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Abstract 
 

A	
  Comparative	
  Study	
  of	
  non-­‐Markovian	
  
Stochastic	
  Processes	
  in	
  Marketing	
  

 
By Jiening Pan 

 
 
 
 

Non-­‐Markovian(NM)	
  stochastic	
  processes	
  exist	
  widely	
  in	
  nature;	
  
however,	
  they	
  have	
  been	
  largely	
  ignored	
  in	
  traditional	
  marketing	
  
research.	
  In	
  this	
  thesis,	
  we	
  investigate	
  the	
  consequences	
  of	
  such	
  
NM	
  behaviors	
  both	
  theoretically	
  and	
  experimentally.	
  A	
  stochastic	
  
model	
  analogous	
  to	
  the	
  Ising	
  model	
  in	
  statistical	
  physics	
  was	
  used	
  
to	
  explain	
  gaps	
  between	
  the	
  Markovian	
  and	
  non-­‐Markovian	
  data	
  
discovered	
  in	
  real	
  surveys.	
  Analytically	
  a	
  fixed	
  point	
  relation	
  
between	
  parameters	
  is	
  derived	
  using	
  the	
  central	
  limit	
  theorem,	
  

while	
  detailed	
  stochastic	
  simulations	
  are	
  performed	
  using	
  a	
  master	
  
equation	
  approach.	
  Results	
  from	
  kinetic	
  Monte	
  Carlo	
  (KMC)	
  

simulations	
  and	
  analytical	
  solutions	
  coincide	
  well	
  with	
  each	
  other.	
  
The	
  model	
  also	
  has	
  the	
  potential	
  to	
  predict	
  a	
  larger	
  group	
  of	
  

marketing	
  outcomes	
  if	
  the	
  model	
  parameters	
  are	
  properly	
  defined.	
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Chapter 1

Introduction

The social sciences have inspired the application of numerous mathematical models

to understand their dynamics. In most models, stochastic processes form their

fundamentals. For example, Fischer Black and Myron Scholes derived their famous

option pricing equation (4) based on the Brownian motion (8; 12; 44) assumption;

other stochastic processes, such as the autoregression(AR) process and Markov

process, are widely used in modeling the business cycles1 (20; 21; 28), consumers’

rational expectations2 (31; 42), and regime switching3 (7; 43; 46) in macroeconomics

and finance. Particularly within marketing science, researchers have attempted to

introduce stochastic models to examine consumer behavior. For example, D. Luce

proposed the choice axiom (32) to model consumer choices among different brands.

In his paper, Luce assigned different weights w to different brands based on choices

made by survey respondents. He stated that the probability for a consumer to select

one brand over another from a collection of many brands only depends on its weight.

So far, the most frequently adopted model is the Markov Chain(22; 24; 33; 34; 45).

The advantage of this model is that it preserves the stochastic nature of human

behavior without introducing many mathematical complexities.

Markov models have, however, failed to address the following crucial aspects in

marketing sciences: the time-correlated characteristics of human decision making,

the path-dependent characteristics of market development and possible social cue

1According to the W.Mitchell (35; 36), the business cycle is defined as expansions occurring

at the same time in many economic sectors, followed by similarly general recessions, contractions

and revivals.
2Rational expectations is a hypothesis in economics which states that agents’ predictions of

the future value of economically relevant variables, is not systematically wrong. In other words,

the error term in agents’ expectation follows a random walk with the mean value 0.
3Regime-switching model was first proposed by James D. Hamilton(20), in which a Markov

chain is used to model switches between periods of high volatility and low volatility of asset returns.

In the later time, other regime switching models are used to describe the effects of different US

monetary and fiscal policies.
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effects given by other market participants. For example in the real market, one

company’s pricing decision on a particular product does not only depend on the

present state of the market, but also relies on previous pricing decisions made by

competitors and the company itself. Even when the current market price is low, the

company is still unlikely to raise the price if past records reveal a tendency of an

unceasing price reduction. Empirical studies also show that social cue effects exist

and propagate the diffusion of marketing strategies. Take the example of the mar-

keting strategy Quality circle (QC) which was widely adopted in 1980s. Although

the contribution of QC on firms’ performance is still ambiguous, approximately

90 percent of the Fortune 500 companies had adopted QC by 1985 (2). This fact

implies that the diffusion of QC is largely due to the social cues.

The statement of how social cues effect people’s decision making was first pro-

posed by social psychologist L. Festinger (14) in 1954. In the paper, he analyzed

the experimental results reported by others and made qualitative hypotheses on

how people make decisions when social influences exist:

“ To the extend that objective, non-social means are not available, people evaluate

their opinions and abilities by comparison respectively with the opinions and abilities

of other. ” (14)

Quantitative models were later constructed. Boyd et al. proposed models ex-

plaining the social cue effects from the perspectives of culture and human evolution

(6; 23), which “provides an evolution foundation of the psychological mechanism

posited by Festinger” (27). A later progress was made by the marketing scientist J.

Bendor and physicist B. Huberman (27). They proposed a linear model to explain

the diffusion of marketing strategies, which includes social cue effects. In their pa-

per, they assume decision makers have to make decisions from two alternatives A

and B, with the probability:

P [agent in period t+1 chooses A] = αp+ (1− α)rt (1.1)

Where p is the probability of choosing A purely under the evidence of its per-

formance, and rt is the percentage of agents who choose A till the last period.

The parameter α stands for the social cue strength and different α’s can lead to

very different dynamics. They conclude in their model, that if α = 0, the results

given by the model will return to the Polya’s urn process (40), which doesn’t have

a predetermined equilibrium; while if α 6= 0, the final percentage of choosing A

will converge to the predetermined equilibrium p. The value of α only affects the

convergence speed.

The motivation of our work is to improve on Bendor and Huberman’s model,

and to understand the diffusion process under social cue effects. In this project,

2



we try to answer the following question: if a consumer happens to know decisions

made by other consumers, how should one model his/her decision making process

using a simple non-Markovian model.

In exploration of the existing marketing literature, we found no effective model

of such non-Markovian process. Instead, three approximation methods have been

used to deal with the history-dependent characteristics of human decision making.

The first method is to simply ignore the time dependence of the process (9; 19; 38).

The second is to translate the dynamic state-dependence component into a static

variable or constant (15; 16; 18). For example, in the model of trial sales proposed in

(15), the author assumed there existed an upper bound for the fraction of households

that purchased a product, which is called the “ceiling” proportion. For a successful

grocery product, the fraction of consumers who made a purchase would increase

and approach its ceiling value in a decreasing step each period. For each step,

the increment was equal to the previous increment multiplied by a change rate

1 − r. A constant was set for the change rate 1 − r although it was actually

time dependent in the real market. The third method is the ”High-order Markov

Chain” (11; 37; 39), which considers system evolutions with possible correlated

state-dependent variables explicitly in the model; thus, this method maintains more

information on past periods than the other two. In the existing literature, however,

only one or two previous time periods were taken into consideration. Therefore, the

high-order Markov Chain approach works well only for the cases when the memory

of the dynamics is short and the time correlation coefficients decrease rapidly with

previous time periods. Thus, it has the same disadvantage as the Markov approach.

The high-order Markov method is quite limited in analyzing long-term historical

data.

In contrast, the natural sciences have provided some effective methods to solve

non-Markovian problems both theoretically and experimentally: Statistical physics

and ensemble theory (29) help us find a system’s equilibrium state; Kinetic Monte-

Carlo method can be used to simulate non-Markov dynamics (1; 17). These methods

help to solve problems such as surface growth (13) and diffusion (3), vacancy dif-

fusion (47) and visco-elasticity of physically cross-linked networks (41). Because

of their successes in natural science, these existing methods are used in this study

to solve time-correlated problems in marketing and account for the non-Markovian

nature of consumer decision making.

In this work, several stochastic models that contain non-Markov effects are pro-

posed, including models similar to the Ising model and the Fermi model in the

natural sciences. The non-Markov effect of consumer behavior is computed us-

ing the ”Master Equation” method. The results obtained are then compared with

3



those from kinetic Monte-Carlo simulations and empirical data collected from a

real survey. The approximate solution of the Ising model, and effects of different

parameters are also discussed.

In Chapter Two, the real survey and data sets are discussed. Chapter Three

proposes two possible models. Next, Chapter Four describes both the analytical

results derived from two non-Markov models and the results from simulations. The

final chapter offers concluding remarks and directions for future research.

4



Chapter 2

Experiment

Survey-based case studies are widely used for designing strategies in marketing

science(5; 10). For example, firms often use surveys to find out the most profitable

price before launching new products. In traditional marketing research, most survey

results are Markovian since respondents typically receive time-invariant information

such as the function of the product or its price before making their decisions. How-

ever, we argue that firms may receive imprecise or even misleading information if the

Markovian result is chosen as the starting point for designing marketing strategies

for a non-Markovian process. In this chapter, we explore non-Markovian effects

in consumer decision making and show large differences between Markovian and

non-Markovian results.

We conducted three independent surveys. Each of them contained two sample

groups, one for testing Markovian effects and the other for testing non-Markovian

effects with other conditions being equal. This survey required participants to

complete a questionnaire and indicate whether they would purchase the product or

not. The following sections discuss the method in more detail.

2.1 Participants

2, 253 sophomores and juniors from three different universities in Shanghai(China)

were randomly selected as the sample of this study. All respondents in the sample

were aged between 19 and 23. The ratio of male and female in the sample was

approximately 1 : 1. For each survey, we collected 751 valid answers, 375 for the

Markovian group and 375 for the non-Markovian group. Both groups shared the

result of the first respondent.

5



2.2 Procedure

2.2 Procedure

In the survey, respondents from both groups were asked of the following questions.

• Q1. Which cell phone carrier are you currently using?

• Q2. Do you know about the intra-network service offered by China mobile?

The survey continued only when the answer to the first question was ”China

mobile”. If a respondent chose ”No” to the second question, the following instruc-

tion was shown to them:

China mobile(Shanghai) is offering unlimited intra-network

mobile to mobile service for students and faculty members of

xxx University1. The service fee will be Up/month2. After

activation, you will be assigned an intra-network number(INN);

members of this network can make unlimited calls to each

other via INN. No other hidden fees.

After reading these instructions, Markovian respondents had to answer the fol-

lowing question:

• Q3. Do you want to buy this service?

For respondents in the non-Markovian group, information on decisions made by

ten respondents before him/her3 was also provided to the respondent before he/she

answered Q3.

According to the pre-test, we selected U10, U5and U3 as the monthly fee for

the three surveys respectively so as to catch the properties of low, medium and high

purchase rates.

1Here xxx stands for the name of the respondent’s university.
2The p here stands for the monthly fee for this service, in this experiment, we set the p as

a variable. Also note that the symbol U is the same as ”Yuan”, which is the unit of Chinese

currency ”RMB”(Short for Renminbi). We’ll use both U and ”RMB” in later sections without

distinction.
3The 2nd through 9th respondents received the information on the choices of all previous

respondents.

6



2.3 Real Experiment Data

2.3 Real Experiment Data

We plotted the total purchase rates for Markov and non-Markov processes versus

the number of respondents at each price level in Fig. (2.1).

Figure 2.1: Markovian and non-Markovian purchase rates from real survey

From this figure, it’s obvious that purchase rates for both Markov(P0) and non-

Markov processes(P∞) converge to some value lying in [0, 1]. As expected, final

purchase rates decreased as the price increased for both Markov and non-Markov

processes. However, differences between P0 and P∞ are found at the same price

level in all three sets of data. In Fig. (2.2), we plotted ∆ Purchase rate1 versus

number of respondents for all three price levels.

1∆ Purchase rate = non-Markovian Purchase Rate - Markovian Purchase Rate

7
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2.3 Real Experiment Data

Figure 2.2: Difference between Markovian and non-Markovian purchase rates.

Significant differences are found between the Markovian purchase rate P0 and the

non-Markovian purchase rate P∞. For example, the purchase rate of the Marko-

vian process of U10 converges approximately to the value 32.2%, while the non-

Markovian purchase percentage at this price level has its equilibrium at 21.6%.

The difference between the two is around 10%, which is nearly 50% of the non-

Markovian equilibrium value. When the price is set as U5, the gap between Marko-

vian and non-Markovian purchase rate is 4%, which is the smallest among the three;

meanwhile,U3 produces a gap around 8%.

8
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Chapter 3

Models

Although non-Markovian surveys capture more information about respondent be-

haviors, they are usually difficult and sometimes even infeasible to conduct. Thus,

it’s appealing if the non-Markovian result can be predicted from Markovian data,

which is usually easier to collect. In this chapter, we will build models to achieve this

goal; before the actual construction process, we first introduce the model settings,

including the definition of the basic parameter and terminology.

3.1 Model Settings, Basic Parameters and Ter-

minology

To model the non-Markovian stochastic process of respondents’ decision making,

we first use the binary random variable Bi to denote the final decision of the ith

respondent in the survey with the subscript ”M” for ”Markovian” and ”NM” for

”non-Markovian”. Let Bi in both cases satisfy the following:

Bi =







1 if the respondent decides to buy

0 if the respondent decides not to buy

Then, the result of the survey will form a chain filled with ”1” and ”0”. Assume

all respondents’ purchase probabilities in the Markov process at a given price follow

an independent identical binary distribution1. Then

Bi,M =







1 with probability P0

0 with probability 1− P0

1This is also referred to as respondents’ innate purchase probability.

9



3.2 Ising Model

By maximum likelihood estimation(see e.g. (30)), we have:

P0 = 〈 1
N

N
∑

i=1

Bi,M〉

If we examine the definition of P0 more carefully, we’ll find it shares the same

meaning as the sample’s final purchase rate. As shown in the last chapter, the final

purchase rate in each sample converges, with each value read from data as follow:



















P0(Bi,M = 1|price = U10) = 0.322

P0(Bi,M = 1|price = U5) = 0.548

P0(Bi,M = 1|price = U3) = 0.781

The non-Markovian purchase probability Pi for the ith respondent should also

depend on decisions made by previous Nr respondents which form his/her mem-

ory. Assume the decision of each respondent in the memory has the same weight

1/Nr; then the overall effect on the last respondent should relates to the purchase

percentage ri in the memory; by using previous notations, it can be defined as the

following:

Definition 3.1.1. Let ri be the purchase percentage in the memory which is re-

ceived by the he ith respondent.

ri =
1

Nr

Nr
∑

j=1

Bi−j,NM (3.1)

To keep consistent with the survey, we set B1,NM = B1,M and the superscript on
∑

changes to i− 1 for the case i ≤ Nr.

In the rest of this chapter, we’ll propose several models which can provide us

with Pi if given P0 and ri.

3.2 Ising Model

3.2.1 Original Ising Model

The original Ising Model was first proposed by E. Ising(26) to describe behaviors

of a ferromagnetic system. In his model, a discrete random variable called spin was

introduced which can take the value of either +1 or -1. Spins, denoted as S, are

arranged in a chain lattice and interact only with its nearest neighbors.

10



3.2 Ising Model

Although spin is an abstract concept in Quantum Mechanics, one can simply

consider it as a little magnet which can be arranged either aligned or anti-aligned.

The energy of system can also be defined as:

E = −
∑

〈i,j〉

JijSiSj (3.2)

where 〈i,j 〉 means sum over all spins that are connected and the positive coupling

coefficient Jij describes the strength of the interaction between sites i and j.

If we go even further to consider an Ising system in an external magnetic field

h0, the energy now becomes:

E = −
∑

〈i,j〉

JijSiSj − h0

∑

j

Sj (3.3)

Proposition 3.2.1. The configuration of site j depends only on its local effective

field hj.

Proof. If we divide the system into two parts, site j and the rest, the total energy

of the system can be rewritten as:

E = −





∑

〈i′,j′〉

Ji′j′Si′Sj′ + h0

∑

j′

Sj′



−
(

∑

i

JijSi + h0

)

· Sj (3.4)

〈i’,j’ 〉 means sum over all sites i′ and j′ that are connected with each other but

different from j. Index i in the second summation is all sites connected with site j.

Definition 3.2.2. Define energy of the whole system excluding site j as:

Er,j = −





∑

〈i′,j′〉

Ji′j′Si′Sj′ + h0

∑

j′

Sj′





Definition 3.2.3. Define the local effective field1 at site j as

hj =
∑

i

JijSi + h0 (3.5)

Then the expression of energy in Eq.(3.3) will become:

E = Er,j − hj · Sj (3.6)

1Def.(3.2.3) actually tells us the effective magnetic field is the superposition of two parts. The

first term stands for the internal magnetic field created by interactions between different sites;

while the second term is the external field at that point.

11



3.2 Ising Model

Based on the ensemble theory(see e.g.(25; 29)) in statistical physics, the probability

for the spin of cite j taking the value 1 will be1:

P (Sj = 1) =
e−βEr,j+βhj

e−βEr,j+βhj + e−βEr,j−βhj
(3.7)

Cancel the factor e−βEr,j in both denominator and numerator, and we’ll have:

P (Sj = 1) =
eβhj

eβhj + e−βhj
(3.8)

Similarly, we could also prove the probability of Sj = −1 also depends only on its

local effective field, which reads,

P (Sj = −1) =
e−βhj

eβhj + e−βhj
(3.9)

3.2.2 From spin-spin coupling to the generalized Non-Markovian

Model

If we assume that customers have no bias to purchase, it can be read from Fig.(2.1)

that if P0 > 1
2
, social cues tended to enhance customer’s probability of purchase,

while for P0 < 1
2
, social cues diminished the likelihood of purchase. For example,

in the U10 case, social cues increased the P0 = 0.77 by 8% to P∞ = 0.85; while for

P0 = 0.55 hardly any change was observed with P∞ = 0.57 and finally for P0 = 0.32,

the social cues reduced the fraction of people responding positively to P∞ = 0.21.

An Ising system is actually a system with spin-spin coupling interactions. Like

the social cue effects above, spins with interactions in an Ising model are more

likely to take the same configuration and form uniform clusters in their dynamic

processes. Thus, the definition of spin here bears an analogy to consumer’s decision

variable in the potential non-Markovian model.

The following simple transformation between Ising spin Si and purchase random

variable Bi gives us a better understanding of their similarity:

Si = 2Bi − 1

By this transformation, spin Si = 1 and −1 will correlate with purchase and not

purchase decisions respectively. If most previous respondents chose to purchase, the

ith consumer will receive a ri close to 1. From Eq.(3.8), he/she will be inclined to

purchase and vice versa.

Besides the spin definition, the Ising model can be further modified to incorpo-

rate the non-Markovian effect.
1Here the parameter β = 1

kBT
, where kB is the Boltzmann constant and T is the temperature

of the system.
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3.2 Ising Model

Definition 3.2.4. Define the local effective field on the jth consumer in the same

manner as the effective magnetic field on spin j in Eq.(3.5):

hj =
J

Nr

Nr
∑

i=1

Sj−i + h0 (3.10)

Using a similar decomposition as in Def.(3.2.3), hj is made up of an internal field
J
Nr

∑Nr

i=1 Sj−i and an external field h0.

Definition 3.2.5. Define the generalized energy of the jth consumer’s choice in the

same way as the energy of a magnet in a magnetic field.

Ej = −hj · Sj (3.11)

In Ising model, flip spins to a higher energy configuration, e.g., flipping Sj from

-1 to +1, have to overcome an energy barrier which could only happen under some

certain probability as in Eq.(3.8). Similarly, the energy in Def.(3.2.5) can be un-

derstood as a psychological barrier Ej for the jth consumer to overcome to make

positive decision. Def.(3.2.4) and Def.(3.2.5) are the generalized local effective field

and energy that include non-Markovian effects. Under this definition, Markovian

and non-Markovian effects are separate and have counterparts in physics respec-

tively. The internal field contains the non-Markovian part while the external field

reflects the Markovian effect. In the case when social cues are absent, only the

external component h0 resides and determines the consumer’s choice; when respon-

dents received both types of information, the term hj together gives the purchase

probability for the jth customer.

As in Eq.(3.8), the Markovian purchase probability for the jth customer is given

by

P0,j(Sj = 1) =
eβh0

eβh0 + e−βh0

; (3.12)

while the non-Markovian probability is equal to

P (Sj = 1) ≡ Pj =
eβhj

eβhj + e−βhj
,

P (Sj = −1) ≡ 1− Pj =
e−βhj

eβhj + e−βhj

(3.13)

As shown in Eq.(3.13), a consumer’s purchase probability depends on the factor

βhj. The combination of the parameter J and the temperature parameter T gives

an effective social cue strength, which indicates how seriously a consumer will take

into account others’ decisions. A consumer is more likely to follow the majority of

others’ decisions when this product is larger and vice versa.
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3.3 Fermi Model

3.3 Fermi Model

Another potential model has a similar functional form as the Fermi distribution

in statistical physics. Recall the Ising model in previous sections, after receiving

information ri, consumer i will compare it with the benchmark point 50% to make

his/her decision; however, in the Fermi model, this 50% is replaced by consumer’s

innate purchase probability P0. We assume in the Fermi model that a real purchase

percentage which exceeds consumer’s innate probability P0 will increase their like-

lihood of purchasing, while a r below P0 will lower the respondent’s final purchase

probability and a real purchase percentage equal to P0 will have no effects on a

respondent’s final decision.

Let the non-Markovian purchase probability of ith consumer satisfy the Fermi

distribution:

Pi =

(

P0

1−P0

)

eβ(ri−P0)

1 +
(

P0

1−P0

)

eβ(ri−P0)
(3.14)

Proposition 3.3.1. If the purchase probability for the ith customer satisfies the

Fermi distribution, the purchase probability Pi should have the following properties:











Pi > P0 if ri > P0

Pi = P0 if ri = P0

Pi < P0 if ri < P0

(3.15)

Proof. The proof can be completed by showing the monotonicity property of the

Fermi function.

For the nontrivial case that β > 0, plotting Pi versus ri given P0 fixed gives an ”S-

shape” curve. The ”temperature-like” parameter β, which stands for the strength

of social cues, determines the skewness of the curve. The following extreme case

will help us understand this point.

The first is β = 0, which means consumer’s decision isn’t affected by social cues.

At this moment the exponential terms vanish and the Fermi probability reduces to

the Markovian case:

Pi = P0.

In this case the curve of function Pi reduces to a horizontal line without skewness.

If we consider another extreme, β → ∞, then the consumer will simply follow

how most others decide.

Pi =







1 if ri > P0

0 if ri < P0,
(3.16)
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3.3 Fermi Model

At this time, Pi becomes a step-like function with an infinite slope at the point

ri = P0. By Pi’s continuity, for a finite real β, Pi will have a ”S-shape” curve and in

principle the model parameter β could be determined by fitting to real experimental

data.

15



Chapter 4

Main Results from Modeling

In this chapter, we present the main results of the models proposed in Chapter 3,

including the numerical results of the Ising and Fermi model, analytical result of

the Ising model, which also includes its approximation solution.

4.1 Ising Model

4.1.1 Analytical Solution, Central Limit Approximating Ap-

proach

Taking the Ising Model, we’ll try to draw some conclusions about the relations be-

tween variables P∞, P0, J and Nr.

From Eq.(3.13), the actual purchase probability for the nth consumer should be

Pn = 〈 exp hn(Sn−1, . . . , Sn−Nr
)

[exp hn(Sn−1, . . . , Sn−Nr
) + exp−hn(Sn−1, . . . , Sn−Nr

)]
〉, (4.1)

The 〈〉 represents an average of all possible 2Nr outcomes of the sample configu-

rations. For a small sample memory, an average over a binomial distribution is

required. As Nr increases, tails of the probability distribution will decrease rapidly

and all possible configurations will centralize around its expectation value. In this

case, the central limit theorem could be applied and a Gaussian distribution will

be a good approximation.

For simplicity, define the random variable ξi = (1/Nr)
∑Nr

j=1 Si−j, then rewrite

the social cue field in terms of ξi as Jξi. The average of this variable 〈ξi〉 and its

16



4.1 Ising Model

variance σ2
i = 〈ξ2i 〉 − 〈ξi〉2 can be calculated as

〈ξi〉 =
[

(2/Nr)
Nr
∑

j=1

Pi−j

]

− 1

σ2
ξi
= (4/N2

r )

Nr
∑

j=1

Pi−j(1− Pi−j).

(4.2)

Using the Gaussian approximation for ξn, with parameters given in Eq.(4.2),

gives for the probability distribution of ξ0:

PGauss,i(ξi) =
1

√

2πσ2
ξi

exp

[

−(ξi − 〈ξi〉)2
(2σ2

ξi
)

]

(4.3)

If we now replace the R.H.S of Eq.(4.1) by using the definition of expectation,

and use the probability distribution given by Eq.(4.3), we have:

Pi =

∫ ∞

−∞

dξiPGauss,i(ξi)
exp (h0 + Jξi)

[exp (h0 + Jξi) + exp−(h0 + Jξi)]
. (4.4)

The dynamical process given by Eq.(4.4) can only be solved numerically. How-

ever, in the case of large i, which stands for the asymptotic purchase probability at

equilibrium, we can simplify further.

In the limit as i → ∞, Eq.(4.2) becomes:

〈ξ∞〉 = 2P∞ − 1

σ2
∞ =(4/Nr)P∞(1− P∞).

(4.5)

and Eq.(4.4) becomes a fixed point equation

2P∞−1 = (
1√
2π

)

∫ ∞

−∞

dt exp
(

−t2/2
)

tanh [h0 + J(2P∞ − 1) + (2J
√

P∞(1− P∞)/Nrt].

(4.6)

In principle we can now solve these nonlinear self-consistent equations numerically,

but it proves more insightful to expand Eq.(4.6) to the second order in J and

derive a quadratic equation which can be solved explicitly. Introducing the notation

x0 = 2P0 − 1 and x∞ = 2P∞ − 1, a quadratic equation for x∞ of the form can be

found

[J2x0(1− x2
0)(1− 1/Nr)]x

2
∞ + [1− (1− x2

0)J ]x∞ − x0[1− (1− x2
0)J

2/Nr] = 0 (4.7)

Containing all information on how P∞ depends on J , Nr, and P0. Details of the

result will be shown in Sec.(4.1.3)
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4.1 Ising Model

4.1.2 Analytical Solution, Master Equation Approach

In this section, we present the ”master equations” for the Ising model and discuss

a possible algorithm to solve these equations. The binary random variable Bi in

this section has the same meaning as the Bi introduced in Sec.(3.1). In addition,

we will also have the following variables:

Definition 4.1.1. Define n as the number of customers that responded and k as

the number of customers who decided to BUY.

Divide the n customers into two parts, the first n− Nr customers and the last

Nr customers, as shown in Fig.(4.1). Then we have the definition of ”q-function”.

Definition 4.1.2. q-function (qn(k, B1, B2, B3, . . . , BNr
)) is the probability of find-

ing a n-customer sequence with exactly k 1-value customers in the first n−Nr cus-

tomer queue, and with lastNr customers with decisions of exactly (B1, B2, B3 . . . BNr
).

Figure 4.1: Definition of q function.

Both buy and not buy decision in the binary probability distribution for the jth

customer, we have:

Pj(h0, rj , Bj) =

[

eβhj

eβhj + e−βhj

]Bj
[

e−βhj

eβhj + e−βhj

]1−Bj

(4.8)

where hj has the same meaning as in Def.(3.2.5).

Then the ”master equation” can be expressed as:

qn (k, B1, B2, . . . BNr
) = qn−1 (k, 0, B1, B2, . . . BNr−1)PNr

(

h0,
1

Nr

Nr−1
∑

j=1

Bj, BNr

)

+qn−1 (k − 1, 1, B1, B2, . . .BNr−1)PNr

(

h0,
1

Nr

(

1 +

Nr−1
∑

j=1

Bj

)

, BNr

)

(4.9)
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4.1 Ising Model

For the n ≤ Nr case, we have the corresponding equation:

qn(B1, B2, . . . Bn) = qn−1(B1, B2, . . . Bn−1)Pn

(

h0,
1

n− 1

n−1
∑

j=1

Bj , Bn

)

(4.10)

with the initial condition:

q1(B1) = PB1

0 (1− P0)
1−B1 (4.11)

Eq.(4.8), Eq.(4.9), Eq.(4.10) and Eq.(4.11) form the fundamental law of this non-

Markovian dynamics, based on which we can design an algorithm to calculate the

q function.

The q function qn(k, B1, B2, B3, . . . , BNr
) contains all information of the dynamic

process. Thus, the probability distribution of the purchase rate P (k, n) at any total

respondents n could be computed as:

P (k, n) =
∑

k′+
∑

i Bi=k

qn(k
′, B1, B2, . . . BNr

) (4.12)

Which gives the average purchase rate

〈r〉n =
n
∑

k=0

P (k, n)
k

n
, (4.13)

and variance

〈r2〉 − 〈r〉2 =
n
∑

k=0

P (k, n)
k2

n2
−
(

n
∑

k=0

P (k, n)
k

n

)2

. (4.14)

4.1.3 Results and Discussion

In this section, we

• Verify ”Ising” model by comparing simulation results with the real survey

data.

• Plot the fixed point relation of ”Ising” obtained from the central limit ap-

proximation.

• Plot an example distribution derived from the ”master equation”.
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4.1 Ising Model

4.1.3.1 Kinetic Monte-Carlo Simulation(KMC)

In previous chapters, we constructed the Ising model and introduced several im-

portant concepts such as generalized internal field, effective local field and social

cue parameter, but in order to conduct a simulation, we have to first determine the

value of the model parameter h0 and J . Although h0 can be determined by using

Eq.(3.12), the other base parameter J can not be derived from the first principles.

Leaving this as an open question which will be discussed in Chapter 5, we here

present sets of data obtained via KMC simulation by simply choosing different Js.

In Fig.(4.2), the values of J are chosen from 0.1 to 1 in increments of 0.1.

(a) P0 = 0.321
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4.1 Ising Model

(b) P0 = 0.547
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4.1 Ising Model

(c) P0 = 0.776

Figure 4.2: Purchase rate in the Ising model at different P0 with different J .

From the Fig.(4.2), it’s easy to see there should be a J between [0.4, 0.5] that

satisfies: If this J is chosen and fixed in the model, KMC method will give results

that coincide with the real survey data. To have a better view, we then simulated

sets of data at P0s with different Js in the interval [0.4,0.5] in increments of 0.02,

which is shown in Fig.(4.3).
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Figure 4.3: Purchase rate in the Ising model at different P0 with J ∈ [0.4, 0.5].

In Fig.(4.3), choose J ≃ 0.42 and, given P0 from the Markovian data, the Ising

Model will give a very good predicted P∞ value coinciding with all three sets of

data from the real survey. Therefore, the meaning of the parameter J can now be

generalized as the social cue strength of the sample group. Under this definition,

J remains a constant for a certain sample group and a particular consumption

good, which is a significant finding of this research. In other words, if we can

measure J , the non-Markovian P∞ for a product can be derived or simulated from

the Markovian result P0 without much work or expense.

4.1.3.2 Exact solution

Central limit approximation and the master equation approach attempt to explain

the non-Markovian process from two different angles. We combine results from

those two approaches and put them together in this section. By the end of this

section, we’ll show the equivalence of the two solutions.

We solve the fix point relation in Eq.(4.7), and plot the result via MATLAB.

After transforming x0 and x∞ to the original definition of P0 and P∞, a 3-D figure

of P∞ versus P0 and J are presented in Fig.(4.8) give Nr = 10.
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4.1 Ising Model

Figure 4.4: Plotting of P∞ against P0 and J following the fixed point Eq. (4.7).

We choose the interval of J as [0, 0.8], which includes the optimal interval

[0.4,0.5] discussed in the last section. From the figure, it’s easy to see the straight

line on the left stands for the Markovian case, in which J = 0. As J increases, the

non-Markovian effect becomes more and more significant and reaches its maximum

at the point J = 0.8. During this process, the curve of the equilibrium purchase

rate P∞ at a particular J gradually turns ”S-shaped”, which satisfies all properties

of social cues in Sec.(4.1.1).
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4.1 Ising Model

Figure 4.5: Side view of Fig.(4.4) for Nr = 10.

To have a better view of the non-Markovian effect, we take the cross section of

Fig.(4.4) with a plane parallel to P0 axis and plot P∞ versus P0 in Fig.(4.5). It’s

clear that the straight line with the slope 1 stands for the Markovian curve with

J = 0, while the ”S-shape” curve represents the curve with J = 0.8. The two curves

intersect at the point (0.5, 0.5), which means the social cues have no effect when

the actual purchase probability is equal to the benchmark point 0.5.

Now let us come back to the solutions of this model by using the master equation

approach. In Fig.(4.6)1, we also plot the non-Markovian equilibrium purchase rate

P∞ versus P0 and J .

1We solved the model and collected data by programming in FORTRAN.
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Figure 4.6: Plotting of P∞ against P0 and J by using Master Eq.(4.9) and Eq.(4.10)

Similar surface shape as in Fig.(4.4) has been discovered in Fig.(4.6). In Fig.(4.6),

we also plotted P∞ versus P0 and J for the interval J ∈ [0, 2.5]. As before, in

Fig.(4.7) we also plotted its side view as we did in Fig.(4.5). We also find a straight

line with the slope 1 in this figure, which corresponds to the left J = 0 cross section

line in Fig.(4.6). At the cross section at J = 2.5, the ”S-shape” is clearer and

gradually turns into a step function as J approaches ∞. The inclined lines in this

figure represents points with same J , and the increment between two such lines is

0.05; while points on the vertical lines have the same P0.
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4.1 Ising Model

Figure 4.7: Side view of Fig.(4.4) for Nr = 10.

Figure 4.8: P∞ against P0 and J from the fixed point Eq. (4.7), here Nr is set to

equal to 10.

The previous figures only show two extreme cases at J = 0 and the other end of

its interval. We’ll consider the non-Markovian effect at an arbitrary J in its interval
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4.1 Ising Model

in the next figure. Fig.(4.8) combines the solution to Ising model and the result

of traditional Markov model. The surface with crossovers in Fig.(4.8) is the same

surface shown in Fig.(4.6), while the inclined plane in the same figure represents

the Markovian(MC) results. Fig.(4.9) gives the difference between the KMC and

MC results versus P0. Note that the agreement between the simulation and the

experimental data for J ≃ 0.42 is very good.

Figure 4.9: Difference between KMC and MC result versus J and P0.

Besides all the equilibrium properties we discussed, the master equation pro-

vides unique information on the dynamic processes that the central limit approach

could not. In Fig.(4.10) we show the Probability Distribution Function(PDF) of

r at different Markovian P0 by using the q function qn(k, B1, B2, B3, . . . BNr
). The

parameter J is set to be equal to 0.5 and for each P0, we conducted simulations

for three survey lengths N = 20, 100 and 300 for each P0. One could easily observe

that the distribution spreads more widely in a small N case. In all three experiment

lengths for which we conducted a simulation, the PDF is not symmetric except for

the case P0 = 0.5. The figure also shows for a very large N case, e.g. N = 300,

PDF at each P0 diminishes very quickly as r deviates from its expectation value,

which also tells why the central limit approach works for our survey.
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Figure 4.10: PDF of purchase rate r at different P0, with J = 0.5, Nr = 10
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4.2 Fermi Model

4.2.1 Simulation Results and Discussion

The Fermi model was solved mainly by using KMC simulation. In our simulation,

we chose a set of different β at three Markovian probabilities P0 = 0.321, 0.547

and 0.776. In Fig.(4.11), results are presented by showing the purchase percentage

versus number of respondents.

(a) P0 = 0.321
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(b) P0 = 0.547

(c) P0 = 0.776

Figure 4.11: Purchase percentage in the Fermi model with different temperatures

parameter β.

Comparing the simulation result with the real experiment data, one can easily

see that P0 > 1/2 will adversely affect P∞; similarly, P0 < 1/2 will enhance the
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4.2 Fermi Model

positive decisions. At this point, we may ask where this pattern comes from and

how it happens. To address the first question, we show the dynamic process of the

model under the extreme case of Eq.(3.16). In Fig.(4.12), we plot this result for all

three P0.

(a) P0 = 0.321

(b) P0 = 0.547
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(c) P0 = 0.776

Figure 4.12: Purchase percentage in the Fermi model at 0 temperatures for different

P0.

As shown in the figure, patterns similar to those in Fig.(4.11) can be discovered.

Thus we can conclude that the pattern occurs because of the social cue strength

parameter β. In other words, the non-Markovian effect leads to this pattern. The

answer to the 2nd question correlates with the asymmetry of the consumer’s pur-

chase rate r. Similar to Fig.(4.10), when P0 > 0.5, the cumulative probability of

getting an ri > P0 is less than the probability of ri < P0 and vice versa. There-

fore, as we average over our simulation sample with its size tending to ∞, the final

purchase rate r and P0 will go in the opposite direction.

The Fermi model also tells us that the pattern of the final purchase rate is

produced by fluctuations; initial conditions are very important in this model. Al-

though a representative customer can have a continuous innate purchase probability,

for any particular customer in the survey, the decision is not made by throwing a

dice. When customers receive the information ri and compare buy or not buy op-

tions, there’s no innate probability P0 for them to compare with. Since a possible

model should fulfill both of the following conditions: the information will increase

the likelihood if ri > 0.5 and diminish the possibility if ri < 0.5. The failure of

the Fermi model help verify our previous assumption that the consumer’s purchase

decision represents the unbiased, neutral behavior. Therefore, the Ising model has

also been justified by understanding the Fermi model.
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Chapter 5

Conclusions and Future

Extensions

In this project, different non-Markovian models have been studied and compared

with real survey data. Unlike Markovian models in traditional marketing research,

non-Markovian models are closer to reality but usually more difficult to solve. Main

results were obtained through two models: Ising model and Fermi model. We

derived possible purchase probability distributions and analytical solutions via two

approaches for the former, while for the latter, numerical method was mainly used.

From both analytical and numerical approaches, we concluded that Non-Markovian

Ising model was appropriate to describe customers’ decision making for a product

without purchase bias. However, several questions still need to be answered. A

number of possible extensions follows:

5.1 Parameter estimation, the methodology

Although everything looks neat and straightforward in the model, problems arise

when we get our hands dirty with the real data. The result of MC method comes

from averaging over a large sample. Therefore the external field h0 in Eq.(3.12)

should correspond to the P0 over a large sample, which is not achievable in real

cases. In our simulation, however, statistical errors always exist since we let P0 be

equal to the convergence value of one particular sample. This error grows even larger

when we use this imprecise P0 to determine J in the non-Markovian model. In fact,

the current method for parameter determination gives us a J different from its real

value. A correct method should determine the parameter J and h0 simultaneously.

Based on this idea, here we present a potential method called ”Sum of Square of

Residues Minimization”(SSRM).
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5.2 Unification of Ising and Fermi model

Given each pair of J and h0, we take the average over a large sampling simula-

tion. The dynamic process gives us a set of data (y1, y2, . . . yn), and the square of

residues is defined as:

SSR =

n
∑

i=1

(yi − yi)
2 , yi is the real data at step i. (5.1)

If we choose the appropriate step length, we should be able to minimize SSR

and then obtain its corresponding J and P0. An algorithm such as the steepest

descent method could be used to improve the efficiency of the program. Now the

optimal values for J and h0 we obtain are:

J = 0.359,

How to setup other standard of goodness of fit is left as an open question.

5.2 Unification of Ising and Fermi model

The fundamental difference between the Ising and the Fermi model is the choice of

benchmark point in customers’ decision making. An absolute point 0.5 is chosen

in Ising while a point relative to individual customer P0 dominates in the Fermi

model. Besides this, they are quite similar, for example, both external and internal

fields could be defined. Thus we propose the following hypothesis: the Ising and

Fermi model could be unified into a larger model which could be used to describe a

larger group of consumer behaviors in marketing science. The intuition behind the

the models’ unification comes from the fact that Eq.(??) can also be rewritten via :

eα =
P0

1− P0

If we let the β in Eq.(3.14) be equal to the parameter Φ in Eq.(??) and replace ηi

by ri − P0. The Fermi model will have the same expression as Ising model.

Another intuition for supporting this idea comes from a possible connection

between physics theory and marketing phenomena. The Fermi model we proposed

in this thesis corresponds to Fermi distribution. In quantum mechanics, the Fermi

distribution is derived from the Pauli exclusive principle, which prohibits identical

particles from occupying the same energy level. A similar principle can be found

in luxury marketing, for example, chasing limited edition goods released by tier 1

brands. In this case, purchasing such goods is biased, which makes the assumption

in the Fermi model by reasonable. In contrast, Ising relates to the purchase of

normal goods which doesn’t have bias.
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5.3 Correlation in Ising model

5.3 Correlation in Ising model

As shown in previous chapters, the Ising distribution can be derived from either en-

ssemble theory in statistical physics or via solving differential equation in Sec.(??).

However, the two approaches help us understand this result from two points of

view. The latter focuses on a more microscopic dynamic process while the former

introduces the definitions of generalized internal and external fields. From an Ising

point of view, Eq.(3.10) shows an explicit correlation between the internal and the

external parts. One may argue from the data that the correlation might not be

as simple as Eq.(3.10) shows, but Eq.(3.10) can always been considered as the 1st

order Taylor expansion of the explicit function. A complete correlation is needed

if the current approximation ignores so much reality, but for this specific case, it’s

not necessary. Other interesting topics include:

• The effect of memory size Nr.

The basic question we are interested in is how does the final purchase rate

change if the memory size Nr changes? Will the memory size parameter

Nr affect the final purchase rate or will it only influence its converge rate?

Another question is whether there would be an effect if Nr is not a fixed

number, but a quantity increasing during the evolution. For example, what

if the ith customer knows all information from the first customer? Will the

purchase rate converge to some non-zero value in this case?

• The effect of fake information

In reality, there exists the possibility that merchants choose to provide cus-

tomers fake information for some reason. For example, TV shopping programs

always give audiences the illusion that other customers are more than will-

ing to make a purchase. Will such fake information affect customers’ final

decision? If so, is this effect positive or negative? And how large is the effect?

Actually in the real world, interesting topic including both points exists. Here

we give the online shopping website ”Amazon” as an example. As Fig.(5.1) shows,

viewers will be given information regarding the percentage of previous viewers who

finally purchase the product in most Amazon product pages . Thus, it’s a memory

size varying problem with Nr increasing as the number of web viewer increases.
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5.3 Correlation in Ising model

Figure 5.1: An example of Non-Markovian dynamics in real markets.

If the Amazon website chooses not to provide such information, the final pur-

chase rate will be governed by Markovian dynamics. Imagine a fictive product

that has an equilibrium rate 26.5% for its Markovian dynamic process. However,

the company wants to improve its sales performance by disclosing fake information

to the public. For example, they can add 6% artificially to the actual purchase

percentage and release the number 32.5% on their website. Then, the unexpected

negative non-Markovian effects will arise and the final purchase rate will be pushed

even lower, say, to the value 21% as in our 10 RMB case, which is lower than the

previous Markovian result. This presumptive experiment tells us that presenting

arbitrary fake information may not improve sales. Therefore, extensions on this

research would be very useful because of its potential applications in real market

strategy designing.
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Appendix A

Survey Questionnaire

In this section, we present the questionnaire used for the survey with the monthly

fee set to be equal to U10.

Q1. Which cell phone carrier are you currently using?

� China unicom � China mobile � Both

Q2. Do you know about the intra-network service offered by China mobile?

� Yes � No

Unlimited Intra-Network Mobile to Mobile Service

China mobile(Shanghai) is offering unlimited intra-network mobile to

mobile service for students and faculty members of your university.

The service fee will be U10/month. After activation, you will be

assigned an intra-network number(INN); members of this network can

make unlimited calls to each other via INN. No other hidden fees.

[Tell the respondent decisions made by his/her previous 10 respondents]

Q3. Do you want to buy this service?

� Yes � No

Q4. Is the 10/month service fee is expensive for you?

�Very Cheap �Cheap �Normal �Expensive �Very Expensive

(After the respondent answer questions above, tell him/her this survey will be used

for research; then finish this survey by completing the following questions)

Q5. Your monthly cell phone cost most likely lies in?

� U0 ∼ U10 � U11 ∼ U20 � U21 ∼ U50 � U51 ∼ U100

� U101 ∼ U200 � U201 ∼ U500 � More than U500

Background information

S1. What’s your gender? � Male � Female
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S2. What’s your age?

S3. Which class are you currently in?

S4. What’s your major?

S5. Approximately, how much are your normal expenses every month?
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