Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Rachel A. Silver

Date

Climatic Drivers and Heterogeneity of

Diarrheal Disease, according to Pathogenic Class

By

Rachel A. Silver

Master of Public Health

Global Epidemiology

Karen Levy, PhD, MPH, MSc

Faculty Thesis Advisor

Climatic Drivers and Heterogeneity of

Diarrheal Disease, according to Pathogenic Class

By

Rachel A. Silver

B.S., The Ohio State University, 2015

Thesis Committee Chair: Karen Levy, PhD, MPH, MSc

An abstract of

A thesis submitted to the Faculty of the

Rollins School of Public Health of Emory University

in partial fulfillment of the requirements for the degree of

Master of Public Health

in Global Epidemiology

2017

Abstract

Climatic Drivers and Heterogeneity of

Diarrheal Disease, according to Pathogenic Class

By: Rachel A. Silver

Purpose: Global research that examines the relationship between climate and diarrheal diseases is lacking, especially regarding studies that demonstrate a link between climate and specific disease-causing agents. Among the existing data, positive associations between temperature and diarrheal disease incidence have been found, but uncertainty remains due to a lack of quantitative data on the effect that meteorological conditions have on risk by the specific individual pathogens responsible for causing diarrheal illness. In order to understand the effects that a changing climate is having on the incidence of infection, it is necessary to quantify and assess pathogen-specific seasonal patterns over a period of time, and the influence various weather factors have on this relationship.

Methods: This issue was examined through a systematic review of the literature focusing on three pathogens – *E. coli, Cryptosporidium*, and norovirus. Studies meeting specific inclusion and exclusion criteria that were conducted for a minimum of one full year were used for characterization of seasonal patterns. Available temperature and precipitation data for each study location was assessed through univariate, log-linear Poisson regression models and a pooled dataset for each pathogen was created for a meta-analysis using a generalized estimating equation modeling technique on each dataset.

Results: A positive correlation between mean monthly temperature and incidence of diarrheagenic *E. coli* and *Cryptosporidium* was found across all studies included in the pooled data analysis. Increases in the incidence of disease was found to be associated with a 1°C increase in mean monthly temperature for *E. coli* (8% increase, 95% CI: 5%-11%; P<0.0001) and mean 1-month lagged temperature *Cryptosporidium* (6% increase, 95% CI: 2%-10%; P=0.003) controlling for precipitation and country development stratum. Norovirus displayed a negative correlation between mean monthly temperature and incidence of disease, with (4% decrease, 95% CI: 0%-8%; P=0.05) per 1 degree Celsius increase, controlling for precipitation, country development, and new strain year.

Conclusions: These results demonstrate a heterogeneous relationship across pathogen class with ambient temperature, and suggests that an increase in mean monthly temperature corresponds to an increased incidence of diarrheagenic *E*. *coli*, and *Cryptosporidium*, and a decreased incidence of norovirus.

Climatic Drivers and Heterogeneity of

Diarrheal Disease, according to Pathogenic Class

By

Rachel A. Silver

B.S., The Ohio State University, 2015

Thesis Committee Chair: Karen Levy, PhD, MPH, MSc

A thesis submitted to the Faculty of the

Rollins School of Public Health of Emory University

in partial fulfillment of the requirements for the degree of

Master of Public Health

in Global Epidemiology

2017

TABLE OF CONTENTS

INTRODUCTION

Background1
<i>E.</i> coli4
Cryptosporidium4
Norovirus5
METHODS
Hypothesis7
Literature Search7
Outcome Data: Extraction and Conversion10
Independent Variables11
Seasonality Analysis12
Statistical Modeling13
RESULTS
Systematic Review16
Seasonality17
Association with Climate Variables18
DISCUSSION
Discussion21
Future Directions23
REFERENCES
References25
TABLES
<i>Table 1a-c</i> 45
Table 2

Table 3	51
Table 4a-c	52
Table 5	53

FIGURES AND FIGURE LEGENDS

Figure 1	54
Figure 2	55
Figure 3	56
Figure 4	57
Figure 5	58

INTRODUCTION

Background

The global burden of diarrheal disease is estimated at 1.7 billion cases per year in children under five years of age (1). Of those cases, over half a million children will die from diarrhea-related causes, accounting for 8-10% of all deaths in this age group, and causing approximately 1.2-1.4 million deaths across all age groups worldwide (1, 2). Though rates of diarrheal disease are decreasing from an uptake of treatment and implementation of prevention methods, it remains the second leading cause of death among children under five and a primary cause for global years of life lost (YLL), ranking as number five in 2015 (2, 3). Long-term morbidity outcomes can also occur as a result of enteric (diarrheal) diseases, including stunted growth and impaired cognitive development, the former leading to a predisposition to an increased risk for some of the world's leading non-communicable diseases later in life – obesity, type 2 diabetes, metabolic syndrome or cardiovascular disease – as well as premature death in moderate to severe stunting cases (3, 4).

Morbidity and mortality rates from enteric infections are highest in low and middle income countries (2). Several studies cite a perpetual cycle between malnutrition, poverty, and enteric disease in which malnourishment increases incidence, duration, and severity of infection while height and weight impairments occur because of diarrhea, all of which are exacerbated by the effects of living in poverty (4, 5). Such populations are characterized by crowded living conditions and will undoubtedly face widespread fecal contamination, inadequate water sanitation, and minimal refrigeration options for preservation of food, thus allowing for the growth and transmission of various enteric pathogens that cause diarrheal disease (3).

Water availability and sanitation, as well as the emergence and reemergence of etiologic pathogens, are largely affected by environmental factors, one of rapidly growing importance being climate change. The Intergovernmental Panel on Climate Change (IPCC) has found that each of the last three decades have successively increased in surface temperature and have all been warmer than any prior decade since 1950 (6). The IPCC predicts that the global surface temperature change for the end of the 21st century is likely to exceed 1.5 degrees Celsius relative to the period from 1850 to 1900, and in some scenarios is likely to exceed 2 degree Celsius (7). Rising temperatures are thought to be correlated with an increase in transmission of enteric diseases due to the impact of ambient temperature on pathogen survival and host behavior (8). In addition to, and as a result of rising temperatures, there has been a marked increase in many extreme weather and climate events, such as droughts, floods, and cyclones, that can impact the frequency and likelihood of disease transmission due to surface and ground water contamination in both developing and industrialized countries (6).

The US National Assessment on the Potential Consequences of Climate Variability and Change has declared this a priority for public health research in the United States (9). A study by Curriero et al (2001), supported by the US Environmental Protection Agency, found a significant association between waterborne disease outbreaks and extreme precipitation across the United States (9). Researchers found that over half of those outbreaks resulted in acute gastrointestinal illness and approximately 60% of them were attributable to surface water (24%) and groundwater (36%) contamination (9). In developing countries, low rainfall and drought contribute to poor hygiene from a reduction in water supply, and increase malnutrition and disease susceptibility from a reduction in food supply or income; high rainfall allows for pervasive fecal contamination due to excess water runoff and water supply contamination. These conditions will surely increase in variability as climate change and global warming escalates, as will the incidence and associated outcomes of diarrheal disease.

Individual pathogenic agents have been recognized by recent studies from Lanata et al (2013) and Kotloff et al (2013) as the principal causes of diarrhea in low and middle income countries. Enterotoxigenic Escherichia coli (ETEC) and enteropathogenic *E. coli* (EPEC), Shigella spp., rotavirus, norovirus, and *Cryptosporidium* spp are highlighted as highly infective and transmissible, with a wide variety of environmental transmission routes (1, 10, 11). The Global Enteric Multicenter Study (GEMS), the largest study of childhood diarrheal diseases conducted in developing countries, was carried out in seven sites in Africa and Asia. They found *Crypotosporidium* spp., *E. coli* producing heat stable toxin, typical enterpathogenic *E. coli*, rotavirus, and *Shigella* to be the most pathogenic and urged for new and existing intervention methods and improvements (11). For the purposes of this study, we evaluated diarrheagenic *E. coli*, *Cryptosporidium*, and norovirus as marker pathogens of diarrhea caused by bacterial, protozoan, and viral pathogens.

E. coli

In the human intestinal tract, *E. coli* regularly exists without issue. However, pathogenic strains of the bacteria that cause diarrheagenic *E. coli* (DEC) have the potential to cause enteric infection, and in fact are the most common sources of childhood bacterial diarrheal disease in the world (11). Diarrheagenic *E. coli* clusters into six specific strains, namely, EPEC, Shiga toxinproducing *E. coli* (STEC) (also referred to as Verocytotoxin-producing *E. coli* (VTEC) or enterohemorrhagic *E. coli* (EHEC)), ETEC, enteroinvasive *E. coli* (EIEC), enteroaggregative *E. coli* (EAEC or EAggEC), and diffusely adherent *E. coli* (DEAC) (12). *E. coli* bacteria are primarily transmitted through the fecal-oral route from ingestion of or contact with contaminated food or water. Those living in developing countries are put at higher risk for infection due to an overall lack of sanitation and infrastructure. Freeman et al (2009) cites various studies that take note of seasonal peaks of *E. coli* during the summer months, and it is commonly taught that bacterial gastroenteritis generally occurs over the summer season (13, 14).

Cryptosporidium

Cryptosporidium is the causative parasite of cryptosporidiosis, which can cause diarrhea and is responsible for 60% of the world's parasitic waterborne disease outbreaks (11, 15). It is transmitted from person-to-person or through the fecal-oral route from ingestion of contaminated drinking water or recreational water. The microscopic nature of the parasite, in addition to its resistance to chlorine, makes conventional water treatment ineffective and thus environmental control particularly difficult (16). The presentation of illness can be particularly lengthy and severe for immunocompromised individuals and thus is a common study population for research (17). Furthermore, intervention methods to control the spread of disease remain limited for this population, as well as for the malnourished, the elderly, and children, all of whom are extremely susceptible to infection.

Studies of cryptosporidiosis have found clear seasonal patterns. Temperate climates experience increases during the spring and fall, peaking with increases in temperature, while tropical regions see a rise in cases throughout the warm, rainy season, indicating precipitation as a strong indicator for increases in disease incidence (17, 18). However this is noted to vary by location even within the same geographic region (18)

Norovirus

Norovirus is one of the most important causative agents of enteric infections around the world, and is the most common source of gastroenteritis outbreaks, foodborne disease infections, and community-acquired diarrheal disease for all age groups in the United States (19). The virus is of the Caliciviridae family, and can be classified into five genogroups, GI, GII, GII, GIV, and GV, within approximately 40 genotypes (20). Only the GI, GII, and GII genogroups have been found to infect humans and a certain level of severity and infectivity has been associated with each (21). Noroviruses are estimated to account for over 90% of non-bacterial gastroenteritis epidemics (19). Their highly infectious nature is a result of environmental resistance and a low dose response for infection (22).

In temperate climates, norovirus infection is most common in the winter months (October-April), though several studies have cited summer peaks as well (23-25). It is postulated that seasonal variations allow for a greater incidence of viral infections in the northern and southern hemisphere, but remain low to moderate in equatorial regions (20, 26). However, the increase in weather variations due to climate change may alter the seasonality patterns of norovirus and instead allow for them to thrive more commonly throughout the year, resulting in a higher incidence of disease and potentially harboring an environment for the emergence of new strains (20).

Research has demonstrated that seasonal patterns of infectious diseases can be substantially affected by climate change (27). This can be seen through a longer period of heightened disease transmission from a higher pathogen survival and reproduction rate, as well as in changing epidemic peaks associated with a pathogen's seasons (17, 27). Jagai et al (2009) calls for a more critical understanding of the environmental factors that affect seasonality of disease patterns as a strategy to understand, predict, and prepare for the lasting effects of climate change. Studies that explore this topic are limited, especially on a large geographic scale, and thus further epidemiological research is required to establish a more definitive causal link between the change in seasonal patterns and occurrence of enteric disease.

METHODS

Hypothesis

The directionality of the relationship between each pathogen (*E. coli*, *Cryptosporidium*, and norovirus) and the associated monthly mean temperature and rainfall estimates varies by pathogenic class – bacteria and protozoa having a positive relationship, and viruses a negative one.

Literature Search

Separate systematic reviews of the literature were carried out for each of the three pathogens to identify studies reporting incidence of diarrheal disease due to norovirus, diarrheagenic *E. coli*, and *Cryptosporidium*. Studies were identified through a U.S. National Library of Medicine PubMed search using Endnote X7 software (28). Search terms included the pathogen name ["*Escherichia coli*" and ("diarrhea" or "diarrheagenic"] or ["norovirus"] or ["cryptosporidiosis" or "*Cryptosporidium*"], and each of the following terms – ["ambient temperature"], ["climate"], ["rain"], ["relative humidity"], ["season"], and ["weather"]. *E. coli* was also searched in combination with the terms ["incidence"], ["surveillance"], and ["rainfall"].

The literature search in its entirety was conducted in two parts. Two independent researchers conducted the first literature search on May 16, 2013. Supplemental searches were completed in which reference lists from all included studies, as well as review articles, were scanned for identification of relevant papers. In addition, if a study reported monthly rates of cases without the total number of cases per month, the author of the paper was contacted. For cryptosporidiosis specifically, authors were contacted for original data if monthly data was noted as collected but was not presented in the article. Additional data was provided by authors for two studies on *E. coli* (29, 30), one study on norovirus (31), and 11 studies on *Cryptosporidium*(32-42) . There were 17 included studies on *Cryptosporidium* that came from data extracted from a previous search, conducted by Jagai et al (17). Each of the 61 articles included in Jagai et al were reviewed in full, resulting in 17 eligible studies. The second literature search was conducted on November 14, 2016 by two different independent researchers. This search included studies from 2013 on. Supplemental searches were not conducted and authors were not contacted for the second literature search.

As detailed in the PRISMA diagram (Figure 1), records went through a four-step process. The first step was identification of relevant studies through the Endnote PubMed database with the pre-determined search terms, and through any supplemental searches of reference lists or review articles. Studies found through the literature search were passed through to the second step, in which studies were screened for duplicates and were excluded after a review of titles and abstracts using specific inclusion and exclusion criteria. The remaining studies were evaluated in step three, in which the full text was assessed for inclusion using similar criteria as in step two. The last part of the process separated the final list of included studies that would be used for the quantitative synthesis into three categories – seasonality, temperature, and rainfall.

When reviewing abstracts and titles for eligibility, studies had to have followed two general inclusion criteria and six general exclusion criteria. The inclusion criteria stated that the study (i) must have been conducted continuously for at least one year, and (ii) reported monthly data on the number of patients with diarrhea caused by the specific pathogen. The exclusion criteria did not allow for studies that (i) reported outbreak data, (ii) used travelers as study subjects, (iii) used only immunocompromised populations as study subjects, (iv) were laboratory based or used non-human subjects, (v) presented monthly percentages without the total number of cases for each month, or (vi) were cohort by design. In addition to the general inclusion and exclusion criteria detailed above, pathogen specific search criteria were carried out when initially reviewing titles and abstracts: E. coli and cryptosporidiosis studies that reported on less than 25 confirmed cases of diarrhea were excluded, E. coli studies that included ["traveler(s)"] and/or ["outbreak"] in the title were excluded, only norovirus studies that were conducted after 1997 – when modern PCR based diagnostics for norovirus began widespread use – were included, and cryptosporidiosis case control studies that reported the disease in asymptomatic controls were included. Furthermore, studies that detailed various pathotypes, genotypes, and species of E. coli, norovirus, and Cryptosporidium, respectively, were included and summed for a total case count.

Once the initial inclusion and exclusion criteria were applied, the remaining studies were reviewed in full and excluded for the other following reasons: (i) there was no data presented, (ii) there was no monthly data presented, (iii) the study used outbreak data, (iv) the data was redundant (i.e., multiple publications using the same data), (v) the study population was too specific to assess overall infection for that location, (vi) the study was unrelated to the specific pathogen, (vii) the required data could not be translated if presented in another language, (viii) necessary graphs were unclear, and (ix) only prevalence data was reported.

Outcome Data: Extraction and Conversion

Only monthly incidence (total number of new cases each month) data was utilized to avoid confounding results by changes in the monthly proportion of other pathogens to the total (14). This data was either directly taken from a study's published tables or was extracted from their graphs using Plot Digitizer software (43). Prior to 2014, study authors were contacted to request original data when published data was not presented at a high enough resolution for digital extraction, but was otherwise excluded if the graph was unclear or if the reported total case count was more than 10% different than the Plot Digitizer results.

Several studies reported outcome data in the form of weekly counts or monthly rates. To ensure comparability across studies, weekly cases were summed and converted to monthly data, monthly rates that were reported as a percentage of monthly total cases for that pathogen (and included a monthly denominator) were converted to monthly case counts, and monthly rates reported per a population number (e.g., per 100 or 1000 patients) were converted to monthly incidence counts using the total number of cases reported for the study. If a study reported disease burden (as monthly case counts) separately for more than one location, then each location was treated as its own unique dataset for analysis purposes.

Independent Variables

Monthly temperature and precipitation were the primary variables of interest for an article's study period and location. Average monthly temperature data was taken from the Hadley Centre CRUTEM4 (version CRUTEM.4.5.0.0) dataset, or if unavailable, from the Global Historical Climatology Network-Monthly (GHCN-M) version 3 (v3.3.0.20170404) (44, 45). The Hadley Centre uses a more robust algorithm for choosing which weather stations to include in their dataset and thus was the preferred source for temperature data, when available. Monthly precipitation data was taken from GHCN-M version 2 (46). Adjusted precipitation data was used when available, otherwise the unadjusted precipitation data was used as reported.

All weather data came with associated station codes for cities, identifiable by name as well as latitude and longitude. If weather data was unavailable for the specific city that the study was conducted in, weather stations within 100 kilometers were used. If weather data was not available from a weather station within 100 kilometers, no weather data was collected for that study and it was excluded from the temperature and/or precipitation analysis. Only studies confined to one geographic location, defined by a single weather station, were included in the weather data analysis; studies that reported case data for large regions or from multiple cities were excluded from the temperature and precipitation analysis but were included in the seasonality analysis. In addition, studies that reported aggregate monthly case count data in which cases were averaged across months for multiple years were also excluded for the weather data analysis but included in the seasonality analysis.

Each study location included in the quantitative synthesis was described in terms of other covariates. These included latitude, elevation, average monthly temperature, and average monthly precipitation or number of days of annual precipitation (using data from Weatherbase.com), in addition to country specific mortality strata, crude birth rate and population density as recorded by the World Health Organization and the United Nations (47-50). The norovirus dataset also included a variable indicative of a new strain year, i.e., dominated by a new pandemic strain of norovirus. Case data reported from July 2002-June 2003 or July 2006-June 2007 was classified as a pandemic month, while all other months were considered endemic (51).

Seasonality Analysis

Overall seasonality of diarrheagenic *E. coli*, norovirus, and *Cryptosporidium* were compared by plotting the combined pathogen-specific incidence by month (averaged over all study years) and stratified by geographic location. The geographic location was clustered by the northern hemisphere (>23°N), the southern hemisphere (>23°S), and the area bounded by the Tropic of Cancer on the north and the Tropic of Capricorn on the South, also known as the "tropics" (23°N-23°S). Across a study period, the proportion of cases that fell within each calendar month of the study was determined and averaged across all studies for each pathogen. This was done to normalize the case count for all

studies, since the denominator for the monthly proportion of cases differed per study. To visualize a non-pathogen specific year, the same process was carried out irrespective of which pathogen a study belonged to.

The peak month, defined as the highest amount of cases per study, and the season strength, measured by the "peak-to-mean" ratio, was also evaluated. The ratio of the peak to mean values was calculated as the average number of cases in the month with the most cases, divided by the average number of cases per month over the course of the entire study. This was completed for each pathogen, stratified by geographic location.

Statistical Modeling

The relationship between climatic variables and disease incidence for diarrheagenic *E. coli, Cryptosporidium,* and norovirus for each study location was examined using generalized log-linear Poisson regression models in the R Statistical Programming Language (52). For each study within a pathogen specific dataset, monthly case counts were modeled as a function of monthly average temperature (°C), and as a function of monthly average precipitation (cm). A Newey-West regression approach was used to account for serial correlation of monthly data points within studies, a common problem with timeseries comparisons (53). A series of forest plots were created using the metan function in Stata (version 10.1) for each pathogen to visualize the variability among studies (54).

All studies for each pathogen specific dataset were pooled together to calculate an overall association between monthly cases and mean monthly temperature and precipitation using a generalized estimating equation (GEE) model with a Poisson distribution and an autoregressive correlation structure, clustered by study (55). The R geeglm function in the geepack library was used to account for temporal gaps of one or two consecutive months in the weather predictor data through the waves argument (14). The waves argument "names a positive integer-valued variable that is used to identify the order and spacing of observations within groups in a GEE model. This argument is crucial when there are missing values and gaps in the data"(56).

All models included WHO mortality stratum as a binary variable (developed country versus developing country (high-mortality developing or lowmortality developing)) to control for the country's level of development, as well as a 1-month lag variable for both temperature and precipitation data. This lag variable was implemented to assess the effects of temperature or precipitation one month prior to incidence cases of disease. Temperature and precipitation levels were evaluated using a combined multivariate model as a result of several studies missing either temperature or precipitation data. The full model for each pathogen dataset thus included the following covariates: temperature and/or precipitation data, temperature and/or precipitation 1-month lag data, and the WHO mortality stratum binary variable.

Quasi-Akaike information criterion (QAIC) values were used for selecting a final GEE model using the Multi-Model Inference (MuMIn) R package (57). These information criterion scores balance explanatory power of the model with model complexity, and can account for different levels of overdispersion that would potentially occur from a high degree of variation in the outcome data, specifically if a considerable amount of studies were missing temperature or precipitation data (58). The best model was selected based on the lowest QIC value. Model selection was evaluated using one full model, as well as four reduced models that allowed for different combinations of the four weather covariates while still including the mortality stratum variable in all models. Models with both temperature and temperature lag, or precipitation lag, were excluded from consideration.

RESULTS

Systematic Review

A total of 134 studies (*E. coli*=38, *Cryptosporidium*=47, norovirus=49) with 140 datasets (*E. coli*=39, *Cryptosporidium*=48, norovirus=53) were included in the final analyses (Table 1a-c and Figure 1). Included datasets had study locations in temperate (n=97) and tropical latitudes (n=43) with study periods ranging between 1973 and 2015. Each country was classified as low-mortality developing (LMD) (n=31), high-mortality developing (HMD) (n=42), or developed (n=64) per the WHO annual health report. Studies located in developing countries included 72% of *E. coli* studies, 51% of *Cryptosporidium* studies, and 42% of norovirus studies. Researchers targeted a range of ages within their study population, mostly enrolling either young children or indiscriminately enrolling patients of any age. Broadly classified, study settings included community or out-patient clinics, hospitals or emergency rooms, or data was used from laboratory reports or surveillance systems.

E. coli and norovirus were the only pathogens in which additional disease related information was collected for this study, specifically on pathotypes and new strain year, respectively. Of included *E. coli* studies, most were represented by ETEC, EPEC, and EAEC/EAggEC pathotypes. Among the included norovirus studies, 28 took place over a study period that was classified as a new strain year, based on specific pandemic months.

Seasonality

The distribution of all cases for each pathogen across a 12-month period was evaluated for all study years combined (Figure 2). The northern and southern hemisphere typically have anticipated seasonal patterns, while the tropics tend to have less variation, but do so according to the rainy and warm seasons throughout the year.

E. coli studies were found to have an average ratio of peak to mean values of 3.23 for the northern hemisphere, 3.94 for the southern hemisphere, and 2.73 for the tropics (Table 3). The temperate latitude seasonality plots demonstrate the typical pattern of *E. coli* incidence peaking in the summer months (Figure 2). In the northern hemisphere, 72% of studies peaked between June and August, while 67% of studies peaked between December and February in the southern hemisphere (Table 3).

Norovirus exhibited a typical trend of peaking in the winter and declining in the summer for the northern hemisphere, with a strong peak to mean ratio of 4.45 (Figure 2, Table 3). In the northern hemisphere, only 3% of studies saw June through August as the peak month for cases, while nearly half found cases to peak in December through February (Table 3). The southern hemisphere showed less of a typical seasonal pattern and had a lower peak to mean ratio of 3.46 (Table 3). This, however, could be attributed to the lack of studies in this geographic location, as only 6% of norovirus studies were conducted in the southern hemisphere (Table 2).

Cryptosporidium was found to have a strong season strength in the northern hemisphere with a peak to mean ratio of 6.48, followed by the tropics

with an average peak to mean level of 4.42 and the southern hemisphere at 3.42 (Table 3). Among studies conducted in the northern and southern hemispheres, 53% and 84%, respectively, saw cases peak in the spring (Mar-May for northern; September-November for southern) or fall (September-November for northern; Mar-May for southern) (Table 3). The peak month of cases was relatively evenly distributed across studies in the tropics.

Association with Climate Variables

The majority of studies showed a positive association between the incidence of disease and mean monthly temperature and precipitation (Figures 3-5). Temperature data was available for 21 studies of diarrheagenic *E. coli*; 15 of these studies (71%) showed a statistically significant, positive association with disease incidence and only three (14%) showed a negative association, all with a non-significant relationship. Approximately half of the 18 *E. coli* studies with available precipitation data showed a statistically significant, positive association with disease incidence, while only two (11%) showed a statistically significant, negative association.

Of 23 *Cryptosporidium* studies with available temperature data, 20 studies (87%) showed a positive association between the incidence of infection and temperature – 15 of them (75%) proving to be statistically significant – and 16 of 22 studies (73%) with precipitation data showed a positive association between incidence and rainfall, nine (41%) being statistically significant. A negative correlation existed between *Cryptosporidium* disease incidence and three temperature studies (13%) and six precipitation studies (27%), with only one of each being statically significant.

Results of the analysis proved to be more varied for norovirus. A negative relationship with disease incidence was found to be more common among both temperature and precipitation studies. Of the 26 studies with available temperature data, 19 of them (73%) had a negative correlation with incidence of infection and all but one were found to be statistically significant. Regarding the association with precipitation, 16 of the 22 studies (73%) with rainfall data resulted in a negative correlation with disease incidence, seven (32%) being significant, and only one of six positively correlated studies was found significant. Although some precipitation results proved to be significant, most exhibited a weak association, evident by the small effect sizes.

Results from the GEE models are shown in Tables 4-5. The best fit model for all pathogens was chosen by the lowest quasi-information criterion (QIC) value outputted with a model that included the WHO mortality strata variable, and did not include both a weather variable (temperature or precipitation) and its associated 1-month lag time (Tables 4a-b). The final, best-fit model for *E. coli* included temperature and precipitation, with estimates of the incidence rate ratios (IRR) of 1.08 (95% CI: 1.05-1.11) and 1.00 (95% CI: 0.99-1.01), respectively. However the only model coefficient that was found to be significant at the P<0.5 level was temperature (P<0.0001). The best-fit model for *Cryptosporidium* included the 1-month lag temperature variable and precipitation, with estimates of the incidence rate ratios of 1.06 (95% CI: 1.02-1.10) and 1.01 (95% CI: 0.99-1.02), respectively. Results revealed that only the lag temperature variable was found to be significant (P<0.0033). Similar to the final model of *E. coli*, the norovirus best-fit model included temperature and precipitation. The estimate of the IRR for temperature was 0.96 (95%CI: 0.92-1.00) and 0.99 (0.99-1.00) for precipitation. Norovirus slightly differed from the other two pathogen models by also requiring inclusion of the new strain year variable, in addition to the required WHO mortality strata variable. The incidence rate ratios that were found for each pathogen model represent the relative increase in disease for a 1° C increase in mean temperature or a 1 cm increase in mean rainfall across all studies included in the model.

DISCUSSION

The results presented in this analysis demonstrate a heterogeneous relationship of response to climatic variables amongst the three different pathogens assessed. A positive correlation with *E. coli* and *Cryptosporidium* and their associated weather variables was found evident, while a negative correlation was found between norovirus and its associated weather variables (Table 5). These results were expected based on the general understanding of the seasonal peaks and valleys associated with each pathogen – *E. coli* and *Cryptosporidium* cases typically peak during the summer months, and norovirus cases peak in the winter months, for temperate lateral regions. The quantification of these patterns is beneficial in creating a threshold for past and current seasonal patterns so changes can be assessed in future studies.

In the meta-analysis of each pathogen's pooled dataset across all studies, the best-fit model suggests that, on average, a 1°C increase in mean temperature is associated with an 8% (95% CI: 5%-11%) increase in the incidence of diarrheagenic *E. coli*, controlling for precipitation and country development status. For a 1°C increase in mean 1-month lagged temperature, a 6% (95% CI: 2%-10%) increase in the incidence of *Cryptosporidium* was found, controlling for precipitation and country development status. A 4% (95% CI: 0%-8%) decrease in the incidence of norovirus cases was found to be associated with a 1°C increase in average monthly temperature, controlling for precipitation, country development status, and new strain year. All three temperature-disease relationships were found to be statistically significant at the P<0.05 level when the described variables were controlled for. These findings suggest that if other bacterial diseases are similar to *E. coli* and peak in warmer conditions, then bacteria could potentially represent a larger attributable fraction of diarrheal disease under future warmer climatic conditions.

Other epidemiological studies by comparison have found similar associations between all-cause diarrhea incidence and changes in average temperature. Analyses conducted in Japan (Onozuka et al, 2010), Bangladesh (Hashizume et al, 2007), Peru (Checkley et al, 2000), and Fiji (Singh et al, 2001) found an increase in diarrhea incidence of 3-11% for a 1°C increase in ambient temperature (59-63). Carlton et al further confirmed these regional results in a meta-analysis demonstrating a 7% increase in all-cause diarrhea for a 1°C increase in temperature, with significant heterogeneity across pathogenic class (14, 64). The research from this analysis and from other published studies demonstrate a linear relationship between temperature and diarrhea rates, however other research has shown a non-linear relationship that is dependent upon the locally prevalent pathogens and climatic conditions (63). Checkley et al found that a 5°C increase in temperature in Peru was associated with an increase of diarrhea-related hospital admissions by 77% during the winter months but only by 21% during the summer (61).

This analysis did not reveal a strong relationship between incidence of diarrheal disease and monthly mean precipitation for any pathogen. This could be due to more potential inherent error in the rainfall data than temperature data since rainfall tends to vary more across smaller distances. In addition, average monthly precipitation data may not capture the appropriate effects of rainfall because heavy rainfall during or following wet seasons or extreme precipitation events are more likely to drive the incidence of diarrhea than average rainfall, based on previous research (14, 60, 63, 65-67). Furthermore, any non-linear effects would not have been captured by the models used in this analysis. Mellor et al recommends using a mechanistic, systems-based approach to address such complexities of modeling diarrheal disease and climate change (63).

A consequence of using the QIC model selection method in this analysis is that explanatory variables that are non-significant at the P<0.05 level are still included in the model, as was seen with all model coefficients, except temperature and lagged temperature. The confounding variables overall were restricted due to the ecological structure of the study, and thus data for other potentially significant variables was limited (14). A wide variety of factors can influence the rates of diarrheal disease besides country development status, including other environmental variables such as humidity, specific components related to pathogen growth and transmission, and factors influencing host susceptibility. Quantifying these variables would add complexity to the model and furthermore, not enough data describing such factors for incorporation exists. Additionally, this study did not account for co-infections and the dataset as a whole was limited since the majority of norovirus studies occurred in developed countries, while *E. coli* and *Cryptosporidium* studies mainly occurred in the developing world.

Future Directions

Further modeling should be carried out to predict the relative proportion of diarrheal disease attributable to each of these three pathogens under future warming scenarios, according to the predictions of the models from this analysis. The data collected for this analysis would allow for modeling the change in pathogen cases for the expected temperature increase for any given region.

These data could also be used to help implement better-timed public health interventions for diarrheal disease. The demonstrated seasonal patterns can be applied to local areas to improve timing of targeted hygiene education campaigns, water treatment efforts, and vaccine distribution. This is important for both the developed and developing world, as studies have shown that the developed world is not impervious to diarrheal disease, particularly outbreaks.

Diarrheal diseases are often cited as one of the major types of negative health outcomes of climate change, but in reality, a large amount of uncertainty exists in the estimates associated with the relationship between climatic drivers and diarrheal disease. Kolstad et al carried out an analysis based on various emission scenarios estimating an increase in the incidence of diarrheal disease by up to 22%-29% by the year 2099, and concluded that a lack of exposure-disease relationship data, followed by non-linearities and potential threshold issues, contribute the greatest amount of uncertainty in predicting future conditions (68). Climate change threatens to undermine the substantial progress we have made in combatting diarrheal disease. Understanding the seasonality of diarrheal disease by gathering empirical data offers insight into the impact of weather on disease patterns, allowing us to anticipate the inevitable effects of climate change and properly prepare for the impact on infectious diseases around the world.

REFERENCES

- 1. Julian TR. Environmental transmission of diarrheal pathogens in low and middle income countries. *Environ Sci Process Impacts* 2016;18(8):944-55.
- Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016;388(10053):1459-544.
- Levine MM, Kotloff KL, Nataro JP, et al. The Global Enteric Multicenter Study (GEMS): impetus, rationale, and genesis. *Clin Infect Dis* 2012;55 Suppl 4:S215-24.
- Guerrant RL, DeBoer MD, Moore SR, et al. The impoverished gut--a triple burden of diarrhoea, stunting and chronic disease. *Nat Rev Gastroenterol Hepatol* 2013;10(4):220-9.
- Guerrant RL, Oria RB, Moore SR, et al. Malnutrition as an enteric infectious disease with long-term effects on child development. *Nutr Rev* 2008;66(9):487-505.
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups
 I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on
 Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)].
 2014:Intergovernmental Panel on Climate Change: Geneva, Switzerland, 151 pp.
- IPCC, 2013. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

- Levy K, Woster AP, Goldstein RS, et al. Untangling the Impacts of Climate Change on Waterborne Diseases: a Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. *Environ Sci Technol* 2016;50(10):4905-22.
- Curriero FC, Patz JA, Rose JB, et al. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948-1994.
 Am J Public Health 2001;91(8):1194-9.
- Lanata CF, Fischer-Walker CL, Olascoaga AC, et al. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. *PLoS One* 2013;8(9):e72788.
- Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. *Lancet* 2013;382(9888):209-22.
- Centers for Disease Control and Prevention. *CDC Health Information for International Travel 2016*:New York: Oxford University Press; 2016.
- Freeman JT, Anderson DJ, Sexton DJ. Seasonal peaks in Escherichia coli infections: possible explanations and implications. *Clin Microbiol Infect* 2009;15(10):951-3.
- Philipsborn R, Ahmed SM, Brosi BJ, et al. Climatic Drivers of Diarrheagenic
 Escherichia coli Incidence: A Systematic Review and Meta-analysis. *J Infect Dis* 2016;214(1):6-15.
- 15. Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks an update 2004-2010. *Water Res* 2011;45(20):6603-14.

- Wolyniak EA, Hargreaves BR, Jellison KL. Seasonal retention and release of Cryptosporidium parvum oocysts by environmental biofilms in the laboratory. *Appl Environ Microbiol* 2010;76(4):1021-7.
- 17. Jagai JS, Castronovo DA, Monchak J, et al. Seasonality of cryptosporidiosis: A meta-analysis approach. *Environ Res* 2009;109(4):465-78.
- Cacciò SMW, G. (ed.). Cryptosporidium: Parasite and Disease. 2014:Springer-Verlag, Wien.
- 19. Lopman B, Gastanaduy P, Park GW, et al. Environmental transmission of norovirus gastroenteritis. *Curr Opin Virol* 2012;2(1):96-102.
- Rohayem J. Norovirus seasonality and the potential impact of climate change. *Clin Microbiol Infect* 2009;15(6):524-7.
- 21. Chan MC, Lee N, Hung TN, et al. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. *Nat Commun* 2015;6:10061.
- Colas de la Noue A, Estienney M, Aho S, et al. Absolute Humidity Influences the Seasonal Persistence and Infectivity of Human Norovirus. *Appl Environ Microbiol* 2014;80(23):7196-205.
- 23. Lopman BA, Reacher M, Gallimore C, et al. A summertime peak of "winter vomiting disease": surveillance of noroviruses in England and Wales, 1995 to 2002. *BMC Public Health* 2003;3:13.
- 24. Lewis DC, Hale A, Jiang X, et al. Epidemiology of Mexico virus, a small roundstructured virus in Yorkshire, United Kingdom, between January 1992 and March 1995. *J Infect Dis* 1997;175(4):951-4.
- 25. Wright PJ, Gunesekere IC, Doultree JC, et al. Small round-structured (Norwalk-like) viruses and classical human caliciviruses in southeastern Australia, 1980-1996. *J Med Virol* 1998;55(4):312-20.

- 26. Ahmed SM, Lopman BA, Levy K. A systematic review and meta-analysis of the global seasonality of norovirus. *PLoS One* 2013;8(10):e75922.
- 27. Harvell CD, Mitchell CE, Ward JR, et al. Climate warming and disease risks for terrestrial and marine biota. *Science* 2002;296(5576):2158-62.
- 28. NCBI Resource Coordinators (2017). Database Resources of the National Center for Biotechnology Information. *Nucleic Acids Research*;45(D1):D12-D7.
- 29. Klein EJ, Stapp JR, Clausen CR, et al. Shiga toxin-producing Escherichia coli in children with diarrhea: a prospective point-of-care study. *J Pediatr* 2002;141(2):172-7.
- 30. Samonis G, Maraki S, Christidou A, et al. Bacterial pathogens associated with diarrhoea on the island of Crete. *Eur J Epidemiol* 1997;13(7):831-6.
- 31. Hulth A, Andersson Y, Hedlund KO, et al. Eye-opening approach to norovirus surveillance. *Emerg Infect Dis* 2010;16(8):1319-21.
- 32. Ajjampur SS, Liakath FB, Kannan A, et al. Multisite study of cryptosporidiosis in children with diarrhea in India. *J Clin Microbiol* 2010;48(6):2075-81.
- Bennett A, Epstein LD, Gilman RH, et al. Effects of the 1997-1998 El Nino
 episode on community rates of diarrhea. *Am J Public Health* 2012;102(7):e63-9.
- 34. Chai JY, Kim NY, Guk SM, et al. High prevalence and seasonality of cryptosporidiosis in a small rural village occupied predominantly by aged people in the Republic of Korea. *Am J Trop Med Hyg* 2001;65(5):518-22.
- 35. Huh JW, Moon SG, Lim YH. A survey of intestinal protozoan infections among gastroenteritis patients during a 3-year period (2004-2006) in Gyeonggi-do (province), South Korea. *Korean J Parasitol* 2009;47(3):303-5.
- Lake IR, Pearce J, Savill M. The seasonality of human cryptosporidiosis in New Zealand. *Epidemiol Infect* 2008;136(10):1383-7.

- 37. Naumova EN, Chen JT, Griffiths JK, et al. Use of passive surveillance data to study temporal and spatial variation in the incidence of giardiasis and cryptosporidiosis. *Public Health Rep* 2000;115(5):436-47.
- 38. Perch M, Sodemann M, Jakobsen MS, et al. Seven years' experience with
 Cryptosporidium parvum in Guinea-Bissau, West Africa. *Ann Trop Paediatr* 2001;21(4):313-8.
- 39. Pintar KD, Pollari F, Waltner-Toews D, et al. A modified case-control study of cryptosporidiosis (using non-Cryptosporidium-infected enteric cases as controls) in a community setting. *Epidemiol Infect* 2009;137(12):1789-99.
- Skeels MR, Sokolow R, Hubbard CV, et al. Cryptosporidium infection in Oregon public health clinic patients 1985-88: the value of statewide laboratory surveillance. *Am J Public Health* 1990;80(3):305-8.
- 41. Terletskaia-Ladwig E, Eggers M, Enders M, et al. [Epidemiological aspects of gastrointestinal infections]. *Dtsch Med Wochenschr* 2011;136(3):69-75.
- 42. Vrbova L, Johnson K, Whitfield Y, et al. A descriptive study of reportable gastrointestinal illnesses in Ontario, Canada, from 2007 to 2009. *BMC Public Health* 2012;12:970.
- 43. Huwaldt JA. Plot Digitizer. *In: SourceForgenet*;Boston: Free Software Foundation, 2011.
- Jones PD, Lister DH, Osborn TJ, et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J *Geophys Res-Atmos* 2012;117.
- 45. Lawrimore JH, Menne MJ, Gleason BE, et al. An overview of the Global
 Historical Climatology Network monthly mean temperature data set, version 3. J
 Geophys Res-Atmos 2011;116.
- 46. Peterson TC, Vose RS. An overview of the global historical climatology network temperature database. *B Am Meteorol Soc* 1997;78(12):2837-49.
- 47. Weatherbase. <u>http://www.weatherbase.com.accessed/</u> March 2017.
- 48. WHO. The World Health Report 2003: shaping the future.WHO: Geneva, Switzerland.
- 49. United Nations. Department of Economic and Social Affairs, Population Division
 (2015). World Population Prospects: The 2015 Revision Special Aggregates,
 DVD Edition; Crude Birth Rate.
- 50. United Nations. Department of Economic and Social Affairs, Population Division
 (2015). World Population Prospects: The 2015 Revision, DVD
 Edition; Population Density.
- Lopman B, Vennema H, Kohli E, et al. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. *Lancet* 2004;363(9410):682-8.
- 52. R Core Team (2016). R: A language and environment for statistical computing. *R Foundation for Statistical Computing, Vienna, Austria*;<u>https://www.r-project.org/</u>.
- 53. Newey WK, West KD. A Simple, Positive Semidefinite, Heteroskedasticity and Autocorrelation Consistent Covariance-Matrix. *Econometrica* 1987;55(3):703-8.
- 54. StataCorp. Stata Statistical Software: Release 10. College Station, TX: StataCorp LP 2007.
- 55. Liang KY, Zeger SL. Longitudinal Data-Analysis Using Generalized Linear-Models. *Biometrika* 1986;73(1):13-22.
- 56. Weiss J. Curriculum in Ecology. *University of North Carolina, Chapel Hill* 2011.
- 57. Barton K. Package "MuMIn: Multi-model inference" for R, R Package Version
 1.15.6. (http://cran.r-project.org/package=MuMIn). 2012.

- 58. Kim HJ, Cavanaugh JE, Dallas TA, et al. Model selection criteria for overdispersed data and their application to the characterization of a host-parasite relationship. *Environ Ecol Stat* 2014;21(2):329-50.
- 59. Onozuka D, Hashizume M, Hagihara A. Effects of weather variability on infectious gastroenteritis. *Epidemiol Infect* 2010;138(2):236-43.
- Hashizume M, Wagatsuma Y, Faruque AS, et al. Factors determining
 vulnerability to diarrhoea during and after severe floods in Bangladesh. *J Water Health* 2008;6(3):323-32.
- Checkley W, Epstein LD, Gilman RH, et al. Effect of El Nino and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. *Lancet* 2000;355(9202):442-50.
- 62. Singh RB, Hales S, de Wet N, et al. The influence of climate variation and change on diarrheal disease in the Pacific Islands. *Environ Health Perspect* 2001;109(2):155-9.
- 63. Mellor JE, Levy K, Zimmerman J, et al. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases. *Sci Total Environ* 2016;548-549:82-90.
- 64. Carlton EJ, Woster AP, DeWitt P, et al. A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases. *Int J Epidemiol* 2016;45(1):117-30.
- 65. Auld H, MacIver D, Klaassen J. Heavy rainfall and waterborne disease outbreaks: the Walkerton example. *J Toxicol Environ Health A* 2004;67(20-22):1879-87.
- 66. Alexander KA, Carzolio M, Goodin D, et al. Climate change is likely to worsen the public health threat of diarrheal disease in Botswana. *Int J Environ Res Public Health* 2013;10(4):1202-30.

- 67. Carlton EJ, Eisenberg JN, Goldstick J, et al. Heavy rainfall events and diarrhea incidence: the role of social and environmental factors. *Am J Epidemiol* 2014;179(3):344-52.
- 68. Kolstad EW, Johansson KA. Uncertainties associated with quantifying climate change impacts on human health: a case study for diarrhea. *Environ Health Perspect* 2011;119(3):299-305.
- Alam M, Akhtar YN, Ali SS, et al. Seasonal variation in bacterial pathogens isolated from stool samples in Karachi, Pakistan. *J Pak Med Assoc* 2003;53(3):125-9.
- 70. Baqui AH, Yunus MD, Zaman K, et al. Surveillance of patients attending a rural diarrhoea treatment centre in Bangladesh. *Trop Geogr Med* 1991;43(1-2):17-22.
- 71. Black RE, Brown KH, Becker S, et al. Contamination of weaning foods and transmission of enterotoxigenic Escherichia coli diarrhoea in children in rural Bangladesh. *Trans R Soc Trop Med Hyg* 1982;76(2):259-64.
- 72. Black RE, Brown KH, Becker S, et al. Longitudinal studies of infectious diseases and physical growth of children in rural Bangladesh. I. Patterns of morbidity. *Am J Epidemiol* 1982;115(3):305-14.
- Buvens G, De Gheldre Y, Dediste A, et al. Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-Capital Region, Belgium, in 2008-2010. *J Clin Microbiol* 2012;50(4):1336-45.
- 74. Cassel-Beraud AM, Morvan J, Coulanges P. [Evaluation of the prevalence of the main enteropathogenic agents in the West Imerina region: Manarintsoa]. Arch Inst Pasteur Madagascar 1990;57(1):255-64.
- 75. Cho SH, Kim JH, Kim JC, et al. Surveillance of bacterial pathogens associated with acute diarrheal disease in the Republic of Korea during one year, 2003. J Microbiol 2006;44(3):327-35.

- 76. Chowdhury F, Rahman MA, Begum YA, et al. Impact of rapid urbanization on the rates of infection by Vibrio cholerae O1 and enterotoxigenic Escherichia coli in Dhaka, Bangladesh. *PLoS Negl Trop Dis* 2011;5(4):e999.
- 77. Cisse MF, Ouangre RA, Gaye A, et al. Micro-organisms in InfantileGastroenteritis at Dakar, Senegal. *La Presse Médicale* 1989;18:1827-30.
- 78. Cohen D, Shoham O, Orr N, et al. An inverse and independent association between Helicobacter pylori infection and the incidence of shigellosis and other diarrheal diseases. *Clin Infect Dis* 2012;54(4):e35-42.
- 79. Estrada-Garcia T, Lopez-Saucedo C, Thompson-Bonilla R, et al. Association of diarrheagenic Escherichia coli Pathotypes with infection and diarrhea among Mexican children and association of atypical Enteropathogenic E. coli with acute diarrhea. *J Clin Microbiol* 2009;47(1):93-8.
- 80. Gatti MSV, Ricci LC, Serafim MB, et al. Incidence of Enterotoxigenic Escerichia coli (ETEC), rotavirus and Clostridium perfringens from cases of diarrhea among children, in the region of Campinas, SP, Brazil. *Revista do Instituto de Medicina Tropical de São Paulo* 1989;31(6):392-8.
- Gonzales L, Joffre E, Rivera R, et al. Prevalence, seasonality and severity of disease caused by pathogenic Escherichia coli in children with diarrhoea in Bolivia. *J Med Microbiol* 2013;62(Pt 11):1697-706.
- Guerrant RL, Kirchhoff LV, Shields DS, et al. Prospective study of diarrheal illnesses in northeastern Brazil: patterns of disease, nutritional impact, etiologies, and risk factors. *J Infect Dis* 1983;148(6):986-97.
- Gurwith MJ, Williams TW. Gastroenteritis in children: a two-year review in Manitoba. I. Etiology. *J Infect Dis* 1977;136(2):239-47.
- 84. Househam KC, Mann MD, Bowie MD. Enteropathogens associated with acute infantile diarrhoea in Cape Town. *S Afr Med J* 1988;73(2):83-7.

- 85. Huang Z, Pan H, Zhang P, et al. Prevalence and Antimicrobial Resistance
 Patterns of Diarrheagenic Escherichia coli in Shanghai, China. *Pediatr Infect Dis* J 2016;35(8):835-9.
- Huber HC, Kugler R, Liebl B. [Infections with enterohemorrhagic Escherichia coli (EHEC)--results of an epidemiologic survey in Bavaria for the April 1996 to May 1997 time frame]. *Gesundheitswesen* 1998;60(3):159-65.
- 87. Khan MU, Eeckels R, Alam AN, et al. Cholera, rotavirus and ETEC diarrhoea: some clinico-epidemiological features. *Trans R Soc Trop Med Hyg* 1988;82(3):485-8.
- Kim KH, Suh IS, Kim JM, et al. Etiology of childhood diarrhea in Korea. *J Clin Microbiol* 1989;27(6):1192-6.
- Kim NO, Jung SM, Na HY, et al. Enteric Bacteria Isolated from Diarrheal
 Patients in Korea in 2014. Osong Public Health Res Perspect 2015;6(4):233-40.
- 90. Mutanda LN. Epidemiology of acute gastroenteritis in early childhood in Kenya.
 1. Incidence in hospitals. *J Trop Pediatr* 1980;26(5):172-6.
- 91. Onanuga A, Igbeneghu O, Lamikanra A. A study of the prevalence of diarrhoeagenic Escherichia coli in children from Gwagwalada, Federal Capital Territory, Nigeria. *Pan Afr Med J* 2014;17:146.
- 92. Ostroff SM, Kobayashi JM, Lewis JH. Infections with Escherichia coli O157:H7 in Washington State. The first year of statewide disease surveillance. *JAMA* 1989;262(3):355-9.
- 93. Qadri F, Das SK, Faruque AS, et al. Prevalence of toxin types and colonization factors in enterotoxigenic Escherichia coli isolated during a 2-year period from diarrheal patients in Bangladesh. *J Clin Microbiol* 2000;38(1):27-31.

- 94. Qadri F, Saha A, Ahmed T, et al. Disease burden due to enterotoxigenic
 Escherichia coli in the first 2 years of life in an urban community in Bangladesh. *Infect Immun* 2007;75(8):3961-8.
- 95. Qu M, Lv B, Zhang X, et al. Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhea in Beijing, China (2010-2014). *Gut Pathog* 2016;8:31.
- 96. Rao MR, Abu-Elyazeed R, Savarino SJ, et al. High disease burden of diarrhea due to enterotoxigenic Escherichia coli among rural Egyptian infants and young children. *J Clin Microbiol* 2003;41(10):4862-4.
- 97. Robins-Browne RM. Seasonal and racial incidence of infantile gastroenteritis in South Africa. *Am J Epidemiol* 1984;119(3):350-5.
- 98. Samal SK, Khuntia HK, Nanda PK, et al. Incidence of bacterial enteropathogens among hospitalized diarrhea patients from Orissa, India. *Jpn J Infect Dis* 2008;61(5):350-5.
- 99. Santosham M, Sack RB, Reid R, et al. Diarrhoeal diseases in the White Mountain Apaches: epidemiologic studies. *J Diarrhoeal Dis Res* 1995;13(1):18-28.
- 100. Sinclair MI, Hellard ME, Wolfe R, et al. Pathogens causing community gastroenteritis in Australia. *J Gastroenterol Hepatol* 2005;20(11):1685-90.
- Stoll BJ, Glass RI, Huq MI, et al. Surveillance of patients attending a diarrhoeal disease hospital in Bangladesh. *Br Med J (Clin Res Ed)* 1982;285(6349):1185-8.
- 102. Thomas A, Cheasty T, Frost JA, et al. Vero cytotoxin-producing Escherichia coli, particularly serogroup O157, associated with human infections in England and Wales: 1992-4. *Epidemiol Infect* 1996;117(1):1-10.
- 103. Wierzba TF, Abdel-Messih IA, Abu-Elyazeed R, et al. Clinic-based surveillance for bacterial- and rotavirus-associated diarrhea in Egyptian children. *Am J Trop Med Hyg* 2006;74(1):148-53.

- Abal-Fabeiro JL, Maside X, Llovo J, et al. Aetiology and epidemiology of human cryptosporidiosis cases in Galicia (NW Spain), 2000-2008. *Epidemiol Infect* 2015;143(14):3022-35.
- 105. Assadamongkol K, Gracey M, Forbes D, et al. Cryptosporidium in 100 Australian children. *Southeast Asian J Trop Med Public Health* 1992;23(1):132-7.
- Biggs BA, Megna R, Wickremesinghe S, et al. Human infection with
 Cryptosporidium spp.: results of a 24-month survey. *Med J Aust* 1987;147(4):1757.
- 107. Chalmers RM, Elwin K, Thomas AL, et al. Long-term Cryptosporidium typing reveals the aetiology and species-specific epidemiology of human cryptosporidiosis in England and Wales, 2000 to 2003. *Euro Surveill* 2009;14(2).
- 108. Corbett-Feeney G. Cryptosporidium among children with acute diarrhoea in the west of Ireland. *J Infect* 1987;14(1):79-84.
- 109. Daoud AS, Zaki M, Pugh RN, et al. Cryptosporidium gastroenteritis in immunocompetent children from Kuwait. *Trop Geogr Med* 1990;42(2):113-8.
- 110. Das P, Roy SS, MitraDhar K, et al. Molecular characterization of Cryptosporidium spp. from children in Kolkata, India. *J Clin Microbiol* 2006;44(11):4246-9.
- 111. Duong TH, Kombila M, Dufillot D, et al. [Role of cryptosporidiosis in infants in Gabon. Results of two prospective studies]. *Bull Soc Pathol Exot* 1991;84(5 Pt 5):635-44.
- Eibach D, Krumkamp R, Al-Emran HM, et al. Molecular characterization of Cryptosporidium spp. among children in rural Ghana. *PLoS Negl Trop Dis* 2015;9(3):e0003551.

- 113. El-Badry AA, Al-Antably AS, Hassan MA, et al. Molecular seasonal, age and gender distributions of Cryptosporidium in diarrhoeic Egyptians: distinct endemicity. *Eur J Clin Microbiol Infect Dis* 2015;34(12):2447-53.
- 114. Fripp PJ, Bothma MT, Crewe-Brown HH. Four years of cryptosporidiosis at GaRankuwa Hospital. *J Infect* 1991;23(1):93-100.
- 115. Garvey P, McKeown P. Epidemiology of human cryptosporidiosis in Ireland,
 2004-2006: analysis of national notification data. *Euro Surveill* 2009;14(8).
- Goh S, Reacher M, Casemore DP, et al. Sporadic cryptosporidiosis, NorthCumbria, England, 1996-2000. *Emerg Infect Dis* 2004;10(6):1007-15.
- 117. Haider SS, Baqai R, Qureshi FM, et al. Blastocystis spp., Cryptosporidium spp., and Entamoeba histolytica exhibit similar symptomatic and epidemiological patterns in healthcare-seeking patients in Karachi. *Parasitol Res* 2012;111(3):1357-68.
- 118. Iqbal J, Hira PR, Al-Ali F, et al. Cryptosporidiosis in Kuwaiti children: seasonality and endemicity. *Clin Microbiol Infect* 2001;7(5):261-6.
- Iyer RN, Rao J, Venkatalakshmi A, et al. Clinical and Microbiology Profile and
 Outcome of Diarrhea by Coccidian Parasites in Immunocompetent Children.
 Pediatr Infect Dis J 2015;34(9):937-9.
- 120. Katsumata T, Hosea D, Wasito EB, et al. Cryptosporidiosis in Indonesia: a hospital-based study and a community-based survey. *Am J Trop Med Hyg* 1998;59(4):628-32.
- Laupland KB, Church DL. Population-based laboratory surveillance for Giardia sp. and Cryptosporidium sp. infections in a large Canadian health region. *BMC Infect Dis* 2005;5:72.

- 122. Learmonth JJ, Ionas G, Ebbett KA, et al. Genetic characterization and transmission cycles of Cryptosporidium species isolated from humans in New Zealand. *Appl Environ Microbiol* 2004;70(7):3973-8.
- 123. Mai Nguyen X. Cryptosporidial diarrhoea in children. Infection 1987;15(6):444-6.
- 124. Majowicz SE, Michel P, Aramini JJ, et al. Descriptive analysis of endemic cryptosporidiosis cases reported in Ontario, 1996-1997. *Can J Public Health* 2001;92(1):62-6.
- 125. Mann ED, Sekla LH, Nayar GP, et al. Infection with Cryptosporidium spp. in humans and cattle in Manitoba. *Can J Vet Res* 1986;50(2):174-8.
- 126. Miller NM, van den Ende J. Seasonal prevalence of Cryptosporidium associated diarrhoea in young children. *S Afr Med J* 1986;70(10):636-7.
- 127. Molbak K, Hojlyng N, Gottschau A, et al. Cryptosporidiosis in infancy and childhood mortality in Guinea Bissau, west Africa. *BMJ* 1993;307(6901):417-20.
- 128. Nacro B, Bonkoungou P, Nagalo K, et al. [Clinical profile of cryptosporidiosis in a pediatric hospital environment in Burkina Faso]. *Med Trop (Mars)*1998;58(1):47-50.
- 129. Nel ED, Rabie H, Goodway J, et al. A retrospective study of cryptosporidial diarrhea in a region with high HIV prevalence. *J Trop Pediatr* 2011;57(4):289-92.
- 130. Network ACN. Laboratory-based surveillance for Cryptosporidium in France,2006-2009. *Euro Surveill* 2010;15(33):19642.
- Peng MM, Meshnick SR, Cunliffe NA, et al. Molecular epidemiology of cryptosporidiosis in children in Malawi. *J Eukaryot Microbiol* 2003;50 Suppl:557-9.
- 132. Shahid NS, Rahman AS, Sanyal SC. Cryptosporidium as a pathogen for diarrhoea in Bangladesh. *Trop Geogr Med* 1987;39(3):265-70.

- 133. Shepherd RC, Sinha GP, Reed CL, et al. Cryptosporidiosis in the West of Scotland. *Scott Med J* 1988;33(6):365-8.
- 134. Wolfson JS, Richter JM, Waldron MA, et al. Cryptosporidiosis in immunocompetent patients. *N Engl J Med* 1985;312(20):1278-82.
- 135. Anestad G, Vainio K, Hungnes O. Interference between outbreaks of epidemic viruses: additional Norwegian observations. *Scand J Infect Dis* 2009;41(5):381-2.
- Arana A, Cilla G, Montes M, et al. Genotypes, recombinant forms, and variants of norovirus GII.4 in Gipuzkoa (Basque Country, Spain), 2009-2012. *PLoS One* 2014;9(6):e98875.
- 137. Beersma MF, Schutten M, Vennema H, et al. Norovirus in a Dutch tertiary care hospital (2002-2007): frequent nosocomial transmission and dominance of GIIb strains in young children. *J Hosp Infect* 2009;71(3):199-205.
- 138. Bicer S, Col D, Erdag GC, et al. A retrospective analysis of acute gastroenteritis agents in children admitted to a university hospital pediatric emergency unit. *Jundishapur J Microbiol* 2014;7(4):e9148.
- 139. Brown JR, Shah D, Breuer J. Viral gastrointestinal infections and norovirus genotypes in a paediatric UK hospital, 2014-2015. *J Clin Virol* 2016;84:1-6.
- 140. Chan-It W, Thongprachum A, Okitsu S, et al. Detection and genetic characterization of norovirus infections in children with acute gastroenteritis in Japan, 2007-2009. *Clin Lab* 2011;57(3-4):213-20.
- 141. Chhabra P, Dhongade RK, Kalrao VR, et al. Epidemiological, clinical, and molecular features of norovirus infections in western India. *J Med Virol* 2009;81(5):922-32.
- 142. Dai YC, Hu GF, Zhang XF, et al. Molecular epidemiology of norovirus gastroenteritis in children in Jiangmen, China, 2005-2007. *Arch Virol* 2011;156(9):1641-6.

- 143. Dey SK, Nguyen TA, Phan TG, et al. Molecular and epidemiological trend of norovirus associated gastroenteritis in Dhaka City, Bangladesh. *J Clin Virol* 2007;40(3):218-23.
- 144. Dey SK, Phan TG, Mizuguchi M, et al. Genetic diversity and emergence of norovirus GII/4-2006b in Japan during 2006-2007. *Clin Lab* 2011;57(3-4):193-9.
- 145. Dey SK, Phathammavong O, Okitsu S, et al. Seasonal pattern and genotype distribution of norovirus infection in Japan. *Pediatr Infect Dis J* 2010;29(5):e32-4.
- 146. Dove W, Cunliffe NA, Gondwe JS, et al. Detection and characterization of human caliciviruses in hospitalized children with acute gastroenteritis in Blantyre, Malawi. *J Med Virol* 2005;77(4):522-7.
- 147. Estevez A, Arvelo W, Hall AJ, et al. Prevalence and genetic diversity of norovirus among patients with acute diarrhea in Guatemala. *J Med Virol* 2013;85(7):1293-8.
- 148. Galeano ME, Martinez M, Amarilla AA, et al. Molecular epidemiology of norovirus strains in Paraguayan children during 2004-2005: description of a possible new GII.4 cluster. *J Clin Virol* 2013;58(2):378-84.
- 149. Georgiadis S, Pilger DA, Pereira F, et al. [Molecular evaluation of norovirus in patients with acute gastroenteritis]. *Rev Soc Bras Med Trop* 2010;43(3):277-80.
- 150. Hansman GS, Doan LT, Kguyen TA, et al. Detection of norovirus and sapovirus infection among children with gastroenteritis in Ho Chi Minh City, Vietnam. *Arch Virol* 2004;149(9):1673-88.
- 151. Iritani N, Seto Y, Kubo H, et al. Prevalence of Norwalk-like virus infections in cases of viral gastroenteritis among children in Osaka City, Japan. *J Clin Microbiol* 2003;41(4):1756-9.

- 152. Kim JK, Kim JW. Molecular epidemiologic trends of diarrhea-causing virus infection from clinical specimens in Cheonan, Korea, in 2010-2012. *J Clin Lab Anal* 2014;28(1):47-51.
- 153. Lee BE, Preiksaitis JK, Chui N, et al. Genetic relatedness of noroviruses identified in sporadic gastroenteritis in children and gastroenteritis outbreaks in northern Alberta. *J Med Virol* 2008;80(2):330-7.
- Lindell AT, Grillner L, Svensson L, et al. Molecular epidemiology of norovirus infections in Stockholm, Sweden, during the years 2000 to 2003: association of the GGIIb genetic cluster with infection in children. *J Clin Microbiol* 2005;43(3):1086-92.
- 155. Marshall JA, Hellard ME, Sinclair MI, et al. Incidence and characteristics of endemic Norwalk-like virus-associated gastroenteritis. *J Med Virol* 2003;69(4):568-78.
- 156. Medici MC, Martinelli M, Arcangeletti MC, et al. Epidemiological aspects of human rotavirus infection in children hospitalized with acute gastroenteritis in an area of northern Italy. *Acta Biomed* 2004;75(2):100-6.
- 157. Nataraju SM, Pativada M, Chatterjee D, et al. Molecular epidemiology of norovirus infections in children and adults: sequence analysis of region C indicates genetic diversity of NVGII strains in Kolkata, India. *Epidemiol Infect* 2011;139(6):910-8.
- Nguyen TA, Hoang L, Pham le D, et al. Norovirus and sapovirus infections among children with acute gastroenteritis in Ho Chi Minh City during 2005-2006. J
 Trop Pediatr 2008;54(2):102-13.
- 159. Nguyen TA, Yagyu F, Okame M, et al. Diversity of viruses associated with acute gastroenteritis in children hospitalized with diarrhea in Ho Chi Minh City, Vietnam. *J Med Virol* 2007;79(5):582-90.

- Oldak E, Sulik A, Rozkiewicz D, et al. Norovirus infections in children under 5 years of age hospitalized due to the acute viral gastroenteritis in northeastern
 Poland. *Eur J Clin Microbiol Infect Dis* 2012;31(4):417-22.
- 161. Onishi N, Hosoya M, Matsumoto A, et al. Molecular epidemiology of norovirus gastroenteritis in Soma, Japan, 2001-2003. *Pediatr Int* 2008;50(1):65-9.
- 162. Pang XL, Preiksaitis JK, Lee BE. Enhanced enteric virus detection in sporadic gastroenteritis using a multi-target real-time PCR panel: a one-year study. *J Med Virol* 2014;86(9):1594-601.
- Papaventsis DC, Dove W, Cunliffe NA, et al. Norovirus infection in children with acute gastroenteritis, Madagascar, 2004-2005. *Emerg Infect Dis* 2007;13(6):908-11.
- Park DJ, Kim JS, Park JY, et al. [Epidemiological analysis of norovirus infection between March 2007 and February 2010]. *Korean J Lab Med* 2010;30(6):647-53.
- Puustinen L, Blazevic V, Huhti L, et al. Norovirus genotypes in endemic acute gastroenteritis of infants and children in Finland between 1994 and 2007.
 Epidemiol Infect 2012;140(2):268-75.
- Puustinen L, Blazevic V, Salminen M, et al. Noroviruses as a major cause of acute gastroenteritis in children in Finland, 2009-2010. *Scand J Infect Dis* 2011;43(10):804-8.
- 167. Rasanen S, Lappalainen S, Salminen M, et al. Noroviruses in children seen in a hospital for acute gastroenteritis in Finland. *Eur J Pediatr* 2011;170(11):1413-8.
- 168. Sa AC, Gomez MM, Lima IF, et al. Group a rotavirus and norovirus genotypes circulating in the northeastern Brazil in the post-monovalent vaccination era. J Med Virol 2015;87(9):1480-90.

- 169. Siqueira JA, Linhares Ada C, Goncalves Mdos S, et al. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belem, northern Brazil. *Mem Inst Oswaldo Cruz* 2013;108(5):661-4.
- 170. Sumi A, Kobayashi N, Ohtomo N. Proportion of sporadic gastroenteritis cases caused by rotavirus, norovirus, adenovirus and bacteria in Japan from January 2000 to December 2003. *Microbiol Immunol* 2005;49(8):745-56.
- Thongprachum A, Khamrin P, Chan-It W, et al. Emergence of norovirus GII/4
 2006a and 2006b variants in hospitalized children with acute gastroenteritis in
 Thailand. *Clin Lab* 2013;59(3-4):271-6.
- Thongprachum A, Takanashi S, Kalesaran AF, et al. Four-year study of viruses that cause diarrhea in Japanese pediatric outpatients. *J Med Virol* 2015;87(7):1141-8.
- 173. Victoria M, Carvalho-Costa FA, Heinemann MB, et al. Prevalence and molecular epidemiology of noroviruses in hospitalized children with acute gastroenteritis in Rio de Janeiro, Brazil, 2004. *Pediatr Infect Dis J* 2007;26(7):602-6.
- Wilhelm CM, Hanna SL, Welch CA, et al. Viral gastroenteritis in Charleston, West Virginia, in 2007: from birth to 99 years of age. *Infect Control Hosp Epidemiol* 2010;31(8):816-21.
- 175. Xue Y, Pan H, Hu J, et al. Epidemiology of norovirus infections among diarrhea outpatients in a diarrhea surveillance system in Shanghai, China: a crosssectional study. *BMC Infect Dis* 2015;15:183.
- Yoon JS, Lee SG, Hong SK, et al. Molecular epidemiology of norovirus infections in children with acute gastroenteritis in South Korea in November 2005 through November 2006. *J Clin Microbiol* 2008;46(4):1474-7.

- 177. Zhirakovskaia EV, Tikunov AY, Bodnev SA, et al. Molecular epidemiology of noroviruses associated with sporadic gastroenteritis in children in Novosibirsk, Russia, 2003-2012. *J Med Virol* 2015;87(5):740-53.
- 178. Zhuge XL, Cui DW, Wu YP, et al. [Detection and typing of caliciviruses from patients with acute diarrhea in Hangzhou area, 2009 2010]. *Zhonghua Liu Xing Bing Xue Za Zhi* 2011;32(10):1022-5.

TABLES

(1) (1) <th>Reference</th> <th>E. coli Pathotype(s)</th> <th>Location I</th> <th>Latitude</th> <th>Elevation, m</th> <th>Yearly Rainfall, mm, Mean</th> <th>Yearly Temperature, degrees Celeius, Mean</th> <th>Study Period</th> <th>Study Duration, mo.</th> <th>E. coli Cases, no.</th> <th>Subject Age/ Descriptor</th> <th>Study Setting</th> <th>Urban/Bural Setting</th> <th>WHO Mortality Stratum</th> <th>Temperature *</th> <th>Rainfall *</th> <th>Temperature * Rainfall * Peak Season¹</th>	Reference	E. coli Pathotype(s)	Location I	Latitude	Elevation, m	Yearly Rainfall, mm, Mean	Yearly Temperature, degrees Celeius, Mean	Study Period	Study Duration, mo.	E. coli Cases, no.	Subject Age/ Descriptor	Study Setting	Urban/Bural Setting	WHO Mortality Stratum	Temperature *	Rainfall *	Temperature * Rainfall * Peak Season ¹
1 EUC Math Munduel System Low Low <td>Alarm et al</td> <td>EPBC</td> <td>Karochi, Pakistan</td> <td>N²SN</td> <td>8</td> <td>810</td> <td>98</td> <td>Jan 1997- Dec 2001</td> <td>8</td> <td>562</td> <td>IV</td> <td>Iterpital based (tertiary care facility)</td> <td>Urban</td> <td>HMD</td> <td></td> <td></td> <td>annane</td>	Alarm et al	EPBC	Karochi, Pakistan	N ² SN	8	810	98	Jan 1997- Dec 2001	8	562	IV	Iterpital based (tertiary care facility)	Urban	HMD			annane
TEG Math hundred Optime Spate	Baqui et al	ITTIC	Matlab, Bangladash	$^{28}N_{\rm s}$	9	offic	R	May 1983- Apr 1984	9	eșc	W	Distriben treatment. center	Burd	OMI			hot, dry
TIC Math. Rughed Grit Magned Grit Magned Grit Magned Math. Rughed	Black et al	ETEC	Metlah, Bengladesh	$^{1}N_{1}$	10	2350	25	Age 1976- Mar 1979	21	3Ê0	457	Commity	Rund	HMD			bot
VIICEnsult Induity 95 05 05 06 01 0600^{100} 01 0100^{100} 0100^{100} 0100^{100} 010^{100}	Black et al	RTBC	Motiah, Bungladesh	N.57	Q	e512e		Peb 1977- Jan 1979	Ħ	4384	IV	Clinic based	Barrol	HMD			bot, dry
I BRC, ETCC Manuality bulk currents Bry US US I	Bovers et al	VTBC	Brussels, Belgium	N _a 15	la	lite		Apr 2008- Det 2000	#	306	W	Hospital basel and Lab reports	NA	Developed	•	•	MILINE
DMC ENDER. Intercention Service Definition Service	Cased-Bernod et al	EPBC, ETBC	Artionactorivo, Modogencar	₁ 8.81	1005	1360	81	Nev 1988- Oct 1989	g	133	<14.7	Hospital based	Urban	DMD	•	÷	warm and rainy
	Cho et al	EARC, EHEC, EFEC, ETEC, EIEC, EFEC	South Korea	37"N	*	135 d	=	Jan 2005- Dec 2003	2	See	īV	Clinic based	Urhan and Rard	LMD			hot and wet summer months
EPC Data: Strend 470 04 44 04 64	Chowdrary et al	RTBC	Dhaka, Banglacksh	$^{1}N_{1}$	٠	culific	'n	Mar 2008- Peb 2010	ħ	2045	M	Hospital based	Urham	OMH			NA
LUC Contrant (OH), INMO READ 9/4 9/4 9/4 9/4 9/4 9/4 9/4 9/4 9/4 1 <td>Cisse et al</td> <td>EFEC</td> <td>Doline, Serogal</td> <td>${}^{\mu}N_{\mu}h$</td> <td>8</td> <td>41 f</td> <td></td> <td>Pub 1985-</td> <td>ĸ</td> <td>8.</td> <td><15 y</td> <td>Hopital based</td> <td>Uthen</td> <td>HMD</td> <td></td> <td></td> <td>cost dry</td>	Cisse et al	EFEC	Doline, Serogal	${}^{\mu}N_{\mu}h$	8	41 f		Pub 1985-	ĸ	8.	<15 y	Hopital based	Uthen	HMD			cost dry
derive Media (Th) gyd 243 Unitable Unitable Centrality Neiseline Neiselin Neiseline	Cohen et al	BullC	Cincirnuti (OH), United States	N"95	901	çılır	13.6	Mar 1999- Feb 2000	9	8	Children	Hopital based	Uthan	Developed	I	I	NA
ETECarption, Readily $2y^2$ 600 1	Estrada-Garcia et a	I RFBC, ETBC	Mexico City, Mexico	"N _e fe	2239	662	18	Jan 1998- Dec 1998	앮	57	482	Commity	Peri-urban	LMD	٠	•	miny
$ \begin{array}{ c c c c c c c c c $	Gatti et al	ETBC	Campinas, Boaril	12. ₁₂	660	130 đ	8	Oct 1985- Sep 1986	a	£8	ay.	Consensity	Uthan	LMD	•	ţ	NA
	Gornales et al	ETBC, EFBC, EABC	Cochabarrho and La Puz, Bolivia	10,00	4003	sfio	ь	Jan 2007- Dec 2000	4	64c	cfo mo	Hospital based	NA	UNI			cold, dry mason
EFRC Vitatiyaç, Casada 20% 20 2 Dec 677 (20 S) 2 Dec 677 (20 S) 2 1000 1000 Utation Utation <td>Querrant et al</td> <td>ETBC</td> <td>Facatulat, Bearil</td> <td>12. 4</td> <td>54</td> <td>1460</td> <td>68</td> <td>May 1978- Oct 1980</td> <td>8</td> <td>8</td> <td>*57</td> <td>Commity</td> <td>Poor Urban and Burni</td> <td>LMD</td> <td>•</td> <td>•</td> <td>warm and rainy</td>	Querrant et al	ETBC	Facatulat, Bearil	12. 4	54	1460	68	May 1978- Oct 1980	8	8	*57	Commity	Poor Urban and Burni	LMD	•	•	warm and rainy
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gurwith and Williams	EPBC	Winnipeg, Canada	N_of	865	210	a	Dec 1973- Nov 1975	52	120	<16 y	Hospital based	Uthan	Developed			summer, fall
all EXECUTION DESCRIPTION BigRid level 7 140 14.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Heastharn et al.	EPBC 0	Cape Town, South Africa	34,22	ą	nad	4	Age 1981- Mar 1982	2	<u>ę</u>	cuy	Hospital based	Urhan	OMI	÷	ì	varm, dry
d EHBC Nave, Genauity 4PK 548 500 61 Case reports NA 1 EFBC Havin, Rengindenia gryf 9 3970 36 Auti 1996- 13 300 Al Case reports NA 1 EFBC Havin, Rengindenia gryf 9 3970 36 Auti 1996- 13 Auti 1996- 14 Auti 1996- 14 EFBC Boord, Routh Korea gryf 9 3970 345 34 472 Al Harginia Haued Urban EFBC Boord, Routh Korea gryf 79 34 472 Al Harginia Haued Urban EHBC, EFBCG, Havina gryf 70 13 Alm 2046- 14 Mars Mars EMBC, EFBCG, South Korea gryf 70 14 247 41 Harginia Haued Urban EMBC, EFBCG, South Korea gryf 70 10 777 41 Laborera Urban and Rand	Huang et al.	RFBC, KTBC, STBC, KIBC	Shaghai, China	$N_0 \pi \theta$	4	0911	ų	Jun 2003- Det 2013	12	200	IV	Hospital based	NA	IMD	·	•	July-Sept
I ETEC Data Range Sp(V) 9 370 26 Jan 1985 34 473 All Hoppital based Uthus ETEC South, South, Norme 37'N 96 135 Data 1985 14 473 All Hoppital based Uthus ETEC South, South Norme 37'N 96 135 Data 1985 14 23 0.03 0.04 0.04 ETERC South, South Norme 37'N 70 104 Na 104 Longoial based Uthus	Huber et al	EHBC	Bavario, Germany	48"N	82	cases	в	April 1996- May 1997	2	300	IV	Case reports	NA	Developed			NA
ETBC Bood, Bouch Korea gr?N 86 U.g.d La Phà split- 14 ga cu5y Hunghal bund and Udean BHBG, ETBC, ETBC, South Korea gr?N 70 Loop La Desizote La 777 al Lab reports Urban and Rund EAUE SPEC, ETBC, South Korea gr?N 70 Loop La Desizote La 777 al Lab reports Urban and Rund	Khun et al	ETTRC	Dhaka, Bangladesh	$^{2}N_{\rm s}$	۴	ovile.	Ħ	Jan 1983- Dec 1984	Ħ	472	IV	Hospital based	Urban	DMD			spring, sutumn
37"N 70 1040 13 dariote 13 777 all Labrepoets	Kim et al	ETBC	Seoul, South Korea	80°N	98	135 d	я	Pub 1984- Mar 1985	×	α,	<15.9	Hospital based and Outpatient	Urban	LMD	I	I	cool, dry
	Mm et al	EHBC, ETBC, EABC, EFBC, EIBC	South Korea	N ₂ CE	R	tona	=	Jan 2014- Dec 2014	2	44	78	Lab reports	Urban and Rard	LMD			May, peak at June(Ualy

Table 1a. Characteristics of Studies Included in the Systematic Review of Climatic Drivers of diarrheagenic *Escherichia coli* incidence [Reference List: (29, 30, 69-103)].

Klein et al	STEC	Seattle (WA), United States	47°N	32	860	п	Nev 1998- Oct 2001	36	39	children	Hospital based and Private practice	Urban	Developed			summer, fall
Mutanda et al	RPBC	Nairobi, Kemya	1.81	16a3	730	¢:	May 1975- Agr 1976	n	98	children	Hospital based	Urban	CIMI	I	I	NA
Onarrigh et al	ETEC, EPEC, STEC, EAEC	Gwagwalada, Nigeria	$b^{\mu}N_{\eta}$	360	цgó	57	April 2008- March 2009	51	61	0-24 mo	Hospital based	Urban	dMH	•	NA	dry season
Ostroff et al	Oug7/H7	Washington, United States	47°N	37	860	п	Jan 1987- Dec 1987	31	86	ца	Case reports	Urban and Rural Developed	Developed			June-Sept
Pai et al	VTEC	Colgary, Canada	No.45	1083	420	4	Jul s984- Jun 1986	ħ	100	IV	Hospital based	Urban	Developed	·	•	Internet
Qudri et al (2000)	ETEC	Dhaka, Bangladesh	$_{\rm p}N_{\rm s}$ Ez	6	1970	3Ę	Apr 2002- Oct 2004	30	242	<2 y	Commity	Urban	DMB			spring
Qudri et al (2007)	ETEC	Dhaka, Bangladesh	"N., Sz	6	1970	90	Sep 1996- Aug 1998	52	662	IV	Hospital based	Urban	GIMH	·	•	hot
Quetal	EPEC, EAEC, ETEC, EIEC, STEC Bejing, China	Bejing, China	40°N	54	630	-	Apr 2010- Dec 2014	22	118	0-5 y	Outpatient	NA	DAD	÷	5	summer (Jun-Aug)
Rao et al	ETEC	Abu Homes, Egypt	N ₄ rE	5	44 d	50	Mar 1995- Feb 1998	36	803	<3 y	Commuty	Rurel	LMD	·	VN	WARTIN
Robins-Betwees et al EPSC	d RPBC	Johannesburg, South Africa	36°S	1690	730	şţ	Oct 3974- Sep 1975	n	35	<2 y	Hospital based	Urban	CIMI	·,		hot
Samal et al	EPEC, ETEC, EAggEC	Bhuhanewar, India	$^{10}N_{\eta}$	44	1554	27	Jan 2004- Dec 2006	36	699	all a	Hospital based	Urban	HMD			VV
Samonis et al	EPBC	Heraklion, Greece	36°N	30	483	38.7	Jan 1992- Apr 1994	88	667	<2 y	Hospital based	30% Urbani 60% Developed Rumi	Developed			NA
Santraham et al	ETEC	Whiteriver (AZ), United States	33°N	1588	45B d	12.7	Jan 1982- Dec 1984	36	38	<3 y	Commuty	Burnd	Developed	·	I	WARTIN
Sinclair et al	EAggEC, EFEC, ETEC, EHEC	Melbourne, Australia	8"4E	181	géo	и	Bep 1997- Feb 1999	18	83	IV	Commuty	Urban	Developed	•	i	XA
Stoll et al	RTBC	Dhaka, Bongladesh	$N_{\rm e}$ Sz	0	1970	36	Dec 1979- Nev 1980	n	fa4	W	Hospital based	Urban	DMD	•	•	hot, dry
Thomas et al	VTEC	United Kingdom	NorS	ęi	750	10.3	Jan 1989- Det 1991	36	1275	IV	Lab reports	NA	Developed			summer months
Wjerzba et al	ETEC	Aba Homes, Egypt	N416	5	44 d	20	May 2000- May 2002	52	148	<5 y	Clinic based	Rural	DAD	÷	NA	MILLIN
Wierzha et al	RTEC .	Benha, Egypt	Note	15	8	18	May 2000- May 2002	25	=	<5 y	Clinic based	Peri-urhan	DAD	•	I	WILLIN
Abbreviations: EHI HMD, high-mortall	BC, enterohemorrhagi Ity developing country	Abbreviations: RHRC, enterchange E. eoli, RPRC, enterconthegenic E. eoli, EXRC, entercontigenic E. eoli, EARC, RAggEC, enterconggregative E. eoli, STRC, abiga-tha tooin producing E. eoli, VTRC, verticain-producing E. eoli, Hub. how mortally developing country. IAU, how mortally developing country. IAU, how mortally developing country. IAU, how mortally developing country. IAU and we with the	athogenic E. e eveloping cou	celi; ETEC, ente utry, NA, not av	entonigenic E. coli; l vilable.	CAEC/EUggEC	enteroaggregative	E. coli; STEC, shij	a-like tooin pro	dacing E. coli; /	VTEC, verotoxin-produ	cing R. coli.				

temperature or monthly rainfall in studies for which these data were available. irus and monthly incidence of monthly ⁴ Data denote the sign of the coefficient from generalized linear models performed to determine the relationship beth ^bDuta denote the peak season of cases and reflect the authors' terminology. ⁶ Statistically significant (P.c.og).

Reference	Location	Latitude	Elevation, m	Yearly Rainfall, mm, Mean	Yearly Temperature, degrees Celeius, Mean	Study Period	Study Duration, mo.	Crypto Cases, no.	Subject Age/ Descriptor	Study Setting	Urban/Bural Setting	WEIO Mortality Stratum	Temperature ^{1,} Rainfall ^{1,}	Rainfall ^b	Peak Season "
Abul-Fabeiro et al	Sarriago de Compostela (Galicia), Spain	43"N	820	1886	ia.6	Jan 2000- Dec 2008	901	822	IV	Primary case and Haspital based	Urban and Burd	Developed	:	۰.	summer and autumn
Aljanspur et al	Defixi, India	N.62	912	002	8%8	Dec 2006- Dec 2008	sa A	ħ	<5 y	Haspital based	NA	DMD	•	٠	NA
Aljampur et al	Trichy, India	${}_{\mu}N_{\mu}m$	R	880.4	e-ye	Dec 2006- Dec 2008	R	#	<5.9	Haspital based	NA	DMB			NA
Ajjampur et al	Vellore, India	13,5%	2	98	8.98	Dec 2008	R	œ	<5 y	Haspital based	NA	UMB			NA
The ANOFEL Cryptosporidiam France National Network	France	N.8 ⁴	R	637.4	ł.	Jan 2006- Dec 2009	4	407	TV.	Country level surveillance	Urban and Rural	Developed			mid/late summer-astrono
Annderroegial et al	Perth, Australia	27 27	8	goog	ų	Jan 1986- Dec 1988	я	100	<57	Haspital based	WA	Developed	÷	I	summer and well season.
Bennett et al	Litta, Pera	15.21	17	Bod	8	-2564 mrf	6	111	<12 y	Community based	Peri-tahun	HMD	•	NA	spring trimester (Oct-Dec)
Biggs et al	Melbourre, Australia	58'8	я	680	я	New 1984- Oct 1986	R	55	TV	Commity based	NA	Developed	•	I	vurn, dry moeths
Christel	Hwasan-gan, South Korea	35^{7N}	2	100	멬	Nor 1996- Oct 1997	п	4	TV	Commity based	Bund	DMD			spring and actume
Chainers et al	United Kingdom	gury.	ų	200	10.3	Jan 2000- Dec 2006	8	12,208	IV	Constry level surveillance	Urban and Bursl	Developed			auturen
Carbeth-Focney et al	Ireland	N	85		8.6	Peb syds- Peb sydd	12	41	<18 y	Lab based study	Burd	Developed			April and May
Decoud et al.	Kuwelt City, Kuwek	N_60	z	16 d	98	Jan 1989- Jan 1989	38	35	<8 y	Haspital based	Urban	DMD	I	٠	March and April
Das et al	Kolinta, India	"N"zz	я	10961	a6.7	Jan 2003- Dec 2004	8	4	<5.7	Haspital based	Urban shuns	DMB	÷	÷	rainy season and summer
Duorug et al	Libowile, Gabon	0.27"N ⁴	я	2100	¥	Ott 1989- Sep 1990	n	R	сay	Community based	Urban and Seburban	HMD	NA	•	wet season
Efforch et al	Agago, Ghara	$\mathcal{M}_{\mathcal{M}}$	302	210194	8,55	May acon- Sep aco8	4	я́ц	<14 y	Haspital based	Bund	11MD	ж	I	Apr-Jul
23-Eadry et al	Caino, Elgopt	N ₂ 06				Jan 2013- Dec 2013	n	991	TV	Haspital based	Urban and Peri- urban	UMD			summer and spring
Fripp et al	Pretoria, South Africa	8.97	1299	996	93	Oct 1985- Seg 1989	4	65	TP	Haspital based	NA	HMD	÷	N	racesson seases (June-Sep)
Garvey et al	Isdand	N*22	85	85	8.6	Jan 2004- Dec 2006	%	6961	TV	Country level surveillance	Innu	Developed			spring and actume.
Orth et al	Allertiale and Copeland (North Cambria), England	54"N	18	1752	9.4	Mar 1996- Peb 2000	8	181	IV	Commity based	NA	Developed	•	ï	spring and actume
Haider et al	Karachi, Pakistain	26°N	a	210	98	Jan 2007- Dec 2007	11	32	W	Lab based	Urban and Bornd	HMD	•	·	niny surmer moths
Health Protection Southard	Southend	N.,6	7	901.7	9%	Jan 2006- Dec 2010	9	378	IV	Country level surveillance	NA	Developed			NA

Table 1b. Characteristics of Studies Included in the Systematic Review of Climatic Drivers of *Cryptosporidium* incidence [Reference List: (32-42, 104-134)].

.

.....

Hafs of all	Gysonggi-do Province, South Korta	N-15	μ	111	11	Lia: 2004-Dwc 2006	я	8	IN	House International	NA	Developed		summer and achieved	
lighed of all	Kuwait City, Kuwait	Not	π	66 d	×	Sep 1995-Aug 1997	z	15	3 mo-13 y	Hospital based	Urban and Seni-orban LMD		: ;	Jan-April	
lyer et al	Elyderabad, India	Nucl 1	7	190	26.4	Jan 2009-Dec 2012	a	æ	<15 y	Hospital based	NA	HND		August and September (measures) seases)	ber (moteom
Katsumata et al	Surdvyra, hofenesia	k	5	1478	n	Aug 1992-34 1993	Ħ	¥	4 S>	Hospital and Community based	YX	LMD	- NA	March (rainy season)	
Laite (ESR data substituted)	New Zoaland	3.14		1150	15.5	Jan 1995-Dec 2012	181	01661	IN	Country level surveillance	Urban	Development		spring and suturns	
Laupland et al	Calgary Health Region, Canada	N-15	1063	418.8	52	May 1999-Apr 2002	я	173	IN	Lab based	Urban and Rand	Developed		late success to carly full	yfull
Learnceth et al	New Zosland	N.17	125	1228	12.9	Aug 2000-Aug 2003	16	9589	IN	Lab based	Littura and Runal	Developed		nuture but grings	
Mai Nguyen et al	Bern, Switzeefand	N-LP	88	1025	62	Jan 1986-Dwo 1986	<u>=</u>	и	IV	Houghtal based	W	Developed	** NA	August and September	Ja Ma
Majowicz et al	Orsario, Canada	N-63	172	852.9	2.7	Jan 1996-Dec 1997	*	451	W	Province level surveillance	Urban and Runal	Developed		HighA	
Mann et al	Winnipeg (Martiobs), Canada	N.OS	817	\$10	7	Oct 1983-Oct 1984	1	56	IV	Lab based	Urban and Rund	Developed	•	his summer to only full	y full
Miller et al	Durhan, South Africa	NUN	Ŀ	0501	21	Aug 1985-34 1986	2	8	4 %	Houpital based	NA	Development	•	summer to early actuant	hen
Molibak et al	Bissen, Guines Bissen	12.N	35	53 d	12	Age 1987-Mar 1990	×	210	ay	Community based	Serii-arbun	GNH	•	rainy season	
Nacco et al	Bobo Dioulases, Burkina Faso	_{N-11}	499	1068	71	Jan 1995-Dec 1985	=	Ŀ	٩y	Hought I haved	NA	CIVII	•	beginning of the mirry season	nound yn
Naumova et al	Boston (MA), United States	N-29	-	1071	10.7	Jan 1993-Dwc 2002	8	201	IV	State level surveillance	Lithua	GNI	•	summer to early fall	
Naurrows et al.	Lowell (MA), United States	N-72	66	1011	9.4	Jan 1993-Deo 2002	120	×	IN	State level surveillance. Urban	Urban	HND		summer to early full	
Naurova et al	Worchester (MA), United States	N-77	罰	1061	89	Jan 1993-Dec 2002	8	z	IV	State level surveillance Udoan	Lithur	GNI	•	summer to carly full	
Nel et al	Cape Town, South Africa	N-14	77	280	11	Jun 2004-May 2005	11	13	<18 y	Hopital based	NA	CIVII		warm morths; lowest rainful	of minfull
Prog et al	Blastyre, Malawi	ķ	111	88	81	Aug 1997-Mar 1999	8	\$	459	Hospital based	VV	GNH	1	rainy season (Ort-Mar)	(a)
Perch et al	Bissue, Outrea Bissue	12%	35	53 d	22	Jan. 1991-Dec 1997	z	381	đy	Community based	Peri-urban	IND	•	beginning of or just before the rairy seasors (May-Md)	before the July
Pietos et al	Waterloo region (Ontario), Curada	N.07	325	86	P 97190	Apr 2005-Duc 2007	R	36	IV	Rogice level surveitience	Litture and Runal	Developed		WILLIAM	
Shahid ot all	Dhaka, Bangladedh	N-N	6	2148	190	Jan 1994-Deo 1984	2	12	IN	Hospital Based	NA	UND	•	bot, hareid worther (Age-Jul)	(Apr-14D
Shepherd et al	Paisley, Scotland	N.95	*	1165	87	Jan 1986-Dec 1987	7	8	IV	Lab based	NA	Developed		spring and where	
Skorth et al	Oregon, United States	N. 59	\$	914.4	521	Lar. 1985-Dec 19888	ų	я	IN	Lab bused	W	Developed		summer and early automo-	ann a
Terletskein et al (BKI den sebeinsted)	Gernary	N-25	4	346	•	Jan 2001-Dec 2006	ti	9944	IIV	Country level surveillance	NA	Developed		late surreser to only advers	nuture o
Vehous et al	Ortario, Canuda	N. 69	11	67258	212	Jan 2007-Duc 2012	8	53	IN	Province level surveillance	WA	Developed		surner moths	
Wolfson et al	Berton (MA), United States	N.2+	-	53	10.7	Feb 1983-Jan 1984	13	43	IN	Lab based	Uthan	Developed	•	summer and fall	
Abbroviations: HMD, high-mortality develop	Abbreviations: HMD, high-mortality developing country, LMD, low-mortality developing country; NA, not available	ortality davel	N 1/22000 Builde	, not available.											

Data denote the sign of the coefficient from generalized lister models performed to: "Data denote the peak seasons of cases and selfere the ardwar terratedogs.
 Standstand, significant (PC-ID).
 Teopical listends.

Reference	New Strain Year, Y.N.	a Location	Latitude	Elevation, m	Vestly Rainfall, mm, Mean	Yearly Temperature, degress Celcius, Mean	Study Period	Study Duradien, ma	Norwinas Cases, No.	Sabject Age/ Descriptor	Study Settleg	Urban Rural Setting	WHO Martality Tengerature ^{1,} Rainfall ¹	fengerstare *	Rainfall	Peak Season
Anostad or al	۶	Noeway	N-65	11	995	9	Jan 2001-June 2008	8	5274	VN	Lab reports	NA	Developed			winter
Anna ci al	z	Gipurdon (Basque Country), Spain	43"N	2	1363	132	Jan 2009-Dec 2012	Ŧ	582	«15 y	Hospital and Circle based	Urban	Developed	ì	:	cold months (full-winter)
Borrsma et al	*	Retendare, Netherlands	N-16	5	204	10	Ind 2002-Jun 2007	8	221	W	Hospital based and Outputient	NA	Developed	i	+	NA
Bitter et al	z	Isombod, Turkey	41 [°] N	R	640	4	Jan 2009-Dec 2009	1	51	Children	Hospital based	Urban	Developed	+	I	winter-spring period
Brown et al	x	London, United Kingdom	N-15	61	150	601	Jul 2014-Jun 2015	12	Ħ	0-18 y	Hospital based	Uthen	Developed			NA
Chan-It et al	z	Tokyo, Sapporo, Saga, Osaka, and Mainaru, Japan	N-66	4	1520	15	Jul 2007-Jun 2009	70	254	2 mo-15 y	Pediatric clinics	NA	Developed			winter months
Chindren, et al	¥	Pure, Nagpur, Aurungahad, India	PLAN,	555	784	7	Jul 2005-Jun 2007	7	8	57	Hospital based and Outputient	VN	CINH			summer meeths
Dui et al	۶	Jungren, China	22"N ⁴	2	1.797.1	22.5	Sep 2005-Aug 2007	7	115	dy	Outpatient	W	TND	i	i	subuna/wirder seasons
Dey et al (2007)	z	Dhuka, Bungladeth	23"N	6	2148	190	Oct 2004-Sep 2005	12	4	infants and children	NA	NA	UNI			late automa/winter seasons
Day et al (2010)	٨	Sappero, Tokyo, Maizuru, Osaka, Saga, Kagawa, and	N-66	٤	1520	15	Jul 1995-Jun 2007	146	979	<15 y	NA	Urben and Bural	Developed			winter season
Day et al (2011)	٨	Maizure, Tokyo, Sapporo, Saga, and Osaka, Japan	NLSE	4	1530	5	Aul 2006-Jun 2007	2	8	<14 y	NA	VN	Developed			witcher seasons
Dave et al.	z	Blantyre, Malawi	"S"EI	111	988	12	Jul 1999-Jun 1999	21	92	1-54 mm	Hospital based	Urbun	GINH	÷	÷	rainy season (March)
Esteves et al	z	Santa Rosa, Gasternala	14°N ^d	1498	1218	19	Oct 2007-Aug 2000	97	341	T.	Hospital based and Arribulatory clinics	35% Urban, 65% Runal	GNH			winter months, following rainy season
Galeano et al	z	Associon, Panaguay	25'55	00	1370	53	Jan 2004-Dec 2005	20	191	s5 y	Hospital based	Urban	LMD	÷	÷	no seasonal patrem
Georgiadis et al	٨	Porto Alegre, Brazil	30'5	5	123 d	19.5	Oct 2006-Oct 2007	1	4	W	Lab reports	VN	TWD		I	southern herrisphene spring
Flareman et al	x	Ho Chi Mish City, Victure	"N.11	81	1950	17	Dec 1999-New 2000	11	12	1 mo-15 y	Hospital based	Urban	LMD			end of rainy season, first half of dry season
Phath or al	¥	Sweetlen	NL46	8	955	ø	Mi 2005-Dec 2000	×	22895	W	Lab reports	VN	Developed			NA
britaeri et al	z	Osaka City, Japan	34"N	2	1340	16	Apr 1996-Mar 2000	8	105	<12 y	Pediatric clinics	NA	Developed	i	i	late automs-wister
Kim et al	z	Cheonan, South Korea	NL9E	n	1193	=	M 2010-041 2012	*	136	<10 y	Hospital based	Urben	LMD			winter and early spring
Lee et al	٨	Alberta, Carada	N-15	1063	418.8	5	Jan 2000-Apr 2004	91	Ħ	479	Lab reports	Uthen	Developed	i	٧N	Nov-Mar
Lindell et al	¥	Stackholm, Sweden	NUSE	8	955	ø	Aug 2000-Jun 2003	8	828	11	Hospital based and Lab reports	Uthus	Developed	i	ì	Jun-Mar
Lopram et al	۶	Deserverk	N.,65	4	640	8	Jan 1995-Dec 2002	2	9681	W	Lab reports	W	Developed			W
Lopman et al	¥	Finland	N99	8	630	ş	Jan 1995-Dee 2002	2	1629	VV	Leb reports	VN	Developed			Bayach
Lopman et al	٨	Slevenia	46"N	196	620	ю	Jan 1995-Dec 2002	8	808	NA	Lab reports	NA	Developed			NA
Lopram et al	٨	Sweden	Nu66	8	805	9	Jan 1995-Dec 2002	z	3213	W	Lab reports	NA	Developed			NA

Table 1c. Characteristics of Studies Included in the Systematic Review of Climatic Drivers of norovirus incidence [Reference List: (31, 41, 51, 135-178)].

Marshall et al N	N	Melbeurne, Australia	37°S	131	560	14	Sep 1997-Feb 1999	81	73 /	VII (Community	Urban	Developed	ţ	+	late spring/early summer
Medici et al	Y	Purna, Italy	44"N	57	181	=	Jan 2000-Dec 2002	×	62 0	Children 1	Hospital based	Urban	Developed	i	NN	Sep-Jan (Nov peak)
Nataraju et al	z	Kolkata, India	$22^{n}N^{d}$	12	1585.7	26.7	Nov 2007-Oct 2009	7	38	NI IV	Hospital based	Urban and Rural HMD	HMD	ţ	ī	NA
Nguyen et al (2007) N	ł,	Ho Chi Minh, Vietnam	_p N-11	18	1950	28	Oct 2002-5ep 2003	13	56 3	37 d-9 y 1	Hospital based	Urban and Rural	LMD			rainy season (May-Oct)
Nguyen et al (2008)	×	Ho Chi Minh, Vienam	"N ₁	81	0561	28	Dec 2005-Nev 2005	12	32 6	children 1	Hospital based and Outpatient	Urban and Rural	TWD			rainy season (May-Oct)
Oldak et al N	z	Bialywork, Poland	N.45	150	580	ę	Jul 2009-Jun 2010	1	¥	dy 1	Hospital based	NA	Developed	i	i	autum months (Sep-Nov, Jan-Mar)
Orishi et al	×	Scena, Japan	Null	29	1230	12	Sep 2001-Aug 2003	7	99 2	children 1	Hospital based	Rund	Developed	i	ī	autume-winter
Parg ct al	z	Alberta, Canada	N-16	1083	418.8	4.4	Jul 2008-Jul 2009	2	437	10	Hospital based, Community clinics,	Urban and Runsi	Developed	i	NA	winter
Papaventsis et al	z	Artanantive, Madagascar	18-2	6221	1360	*	May 2004-May 2005	5	7	516 y 1	Hospital based and Rehydration clinics	NA	HMD			November and December
Park et al	×	Secul, South Korea	N-16	8	135 d		Mar 2007-Feb 2010	8	610	1	Hospital based	NA	LMD	i	i	astumn and winter
Puartinen et al (2011) N	z	Tampero, Pinland	N.19	55	390	2	Sep 2009-Aug 2010	21	÷	<15 T 0	Hospital based and Outpatient	NA	Developed	i	ī	NA
Pustimen et al (2011)	۲ ۲	Finland	N.19	25	390	3	Jul 1997-Jun 2007	180	1172 <	dy (Community	NA	Developed			NA
Rasanen et al	Y	Tampero, Finland	N. 19	25	590	3	Sep 2006-Aug 2008	24	5 961	515 y 1	Hospital based and Outpatient	Urham	Developed	i	I	Jan Feb-Agr
Sa et al	N	Fortaleza (Ceara state), Brazil	3-2	N	1425.3	26.6	May 2008-April 2009	12	34	1 mo-10 y 1	Hospital based	NA	IMD	i	+	NA
Siqueira, J. A. et al N	N	Belera (State of Para), Brazill	ا ₂ دا	91	2790	25.9	May 2008-April 2011	R	× 111	<5y 1	Hospital based	VN	TWD	÷	ī	Sep. Oct, and Feb
Sumi et al	Y J	Japan	35"N	L.	1520	15	Jan 2000-Dec 2003	28	3413	Young children. Pediatric clinics	Pedianio elinios	VN	Developed			carly winter
Terietskala-Ladwig et y	y (Gernary	48"N	418	730	*	Jan 2002-Dec 2008	84 6	682562 /	VII 3	VN	NA	Developed			Sep-Apr
Thongpractium et al (2013)	Y C	Chiang Mai, Thailand	18"N ^d	313	1200	26	Jan 2006-Dec 2006	12	32 <	dy 1	Hospital based	VN	LMD	i	ī	rainy and winter seasons
Thongpraction et al (2015)	z	Holdtaido, Tokyo, Shizuoka, Kyoto, Osaka, and Saga, Japan	33"N	4	1691	15	Jul 2009-Jun 2013	43	538	≤15y 1	Pediantic clinics	NA	Developed			w inter
UK Data Y	Y	England Wales	N.15	19	750	6.01	Jan 1997-Dec 2009	156 4	47109	VII IV	VX	VN	Developed			W
Victoria et al	z	Rio de Janeiro, Brazil	22"S ¹	ò	0601	24.2	Jan 2004-Dec 2004	21	65 C	Children 1	Hospital based	W	LMD			auturun and spring seasons (dry periods)
Withelm et al	Y	Charleston (WV), USA	38"N	877	1104	12.9	Jan 2007-Dee 2007	1	972 A	VI 17	Hospital based	VN	Developed	I	ī	Jun-Jul
Xue et al	N	Sharaghai, China	N.16	4	1140	16	May 2012-April 2014	7	903	NI IN	Hospital screincle	Urban	LMD	i	i	winter or cold seasons
Yoom et al	×	Scoul, South Korea	NLE	8	P 501	=	Nov 2005-Nav 2006	2	4	3y 1	Hospital based	NA	LMD			winter (GI) and spring/fall (GII)
Zhirakorskata et al	۰ ۶	Novostbirsk, Russia	N.65	121	448	1.8	Jun 2003-Dec 2012	102	1291	3y 1	Hospital based	Urban and Rural	Developed	i	٧X	Dec-Mar
v alexage	N	Hangzhou, China	30"N	4	1440	16	Jul 2009-Aug 2010	*	N 561	NA N	NA NA	NA	LMD	i	ì	NA
Abburchations: FIAID, high-transmitty developing country: LMD, ion-mortality developing country: Taua doors the emergence of a national network in the Service and Service 2000, Into 500, Into 500	ortality dow f a variant s	Abberonisten: FMLD, high-recentlity developing centrey; LMD, low-esentlity developing centry: "Data denote the energience of a variant strain between July 2000-Juny 2003 or July 2005-0037.	ity developie) or July 200		MA, not available							;				

for which these data were available. rainfall in studies ä ad to ^b Data denote the sign of the coefficient from generalized linear module perity of Data denote the peak season of cases and refloct the authors' terrainology. ^c Targetal latitude. • Statistically significant (P<.D5).</p>

Pathogen	Seasonality Analysis (No. datasets)	Temperature Models (No. datasets)	Precipitation Models (No. datasets)	Northern Hemisphere ^a No. (%)	Southern Hemisphere ^b No. (%)	Tropics ^c No. (%)
E. coli	39	21	18	19 (48.72)	3 (7.69)	17 (43.59)
Cryptosporidium	48	24	23	29 (60.42)	7 (14.58)	12 (25.00)
Norovirus	53	26	21	36 (67.92)	3 (5.66)	14 (26.42)

Table 2. Summary of Studies Included in the Final Analyses

Northern Hemisphere: (>23°N)
 Southern Hemisphere: (>23°S)

Tropics: (23°N-23°S)

Table 3. Summary of Seasonal Peaks of Incidence Cases Reported by Studies, by	
Geographic Location	

		Pe	ak Month, St	udies, No. (S	%) ª	Ratio of Peak to Mean Values, Mean ^b
Pathogen	Location	Dec-Feb	Mar-May	Jun-Aug	Sep-Nov	-
E. coli						
	North hemisphere	o (o)	2 (11)	13 (72)	3 (17)	3.23
	South hemisphere	2 (67)	1 (33)	o (o)	o (o)	3-94
	Tropics	o (o)	12 (71)	5 (29)	o (o)	2.73
Cryptosporidium						
	North hemisphere	2 (7)	6 (21)	11 (39)	9 (32)	6.48
	South hemisphere	1 (17)	4 (67)	o (o)	1 (17)	3.42
	Tropics	2 (17)	3 (25)	5 (42)	2 (17)	4.42
Norovirus						
	North hemisphere	17 (47)	7 (19)	1 (3)	11 (31)	4.45
	South hemisphere	1 (33)	o (o)	o (o)	2 (67)	3.46
	Tropics	3 (21)	5 (36)	2 (14)	4 (29)	3.08

- Peak month reflects the single calendar month averaged over all years of the study with the highest pathogen case load.

^b Calculated as the mean number of cases in the month with the most cases, divided by the mean number of cases per month over the course of the entire study. The ratio reported here reflects the ratio of peak to mean values by geographic location.

Tables 4a-c: Comparison of the Best-Fit Generalized Estimating Equation Models with Poisson Distribution, Controlling for Serial Correlation and Clustering by Study

Model	Temp.	Temp. 1-mo Lag	Precip.	Precip. 1-mo Lag	Developed vs Developing ^a	QIC ^b	Delta ^c
Temperature + Precipitation ^d	0.07525	NA	0.00273	NA	0.67136	-9235	о
Temperature Lag + Precipitation	NA	0.06916	-0.00158	NA	1.02316	-9104	131
Temperature + Precipitation Lag	0.07821	NA	NA	-0.00151	0.73965	-9139	96
Temperature Lag + Precipitation Lag	NA	0.066903	NA	0.000286	0.984727	-8999	236

Table 4a: E. coli Model Selection

^a WHO mortality strata classification, grouped as developed or developing (high- and low-mortality developing).

^b Quasi-information criterion (QIC) values shown for each model, based on running all pathogen-specific models in a common dataset.

^c Delta values denote the difference in QIC values, based on the best fit model.

 $^{\rm d}$ Best fit model, as evaluated by lowest quasi-information criterion (QIC) value.

Table 4b: Cryptosporidium Model Selection

Model	Temp.	Temp. 1-mo Lag	Precip.	Precip. 1-mo Lag	Developed vs Developing ª	QIC b	Delta ^c
Temperature + Precipitation	0.05201	NA	0.00782	NA	-0.38431	-1242	69
Temperature Lag + Precipitation ^d	NA	0.05783	0.00639	NA	-0.58277	-1311	о
Temperature + Precipitation Lag	0.0493	NA	NA	-0.00844	-0.38641	-1037	274
Temperature Lag + Precipitation Lag	NA	0.05492	NA	-0.00888	-0.59813	-1127	184

^a WHO mortality strata classification, grouped as developed or developing (high- and low-mortality developing).

^b Quasi-information criterion (QIC) values shown for each model, based on running all pathogen-specific models in a common dataset.

^c Delta values denote the difference in QIC values, based on the best fit model.

^d Best fit model, as evaluated by lowest quasi-information criterion (QIC) value.

Table 4c: Norovirus Model Selection

Model	Temp.	Temp. 1-mo Lag	Precip.	Precip. 1-mo Lag	Developed vs Developing ª	New Strain Year ^b	QIC °	Delta ^d
Temperature + Precipitation °	-0.0411	NA	-0.00146	NA	0.72894	0.17157	-19515	o
Temperature Lag + Precipitation	NA	-0.04156	-0.00115	NA	0.24468	0.15922	-19020	495
Temperature + Precipitation Lag	-0.0386	NA	NA	-0.0136	0.5508	0.1992	-19499	16
Temperature Lag + Precipitation Lag	NA	-0.03772	NA	-0.01308	0.22574	0.16399	-18950	565

...

^a WHO mortality strata classification, grouped as developed or developing (high- and low-mortality developing).

^bEmergence of a variant strain between July 2002-June 2003 or July 2006-2007.

^c Quasi-information criterion (QIC) values shown for each model, based on running all pathogen-specific models.

^d Delta values denote the difference in QIC values, based on the best fit model.

^e Best fit model, as evaluated by lowest quasi-information criterion (QIC) value.

	Model	IRR (95% CI) ª	P-value	Studies, No.	Months, No.	QIC b
E. coli	temperature, precipitation			18	329	-9235
	temperature	1.08 (1.05-1.11)	<0.0001			
	precipitation	1.00 (0.99-1.01)	0.41			
	developing vs developed	1.96 (0.41-9.38)	0.40			
Cryptosporidium	temperature lag, precipitation			21	718	-1311
	temperature 1-mo lag	1.06 (1.02-1.10)	0.00			
	precipitation	1.01 (0.99-1.02)	0.17			
	developing vs developed	0.56 (0.17-1.91)	0.35			
Norovirus	temperature, precipitation			21	464	-19515
	temperature	0.96 (0.92-1.00)	0.05			
	precipitation	0.99 (0.99-1.00)	0.65			
	developing vs developed	2.07 (0.75-5.72)	0.16			
	new strain year	1.19 (0.65-2.17)	0.58			

Table 5. Results of Best-Fit Generalized Estimating Equation Models with Poisson Distribution, Controlling for Serial Correlation and Clustering by Study

- Incidence rate ratios (IRRs) and 95% confidence intervals (CIs) are shown for a 1°C change in temperature and a 1

cm change in rainfall. ^b Quasi-information criterion (QIC) values are shown for each model, based on running all pathogen-specific models in a common dataset.

FIGURES

Figure 1. PRISMA diagram of the study selection process.

Figure 2: Seasonality patterns of each pathogen over 12-months for all studies, clustered by geographic location.

Figures 3-5: Forest plots show incidence rate ratios (IRR) and 95% confidence intervals (CI), calculated with generalized log-linear Poisson regression models and using Newey-West standard errors, for the relationship between pathogen incidence and (A) monthly mean temperature (°C) and (B) rainfall (cm) for each study.

ref2	country	latitude		IRR (95% C)
Buvens et al 2012	Belgium	51N	+	1.04 (1.00, 1.08)
Pai et al 1988	Canada	51N	-	1.11 (1.07, 1.15)
Quetal 2016	China	40N	+	1.08 (1.05, 1.12)
Cohen et al 2005	United State	is 39N	+	0.98 (0.92, 1.03)
Kim et al 1989	South Korea	37N -	•	0.99 (0.97, 1.02)
Santosham et al 1995	United State	is 33N		1.06 (1.00, 1.13)
Huang et al 2016	China	31N	+	1.11 (1.08, 1.13)
Rao et al 2003	Egypt	31N	+	1.08 (1.05, 1.11)
Wierzba et al 2006	Egypt	31N		1.13 (1.08, 1.18)
Wierzba et al 2006	Egypt	31N	-	1.04 (0.99, 1.09)
Qadri et al 2000	Bangladesh	23N	+	1.12 (1.08, 1.16)
Stoll et al 1982	Bangladesh	23N	•	1.09 (1.07, 1.11)
Estrada-Garcia et al 20	09/exico	19N -	├-•	1.13 (0.95, 1.34)
Onanuga et al 2014	Nigeria	9N -	↓	1.04 (0.96, 1.12)
Mutanda et al 1980	Kenya	15	-	0.80 (0.63, 1.00)
Guerrant et al 1983	Brazil	4S		> 4.59 (3.66, 5.75)
Cassel-Beraud et al 19	90Madagascar	185		1.32 (1.16, 1.51)
Gatti et al 1989	Brazil	235		0.72 (0.60, 0.86)
Robins-Browne 1984	South Africa	265	│ —	1.38 (1.27, 1.49)
Househam et al 1988	South Africa	345	+	1.14 (1.11, 1.18)
Sinclair et al 2005	Australia	375	├ • ──	1.12 (0.98, 1.29)

Figure 3: Forest plots of the relationship between diarrheagenic *E. coli* incidence and monthly mean temperature (°C) and (B) rainfall (cm) for each study.

B

Pai et al 1988Canada51N1.13 (1.04,Qu et al 2016China40N1.05 (1.03,Cohen et al 2005United States39N0.94 (0.87,Kim et al 1989South Korea37N0.97 (0.94,Santosham et al 1995United States33N0.96 (0.86,Huang et al 2016China31N0.74 (0.64,Qadri et al 2000Bangladesh23N0.74 (0.64,Stoll et al 1982Bangladesh23N1.01 (1.00,Stoll et al 1982Bangladesh23N1.01 (1.00,Guerrant et al 1983Kenya150.98 (0.90,Guerrant et al 1980Madagascar1850.93 (0.90,Robins-Browne 1984South Africa2651.07 (1.05,Househam et al 1988South Africa34S0.93 (0.90,	ref2	country	latitude			IRR (95% CI)
Que tal 2016China40N1.05 (1.03, 1.05)Cohen et al 2005United States39N0.94 (0.87, 1.05)Kim et al 1989South Korea37N0.97 (0.94, 1.05)Santosham et al 1995United States33N0.96 (0.86, 1.00)Huang et al 2016China31N0.74 (0.64, 1.00)Wierzba et al 2000Bangladesh23N0.74 (0.64, 1.00)Stoll et al 1982Bangladesh23N1.01 (1.00)Stoll et al 1982Bangladesh23N1.01 (1.00, 1.00)Estrada-Garcia et al 2009Mexico19N0.98 (0.90)Guerrant et al 1983Brazil4S1.01 (1.00, 64, 1.00)Guerrant et al 1984South Africa2651.03 (1.00, 64, 1.00)Househam et al 1988South Africa34S0.93 (0.90)	Buvens et al 2012	Belgium	51N			1.00 (0.95, 1.06
Cohen et al 2005 United States 39N Image: Content of the states 0.94 (0.87, 0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.96, 0.96, 0.96), 0.96) Santosham et al 1995 United States 33N Image: Content of the states 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.97 (0.94, 0.96), 0.96) Wierzbar et al 2016 China 31N Image: Content of the states 0.96 (0.86, 0.96, 0.96) Wierzbar et al 2006 Egypt 31N Image: Content of the states 0.74 (0.64, 0.97, 0.74 (0.64, 0.96, 0.96) Stoll et al 1982 Bangladesh 23N Image: Content of the states 1.01 (1.00, 0.74 (0.64, 0.96, 0.96) Stoll et al 1982 Bangladesh 23N Image: Content of the states 1.01 (1.00, 0.96, 0.96) Stoll et al 1980 Kenya 1S Image: Content of the states 0.98 (0.90, 0.96) Guerrant et al 1983 Brazil 4S Image: Content of the states 0.93 (0.90, 0.96) Robins-Browne 1984 South Africa 265 Image: Content of the states 0.93 (0.90, 0.90)	Pai et a l 1988	Canada	51N			- 1.13 (1.04, 1.22
Kim et al 1989South Korea37NImage al 20160.97 (0.94, 0.96 (0.96, 0.96, 0.96)Santosham et al 1995United States33NImage al 20160.96 (0.96, 0.96, 0.96)Huang et al 2016China31NImage al 20081.00 (1.00, 0.74 (0.64, 0.74 (0.74 (0.64, 0.74 (0.7	Qu et al 2016	China	40N		-	1.05 (1.03, 1.08
Autosham et al 1995 United States 33N 0.96 (0.86, Huang et al 2016 China 31N 1.08 (1.00, Wierzba et al 2006 Egypt 31N 0.74 (0.64, Qadri et al 2000 Bangladesh 23N 1.01 (1.00, Stoll et al 1982 Bangladesh 23N 1.01 (1.00, Stoll et al 1982 Bangladesh 23N 1.01 (1.00, Estrada-Garcia et al 2009 Mexico 19N 1.01 (1.00, Mutanda et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1989 Brazil 23S 4 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, Househam et al 1988 South Africa 34S 4 0.93 (0.90,	Cohen et a l 2005	United States	39N			0.94 (0.87, 1.02
Huang et al 2016 China 31N 1.08 (1.00, Wierzba et al 2006 Egypt 31N 0.74 (0.64, Qadri et al 2000 Bangladesh 23N 1.01 (1.00, Stoll et al 1982 Bangladesh 23N 1.01 (1.00, Estrada-Garcia et al 2009 Mexico 19N 1.01 (1.00, Guerrant et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1980 Brazil 4S 1.01 (1.00, Gatti et al 1989 Brazil 23S + 1.03 (1.00, Gatti et al 1989 Brazil 23S + 1.03 (1.00, Robins-Browne 1984 South Africa 26S 1.07 (1.05, Househam et al 1988 South Africa 34S + 0.93 (0.90,	Kim et al 1989	South Korea	37N			0.97 (0.94, 1.00
Wirzba et al 2006 Egypt 31N 0.74 (0.64, Qadri et al 2000 Bangladesh 23N 1.01 (1.00, Stoll et al 1982 Bangladesh 23N 1.01 (1.00, Estrada-Garcia et al 2009 Mexico 19N 1.01 (1.00, Mutanda et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1989 Brazil 23S 4 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, 0.93 (0.90,	Santosham et al 1995	United States	33N		—	0.96 (0.86, 1.06
Qari et al 2000 Bangladesh 23N 1.01 (1.00, Stoll et al 1982 Bangladesh 23N 1.01 (1.00, Estradar-Garcia et al 2009 Mexico 19N 1.01 (1.00, Mutanda et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1989 Brazil 23S 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, Househam et al 1988 South Africa 34S 0.93 (0.90,	Huang et al 2016	China	31N		— •	1.08 (1.00, 1.16
Stoll et al 1982 Bangladesh 23N 1.01 (1.00, Estrada-Garcia et al 2009 Mexico 19N 1.01 (1.00, Mutanda et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1989 Brazil 23S 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, Househam et al 1988 South Africa 34S 0.93 (0.90,	Wierzba et al 2006	Egypt	31N	<u> </u>	-	0.74 (0.64, 0.86
Estrada-Garcia et al 2009 Mexico 19N 1.01 (1.00, Mutanda et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1989 Brazil 23S 4 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, Househam et al 1988 South Africa 34S 4 0.93 (0.90,	Qadri et al 2000	Bangladesh	23N		-	1.01 (1.00, 1.02
Mutanda et al 1980 Kenya 1S 0.98 (0.90, Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1989 Brazil 23S - 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, 0.93 (0.90, Househam et al 1988 South Africa 34S - 0.93 (0.90,	Stoll et al 1982	Bangladesh	23N		•	1.01 (1.00, 1.02
Guerrant et al 1983 Brazil 4S 1.01 (0.96, Cassel-Beraud et al 1990 Madagascar 18S 1.03 (1.00, Gatti et al 1980 Brazil 23S 0.95 (0.90, Robins-Browne 1984 South Africa 26S 1.07 (1.05, Househam et al 1988 South Africa 34S 0.93 (0.90,	Estrada-Garcia et al 2009	Mexico	19N		-	1.01 (1.00, 1.03
Gastel Beraud et al 1990 Madagascar 185 1.03 (1.00, Gatti et al 1989 Brazil 235 0.95 (0.90, Robins-Browne 1984 South Africa 265 1.07 (1.05, Househam et al 1988 South Africa 345 0.93 (0.90,	Mutanda et al 1980	Kenya	1S		<u> </u>	0.98 (0.90, 1.06
Gatti et al 1989 Brazil 23S → 0.9S (0.90, Robins-Browne 1984 South Africa 26S → 1.07 (1.05, Househam et al 1988 South Africa 34S → 0.93 (0.90,	Guerrant et al 1983	Brazi	4S		—	1.01 (0.96, 1.07
Robins-Browne 1984 South Africa 26S → 1.07 (1.05, Househam et al 1988 South Africa 34S → 0.93 (0.90,	Cassel-Beraud et al 1990	Madagascar	18S			1.03 (1.00, 1.06
Househam et al 1988 South Africa 345 -	Gatti et al 1989	Brazi	23S		—	0.95 (0.90, 0.99
	Robins-Browne 1984	South Africa	26S		+	1.07 (1.05, 1.08
Sinclair et al 2005 Australia 37S - 0.68 (0.46,	Househam et al 1988	South Africa	34S			0.93 (0.90, 0.97
	Sinclair et al 2005	Australia	37S -	•	_	0.68 (0.46, 1.01
			.4		i 1	1.6

Figure 4: Forest plots of the relationship between *Cryptosporidium* incidence and monthly mean temperature (°C) and (B) rainfall (cm) for each study.

B

ref2	Country	latitude	IRR (95% CI)
Goh et al 2004	England	54N	0.89 (0.79, 1.0
Mann et al 1986	Canada	50N +	+ 1.03 (0.98, 1.08
Abal-Fabeiro et al 2015	Spain	43N -	► 1.01 (0.99, 1.02
Naumova et al 2000	United States	42N -	1.01 (0.97, 1.05
Naumova et al 2000	United States	42N	+
Wolfson et al 1985	United States	42N -	1.04 (0.97, 1.1)
Daoud et al 1990	Kuwait	29N	1.02 (0.74, 1.40
lqbal et al 2001	Kuwait	29N	1.26 (1.07, 1.47
Ajjampur et al 2010	India	28N -	➡ 1.03 (1.00, 1.07)
Haider et al 2012	Pakistan	25N	• 1.06 (1.05, 1.07
Shahid et al 1987	Bangladesh	24N	✤ 1.02 (1.01, 1.04
Das et al 2006	India	22N	+ 1.05 (1.03, 1.08
Nacro et al 1998	Burkina Faso	11N	1.05 (1.00, 1.10
Eibach et al 2015	Ghana	7N -	0.99 (0.97, 1.0
Duong et al 1991	Gabon	0.4N	► 1.02 (1.00, 1.04
Molbak et al 1993	Guinea Bissau	125	• 1.01 (1.00, 1.03
Perch et al 2001	Guinea Bissau	125	← 1.02 (1.00, 1.04
Peng et al 2003	Malawi	15S •	0.99 (0.98, 1.00
Fripp et al 1991	South Africa	255	1.04 (1.01, 1.08
Miller et al 1986	South Africa	30S -	- 1.01 (0.97, 1.04
Assadamongkol et al 1992	Australia	325 -	0.97 (0.93, 1.02
Nell et al 2011	South Africa	345	0.95 (0.89, 1.0
Biggs et al 1987	Australia	37S	
		.4 1	і 1.6

Figure 5: Forest plots of the relationship between norovirus incidence and monthly mean temperature (°C) and (B) rainfall (cm) for each study.

В

ref2	Country	latitude		IRR (95% CI)
Puustinen et al 2011	Finland	61N		0.91 (0.79, 1.06)
Rasanen et al 2011	Finland	61N	<u> </u>	0.84 (0.74, 0.96)
Lindell et al 2005	Sweden	59N		0.72 (0.59, 0.88)
Oldak et al 2012	Poland	53N	<u> </u>	0.85 (0.79, 0.91)
Beersma et al 2009	Netherlands	51N	_ +	1.01 (0.94, 1.08)
Arana et al 2014	Spain	43N		1.04 (1.01, 1.07)
Bicer et al 2014	Turkey	41N		0.97 (0.91, 1.05)
Wilhelm et al 2010	United States of America	38N	_ _	0.99 (0.93, 1.05)
Marshall et al 2003	Australia	37S		1.00 (0.76, 1.32)
Onishi et al 2008	Japan	37N		0.99 (0.94, 1.04)
Park et al 2010	South Korea	37N		0.93 (0.88, 0.99)
Iritani et al 2003	Japan	34N	<u> </u>	0.85 (0.78, 0.92)
Xue et al 2015	China	31N		0.94 (0.90, 0.97)
Georgiadis et al 2010	Brazil	30S	-+	0.99 (0.96, 1.03)
Galeano et al 2013	Paraguay	255	+	1.01 (0.99, 1.02)
Dai et al 2011	China	22N	+	0.95 (0.93, 0.97)
Nataraju et al 2011	India	22N	+	1.00 (0.98, 1.02)
Thongprachum et al 2013	Thailand	18N	-+-	0.98 (0.95, 1.01)
Dove et al 2005	Malawi	155	•	1.01 (1.00, 1.02)
Sa et al 2016	Brazil	3S	•	1.01 (1.01, 1.02)
Siqueira et al 2013	Brazil	1S	+	0.99 (0.97, 1.01)
		.4	1	1.6