than vitamin D transported by DBP. Therefore, the source of vitamin D, cutaneous versus 

dietary, will impact the kinetics of vitamin D metabolism and blood concentrations of 

vitamin D (45). 

Metabolism of vitamin D  

 Vitamin D is transported first to the liver where it is hydroxylated at the C25 to 

form 25-hydroxyvitamin D (25(OH)D); this structure was first isolated by Hector 

DeLuca in 1968 (52). This reaction may be catalyzed by either Cyp2R1 or Cyp27A1. 

These enzymes are considered high capacity, therefore the conversion of vitamin D into 

25(OH)D is non-rate-limiting (53). Cyp27A1 is able to hydroxylate vitamin D at the 24, 

25 and 27 carbons. Hydroxylation at the 24 position increases the probability that the 
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molecule will be catabolized for excretion. Hydroxylation at C25 is a step in the 

activation pathway of vitamin D to the hormonally active form, 1,25(OH)2D. There is 

some evidence that vitamin D2 may be preferentially 24-hydroxylated rather than 25-

hydroxylated, causing increased excretion and reducing the bioavailability of vitamin D2 

supplements. In contrast, a greater proportion of vitamin D3 may be 25-hydroxylated to 

25(OH)D, which serves as the substrate for the synthesis of 1,25(OH)2D, the active form 

of vitamin D. These differences in hydroxylation may contribute to differences in the 

biologic activity of the two forms (54). 

 25(OH)D is hydroxylated at the 1α-carbon to form 1α,25-dihydroxyvitamin D 

(1,25(OH)2D) by Cyp27B1, a mitochondrial mixed-function oxidase. This metabolite is 

the most biologically active metabolite of vitamin D (55). Cyp27B1 is primarily found in 

the kidneys, specifically the renal tubules. However, it is distributed throughout the body 

in many cell types, such as macrophages, respiratory epithelium, bone, placenta, brain, 

heart, testes and intestine (56-58). Regulation of Cyp27B1 in the kidney is by parathyroid 

hormone (PTH), FGF23, 1,25(OH)2D, calcium and phosphate (59). Extra-renal regulation 

of Cyp27B1 and the synthesis of 1,25(OH)2D takes place by a different mechanism than 

in the kidney. For, example in macrophages and monocytes, activation of the toll-like 

receptor (TLR) pathway increases the transcription of Cyp27B1, thereby increasing the 

cellular production of 1,25(OH)2D (42, 60, 61). 

 Another important reaction which metabolites of vitamin D may undergo is 24-

hydroxylation. The enzyme, Cyp24A1 catalyzes the conversion of 25(OH)D to 

24,25(OH)2D, or 1α,25(OH)2D to 1α,24,25(OH)3D. Cyp24A1 is primarily found in the 

kidney, but similar to Cyp27B1, has a wide distribution in the body (42). 24-
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hydroxylation initiates a series of catabolic events that inactivate vitamin D metabolites. 

Cyp24A1 preferentially hydroxylates 1α-hydroxylated vitamin D metabolites, 

specifically 1α,25(OH)2D. This acts as an important regulator of the activity of 

1α,25(OH)2D. PTH and 1α,25(OH)2D are the primary regulators of Cyp24A1 in the 

kidney. PTH decreases the expression of Cyp24A1 in order to maintain 1α,25(OH)2D 

concentrations in the circulation and increase calcium absorption. 1α,25(OH)2D acts to 

inhibit the expression of Cyp24A1 by binding to vitamin D receptor elements (VDRE) in 

its promoter region (62). 

Genomic and non-genomic actions 

Genomic actions of vitamin D 

 1α,25(OH)2D acts a transcriptional regulator in the genomic action of vitamin D. 

1α,25(OH)2D binds to vitamin D receptors that translocate to the nucleus where they bind 

DNA motifs to modify gene transcription. The intracellular vitamin D receptor (VDR) 

functions as a heterodimer with the retinoic acid receptor. This complex enters the 

nucleus and binds to specific DNA sequences, known as VDR elements (VDRE).   

 VDREs have been found in hundreds of genes throughout the human body (4, 

63). 1α,25(OH)2D may function to activate or repress the transcription of its target genes. 

In order to exert these actions on DNA transcription, 1α,25(OH)2D requires a co-

regulator, either a co-activator or co-repressor. These co-regulators are tissue specific and 

provide a level of tissue specificity on the activity of vitamin D as a transcriptional 

regulator. 
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Non-genomic actions of vitamin D 

 1,25(OH)2D changes cell function through regulation of gene transcription as 

described above; and 1,25(OH)2D  also transduces vitamin D signaling through 

membrane-bound VDRs. These VDRs have been found in osteoblasts, liver, muscle and 

the intestine (64, 65). Associated with caveolae-enriched areas of the plasma membrane, 

these membrane-bound VDRs activate tyrosine phosphorylation cascades (66, 67). Some 

of the actions of vitamin D on brush border cells of the small intestine to increase calcium 

absorption are transduced in this way (68). The non-genomic activities of vitamin D are 

produced through activation of a G-protein coupled signal cascade that includes 

phospholipase C activation, diacyl glyceride, and inositol triphosphate; leading to release 

of endoplasmic recticulum calcium stores and increased intracellular calcium 

concentrations (67, 69).  

Functions of Vitamin D 

Calcium metabolism 

  Disorders of bone metabolism prompted the discovery of vitamin D; therefore, the 

regulation of calcium from the small intestine is known as the classical function of 

vitamin D. Adequate vitamin D status increases the amount of dietary calcium absorbed 

by the small intestine from 10% to 30% (44). Active vitamin D, 1,25(OH)2D impacts 

three aspects of calcium absorption in intestinal epithelial cells. First, 1,25(OH)2D 

increases the expression of calcium channels in the apical membrane of the intestinal 

epithelium which allows calcium to move down its electrochemical gradient into the cell. 

Second, it increases the expression of calbindins, calcium binding proteins that facilitate 

the transport of calcium through the cell. Third, 1,25(OH)2D increases the function of the 
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CaATPase that transports calcium across the basolateral membrane and into the 

circulation. 1,25(OH)2D also increases serum calcium concentrations through stimulating 

osteoclast activity to increase bone resorption and by inhibiting calcium excretion in the 

distal tubules of the kidney (70). 

Hormone secretion 

 1,25(OH)2D participates in regulating the secretion of several hormones. These 

include hormones that help regulate bone mineralization and blood glucose 

concentrations. The role of vitamin D in bone metabolism includes the regulation of PTH 

and fibroblast growth factor (FGF) 23. Although serum ionized calcium concentrations 

are the main regulator of PTH secretion through the parathyroid calcium receptor, 

1,25(OH)2D also regulates PTH gene transcription (71)(Silver, Mayer 1986). However, 

1,25(OH)2D regulation of PTH transcription can be superseded by hypocalcemia which 

may down-regulate the expression of the VDR in the parathyroid, thereby allowing serum 

calcium concentrations to be maintained in the presence of normal concentrations of 

1,25(OH)2D (72).   

 1,25(OH)2D regulates the production of FGF23 from osteocytes. 1,25(OH)2D 

increases the synthesis and secretion of FGF23, which increases the excretion of 

phosphate through the kidney (73). In turn, FGF23 suppresses the production of 

1,25(OH)D from the kidney. Imbalances in this system have been linked to rickets and/or 

osteomalacia (74, 75).  

 1,25(OH)2D also has a role in regulating the release of insulin. Epidemiologic 

studies have linked insufficient vitamin D status with an increased risk for type I and type 

II diabetes (76, 77). The VDR is expressed in the beta cells of the pancreas that produce 
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insulin and in vitro treatment with 1,25(OH)2D increases the synthesis of insulin (78, 79). 

In adults at risk for type II diabetes, vitamin D supplementation has been associated with 

improved β cell function (80). 

Proliferation and differentiation 

 1,25(OH)2D has a role in regulating the cell proliferation and differentiation. 

Vitamin D status has been inversely correlated with risk for some types of cancer and this 

protective effect has been associated with the regulation of cell proliferation, 

differentiation and apoptosis by 1,25(OH)2D (81). Vitamin D supplementation has been 

shown to increase cell differentiation in adenoma patients (82). The VDRE has been 

found directly or indirectly associated with genes that regulate cell cycling in many 

tissues (83).  

Immune function 

 The VDR and the 1α-hydroxlyase that activates 25(OH)D is expressed in many 

cell types throughout the immune system (79). Vitamin D insufficiency has been linked 

to an increased risk of auto-immune and infectious diseases (84). The role of vitamin D in 

the innate and adaptive immune systems is discussed below. 

Innate immunity 

 In the innate immune system, adequate 1,25(OH)2D increases the production of 

antimicrobial peptides, such as cathelicidin and the β-defensins. In the case of LL-37, 

1,25(OH)2D regulates transcription of the hCAP18 gene; and the peptide produced is then 

cleaved to form LL-37 (85, 86). TLR activation in monocytes and macrophages increases 

the synthesis of the VDR and 1α-hydroxylase, leading to an increase in the intracellular 

concentration of the active form of vitamin D, 1,25(OH)2D. The increased concentrations 
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of the VDR and 1,25(OH)2D upregulate the transcription of hCAP-18, (87-90). 

1,25(OH)2D also upregulates the transcription of a second antimicrobial peptide, 

defensin-β2 (91). Therefore, 1,25(OH)2D is important for the production antimicrobial 

peptides and supports innate immunity through this function. 

 Vitamin D also supports the innate response of macrophages and epithelial cells 

to antigen. There is evidence that 1,25(OH)2D regulates the expression of pattern 

recognition receptors, such as NOD2. By increasing the expression of these receptors on 

monocytes and epithelial cells, 1,25(OH)2D increases the sensitivity of these cells to 

bacterial derived antigens (92). 1,25(OH)2D also stimulates the chemotactic, phagocytic 

and oxidative burst responses of macrophages, thereby increasing the innate response of 

macrophages to antigens (88, 93). Therefore, 1,25(OH)2D increases the innate immune 

response to antigen by increasing the function of innate immune cells and the production 

of antimicrobial peptides.  

 In the clinical setting, vitamin D has been associated with increased 

concentrations of LL-37. Systemic concentrations of LL-37 in septic patients were 

positively associated with 25(OH)D in an ICU setting (94). Peripheral blood 

mononuclear cells produced greater concentrations of hCAP-18 when treated with 

1,25(OH)2D or when isolated from subjects treated with high dose vitamin D therapy 

compared to those left untreated (87). Vitamin D supplementation increases neutrophil 

concentrations of LL-37 in neonates (95). UVB therapy increased 25(OH)D 

concentrations in subjects with psoriasis and increased the concentrations of LL-37 in 

skin lesions (96). These results indicate the vitamin D supplementation may improve in 

vivo production of LL-37. 
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Adaptive Immunity 

 Vitamin D is also an important modulator of the adaptive immune response. 

Activation of a dendritic cell (DC) increases the production of T-cell stimulating 

molecules and cytokines, resulting in a Th1 phenotype. Excess activation of the Th1 

phenotype increases systemic inflammation that can cause damage in Th1 dominant 

chronic diseases (97). 1,25(OH)2D, inhibits the maturation of DC and maintains a more 

tolerogenic, Th2 phenotype (97, 98). 1,25(OH)2D reduces the expression of markers of 

DC activation, including MHC-II, co-stimulatory molecules such as CD40, and surface 

markers of DC maturation (84). 1,25(OH)2D also inhibits the DC production of IL-12 and 

IL-23, cytokines that favor the Th1 phenotype, while increasing the release of IL-10, an 

anti-inflammatory cytokine (99). In the presence of adequate 1,25(OH)2D, DC are less 

likely to stimulate an exaggerated immune response. 

 In T-cells, 1,25(OH)2D reduces the expression of markers related to activation in 

a way that is similar to the changes found in the DC (100). In T-cells, 1,25(OH)2D also 

inhibits the expression of pro-inflammatory cytokines, such as IL-1, IL-6, TNF-α, IL-8, 

and IL-12 (101-103). There are several mechanisms whereby 1,25(OH)2D may suppress 

the production of inflammatory cytokines, including the NFκB pathway, the Rho/ROCK 

and the p38-MAPK pathways (104-106). It is well established that 1,25(OH)2D inhibits 

NFκB from increasing the transcription of pro-inflammatory proteins by increasing the 

phosphorylation of IκBα. This pathway also limits inflammation in vivo. In middle-aged 

adults, 25(OH)D concentrations were inversely associated with NFκB activation and 

concentrations of IL-6 (107). 1,25(OH)2D also blocked the NFκB-linked increase of 

inflammatory markers produced in airway epithelium in response to respiratory syncytial 
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virus (28). Recent studies have found that 1,25(OH)2D is able to activate the 

RhoA/ROCK (rho associated coiled-kinase) pathway, inhibiting inflammation and cell 

proliferation(105). Also, 1,25(OH)2D may inhibit the production of IL-6 and TNF-α from 

macrophages through inhibition of LPS induced phosphorylation (activation) of p38. 

1,25(OH)2D upregulates mitogen activating protein kinase (MAPK) phosphatase-1 which 

inhibits p38 phosphorylation. Therefore, vitamin D modifies several pathways to limit the 

production of inflammatory messengers.   

 Several clinical trials have found that vitamin D supplementation may reduce 

concentrations of inflammatory markers (108, 109). In subjects with chronic kidney 

disease, 50,000 IU of vitamin D per week reduced serum concentrations of IL-8, IL-6 and 

TNF-α (29).  Vitamin D supplementation of 2000 IU/day reduced TNF-α concentrations 

in patients with cardiovascular disease, in a double-blind, randomized, placebo-controlled 

trial (110). 1,25(OH)2D reduced the concentration of inflammatory cytokines, TNF-α, IL-

6, IL-1, and IL-8, produced by monocytes isolated from type 2 diabetic subjects (103). 

Not all studies have shown reductions in circulating concentrations of inflammatory 

markers, although these studies used lower doses of vitamin D or found inconsistent 

results on the impact of vitamin D supplementation on pro and anti-inflammatory 

markers (111, 112). Evaluation of the impact of vitamin D supplementation on 

inflammation and clinical outcomes must continue. 

Evaluating and correction vitamin D status 

Definition of vitamin D status and vitamin D intake 

 Serum 25(OH)D concentrations from venous blood greater than 20 ng/ml are 

considered adequate by the IOM and the American Academy for Pediatrics to prevent 
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vitamin D related bone disorders (113). The Endocrine Society defines deficiency as 

25(OH)D < 20 ng/ml and insufficiency as 20-29 ng/ml (114). The maximum 

concentration of 25(OH)D considered safe is 100 ng/ml (11). 

 The 2010 IOM recommendations for vitamin D intakes set the RDA for healthy 

adults at 600 IU. For older adults over the age of 70 years, the RDA was established at 

800 IU. The tolerable upper limit for children <1 year is daily intake of 400 IU, for all 

individuals >1 year is 4000 IU. These recommendations were based on the available 

evidence for health outcomes. Due to the lack of research into the impact of vitamin D on 

outcomes other than bone health, such as density and risk of fracture, the IOM committee 

recommendations were based on the vitamin D intake that has been shown to reduce the 

risk for reduced bone density and bone fracture(113). The IOM recommended lower 

intakes of vitamin D than suggested by some researchers in the vitamin D field, including 

those from the Endocrine Society (114-116). 

 The Endocrine Society evaluated requirements for vitamin D based on the intake 

required to reach 30 ng/ml. The Society chose this outcome based on the serum 25(OH)D 

concentrations necessary to suppress the production of parathyroid hormone and optimize 

calcium absorption (114). Evidence suggests that PTH concentrations are negatively 

correlated with 25(OH)D concentrations until 25(OH)D reaches a concentration of 

approximately 30 ng/ml (117). Although the recommendations for intake differ, it is 

agreed that the 25(OH)D cutoff for vitamin D deficiency is <20 ng/ml (Table 1). 
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Table 1 Recommended Dietary Allowances for Vitamin D 

Recommended Dietary Allowances (RDAs) for Vitamin D** 

IOM Endocrine Society 

Age 
Daily 
Requirement 

Tolerable 
Upper Limit 

Daily 
Requirement 

Tolerable 
Upper Limit 

0–12 months* 400 400 400-1000 2000 

1–18 years 600 600  600-1000 4000 

19–70 years 600 600 1500-2000 10,000 

>70 years 800 800 1500-2000 10,000 

*Adequate Intake (AI) 

**Adapted from the Office of Dietary Supplements Dietary Fact Sheet   (February 
27, 2012, http://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional) and the 
Endocrine Society Clinical Practice Guidelines(118)   

 

Evaluation of vitamin D status 

 Several methods for evaluating vitamin D status have been proposed. The three 

most often discussed are vitamin D, 25(OH)D, and 1,25 (OH) 2D. Vitamin D itself, has a 

relatively short half-life in the circulation, 2-3 days, and therefore blood concentrations 

only indicate vitamin D intake or cutaneous synthesis in the previous few days (57). 

1,25(OH)2D has a short half-life as well, approximately 4 hours, and concentrations may 

fluctuate diurnally. Also, the conversion of 25(OH)D to 1,25(OH)2D is much more 

regulated than the conversion of vitamin D to 25(OH)D. There are several factors that 

regulate the synthesis of 1,25(OH)2D including PTH, calcium, and FGF23. Therefore, 

measuring 1,25(OH)2D may only be a surrogate for the concentration or activity of the 

compounds that regulate the synthesis of 1,25(OH)2D. Further 1,25(OH)2D 

concentrations are maintained even when 25(OH)D concentrations are decreased, thereby 

masking deficiency (119). Because of the many factors that regulate 1,25(OH)D and its 

changing concentrations in the serum, it is a poor choice as a marker of vitamin D status. 



20 
 

 Serum 25(OH)D is the generally accepted method of evaluating vitamin D status. 

Cyp27A1, the enzyme that converts of vitamin D to 25(OH)D, is a high efficiency 

enzyme that does not appear to be highly regulated(54). Further, 25(OH)D has a long 

half-life, 2-3 weeks. Because of this half-life, the serum levels of 25(OH)D do not 

fluctuate rapidly and concentrations are reproducible within individuals over short 

periods of time. Finally, 25(OH)D concentrations have been shown to be associated with 

health outcomes and is therefore the preferred marker when evaluating vitamin D status 

(9, 115).  

Prevalence of vitamin D deficiency and insufficiency 

 Estimates of the prevalence of vitamin D deficiency and insufficiency in the US 

population and around the world range from 20—100% (11). In the US, an estimated 

42% of Black American women of reproductive age are vitamin D deficient. Others have 

estimated that 57% of general medicine patients are deficient and 32% of healthy, free-

living adults (12, 120, 121). Vitamin D deficiency impacts a considerable proportion of 

our population. 

 The prevalence of vitamin D deficiency and insufficiency is increasing in the US 

population. The overall prevalence of vitamin D deficiency (25(OH)D < 10 ng/ml) in the 

NHANES 2001-2004 was 14% and of vitamin D insufficiency (25(OH)D 10 - 30 ng/ml) 

was 71%; therefore, only 23% of the US population had adequate 25(OH)D 

concentrations (≥ 30 ng/ml) (1).  The greatest increases in severe vitamin D deficiency 

from NHANES III (1988-1994) to the 2001-2004 NHANES have been in the non-

Hispanic black population. The prevalence of adequate vitamin D status in non-Hispanic 
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blacks is only 3%, and the prevalence of vitamin D deficiency and insufficiency are 29% 

and 68% respectively (1). 

 The vitamin D status of the US population had decreased over the past 25 years; 

and the prevalence of vitamin D related morbidities has increased. Although more study 

must be done to determine the 25(OH)D concentrations and the necessary intake  to 

prevent chronic disease morbidity and mortality, it is apparent that vitamin D nutriture is 

an important aspect of health and disease in the US today. 

Causes of vitamin D deficiency and insufficiency 

 Vitamin D status usually follows the seasons of the year and climate. During the 

winter months and in regions with fewer sunny days, 25(OH)D concentrations are lower 

than in the summer months and in sunnier regions (122, 123). Also, vitamin D 

insufficiency is primarily due to reduced UVB exposure either because of lifestyle or 

season. People who have regular UVB exposure, such as those who regularly use tanning 

beds, have higher serum 25(OH)D concentrations than those who do not (124, 125). 

Changes in the habits of US citizens have contributed to the reduction in UVB exposure. 

Sun-avoidance behavior, as recommended to reduce the risk of skin cancers, has reduced 

UVB exposure. This includes, avoiding the sun at the times of the day when cutaneous 

vitamin D is most efficient (10AM-2PM), use of sunscreens, clothing and other shade 

devices to avoid direct exposure to the sun (120). Other behaviors that contribute to 

vitamin D insufficiency are increased time spent indoors and decreased exercise and play 

habits that take place outdoors.  The unintended consequence of this is a reduction in 

cutaneous vitamin D synthesis and an increase in the prevalence of vitamin D 

insufficiency and deficiency. In the non-Hispanic black population, the high prevalence 
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of vitamin D deficiency and insufficiency may be related to increased skin pigmentation, 

which has been associated with reduced UVB conversion of 7-DHC to pro-vitamin D 

(126, 127). 

 The prevalence of obesity and overweight has increased in the US population as 

vitamin D status has decreased. Individuals with a greater percentage of body fat 

compared to those with a normal percentage, exhibit an up to 50% lower 25(OH)D 

response to an equal dose of vitamin D or UVB (14, 128). Also, excess adipose tissue 

may sequester vitamin D, thereby reducing the impact of a given dose on vitamin D 

status (129). Therefore, the high prevalence of overweight and obesity may be 

contributing to the high prevalence of vitamin D insufficiency (14, 128).  

 The vitamin D intake of the US population does not meet the estimated average 

requirement (EAR) recommendations for vitamin D intake. In the US, 68% of adults and 

73% children (NHANES 2003-2006) do not meet recommendations (17). More than half 

of the oral vitamin D intake for the US population (≥ 2 years of age) is met by 

supplements and more than 1/3 is from fortified foods (17). The limited intake of vitamin 

D containing foods and supplements has contributed to the prevalence of vitamin D 

insufficiency in the US (130).  

 As individuals age, there is decreased cutaneous synthesis of vitamin D that may 

increase the risk of vitamin D insufficiency. Older adults in long-term care facilities are 

also at increased risk for vitamin D insufficiency. This may be related to reduced 

exposure to UVB, decreased cutaneous synthesis and reduced dietary intake and 

absorption (16, 131-133).   
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Dietary sources   

 Naturally occurring sources of vitamin D are limited. The primary source of 

25(OH)D is cutaneous synthesis (43). Selected food sources of vitamin D in the US diet 

and the average number of IUs of vitamin D per serving are noted in Table 2. 

Table 2 Selected Food Sources of Vitamin D 

Selected Food Sources of Vitamin D* 

 
Food 

IUs per 
serving 

F
at

ty
 F

is
h 

Swordfish, cooked, 3 ounces 566 

Salmon (sockeye), cooked, 3 ounces 447 

Tuna fish, canned in water, drained, 3 ounces 154 

Sardines, canned in oil, drained, 2 sardines 46 

A
ni

m
al

 
fo

od
s 

Liver, beef, cooked, 3 ounces 42 

Egg, 1 large (vitamin D is found in yolk) 41 

F
or

ti
fi

ed
 f

oo
ds

 

Orange juice fortified with vitamin D, 1 cup (check product labels, 
as amount of added vitamin D varies) 

137 

Milk, nonfat, reduced fat, and whole, vitamin D-fortified, 1 cup 115-124

Yogurt, fortified with 20% of the DV for vitamin D, 6 ounces  80 

Margarine, fortified, 1 tablespoon 60 

Ready-to-eat cereal, fortified with 10% of the DV for vitamin D, 
0.75-1 cup  

40 

 Mushrooms, some varieties when exposed to UV light Variable

*Adapted from the Office of Dietary Supplements Dietary Fact Sheet 
  (February 27, 2012, http://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional)    

 

Vitamin D repletion 

 Correction of vitamin D status is may be achieved through exposure to sunlight or 

through oral supplementation; however, intramuscular injection of vitamin D has not 

been found to be an effective method for repletion (132, 134). The dose of vitamin D 
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necessary to correct vitamin D status is dependent on a number of factors, including the 

initial serum 25(OH)D concentrations, malabsorptive disorders and adiposity (32, 129, 

135). Individuals with lower 25(OH)D concentrations will more efficiently convert oral 

vitamin D to 25(OH)D, but still require larger doses to regain an adequate 25(OH)D 

concentration (3, 13). A vitamin D dose of 100 IU will produce an mean increase in 

serum 25(OH)D concentrations of 1 ng/ml in healthy individuals (135, 136). In 

individuals with difficult to correct deficiency, 50,000 IU of vitamin D once a week for 

eight weeks may be administered to correct vitamin D status (137). Alternative methods, 

such as UVB light, may be useful in individuals with malabsorptive disorders (124, 138).  

Vitamin D and health outcomes 

Health outcomes related to vitamin D nutriture 

 Hypertension, myocardial infarction, and stroke, as well as other cardiovascular-

related diseases, such as diabetes, congestive heart failure, peripheral vascular disease, 

atherosclerosis, and endothelial dysfunction have been associated with vitamin D 

deficiency and insufficiency (2, 139, 140). One mechanism by which vitamin D 

sufficiency may impact the risk for these outcomes is the reduction of pro-inflammatory 

markers. Increased inflammation has been linked to poor outcomes in CVD, diabetes, 

peripheral vascular disease and endothelial dysfunction (141). 1,25(OH)2D has been 

shown to reduce activation of the renin-angiotensin pathway as well as improve the flow 

augmentation rate, which may reduce risk of hypertension (142, 143).  

 Risk of type 1 and type 2 diabetes mellitus have been linked to vitamin D 

deficiency (80). Vitamin D supplementation in early childhood or during pregnancy has 

been associated with a reduced risk for type 1 diabetes (144, 145). Observational studies 
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have indicated that vitamin D insufficiency may increase the risk of impaired glucose 

tolerance and for developing type 2 diabetes (77, 146, 147). 

 Vitamin D deficiency rickets and osteomalacia have been linked with low 

25(OH)D concentrations that reduce the absorption of calcium from the GI tract (135, 

148). Osteoporosis is also linked to vitamin D deficiency and reduced calcium absorption  

(70, 149). 1,25(OH)2D may directly stimulate bone mineralization by suppressing 

osteoblast apoptosis while stimulating bone turnover (150). 

 The link between vitamin D and autoimmune disease risk was first described as 

an association between sun exposure and autoimmune disease prevalence. Vitamin D 

deficiency has been associated with increased risk of rheumatoid arthritis, multiple 

sclerosis, thyroiditis and inflammatory bowel disease (10). A well-known example is 

multiple sclerosis (MS). The relationship between northern latitudes, reduced sun 

exposure and an increased risk for MS was first described in US WWII veterans (151, 

152). It is believed that vitamin D alters the risk for autoimmune disorders through its 

tolerogenic influence on the adaptive immune system (153).  

 Vitamin D sufficiency has been found to reduce the risk for some types of cancer. 

The link between serum 25(OH)D or vitamin D supplementation and reduced risk of 

colon cancer has been well established (82, 154). The regulation of proliferation and cell 

differentiation by 1,25(OH)2D may reduce the risk for cancer development (105). 

Health disparities associated with vitamin D  

 Non-Hispanic, black Americans are at greater risk of vitamin D insufficiency and 

deficiency than non-Hispanic white Americans(1). Several health disparities have been 

associated with increased risk for vitamin D insufficiency; these include diabetes, 
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cardiovascular disease, hypertension, pregnancy complications, among others. Vitamin D 

insufficiency is among the risk factors for these health outcomes, and it is postulated that 

restoring vitamin D status may ameliorate some of the disparities (155-157).  

 There is an increased risk of pregnancy complications, such as premature birth, 

bacterial vaginosis and pre-eclampsia among black women, which may be related to 

vitamin D status (157). It is believed that vitamin D modulates the immune system to 

preserve tolerance of the fetus during pregnancy. Further, vitamin D may boost the innate 

immune system to decrease the risk of bacterial vaginosis that can lead to pre-mature 

labor and birth (158).  

 Black Americans have a greater risk for cardiovascular disease, than white, non-

Hispanic Americans. When analyses of cardiovascular mortality from the NHANES data 

were controlled for 25(OH)D concentrations, the increased risk for cardiovascular disease 

was attenuated (156).  When the disparity in systolic blood pressure was analyzed in the 

NHANES data, it was determined that approximately one quarter of the disparity may be 

attributed to differences in 25(OH)D. (159) Observational studies have linked increased 

risk of diabetes with vitamin D deficiency, which may explain the high prevalence of 

type 2 diabetes in black Americans (77, 155, 160). 

CYSTIC FIBROSIS 

Etiology of cystic fibrosis  

 Cystic fibrosis (CF) is the most common life-shortening, inherited disease among 

Caucasians in the United States affecting approximately 1:3000 live births (161). The 

prevalence of CF varies across races and regions of the globe. Within the Caucasian 

population, the prevalence of CF varies; for example, among northern European 
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Caucasians, the rate of CF is 1:1800 in Northern Ireland compared to 1:7300 in Sweden. 

Furthermore, in some Asian countries, the prevalence of CF is as low as 1:100,000 (162, 

163) 

 CF is caused by a mutation in the CF transmembrane conductance regulator 

(CFTR) gene (161, 164). The CFTR gene encodes for a transmembrane chloride channel 

which is expressed in secretory epithelial cells from tissues throughout the body, 

including the epithelium that lines the respiratory airways and the pancreatic ducts (25). 

The CFTR channel regulates the movement of chloride out of the cell and thereby also 

impacts the movement of water and other charged molecules, particularly sodium. The 

primary site of CFTR expression in the lung is in the sub-mucosal glands and dysfunction 

causes the production of abnormally thickened sputum (165).  

The CFTR gene was isolated in 1989, it contains more than 230 kb and there are 

more than 1,000 known mutations of the gene. (166-168). Each mutation may affect the 

functioning of the CFTR protein differently and therefore, there is a spectrum of signs 

and severity of CF disease severity (162, 163, 169). The most common mutation is the 

ΔF508 and accounts for more than 70% of the mutations identified (163). The ΔF508 

mutation is a three base pair deletion that removes the phenylalanine residue from the 

amino acid position 508 (164). This mutation causes the production of thickened mucus 

in the airways of the lungs, ducts of the pancreas and other organs. This thickened mucus 

is an important factor in CF complications. 

Pulmonary pathophysiology in CF 

 CF patients develop chronic lung infections due to an inability to effectively 

remove pathogens from the lungs. The thickened mucus produced due to the 
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dysfunctional CFTR protein traps pathogens and is ineffectively cleared from the lungs. 

As a result, pathogens develop biofilms that maintain their presence in the lung and 

increase the inflammatory response (170). Inflammation leads to structural damage to the 

lung and respiratory failure (26, 171). Most morbidity and mortality in individuals with 

CF is due to progressive lung disease and recurrent pulmonary infections (172).  

 The pathophysiology of respiratory failure in CF involves both chronic pulmonary 

infection and inflammation. The CF lung responds to pulmonary infection with an 

exaggerated inflammatory response (173, 174). This response may or may not be 

preceded by the presence of pathogens in the lung. An exaggerated inflammatory 

response in the CF lung has been demonstrated to be present even in the first months of 

life when it is possible that the lungs have not yet been infected by any pathogens (175). 

It is hypothesized that the presence of dysfunctional CFTR within the cell may increase 

the production of inflammatory mediators by disrupting signaling pathways independent 

of the presence of infection (175, 176). Therefore, it is thought that the presence of 

chronic pulmonary infection is not the sole cause of the inflammation that is an important 

component of lung tissue damage.  

 The mechanism by which ΔF508 causes inflammation is related to the impact of 

the mutated polypeptide on the protein synthesis pathways of the cell. The ΔF508 

mutation produces a misfolded protein, which remains trapped in the endoplasmic 

reticulum. This interrupts normal cellular functions and signaling, resulting in the 

increased production intracellular messengers, such as NFκB, which in turn increase the 

transcription of inflammatory cytokines such as IL-8, TNF-α  and IL-6 (177). The 

misfolded protein may also increase oxidative stress by altering the intracellular redox 
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potential, increasing the production of reactive oxygen species and thereby increasing the 

production of inflammatory mediators (177, 178). Increased concentrations of systemic 

inflammatory mediators have been linked to reduced lung function (179). 

 Activated neutrophils are thought to be the main cause of lung parenchymal 

damage through their release of inflammatory mediators and proteases (180). Neutrophils 

are found in the lungs of CF patients at greatly increased numbers compared to infected 

non-CF lungs (173, 180). It is hypothesized that increased recruitment of neutrophils to 

the lungs, and their release of inflammatory mediators and proteases, are central to the 

exaggerated inflammatory response in CF (181). Neutrophils release inflammatory 

cytokines and chemokines, such as IL-1, IL-12, IL-8, that increase inflammation and 

neutrophil activation. They are also activated by inflammatory mediators produced by 

other immune cells and respiratory cells. Neutrophils are largely recruited by IL-8, which 

acts as a chemokine to attract neutrophils to the lungs. Neutrophils are activated by TNF-

α and IL-8 to increase the production of proteases (182). Two prominent proteases that 

neutrophils produce, neutrophil elastase and matrix metalloproteinase-9, have been 

positively correlated with cytokine concentrations and inversely correlated with lung 

function (183, 184). These proteases may directly damage pulmonary tissue leading to 

reduced lung function. The misfolded CFTR proteins cause the increased production of 

these inflammatory cytokines which increase neutrophil recruitment and lung 

parenchyma damage. 

 Anti-inflammatory therapies have been shown to improve lung function and 

reduce the frequency of pulmonary exacerbations (185). These therapies have included 

glucocorticoids, ibuprofen and antibiotics. Oral therapy with glucocorticoids and 
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ibuprofen are limited due to  adverse side effects, such as growth inhibition and renal 

dysfunction (186). The ideal anti-inflammatory therapy would not only suppress the 

exaggerated inflammatory response in CF, but also enhance the innate response to 

pathogens (187). 

Gastrointestinal pathophysiology in CF 

 The CFTR channel is present in the gastrointestinal (GI) tract from the stomach 

through the colon. In CF, there appears to be chronic underlying inflammation throughout 

the small intestine (188). The mucosa does not function normally in CF and this 

contributes to macronutrient malabsorption. Malabsorption is due in part to reduced fluid 

secretion that results in the thickened mucus lining the intestine and increased 

paracellular permeability in the small intestine (189, 190). However, dysfunction of the 

CFTR channel in the pancreas and its ducts, also increases the thickness of the pancreatic 

secretions and contributes to macronutrient malabsorption by reducing the release of 

digestive enzymes, bicarbonate and fluids into the small intestine. As a result, there is a 

high prevalence of macronutrient malabsorption in CF and up to 90% of CF patients 

receive pancreatic enzyme replacement therapy (191).  

 Fat malabsorption is a prominent component of nutrient malabsorption in CF and 

has multiple causes. Pancreatic insufficiency results in little or no production of 

pancreatic lipase and co-lipase, although the production of lingual lipase is not effected. 

Pancreatic enzyme replacement therapy is frequently used in CF to replace the pancreatic 

lipase and co-lipase, however it is unable to normalize fat absorption (192). Therefore, 

lingual lipase is the main endogenous source of fat digestion in the CF GI tract which 

results in reduced digestion of dietary fats. The inadequately digested, large fat molecules 
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are less able to form small micelles that facilitate lipid absorption causing reduced fat 

digestion and absorption (193). Additionally, the pH of the small intestine is lower in CF 

than non-CF, due to the lack of duodenal bicarbonate, which normally would neutralize 

gastric acidity. Micelle formation by bile salt interactions are reduced at low pH, 

therefore, fewer micelles are formed, more bile salts and fats are lost in the stool which 

may be lead to fat malabsorption (194). Finally, fat malabsorption may also be due to the 

thickened mucus that lines the walls of the GI tract limiting the interaction of the contents 

with the brush border transporters (195). Fat malabsorption in the CF digestive tract leads 

to nutritional deficiencies, including contributing to vitamin D insufficiency.  

Vitamin D in Cystic Fibrosis 

Prevalence and causes of vitamin D Insufficiency 

 Adults and children with CF have a high prevalence of vitamin D deficiency, 

despite increased awareness of the health benefits of adequate vitamin D status and 

guidelines for treatment of vitamin D deficiency (19, 31, 35, 196). The risk of vitamin D 

deficiency is greater in the CF than in the non-CF population and has been estimated to 

affect from 76% to 100% of CF patients (31, 35, 197, 198). In infants diagnosed with CF 

through newborn screening, 37% were found to have 25(OH)D concentrations <20 ng/ml 

(199). The causes of vitamin D deficiency in CF include decreased pancreatic exocrine 

function, resulting in malabsorption of fat soluble vitamins including vitamin D; 

however, other risk factors for vitamin D deficiency are present in patients with CF. 

These include decreased sunlight expose due to chronic illness, decreased retention of 

vitamin D metabolites associated with decreased serum vitamin D binding protein, and 
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malnutrition-associated wasting of adipose tissue, which may limit endogenous storage of 

vitamin D (22, 34, 122, 200, 201).  

 Low concentrations of DBP may contribute to risk of vitamin D deficiency in the 

CF population by decreasing the retention of vitamin D and its metabolites in the blood. 

Low concentrations of DBP are associated with decreased serum concentrations of 

25(OH)D. Vitamin D status is determined by measuring the total amount of 25(OH)D in 

the blood, which includes 25(OH)D bound to the DBP or serum albumin and unbound 

25(OH)D (119, 202). In non-CF subjects and in subjects with other disease states, 

concentrations of DBP have been correlated with vitamin D status as measured by 

25(OH)D (202, 203). Serum concentrations of DBP have been found to be decreased in 

CF subjects compared to non-CF subjects and may be an additional factor in the vitamin 

D deficiency in CF (200, 204). 

  The increased risk of vitamin D deficiency in CF, and the associated 

comorbidities, make evaluation and repletion of vitamin D status an important part of CF 

therapy. Over the past twenty years several methods have been suggested for vitamin D 

repletion, with limited success (205). 

Vitamin D status and clinical outcomes 

 Vitamin D sufficiency (25(OH)D > 30 ng/mL) may be particularly important in 

the CF population. CF subjects are at greater risk of comorbidities that have been 

associated with vitamin D insufficiency. The following CF comorbidities have been 

associated with reduced vitamin D status: low bone mineral density (BMD), diabetes, 

decreased lung function; respiratory infections, and dysregulation of the adaptive and 



33 
 

innate immune response (8, 97, 196, 206, 207). Therefore adequate vitamin D 

replenishment may produce better clinical outcomes for CF patients. 

 There is a high prevalence of low bone mineral density in CF patients. In CF 

adults, it may be greater than 85% (Aris 1998). Inadequate vitamin D status is a 

contributor, as are poor overall nutrition, hypogonadism, reduced physical activity, and 

excess inflammation (34, 208). Vitamin D repletion may increase bone density both by 

improving calcium absorption and reducing inflammation in individuals with CF. 

 Vitamin D insufficiency may also contribute to the increased risk of CF-related 

diabetes (CFRD). Vitamin D deficiency has been linked to both type 1 and type 2 

diabetes (77, 145). CFRD causes increased inflammation and has been linked to reduced 

lung function (209). Vitamin D has been linked to reduced production of inflammatory 

mediators from immune cells in diabetic patients (103). 

 Reduced lung function, as measured by FEV1 % of predicted, is used to assess 

respiratory status in CF. Vitamin D status has been correlated with improved lung 

function in CF and in the general population (196, 210). Respiratory failure is the most 

common cause of mortality in CF. Vitamin D sufficiency may improve lung function 

through the increased production of antimicrobial peptides or improved muscular strength 

(207). 

 Vtamin D sufficiency has been linked to increased production of the antimicrobial 

peptides LL-37 and defensin-β2 (211). Defensin-β2 concentrations are correlated with 

vitamin D status in children with CF (211). LL-37 concentrations can be elevated in CF, 

but in vitro studies have shown that there is a 10-fold increase in the release of LL-37 

from CF-derived respiratory epithelial cells in 1,25(OH)2D supplemented media 
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compared to vitamin D insufficient media (86). Increased concentrations of antimicrobial 

peptides may reduce bacterial load in the CF lung and lead to reduced frequency/severity 

of pulmonary exacerbations. 

 In some clinical analyses, vitamin D supplementation has been associated with a 

reduced risk for respiratory infection (212). However, there have been other studies that 

have shown little benefit (213). Vitamin D may benefit reduce respiratory infection 

through its impact on antimicrobial peptides, muscle function and inflammation (207). 

 Chronic respiratory infection and a dysregulation of the immune response that 

leads to a damaging inflammatory state in CF (171). Vitamin D may also be important in 

regulating the inflammatory response that is considered to be important in the progression 

to respiratory failure in CF patients (97, 172). Systemic inflammation has been associated 

with decreased lung function over time in CF as measured by FEV1 % of predicted (27, 

196, 214). Vitamin D insufficiency has been associated with increased systemic 

inflammation (215-217). 1,25(OH)2D reduces DC stimulation of the Th1 phenotype that 

increases the production of the inflammatory mediators, which have been linked to 

increased inflammation and decreased lung function in CF (97). In addition, 1,25(OH)2D 

has also been found act directly on CF respiratory epithelial cells to decrease the 

production of inflammatory markers (218). Vitamin D repletion may reduce the 

production of inflammatory mediators in CF and reduce the deleterious effects of 

inflammation on lung function.    

 Vitamin D sufficiency may also have an impact on quality of life through 

improved mobility. Vitamin D status is associated with greater muscle strength and 

mobility, particularly in individuals with low body mass and chronic disease (219, 220). 
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In elderly women who were vitamin D insufficient at baseline, vitamin D 

supplementation increased muscle strength (221). In CF subjects, greater mobility as 

assessed by the Life-space questionnaire, has been associated with fewer hospitalizations 

(222). By improving muscular strength, vitamin D may improve mobility and quality of 

life in CF. 

Vitamin D repletion 

 The CF Foundation has recently changed its recommendations for evaluation of 

vitamin D status and vitamin D repletion in CF patients (118). As before, it is 

recommended healthcare providers evaluate vitamin D status at the end of winter at the 

expected 25(OH)D nadir. The American Association for Pediatrics has accepted 

25(OH)D > 20 ng/ml as adequate to prevent rickets in non-CF children. The additional 

comorbidities related to vitamin D insufficiency and evidence that 25(OH)D > 35 ng/ml 

may be necessary to suppress excess PTH production guided the CF Foundation study 

group to recommend 25(OH)D concentrations between 30 and 50 ng/ml (223, 224).  

 The new guidelines also recommend using a cholecalciferol supplement with a 

daily or weekly dosing schedule, evaluation of vitamin D status, confirmation of 

adherence to recommended therapy and then a step-wise increase in supplement dose. 

Individuals with refractory insufficiency should be referred to a specialist in vitamin D 

(118). 

 The previous high dose protocol for treating vitamin D deficiency in CF 

recommended by the CF Foundation did not reliably produce vitamin D sufficiency 

(25(OH)D ≥ 30 ng/ml) in the majority of CF subjects (30, 31). In adults, weekly oral 

dosing of ergocalciferol, 50,000 IU or 100,000 IU, per the CF Foundation’s previous 
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recommendations, did not produce sufficiency in 92% of adult CF patients (31). In 

pediatric CF patients, doses up to 150,000 IU of ergocalciferol weekly produced 

sufficiency in a maximum of 42% of patients (32, 33). A single study found that a very 

large dose of ergocalciferol was able to produce sufficiency in 17 of 18 subjects. The 

dose used for this was 700,000 IU of ergocalciferol over two weeks (30). Therefore, these 

studies found the previous CF Foundation recommendations inadequate. 

 The difficulties with vitamin D repletion in the CF population may also be related 

to the common use of high dose vitamin D2 (ergocalciferol) in a lipid vehicle as the 

treatment for vitamin D deficiency. Vitamin D is a lipid soluble vitamin and may be 

given with a lipid vehicle, or it may instead be compounded with a non-lipid vehicle, 

such as lactose or cellulose, in a pressed-powder tablet. In normal subjects, the lipid and 

non-lipid vehicles appear to exhibit equal bio-availabilities (18, 225). However, most CF 

subjects have pancreatic insufficiency and have been shown to have decreased absorption 

(~50%) of vitamin D from a lipid vehicle compared to healthy subjects (22, 226).  

 Studies of the impact of vitamin D on CF comorbidities depend on the ability to 

adequately replete and maintain vitamin D status in CF individuals. If the new guidelines 

are able to do this, then research may evaluate the importance of vitamin D 

supplementation and the mechanisms through which vitamin D impacts clinical outcomes 

in CF.
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Introduction to chapter 4 

 From our systematic review of the literature, we determined that there is 

insufficient evidence to conclude that the vehicle substance of a vitamin D supplement 

impacts the bioavailability of the supplement in healthy, non-CF subjects. Additionally, 

there were no manuscripts that directly evaluated the impact of vehicle substance on 

vitamin D supplement bioavailability in CF subjects. We did find two manuscripts that 

suggested that a vitamin D supplement in a non-lipid vehicle may have greater 

bioavailability than a lipid vehicle in CF subjects. 

  In Chapter 4, we will evaluate the impact of a cholecalciferol supplement in a 

non-lipid vehicle compared to placebo on clinical outcomes in CF adults hospitalized for 

a pulmonary exacerbation. This is not an evaluation of the efficacy of this 

supplementation strategy since vitamin D insufficiency, 25(OH)D concentrations < 30 

ng/ml, was not included in the eligibility criteria for this pilot study. Rather, this pilot 

study evaluates the feasibility and clinical impact of vitamin D supplementation in CF 

adults hospitalized for a pulmonary exacerbation. 

 In order to optimize bioavailability, a cholecalciferol supplement in a non-lipid 

vehicle was chosen. The supplement dose, 250,000 IU, was selected as the dose required 

to raise blood 25(OH)D concentrations at least 10 ng/ml. Previous analyses found that 

600,000 IU of cholecalciferol increased 25(OH)D concentrations more than 20 ng/ml 

when administered over 12 weeks. Our protocol administered the dose in one large, oral 

bolus within 48 hours of hospital admission for a pulmonary exacerbation. The purpose 

of this strategy was to evaluate the feasibility of increasing vitamin D status during CF 

hospitalization. 
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 In chapter 4 we will report the impact of this bolus dose of cholecalciferol on 

vitamin D status and clinical outcomes; as well as, measures of vitamin D toxicity. 
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Introduction to chapter 5 

 In the fourth chapter, we demonstrated that a single, oral bolus of cholecalciferol 

produces a rapid increase in serum 25(OH)D concentrations in adult CF subjects 

hospitalized for treatment of a pulmonary exacerbation. We also found improvements in 

hospitalization and survival in subjects randomized to vitamin D compared to placebo. 

There was also a trend for improvements in IV antibiotic therapy and recover of lung 

function in the vitamin D group. 

 In chapter 5, we will report changes in markers of inflammation and the 

antimicrobial peptide, LL-37, from baseline and between the two groups. In vitro studies 

have found that 1,25(OH)2D can regulate pathways that lead to the generation of 

inflammatory messengers and antimicrobial peptides. Clinical studies have indicated that 

vitamin D supplementation may reduce systemic concentrations of inflammatory 

markers. In CF, inflammation, both pulmonary and systemic, has been associated with 

poor clinical outcomes and reduced survival. The goal of this manuscript is to describe 

changes in inflammatory markers in this small pilot study. These findings may be useful 

in the planning of future analyses of the mechanisms through which vitamin D may 

modulate the immune response in CF.  

 During treatment for a pulmonary exacerbation, a reduction in inflammation is 

expected. This may be due to the anti-inflammatory impact of the reduced bacterial 

burden after pulmonary exacerbation or the direct impact of some antibiotics on markers 

of inflammation. In this study, we evaluated the use of macrolide antibiotics, which are 

known to have anti-inflammatory properties, but none of the subjects were prescribed 

these during their hospitalization. We also evaluated other antibiotic therapies, however 
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there were no significant differences between the groups. Therefore, differences of 

antibiotic therapy during hospitalization were unlikely to cause differences between the 

groups.  

 In chapter 5, we will describe the change in inflammatory markers and the 

antimicrobial peptide, LL-37, in response to a single oral bolus dose of cholecalciferol. 
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ABSTRACT 

Patients with cystic fibrosis (CF) suffer from chronic lung infection and inflammation 

leading to respiratory failure. Vitamin D deficiency is common in patients with CF and 

correction of vitamin D deficiency may improve innate immunity and reduce 

inflammation in patients with CF. We conducted a double-blinded, placebo-controlled, 

randomized, clinical trial of high dose vitamin D to assess the impact of vitamin D 

therapy on anti-microbial peptide concentrations and markers of inflammation. We 

randomized 30 adults with CF hospitalized with a pulmonary exacerbation to 250,000 IU 

of cholecalciferol or placebo and evaluated changes in plasma concentrations of 

inflammatory markers and the anti-microbial peptide LL-37 over 12-weeks post-

intervention.  In the vitamin D group, there was a 50.4% reduction in TNF-α at 12-weeks 

(p<0.01) and there was a trend for a 64.5% reduction in IL-6 (p=0.09). There were no 

significant changes in IL-1β, IL-8, IL-10, IL-18BP, and NGAL. We conclude that a large 

bolus dose of vitamin D is associated with reductions in two inflammatory cytokines, IL-

6 and TNF-α.  This study supports the concept that vitamin D may help to regulate 

inflammation in CF and that further research is needed to elucidate the potential 

mechanisms involved and impact on clinical outcomes. 
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INTRODUCTION 

 Cystic fibrosis (CF) is the most common life-shortening, inherited disease among 

Caucasians in the United States. Chronic pulmonary infection and inflammation lead to 

respiratory failure, the most common cause of morbidity and mortality in CF (26). 

Pulmonary inflammation is associated with poor outcomes and anti-inflammatory 

therapies have had limited extended use due to adverse side effects (181).  

 Vitamin D insufficiency has been estimated to affect up to 90% of the adults with 

CF (34). Vitamin D has been shown to suppress in vitro and in vivo the production of 

pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-α; as well as, increase 

production of the anti-microbial peptide LL-37 from CF respiratory epithelial cells (29, 

86, 227).    

 Increased production of LL-37 and decreased production of inflammatory 

messengers may reduce pulmonary complications in CF and improve clinical outcomes.   

The purpose of this communication is to describe the impact of a vitamin D repletion 

strategy on markers of inflammation and LL-37 in CF adults during pulmonary 

exacerbation.  

METHODS 

Study design 

As described previously, adult CF patients of the Emory University CF Center 

hospitalized for treatment of a pulmonary exacerbation were eligible. After consent was 

obtained, subjects were randomized to either 250,000 IU cholecalciferol or placebo. 

Blood samples were obtained at baseline, 1-week and 12-weeks (228)  
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Analytical Methods 

 Serum IL-1β, IL-10, IL-18 binding protein (IL-18BP) and plasma IL-6, IL-8 and 

TNF-α were assessed by DuoSet ELISA (R&D Systems, Minneapolis, MN) and plasma 

LL-37 by ELISA (Hycult Biotech, The Netherlands). All cytokine measurements were 

performed in duplicate. Antibiotic therapy during hospitalization was determined from 

hospital patient records. Pathogens present at admission were determined by sputum 

analysis. Pancreatic insufficiency was assessed by the requirement for physician 

prescribed pancreatic enzymes. 

Statistical analysis 

 All statistical analyses were completed using SAS 9.3 (SAS Institute, Cary, NC). 

This was a secondary analysis, the original study was designed to provide 90% power to 

detect a 10 ng/ml difference in serum 25(OH)D between the groups at a significance level 

of α=0.05. Standard chi-square tests and Fisher’s exact test were used to assess 

differences between the groups in antibiotic therapy and microbiology. Variables were 

assessed for normality and the following variables were transformed due to their right-

skewed distributions before inclusion in statistical analyses: IL-1β, IL-6, IL-10, and LL-

37. Paired t-tests were applied to assess within-group changes in mean serum/plasma 

concentrations from baseline. Mixed effects linear regression models with a random 

intercept were used to evaluate the difference in mean serum/plasma concentrations of 

the vitamin D and placebo group at each time point, based on repeated measurements of 

IL-1β, IL-6, IL-8, IL-10, IL-18BP, TNF-α, NGAL and LL-37. The following 

confounders were assessed: age, BMI, sex, race, CFRD, pancreatic insufficiency, lung 

function measured as baseline FEV1 % of predicted, and vitamin D intake.  
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 The confounders found to significantly impact the random intercept model were 

FEV1% of predicted, CF-related diabetes, pancreatic insufficiency and age. The variables 

whose means were significantly different at α<0.10, were adjusted for these confounders. 

RESULTS 

Baseline demographics have been reported elsewhere. There were no statistically 

significant differences in the demographics of the two groups., As previously reported, in 

the vitamin D group, serum concentrations of 25(OH)D increased at 1-week and 12-

weeks, 27.5 ±13 ng/ml and 6.2 ±11 ng/ml, respectively (p<0.001 and 0.06), there was no 

significant change in the placebo group (228).  

There were no significant differences between the groups in microbiology at the 

time of hospitalization or the types of antibiotic therapy during hospitalization. 

Comparison of the mean concentrations of markers of inflammation and LL-37 are 

summarized in Table 3. In IL-1β, IL-10, IL18BP, NGAL and LL-37 there were no 

significant differences in the means between groups at any time point.  

At 12-weeks, mean serum TNF-α concentrations in the vitamin D group were 

significantly less than those in the placebo (Table 3). Compared to baseline, TNF-α 

decreased 3.54 ±8.3 pg/ml and 27.62 ±8.4 pg/ml at 1-week and 12-weeks, respectively 

(p= 0.60, 0.0002); when adjusted for confounders, the change in TNF-α remained 

statistically significant. In the placebo group there was no significant change in TNF-α 

from baseline at 1-week or 12-weeks (Figure 2).  

At 1-week, there was a trend for decreased plasma IL-6 concentrations in the 

vitamin D group compared to placebo (Table 3).Compared to baseline, mean plasma IL-6 

concentrations decreased significantly in the vitamin D group 24.91 ±8.4 pg/ml (p=0.004) 
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at 1-week and 18.84 ±11.8 (p=0.4) at 12-weeks; there was no significant change from 

baseline in the placebo at 1-week or 12-weeks (Figure 2).  

DISCUSSION 

 Inflammation is an important contributor to CF disease progression and anti-

inflammatory therapies may improve clinical outcomes (181). Given the high prevalence 

of insufficiency, vitamin D should be evaluated for its potential to reduce inflammation 

(34). This is the first evaluation of multiple markers of inflammation and the anti-

microbial peptide LL-37 in response to a marked increase in 25(OH)D produced by high 

dose vitamin D supplementation during a CF exacerbation. The data we present indicates 

that vitamin D supplementation may reduce systemic concentrations of IL-6 and TNF-α.  

 Vitamin D may reduce transcription of inflammatory cytokines through 

modulation of the NFκB and MAPK pathways (181, 229). Serum 25(OH)D 

concentrations have been negatively correlated with the pro-inflammatory marker, IgG, 

and positively correlated with lung function in cross-sectional studies of CF subjects (19, 

27). Pre-treatment of isolated CF epithelial cells with the hormonal form of vitamin D, 

1,25(OH)2D, decreases the secretion of IL-8 and IL-6 in response to antigen stimulation 

(227). 1,25(OH)2D has also been shown to increase the production LL-37, the anti-

microbial peptide and hCAP-18 mRNA from which it is synthesized(86, 227). In this 

randomized, controlled trial, we have found that increasing vitamin D status in CF 

subjects may also reduce concentrations of pro-inflammatory markers.    

 Vitamin D has the properties of an ideal anti-inflammatory therapy since it may 

suppress concentrations of pro-inflammatory cytokines while supporting innate immune 

functions, such as antimicrobial peptide synthesis. This pilot study provides baseline data 
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for the design of future studies to assess the impact of vitamin D on pulmonary and 

systemic inflammation in CF. 
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Tables 

Table 3 Comparison of mean serum and plasma concentrations of inflammatory markers 

Mean concentrations at baseline, 1-week and 12-weeks in CF adults hospitalized with a 
pulmonary exacerbation randomized to either a single oral 250,000 IU dose of 
cholecalciferol or placebo. 
 

Time Vitamin D3
1 Placebo1 p-value2 p-value4

IL-1β3, pg/ml 
Baseline 1.95 (1.32) 2.44 (1.17) 0.48 
1 week 1.27 (0.74) 2.76 (1.08) 0.18 
12 weeks 2.47 (1.73) 4.74 (3.69) 0.15 

IL-63, pg/ml 
Baseline 38.63 (9.60) 34.38 (6.76) 0.85 0.50 
1 week 13.72** (2.35) 29.41 (7.20) 0.09 0.09 
12 weeks 22.65 (4.34) 36.62 (7.46) 0.21 0.11 

IL-8, pg/ml 
Baseline 34.64 (1.07) 41.40 (2.79) 0.03 0.05 
1 week 34.51 (0.84) 40.24 (1.96) 0.07 0.13 
12 weeks 39.59* (1.88) 48.54** (4.28) 0.003 0.01 

IL-103, pg/ml 
Baseline 42.03 (21.17) 28.54 (5.56) 0.99 
1 week 30.01 (11.22) 29.62 (5.80) 0.73 
12 weeks 49.92 (28.89) 37.24* (11.22) 0.40 

IL-18-1BP, pg/ml 
Baseline 2.64 (0.16) 2.77 (0.18) 0.57 
1 week 2.65 (0.14) 2.80 (0.18) 0.57 
12 weeks 2.50 (0.12) 2.92 (0.20) 0.11 

TNF-α  
Baseline 55.67 (8.18) 69.52 (7.50) 0.18 0.41 
1 week 52.13 (5.62) 67.48 (7.92) 0.13 0.34 
12 weeks 27.62** (5.82) 68.54 (8.61) 0.0003 0.0049 

NGAL 
Baseline 79.65 (1.71) 78.56 (2.18) 0.77 
1 week 76.11 (2.84) 76.85 (1.81) 0.88 
12 weeks 71.64* (3.13) 74.95 (4.01) 0.39 

LL-373 
Baseline 73.10 (7.40) 192.60 (46.50) 0.003 
1 week 128.10 (33.80) 174.60 (28.40) 0.17 
12 weeks 142.60 (45.90) 135.30 (28.80) 0.67 

1unadjusted mean from mixed model (SEM)   
2unadjusted p-value comparing means from mixed model 
3variable was log-transformed before inclusion in model  
4adjusted for FEV1% of predicted, CFRD, pancreatic insufficiency and age  
*within group comparison, p-value <0.05, compared to baseline 
**within group comparison, p-value <0.01, compared to baseline 
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Figures 

Figure 2. Mean change in plasma concentrations of TNF-α and IL-6 

Mean change in plasma concentrations of TNF-α and IL-6 at baseline, 1-week and 12-
weeks in CF adults randomized to 250,000 IU cholecalciferol or placebo. 
a. Mean change in TNF-α plasma concentrations. In the vitamin D group, TNF-α 
decreased 3.56 and 27.83 pg/ml at 1-week and 12-weeks (p=0.6, 0.0002); TNF-α 
remained unchanged in the placebo. (SEM bars). 
b. Mean change in plasma concentrations of IL-6.  In the vitamin D group, IL-6 
decreased 12.39 and 5.16 pg/ml at 1-week and 12-weeks (p=0.004,  0.35);  IL-6 remained 
unchanged in the placebo. (SEM bars). 
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CHAPTER 6: CONCLUSIONS 

Key Findings 

 Vitamin D insufficiency is common in the US population and may be linked to 

the high prevalence of cardiovascular disease, cancer and autoimmune disorders (115). 

However, much is still unknown about the best strategy for vitamin D repletion, the 

appropriate vitamin D dose to improve clinical outcomes and how vitamin D repletion 

may impact clinical outcomes in populations at high risk for vitamin D deficiency. 

 Chapter 2 of this dissertation provides a systematic review of the current scientific 

literature regarding the impact of supplement vehicle on the bioavailability of vitamin D. 

We concluded that in a healthy population there appears to be little difference in 

bioavailability of vitamin D from lipid, non-lipid or ethanol vehicles. However, the 

number of manuscripts that compared the bioavailability of vitamin D from more than 

one vehicle is very limited. No manuscripts directly evaluated the impact of supplement 

vehicle on the absorption or bioavailability of vitamin D in subjects with CF-related 

macronutrient malabsorption. Individuals with malabsorptive disorders, such as CF, are 

at increased risk for vitamin D deficiency and may also have increased risk of vitamin D 

deficiency related comorbidities. Therefore, additional research into the formulation of 

vitamin D supplements, including vehicle, may aid in correcting vitamin D status in these 

populations. 

 The fourth chapter of this dissertation evaluated the impact of a single, large bolus 

dose of cholecalciferol in adults with CF hospitalized for a pulmonary exacerbation. We 

demonstrated a significant increase in vitamin D status over a short period of time 

without any evidence of vitamin D toxicity. Unadjusted survival and number of days 
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hospitalized were also significantly improved in the supplemented group and there was a 

trend for improvements in IV antibiotic therapy and recovery of lung function. Given the 

small sample size of this pilot study, these outcomes and others should be explored in a 

larger sample. 

 In the fifth chapter of this dissertation, we report on the impact of high dose 

vitamin D supplementation on markers of inflammation and the anti-microbial peptide, 

LL-37 in adults with CF. Although this was a small, pilot study, there were reductions in 

serum concentrations of TNF-α, as well as a trend for reduced IL-6 concentrations. The 

results from this study may be used to inform future study of the impact vitamin D on 

inflammation in CF. 

Implications for vitamin D repletion in the CF population 

 In the CF population, several comorbidities may be impacted by vitamin D 

insufficiency. Vitamin D repletion in CF is complicated by pancreatic insufficiency and 

macronutrient malabsorption. Vitamin D is a lipid-soluble vitamin, often administered in 

a lipid vehicle. Although the predominant form of nutrient malabsorption in CF is lipid 

malabsorption, there has not been a direct evaluation of the impact of lipid and non-lipid 

vehicles on supplement bioavailability in CF. There are two manuscripts that provide 

some evidence that a non-lipid vehicle may have greater bioavailability in the setting of 

CF malabsorption.  

 In subjects with CF, Khazai, et al. found that a vitamin D supplement from a non-

lipid vehicle had more than a 3 times greater impact on vitamin D status than a lipid 

vehicle supplement; however, this study was confounded by the form of vitamin D in the 

supplements. The lipid vehicle supplement contained ergocalciferol and the non-lipid 
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vehicle supplement contained cholecalciferol (19). Cholecalciferol has been shown to 

produce a greater increase in serum 25(OH)D concentrations than ergocalciferol (20, 21). 

Therefore, it cannot be assumed that the difference in bioavailability in the Khazai study 

was due only to the vehicle of the supplement. A direct comparison of cholecalciferol 

bioavailability from a lipid and a non-lipid vehicle is necessary to confirm a greater 

bioavailability from a non-lipid vehicle. 

 It does appear that lipid malabsorption contributes to the reduced vitamin D status 

of individuals with CF. Lark, et al. found an approximately 50% reduction in the 

absorption of ergocalciferol from a lipid vehicle supplement in CF subjects compared to 

non-CF subjects. Also, the bioavailability of the supplement was significantly reduced in 

the CF group compared to the non-CF group, demonstrated by the reduced 25(OH)D 

response to the ergocalciferol dose in the CF group. This study did not evaluate the 

absorption or bioavailability of vitamin D from a non-lipid vehicle supplement, so no 

direct comparison can be made between lipid and non-lipid supplements. Therefore, it is 

still important to compare the absorption and bioavailability of vitamin D from a non-

lipid vehicle and a lipid vehicle in CF subjects. Although vitamin D may have greater 

bioavailability from a non-lipid vehicle supplement, individuals with CF may still need 

larger doses to optimize vitamin D status. An understanding of the absorption kinetics 

and metabolic conversion to 25(OH)D, may help determine the correct dosing of vitamin 

D in CF.  

 There may also be a significant variability in the 25(OH)D response to a given 

dose of vitamin D among individuals with CF. Lark, et al. reported that two subjects in 

the CF group did not show any change in serum 25(OH)D concentrations after a 100,000 
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IU dose of ergocalciferol (22). In our sample, we also found one subject in the vitamin D 

group whose 25(OH)D concentrations were essentially unchanged after a 250,000 IU 

dose of cholecalciferol in a non-lipid vehicle (unpublished data). This variability implies 

that it is unlikely that a single repletion strategy will optimize 25(OH)D concentrations in 

all individuals with CF and the evaluation of vitamin D status after vitamin D therapy 

remains important.  

 Individuals with other malabsorptive disorders, including individuals with short 

bowel syndrome, celiac disease, among others are also at greater risk of vitamin D 

insufficiency; as well as, at greater risk for vitamin D related co-morbidities such as low 

bone mineral density, diabetes, and other inflammatory diseases (23, 230-232). Therefore 

the correction of vitamin D insufficiency in these populations may have greater benefits 

than in the healthy population. They may require increased dosing of vitamin D or may 

benefit from different supplement formulations. Therefore, continued evaluation of 

supplements with greater potential bioavailability in these individuals may lessen the 

health burden experienced. Additionally, since the population of the US has a high 

prevalence of individuals at increased risk for vitamin D deficiency related to age, obesity 

and chronic disease, the repletion methods that benefit individuals with nutrient 

malabsorption may also provide insight in how to maintain the vitamin D status of the US 

population. 

Implications for the evaluation of vitamin D supplementation in CF 

 Clinical outcomes are an significant factor in evaluating the importance and the 

success of vitamin D repletion in CF. Vitamin D supplementation adds another therapy to 

the already heavy therapy burden experienced by individuals with CF and their healthcare 
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providers. Therefore, a thoughtful evaluation of the impact of vitamin D supplementation 

on health outcomes, overall patient compliance with therapy and healthcare costs should 

be performed. 

 First, it is essential to address the impact of vitamin D on clinically relevant 

outcomes. We chose the outcomes of hospitalizations, antibiotic therapy, return to 

baseline lung function and survival with the advice of CF physicians as outcomes of 

clinical importance. In the vitamin D group there was an improvement or a trend for 

improvement in all of these outcomes compared to placebo. Although this pilot study had 

a small sample size, the clustering of improved clinical outcomes and surrogate markers 

of disease severity in the vitamin D group provides evidence that vitamin D repletion 

during CF pulmonary exacerbation may have a beneficial impact on clinical outcomes. 

 Lung function is important to evaluate in relationship to vitamin D 

supplementation since vitamin D status has been positively correlated with lung function 

and lung function is one indicator of disease progression. The majority of lung function 

deterioration is accumulated during pulmonary exacerbations; therefore, recovery of 

baseline lung function is an indicator of disease progression (172). Our study found a 

trend for increased recovery of baseline lung function in the vitamin D group compared 

to the placebo. The impact of vitamin D on longer-term outcomes such as survival and 

hospitalizations may be explained by the increase in the return to baseline lung function 

in the vitamin D group. In future studies, the relationship of vitamin D status to the 

recovery of lung function and long-term clinical outcomes should be evaluated. 

 Evaluation of vitamin D toxicity is important in trials of vitamin D 

supplementation since toxicity has been reported due to the inadvertent intake of large 
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doses. There were no signs of vitamin D toxicity with a single large, oral bolus of 

cholecalciferol; no reports of clinical symptoms of hypercalcemia or elevated serum 

ionized calcium. There were also no statistically significant differences in PTH 

concentrations between the two groups; therefore, we were unable determine if this 

strategy impacts PTH concentrations. Larger studies are necessary to evaluate the safety 

of this dose and any impact on PTH concentrations.  

 The lack of impact on PTH concentrations may be due to a small sample size or 

the timing of sample collection. However, it may also indicate that the rapid increase in 

vitamin D status and its subsequent return to close to pre-intervention concentrations may 

have not been sufficient to impact PTH concentrations. This is a concern, since adults 

with CF have a high risk of reduced bone density and increased PTH may cause loss of 

bone mineralization leading to further reductions in bone density. Longer term dosing 

regimens should be evaluated to determine if PTH concentrations may be suppressed 

over longer periods of vitamin D supplementation.  

 Finally, assessment of the impact of vitamin D supplementation should include an 

evaluation of patient compliance and economic effects. We did not directly evaluate the 

impact of this supplementation method on patient compliance or healthcare costs. 

However, the use of a single, bolus dose of vitamin D to improve vitamin D status may 

impact both of these outcomes. Previous vitamin D repletion strategies have required 

multiple, large doses over a period of weeks. These methods have also recommended 

evaluation of vitamin D status over a period of months after completion of therapy (30-

33, 35). A single dose may be administered during patient visits, increasing compliance 

and reducing the burden of therapy. Additionally, the 25(OH)D response to a single bolus 
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dose may be evaluated in shorter time intervals due to the large increase in 25(OH)D 

concentrations at 1-week post-intervention. This may reduce the timespan necessary to 

replete vitamin D or determine that an individual should be referred to a specialist for 

additional evaluation. The economic impact of vitamin D repletion is difficult to 

evaluate; however, fewer days of hospitalization, fewer IV antibiotics prescribed would 

be expected reduce healthcare costs. This study provides essential preliminary data that 

will be useful in the design of further analyses of the impact of vitamin D 

supplementation in CF. 

Implications for the evaluation of systemic inflammation in CF 

 Systemic levels of inflammation are important in CF both for their impact on 

pulmonary inflammation and their impact on other CF comorbidities. Individuals with CF 

are at increased risk for both low bone mineral density and diabetes which are both 

related to increased inflammation (233). Chronic inflammation has a negative impact on 

bone metabolism and has been linked to impaired linear growth and bone mineral accrual 

(21). Pre-pubertal high levels of IL-6 have been shown to increase bone mineralization 

defects (234). Chronic systemic inflammation may increase the risk for low bone mineral 

density in CF. Vitamin D may reduce systemic levels of IL-6 and lessen the impact of 

inflammation on the risk for reduced bone mineral density and growth in CF. Vitamin D 

repletion should be evaluated for its impact on markers of bone turnover. 

 The reduction in concentrations of the inflammatory cytokines IL-6 and TNF-α in 

the vitamin D group compared to the placebo was not accompanied by changes in the 

concentrations of IL-1β. The production of IL-1β is regulated by two pathways, the 

NFκB and caspase-1 pathways (235). The inflammasome recognizes both exogenous and 
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endogenous signals leading to the activation of caspase-1 (236). Therefore, the activation 

of IL-1β may be impacted by multiple signals with which vitamin D supplementation 

may or may not interact. In vitro analysis may be able to assess the impact of vitamin D 

on both of these pathways.  

 Concentrations of IL-10 were also unchanged in the vitamin D group compared to 

the placebo group. This may be related to the many immune cell types that synthesize IL-

10 and the complexity of the regulation of its expression (237, 238). Therefore, vitamin D 

supplementation may not sufficiently interact with all these components to regulate 

systemic levels of IL-10. However, further research into the impact of vitamin D 

sufficiency on immune cell function in CF may elucidate a role for vitamin D in the 

regulation of IL-10 in some immune cell types. 

 Diabetes and inflammation act as a reciprocal feed-forward loop, increased 

inflammation causes β-cell dysfunction and reduced insulin sensitivity, that in turn 

increases inflammation (239). Vitamin D status has been inversely correlated with the 

risk for type 1 and type 2 diabetes (144, 145). CF-related diabetes (CFRD), has been 

linked to reduced lung function, bone mineral density and survival (209). Inflammation 

and reduced lung function are associated with impaired glucose tolerance and diabetes in 

CF (209, 240). Insulin therapy of insulinopenia in CF has been shown to reduce the 

deterioration of lung function (241). Vitamin D repletion may reduce both the risk for 

glucose intolerance, development of full diabetes, and may reduce the inflammatory 

response that is linked to the deterioration of lung function in CFRD. 

 Limiting inflammation through the use of anti-inflammatory therapies has shown 

promise in clinical trials. Trials of glucocorticoids, such as prednisone, have been shown 
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to reduce deterioration of lung function. However, these trials had to be discontinued due 

to the rate of side effects such as glucose intolerance, growth impairment and cataracts 

(242, 243). Ibuprofen has also been shown to slow the progression of lung disease, 

particularly in those with mild lung disease; and it has been found to have an acceptable 

safety profile in a Cochrane review (244). However, there is limited use of ibuprofen due 

to possible side effects and the need to titrate dosage (245). If ibuprofen is not titrated to 

high enough levels, it may increase inflammation by increasing neutrophil influx into the 

CF lung (246). These anti-inflammatory interventions have had limited use as a 

component of CF therapy. However, clinicians and researchers continue to evaluate anti-

inflammatory therapies (247, 248). Vitamin D does modulate the immune response and 

has been shown to have anti-inflammatory effects. Therefore, as a component of anti-

inflammatory therapy, vitamin D may benefit CF clinical outcomes. 

 Vitamin D bolus dosing during hospitalization for a pulmonary exacerbation may 

be particularly beneficial since hospitalization includes more intensive respiratory 

therapies that rehydrate airways and breakdown mucus. The BALF of CF patients 

contains many proteins, polysaccharides, glycosaminoglycans and neutrophil 

extracellular nets that inhibit the activity of anti-microbial peptides (249). Hydration of 

the airways and the use of hypertonic saline may increase the activity of endogenous 

antimicrobial peptides by releasing the antimicrobial peptides from these complexes 

(250). Therefore, optimal antimicrobial peptide response to vitamin D repletion may 

depend on other therapies that facilitate the activity of these peptides. 
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Implications for public health 

 Addressing vitamin D insufficiency in the US population is a public health issue 

because of the high prevalence of insufficiency and the numerous health outcomes related 

to insufficiency (9, 157, 207). Cutaneous synthesis of vitamin D from UVB exposure, the 

natural source of vitamin D, has been discouraged due to the increased risk for skin 

cancers associated with excess sun exposure. The first recommendation on the American 

Cancer Society website for the prevention of skin cancer is to avoid sun exposure 

between 10AM-4PM (251, 252). This recommendation all but eliminates adequate UVB 

exposure to produce vitamin D in the epidermis (126). There are also few unfortified 

sources of vitamin D in the US diet and it is estimated that the US population obtains 

approximately 75% of their dietary intake of vitamin D from fortified foods or 

supplements (17). Therefore the formulation of dietary supplements and fortified foods 

will impact the prevalence of vitamin D insufficiency. 

 Vitamin D supplement sales have increased dramatically in the past decade, a 

greater than 6-fold increase since 2001. From 2008 to 2009, sales of vitamin D 

supplements more than doubled (253).(115) With the recent increase in the RDA for 

vitamin D from the IOM, these increases in vitamin D supplement sales may remain 

strong (254). The number of news articles about vitamin D published on the internet has 

also increased. A Google news search found a more than 15-fold increase in the number 

of articles published between 2000-2001 and 2010-2011. Many of these reports describe 

the benefits of supplemental vitamin D. This illustrates the increased interest in the 

benefits of vitamin D supplementation and increased utilization of the vitamin D 

supplements by the US population. Therefore, the scientific and medical communities 
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should communicate the importance of moderate vitamin D intake and the role for 

moderate sun exposure as components of a healthy lifestyle (255). 

 In spite of increased sales and information, segments of the population at 

increased risk for vitamin D deficiency, non-Hispanic black Americans and children less 

than 1 year of age appear to be experiencing increased prevalence of vitamin D 

insufficiency (1, 12, 224, 256). Therefore, studies that evaluate repletion strategies in 

these populations should be emphasized. Healthcare providers should also be educated 

about the risk factors of vitamin D deficiency and the appropriate methods for evaluation 

and repletion of vitamin D status.  

 Our review of the literature regarding supplement vehicle and bioavailability 

indicates that additional research is necessary to assist in the formulation of supplements 

with the greatest bioavailability, particularly in those with malabsorption who are at 

increased risk of vitamin D insufficiency. This research will also be valuable to inform 

fortification programs and to educate the public about the best supplements to purchase 

over-the-counter.  

Implications for future research 

 Within the CF population, our study indicates that vitamin D supplementation 

may reduce the number of days hospitalized and reduce the necessity for IV antibiotic 

therapy. These improvements in clinical outcomes may lead to financial savings to our 

health care system. Therefore, further analysis of the impact of vitamin D 

supplementation within the CF population may provide additional evidence for a positive 

clinical and economic impact of vitamin D repletion.  
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 There is limited information about the time course of the absorption and 

bioavailability of a single, large dose vitamin D in CF. An intermittent dosing schedule 

may be convenient for individuals with CF and increase adherence to a vitamin D 

supplementation protocol. However, there is little information about the time course of 

vitamin D absorption and changes in vitamin D status. Given the long circulating half-life 

of 25(OH)D and the potential role of vitamin D in acute infection, especially during 

pulmonary exacerbation, a bolus dosing strategy may also improve clinical outcomes. 

Future studies should evaluate an intermittent, high dose vitamin D supplementation 

strategy in maintaining 25(OH)D concentrations. 

 Additionally, long-term maintenance of vitamin D sufficiency should be 

evaluated to determine whether it may reduce systemic and pulmonary inflammation. 

Short-term modulation of inflammation by increasing serum 25(OH)D concentrations 

may act directly on previously activated T-cells and B-cells, reducing the production of 

inflammatory mediators (100). Long-term dosing of vitamin D may alter the maturation 

and activity of DC cells that stimulate the production of mature Th1 phenotype T-cells 

from naïve T-cells (257). The Th1 T-cells produce inflammatory cytokines such as IL-1, 

IL-6, IL-8, and TNF-α  (84).  Th1 T-cells have been linked with the exaggerated 

inflammatory response in CF. Maintenance of vitamin D status may reduce the 

production of inflammatory mediators through both direct impact on T-cells and the DC 

stimulation of naïve T-cells.  

 Evaluation of vitamin D in conjunction with therapies that reduce mucus viscosity 

or disrupt the structure of neutrophil extracellular traps may increase the effectiveness of 

vitamin D repletion. A factor that limits the activity of LL-37 on bacterial pathogens in 
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the CF lung is the increased density of neutrophil extracellular traps produced by 

neutrophils and the presence of other extra-cellular polysaccharides and glycoproteins 

(249, 258, 259). If vitamin D repletion increases the production of antimicrobial peptides 

in the CF lung, therapies that limit the binding and inactivation of antimicrobial peptides 

should enhance the clinical impact of vitamin D sufficiency.    

 The reduction of circulating inflammatory cytokines, may be due to their reduced 

production from circulating monocytes. In order to determine this, the production of 

vitamin D related enzymes, 1α-hydroxylase, VDR, and 24α-hydroxylase in peripheral 

blood mononuclear cells may be assessed from both vitamin D supplemented and un-

supplemented CF subjects. Stubbs, et al. demonstrated that there was a change in these 

enzymes that occurred with vitamin D supplementation, as well as, a reduction in blood 

concentrations of IL-8, IL-6 and TNF-α (29). Changes in the vitamin D-related enzymes 

may help to clarify how vitamin D supplementation impacts levels of circulating 

inflammatory cytokines. 

 There is some research that indicates that higher concentrations of 25(OH)D, >30-

40 ng/ml, may have additional health benefits in the general population (115). This 

hypothesis has not been addressed in the CF population. Some of the improved health 

outcomes that have been associated with higher 25(OH)D concentrations, including 

cancer, have not had a great impact in the CF population (185). However, it may be 

beneficial to look at CF specific outcomes that may be improved by increased 25(OH)D 

concentrations, such as CFRD, frequency of pulmonary exacerbations and deterioration 

of lung function in relationship with the long-term maintenance of vitamin D status. 
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 Research continues to indicate that increasing the vitamin D status of the US 

population may relieve some morbidity and mortality. Then, an analysis of the economic 

costs and benefits of a broader vitamin D fortification program should be performed. 

Cardiovascular disease, cancer and chronic lower respiratory diseases, are the top three 

causes of mortality with the US population and have been linked to vitamin D 

insufficiency (44). Therefore, increasing the vitamin D status of the population may have 

an impact on public health; as well as, a financial impact.   

SUMMARY 

 There is increased interest in the benefits of vitamin D research both in the 

general population and in CF. Vitamin D may be a valuable component of CF therapy as 

it may boost the innate response yet limit excess inflammation.  

 Addressing the challenges of vitamin D repletion in CF related to the high 

prevalence of fat malabsorption is an essential component of evaluating the long-term 

impact of vitamin D on health outcomes. We have found that there is inadequate 

information to determine the most bioavailable vitamin D supplement in CF. Evidence 

does suggest that supplement vehicle may have a major impact on supplement 

bioavailability. However, further research is necessary to determine the importance of 

supplement vehicle on vitamin D bioavailability. 

 Understanding the mechanisms by which vitamin D may benefit individuals with 

CF is still in its initial phases. It appears that vitamin D is likely to be a player in a large, 

complex system that modulates immune function. Additionally, vitamin D may both 

maintain the activity of the innate immune response, while assisting in the normal 
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maintenance of tolerance in the adaptive immune response. Hence, these characteristics 

may make vitamin D an important component of CF therapy in the future. 
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