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Abstract

Iterative Polyenergetic Digital Tomosynthesis Reconstructions
for Breast Cancer Screening

By
Veronica Mejia Bustamante

In digital tomosynthesis imaging, multiple projections of an object are obtained along a
small range of incident angles in order to reconstruct a pseudo 3D representation of the
object. This technique is of relevant interest in breast cancer screening since it elimi-
nates the problem of tissue superposition that reduces clinical performance in standard
mammography. The challenge of this technique is that it is computationally and memory
intensive, as it deals with millions of input pixels in order to produce a reconstruction com-
posed of billions of voxels. Standard approaches to solve this large-scale inverse problem
have relied on simplifying the physics of the image acquisition model by considering the
x-ray beam to be monoenergetic, thus decreasing the number of degrees of freedom and
the computational complexity of the solution. However, this approach has been shown to
introduce beam hardening artifacts to the reconstructed volume. Beam hardening occurs
when there is preferential absorption of low-energy photons from the x-ray by the object,
thus changing the average energy of the x-ray beam.

This thesis presents an interdisciplinary collaboration to overcome the mathematical, com-
putational, and physical constraints of standard reconstruction methods in digital tomosyn-
thesis imaging. We begin by developing an accurate polyenergetic mathematical model for
the image acquisition process and propose a stable numerical framework to iteratively solve
the nonlinear inverse problem arising from this model. We provide an efficient and fast
implementation of the volume reconstruction process that exploits the parallelism avail-
able on the GPU architecture. Under our framework, a full size clinical data set can be
reconstructed in under five minutes. The implementation presented reduces storage and
communication costs by implicitly storing operators and increasing kernel functionality. We
show that our reconstructed volume has no beam hardening artifacts and has better image
quality than standard reconstruction methods. Our reconstructions also provide a quan-
titative measure for each voxel of the volume, allowing the physician to see and measure
the contrast between materials present inside the breast. The research presented in this
thesis shows that large-scale medical image reconstructions can be done using physically
accurate models by effectively harnessing the multi-threading power of GPUs.
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Variable Definitions

j voxel index

Nv number of voxels in the reconstructed volume

i pixel index

Np number of pixels in the detector

e index of the discrete value of energy

Ne number of discrete energy levels

θ projection index, represents incident angle

Nθ number of projections acquired

Nm number of attenuating materials to be modeled

biθ measured value for pixel i in the detector and projection angle θ

ηi the additional noise for pixel i

b̄iθ + η̄i expected value of pixel i for projection angle θ

µj,e linear attenuation coefficient for the composite materials present in voxel

j attenuating at discrete energy level e(
µ
ρ

)
j,e

mass attenuation coefficient for the composite materials present in voxel

j attenuating at energy level e

ρj density of the composite materials in voxel j

ue,m linear attenuation coefficient for material m at energy level e(
u
r

)
e,m

mass attenuation coefficient for material m at energy level e

rm density of material m

wj,m weight fraction (or percentage) of the m material in voxel j

se energy fluence, defined as the product of x-ray energy with the number

of incident photons at that energy

aijθ the length of the x-ray beam that passes through voxel j, incident onto

pixel i starting from source angle θ

Aθ raytrace matrix for incident projection angle θ
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Chapter 1

Introduction

1.1 Background

In the United States breast cancer is the second leading cause of cancer death in women,

with 1 in 8 expected to develop invasive breast cancer during their lifetime and 1 in 36

estimated to die because of the disease according to the American Cancer Society [4] . In

2012 alone, the American Cancer Society expects over 200,000 new cases of invasive breast

cancer and over 63,000 new cases of carcinoma in situ (CIS is a non-invasive and earliest

form of breast cancer) to be diagnosed in women. For this same year, the American Cancer

Society estimates there will be around 40,000 breast cancer related deaths. Although the

incidence rate for female breast cancer has been stable for the last decade and substantial

progress has been made in identifying potential genetic, environmental, and behavioral risk

factors, most physicians agree that early detection saves thousands of lives each year [4].

This is confirmed by the fact that chances of survival significantly decrease as the cancer

reaches higher stages: the 5-year survival rate for breast cancer detected at stage I is 88%

whereas the 5-year survival rate for cancer detected at stage IV is 15%.

In the later part of the 20th century, the introduction of screening mammography has

been shown to be responsible for a reduction in breast cancer mortality [69]. However,

even with the development of digital mammography to overcome the lower image quality,

clinical efficacy, and higher radiation dosage of screen-film mammography, the standard

planar mammography techniques have some limitations. Detection rates for mammography,
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measured as sensitivity or the proportion of breast cancer detected when breast cancer is

present, and specificity or the likelihood of the test being normal in the absence of cancer,

vary widely with the population. In 2002 it was reported by Kolb et al [80] that breast

density is the most significant predictor of mammographic sensitivity, ranging from 48% in

women with very dense breast to 97% in women with fatty breasts [80]. Specificity was

reported in the same study to range between 82% to 98%, but it was estimated in [42]

that about 25% of women that receive screening mammography over a ten year period will

receive at least one false positive result. The issues of breast density and tissue superposition

are some of the factors leading to these false positive results in mammography screening.

Tomosynthesis imaging is a technique of relevant interest in breast cancer screening since

it does away with the problem of tissue superposition which reduces clinical performance

in standard mammography. In digital tomosynthesis imaging, multiple projections of an

object are obtained along a small range of incident angles in order to reconstruct a pseudo

3D representation of the object. This is done by rotating the x-ray tube along an arch

above the compressed breast as images of the breast are acquired at different angles (see

Figure 1.1). The detector can be static or rotate along the same range of angles to remain

perpendicular to the x-ray tube. The set of projections acquired by the imaging system is

then used to reconstruct a pseudo 3D representation of the breast.

Figure 1.1: Example of the imaging system for breast tomosynthesis imaging

The challenge of this technique is that the reconstruction process is computationally

and memory intensive, as it deals with millions of input pixels from the stack of acquired
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projection images in order to produce a reconstructed pseudo 3D volume composed of bil-

lions of voxels. Standard approaches to solve this large scale inverse problem have relied

in simplifying the physics of the image acquisition model by considering the x-ray beam to

be monoenergetic (filtered backprojection, MLEM), thus decreasing the number of degrees

of freedom and the computational complexity of the solution. However, this approach has

been shown to introduce what is know as beam hardening artifacts, which are cupping-like

shadows that surround the lesions of interest in the reconstructed volume. Beam harden-

ing occurs when there is preferential absorption of low-energy photons from the x-ray by

the object, thus changing the average energy of the x-ray beam. It is known that beam

hardening is directly related to the assumption of a monoenergetic x-ray beam in the image

acquisition process, and research has been done to develop post-processing imaging tech-

niques that minimize the appearance of the artifacts [19]. As will be shown in this work,

modeling the tomosynthesis imaging problem using a polyenergetic x-ray beam produces

significantly better images and more meaningful reconstructions without the need to post-

process the results. In order to develop an efficient reconstruction scheme for the digital

tomosynthesis problem for breast imaging we need to dive into three different areas: the

biomedical engineering of the image acquisition process, the numerical aspects and solution

to the mathematical model, and the computational science required for a robust and fast

implementation.

This thesis presents an interdisciplinary collaboration to overcome the mathematical,

computational, and physical constraints of standard reconstruction methods in digital to-

mosynthesis imaging for breast cancer screening. We begin by describing the mathematics

and developing a physically accurate polyenergetic forward model for the image acquisition

process as well as propose a stable numerical framework to iteratively solve the nonlinear

ill-posed inverse problem arising from this model. We exploit the multi-threaded parallelism

available on the GPU architecture using OpenCL as the API to provide an efficient and

fast implementation of the volume reconstruction framework that can reconstruct a full size

clinical data set in under five minutes. We then show that our reconstructed volume has no

beam hardening artifacts and better image quality than standard reconstruction methods.

Our reconstructions also provide a quantitative measure for each voxel of the pseudo 3D
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volume, allowing the physician to see and measure the contrast between materials present

inside the breast. The research presented in this thesis shows that large scale, physically

accurate medical image reconstructions can be done using smaller and less costly machines

by effectively harnessing the multi-threading power of GPUs. This allows smaller hospitals

and clinics that lack access to expensive clusters and supercomputers, to use off-the-shelf

computing systems to run the reconstructions needed for diagnostic radiology.

1.2 Inverse Problems and Regularization

Inverse problems arise in a variety of imaging applications where we seek to reconstruct

an image from indirect or noise polluted measurements obtained from an object. A simple

example is image deblurring, where we want to remove the noise and blur from an image

in order to obtain a representation of the object with higher resolution. The noise or blur

in the image can come from different factors like the imaging system or the environment,

and even with the use of precise imaging equipment in a controlled setting, it may not

be possible to avoid a corrupted image. However, having some information about the

blur, statistical properties of the noise, or an accurate mathematical representation of the

image acquisition process can help produce very accurate reconstructions. The digital

tomosynthesis reconstruction problem for breast cancer screening can be formulated as a

large scale nonlinear ill-posed inverse problem. This section presents an introduction to

the mathematics of ill-posed inverse problems in order to provide a background for the

discussion of the reconstruction methods proposed in this thesis.

The general representation of an inverse problem is given by

b = K(xexact) + η (1.1)

where K(·) is a function that models the image acquisition process, xexact represents the

true image of the object, the quantity η contains the noise and error that can be present

in the data, and b is the observed data. The structure and properties of the operator K(·)

depend on the application. A major challenge that arises in solving inverse problem is that
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often the problems are ill-posed. The definition proposed by Hadamard [59] of a well-posed

problem is one that satisfies:

1. the solution is unique,

2. the solution exists for arbitrary data, and

3. the solution depends continuously on the data.

In their continuous mathematical form ill-posed inverse problems fail to satisfy at least one

of the above criterion which makes finding an exact solution a difficult or even impossible

task. Once the continuous problem is discretized in order to find a numerical solution, the

ill-posedness of the problem often continues to be an issue in the form of ill-conditioning.

For the tomosynthesis reconstruction problem, the ill-posedness of the continuous problem

creates issues with the stability of approximate solutions since small changes in the observed

data can cause large changes in the approximated solution. Regularization is needed in this

case to deal with this instability.

1.2.1 Linear Inverse Problems

The simplest type of inverse problem is a linear inverse problem where the function K(·)

can be expressed as K(x) = Ax where A is a known linear operator, or in the discrete

setting, an m× n matrix. In this case the formulation of the inverse problem is

b = Axexact + η (1.2)

and the goal is to find an approximation of xexact given both b and A. In order to investigate

this problem, consider the singular value decomposition (SVD) for the m× n matrix A

A = UΣV T

where U is an m × m orthogonal matrix (that is, UTU = I, UUT = I), V is an n × n

orthogonal matrix, and Σ is an m× n diagonal matrix containing the nonnegative singular

values σ1 ≥ σ2 ≥ ... ≥ 0. If the matrix A is nonsingular, the inverse solution for the problem



7

is given by

xinv = A−1b =
n∑
i=1

uTi bexact

σi
vi +

n∑
i=1

uTi η

σi
vi = xexact + error (1.3)

where ui,vi are the singular vectors of A (the columns of matrices of U and V respectively).

In the case of matrices arising from ill-posed inverse problems, we have the following prop-

erties [31]:

1. The matrix A is severely ill-conditioned and the singular values σi decay steadily to

zero without a significant gap that indicates numerical rank.

2. The singular vectors corresponding to small singular values have a higher frequency

than the singular vectors corresponding to large singular values.

3. The components
∣∣uTi bexact

∣∣ decay on average faster than the singular values σi. This

is known as the discrete Picard condition [62].

These properties show that for ill-posed inverse problems the solution xinv in Equation (1.3)

will be dominated by the terms in the summation that correspond to small singular values

since the division by σi will magnify the oscillations of the corresponding singular vectors

ui,vi. We can try to limit the contribution of these dominating terms by filtering out or

excluding these terms in the solution, using a technique that is called regularization by SVD

filtering.

The idea in regularization by SVD filtering is to introduce what are called filter factors

φi to the solution xinv where φi ≈ 1 for large values of σi and φi ≈ 0 for small σi. The

resulting filtered solution is of the form

xfilt =

n∑
i=1

φi
uTi b

σi
vi. (1.4)

There are different choices for the factors φi [64, 62] including

• Truncated SVD Filtering: where given an appropriate tolerance level τ , the factors

are given by φi =

 1 if σi > τ

0 if σi ≤ τ
.
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• Tikhonov Filtering: the filter is given by φi =
σ2
i

σ2
i+α2 and we need an appropriate

choice of α.

• Exponential Filtering: where the factors are given by φi = 1− e−
σ2i
α2 and we again

need to choose a value for the parameter α.

The choice of the regularization parameter for each filter τ or α depends on the properties

of the problem and of the matrix A, and finding the appropriate value can sometimes be a

difficult task on its own.

Another class of regularization methods for linear inverse problems is known as varia-

tional regularization and has the form

min
x

{
||b−Ax||22 + α2J (x)

}
(1.5)

where the regularization parameter α and the regularization operator J are chosen depend-

ing on the problem. Variational regularization methods are flexible (for example, the least

squares criterion can be exchanged with the Poisson log likelihood function [7, 8, 6]) and

have the attractive property that constraints like nonnegativity in the solution can be added.

Some choices for the regularization operator J [31] include Tikhonov [86, 99, 111, 112, 113],

total variation [27, 101, 116], and sparsity constraints [26, 49, 115], where

• Tikhonov: the regularization operator is given by J (x) = ||Lx||22 where L is typi-

cally chosen to be the identity matrix or some discrete approximation to a derivative

operator like the Laplacian.

• Total Variation: the regularization operator is given by

J (x) =

∣∣∣∣∣∣∣∣√(Dhx)2 + (Dvx)2

∣∣∣∣∣∣∣∣
1

where the matrices Dh and Dv represent the horizontal and vertical derivatives of the

2D image x (the method extends to 3D images without loss of generality). Imple-

menting total variation regularization can be nontrivial for some problems [116, 27].
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• Sparsity: for sparse reconstructions the regularization operator is given by

J (x) = ||Φx||1

where the matrix Φ represents the basis in which the image is sparse and depends

completely on the structure of the desired solution.

Variational regularization approaches can be costly and nontrivial to implement for some

problems. Sometimes, a simpler and effective approach is to use iterative regularization, in

which an iterative method is applied to the unregularized form of the problem

min
x

{
||b−Ax||22

}
(1.6)

until a “good” solution has been reached. If the inverse problem satisfies the Picard condi-

tion, many iterative methods will exhibit “semi-convergence” behavior, in which the early

iterates are very good approximations of the solution and later iterates begin to be corrupted

by errors in the data. This is because the early iterations will reconstruct the components

of the solution that correspond to the larger singular values whereas the later iterations

will reconstruct those components corresponding to smaller singular values. Thus, if we

terminate the iteration process at the point where the solution begins to degrade because

of the small singular value components, we can still achieve a good approximation to the

exact solution. Iterative methods of this type include Landweber [81], steepest descent,

conjugate gradient type methods (like LSQR [96, 97], GMRES, and MINRES), and statis-

tics based methods like expectation-maximization [43, 63, 116]. The advantage of this type

of regularization is that some of these iterative methods are very easy to implement, but

as is the case with regularization parameters, finding a good iterate to stop the iteration

process can be difficult.

A more sophisticated approach to regularization is called hybrid iterative-direct reg-

ularization, which as the name suggests, combines iterative regularization methods with

variational approaches. In this hybrid approach an iterative Golub-Kahan (or Lanczos)
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based method like LSQR is applied to the minimization problem

min
x

{
||b−Ax||22

}
(1.7)

and variational regularization is applied within the iterative process. The scheme works

by projecting the full problem onto a Krylov subspace of smaller dimension (by using

bidiagonalization) and applying variational regularization to the projected problem at each

iteration. For more details on this technique see [15, 16, 61, 76, 77, 82, 94].

Another common approach is regularization using statistically motivated Bayesian meth-

ods. In these types of methods, the unknown image x is regarded as a random vari-

able and certain properties that are known about the solution (like the probability den-

sity function) are used to solve the problem. Examples of this approach are given in

[24, 10, 13, 14, 22, 23, 25].

The choice of regularization method depends significantly on the problem and the com-

putational resources available. Once the regularization method has been chosen, estimating

the appropriate regularization parameter for the method is a nontrivial question that can

be a time consuming and computationally intensive. The right choice of regularization

parameter is critical to reach an approximate solution to the problem; a very small pa-

rameter will not sufficiently limit the contribution of high frequency components to the

solution and a very large parameter will result in an over-smoothed approximation to the

solution. There are several techniques that have been developed to choose an appropriate

regularization parameter, like generalized cross-validation [53], the discrepancy principle

[43], L-curve [62], and others [21, 43, 62, 116], but just like the choice of regularization

method, a regularization parameter is not a one size fits all approach.

1.2.2 Separable Inverse Problems

A second type of inverse problem is known as separable inverse problem. A separable inverse

problem is one in which the unknown vector x can be separated into two components x(1)

and x(2), where one relates to the linear operator A and the other to the exact solution

vector. This means we can write the operator as K(x) = K(x(1),x(2)) = A
(
x(1)

)
x(2) with
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A a linear operator that is defined by the parameters x(1), and the inverse problem is written

as

b = A
(
x

(1)
exact

)
x

(2)
exact + η (1.8)

The idea is to find an approximation of x
(1)
exact and x

(2)
exact given b and the parametric rep-

resentation of A. Consider adapting the regularization approaches of the previous section

to this problem. If we use the variational form of the Tikhonov method, the regularized

separable inverse problem becomes

min
x

{
||b−A

(
x(1)

)
x(2)||22 + α2‖|x(2)||22

}

which is equivalent to the problem

min
x(1),x(2)

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣
A (x(1)

)
αI

x(2) −

b

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

(1.9)

Notice that the least squares problem in (1.9) is not linear by definition, but it is linear in

terms of the value x(2). Described below are three different approaches to solve this type

of problem that take advantage of the separation of the two unknowns x(1),x(2) in order to

find a good approximate solution to Equation (1.8).

The first approach to solve the regularized nonlinear least squares problem is to itera-

tively solve the fully-coupled problem. We can write Equation (1.9) as

min
x
φ(x) = min

x
||ρ(x)||22 (1.10)

where ρ(x) = ρ
(
x(1),x(2)

)
=

A (x(1)
)

αI

x(2)−

b

0

 and x =

x(1)

x(2)

 and solve the numerical

optimization problem using an iterative algorithm. In general, iterative algorithms to solve

this problem have the form
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Algorithm 1.2.1 General Iterative Algorithm for Numerical Optimization

1: Choose the initial iterate x0 =

x
(1)
0

x
(2)
0


2: for k = 1, 2, ... until converge do

3: choose a step direction dk

4: determine the step length τk

5: update the solution xk+1 = xk + τkdk

6: end for

There are different choices for the step direction dk but some common ones that will be

used in this work are the gradient descent direction and the Newton direction. The gradient

descent direction is given by the first derivative of the cost function φ(·), that is

dk = −φ′(xk) = −JTφρ

where Jφ is the Jacobian matrix given by

Jφ =

[
∂ρ
(
x(1),x(2)

)
∂x(1)

∂ρ
(
x(1),x(2)

)
∂x(2)

]
.

The Newton direction is given by

dk = −
(
φ̂′′(xk)

)−1
φ′(xk)

where φ̂′′ is an approximation of the second derivative φ′′ and, as in the gradient descent

method, φ′(xk) = JTφρ. For the well known Gauss-Newton method, which is generally used

to solve nonlinear least squares problems, the approximation to the second derivative of the

cost function is given as φ̂′′ = JTφJφ.

A simpler approach to solve the separable nonlinear problem in Equation (1.9) is to

decouple the problem in term of the unknowns and use a block coordinate descent algorithm.

The iterative algorithm to solve the decoupled problem takes the form
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Algorithm 1.2.2 Block Coordinate Descent Algorithm

1: Choose the initial iterate x0 = x
(1)
0

2: for k = 1, 2, ... until converge do

3: choose the regularization αk and solve the linear problem

x
(2)
k = arg minx(2)

∣∣∣∣∣∣A(x
(1)
k

)
x

(2)
k − b

∣∣∣∣∣∣2
2

+ α2
k

∣∣∣∣∣∣x(2)
k

∣∣∣∣∣∣2
2

4: given the solution above, solve the nonlinear problem

x
(1)
k = arg minx(1)

∣∣∣∣∣∣A(x
(1)
k

)
x

(2)
k − b

∣∣∣∣∣∣2
2

+ α2
k

∣∣∣∣∣∣x(2)
k

∣∣∣∣∣∣2
2

5: end for

The regularization parameter αk can be chosen using any of the regularization approaches

for the linear inverse problem mentioned in the previous subsection. The solution of the

nonlinear least squares problem in step 4 can be more involved than the linear least squares

problem in step 3, but if the number of unknowns x(1) is significantly less that the number

of unknowns in x(2) a Gauss-Newton method will be sufficient to solve the problem. One

major drawback of this approach is that it can be very slow to converge in problems with

tightly coupled variables [90].

One last approach to solve the regularized separable least squares problem in Equation

(1.9) is the variable projection method [55, 54, 74, 95, 102]. If the number of unknowns

in x(1) is significantly less that the number of unknowns in x(2) variable projection can

work better than the block coordinate descent method described above. For the variable

projection method we take advantage of the problem being linear with respect to x(2) and

express the cost function in terms of only x(1) by implicitly eliminating x(2). A Gauss-

Newton iterative method is then used to solve the nonlinear least square problem. Consider

the function

ψ(x(1)) = φ
(
x(2)(x(1)),x(2)

)
where the value x(2)(x(1)) is a solution to the least squares problem

min
x(2)

φ
(
x(1),x(2)

)
= min

x(2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
A (x(1)

)
αI

x(2) −

b

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

. (1.11)
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Then we use a Gauss-Newton method to solve the problem

min
x(1)

ψ(x(1)) (1.12)

where the derivative ψ′(x(1)) is given by

ψ′(x(1)) =
dx(2)

dx(1)

∂φ

∂x(2)
+

∂φ

∂x(1)

but since x(2)(x(1)) is a solution to equating (1.11), we have that the derivative is

ψ′(x(1)) =
∂φ

∂x(1)
= JTψρ

where Jψ is the Jacobian of the reduced cost function given by

Jψ =
∂

∂x(1)

[
A(x(1))x(2)

]
.

The algorithm is given as

Algorithm 1.2.3 Variable Projection gauss-Newton Algorithm

1: Choose the initial iterate x0 = x
(1)
0

2: for k = 1, 2, ... until converge do

3: choose the regularization αk

4: solve x
(2)
k = arg minx(2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
A

(
x

(1)
k

)
αkI

x(2) −

b

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

5: compute the residual rk = b−A
(
x

(1)
k

)
x

(2)
k

6: compute the step direction dk = arg mind ||Jψd− rk||2
7: find the step length τk

8: update the solution xk+1 = xk + τkdk

9: end for

Note that the advantage of this method is that since the cost function has been reduced
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from φ(x(1),x(2)) to ψ(x(2)) the Jacobian Jψ is significantly smaller than Jφ. Also, now

there is only one convergence rate for the solution x(2), as opposed to the two convergence

rates that we need to examine in the block coordinate descent approach (one for step 3

and one for step 4 of Algorithm 1.2.2). The regularization methods described for the linear

inverse problem in the previous section can be used in this algorithm as well.

1.2.3 Nonlinear Inverse Problems

Perhaps the most challenging type of inverse problem to solve is called a nonlinear inverse

problem, which is one that cannot be classified as either linear or separable. This type of

problem coupled with ill-posedness makes finding an approximation to the exact solution

a very difficult task. In fact, the formulation and solution of the digital tomosynthesis

reconstruction problem as an ill-posed nonlinear inverse problem is the full scope of this

thesis. Using the SVD in order to study the ill-posedness of the problem as it was done for

the linear case is not an option since there is no robust theoretical tool developed to do so,

and even studying the linearization of a nonlinear inverse problem does guarantee a correct

diagnosis of the degree of ill-posednes [45]. Furthermore, it is very difficult to establish the

convergence properties for some nonlinear inverse problems, and the assumptions necessary

to perform this kind of convergence analysis can sometimes be unrealistic [43, 44]. However,

there exist general techniques to solve this type of inverse problem and some regularization

methods can be extended to fit this case.

In its general form, a nonlinear inverse problem is expressed as

b = K(xexact) + η

where the idea is to compute an approximation of xexact given b and the function K(·).

In some physical applications, like digital tomosynthesis imaging, the function K(·) (also

called the forward model) cannot be known exactly, and a great amount of work needs to

be done in order to accurately estimate it before attempting to approximate xexact. There

are many approaches to solve this problem [5, 43, 44, 47, 67, 114, 116], we describe a few

approaches in this work.
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First, consider the nonlinear inverse problem of the form

b = K(x) (1.13)

which can also be formulated as

K(x)− b = 0 (1.14)

where we are now looking to find a zero of Equation (1.14). Now we can apply a Newton-

type method to (1.14), updating the iterates using

xk+1 = xk + τkdk

with step direction given by the solution of the linear system

J(xk)d = b−K(xk)

where J(xk) is the Jacobian matrix at iterate xk. Two drawbacks of this approach are that

there is no guarantee for the existence and uniqueness of the solution because it depends

on the properties of the matrix J(xk), and finding the step length τk can be nontrivial.

Another approach to solve a nonlinear problem of the form (1.13) is to solve the problem

using an iterative nonlinear optimization algorithm. The nonlinear Landweber iteration

takes the form

xk+1 = xk + J(xk)
T (b−K(xk))

which is the standard Landweber iteration in the case of a linear operator K(·). Another

choice is to use a gradient descent type method or a Newton-type method which have

iterates of the form

xk+1 = xk + τkdk

where dk = −∇K(xk) for gradient descent and dk solves the linear system given by

H(xk)d = −∇K(xk) for the Newton method. Here we denote ∇K(xk) as the first deriva-

tive of the function K and H(xk) as the Hessian evaluated at xk. If the analytical form of
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the Hessian H(xk) is not available, is difficult to compute, or requires significant storage,

methods like Gauss-Newton, LBFGS and nonlinear Conjugate Gradient which estimate

H(xk) can be used.

For nonlinear ill-posed inverse problems, the iterative approach above can be combined

with regularization to provide meaningful solutions. In the case of coupling an iterative

solver with variational regularization approaches, the goal is to solve a newly formulated

problem

min
x

{
||b−K(x)||22 + α2J (x)

}
(1.15)

given a regularization operator J and a corresponding regularization parameter α. Solving

this problem provides a good amount of flexibility in the choice of J and α, but selecting the

proper regularization method is difficult and estimating α can be computationally intensive.

A simple and effective regularization approach for ill-posed nonlinear inverse problems is

early termination, where the iteration process is terminated when the solution has reached

certain criteria but before the problem has fully converged to the true inverse solution.

Selecting the criteria to stop the iteration process is a problem on its own, but it is certainly

less computationally expensive than solving the full problem in Equation (1.15).

Ultimately, the framework to solve a nonlinear ill-posed inverse problem depends on

a strong choice of the problem’s three components: an accurate estimate of the function

K(·) (the forward model), a numerically stable nonlinear optimization iterative solver, and

a robust form of regularization. The work discussed in this thesis will describe our pro-

posed choice for each of these three components in the digital tomosynthesis reconstruction

problem.

1.3 Outline of Work

This thesis describes the three different areas of research we explored to solve the polyen-

ergetic digital tomosynthesis reconstruction problem for breast cancer imaging, starting

with the medical physics of the problem, continuing with the mathematical modeling, and

concluding with the computational science needed for the implementation. We begin by

describing the physics of the problem in Chapter 2, where we introduce the basics of x-ray
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imaging and discuss the details of the image acquisition process in computed tomography

and digital tomosythesis. This chapter highlights the need for a polyenergetic forward model

as we show it is physically inaccurate to assume a monochromatic x-ray for the different

projections acquired in tomography. Chapter 3 serves as an introduction to the mathe-

matical models proposed for the digital tomosynthesis problem in this thesis, which are

described in the subsequent Chapters 4-7. In Chapter 3 we provide a background for our

statistical approach in formulating the digital tomosythesis forward model, describe Beer’s

law, and discuss the details and shortcomings of standard approaches used to solve this

problem (filtered backprojection, MLEM, ARTs).

Chapter 4-7 present the mathematical contributions of this thesis, describing four differ-

ent forward models for the digital tomosynthesis problem and our proposed reconstruction

framework. Chapter 4 describes the linear model for attenuation which decomposes the

attenuation function of the volume as a linear function of the glandular fractions in each

voxel, assuming the presence of only adipose and glandular tissue inside the breast. Chap-

ter 5 describes the quadratic model for attenuation, which expands on the linear model by

finding a quadratic fit to account for the presence of air and micro-calcifications inside the

breast. Chapter 6 proposes a linear polyenergetic multi-material attenuation model for the

object by formulating the attenuation function in terms of the weight fractions of an arbi-

trary number of materials present inside the breast. This formulation allows us to capture

additional materials of interest in breast cancer screening and provides the flexibility to

extend our polyenergetic reconstruction framework to other objects or parts of the body.

Chapter 7 describes a simplified multi-material model that is easier to implement and ana-

lyze than the model presented in Chapter 6, but still assumes the presence of adipose and

glandular tissue as well as micro-calcifications inside the breast.

The computational science contributions of this thesis are described in Chapters 8-10.

Chapter 8 describes the implementation considerations for the reconstruction framework,

including computational complexity and the hardware used in our numerical results. Chap-

ter 9 presents the kernels we use to perform our raytracing and backprojection operation in

the reconstruction process. We show how the sorting operation and memory requirements of

Siddon’s algorithm are modified to run on a GPU. Chapter 10 describes our muti-threaded
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implementation and the optimization techniques used to provide an efficient and fast re-

construction.

To conclude, Chapter 11 presents some numerical results to show the effectiveness and

computation time of our polyenergetic digital tomosynthesis reconstruction frameworks on

five real data sets taken of different phantom breast objects with known materials. Finally,

Chapter 12 provides some concluding remarks.

1.4 Contributions

The contributions of this work are as follows:

• We propose four physically accurate polyenergetic forward models for the image ac-

quisition process in digital tomosynthesis for breast cancer screening

1. The linear model for attenuation takes into account the attenuation proper-

ties of adipose and glandular tissue, the two materials that compose the majority

of the breast.

2. The quadratic model for attenuation extends the linear model for atten-

uation to include the presence of air and micro-calcifications inside the imaged

breast.

3. The linear model for multiple attenuating materials which improves the

previous two models by explicitly accounting for the presence of multiple ar-

bitrary materials inside the imaged object. Accounting for each attenuating

material independently allows for including more physical information about the

composition of the imaged object and gives the physician a visual and quantita-

tive representation of the type of tissue inside the breast. The flexibility of this

model allows us to extend of polyenergetic digital tomosynthesis reconstruction

framework to other objects or parts of the body.

4. The simplified linear model for multiple attenuating materials is a sim-

plified version of the linear model for multiple attenuating materials which as-

sumes the density of all modeled material is approximately the same. This model
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is less computationally intensive than the full model but still allows us to separate

the multiple materials inside the breast.

• We develop a robust framework to solve some nonlinear inverse problems of the form

b = K(x)ρ+ η

where b,x,ρ are vectors and K(x) is a large structured matrix defined by the set of

parameters x. This type of problem arises not only in digital tomosynthesis but also

in whole-body computed tomography and other medical imaging applications.

• We provide an efficient implementation of the iterative reconstruction framework that

takes advantage of the multi-threaded parallelism available in GPUs. The multi-

threaded implementation is written in OpenCL making it scalable to larger problem

sizes and portable to other architectures. The implementation is designed to increase

throughput, minimize storage requirements, and maximize the utilization of hardware

resources.

• We implement a very accurate and fast version of Siddon’s algorithm to compute a

raytrace in a GPU, allowing for large matrix vector multiplications to be done in

seconds.

• The software we present in this thesis runs a full clinical size reconstruction in under

five minutes, using a single core accelerated with a single GPU. The application frame-

work can easily be extended to multiple GPUs, which may be needed in the case of

several materials present inside the object or reconstructing a higher resolution volume

like those needed in CT scans.

• The contribution of this work to medical imaging and diagnostic radiology is a fast

reconstruction of the imaged breast based on a physically accurate polyenergetic x-ray

model. The reconstructed volume is beam artifact free with each voxel containing a

quantitative representation of the material present inside of it. A physically accurate

model of the imaging system coupled with our efficient reconstruction framework
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allows for a precise characterization of the imaged breast, giving the physician better

information to make a correct clinical diagnosis of the patient.
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Chapter 2

The Physics of X-ray Imaging and

Digital Tomosynthesis

The medical advantages of x-ray imaging were discovered in the late 1800s when Röntgen

successfully produced the first radiograph of his wife’s left hand, beginning a revolution

in non-invasive medicine and the diagnosis of fractures and lesions. Initially x-rays were

considered to be a special form of light that had three important properties [46]:

1. As an x-ray travels through an object, the intensity of the ray will be decreased

depending on the density of the material composition inside the object. This is called

attenuation.

2. An x-ray beam travels on a straight path.

3. X-rays have an opaquing effect on photographic film, which was initially used to

capture radiographs.

Although x-rays are useful in detecting contrast between very different attenuating mediums

(like bone and tissue), they are incapable of detecting differences between materials of

similar density (like adipose and glandular tissue). In addition, a single x-ray image has

the inherent limitation of projecting a three dimensional object onto a two dimensional

space, thus losing major volumetric information of the object. Technology advancements

like modern computing and development of scintillation detectors allowed Allan Cormack
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and Godfrey Hounsfield [89] to independently create a new imaging modality to overcome

the issues posed in x-ray imaging. This imaging technique, called x-ray tomography (or

slice imaging), collects multiple radiographic projections of the object at various incident

angles along a 360 degree range to reconstruct a 3D representation.

Digital tomosynthesis is a form of computed tomography (CT) that collects x-ray pro-

jections of the object along a limited range of incident angles and reconstructs a pseudo

3D representation of the object. Thus, in order to study the mathematical formulation of

the digital tomosynthesis reconstruction problem, it is important to understand the basic

physics that contribute to the image acquisition process which includes x-ray imaging and

tomography. In this chapter we cover the physical concepts of x-ray imaging, computed

tomography, and digital tomosynthesis. We begin by describing the basic atomic properties

of x-rays and the interaction of radiation with matter to produce radiographs. We also

discuss the properties of computed tomography imaging to provide a background for the

motivation of our reconstruction model in the coming chapters. Finally we describe the

details of digital tomosynthesis, sketching the geometry of the imaging systems as well as

the reconstructed output.

2.1 Producing a Radiograph

A single x-ray projection or radiograph, is produced by sending multiple x-ray beams of a

known energy through an object and measuring their intensity after they exit the object.

Originally, the exit intensity of the beam was detected by a sheet of photographic film

since the x-rays that penetrate the object attenuate and thus have a less of an opaquing

effect on the film than the x-rays not entering the object. The opaqued photographic film

is the radiograph [46]. Today, the film has been replaced by a digital detector which is

significantly more sensitive to the intensity of the exiting x-rays [20, 70, 28]. This section

describes the physics involved in the three stages of producing a single x-ray projection:

creating the x-ray beam, describing the interaction of an x-ray with matter, and measuring

the exit intensity of the beam using a digital detector.
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2.1.1 X-ray Production

An atom is the smallest particle that maintains the properties of an element. It is composed

of positively charged particles called protons, negatively charged particles called electrons,

and neutral charge particles called neutrons. Generally, atoms are electrically neutral be-

cause they have the same number of protons and electrons to balance positive and negative

charges. Structurally, the protons and neutrons are bound together in the nucleus of the

atom, while electrons constantly move along concentric spherical shells around the nucleus

accelerated by the attractive coulomb forces. These electron shells are classified by their

distance to the nucleus, the first (innermost) shell is called the K shell, the second shell

is the L shell, the third shell is the M shell and so on. There is a maximum number of

electrons that can occupy a given shell at all times. For example, the K shell can only hold

up to two electrons, the L shell can hold up to eight electrons and the M shell can hold up

to eighteen electrons. In reality this atomic structure can be much more complex as each

shell can be further divided and there is a limit to the number of electrons in the outermost

shell [20, 28], but for the purpose of the discussion at hand this high level overview suffices.

Each electron bound to an atom has a certain potential energy that determines the

amount of energy needed to free the electron from its shell. This potential energy is inversely

proportional to the distance of the electron from the nucleus, meaning that the electrons

in the K shell of an atom are the most tightly bound whereas the outermost shell electrons

require the least amount of energy to remove. The process of removing an electron from

an atom is called ionization and the minimum amount of energy necessary to unbind an

electron from an atom is called ionization energy which is measured in terms of electron

volts (eV ). An eV is the energy acquired by an electron accelerated through 1 V of potential

difference.

An x-ray is electromagnetic radiation with energy of 100 eV or more that has the ability

to ionize matter and penetrate substances. Electromagnetic radiation is energy emitted as

the result of interactions between charged particles, and it can propagate in the form of a

wave or a particle (called a photon). A photon is a pocket of energy and has no mass or

charge. There are different ways to produce x-rays: by electron transitions at the atomic
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level like in characteristic x-rays and Auger-electron emission, or by accelerating charged

particles to create photons as in the Bremsstrahlung “braking radiation” process.

Figure 2.1: X-ray emission at the atomic level: (a) Characteristic x-rays created by an
electron from a higher shell filling a vacancy in a lower shell. (b) Auger-electrons are
created when an outer shell electron fills an inner shell vacancy and the energy produced
by the transition ejects another electron from the atom.

Characteristic x-rays are emitted when an electron vacancy is created in an inner shell

and an electron from an outer shell transitions to fill the hole as shown in Figure 2.1 [28].

This type of x-ray is characteristic to each element, since the energy emitted depends on the

number of protons that make up the atom. An Auger-electron emission occurs similarly to

a characteristic x-ray but results in a double ionization of the atom (see Figure 2.1). When

there is an electron vacancy in an inner shell, an electron from an outer shell will transition

to fill the hole, but instead of the balance of energy being emitted as a characteristic x-ray

the energy is absorbed by another electron which is then ejected from the atom.

In diagnostic imaging, x-rays are produced as a result of the Bremsstrahlung process.

During the Bremsstrahlung process, an electron is accelerated towards the nucleus of a

target atom. While the electron is inside the positively charged electric field of the nucleus,

it will experience a sudden deceleration or loss of kinetic energy which is instantaneously

released in the form of radiation (see Figure 2.2 [20]). Hence the name Bremsstrahlung

which is German for “braking radiation”. Note that the energy that is emitted by a photon

produced during the Bremsstrahlung process can have any value up to the total kinetic
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Figure 2.2: The Bremsstrahlung radiation process. An accelerated electron enters the
positively charged electrical field of the nucleus and kinetic energy is transformed into an
x-ray.

energy of the accelerated electron. Therefore, when x-rays are produced by accelerating

multiple electrons inside an x-ray tube at the same time, the resulting x-ray beam will be a

continuous spectrum of energies (a polyenergetic x-ray beam) as opposed to a single energy

value (a monoenergetic x-ray beam). Figure 2.3 shows an example of the x-ray spectrum

of energies used for breast imaging.

2.1.2 Interaction Between X-rays and Matter

As shown in the previous section, a beam of x-rays produced by the Bremsstrahlung process

is made up of many photons that have different energy values which are expressed in terms of

a continuous spectrum distribution. Once an x-ray enters an object, a series of interactions

take place between the x-ray beam the matter composing the object that result in the

process attenuation. Attenuation is the removal of select photons from the x-ray beam.

The probability and type of interaction (absorption or scattering) that occurs to cause

attenuation depends on the material inside the object and the energy of the photon. We

measure the attenuation properties of a particular material at a given energy level by the

linear attenuation coefficient and the mass attenuation coefficient.

The linear attenuation coefficient describes how easy the material is penetrated by a

given energy, measuring the fraction of photons that are removed from a monochromatic
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Figure 2.3: The continuous spectrum of energies produced by the Bremsstrahlung process.

x-ray per unit of thickness. Hence, a large coefficient suggests that a monoenergetic x-ray

beam significantly weakens as it penetrates the material, whereas a small coefficient indicates

that the beam is barely altered while it interacts with the object. The linear attenuation

coefficient depends strongly on the energy of the incident photon and the nature of the

material including the density and atomic number. Therefore, a single material will have

a different linear attenuation coefficient for each energy level, usually expressed in units

of inverse centimeters (cm-1). Figure 2.4 shows the linear attenuation coefficients of skin,

adipose and glandular tissue, iodine, and micro-calcifications in the range of 10 keV to 200

keV. In general, the linear attenuation coefficients decrease as the energy increases, except

in the presence of an absorption edge (like in iodine).

The mass attenuation coefficient removes the dependence of the linear attenuation on

the density of the material by measuring how much the material attenuates the energy per

unit mass. In other words, it reflects the probability of interaction between the incident

photons and the atoms making up the material. There is a special relationship between the

linear and mass attenuation coefficient since the mass attenuation coefficient for a material

at a given energy level
(
µ
ρ

)
e

is defined as the linear attenuation coefficient µe normalized

to unit density ρ, or

µe =
µe
ρ

=

(
µ

ρ

)
e

. (2.1)
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Figure 2.4: Linear attenuation coefficients for some materials relevant in breast imaging

The mass attenuation coefficient is expressed in terms of units cm2/g. Figure 2.5 shows

the mass attenuation coefficients in the energy range 10keV to 50keV for glandular tissue,

adipose tissue, and micro-calcifications which are relevant materials in breast imaging.

Figure 2.5: Mass attenuation coefficients for some materials relevant in breast imaging

2.1.3 The Detector

After an x-ray beam is produced by the Bremsstrahlung process and it undergoes attenua-

tion by penetrating the imaged object, it arrives at the detector. The detector is some form

of plate that sits underneath the object and measures the intensity of the x-ray beams as

they exit the object. Early on, the detector was a sheet photographic film that was opaqued
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by the x-rays, more so by the rays not attenuated by the object. Today mostly digital detec-

tors are used in place of photographic film plates, particularly in mammographic screenings,

since they produce better image quality at lower radiation dosages [20]. A digital detector

produces an image where each pixel represents the intensity of energy measured at that

particular location. The energy intensity can be measured as a count or as an accumulation

of energy. The physics of imaging detectors is beyond the scope of this work, for reference

see [50, 28, 70, 20].

2.2 Computed Tomography

Computed tomography (CT) started to be clinically available in the early 1970s with the

advent of the modern computing era [20, 66]. This imaging modality revolutionized di-

agnostic medicine as it significantly reduced the practice of exploratory medicine. In CT,

multiple x-ray projections of an object are taken along a 360 degree rotation and are then

processed by a computer to produce tomographs of the patient. As opposed to standard

radiography, CT is capable of creating a 3D representation of the object, reduce the prob-

lem of superposition and differentiate between similar types of materials like glandular and

adipose tissue.

The problem of superposition in tomography is eliminated by obtaining different pro-

jections of an object along incident angles. Figure 2.6 shows an example of the limitation

Figure 2.6: A single x-ray projection of one or two objects is indistinguishable.

of taking an x-ray projection from one single angle. The left hand side image is that of
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one single object and the right hand side image shows the x-ray projection of two separate

objects. It is clear that both scenarios are very different in terms of size and position of

the object, however, the x-ray projection produced will be very similar and likely show the

presence of one single object. By taking an x-ray projection of the right hand side case at

an angle (like that shown in Figure 2.7) the two distinct objects will appear separately in

the x-ray image. We could rotate the x-ray tube along more angles, as in Figure 2.8, to

obtain more information about the distinct lesions inside the object.

Figure 2.7: Using an angled x-ray tube to acquire the x-ray projection of two objects allows
for distinction of individual lesions.

Figure 2.8: Multiple projections of an object obtained by a rotating x-ray source allow for
distinction of individual lesions.
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A modern CT scanner can capture 800 images of a patient along a 360 degree rotation

in about five seconds, to produce a representation of the inside of the human body in

terms of a stack of cross sectional images. This stack of images can be post-processed to

create a 3D representation of the object that allows the physician to detect the presence of

cancer, ruptured disks, aneurysms, and a variety of other pathologies [20]. The scheme for

a typical CT scan is shown in Figure 2.9 where the object (in this case the patient) lays

still while the x-ray tube and detector rotate simultaneously around it to obtain multiple

projections along different angles. The collected data is then processed by a reconstruction

Figure 2.9: Geometry of a CT scanner. Both x-ray source and detector rotate along 360
degrees about an object to obtain hundreds of projections.

algorithm in a computer to output the 3D volume used for diagnosis. The widespread

availability of scanners and the effectiveness of CT scans in diagnostic imaging has made

this imaging modality replace radiography in many instances. In the United States alone,

it is estimated that more than 60 million CT scans are performed annually. However, the

benefits of a CT scan come at the price of radiation exposure since the patient is subject to

significantly higher radiation levels than radiography by the multiple projections acquired

[18]. Radiation exposure is a growing problem in the United States where about half of all

the medical radiation exposure is due to CT scans [20]. Digital tomosynthesis can sometimes

be an alternative to CT scans that seeks to lower radiation exposure while still providing

an accurate depiction of the patient.
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2.3 Digital Tomosynthesis

Digital tomosynthesis is an imaging technique that maintains the benefits of a CT scan

but reduces the radiation exposure to the patient. It is used in cases where a full 3D

representation of the object is not absolutely necessary, like in breast cancer screening and

chest imaging [38]. In tomosynthesis, a form of what is called limited angle tomography,

multiple projections of the object are obtained along a smaller range of incident angles in

order to produce a pseudo 3D representation of the object. Whereas a full CT scan obtains

hundreds of projections along a 360 degree range to reconstruct a representation of the

object at an isotropic spatial resolution (a true 3D volume), digital tomosynthesis obtains

15-30 projections along a range of up to 45 degrees and reconstructs a representation of the

object at a much lower resolution in the z-direction (in depth direction that is perpendicular

to the projection plane labeled x-y). This smaller range of rotation allows for the collection

of data at enough incident angles to capture lesions of interest while requiring a smaller

radiation dosage.

There are different geometries of motion for the x-ray tube and detector in digital

tomosythesis imaging depending on the part of the body that is being imaged. For example

the parallel path geometry, where the source moves parallel to the detector, is mostly used

for chest and abdominal tomosynthesis imaging. Another example geometry used for cone-

beam CT is the complete isocentric motion geometry in which both the x-ray tube and the

detector rotate along the same arc. The last example is partial isocentric motion described

in Figure 2.8 where the x-ray tube rotates along an arc above the stationary detector. Most

breast tomosynthesis is done with partial isocentric motion geometry since the construction

of the imaging equipment is easier under these conditions [38]. In this thesis we focus on

reconstruction algorithms for the partial isocentric motion geometry but our work can be

extended in a straight forward manner to the complete isocentric motion and cone-beam

CT.

The imaging system for digital breast tomosynthesis is described in Figure 2.10 where

the x-ray tube rotates about a defined center of rotation along an arc perpendicular to the

detector. The center of rotation is located along the source to imager distance (sid) and
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Figure 2.10: Geometry of the digital tomosynthesis imaging system.

can sometimes be found in the plane of the detector. The object (or the breast in digital

breast tomosynthesis) sits stationary at a small distance above the detector, called the air

gap. The detector, which can be stationary or rotate with the x-ray source, captures the

images of the object at each incident angle and outputs the stack of projections that will

be inputed to a reconstruction algorithm in order to produce a pseudo 3D representation

of the object.

The geometry of the reconstructed pseudo 3D volume is shown in Figure 2.11. The

reconstruction is a stack of tomographs that represent the different planes inside the object.

Since digital tomosynthesis uses a limited rotation angular range, the resolution in the z-

direction (the number of tomographs in the stack) is significantly less than the resolution

of each individual tomograph. The slice thickness indicates the distance inside the object

that the tomographs represent, but for our case the pseudo 3D volume contains equidistant

tomographs.

This thesis focuses in the process of building a reconstructed pseudo 3D volume for
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Figure 2.11: Reconstructed pseudo 3D volume is a stack of slices (or tomographs).

digital breast tomosynthesis after the projection data has been acquired by an imaging

system with geometry similar to that shown in Figure 2.10. The process of reconstructing

the pseudo 3D volume is mathematically and computationally challenging since we deal with

millions of input pixels in order to produce a physically accurate reconstruction composed

of billions of voxels. Standard approaches to solve this large scale inverse problem have

relied in simplifying the physics of the image acquisition model by considering the x-ray

beam to be monoenergetic (as opposed to modeling it as a spectral distribution produced

by the Bremsstrahlung described in Section 2.1.1), thus decreasing the number of degrees of

freedom and the computational complexity of the solution. However, this approach has been

shown to introduce what is know as beam hardening artifacts to the reconstructed volume.

Beam hardening and standard mathematical approaches used reconstruct the pseudo 3D

volume are described in the next chapter.
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Chapter 3

The Mathematics of Digital

Tomosynthesis

As described in Section 1.2.3 a general inverse problem can be formulated as

b = K(xexact) + η (3.1)

where b is the observed measurement, K is a function that describes the forward process

applied to xexact to generate the measurements, and η represents any noise that may be

present in the observed data. In digital tomosynthesis we use this formulation of a general

inverse problem, where b represents the acquired projection data, K (also known as the

forward model) represents the mathematical model that estimates the physical process to

acquire the projection data b, xexact is the imaged object, and η represents any signal noise

affecting the projection data.

In order to solve this inverse problem, we first need to focus on developing a physically

accurate mathematical representation of the forward model K. This chapter serves as

an introduction to the forward models proposed for the digital tomosynthesis problem in

this thesis which are described in chapters four through seven. We begin by providing a

background for the statistical approach in our reconstruction process and introducing Beer’s

law, which is the basis of our forward models. We end the chapter by outlining the details

as well as shortcomings of standard approaches used to solve this problem, expanding on
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the concepts of the Radon transform and beam hardening.

3.1 Modeling the Source-Detector Interaction

In the reconstruction framework we propose for the digital tomosynthesis problem in the

following chapters, we assume that the interaction between the source and the detector can

be modeled as a statistical distribution. In this section, we provide the motivation for this

assumption.

As noted in the previous chapter, an x-ray projection is produced by emitting a number

of photons of a certain energy from a source (the x-ray tube) as a beam that travels through

the imaged object and lands on a specific pixel (or group of pixels) in the detector. The

projection image is given by the energy measured at each pixel in the detector. Since the

source emits a finite quantity of photons, statistically we can represent the source as a

Poisson distribution with intensity λ̄ [46, 48] . Therefore, if the source emits N photons,

then N is a random variable with probability distribution

Ps(k = N) =
λ̄Ne−λ̄

N !
. (3.2)

In addition, because an incident photon will either be counted or not counted by a

receiving pixel, we can represent each pixel in the detector as a Bernoulli variable. If all

pixels in the detector are calibrated the same, we can describe the detector as a group of

independent Bernoulli variables with probability 0 ≤ p ≤ 1 of the photon being counted.

Then we have that the probability of a single pixel counting k photons given that N photons

arrive is given by a conditional probability distribution that can be expressed as

Pd(k|N) =


(
N
k

)
pk(1− p)N−k k = 0, 1, ..., N

0 k > N
(3.3)

To find the probability of a pixel in the detector observing k photons, we use the defi-

nition of conditional probability and the two probability distributions described above. By
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multiplying both distributions we have

Po(d = k) =
∞∑
N=k

Ps(N)Pd(k|N)

=
∞∑
N=k

λ̄Ne−λ̄

N !

(
N

k

)
pk(1− p)N−k

=e−λ̄
∞∑
N=k

1

k!(N − k)!
(λ̄p)k(λ̄(1− p))N−k

=
(λ̄p)k

k!
e−λ̄eλ̄(1−p)

=
(λ̄p)k

k!
e−λ̄p

which is a Poisson distribution with mean λ̄p. This shows that we can model the vari-

able that represents the number of photons counted by each pixel in the detector as the

realization of Poisson random variable with mean related to the intensity of the source and

the probability of detection. Moreover, the photon count for each individual pixel in the

detector is independent from other pixels in the detector. This shows why in medical imag-

ing, it is standard to model measurements due to x-ray transmission and photon counts as

independently distributed Poisson random variables [32, 48, 119]. In the next section we in-

troduce Beer’s law in order to determine the expected value λ̄p for the Poisson distribution

we use in our reconstruction algorithms.

3.2 Beer’s Law

Beer’s Law, also called the Beer-Lambert Law, describes the relationship between the at-

tenuation of an x-ray beam and the concentration of attenuating material inside a medium

through which the x-ray travels. In other words, it describes how the intensity of an x-ray

is altered by traveling through an object. The law can be described in simple terms as an

ordinary differential equation. In one dimension (see Figure 3.1), consider an x-ray beam

of intensity I(`) with initial intensity Iin traveling through an attenuating material from

point a to point b. If the attenuating material is divided into infinitesimal slices of size d`,
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we can express the difference in the intensity of the x-ray after crossing a single slice, called

Figure 3.1: Beer’s Law in one dimension. The x-ray passes through a cross-sectional area
of length d` and loses a fraction of intensity that depends on the attenuating medium.

dI(`), as a fraction of the intensity entering the slice, represented by µI(`), multiplied by

the length of the slice d`. Note that µ, which is the fraction of the intensity of the x-ray

left after it crosses each infinitesimal slice, depends on the linear attenuation coefficient of

the material. Thus we have the ordinary differential equation

dI(`) = −µI(`)d`. (3.4)

Similarly, in three dimensions we can describe Beer’s law by assuming that the x-ray travels

in a straight line L that is given parametrically in the form

L = {x0 + `v : ` ∈ R} (3.5)

where ||v||2 = 1,v ∈ R3 [46]. If we let the function I(x) represent the x-ray flux at the

point x ∈ R3, then we can represent i(`) = I(x0 + `v) as the intensity of the x-ray along the

parametric line. Additionally, if we know the linear attenuation coefficient of the material

at each point along the path of the x-ray beam by the function µ(x), we can express

m(`) = µ(x0 + `v). By Equation (3.4), we can set up the relationship

d

d`
[i(`)] = −m(`)i(`)

which is equivalent to

d

d`
log(i(`)) = −m(`). (3.6)
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Integrating Equation (3.6) along the x-ray path from ` = a to ` = b we have

log

 i(b)

i(a)

 = −
∫ b

a
m(`)d` (3.7)

and thus we obtain a more common expression of Beer’s law

i(b) = i(a) exp

[
−
∫ b

a
m(`)d`

]
, (3.8)

which says that the exit intensity of an x-ray beam traveling through an attenuating medium

is given by the product of the initial intensity of the x-ray and the exponential of the line

integral of the linear attenuation function along the path of the beam. The intensity of the

x-ray beam is measured in units of eV/(`×cm2). It is important to note that the derivation

of Beer’s law shows that attenuation is an isotropic process– the path of the x-ray beam has

no influence on the level of attenuation as the direction vector v was chosen to be arbitrary.

Note that according to Beer’s law in Equation (3.8), in order to estimate the exit inten-

sity of the x-ray beam i(b), we need to know the initial intensity of the x-ray beam i(a).

If we are modeling a monoenergetic (also called monochromatic) x-ray, which is an x-ray

made up of photons of one energy or “color”, the initial intensity of the beam will be a

single known value. However, as described in section 2.1.1, the x-rays used in diagnostic

imaging are a result of the Bremsstrahlung process which produces a polyenergetic beam,

one consisting of photons of multiple energies described in terms of a spectral distribution

function s(e) (see Figure 2.3). In this case, we can say that the intensity of the x-ray beam

given by the photons of energy e is s(e)de [46]. Moreover, if e1 and e2 are neighboring

energy values, then the intensity of the beam given by photons that have energies within

the interval [e1, e2] is found by ∫ e2

e1

s(e)de.

If we are modeling the interaction of a polyenergetic x-ray with the object, we need

to take into account the fact that the attenuation of the material will be different for

each photon energy in the beam. This means that at a given point inside the object, the
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attenuation function depends on both the path of the x-ray and the energy of the photons

that interact with the matter at that point. Then, we can measure the exit intensity of

a polyenergetic x-ray Ψ as an extension of Beer’s law by measuring the the total energy

output at the source with
∫∞

0 s(e)de and writing the new attenuation function µ(x0 +`v, e).

This gives

Ψ =

∫ ∞
0

s(e) exp

[
−
∫
L
µ(x0 + `v, e)dL

]
de (3.9)

where L represents the path that the beam travels and µ represents the attenuation of the

material along the path.

Equation (3.9) is the general form of the forward problem for digital tomosyntheis

imaging. In terms of the nonlinear inverse problem shown in Equation (3.1), the measured

data b is given by Ψ, our imaged object xexact is represented in terms of its attenuation

properties µ, and the forward model K(µ) is the full nonlinear integral equation. Our aim

in the reconstruction process is to solve for µ in Equation (3.9) which is a very hard problem

to solve given the nonlinearity on the unknown. In the remainder of this chapter and this

thesis we will develop the mathematical and computational framework to solve this integral

equation without simplifying its formulation.

3.3 The Radon Transform

Equations (3.8) and (3.9) describe the intensity of a single monoenergetic or polyenergetic

x-ray as it penetrates the object. However, in the image acquisition process for digital

tomosynthesis, each projection is obtained by sending multiple x-rays to travel through the

object at once. We can combine the formulation of Beer’s law for all the different x-ray

beams into one single expression, identifying each x-ray by the pair θ, t. To do this, we begin

by linearizing the formulation of Beer’s law for a monoenergetic x-ray in Equation (3.7),

letting Φt,θ represent the left-hand side of the equation for each ray. In order to generalize

the right-hand side of Equation (3.7), we expand the representation of our parametric line

L to the set of all oriented lines in the space R2 by constructing the orthogonal unit vectors

ω(θ) = (sin(θ), cos(θ)) , ω̂(θ) = (− cos(θ), sin(θ))
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to express

Lθ,t = {tω + sω̂ : s ∈ R}

where t is the distance of the oriented line to the origin. Therefore, we can model Beer’s

law for all monoenergetic x-rays penetrating the object by

Φt,θ = −
∫
Lt,θ

µ(tω + sω̂) dLt,θ.

If we denote the function

Rµ(t, θ) = Φt,θ

for t1 < t < t2 and θ1 < θ < θ2, then the forward model for the acquisition of one projection

in digital tomosynthesis using a monoeregetic x-ray is given by the set of line integrals

Rµ(t, θ) = −
∫
Lt,θ

µ(tω + sω̂) dLt,θ. (3.10)

which is by definition the Radon transform of the function µ [46]. Figure 3.2 shows the

Radon transform of the famous Shepp-Logan phantom which is a standard phantom used in

tomography [71, 84]. The transform was computed using the radon routine in MATLAB R©.

The object is considered two dimensional and each each column of the right-hand side image

Figure 3.2: Radon transform of Shepp-Logan phantom

represents a one dimensional projection of the phantom.
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We have shown that each projection of an object obtained in tomography using a mo-

noenergetic source can be modeled as the Radon transform of the function representing the

attenuation of the materials composing the object. The reconstruction problem in this case

is much easier to solve in terms of the well developed mathematical theory of the Radon

transform. However, it is important to note that the assumption of a monoenergetic x-

ray for clinical situations is far from the true image acquisition described in the previous

chapter. Simplifying the polyenergetic x-ray in Equation (3.9) to the monoeregetic case

of Equation (3.8) makes for an easier mathematical solution but it comes at the price of

artifacts in the reconstruction as will be discussed later in this chapter.

3.4 Standard Reconstruction Methods

3.4.1 Backprojection

If the Radon transform represents the forward model for an x-ray projection in the monochro-

matic case, we can attempt to solve the reconstruction problem by finding the inverse or

an approximation of the inverse of the Radon transform. The easiest approximation to the

inverse is the process called backprojection in which the attenuation function µ is recon-

structed by averaging the projection data over all the lines that pass through a given point.

Figure 3.3 shows the idea of backprojection in simple terms, where the lines represent each

individual x-ray beam [20]. The projection data A, B, C, and D is the linear sum of the

attenuation of each box that an individual x-ray crosses– the discretized line integral. If we

are trying to find the value corresponding to the attenuation of a single box, we can trace

back all rays that traveled through the box and determine the value by looking at the pro-

jection data of all these rays. That is, we fix a point x in the object and we “backproject”

all the x-rays that passed through the point.

In terms of the Radon transform, we can consider the set of all lines

Lθ,t = {tω + sω̂ : s ∈ R}

of a fixed the direction ω, and the line that passes through the point x is given by the inner
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Figure 3.3: Example of a simple backprojecion. A, B, C, D represent the projection
data and the 3×3 boxes in the center of the image represent the unknown attenuation
coefficients of each unit in the discretized object. The attenuation is measured as integers
for the purpose of explanation. The goal of a backprojection is to reconstruct the numbers
in the 3×3 boxes given the projection data [20].

product t = 〈x,ω(θ)〉 [46]. The value of the attenuation at point x is the average, given by

the backprojection formula

µ̃(x) =
1

2π

∫ 2π

0
Rµ(t, θ)dθ. (3.11)

The backprojection operation applied to the Radon transform of the Shepp-Logan phantom

in Figure 3.2 is shown in Figure 3.4. The reconstruction was done using the unfiltered

iradon routine in MATLAB R©. Note that this is not a very good reconstruction of the

Figure 3.4: Backprojection of Shepp-Logan phantom
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phantom because it is corrupted by some type blur. The backprojection formula alone is

not accurate enough for reconstructions in tomography, but it can be refined or filtered to

produce excellent results. In fact, filtered backprojection is the standard reconstruction

technique for computed tomography and digital tomosynthesis in modern imaging devices.

3.4.2 Filtered Backprojection

In filtered backprojection the Radon transform is altered or filtered in some fashion to

smooth the components of the function that produce the blur in a regular backprojection.

The type of filter used depends on the scanner geometry and the properties of the problem.

Mathematically, the process of filtered backprojection is an analytical inversion of the Radon

transform that uses the Fourier transform. The relationship between these two integral

transforms is expressed by the central slice theorem.

Theorem 3.4.1. (Central slice theorem) Let µ be an absolutely integrable function in the

domain of R. For any real number r and unit vector ω, we have the identity

∫ ∞
−∞
Rµ(t,ω)e−itrdt = µ̂(rω)

where µ̂(rω) is the Fourier trasnform of µ(x). For proof of the theorem see [46].

In order to simplify notation, let R̃µ(r,ω) = µ̂(rω). If we use polar coordinates to

express the Fourier inversion formula we have

µ(x) =
1

[2π]2

∫ 2π

0

∫ ∞
−∞

µ̂(rω)eir〈x,ω〉rdrdω.

By Theorem 3.4.1 and since the Radon transform is an even function we can say that

R̃µ(r,ω) = R̃µ(−r,−ω) and, furthermore that

µ(x) =
1

[2π]2

∫ π

0

∫ ∞
−∞
R̃µ(r,ω)|r|eir〈x,ω〉drdω. (3.12)

The expression for the attenuation function µ(x) in Equation (3.12) suggests that we

can express filtered backprojection operation as a two step process.
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1. The first step is the application of a filter to the Radon transform that acts on the

parameter t whose output is

GRµ(x) =
1

2π

∫ ∞
−∞
R̃µ(r,ω)|r|eir〈x,ω〉dr (3.13)

which is the inner integral of Equation (3.12).

2. The second step is the backprojection formula in Equation (3.11) applied to the filtered

Radon transform in Equation (3.13) as

µ(x) =
1

2π

∫ π

0
GRµ(〈x,ω〉 ,ω)dω (3.14)

which is the radial integral in Equation (3.13).

Figure 3.5 shows the result of a filtered backprojection reconstruction of the Shepp-Logan

phantom using a cropped Ram-Lak filter (also called ramp filter). By filtering the backpro-

Figure 3.5: Filtered backprojection of Shepp-Logan phantom

jection, the blur that corrupted the reconstruction in Figure 3.5 has disappeared. Much work

has been done in the development and implementation of filter functions for the tomography

reconstruction problem, for more details see [46, 87, 66]. However, as in backprojection, we

are assuming that the x-rays used to obtain each projection are monoeregetic, since we use

the Radon transform to model the image acquisition process.
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3.4.3 Maximum Likelihood Estimation Maximization Method (MLEM)

The MLEM method provides a statistical based reconstruction approach that eliminates the

systematic biases introduced to the projection data by the logarithm operation in filtered

backprojection (Equation (3.7)). The idea in MLEM to use the actual measured data, i(a)

and i(b) in Equation (3.7), in the forward model as opposed to the logarithm of their ratio.

Using the raw data is preferential, especially in low-count scans which are more sensitive

to the biases introduced by the nonlinearity of the logarithm function [48, 19]. In addition,

using a statistical method is a more reasonable approach to solve the reconstruction problem

given the possibility of noise in the acquired projections (see Section 1.2).

To build the MLEM reconstruction framework, let s̄i be the average number of photons

that the detector would read for the ith x-ray in the absence of an attenuating object. Then

by Beer’s law we have that the intensity for x-ray i at the detector is

bi = s̄i exp

[∫
L
µ(x0 + `v)dL

]

where L is the path of the ray and µ represents the attenuation of the object. In the

medical imaging community, it is standard practice to model the measurements obtained

by x-ray transmission as independently distributed Poisson random variables with additive

noise [48, 46, 87, 66]. The additive noise variable accounts for background effects such as

scattering and has known statistical properties. If the variable yi denotes the number of

photons for x-ray i measured at the detector, we can write its expected value using Beer’s

law by

E[yi] = s̄i exp

[∫
L
µ(x)dL

]
+ ηi (3.15)

where ηi represents additive noise. To discretize the model, we can write the attenuation

function µ in terms of the voxel basis (pixel basis in 2D) χj(x), where χj(x) = 1 inside

voxel j and zero elsewhere. This allows us to write the integral

∫
L
µ(x)dL =

Nv∑
j=1

aijµj
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where Nv is the number of voxels, µj is the attenuation of voxel j, and aij represents the

length of the x-ray beam traveling through voxel j. If we organize all values aij in the

raytrace matrix A, we have yi ∼ Poisson(ȳ(µtrue)) where

ȳi(µ) = s̄i exp
(
− [Aµ]i

)
+ ηi

and the value

[Aµ]i =

Nv∑
j=1

aijµj .

Knowing the probability distribution for the projection measurements, we can use the

theory of maximum likelihood estimation to find the reconstructed volume. For the Poisson

variable yi we have the likelihood function

p(y;µ) =

Np∏
i=1

exp(−ȳi(µ))[ȳi(µ)]y
i

yi!

and its respective negative log-likelihood function

L(y;µ) = − log(p(y;µ)) =

Np∑
i=1

[
ȳi(µ)− yi log[ȳi(µ)] + log

(
yi!
)]
.

The reconstructed volume using the MLEM method is the vector µMLE that solves the

numerical optimization problem

µMLE = min
µ>0
{L(y;µ)} .

This numerical optimization problem can be solved using a myriad of numerical algorithms

available.

Formulating the reconstruction problem in MLEM as a numerical optimization problem

gives much more flexibility in the reconstruction than filtered backprojection. For MLEM

methods we can incorporate things like regularization, additional constraints, and penalty

functions to the reconstruction process in order to refine the solution volume. However, just

like filtered backprojection, the MLEM approach makes an initial assumption that the pro-



48

jection data is obtained using monoenergetic x-rays. As described in the previous chapter,

this assumption is not realistic when x-rays are produced using the Bremsstrahlung radia-

tion process. The consequences of this assumption are artifacts caused by beam hardening

which is discussed at the end of this chapter.

3.4.4 Algebraic Reconstruction Techniques (ART)

A class of iterative approaches to compute a reconstruction from projection data is called

algebraic reconstruction techniques (ART). This class of techniques is based on variations

of Kaczmarz’s method (or method of projections) in numerical linear algebra. ARTs can

be a good alternative to filtered backprojection in tomography reconstructions since they

can incorporate relaxation parameters in order to control the effects of inconsistent data

and the presence of noise in the projections. This section briefly describes how ARTs and

iterative methods can be applied to tomography reconstructions, for further details see

[66, 87, 56, 46].

The idea in ARTs is to express the image acquisition process in tomography and digital

tomosynthesis as a linear system that can be solved iteratively. If we assume a monoen-

ergetic x-ray, the image acquisition process is described in terms of a linear relationship

between the observed data and the unknown attenuation function by the Radon transform

in Equation (3.10). In order to build the linear system, we must choose a set of basis

functions for the problem. In ARTs, the basis of choice is the pixel basis because it is rela-

tively easy to compute and allows for a straight forward discretization of the line integrals

in Equation (3.10). If the observed data at pixel i for a projection at incident angle θ is

denoted bi,θ and the unknown attenuation of voxel j in the object is denoted by µj , then

linear system is given by

bθ = −Aθµ

where the ith row of Aθ is called aθi and represents a vector whose entry aθi,j is the length

of the intersection of the x-ray beam at incident angle θ with voxel j that contributed (or

“landed”) on pixel i. That is, the inner product of row i of matrix Aθ and attenuation

vector µ is the discretization of a line integral in the Radon transform. If we are dealing
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with Nθ projections, we can write the right-hand side vector and the linear operator as

b =


b1

...

bNθ

 and A =


A1

...

ANθ

 .

Using the expanded linear system set-up above, we apply ARTs method to the system

b = −Aµ.

ARTs are a good alternative to filtered backprojection reconstructions because of the many

variations that exist and the freedom they provide in choosing a set of basis functions [66].

This means that the reconstruction is not necessarily directly related to the inversion of

the Radon transform [46]. Also, they can accommodate complicated beam profiles in the

construction of the linear operator. However, the measurement matrix in ARTs can become

very large for clinical size problems and computing or storing its entries becomes a challenge.

Furthermore, similarly to filtered backprojection and MLEM, the only way to linearize the

digital tomosynthesis model from Beer’s law is by assuming a monoenergetic x-ray, which

has its consequences as described in the next section.

3.5 Beam Hardening

The standard methods for the computed tomography and the digital tomosyntheis recon-

struction problem described in the previous section make a very strong initial assumption:

the projection data is produced using monoenergetic x-rays. If we have a monoenergetic

forward model for the image acquisition process, then the problem simplifies from Equation

(3.9) to Equation (3.7) and we can study the reconstruction process in terms of integral

transforms using well known analytical tools. However, while reasonably sound, this as-

sumption is far from the true physics of the image acquisition process (see Section 2.1.1)

and can lead to errors in the form of artifacts in the computed solution.

Recall that in diagnostic imaging, x-ray beams are a result of the Bremsstrahlung pro-
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cess, which produces x-rays composed of photons of different energies expressed in terms of

a spectral distribution function (see Figure 2.3). In reality, as a polyenergetic x-ray beam

penetrates the imaged object, lower energy photons are preferentially absorbed by the mat-

ter, causing a shift in the spectral distribution function. This effect is called beam hardening

and is shown in Figure 3.6. Here we see that the spectrum of energies in the beam that

Figure 3.6: Beam hardening in terms of energy intensity. The entrance intensity of the
spectrum is higher than the exit intensity. Low energy photons are absorbed by the object,
thus changing the average energy of the beam. Mean energy at entrance is 16.8keV and
mean energy at exit is 21.5keV.

enters the object is very different from the spectrum of energies that exits the object and

that the mean value of the x-ray beam is changed. This is the reason why the attenuation

of a particular material is dependent both on its atomic properties and the energy of the

x-ray since lower energy x-rays change more (or disappear) as they penetrate.

Modern x-ray machines can account for beam hardening by using certain filters, adding

certain material to the beam, or post-processing the results [20, 46, 72], but the recon-

struction can still suffer from beam hardening artifacts which are artifacts caused by this

effect [19]. Beam hardening artifacts are dark streaks or dark cupping-like shadows around

lesions of interest like those shown in Figures 3.7(a) and 3.7(c). The left-hand side recon-

structions where done using a filtered backprojection algorithm and the right-hand side

reconstructions were done using the polyenergetic reconstruction methods proposed in this

thesis. Figure 3.7 shows that the real benefit of a polyenergetic reconstruction that directly
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(a) Filtered backprojection
with beam hardening artifact

(b) Polyenergetic reconstruc-
tion with no beam hardening
artifact

(c) Filtered backprojec-
tion with beam hardening
artifacts around each feature

(d) Polyenergetic reconstruc-
tion with no beam hardening
artifacts

Figure 3.7: Examples of beam hardening artifacts. Figures 3.7(a) and 3.7(c) show beam
hardening artifacts in the form of shadow-like objects cupping the features reconstructed
using a filtered backprojection method. Figures 3.7(b) and 3.7(d) show a reconstruction of
the same features using the polyenergetic methods described in this thesis with no beam
hardening artifacts.

solves the digital tomosynthesis problem using Equation (3.9) is a physically accurate and

artifact-free depiction of the patient. In the next four chapters we develop the theory of

four different forward models for the polyenergetic digital tomosynthesis problem and the

framework to produce clean and accurate reconstructions for breast cancer diagnosis.
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Chapter 4

The Linear Polyenergetic Model

for Attenuation

In 2010 Chung, Nagy, and Sechopoulos proposed a mathematical model for digital breast

tomosynthesis reconstruction that explicitly accounts for the polyenergetic nature of the

x-ray beam [32]. In their work, they showed it is possible to produce digital tomosythesis

reconstructions that are free of beam artifacts using the polyenergetic formulation of Beer’s

law in Equation (3.9). Their idea was to decompose the attenuation function in the for-

ward projection model in terms of the percentage of each material composing the breast.

This way they were able to reconstruct the breast in terms of the glandular fractions (the

percentage of glandular tissue inside each voxel), as opposed to the standard approaches

of Section 3.4 which reconstruct the breast in terms of density values. Using glandular

fractions, they were able to describe the unknown attenuation function by a given struc-

ture, solve the polyenergetic reconstruction problem, and derive a physically meaningful

quantitative measure for each voxel in the resulting volume. In this chapter we describe the

reconstruction framework described in [32] as a basis for the models described in the next

chapters.
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4.1 Building the Forward Model

In the single material model Chung, Nagy and Sechopoulus began by considering each voxel

in the discretized volume to be composed of only two materials: adipose tissue wj,1 and

glandular tissue wj,2. Therefore, for a given energy e, the linear attenuation of voxel j in

the discretized volume can then be expressed as a sum of the product of the amount of each

material present in the voxel and the respective linear attenuation of the material. That is

µe,j = ue,1wj,1 + ue,2wj,2 (4.1)

where ue,1, ue,2 are the linear attenuation coefficients for adipose and glandular tissue at

energy level e [12], and the values wj,1 and wj,2 contain the percentage of each material

present in the voxel j. By assumption each voxel j is composed of only two materials, so

we can say that

wj,1 + wj,2 = 1

or, the composition of adipose and glandular tissue add up to 100% of the composition of

voxel j. Without loss of generality, the adipose variable wj,1 can be eliminated by writing

wj,1 = 1−wj,2

which results in the new linear attenuation model for voxel j

µe,j = [ue,2 − ue,1]wj,2 + ue,1 (4.2)

Equation (4.2) models the attenuation of each voxel j for energy level e, where ue,1, ue,2

are known linear fit coefficients that depend on the particular energy level e and the lin-

ear attenuation coefficients of adipose and glandular tissue. The vector w:,2 is called the

glandular fraction because it contains the percentage of glandular tissue present inside the

breast. To formulate the reconstruction problem as a nonlinear inverse problem, we be-

gin by building the forward model using the attenuation function for the object developed

in Equation (4.2) and applying Beer’s law. From Equation (3.9), Beer’s law for a single
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polyenergetic x-ray i is given by

Ψi =

∫ ∞
0

s(e) exp

[
−
∫
L
µ(x, e)dL

]
de.

This integral equation can be discretized by dividing the object into Nv voxels and using

a finite number of levels of energy to approximate the spectral distribution function. The

discrete formulation of Beer’s law for a polyenergetic x-ray is then given by

bi =

Ne∑
e=1

se exp

− Nv∑
j=1

aijµe,j

 (4.3)

where Ne represents the number of discrete levels of energy in the x-ray beam, µe,j is the

attenuation of voxel j for energy level e, and aij represents the length of the x-ray beam

traveling through voxel j. Using Equation (4.2) we have that the monochromatic x-ray for

pixel i is

Nv∑
j=1

µe,ja
ij =[ue,2 − ue,1]

Nv∑
j=1

aijwj,2 + ue,1

Nv∑
j=1

aij

=[ue,2 − ue,1]ai: •wj,: + ue,1a
i: • 1

where the symbol • denotes a dot product operation and 1 is a column vector of ones of

length Nv. Note that the scalars aij can be organized for the given projection angle θ into

the matrix Aθ, and the row vector ai,:θ will represent the i-th row of the matrix. The forward

model for pixel i in the projection taken at incident angle θ is represented as

biθ =

Ne∑
e=1

se exp
(
−[(ue,2 − ue,1)ai:θ •w:,2 + ue,1a

i:
θ • 1]

)
(4.4)

where the scalar se is the value of the spectral distribution function at energy e, representing

the number of incident photons at that energy (called the energy fluence). Using matrix

notation to simplify the model, the entire projection acquired at incident angle θ is

bθ =

Ne∑
e=1

se exp (−[(ue,2 − ue,1)Aθw:,2 + ue,1Aθ1]) (4.5)
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Equation (4.5) is the discrete forward model for a single incident angle for the polyenergetic

image acquisition process in digital tomosynthesis.

4.2 Statistical Considerations

As discussed in Section 3.1 the source-detector interaction in digital tomosynthesis can be

modeled as a Bernoulli random variable (the detector) receiving a Poisson random variable

as “input” (the source). This allows us to model the variable representing the energy

measured by each pixel in the detector as a Poisson random variable. In the medical

imaging community this is standard practice, modeling the measurements obtained by x-

ray transmission as independently distributed Poisson random variables with additive noise.

Given the forward model in Equation (4.4), the expected value of the measured data for

pixel i at angle θ is

E(biθ,w:,2) =

Ne∑
e=1

se exp
(
−[(ue,2 − ue,1)ai:θ •w:,2 + ue,1a

i:
θ • 1]

)
+ η̄i

where η̄i represents error in the observed data that is attributed to noise or scatter. This

error is also assumed to follow a Poisson distribution whose statistical mean is known or

can be approximated.

This means that each pixel i in the observed projection data at incident angle θ is a

realization of the Poisson random variable

biθ ∼ Poisson(b̄iθ + η̄θ).

Using the theory of maximum likelihood estimation, we can say that the probability of ob-

serving the projection data bθ given the volume w:,2 represented in terms of its attenuation,

is modeled by the likelihood function

p(bθ,w:,2) =

Np∏
i=1

e−(b
i
θ+ηi)(b

i
θ + ηi)b

i
θ

biθ!
(4.6)

for all projections θ = 1, ..., Nθ, where Np represents the total number of pixels in the de-
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tector. Therefore, in order to find the volume that has the highest probability of having

produced the observed projection data, we need to find the vector w:,2 that maximizes

Equation (4.6). In other words, we want the maximizer of this likelihood function because

it will give us the vector of glandular fractions w:,2 that most likely produced the projec-

tions bθ measured by the detector. This vector will be the reconstructed breast in digital

tomosynthesis.

4.3 The Iterative Reconstruction Framework

During the reconstruction process we are trying to find the vector of glandular fractions w:,2

that maximizes the likelihood function in Equation (4.6). However, in numerical optimiza-

tion it is more common to find the minimizer of a function so we transform the likelihood

function into a negative log-likelihood function and find its minimum. Finding the vector

w:,2 that maximizes this likelihood function is equivalent to minimizing the log-likelihood

function

−L(bθ,w:,2) = − log(p(bθ,w:,2)).

Here we have that

−L(bθ,w:,2) =

Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄θ) + c (4.7)

where biθ is the observed data at pixel i for projection θ, c is a constant, and by the previous

section

b̄iθ + η̄i =

Ne∑
e=1

se exp
(
−[(ue,2 − ue,1)ai:θ •w:,2 + ue,1a

i:
θ • 1]

)
+ η̄i. (4.8)

Using the negative log-likelihood function the reconstruction problem is now a numerical

optimization problem formulated as

wMLE = arg min
w:,2

{
Nθ∑
θ=1

−L(bθ,w:,2)

}
. (4.9)

Many iterative methods exist to find wMLE above, but Chung, Nagy and Sechopoulos

proposed using a gradient descent algorithm or a Newton approach as described in Section
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1.2. The authors chose these methods because they can handle the nonlinearity of the

unknown, the possibility of having a non-convex cost function, and the presence of noise.

Also, gradient descent methods or Newton approaches allow the user to incorporate regu-

larization to suppress the noise in the data (see Chapter 1). In the case of a non-convex

cost function, Chung, Nagy and Sechopoulos show analytically that the if the matrix Aθ is

full rank, and the inequality

bi − (b̄iθ + η̄i) ≤
mine(ue,2 − ue,1)

maxe(ue,2 − ue,1)

 biθ

b̄iθ + η̄i

 b̄iθ

is satisfied for all i then their proposed polyenergetic cost function is convex with respect

to the glandular fractions w:,2.

4.3.1 Gradient Descent

The gradient descent iteration is given by

w(k+1) = w(k) − αk∇L(bθ,w
(k)
:,2 ) (4.10)

where the scalar αk is the step length for each iteration k and the step direction

∇L(bθ,w
(k)
:,2 ) =

∂

∂wj,2

(
−L(bθ,w

(k)
:,2 )
)

is the derivative of the cost function evaluated at the current iterate. For the given negative

log-likelihood function in Equation (4.7), we can calculate the derivative as

∂

∂wj,2

(
−L(bθ,w

(k)
:,2 )
)

=

Np∑
i=1

1−
biθ

b̄iθ + η̄i

 ∂b̄i

∂wj,2
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where
∂b̄i

∂wj,2
is the derivative of Equation (4.8)

∂b̄iθ

∂wj,2
= −aijθ

Ne∑
e=1

se(ue,2 − ue,1) exp
(
−[(ue,2 − ue,1)ai: •w:,2 + ue,1a

i: • 1]
)
. (4.11)

Using matrix notation, we can write the function ∇L(bθ,w
(k)
:,2 ) by a matrix vector product

∇L(bθ,w
(k)
:,2 ) = ATθ v

(k)
θ (4.12)

where the matrix Aθ contains all the scalars aijθ (called the raytrace operator) and each

entry i of the vector v
(k)
θ is given by

v
(k)
θ (i) =

 biθ

b
i
θ + ηi

− 1

 Ne∑
e=1

se(ue,2 − ue,1) exp(−[(ue,2 − ue,1)Aθw
(k)
:,2 + ue,1Aθ1]).

Note that the exponential operator in the equation above is applied entry-wise. The product

of the transpose raytracing matrix ATθ with a vector is called backprojection and it is the

discrete form of a type of the backprojection reconstruction described in section 3.4.

4.3.2 Newton Approach

Chung, Nagy and Sechopoulos also proposed a Newton type approach to find wMLE in

Equation (4.9). In numerical optimization Newton type methods, introduced in section

1.2, are known to converge much faster to the solution than gradient descent methods.

However, their implementation is expensive in terms of memory and computation, since we

must construct the Hessian of the cost function (or its approximation) and an inner linear

solver is required to find the step direction. In addition, Newton methods can be more

sensitive to noise in the data. In their paper Chung et al show that the Hessian of the cost

function for the proposed polyenergetic model can be approximated by a product of the

raytrace matrix Aθ and its transpose with a diagonal matrix. In addition, they overcome

the sensitivity to noise in the data by employing regularization on the form of terminating
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the iterations early (see Section 1.2). A Newton iteration takes the form

w(k+1) = w(k) + αks
(k) (4.13)

where the scalar αk is the step length for each iteration k and the step direction is given by

the vector s(k). In this Newton approach the step direction is found as the solution to the

linear system

Hθ(w
(k))s(k) = −∇L(bθ,w

(k)
:,2 ) (4.14)

where Hθ(w
(k)) is the Hessian matrix of the cost function, and ∇L(bθ,w

(k)
:.2 ) the gradient

of the cost function, both evaluated at the k-th iterate. Therefore, each entry of the matrix

Hθ(w
(k)) is given by

hj`θ =
∂

∂w`,2

 ∂

∂wj,2
(−L(bθ,w

(k)
:,2 ))

 =
∂

∂w`,2

 Np∑
i=1

1−
biθ

b̄iθ + η̄i

 ∂b̄iθ

∂wj,2


which can be simplified to

hj`θ =

Np∑
i=1


1−

biθ

b̄iθ + η̄i

 ∂

∂w`,2

 ∂b̄iθ

∂wj,2

+
∂

∂w`,2

1−
biθ

b̄iθ + η̄i

 ∂b̄iθ

∂wj,2

 . (4.15)

The first term can be expanded using the second derivative
∂

∂w`,2

(
∂b̄iθ
∂wj,2

)
of Equation (4.11)

which is

∂

∂w`,2

 ∂b̄iθ

∂wj,2

 = ai`θ a
ij
θ

Ne∑
e=1

se(ue,2−ue,1)2 exp(−[(ue,2−ue,1)ai:θ ·w:,2 +ue,1a
i:
θ ·1]). (4.16)

The second term can be expanded using Equation (4.11) to obtain

∂b̄iθ

∂wj,2

∂

∂w`,2

1−
biθ

b̄iθ + η̄i

 =
∂b̄iθ

∂wj,2

−biθ
∂

∂w`,2

 1

b̄iθ + η̄i
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=
∂b̄iθ

∂wj,2


biθ

(b̄iθ + η̄i)2

∂b̄i

∂w`,2


=

biθ

(b̄iθ + η̄i)2

∂b̄iθ

∂wj,2

∂b̄iθ

∂w`,2

which is equivalent to

aijθ a
i`
θ biθ

(b̄iθ + η̄i)2

(
Ne∑
e=1

se(ue,2 − ue,1) exp(−[(ue,2 − ue,1)ai: •w:,2 + ue,1a
i: • 1])

)2

. (4.17)

By Equation (4.16) and Equation (4.17), the (j, `) entry of the Hessian Hθ(w
(k)) of the

cost function evaluated at w(k) is

hj`θ =

Np∑
i=1

ai`θ a
ij
θ

1−
biθ

b̄iθ + η̄i

 Ne∑
e=1

se(ue,2 − ue,1)2 exp(−[(ue,2 − ue,1)ai:θ ·w
(k)
:,2 + ue,1a

i:
θ · 1])

+ ai`θ a
ij
θ

biθ

(b̄iθ + η̄i)2

(
Ne∑
e=1

se(ue,2 − ue,1) exp(−[(ue,2 − ue,1)ai:θ ·w
(k)
:,2 + ue,1a

i:
θ · 1])

)2

To simplify notation, consider writing each entry of Hθ(w
(k)) as the sum

hj`θ =

Np∑
i=1

ai`θ a
ij
θ ω

j
θ (4.18)

with the aijθ being the entries of the raytracing matrix Aθ and the jth entry of the vector

ω as

ω
(k)
θ (j) =

1−
biθ

b̄iθ + η̄i

 Ne∑
e=1

se(ue,2 − ue,1)2 exp(−[(ue,2 − ue,1)ai: •w
(k)
:,2 + ue,1a

i: • 1])

+
biθ

(b̄iθ + η̄i)2

(
Ne∑
e=1

se(ue,2 − ue,1) exp(−[(ue,2 − ue,1)ai: •w
(k)
:,2 + ue,1a

i: • 1])

)2

.
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This leads to expressing the Hessian matrix of the cost function by

Hθ(w
(k)) = ATθ Ω

(k)
θ Aθ (4.19)

where Ω
(k)
θ is a diagonal matrix whose entries are the entries in vector ω. By expressing the

Hessian matrix Hθ(w
(k)) in this form, we can compute the step direction sk for the Newton

method in Equation (4.14) by solving the linear system

ATθ Ω
(k)
θ Aθsk = −∇L(bθ,w

(k)
:,2 ). (4.20)

which is the normal equation formulation of the least squares problem

min
sk
||W

1
2
k Aθs

(k) −W−
1
2

k v(k)k||22 (4.21)

with Wk = Ω
(k)
θ and v(k) = ∇L(bθ,w

(k)
:,2 ). If the entries of matrix Wk are positive, this linear

system can be solved using a conjugate gradient least squares method at each iteration.

4.4 Summary

In this chapter we have introduced the basic reconstruction framework for the polyener-

getic digital tomosynthesis problem proposed by Chung, Nagy and Sechopoulos in [32]. By

incorporating the polyenergetic nature of the x-ray beam directly into the forward prob-

lem, this approach produces reconstructions that significantly reduce the presence of beam

artifacts and provide a physically meaningful measure of the attenuation of the volume.

The aim of this thesis is to expand this model by developing a functional implementation

of the reconstruction framework that works for clinical data and incorporates additional

arbitrary materials in the model of the object. We would like to use of this polyenergetic

reconstruction framework in a clinical setting for breast cancer diagnosis and extend the

polyenergetic digital tomosynthesis reconstruction method to other objects and parts of the

human body. In the next three chapters we describe an improvement to this linear model

for attenuation that accounts for the presence of more than two materials inside the breast.
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Chapter 5

The Quadratic Polyenergetic

Model for Attenuation

In the previous chapter we described a linear model for attenuation in digital tomosynthesis

in breast imaging that uses glandular fractions to reconstruct the unknown volume. The

forward model in this reconstruction framework assumes the breast is composed of only

glandular and adipose tissue and explicitly accounts for one while it implicitly accounts

for the other. This representation of the breast falls short in a clinical setting, because in

reality, the breast is composed of more materials like skin, micro-calcifications, and air. In

order to create a physically accurate representation of the breast we need to modify the

linear model for attenuation to include the attenuating properties of additional materials

that can not be accounted by the percent glandular fraction.

In this chapter we present a forward model for the digital tomosynthesis reconstruction

problem that accounts for the presence of air and micro-calcifications in the imaged breast

in addition to glandular and adipose tissue. We do this by developing a quadratic fit for

the attenuation function that expands linear attenuation model from the previous chapter.

This new forward model allows us to generate digital tomosynthesis reconstructions of the

complete region imaged by the detector, not just the inside of the breast. This way we can

use the quadratic model for attenuation to reconstruct clinical data sets. The work in the

theory and implementation of the model described in this chapter was done in collaboration
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with Dr. Julianne Chung at Virginia Tech.

5.1 Building the Forward Model

5.1.1 Finding a Quadratic Fit

From Equation (4.2) in the previous chapter, we have that for a given energy level e, the

attenuation of voxel j is given as the linear function

µe,j = [ue,2 − ue,1]wj,2 + ue,1

where ue,1 and ue,2 are the known linear attenuation coefficients of adipose and glandular

tissue respectively and the value wj,2 is the glandular fraction (percentage of glandular

tissue) inside voxel j. In reality, the imaged breast may contain micro-calcifications, which

are calcium deposits inside the breast tissue. These features are important to include in

our model, as their patterns can sometime signal breast cancer [85]. In addition, we would

like to account for the presence of air surrounding the imaged breast.

To expand the attenuation function, we would like to build a quadratic representation of

the attenuation function µe,j that is almost linear in some range [x̂, x̂+ 100], where xj = x̂

represents a voxel is only composed of adipose tissue and xj = x̂ + 100 represents a voxel

that is composed of 100% glandular tissue. The attenuation for voxel j at energy level e

can be represented as the function

µ(e,xj) = αex
2
j + βexj + γe.

Our goal is to find the constants αe, βe, and γe that allow us to satisfy the following criteria:

• If xj = 0 we want the voxel attenuation to be equal to the attenuation of air, that is:

µ(e, 0) = γ(e) = µair(e).
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• If the voxel is composed of all adipose tissue, then

µ(e, x̂) = αex̂
2 + βex̂+ γe

which according to the linear model is

µ(e, x̂) = αex̂
2 + βex̂+ γe = [ue,2 − ue,1] · 0 + ue,1 = ue,1.

• If the voxel is composed of all glandular tissue, then the attenuation of the voxel is

µ(e, x̂+ 100) = αe[x̂+ 100]2 + βe[x̂+ 100] + γe

which according to the linear model is

µ(e, x̂+ 100) = αe[x̂+ 100]2 + βe[x̂+ 100] + γe = [ue,2 − ue,1] · 1 + ue,1 = ue,2.

• We want the quadratic model to be linear in the range between points (x̂, µ(e, x̂))

and (x̂ + 100, µ(e, x̂ + 100)). This means that at the midpoint of this interval, given

by (x̂+ 50, µ(e, x̂+ 50)), the derivative is constant and equal to the derivative of the

linear model. That is,

µ′(e, x̂+ 50) = 2αe[x̂+ 50] + βe = ue,2 − ue,1.

These conditions introduce a linear system for each energy level e given by



0 0 1

x̂2 x̂ 1

(x̂+ 100)2 x̂+ 100 1

2(x̂+ 50) 1 0




αe

βe

γe

 =



µair

ue,1

ue,2

ue,2 − ue,1


. (5.1)

We can solve for αe, βe, and γe to obtain the attenuation function at each energy level e.
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5.1.2 Finding an Improved Quadratic Fit

The quadratic fit developed in the previous section is a good approach to include air and

micro-calcifications in the attenuation model, but the polynomial developed can be too

general and not approximate the linear model sufficiently well. In this section, we build on

the principles of the previous quadratic fit and include additional constraints to improve

the model. We want to optimize our choice of nodes to create the polynomial fit to have

a better handle on how close the quadratic polynomial resembles the original linear model

for attenuation.

The idea in extending the linear attenuation model to a quadratic attenuation model is

to express the attenuation of voxel j for energy level e as a polynomial of the form

µe,j = αex
2
j + βexj + γe (5.2)

where the variable xj is now a transformation of the percent glandular fraction value wj

of the voxel. In this case, we let the value wj = 1 ( which means the voxel is composed

of 100% glandular tissue) be equivalent to xj = xgland. Here, the value xgland represents

the value of 100% glandular tissue in a new range, as opposed to the previous fit where

xgland = x̂+ 100.

Assume that we know the values in this new range for xair, xcalc, xadip, and xgland. Then,

using the quadratic fit of Equation (5.2) , the value reconstructed for each voxel j in the

volume is inside the interval xj ∈ [xair, xcalc], noting that the special values of xadip, and

xgland fall within this interval. The conditions we will use to develop this new quadratic fit

are as follows:

• The quadratic polynomial is positive inside the interval xj ∈ [xair, xcalc] in order to

guarantee monotonicity.

• If the voxel in question is composed of air, then we have the condition that the

quadratic polynomial in Equation (5.2) at xair is equal to the value of the linear

attenuation of air. That is, if jair is the index of a voxel composed of 100% air we
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have

µ(e, jair) = αex
2
air + βexair + γe = µair(e).

• If the voxel in question is composed of adipose tissue, then we want to have the

quadratic polynomial at the voxel be equal to the attenuation of adipose tissue. That

is, if jadip is the index of a voxel composed of 100% adipose tissue we have

µ(e, jadip) = αex
2
adip + βexadip + γe = µadipose(e).

By the linear model, we have µadipose(e) = ue,1.

• Similarly, if the voxel in question is composed of glandular tissue and jgland is it’s

voxel index, then

µ(e, jgland) = αex
2
gland + βexgland + γe = µglandular(e).

In this case, if the voxel is composed of 100% glandular tissue, then by the linear

model for attenuation we have

µglandular(e) = [ue,2 − ue,1] · 1 + ue,1 = ue,2.

Putting these conditions together we have nonlinear separable optimization problem, where

we want to find the values of xair, xadip, and xgland and the values α(e), β(e), γ(e) for all

energies e = 1 : Ne.

To set up the nonlinear separable inverse problem, begin by constructing the vector of

unknowns

x̄ =


xair

xadip

xgland

 ,
which are the same for all energy levels e, and constructing the matrix of unknown fit
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coefficients

F =


α1 α2 ... αNe

β1 β2 ... βNe

γ1 γ2 ... γNe

 ,
with each column being the set of fit coefficients for each energy level. The known data for

each energy level can be organized as columns of a matrix, like

B =


µair(e1) µair(e2) ... µair(eNe)

u1,1 u2,1 ... uNe,1

u1,2 u2,2 ... uNe,2

 .

If we define the Vandermonde matrix X as

X(x̄) =


x2
air xair 1

x2
adip xadip 1

x2
gland xgland 1

 ,

then for each energy e we have the linear system

X(x̄)F(:, e) = B(:, e) (5.3)

which is a nonlinear separable inverse problem (see Section 1.2).

To develop the quadratic fit, we need to solve the linear system in Equation (5.3) for

all energies e. As described in Section 1.2, we can solve this nonlinear separable inverse

problem by solving the least squares problem given by

min
x̄,F
||B−X(x̄)F||22

where x̄ and F are our unknown. If B = X(x̄)F, then we can write F = X−1(x̄)B and solve
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the equivalent optimization problem

min
x̄

∣∣∣∣B−X(x̄)X−1(x̄)B
∣∣∣∣2

2

s.t. C(x̄)F > 0

(5.4)

where the constrain matrix is C(x̄) guarantees that the quadratic polynomial and its first

derivative are positive. The matrix C(x̄) given as

C(x̄) =



x2
air xair 1

x2
adip xadip 1

x2
gland xgland 1

2xair 1 0

2xadip 1 0

2xgland 1 0


.

Once the solution x̄ is obtained from the least squares problem, the values for matrix F are

recovered by F = X−1(x̄)B where the inverse of the Vandermonde matrix X is

X−1(x̄) =


1

(xair−xadip)(xair−xgland)
−1

(xair−xadip)(xadip−xgland)
1

(xair−xgland)(xadip−xgland)

−(xadip+xgland)
(xair−xadip)(xair−xgland)

xair+xgland
(xair−xadip)(xadip−xgland)

xair+xadip
(xair−xgland)(xgland−xadip)

xadipxgland
(xair−xadip)(xair−xgland)

−xadipxgland
(xair−xadip)(xadip−xgland)

xairxadip
(xair−xgland)(xadip−xgland)

 .

Finally, to determine the value for xcalc we use the quadratic formula to obtain

µcalc(e) = αe[xcalc(e)]
2 + βexcalc(e) + γe

xcalc(e) =
− βe ±

√
β2
e − 4αe(γe − µcalc(e))

2αe

xcalc =meanexcalc(e).

Note that under this quadratic fit, the object will be reconstructed in terms of the

variable xj which is a transformation of the glandular fractions wj,2 ∈ [0, 1]. To convert

from the new units of the reconstructed volume to the original glandular fractions we use
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the transformation

wj =
xj − xadip

xgland − xadip
. (5.5)

5.1.3 The Forward Projection Model

The forward model using a quadratic attenuation function differs slightly from the linear

model described in the previous chapter. Mainly, in the quadratic case we are reconstructing

an unknown vector x whose entries are the linear transformation of the percent glandular

fractions w:,2 described in Equation (5.5). Hence, in the quadratic model reconstruction

framework, we have an additional step to recover the values w:,2 from the solution x.

To begin building the forward model we use the discrete formulation of Beer’s law for a

polyenergetic x-ray given in the previous chapter by

bi =

Ne∑
e=1

se exp

− Nv∑
j=1

aijµe,j

 .
As before, in this equation Ne is the number of discrete levels of energy in the x-ray beam,

Nv is the number of voxels in the object, µe,j is the attenuation of voxel j for energy level

e, aij represents the length of the x-ray beam traveling through voxel j, and se is the value

of the spectral distribution function at energy e. Using Equation (5.2) we have that the the

monochromatic ray for pixel i at incident angle θ is

Nv∑
j=1

µe,ja
ij
θ =

Nv∑
j=1

[αex
2
j + βexj + γe]a

ij
θ

=αe

Nv∑
j=1

aijθ x2
j + βe

Nv∑
j=1

aijθ xj + γe

Nv∑
j=1

aijθ

=αea
i:
θ • x2 + βea

i:
θ • x + γea

i:
θ • 1

where ai:θ is the ith row of the raytrace matrix Aθ, 1 is a column vector of ones of length

Nv, and the fit coefficients αe, βe, γe are determined by the process outlined in the previous

section. Note that the exponent x2 is applied entry-wise. Applying Beer’s law gives the
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value of pixel i for the projection taken at angle θ as

biθ =

Ne∑
e=1

se exp
(
−[αea

i:
θ • x2 + βea

i:
θ • x + γea

i:
θ • 1]

)
where the exponential operation is applied entry-wise. Using matrix notation the entire

projection acquired at incident angle θ is given by

bθ =

Ne∑
e=1

se exp
(
−[αeAθx

2 + βeAθx + γeAθ1]
)
. (5.6)

Equation (5.6) is the forward model for incident angle θ in the digital tomosynthesis recon-

struction problem using the quadratic model for attenuation.

5.2 Statistical Considerations

Similar to the reconstruction model for linear attenuation, we model the variable represent-

ing the energy measured by each pixel in the detector as a Poisson random variable with

additional noise. This is standard practice in the imaging community where modeling the

measurements obtained by x-ray transmission as independently distributed Poisson random

variables with additive noise. Refer to section 3.1 to see how the source-detector interaction

in digital tomosynthesis can be modeled as a Bernoulli random variable (the detector) re-

ceiving a Poisson random variable as “input” (the source). Hence, given the forward model

in Equation (5.6), the expected value of the measured data for pixel i at angle θ is

E(biθ,x) =

Ne∑
e=1

se exp
[
−
(
αea

i:
θ • x2 + βea

i:
θ • x + γea

i:
θ • 1

)]
+ η̄i

where ai:θ is the i-th row of Aθ and η̄i represents the additive noise. This noise is generally

due to scatter and is also assumed to follow a Poisson distribution whose statistical mean

is known or can be approximated. This means that each pixel of the obtained data is a

realization of the Poisson random variable

biθ ∼ Poisson(b̄iθ + η̄i)
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Using the theory of maximum likelihood estimation, we have that the probability of

observing image bθ for all θ given the volume x where Np represents the total number of

pixels in the detector is determined by the likelihood function

p(bθ,x) =

Np∏
i=1

e−(bθ+ηi)(bθ + ηi)b
i
θ

biθ!
. (5.7)

Maximizing the likelihood function above, will result in the value of x that has the highest

probability of having produced projection bθ. As in the previous chapter, the goal of the

reconstruction process is to find the value x that maximizes Equation (5.7).

5.3 The Iterative Reconstruction Framework

The goal of the reconstruction process is to iteratively solve for the vector of x that maxi-

mizes the likelihood function in Equation (5.7). This vector is our reconstructed volume in

terms of a transformation of the percent glandular fractions. However, in numerical opti-

mization it is more common to find the minimizer rather than the maximizer of a function.

Therefore, we can transform the problem of maximizing Equation (5.7) is to minimizing

the negative log-likelihood function

−L(bθ,x) = − log(p(bθ,x)).

Here we have that the function

−L(bθ,x) =

Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄i) + c (5.8)

where bθ is the observed data for projection θ, the scalar c is a constant, and b̄iθ + η̄i is the

expected value of the pixel i in the projection given in the previous section as

b̄iθ + η̄i =

Ne∑
e=1

se exp
[
−
(
αea

i:
θ • x2 + βea

i:
θ • x + γea

i:
θ • 1

)]
+ η̄i. (5.9)
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The reconstruction problem for digital tomosynthesis can now be expressed as the numerical

optimization problem

xMLE = arg min
x

{
Nθ∑
θ=1

−L(bθ,x)

}
. (5.10)

To solve the optimization problem above, we will follow the same approach that Chung,

Nagy, and Sechopoulos proposed in [32] to reconstruct the unknown volume using the the

linear model for attenuation. We will describe a gradient descent algorithm and a Newton

approach with a line search to solve this problem since these methods can deal with the

nonlinearity of the function, the possibility of having a non-convex cost function, and the

presence of noise. Using a gradient descent method or a Newton approach also allows for

incorporating regularization to limit the effect of noise in the data to the solution.

5.3.1 Gradient Descent

The gradient descent iteration represents a line search method that moves along the direc-

tion of the negative derivative at every step. Choosing the descent direction in this method

to be the negative derivative of the function is natural, since it is the direction of which the

function decreases most rapidly. To show this, using Taylor’s theorem we have the function

expansion of the cost function L(bθ,x
(k) + αs(k)) for any vector s(k) and parameter α is

L(bθ,x
(k) + αs(k)) = L(bθ,x

(k)) + α[s(k)]T∇L(bθ,x
(k)) +O(α2).

When the direction s(k) is a descent direction, the angle between the vector s(k) and the

gradient ∇L(bθ,x
(k)) (denoted Θ(k)) has a negative value of cosine. Therefore

[s(k)]T∇L(bθ,x
(k)) = ||[s(k)|| ||∇L(bθ,x

(k))|| cos Θ(k) < 0

and thus we have that

L(bθ,x
(k) + αs(k)) < L(bθ,x

(k)).

If we let s(k) = ∇L(bθ,x
(k)), then cos(Θ(k)) = −1 is the minimum it can be, and thus we

have the most decrease (see [90, 37] for further details on the gradient descent method). We
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choose to solve the problem in Equation (5.10) using a gradient descent method because

of the size of the problem and the computational intensity of higher derivatives of the cost

function L(bθ,x
(k)) (see section 5.3.2) .

The gradient descent iteration has the form

x(k+1) = x(k) − αk∇L(bθ,x
(k)) (5.11)

where αk is the step length for each iteration k and the step direction

∇L(bθ,x
(k)) =

∂

∂xj

(
−L(bθ,x

(k))
)

is the derivative of the cost function evaluated at the current iterate. For the given negative

log-likelihood function in Equation (5.10), we can calculate the derivative as

∂

∂xj

(
−L(bθ,x

(k))
)

=
∂

∂xj

 Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄i) + c


=

Np∑
i=1

(
1−

biθ
b̄iθ + η̄i

)
∂(b̄i + η̄i)

∂xj

where
∂(b̄i + η̄i)

∂xj
is the derivative of the expected value in Equation (5.9), given by

∂b̄iθ + η̄i

∂xj
= −aijθ

Ne∑
e=1

se[2αexj + βe] exp
(
−(αea

i:
θ • x2 + βea

i:
θ • x + γea

i:
θ • 1)

)
. (5.12)

Using matrix notation we can express the gradient ∇L(bθ,x
(k)) as

∇L(bθ,x
(k)) = 2x(k) · ×(ATθ v(k)) +ATθ y(k) (5.13)

where the matrix Aθ is the raytracing matrix, x(k) is the current iterate x(k) with the

operation ·× being an entry-wise multipliction, and the vectors v(k),y(k) are given by

v(k)(i) =

(
biθ

b̄iθ + η̄i
− 1

) Ne∑
e=1

seαe exp
(
−
[
αea

i:
θ • [x(k)]2 + βea

i:
θ • x(k) + γea

i:
θ • 1

])
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y(k)(i) =

(
biθ

b̄iθ + η̄i
− 1

) Ne∑
e=1

seβe exp
(
−
[
αea

i:
θ • [x(k)]2 + βea

i:
θ • x(k) + γea

i:
θ • 1

])
.

To solve Equation (5.10) using a gradient descent method, the framework is as follows

Algorithm 5.3.4 Gradient Descent Algorithm For the Quadratic Attenuation Model

1: Find αe, βe, γe as a separable nonlinear inverse problem using the lease squares formu-

lation in Equation (5.4)

2: Choose the initial volume x(0)

3: for k = 1, 2, ... until converge do

4: Compute the vectors v(k) and y(k) for all θ

5: Find the step direction for all θ using ∇L(bθ,x
(k)) = 2X(k)ATθ v(k) +ATθ y(k)

6: Determine the step length αk

7: Update the solution x(k+1) = x(k) − αk∇L(bθ,x
(k))

8: if
∑Nθ

θ=1 L(bθ,x
(k)) >

∑Nθ
θ=1 L(bθ,x

(k−1)) then

9: Refine parameter αk; no sufficient descent

10: end if

11: end for

In this method regularization is enforced by early termination, as later iterates begin to

be corrupted by noise (see section 1.1). For digital breast tomosynthesis reconstructions,

only a few iterations of gradient descent are needed (less than twenty in most cases). There

is currently no automated convergence criteria, convergence is determined once the relative

value of the function stagnates. For more details see Chapter 11.

5.3.2 Newton Approach

We are also interested in developing a Newton method for the reconstruction process using

the quadratic model for attenuation. Newton methods are sometimes preferred to a gradient

descent approach because they are known to converge much faster to the solution. However,

implementing a Newton method is expensive in terms of computation and storage because

they require building the Hessian of the cost function and inner linear solver to find the

step direction. In addition, Newton methods are more sensitive to noise in the data. In this
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section we find an analytical representation of the Hessian of the cost function and reduce

the computation requirements by expressing it as a product of Aθ, A
T
θ and some simple

matrices.

The Newton approach described in this work is a line search method that moves along

the Newton direction for every iteration (see [90, 37] for further details). The Newton

direction is derived from the quadratic term of the Taylor approximation of the cost function

L(bθ,x
(k)). If we approximate the cost function L(biθ,x

(k) + αs(k)) for any vector s(k) and

parameter α by its Taylor expansion, we have

L(bθ,x
(k) +αs(k)) = L(bθ,x

(k)) +α[s(k)]T∇L(bθ,x
(k)) +α[s(k)]T∇2L(bθ,x

(k))s(k) +O(α3).

Define the function m(s(k)) = L(bθ,x
(k))+α[s(k)]T∇L(bθ,x

(k))+α[s(k)]T∇2L(bθ,x
(k))s(k).

If the term ∇2L(bθ,x
(k)) is positive definite, then the vector s(k) that minimizes m(s(k)) is

given by

s(k) = ∇2L−1(bθ,x
(k))∇L(bθ,x

(k))

and this is the Newton search direction. If ∇2L(bθ,x
(k)) is positive definite we have that

∇L(bθ,x
(k))T s(k) < 0 and thus s(k) is a descent direction where we find that

L(bθ,x
(k) + αs(k)) < L(bθ,x

(k)),

or in other words, the cost function decreases along the direction of the vector s(k).

For our problem, a Newton iteration takes the form

x(k+1) = x(k) + αks
(k) (5.14)

where αk is the step length and s(k) is the step direction given by the solution to the linear

system

Hθ(x
(k))s(k) = −∇L(bθ,x

(k)) (5.15)

where Hθ(x
(k)) is the Hessian matrix of the cost function and ∇L(bθ,x

(k)) is the gradient

of the cost function both evaluated at the k-th iterate. Therefore, we can write each entry
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(j, `) of the matrix Hθ(x
(k)) as

hj`θ =
∂

∂x`

(
∂

∂xj
(−L(bθ,x

(k)))

)
=

∂

∂xj

 Np∑
i=1

(
1−

biθ
b̄iθ + η̄i

)
∂b̄iθ
∂xj


which expands to the expression

hj`θ =

Np∑
i=1


(

1−
biθ

b̄iθ + η̄i

) ∂

∂x`

(
∂b̄iθ
∂xj

)
+
∂b̄iθ
∂xj

∂

∂x`

1−
biθ

b̄iθ + η̄i


 . (5.16)

In order to expand the first term in Equation (5.16) we need to compute
∂2(b̄iθ + η̄i)

∂x`∂xj
.

Using Equation (5.12) we have

∂2(b̄iθ + η̄i)

∂x`∂xj
=

∂

∂x`

(
−aijθ

Ne∑
e=1

2seαexj exp
(
−
[
αea

i:
θ · [x(k)]2 + βea

i:
θ · x(k) + γea

i:
θ · 1

]))

+
∂

∂x`

(
−aijθ

Ne∑
e=1

seβe exp
(
−
[
αea

i:
θ • [x(k)]2 + βea

i:
θ • x(k) + γea

i:
θ • 1

]))
.

If we let

Mθ,i(x
(k), e) = αea

i:
θ • [x(k)]2 + βea

i:
θ • x(k) + γea

i:
θ • 1

to simplify notation, then the equation above expands to

∂2(b̄iθ + η̄i)

∂x`∂xj
=4aijθ a

i`
θ xjx`

Ne∑
e=1

seα
2
e exp

(
−Mθ,i(x

(k), e)
)

+ 2aijθ a
i`
θ [xj + x`]

Ne∑
e=1

seαeβe exp
(
−Mθ,i(x

(k), e)
)

+ aijθ a
i`
θ

Ne∑
e=1

seβ
2
e exp

(
−Mθ,i(x

(k), e))
)
.

(5.17)

To compute the second portion of each entry hj` in the Hessian we write the second term

in Equation (5.16) as

∂(b̄iθ + η̄i)

∂xj

∂

∂x`

(
1−

biθ
b̄iθ + η̄i

)
=

biθ
(b̄iθ + η̄i)2

∂(b̄i + η̄)

∂xj

∂(b̄i + η̄i)

∂x`
. (5.18)
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Using Equations (5.12), (5.17), and (5.18) we can then write the (j, `) entry of the Hessian

matrix Hθ(x
(k)) as

hj`θ =

Np∑
i=1

4aijθ a
i`
θ xjx`

(
1−

biθ
b̄iθ + η̄i

) Ne∑
e=1

seα
2
e exp

(
−Mθ,i(x

(k), e)
)

+

Np∑
i=1

2aijθ a
i`
θ [xj + x`]

(
1−

biθ
b̄iθ + η̄i

) Ne∑
e=1

seαeβe exp
(
−Mθ,i(x

(k), e)
)

+

Np∑
i=1

aijθ a
i`
θ

(
1−

biθ
b̄iθ + η̄i

) Ne∑
e=1

seβ
2
e exp

(
−Mθ,i(x

(k), e)
)

+

Np∑
i=1

aijθ a
i`
θ biθ

(b̄iθ + η̄i)2

[
Ne∑
e=1

seβe exp
(
−Mθ,i(x

(k), e)
)]2

+

Np∑
i=1

4aijθ a
i`
θ biθ

(b̄iθ + η̄i)2
xjx`

[
Ne∑
e=1

seαe exp
(
−Mθ,i(x

(k), e)
)]2

+

Np∑
i=1

2(aijθ a
i`
θ )2biθ

(b̄iθ + η̄i)2
xj

[
Ne∑
e=1

seαe exp
(
−Mθ,i(x

(k), e)
)][ Ne∑

e=1

seβe exp
(
−Mθ,i(x

(k), e)
)]

+

Np∑
i=1

2aijθ a
i`
θ biθ

(b̄iθ + η̄i)2
x`

[
Ne∑
e=1

seαe exp
(
−Mθ,i(x

(k), e)
)][ Ne∑

e=1

seβe exp
(
−Mθ,i(x

(k), e)
)]

.

To express the Hessian matrix Hθ(x
(k)) in terms of the raytracing matrix Aθ, consider

denoting the vectors

di =

(
1−

biθ
b̄iθ + η̄i

) Ne∑
e=1

seα
2
e exp

(
−Mθ,i(x

(k), e)
)

+
biθ

(b̄iθ + η̄i)2

[
Ne∑
e=1

seαe exp
(
−Mθ,i(x

(k), e)
)]2

,

pi =

(
1−

biθ
b̄iθ + η̄i

) Ne∑
e=1

seαeβe exp
(
−Mθ,i(x

(k), e)
)

+
biθ

(b̄iθ + η̄i)2

[
Ne∑
e=1

seαe exp
(
−Mθ,i(x

(k), e)
)][ Ne∑

e=1

seβe exp
(
−Mθ,i(x

(k), e)
)]
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and

qi =

(
1−

biθ
b̄iθ + η̄i

) Ne∑
e=1

ρ(e)β2
e exp

(
−Mθ,i(x

(k), e)
)

+
biθ

(b̄iθ + η̄i)2

[
Ne∑
e=1

seβe exp
(
−Mθ,i(x

(k), e)
)]2

.

Then we can express the entry hj`θ as

hj`θ = 4x
(k)
j x

(k)
`

Np∑
i=1

aijθ a
i`
θ d(k) + 2(x

(k)
j + x

(k)
` )

Np∑
i=1

aijθ a
i`
θ p(k) +

Np∑
i=1

aijθ a
i`
θ q(k).

Then if the matrix Hθ(x
(k)) is symmetric positive definite, we can find the step direction

at each iteration for the Newton method s(k) by solving the linear system

Hθ(x
(k))s(k) = −∇L(bθ,x

(k)).

To solve Equation (5.10) using a Newton method, the framework is as follows

Algorithm 5.3.5 Newton Method Algorithm For the Quadratic Attenuation Model

1: Find αe, βe, γe as a separable nonlinear inverse problem using the lease squares formu-

lation in Equation (5.4)

2: Choose the initial volume x0

3: for k = 1, 2, ... until converge do

4: Compute the vectors v(k) and y(k) for all θ

5: Find the gradient using ∇L(bθ,x
(k)) = 2X(k)ATθ v(k) +ATθ y(k) using Equation (4.19)

6: Compute vectors d(k),p(k),q(k) to build the Hessian Hθ(x
(k))

7: Find the step direction s(k) by solving the linear system Hθ(x
(k))s(k) = −∇L(bθ,x

(k))

8: Determine the step length αk

9: Update the solution x(k+1) = x(k) − αks(k)

10: if
∑Nθ

θ=1 L(bθ,x
(k)) >

∑Nθ
θ=1 L(bθ,x

(k−1)) then

11: Refine parameter αk; no sufficient descent

12: end if
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13: end for

As in the gradient descent approach, in the Newton method we use regularization by

early termination since the later iterates begin to be corrupted by noise as is the case for

ill-posed problems (see Section 1.1). For digital breast tomosynthesis reconstructions, the

Newton method requires only a few iterations (less than ten in most cases) and the number

of inner iterations depends on the conditioning of the Hessian matrix. There is currently

no automated convergence criteria, convergence is determined once the relative value of the

function stagnates.

5.4 Summary

In this chapter we have expanded the reconstruction method proposed in [32] to account

for the presence of air and micro-calcifications in the reconstructed breast. This extension

allows their polyenergetic approach to reconstruct large clinical data sets. However, this

quadratic approach is still limited in terms of the number and type of materials used in

the forward model, and, in addition, fitting a quadratic polynomial to the linear model

for attenuation introduces numerical errors to the reconstructions (shown in Chapter 11).

In the next chapter, we address the limitations of the quadratic model for attenuation

by developing a new attenuation model that allows for an arbitrary number and type of

attenuating materials inside the object. Using arbitrary materials creates a more flexible

model that can be used for polyenergetic digital tomosynthesis reconstructions of objects

other than the breast.
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Chapter 6

The Polyenergetic Model for the

Attenuation of Multiple Materials

In the previous two chapters we have formulated the digital tomosynthesis reconstruction

problem for breast cancer screening as a nonlinear ill-posed inverse problem, where the

goal is to approximate the true volume from the given set of projection images. From the

discussion of Chapters 2 and 3, we have established that it is important to take into account

the polyenergetic nature of the x-ray source in the forward model in order to eliminate the

presence of beam hardening artifacts in the reconstruction (Section 3.5). By expressing the

attenuation of the object as a function of the glandular fractions, we have shown that the

integral equation for the polyenergetic digital tomosynthesis problem using Beer’s law, as

posed in Equation (3.9), can be solved iteratively.

So far, we have presented two polyenergetic reconstruction frameworks that can im-

prove the reconstructions obtained using the standard approaches of filtered backprojection

and MLEM. The reconstruction framework described in Chapter 4, developed by Chung

et al. [32], eliminates beam hardening artifacts by modeling explicitly the polyenergetic

nature of the x-ray spectrum. However, this model is of limited scope to full clinical size

problems because it only accounts for the presence of two attenuating materials inside the

imaged breast (namely glandular and adipose tissue) ignoring the presence of air and micro-

calcifications. An attempt to extend the linear attenuation model is presented in Chapter
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5, where the quadratic model for attenuation is described. The quadratic model improves

the linear model in that it accounts for air and micro-calcifications present in the imaged

area, but the model is limited to the problem of breast tomosynthesis imaging since adding

more attenuating materials to the quadratic fit is a complex task.

This chapter proposes a linear polyenergetic multi-material model for the digital breast

tomosynthesis reconstruction problem that overcomes the shortcomings of the models previ-

ously described. The derivation and mathematical aspects of the multi-material attenuation

function for each voxel are discussed, and the reconstruction framework using both a gradi-

ent descent and Newton optimization approach is described. The goal of the multi-material

attenuation model is to provide flexibility in the choice and number of attenuating materials

present inside the imaged object. This allows us to extend the proposed model to digital

tomosythesis imaging of other objects or parts of the body.

6.1 Building the Forward Model

We begin to derive the multi-material attenuation model by considering the mass attenua-

tion coefficient (as oposed to the linear attenuation coefficient from the previous models) for

a given voxel j and a particular energy e. The mass attenuation coefficient of a substance

is the ratio of the energy absorption of the material per unit mass. As described in Section

2.1.2, for a given voxel in the discretized object, the mass attenuation coefficient is the ratio

of the linear attenuation coefficient for the voxel and the density of the composite materials

inside the voxel. That is, if µe,j denotes the linear attenuation coefficient for voxel j at

energy e and ρj denotes the density of the composite materials inside the voxel, then we

can write

µe,j

ρj
=

µ
ρ


e,j

= mass attenuation coefficient at voxel j for energy e.

Therefore, using the equation

µe,j = ρj

(
µ

ρ

)
e,j

. (6.1)

we can recover the linear attenuation coefficient from the mass attenuation coefficient if

the composite density of the voxel ρj is known.
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To build the attenuation function for the forward model, assume there are Nm arbitrary

attenuating materials composing the object. Let each of the values {wj,1,wj,2, ...,wj,Nm}

represent the weight fractions (or percentage) of each material indexed 1, 2, ..., Nm present

inside voxel j. This means that for voxel j we have

Nm∑
m=1

wj,m = 1,

or in other words, the percentage of all materials present adds up to one. Recall that the

discrete formulation of Beer’s law for a polyenergetic x-ray is given in Equation (3.9) by

biθ =

Ne∑
e=1

se exp

− Nv∑
j=1

aijθ µe,j


where Ne is the number of discrete energies, se is the value of the spectral distribution

function for energy indexed e, Nv is the number of voxels, and aijθ is the length of the

x-ray passing through voxel j and contributing to pixel i in projection θ. The value µe,j

is the linear attenuation of voxel j for energy level e. Using Equation (6.1) we have that

the forward model for the acquisition of projection θ in terms of the mass attenuation and

density of each voxel is

bθi =

Ne∑
e=1

se exp

− Nv∑
j=1

aijθ ρj

(
µ

ρ

)
e,j

 . (6.2)

Since we are modeling the presence of multiple materials that have different attenuating

properties, we need to decompose the density ρj and the mass attenuation
(
µ
ρ

)
e,j

of voxel

j in terms of the materials present inside it.

Consider decomposing the composite material mass attenuation coefficient
(
µ
ρ

)
e,j

for

a given voxel j at energy level e. If we know the weight fraction of each material wj,m

present in voxel j, we can express the composite material mass attenuation coefficient as a

linear combination of the mass attenuation coefficient for each individual material and the

respective weight fractions. To do this, we let rm represent the density of material m, and

let ue,m represent the linear attenuation coefficient of material m for energy level e. Then,



83

by Equation (6.1), the mass attenuation for each material is given as the ratio of the linear

attenuation coefficient and the density of the material, that is

um,e
rm

=
(u
r

)
m,e

.

Thus, we can write the composite material mass attenuation coefficient for voxel j at energy

level e using Nm materials as

(
µ

ρ

)
e,j

=

Nm∑
m=1

wj,m

(u
r

)
m,e

. (6.3)

Now consider decomposing the density of the voxel in terms of the Nm materials assumed

to be present inside. If we know the density of each material rm and the weight fractions

wj,m for all m, we can write the density of the composite material inside voxel j as

ρj =
1

Nm∑
m=1

wj,m

rm

. (6.4)

Using Equations (6.3) and (6.4), we can write the linear attenuation function for each voxel

j at energy level e in terms of the mass attenuation and density of each material by

µe,j =

Nm∑
m=1

wj,m

(u
r

)
m,e

Nm∑
m=1

wj,m

rm

. (6.5)

This allows us to write the forward projection model in Equation (6.2) for pixel i and

projection θ in terms of the attenuating properties of each material present in the object by

biθ =

Ne∑
e=1

se exp


−

Nv∑
j=1

aijθ

Nm∑
m=1

wj,m

u
r


m,e

Nm∑
m=1

wj,m

rm


. (6.6)
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In this forward model, the object will be represented by Nm vectors {w:,1,w:,2, ...,w:,Nm}

that contain the weight fractions for each composing material. All the weight fractions can

be combined using Equation (6.5) to obtain one single attenuation vector for the object.

We can eliminate one variable from the forward projection model using the relation

between the weight fractions of the materials for voxel j. If

Nm∑
m=1

wj,m = 1,

we can arbitrarily choose material m = 1 to eliminate and write the weight fractions for

voxel j as

wj,1 = 1−
Nm∑
m=2

wj,m.

Using the variable elimination and Equation (6.6), we have the new forward projection

model

biθ =

ne∑
e=1

se exp


−

Nv∑
j=1

aijθ

u
r


1,e

+
Nm∑
m=2

wj,m


u
r


m,e

−

u
r


1,e


1

r1
+

Nm∑
m=2

wj,m

 1

rm
−

1

r1




. (6.7)

Equation 6.7 is the proposed image acquisition model for one incident angle in the digital

tomosynthesis problem given multiple attenuating materials inside the object.

6.2 Statistical Considerations

In a similar manner as the reconstruction process for the quadratic model for attenuation

described in Chapter 5, we consider the statistical properties of the image acquisition pro-

cess. We model the variable representing the energy measured by each pixel in the detector

as a Poisson random variable with additional background noise. Refer to Section 3.1 to see

how the source-detector interaction in digital tomosynthesis can be modeled as a Bernoulli

random variable (the detector) receiving a Poisson random variable as “input” (the source).
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For simplicity of notation, let w denote the set of vectors representing the weight

fractions for the Nm − 1 materials included in the model (i.e. for Nm materials we let

w = {w:,2, ...,w:,Nm,}). Given the forward model in (6.7), the expected value of the mea-

sured data for pixel i in projection θ is

E(biθ; w) =

ne∑
e=1

se exp


−

Nv∑
j=1

aijθ

u
r


1,e

+
Nm∑
m=2

wj,m


u
r


m,e

−

u
r


1,e


1

r1
+

Nm∑
m=2

wj,m

 1

rm
−

1

r1




+ η̄i (6.8)

where the notation wj,m denotes a scalar j th entry of the vector containing the weight

fractions for material m (i.e. wm,j = wm(j)) and η̄i represents additive noise in the image

acquisition. The noise is generally due to scatter and is also assumed to follow a Poisson

distribution whose statistical mean is known or can be approximated. For notation purposes,

let E(biθ; w) = b̄θi + η̄i. We then have that each pixel i of the observed projection data at

incident angle θ is a realization of the Poisson random variable

biθ ∼ Poisson
(
b̄iθ + η̄i

)
.

Using the theory of maximum likelihood estimation, we know that the probability of

observing image bθ for all θ given the set of weight fractions w = {w:,2, ...,w:,Nm,} for the

imaged object is determined by the Poisson likelihood function

p(bθ; w) =

Np∏
i=1

e−(b̄iθ+η̄i)(b̄iθ + η̄i)b
i
θ

biθ!
(6.9)

with biθ being the observed data and Np representing the total number of pixels in the

detector. As in the previous chapters, our goal is to find the set of weight fractions w

that maximize the likelihood function above. The set of weight fractions that maximize

Equation (6.9) represent the volume that most likely produced the observed projection bθ

and thus, our reconstructed volume.



86

6.3 The Iterative Reconstruction Framework

The goal of the reconstruction process is to find the set of vectors w = {w:,2, ...,w:,Nm,} that

maximize the Poisson likelihood function in Equation (6.9). This set of vectors represent

the weight fractions for each material composing the reconstructed volume. In practice, for

numerical optimization problems we try to find the minimizer rather than the maximizer

of a function. Therefore, we want to transform the problem of maximizing Equation (6.9)

to minimizing the negative log-likelihood function. We can transform the Poisson likeli-

hood function into its corresponding negative log-likelihood function by taking the negative

logarithm of p(bθ; w)

−L(bθ; w) = − log(p(biθ; w))

to obtain

−L(bθ; w) =

Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄i) + c (6.10)

where c is a constant, Np is the number of pixels in the detector, and b̄iθ+ η̄i is the expected

value of the measurement at pixel i for projection at incident angle θ given in Equation

(6.8). Since the logarithm is a monotone operation, finding the minimizer of the negative

log-likelihood function in Equation (6.10) is analytically equivalent to finding the maximizer

of the Poisson likelihood function.

The reconstruction problem is to iteratively find the maximum likelihood estimator

(MLE) wMLE by solving the numerical optimization problem

wMLE = arg min
w

{
Nθ∑
θ=1

−L(bθ; w)

}
. (6.11)

In this multi-material framework, we are reconstructing a set of Nm − 1 unknown vectors

that represent the weight fractions of each material modeled. Note that this problem differs

from the linear attenuation model reconstruction problem described in Chapter 4 in that

we are interested in reconstructing a set of weight fraction vectors as opposed to a single

unknown vector containing the percent glandular fractions of the breast. Therefore, the

optimization problem in this model has increased the computational complexity as we have



87

(Nm − 2) × Nv more unknown variables. As in the quadratic attenuation reconstruction

framework, we use a gradient descent approach and a Newton method to solve the opti-

mization problem described by Equation (6.11).

6.3.1 Gradient Descent

As discussed in Section 5.3.1, the gradient descent iteration is a line search method that

moves along the direction of the negative derivative at every step. The negative derivative

direction is the direction in which the function decreases most rapidly. The iteration is

given by

w(k+1) = w(k) − αk∇L(bθ,w
(k)) (6.12)

where αk is the step length for each iteration k and the step direction ∇L(bθ,w
(k)) is

the derivative of the cost function evaluated at the current iterate. Note that in the multi-

material model, the step direction is given as the derivative of the cost function with respect

to all (Nm − 1)×Nv unknowns, namely

∇L(bθ,w
(k)) =

∂

∂wj,m

(
−L(bθ,w

(k))
)

where the index m = 2, 3, ..., Nm represents the number of materials and the index

j = 1, 2, ..., Nv corresponds to the voxels.

To simplify notation in the derivation process, consider writing the attenuation function

µe,j for voxel j at energy level e in Equation (6.5) as the quotient of two functions.

1. Let the function f(e,w) =
(
u
r

)
1,e

+
Nm∑
m=2

wj,m

[(
u
r

)
m,e
−
(
u
r

)
1,e

]
be the numerator of

µe,j . Then its first derivative with respect to the j-th voxel of the m-th material is

given by

∂f(e,w)

∂wj,m
=
(u
r

)
m,e
−
(u
r

)
1,e
.

2. Let the function g(e,w) = 1
r1

+
Nm∑
m=2

wj,m

[
1
rm
− 1

r1

]
be the denominator of µe,j . Then
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its first derivative with respect to the j-th voxel of the m-th material is given by

∂g(e,w)

∂wj,m
=

1

rm
− 1

r1
.

Given µe,j(w) = f(e,w)
g(e,w) we have that the first derivative of the attenuation function with

respect to the j-th voxel of the m-th material is

∂µe,j
∂wj,m

=
∂

∂wj,m

f(e,w)

g(e,w)

=
∂f(e,w)

∂wj,m
· 1

g(e,w)
− f(e,w)

[g(e,w)]2
∂g(e,w)

∂wj,m
.

(6.13)

To compute each entry of the step direction vector ∇L(bθ,w), we use Equation (6.10)

to obtain

∂(−L(bθ,w))

∂wj,m
=

Np∑
i=1

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
. (6.14)

where
∂(b̄iθ + η̄i)

∂wj,m
is the derivative of the expected value in Equation (6.8) with respect to

the j-th voxel of the m-th material for projection θ given by

∂(b̄iθ + η̄i)

∂wj,m
=

∂

wj,m

ne∑
e=1

se exp

− Nv∑
j=1

aijθ µe,j


=− aijθ

ne∑
e=1

se
∂µe,j
∂wj,m

exp

− Nv∑
j=1

aijθ µe,j

 .

(6.15)

This gives the (m− 2)×Nv + j entry of the step direction vector as

∂(−L(bθ,w))

∂wj,m
=

Np∑
i=1

aijθ

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se
∂µe,j
∂wj,m

exp

− Nv∑
j=1

aijθ µe,j

 . (6.16)

To solve Equation (6.11) using a gradient descent method, the framework is as follows
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Algorithm 6.3.6 Gradient Descent Algorithm For the Multi-material Attenuation Model

1: Choose the initial set of volumes representing the weight fractions for each material

given by w(0) =


w

(0)
:,2

...

w
(0)
:,Nm,


2: for k = 1, 2, ... until converge do

3: Evaluate the forward model using Equation (6.7)

4: Find the step direction vector ∇L(bθ,w
(k)) for all θ using Equation (6.16)

5: Determine the step length αk

6: Update the solution w(k+1) = w(k) − αk∇L(bθ,w
(k))

7: if
∑Nθ

θ=1 L(bθ,w
(k)) >

∑Nθ
θ=1 L(bθ,w

(k−1)) then

8: Refine parameter αk; no sufficient descent

9: end if

10: end for

The gradient descent method is known to converge very slowly for some problems, but

as is shown in Chapter 11, for digital breast tomosynthesis reconstructions only a few it-

erations of this method are needed (less than twenty in most cases) to produce quality

reconstructions. We choose to solve Equation (6.11) using this method because of the com-

putational intensity of the higher derivatives of the cost function. In numerical experiments

it has been noted that a step length αk < 1 produces steady descent with few line search

iterations. For this problem, the method uses regularization by early termination since later

iterates begin to be corrupted by noise (see Section 1.1). As in the case for the quadratic

model for attenuation, convergence is determined as the point where the relative function

value stagnates.

6.3.2 Newton Approach

Although a working implementation of a Newton method is not presented in this thesis, the

numerical aspects of using a Newton approach are described in this section. As discussed

in Section 5.3.2, a Newton method is a line search strategy with search direction given by
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the second derivative term in the Taylor series expansion of the cost function. This search

direction has a much faster rate of convergence than the gradient descent method (typically

quadratic). However, the search direction is not guaranteed to be a descent direction unless

the Hessian of the cost function is symmetric positive definite.

A Newton iteration takes the form

w(k+1) = w(k) + αks
(k) (6.17)

where αk is the step length and s(k) is the step direction. Here, the step direction s(k) is

the solution to the linear system

Hθ(w
(k))s(k) = −∇L(bθ,w

(k)) (6.18)

where Hθ(w
(k)) is the Hessian matrix of the cost function and ∇L(bθ,w

(k)) is the gradient

of the cost function both evaluated at the k-th iterate.

Recall that in the multi-material attenuation model describe in Equation (6.5), we rep-

resent the reconstructed volume in terms of Nm− 1 vectors w:,m ∈ RNv that correspond to

the weight fractions of each material inside the object. To compute the Hessian of the cost

function L(bθ,w
(k)), we then need the entry (m− 2)×Nv + j of the first derivative of the

cost function, which is given in Equation (6.14) as

∂(−L(bθ,w))

∂wj,m
=

Np∑
i=1

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m

where j = 1, 2, .., Nv is the voxel index and m = 2, 3, ..., Nm is the index of the materials

modeled. Therefore, we can express the Hessian matrix for the problem as a block matrix,

with (m − 1) × (m − 1) blocks of size Nv ×Nv. Let j, ` = 1, 2, ..., Nv, then the (j, `) entry

of the Hessian matrix for block (m,n) is

hj`m,n =
∂2(−L(bθ,w))

∂w`,n∂wj,m
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which can be expanded to the equation

Np∑
i=1

∂

∂w`,n

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
+

(
1−

biθ
(b̄iθ + η̄i)

)
∂

∂w`,n

(
∂(b̄iθ + η̄i)

∂wj,m

)
.

To build the Hessian matrix we begin by using the equality

∂

∂w`,n

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
=

biθ

(b̄iθ + η̄i)2

∂(b̄iθ + η̄i)

∂wj,m

∂(b̄iθ + η̄i)

∂w`,n

and Equation (6.15) to compute the first term in the summation. The second term in the

summation of each entry of the Hessian follows from the equation

∂

∂w`,n

(
∂(b̄iθ + η̄i)

∂wj,m

)
= − aijθ

ne∑
e=1

se
∂µe,j
∂wj,m

∂

∂w`,n

exp

− Nv∑
j=1

aijθ µe,j


− aijθ

ne∑
e=1

se
∂2µe,j

∂w`,n∂wj,m
exp

− Nv∑
j=1

aijθ µe,j


where the derivative of the exponential is

∂

∂w`,n
exp

− Nv∑
j=1

aijθ µe,j

 = −ai`θ
∂µe,j
∂w`,n

exp

− Nv∑
j=1

aijθ µe,j


and the second derivative of the attenuation function is

∂2µe,j
∂w`,n∂wj,m

=

∂f(e,w)

∂wj,m

∂g(e,w)

∂w`,n
−
∂g(e,w)

∂wj,m

∂f(e,w)

∂w`,n

g(e,w)2
− 2

∂g(e,w)

∂wj,m

∂g(e,w)

∂w`,n
f(e,w)

g(e,w)3
.

Then we have the the expanded (j, `) entry in the block (m,n) of the Hessian matrix is
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given by the equation

hj`m,n =

Np∑
i=1

biθ

(b̄iθ + η̄i)2

∂(b̄iθ + η̄i)

∂wj,m

∂(b̄iθ + η̄i)

∂w`,n

−
Np∑
i=1

aijθ a
i`
θ

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se
∂µe,j

∂wj,m

∂µe,j

∂w`,n
exp

− Nv∑
j=1

aijθ µe,j


+

Np∑
i=1

aijθ

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se
∂2µe,j

∂w`,n∂wj,m
exp

− Nv∑
j=1

aijθ µe,j

 .

(6.19)

If the block matrix Hθ(w
(k)) is symmetric positive definite, the Newton search direction

guarantees descent and we find it by solving the linear system

Hθ(w
(k))s(k) = −∇L(bθ,w

(k)).

at each iteration.

Given the Hessian matrix for the multi-material problem in Equation (6.19), we can

only establish that Hθ(w
(k)) is symmetric, not necessarily positive definite. This is why at

this point we are unable to provide a functional implementation of the Newton method to

solve the digital tomosynthesis reconstruction problem using the multi-material attenuation

model. However, if the matrix Hθ(w
(k)) is shown to be positive definite, the framework to

solve Equation (6.11) using a Newton method is as follows

Algorithm 6.3.7 Newton Method For the Multi-material Attenuation Model

1: Choose the initial set of volumes representing the weight fractions for each material

given by w(0) =


w

(0)
:,2

...

w
(0)
:,Nm,


2: for k = 1, 2, ... until converge do

3: Evaluate the forward model using Equation (6.7)

4: Build the gradient vector ∇L(bθ,w
(k)) for all θ using Equation (6.16)

5: Build the Hessian matrix using Hθ(w
(k)) Equation (6.19)
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6: Find the step direction s(k) by solving the linear system Hθ(w
(k))s(k) = −∇L(bθ,w

(k))

7: Determine the step length αk

8: Update the solution w(k+1) = w(k) − αkw(k)

9: if
∑Nθ

θ=1 L(bθ,w
(k)) >

∑Nθ
θ=1 L(bθ,w

(k−1)) then

10: Refine parameter αk; no sufficient descent

11: end if

12: end for

For this method, the step length is the natural Newton method step length αk = 1. The

number of inner iterations to solve the linear system that determines the step direction

depends on the conditioning of the Hessian matrix. Similarly to the gradient descent ap-

proach described earlier in the chapter, in the Newton method regularization is done by

early termination since the later iterates begin to be corrupted by noise as is the case for

ill-posed problems (see Section 1.1). There is currently no automated convergence criteria,

convergence is determined once the relative value of the function stagnates.

6.4 Summary

In this chapter we have presented a multi-material forward model for the polyenergetic

digital tomosynthesis reconstruction problem for breast cancer screening. In the multi-

material model, we formulate the attenuation function of the object in terms of the weight

fractions of an arbitrary number of materials Nm present inside the object. This formulation

allows us to expand the quadratic model for attenuation presented in Chapter 5 to capture

additional materials of interest in breast cancer screening, like skin and solutions used for

contrast of lesions. In addition, by keeping the formulation of the model independent of

glandular fractions, we can extend the reconstruction framework to tomosynthesis imaging

of other objects or parts of the body. However, as noted in Section 6.3.2, we are unable

to analyze the derivatives of the cost function to derive conditions for a positive definite

Hessian matrix. In the next chapter we describe a simplified version of the multi-material

model that allows us to include multiple arbitrary attenuating materials inside the imaged

object but is easier to analyze and implement.
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Chapter 7

A Simplified Polyenergetic

Multimaterial Model

In this work we seek to develop a physically accurate forward model of the image acquisition

process for polyenergetic digital breast tomosynthesis that accounts for the presence of mul-

tiple attenuating materials inside the imaged object. We began with the linear attenuation

model in Chapter 4, where the volume was reconstructed in terms of the percent glandular

fraction of each voxel to determine the presence of glandular and adipose tissue inside the

object. This model allowed us to reduce the presence of beam hardening artifacts by using

a polyenergetic formulation of Beer’s law, and gave us insight into the the advantages using

glandular fractions to represent the attenuation function of the object. However, the linear

model for attenuation is limiting in terms of the number and type of materials modeled. The

quadratic model developed in Chapter 5 extends the linear attenuation model to include the

presence of air and micro-calcifications inside the breast, allowing for a full reconstruction

of the imaged area. Unfortunately, as in the linear attenuation model, the quadratic model

is limiting in terms of reconstructing only the percent glandular fractions of the volume and

cannot be generalized to arbitrary materials present inside the volume. In Chapter 6 we

presented the multi-material attenuation model where the volume is reconstructed in terms

of the weight fractions of an arbitrary number of attenuating materials. This model allowed

us to explicitly account for the attenuation properties of each material in the object, thus
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giving us a more physically accurate depiction of the image acquisition process and extend

the reconstruction framework to digital tomosynthesis imaging of other parts of the body.

The downside of the multi-material model is that the additional materials modeled increase

the number of unknowns and make the problem more complicated and computationally

intensive.

In this chapter we develop a simplified forward model from the multi-material attenua-

tion function described the previous chapter using some simple assumptions. This simplified

model allows us to assume the presence of an arbitrary number of attenuating materials

inside the breast while reducing the computational complexity of the reconstruction frame-

work. We show how the simplifying assumptions are valid for clinical problems and derive

the forward model for the polyenergetic problem. Finally, we summarize the reconstruction

framework using both a gradient descent and Newton optimization approach.

7.1 Building the Forward Model

In the last chapter, we built the multi-material attenuation model by writing Beer’s law

in terms of the mass attenuation coefficient and density of each voxel. For a given voxel

in the discretized object, the mass attenuation coefficient is given as a ratio of the linear

attenuation coefficient for the voxel and the density of the composite materials at that

voxel. That is, if µe,j denotes the linear attenuation coefficient for voxel j at energy e and

ρj denotes the density of the composite materials inside the voxel, we have(
µ
ρ

)
e,j

= mass attenuation coefficient at voxel j for energy e.

Moreover, the linear attenuation coefficient of the voxel µe,j for energy level e is given by

µe,j = ρj

(
µ

ρ

)
e,j

(7.1)

Using the discrete version of Beer’s law for a polyenergetic ray we have the forward projec-

tion model

biθ =

Ne∑
e=1

se exp

− Nv∑
j=1

aijθ µj,e
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where, as before, se is the value of the spectral distribution function for energy level e and

aijθ is the length of the x-ray passing through voxel j and contributing to pixel i of projection

θ. We can write the forward model in terms of the mass attenuation and density of the

voxel by

biθ =

Ne∑
e=1

se exp

− Nv∑
j=1

aijθ ρj

(
µ

ρ

)
e,j

 . (7.2)

Assume there are Nm attenuating materials present inside the voxel j where the set

{wj,1, ...,wj,Nm} represents the weight fractions (or percentage) of each material m inside

the voxel j and
Nm∑
m=1

wj,m = 1.

As in the previous chapter, we can decompose the voxel’s mass attenuation coefficient for

energy level e in terms of the weight fractions of each material by

(
µ

ρ

)
e,j

=

Ne∑
e=1

wm,j

(u
r

)
m,e

(7.3)

where the mass attenuation is (u
r

)
m,e

=
ue,m
rm

,

or the ratio of the linear attenuation coefficient to the density of the m-th material. Simi-

larly, to decompose the composite density of voxel j in terms of the materials present inside

we write

ρj =
1

Nm∑
m=1

wj,m

rm

(7.4)

where the density of each material is rm and the weight fractions are wj,m. Note, that if

we are modeling Nm materials that have very similar densities, we have

r1 ≈ r2 ≈ ... ≈ rNm
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and thus we can define the average density r̄ as

r̄ = mean(r1, r2, ..., rNm).

This assumption allows us to rewrite the denominator in Equation (7.4) as

Nm∑
m=1

wj,m

rm
≈

1

r̄
.

and, the forward model in Equation (7.2) using Equation (7.3) becomes

biθ =

ne∑
e=1

se exp

− Nv∑
j=1

aijθ

Nm∑
m=1

wj,mr̄
(u
r

)
m,e

 .

Note, that since r̄ ≈ rm for al materials m = 1, 2, ..., Nm we have that

(u
r

)
m,e

=
ue,m
rm
≈ ue,m

and the forward projection model above becomes

biθ =

ne∑
e=1

se exp

− Nv∑
j=1

aijθ

Nm∑
m=1

wj,mum,e

 . (7.5)

Equation 7.5 is the forward projection model for one incident angle assuming the presence

of multiple attenuating materials of similar densities inside the object. This model is an

appropriate forward model for the digital tomosynthesis problem when the object is com-

posed of an arbitrary number of similar materials, like adipose and glandular tissue. It is

important to note that this model is a simplification of the multi-material model for attenu-

ation presented in Chapter 6 and a generalization of the linear attenuation model presented

in Chapter 4.
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As in the previous chapter, without loss of generality we eliminate the variable wj,1

from the forward projection using

wj,1 = 1−
Nm∑
m=2

wj,m

and the simplified multi-material attenuation function becomes

µe,j = u1,e +

Nm∑
m=2

wj,m (um,e − u1,e) . (7.6)

This new attenuation function gives us the new forward projection model for incident pro-

jection angle θ

biθ =

ne∑
e=1

se exp

− Nv∑
j=1

aijθ

(
u1,e +

Nm∑
m=2

wj,m (um,e − u1,e)

) (7.7)

where ue,m represents the linear attenuation coefficient of the material m for the energy

level e.

7.2 Statistical Considerations

In the same way as the reconstruction process for the multi-material attenuation model de-

scribed in Chapter 6, we consider the statistical properties of the image acquisition process.

The observed data for pixel i of projection θ is modeled as the realization of independently

distributed Poisson random variables with additional background noise. Given the forward

model in Equation (7.7) the expected value of the measured data for pixel i at angle θ is

E(biθ; w) =

ne∑
e=1

se exp

− Nv∑
j=1

aijθ

(
u1,e +

Nm∑
m=2

wj,m (um,e − u1,e)

)+ η̄i (7.8)

where um,e is the linear attenuation for the m-th material at energy level e, wj,m denotes a

scalar found as the j -th entry of the vector containing the weight fractions for material m,

and the variable w = {w2,:, ...,wNm,:} is the set of vectors representing the weight fractions

for the Nm − 1 materials included in the model. If we let E(biθ) = b̄iθ + η̄i we have that
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each pixel i in the observed projection θ follows the Poisson distribution given by

biθ ∼ Poisson
(
b̄iθ + η̄i

)
.

Using the theory of maximum likelihood estimation, we know that the probability of

observing projection bθ for all θ given the set of weight fractions w = {w:,2, ...,w:,Nm,} for

the object is determined by the Poisson likelihood function

p(bθ; w) =

Np∏
i=1

e−(b̄iθ+η̄i)(b̄iθ + η̄i)b
i
θ

biθ!
(7.9)

with bθ being the observed data and Np representing the total number of pixels in the

detector. As in the previous chapters, our goal is to find the set of weight fractions w

that maximize the likelihood function above. The set of weight fractions that maximize

Equation (7.9) represent the volume that most likely produced the observed projection bθ

and thus, our reconstructed volume.

7.3 The Iterative Reconstruction Framework

Given the forward model in Equation (7.7) we are interested in reconstructing the vectors

wm for each material m = 2, 3, ..., Nm representing the unknown weight fractions of the ob-

ject. Here we follow the same maximum likelihood estimator approach outlined in Chapter

6, modified to fit the image acquisition model in Equation (7.7). We begin by formulating

the reconstruction problem as a numerical optimization problem where we try to find the

set of weight fractions w that maximize the likelihood function in Equation (7.9). This set

of weight fractions corresponds to the volume that was most likely to produce the observed

projection data biθ.

By the monotonicity of the logarithm function, the problem of finding the maximizer

of Equation (7.9) is equivalent to finding the value of w that minimizes the negative log-
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likelihood function given by

−L(bθ,w) =− log(p(bθ; w))

=

Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄i) + c

(7.10)

where c is a constant. The reconstruction problem is formulated as finding the maximum

likelihood estimator wMLE that solves the optimization problem

wMLE = arg min
w

{
Nθ∑
θ=1

−L(bθ,w)

}
. (7.11)

In this simplified multi-material framework, we are still reconstructing a set of Nm − 1

unknown vectors that represent the weight fractions of each material modeled as in Chap-

ter 6, but by the simplified forward model in Equation (7.7) our cost function has easier

derivatives to compute. This allows us to analyze the Hessian of the cost function and write

the derivatives in terms of the raytracing matrix Aθ. In this section we derive the necessary

functions to solve the optimization problem in Equation (7.11) using a gradient descent and

Newton method.

7.3.1 Gradient Descent

Recall from the previous chapters that the gradient descent iteration is given by

w(k+1) = w(k) − αk∇L(bθ,w
(k)) (7.12)

where αk is the step length for each iteration k and the step direction ∇L(bθ,w
(k)) is the

derivative of the cost function evaluated at the current iterate. Similar to the multi-material

attenuation model, the step direction is given as the derivative of the cost function with

respect to all (Nm − 1)×Nv unknowns, namely

∇L(bθ,w
(k)) =

∂

∂wj,m

(
−L(bθ,w

(k))
)
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where the variable m = 2, 3, ..., Nm represents the number of materials and the variable

j = 1, 2, ..., Nv corresponds to the voxels. We then have that

∂(−L(bθ,w
(k)))

∂wj,m
=

Np∑
i=1

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
. (7.13)

Using Equation (7.8) we know that the derivative of the expected value for each pixel i in

projection θ with respect to the j-th voxel of the m-th material is

∂(b̄iθ + η̄i)

∂wj,m
= −aijθ

ne∑
e=1

se (um,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j

 . (7.14)

This gives the (m− 2)×Nv + j entry of the step direction vector as

∂(−L(bθ,w
(k)))

∂wj,m
=

Np∑
i=1

aijθ

(
biθ

(b̄θi + η̄i)
− 1

) ne∑
e=1

se (um,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j

 .

In terms of the raytracing matrix Aθ, we can express the derivative of the cost function

∇L(bθ,w
(k)) as a backprojection operation by

∇(−L(bθ,w)) =


ATθ v

(k)
2

...

ATθ v
(k)
Nm

 (7.15)

where the i -th entry of the vector v
(k)
m is given by

v(k)
m (i) =

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se (um,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j

 (7.16)

with

µe,j = u1,e +

Nm∑
m=2

w
(k)
j,m (um,e − u1,e) .

To solve Equation (7.11) using a gradient descent method, the framework is as follows



102

Algorithm 7.3.8 Gradient Descent Algorithm For the Simplified Multi-material

Attenuation Model

1: Choose the initial set of volumes representing the weight fractions for each material

given by w(0) =


w

(0)
:,2

...

w
(0)
:,Nm,


2: for k = 1, 2, ... until converge do

3: Evaluate the forward model using Equation (7.8)

4: Compute the vectors v
(k)
m for all materials

5: Find the derivative ∇L(bθ,w
(k)) =


ATθ v

(k)
2

...

ATθ v
(k)
Nm

 for all θ

6: Determine the step length αk

7: Update the solution w(k+1) = w(k) − αk∇L(bθ,w
(k))

8: if
∑Nθ

θ=1 L(bθ,w
(k)) >

∑Nθ
θ=1 L(bθ,w

(k−1)) then

9: Refine parameter αk; no sufficient descent

10: end if

11: end for

The gradient descent method is known to converge very slowly for some problems but

as is shown in Chapter 11, for digital breast tomosynthesis reconstructions only a few

iterations of this method are needed (less than twenty in most cases) to produce quality

reconstructions. We choose to solve the reconstruction problem using this method because

of the computational intensity of the higher derivatives of the cost function. In numerical

experiments it has been noted that a step length αk < 1 produces steady descent with few

line search iterations. For this problem, the method uses regularization by early termination

since later iterates begin to be corrupted by noise (see Section 1.1). As in the case for the

quadratic model for attenuation, convergence is determined as the point where the relative

function value stagnates.
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7.3.2 Newton Approach

Although a working implementation of a Newton method for the simplified multi-material

attenuation model is not presented in this thesis, the numerical aspects of using a Newton

approach are described in this section. As discussed in Section 5.3.2, a Newton method

is a line search strategy with search direction given by the second derivative term in the

Taylor series expansion of the cost function. This search direction has a much faster rate

of convergence than the gradient descent method (typically quadratic) but in order to

guarantee descent of the cost function, the Hessian matrix must be symmetric positive

definite. A Newton iteration takes the form

w(k+1) = w(k) + αks
(k)

where αk is the step length and the step direction s(k) is the solution to the linear system

H(w(k))s(k) = −∇L(bθ,w
(k)).

In order to compute the Hessian of the cost function, note that the first derivative of

the cost function is given in Equation (7.13) as

∂(−L(bθ,w))

∂wj,m
=

Np∑
i=1

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
.

for j = 1, 2, .., Nv and m = 2, 3, ..., Nm. The Hessian in this case can be expressed as a block

matrix, with each block having size Nv ×Nv and indexed (m,n) where m,n = 2, 3, ..., Nm.

Therefore, for ` = 1, 2, ..., Nv the (j, `) entry of the (m,n) block of the Hessian is given as

hj`m,n =

Np∑
i=1

∂

∂w`,n

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
+

(
1−

biθ
(b̄iθ + η̄i)

)
∂

∂w`,n

(
∂(b̄iθ + η̄i)

∂wj,m

)
.

The first term in the summation for each entry in the Hessian matrix is given by

∂

∂w`,n

(
1−

biθ
(b̄iθ + η̄i)

)
∂(b̄iθ + η̄i)

∂wj,m
=

biθ

(b̄iθ + η̄i)2

∂(b̄iθ + η̄i)

∂w`,n

∂(b̄iθ + η̄i)

∂wj,m
(7.17)
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which, using Equation (7.14), is equal to

ai`θ a
ij
θ

biθ

(b̄iθ + η̄i))2

ne∑
e=1

secn,e exp

− Nv∑
j=1

aijθ µe,j

 ne∑
e=1

secm,e exp

− Nv∑
j=1

aijθ µe,j


where the values cn,e = (un,e − u1,e) and cm,e = (um,e − u1,e) represent the difference be-

tween the linear attenuation coefficient at energy level e for material n (m) and the first

material.

The second term in the sum for each entry of the Hessian is computed using Equation

(7.14) to obtain

(
1−

biθ
(b̄iθ + η̄i)

)
∂2(b̄iθ + η̄i)

∂w`,n∂wj,m
= ai`θ a

ij
θ

(
1−

biθ
(b̄iθ + η̄i)

) ne∑
e=1

secm,ecn,e exp

− Nv∑
j=1

aijθ µe,j


for j, ` = 1, 2, ..., Nv and m,n = 2, 3, ..., Nm. Therefore, the (j, `) entry of the (m,n) block

of the Hessian matrix is given by the equation

hj`m,n =

Np∑
i=1

ai`θ a
ij
θ

biθ
(b̄iθ + η̄i))2

ne∑
e=1

secn,e exp

− Nv∑
j=1

aijθ µe,j

 ne∑
e=1

secm,e exp

− Nv∑
j=1

aijθ µe,j


+

Np∑
i=1

ai`θ a
ij
θ

(
1−

biθ
(b̄iθ + η̄i)

) ne∑
e=1

secm,ecn,e exp

− Nv∑
j=1

aijθ µe,j

 .

In matrix vector notation, we can write each the (m,n) block of the Hessian matrix as

Hm,n = ATθ Ω(k)
m,nAθ (7.18)

for m,n = 2, 3, ..., Nm where Aθ is the raytracing matrix and the matrix Ωm,n is a diagonal

matrix whose entries are given by

ω(k)
m,n(i) =

biθ
(b̄iθ + η̄i)2

ne∑
e=1

secn,e exp

− Nv∑
j=1

aijθ µe,j

 ne∑
e=1

secm,e exp

− Nv∑
j=1

aijθ µe,j


+

(
1−

biθ
(b̄iθ + η̄i)

) ne∑
e=1

secm,ecn,e exp

− Nv∑
j=1

aijθ µe,j

 .

(7.19)
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In this thesis we only provide the numerical details for the Newton reconstruction frame-

work and a functional implementation is left as future work. The process to solve Equation

(7.11) using a Newton method is as follows

Algorithm 7.3.9 Newton Framework for the Simplified Multi-material Attenuation Model

1: Choose the initial set of volumes representing the weight fractions for each material

given by w(0) =


w

(0)
:,2

...

w
(0)
:,Nm,


2: for k = 1, 2, ... until converge do

3: Evaluate the forward model using Equation (7.8)

4: Compute the vectors vm for m = 2, 3, ..., Nm using Equation (7.16)

5: Build the gradient vector ∇L(bθ,w
(k)) =


ATθ v

(k)
2

...

ATθ v
(k)
Nm

 for all θ

6: Compute the vectors ωm,n for m,n = 2, 3, ..., Nm using Equation (7.19)

7: Build the Hessian matrix H(w(k)) using Equation (7.18)

8: Find the step direction s(k) by solving the linear system H(w(k))s(k) = −∇L(bθ,w
(k))

9: Determine the step length αk

10: Update the solution w(k+1) = w(k) − αkw(k)

11: if
∑Nθ

θ=1 L(bθ,w
(k)) >

∑Nθ
θ=1 L(bθ,w

(k−1)) then

12: Refine parameter αk; no sufficient descent

13: end if

14: end for

For this approach the natural Newton method step length αk = 1. The number of inner

iterations to solve the linear system that determines the step direction depends on the

conditioning of the Hessian matrix. Similarly to the gradient descent approach described

earlier in the chapter, in the Newton method regularization is done by early termination

since the later iterates begin to be corrupted by noise as is the case for ill-posed problems (see

Section 1.1). Convergence is determined once the relative value of the function stagnates.
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7.4 Summary

In this chapter we have presented a simplified version of the multi-material forward model

for the polyenergetic digital tomosynthesis reconstruction problem used in breast cancer

screening. The simplified model is derived by assuming the presence of similar attenuating

materials inside the breast, that is, materials that have similar density. This assumption

is physically sound, since the breast is composed of adipose tissue, glandular tissue, and

skin, all materials that have similar density. Some of the benefits of simplifying the multi-

material model presented in Chapter 6 is that we have easier derivatives, we can write the

Hessian matrix in terms of the raytracing matrix, and we can establish conditions for the

convexity of the cost function. Keep in mind that in this simplified multi-material model,

we still formulate the attenuation function of the object in terms of the weight fractions of

an arbitrary number of Nm materials present inside the object, giving us the advantage of

modeling an arbitrary number of materials for the problem. This model also allows us to

expand both the linear attenuation model presented in Chapter 4 and the quadratic model

for attenuation presented in Chapter 5 in order to capture additional materials of interest in

breast cancer screening, like skin and solutions used for contrast of lesions. In addition, by

keeping the formulation of the model independent of glandular fractions, we can extend the

reconstruction framework to tomosynthesis imaging of other objects or parts of the body.

So far in this thesis, we have presented four forward models for the polyenergetic digital

tomosynthesis problem for breast cancer imaging. As will be shown by the numerical results

in Chapter 11, these models have improved image quality and less artifacts than the recon-

structions provided by MLEM and filtered backprojection. In the next chapters, we discuss

the computational science considerations needed to implement an effective reconstruction

framework to solve the digital tomosynthesis problem for clinical size data sets.
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Chapter 8

Implementation Considerations

The previous chapters have described the four different forward models for the image acqui-

sition process we propose in this thesis as well as a gradient descent and Newton framework

to solve the digital tomosynthesis reconstruction problem. As we will see in the next chap-

ters, the implementation of a gradient descent or Newton approach is nontrivial given the

size of the problem for clinical tomosynthesis reconstructions. In this chapter, we evaluate

the computational intensity of the problem and discuss our motivation to use a GPU for

the implementation. We describe the basics of GPU computing using OpenCL as the API

as an introduction to the kernel design and implementation optimizations described in the

next two chapters.

8.1 Computational Intensity

From a numerical analysis standpoint, solving the digital tomosynthesis reconstruction prob-

lem as proposed in this work is ultimately solving the optimization problem given by

wMLE = arg min
w

{
Nθ∑
θ=1

−L(bθ,w)

}
(8.1)

where the unknowns are the set of vectors corresponding to the weight fractions of each

material w = {w1, ...,wn}, and n depends on the chosen forward model. In theory, the

problem is relatively simple to solve, given that the analytical first and second derivatives
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of the cost function L(bθ,w) are known. In reality, however, finding a solution to this very

large scale optimization problem is a challenge, and a creative implementation scheme is

necessary in order to produce timely reconstructions using a reasonable amount of compu-

tational resources.

We would like to develop an implementation of the reconstruction process that allows

healthcare facilities to produce a tomosynthesis reconstruction for one patient in-house or

using an architecture that is readily available. Our goal is to produce better quality digital

tomosynthesis reconstructions in a short amount of time that is comparable to the time it

takes to produce a reconstruction using the filtered backprojection or MLEM approaches.

Therefore, we must be able to solve the optimization problem in Equation (8.1) in a matter

of minutes using off-the-shelf computing architectures.

The difficulty in solving Equation (8.1) is the size of the problem. Consider using the

simplified multi-material model described in Chapter 7 as the forward model. We have that

each function L(bθ,w) is given by

−L(bθ,w) =

Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄i) + c

where c is a constant and, if we model three attenuating materials, the value b̄iθ + η̄i is

given by the equation

b̄iθ + η̄i =

ne∑
e=1

se exp
[
−
(
u2,e ai:θ •w:,2 + u3,e ai:θ •w:,3 + u1,e ai:θ • 1

)]
+ η̄i.

Therefore, for one single evaluation of the cost function in Equation (8.1) we have that

1. We must evaluate L(bθ,w) for all projection angles Nθ, where Nθ is typically 15-45

for a clinical size problem. In our numerical experiments we use Nθ = 15.

2. To evaluate each L(bθ,w) we need to evaluate the expected value b̄iθ+ η̄i for all pixels

Np. In our clinical data the size of the detector is 1280×2048 meaning 2.6×106 pixels.

3. To evaluate b̄iθ + η̄i for each pixel i we need to perform two operations:

a. A dot product of the i-th row of the raytracing matrix Aθ with each of the vectors
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containing the weight fractions and a vector of ones. Note that the size of each of

the vectors in this dot product is the total number of voxels in the reconstructed

volume Nv, which is about 1.3× 108 for our clinical size problems.

b. We also need to perform a summation operation over all discretized energy levels

Ne. In our clinical size problems, the number of energy levels typically ranges

between 40 and 70.

Therefore, in order to do a single evaluation of Equation (8.1), we must complete a nested

loop that goes over the number of projection angles, the number of pixels in the detector, the

number of discrete energy levels, and the total number of voxels that discretize the object.

Furthermore, the computation of the first derivative of the cost function can be even more

intensive. To find the gradient of the cost function ∇(−L(bθ,w)) for all θ = 1, ..., Nθ we

need to compute

∇(−L(bθ,w)) =

ATθ v2

ATθ v3


where the i -th entry of the vector vm is given by

vm(i) =

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se (um,e − u1,e) exp
(
−u2,ea

i:
θ ·w:,2 − u3,ea

i:
θ ·w:,3 − u1,ea

i:
θ · 1

)
.

Hence, in addition to the quantities already computed in the function evaluation, we must

compute two separate loops over all energy levels Ne for the vectors v2 and v3 and two

matrix transpose-vector products with each Aθ which is of size Np × Nv or 2.6 × 106 by

1.3× 108. Clearly, a single gradient descent iteration for this problem is both memory and

computation intensive, and without the right implementation approach it can take several

hours to complete.

We choose to solve the reconstruction problem for the digital tomosynthesis using a

GPU to accelerate computations. GPUs are powerful cards capable of achieving hundreds

of gigaflops with the right program design. In the rest of this chapter we describe the

GPU architecture and the OpenCL API as an introduction to the implementation details

presented in the next two chapters for the application described in this thesis.
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8.2 GPU Computing

According to Nvidia, GPU computing is by definition “the use of a GPU (graphics processing

unit) together with a CPU to accelerate general-purpose scientific and engineering applica-

tions” [93]. A CPU is single core or a multicore microprocessor that has been optimized for

sequential performance by using advanced control logic to execute a set instructions in par-

allel or out-of-order. In addition, CPUs are equipped with large cache memories that hide

latency for both instructions and data. In contrast, a GPU is a many-core microprocessor

dedicated to arithmetic throughput, as a large number of cores work together to execute

compute intensive portions of a program. The design of a GPU and a CPU is fundamen-

tally different as shown in Figure 8.1. GPUs are built to optimize execution throughput by

(a) CPU design (b) GPU design

Figure 8.1: Architecture design of a CPU vs a GPU [79].

managing a massive number of compute intensive threads using context switching to hide

latencies. This reduces the complexity of the control logic needed to handle each thread,

thus maximizing the chip area dedicated to floating point computations [79].

In other words, GPUs provide hundreds of simpler cores with small caches that can

execute hundreds of flop intensive threads in parallel, as opposed to CPUs which provide a

handful of sophisticated processors that deliver optimized performance for sequential pro-

grams. Each architecture provides its own benefits and a program that is well suited to run

on a CPU does not necessarily perform well on a GPU and vice-versa. This is why in GPU

computing, a significant portion of the software development process is spent in detecting

the compute intensive operations and extracting the parallelism from the application.
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In this thesis we use the Nvidia TeslaTM C2070 GPU [92] for our numerical experiments.

The specifics of this Tesla card include 448 CUDA cores with a frequency of 1.15GHz

that achieve a theoretical peak of 515 Gflops in double precision and 1.03 Tflops in single

precision. In addition, the card has 6GB of global memory at a memory speed of 1.5GHz

and bandwidth of 144GB/sec. The CPU we used is the Intel Xeon(R) X5472 @ 3GHz.

8.3 Programming using OpenCL

To develop our GPU implementation we use the Open Computing Language (OpenCL)

which was developed and is mantained by the Khronos Group [110]. OpenCL is a hetero-

geneous programming framework used to develop applications that execute across different

types of devices that are not necessarily made by the same vendor. The framework can be

seen as an alternative to CUDA [88] which was developed by Nvidia to build applications

that run on their branded platforms. We choose to develop the application in this thesis

using OpenCL as opposed to CUDA because of the portability that the OpenCL framework

provides. Our goal is to ultimately allow healthcare facilities to run the digital tomosynthe-

sis reconstruction application we developed in whatever device is available to them. In this

section we describe the basic details of the OpenCL framework and the particular consid-

erations needed to design the kernel functions presented in the next two chapters. For an

extensive discussion on programming GPUs using OpenCL see [51] or programming using

CUDA see [79].

We begin our overview of OpenCL by describing the four parts (or models) of the

specification as presented in [51]. The first model, called the platform model, provides an

abstraction of the hardware. The model identifies the host which is a single CPU that

coordinates the execution of OpenCL code in one or more devices. As OpenCL is designed

for heterogeneous computing, the devices may be a combination of CPUs and GPUs that

are capable of executing OpenCL C code. In our application, the platform model sets up

the host to coordinate the execution of functions in a single GPU.

The second model is the execution model and it manages the execution of OpenCL C

code in the device. This is the portion of the application responsible for establishing the
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number of threads (called work-items) that will be executed in a given topology. It is

through the execution model that host to device communication is coordinated. Another

very important part of the execution model is the kernel, which is the part of the OpenCL

program that actually executes on the device. The kernel is an instance of the parallel

operation and will be executed by each work-item enqueued. That is, to run the most

computationally intensive portions of a program in a GPU, the operation needs to be

divided into equal tasks that can be identified by a unique index to be executed by an

individual thread. The task to be executed by the work-item is the kernel. As we will

see in the next chapters, the kernels we use have a very specific purpose, are arithmetic

intense, require few global memory accesses, and do not communicate. This is a key aspect

of kernel design, work-items cannot communicate with each other unless they belong to

a subgroup. The execution model is thus responsible for loading the memory needed to

run computations on the device, designing the execution of the multiple work-items, and

transferring the results back to the CPU once the kernel execution is completed.

The third model for the specification is called the memory model and defines the abstract

memory hierarchy of the execution. The hierarchy begins with global memory which is

memory that can be accessed by all work-items. Global memory is the slowest type of

memory to each processor and is the area where the data transferred from the host to the

device resides until it is explicitly moved elsewhere. The second type of memory is called

local memory and it is accessible to a specified group of work-items called a workgroup. The

size and dimension of each workgroup is specified in the execution model. Local memory

has a much shorter latency and higher bandwidth than global memory. The third type

of memory in the hierarchy is called private memory and it is accessible to one individual

work-item. This is usually register data that has the fastest access to the processor. In

addition, there is a fourth type of memory called constant memory that is accessible to all

work-items but is designed for read-only data that is accesses by all work-items at once.

Constant memory resides in part of the global memory.

The last model in the specification is the programming model which describes how the

threads are physically executed in the hardware. This model is architecture dependent as

each device, be it a GPU or a CPU, has a different number of processing elements to execute
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the work-items.

The most important part to understand from this discussion of GPU computing and

OpenCL is that the multi-threaded parallelism of a GPU is fundamentally different from

the multi-threading parallelism in a CPU. A multi-threaded program in a CPU can either

run multiple instances of a function using a handful of very sophisticated cores, or it can

utilize complex control logic to execute a single program in parallel by issuing sequential

instructions to the multiple cores in or out of order. In contrast, a GPU runs a program

in parallel by executing a user defined kernel hundreds of times by its hundreds of simpler

cores. Thus, in GPU programming, the responsibility of finding the right compute intensive

portions of the program lies in the developer’s understanding of the application.

In the next two chapters we describe the most computationally intensive portions of the

digital tomosynthesis reconstruction framework and redesign the algorithms needed to per-

form these operations to make them GPU friendly. For every kernel we design, we enforce

that it does not require too many local variables since the processing unit executing the

task will have limited fast memory and that every instance of a kernel be self-contained or

completely independent of any neighboring work-item. This allows us to solve the recon-

struction problem to produce clinical size reconstructions in minutes. Compared to serial

runs, using a GPU allows our implementation to obtain speed-ups of up to 30× for most

problems.
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Chapter 9

Trace Functions

In the forward models for the digital tomosynthesis problem proposed in this thesis, we

must analyze how the x-ray beam travels through the object to reach the detector and

generate the photon counts measured by the imaging system. To establish the behavior

of the x-ray beam inside the object we need to take into account the physical composition

of the object and the geometry of the ray. If we discretize the 3D object into voxels with

individual attenuation coefficients, we can follow the ray through each voxel and determine

the level of absorption of energy from the ray. The attenuation coefficients for the given

object can be known a priori but the length and direction of the ray as it travels through

each voxel in the object is completely determined by the geometry of the imaging system

at the time of the image acquisition. Determining the length of the ray through each of the

voxels inside the discretized object is know in the imaging and radiation therapy community

as raytracing and can be done using different algorithms.

9.1 Siddon’s Algorithm for the Exact Radiological Path

In 1985, Robert Siddon [105] formulated an exact and efficient algorithm to calculate the

radiological path through a 3D CT array. The radiological path is defined as

d =
∑
i

∑
j

∑
k

`(i, j, k)ρ(i, j, k) (9.1)
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where voxel (i, j, k) has respective density ρ(i, j, k) and `(i, j, k) is the length of the ray

traveled inside the voxel. For this problem, Siddon’s algorithm scales with the sum of linear

dimensions of the CT array as opposed to the number of terms in the sum if d were to be

calculated directly.

The general idea in Siddon’s algorithm is to consider the individual voxels in the dis-

cretization of the 3D object as intersecting equidistant orthogonal planes. Therefore, we

can interpret the intersection of the ray with an individual voxel as the intersection of the

ray with two separate planes. This allows us to compute the intersection of the ray with

all planes recursively given the initial intersection point. Figure 9.1 shows this idea in two

dimensions. Note that using this approach, we no longer consider the ray intersecting a

Figure 9.1: In two dimensions, transforming voxels to equally spaced orthogonal planes

voxel but we consider the ray’s intersection with three types of planes (x-planes, y-planes,

z-planes) where the intersections for each type of plane are independent of one another.

The parametric representation of the ray starting at point 1 and ending at point 2 is

given by the set of equations

x(α) =x1 + α(x2 − x1)

y(α) =y1 + α(y2 − y1)

z(α) =z1 + α(z2 − z1)

(9.2)

where α = 0 at point 1, α = 1 at point 2, and the triplet (x(α), y(α), z(α)) gives the location

of point α along the ray. To use this framework, we need to consider the four possibilities

for the intersection of the ray with the CT array representing the discretized object (shown

in Figure 9.2).
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Figure 9.2: Possible intersections of the ray with the CT array

The possibilities of intersection are:

(a) Point 1 and point 2 are outside the CT array, so the ray begins and ends outside

the object. In this case, the voxels that have an intersection with the ray must have

parametric value α ∈ [αmin, αmax].

(b) Point 1 is inside the CT array and point 2 is outside the CT array. That is, the ray

begins inside the object and ends outside of it. The intersected voxels for this case

must have parametric value α ∈ [0, αmax].

(c) Point 1 is outside the CT array and point 2 is inside the CT array. Here we have that

the ray begins outside the object and ends inside the object. In this case we have that

the parametric value for the voxels intersected is α ∈ [αmin, 1].

(d) The last case is when point 1 and point 2 are both inside the CT array, which happens

when the ray is completely contained inside the object. The voxels intersected in this

case have parametric value α ∈ [0, 1].

For the geometry of the digital tomosynthesis problem the source is always outside the
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object, so we are either in case (a) or case (c), depending on the space between the object

and the detector.

Given the above set up, Siddon’s algorithm computes the intersection of the ray with the

individual voxels in several steps. First, we determine the range for the parametric values of

α and calculate the sets {αx}, {αy}, {αz} for each type of plane. Next, we merge the three

sets {αx}, {αy}, {αz} in ascending order and append the computed values αmin and αmax

to the set. The length of the ray, given in units of ray length, contained in a particular voxel

is obtained by finding the difference between adjacent α values in the merged sets. Then

for each length, we find the index (i, j, k) of the corresponding voxel and sum the products

of all lengths and voxel densities to determine the radiological path length d.

For a CT array with (Nx− 1, Ny − 1, Nz − 1) voxels, the orthogonal planes (equidistant

in parallel) can be written recursively as

xplane(i) =xplane(1) + (i− 1)dx

yplane(j) =yplane(1) + (j − 1)dy

zplane(k) =zplane(1) + (k − 1)dz

where dx, dy, dz are the distances between the planes along each spatial dimension. Note

that these values also correspond to lengths of the side of the voxels. We also denote the

coordinates for point 1 by (x1, y1, z1) and point 2 by (x2, y2, z2).

To begin the recursion in the algorithm, we must find the parametric values for the

initial and final intersection of the ray with the orthogonal planes, given by αmin and αmax.

The values are

αmin = max(0,min[αx(1), αx(Nx)],min[αy(1), αy(Ny)],min[αz(1), αz(Nz)]) (9.3)

αmax = min(1,max[αx(1), αx(Nx)],max[αy(1), αy(Ny)],max[αz(1), αz(Nz)]) (9.4)

where α∗(1) is the parametric value of α for the intersection of the ray with the first ∗-plane

and α∗(N∗) is the parametric value for the intersection of the ray with the last ∗-plane.
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Using Equation (9.2), we have that αx(1), αx(Nx) are given by

αx(1) =
xplane(1)− x1

x2 − x1
, αx(Nx) =

xplane(Nx)− x1

x2 − x1
(9.5)

and similarly for y and z. Note that if the parametric value for the final intersection is

less than the parametric value for the initial intersection (that is, αmax ≤ αmin), then the

ray does not intersect the object. In addition, if any of these values x2 − x1, y2 − y1, or

z2 − z1 is equal to zero, then the ray is perpendicular to the plane and the α value for this

intersection is ignored.

Since we are interested in the intersection of the ray with the object, we would like to

determine minimum and maximum indices of the planes that represent the object. These

planes will have parametric values (αmin, αmax). The range of the indices for each type

of plane is denoted by (imin, imax), (jmin, jmax), and (kmin, kmax). For the x-planes we

have

if x2 − x1 ≥ 0 then

imin = Nx −
xplane(Nx)−αmin(x2−x1)−x1

dx
,

imax = 1 +
x1+αmax(x2−x1)−xplane(1)

dx

else

imin = Nx −
xplane(Nx)−αmax(x2−x1)−x1

dx
,

imax = 1 +
x1+αmin(x2−x1)−xplane(1)

dx

end if

and similarly for the y-planes and z-planes.

So far, we have determined the range of indices (imin, imax), (jmin, jmax) and (kmin, kmax)

for the planes that correspond to the object and the range of parametric values for the points

where the ray intersects the object (αmin, αmax). Using this information, we can build three

independent sets of parametric values {αx}, {αy}, {αz} that represent the intersection of the

ray with all the orthogonal planes in our range of interest. For the x-planes we have that the

set occurs in either of the following orders:

if x2 − x1 ≥ 0 then

{αx} = {αx(imin), αx(imin + 1), ..., αx(imax − 1), αx(imax)}
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else

{αx} = {αx(imax), αx(imax − 1), ..., αx(imin + 1), αx(imin)}

end if

where αx(i) =
xplane(i)−x1

x2−x1 = αx(i − 1) + dx
x2−x1 . If follows similarly for the y-planes and

z-planes. Note that each term in a set {α∗} corresponds to an intersection of the ray with

an x, y, or z plane and the terms in the sets are in ascending order. Therefore, if we merge

the three sets {αx}, {αy}, {αz} into {α} and append αmin, αmax we obtain a global set

containing all intersections of the ray with the discretized object. For convenience we index

the merged sets as

{α} = {α(0), α(1), ..., α(n)}.

If the global {α} set is sorted in ascending order, two adjacent terms in the set will corre-

spond to the intersection of the ray with a particular voxel.

Define the value

d12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Then, the length of the ray traveled between two plane intersections globally labeled m− 1

and m is given by the eqaution

`(m) = d12(α(m)− α(m− 1)).

The voxel corresponding to the intersections m and m− 1 is indexed by (i(m), j(m), k(m))

and contains a point along the ray which is the midpoint of the two intersections of the

voxel. Let the midpoint of the ray inside the voxel be given by the parametric value

αmid = α(m)−α(m−1)
2 , then the index for the voxel intersected is

i(m) =1 +
x1 + αmid(x2 − x1)− xplane(1)

dx

j(m) =1 +
y1 + αmid(y2 − y1)− yplane(1)

dy

k(m) =1 +
z1 + αmid(z2 − z1)− zplane(1)

dz
.

(9.6)
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The radiological path can then be written as

d =
m∑
n=1

`(m)ρ(i(m), j(m), k(m)) = d12

m∑
n=1

[α(m)− α(m− 1)]ρ(i(m), j(m), k(m))

where ρ(i(m), j(m), k(m)) is the density of the voxel i(m), j(m), k(m).

Siddon’s algorithm for a 3D CT array path calculation is as follows

Algorithm 9.1.10

1: Determine the coordinates of the start and end of the ray (x1, y1, z1) and (x2, y2, z2)

2: Let dx, dy, dz denote the size of the voxels in the CT array along each dimension

3: Compute αx(1), αx(Nx), αy(1), αy(Ny), αz(1), and αz(Nz)

4: Determine the parametric range (αmin, αmax)

5: Find index ranges (imin, imax), (jmin, jmax) and (kmin, kmax)

6: Find the sets {αx}, {αy}, {αz}

7: Merge the sets and sort to find the global set {α}

8: Calculate the length ` for all voxels

9: Compute the midpoint of the ray inside all voxels {αmid}

10: Compute the index (i, j, k) for the voxel with the corresponding ` and αmid

11: Sum the product of the voxel density with the ray length ` for all voxels

d =
∑
i

∑
j

∑
k

`(i, j, k)ρ(i, j, k)

Note that a direct implementation of Algorithm 9.1.10 is naturally sequential. Siddon’s

algorithm spends 40% of the time finding the voxel indices i(m), j(m), k(m) from the α

parameters and 26% of the time sorting the global set {α}.

In the digital tomosynthesis forward problem, we are interested in using an efficient

version Siddon’s algorithm to evaluate the polyenergetic formulation of Beer’s law given

in Equation (3.9). To do this we need to develop a parallel implementation of Algorithm

9.1.10 that eliminates the sorting operation and takes advantage of the resources available

in the GPU architecture. In the next section we describe a task parallel version of Siddon’s

algorithm that is the basis of our implementation. The specific details of the connection

between Siddon’s algorithm and our reconstruction process are described in Section 9.3.
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9.2 A Task Parallel Version of Siddon’s Raytrace

Raytracing is frequently used in dose calculations for radiation therapy (or radiotherapy),

where radiation beams are sent to cancerous tumors to kill malignant cells. In this context,

is important to avoid directing the beam toward healthy cells, or in the very least, try to

minimize the effect the radiation dose will have on these cells. This is where raytracing is

needed in the radiation therapy process, to understand the effect of the radiation beam on

the different materials present inside the human body near the area of the tumor. In 2009, de

Greef et al. [34] developed an approach to accelerate the raytrace computations needed for

radiotherapy dose calculations using a GPU. Their approach is based on Siddon’s algorithm

for the exact calculation of the radiological path length. We describe their algorithm as a

basis for our implementation approach.

The general idea of the accelerated algorithm is the same as Siddon’s: consider the

discretized object as three sets of intersecting orthogonal planes and determine the inter-

sections of the ray with each plane. The radiological path length is given by the summation

of the length of the ray traveled through each voxel multiplied by the electron density of

the voxel. In our tomosynthesis work, we consider the innate quantity of the voxel to be the

attenuation coefficient of the material that composes the object as opposed to the electron

density. A big difference between Siddon’s algorithm and the algorithm developed by de

Greef et al is that the latter allows for non-equidistant z-planes in the application. The CT

scans used for radiotherapy treatment can be obtained with different slice thickness, so the

raytrace must be adjusted for this case. Thus, the implementation in [34] relies on having

an array that contains the positions of each plane in the z direction called zplane. However,

this only affects the computation of the z-dependent variables.

The task parallelism exploited by the implementation in [34] calls for each individual

GPU thread to perform a raytrace to a single voxel in the region of interest. Therefore,

each raytrace is independent of one another, making this the suitable kernel for the GPU.

Algorithm 9.2.11 shows their schematic implementation.

Algorithm 9.2.11

1: Use Siddon’s formulas to compute the parametric value αmin
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2: Use Siddon’s formulas to compute imin, jmin, kmin

3: Set αcurrent = αmin and find the α values for potential next intersecting planes:

αx,next = αx(imin), αy,next = αy(jmin), αz,next = αz(kmin)

4: Initialize v, vold which contain the index of the voxels

5: while αcurrent < 1.0 do

6: if (αy,next < αx,next) & & (αy,next < αz,next) then

7: αmid =
αcurrent+αy,next

2 (Ray intersects the y-plane)

8: ` = αy,next − αcurrent, set αcurrent = αy,next

9: αy,next = αy,next +
dy

Y2−Y1 (Potential next y-plane)

10: update voxel index v

11: else if (αx,next < αz,next) then

12: αmid =
αcurrent+αx,next

2 (Ray intersects the x-plane)

13: ` = αx,next − αcurrent, set αcurrent = αx,next

14: αx,next = αx,next + dx
X2−X1

(Potential next x-plane)

15: update voxel index v

16: else

17: αmid =
αcurrent+αz,next

2 (Ray intersects the z-plane)

18: ` = αz,next − αcurrent, set αcurrent = αz,next

19: αz,next =
zplane[k]−Z1

Z2−Z1
(Potential next z-plane)

20: update v, k

21: end if

22: if ρ(vold) 6= 0 then

23: radiological path length = radiological path length +ρ(vold)`

24: end if

25: vold = v

26: end while

27: radiological path length = d12×(radiological path length)

The idea of Algorithm 9.2.11 is to begin by using the formulas presented in Siddon’s

algorithm to determine the initial intersection of the ray, and then follow the ray through
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the future intersecting planes using recursion patterns. To determine the initial intersection

we find the initial parametric value αmin and the indices for the initial planes inside the

object imin, jmin, kmin. Note that once the ray intersects the first plane, there are three

possible intersections for the ray to have next:

1. it can intersect an x-plane,

2. it can intersect a y-plane, or

3. it can intersect a z-plane.

We can use Siddon’s formulas to calculate the three candidates for the next α parameter

denoted αx,next, αy,next, or αz,next. By Siddon’s approach and the fact that the global set {α}

is in ascending order, we know that the next intersecting plane will be the one corresponding

to the minimum of αx,next, αy,next, or αz,next. Figure 9.3 shows an example of the potential

next plane intersections of the ray in two and three dimensions. When we determine the

(a) Potential ray intersections 2D (b) Potential ray intersections 3D

Figure 9.3: Example of the potential intersections the ray can have.

next parametric value of α we can then compute the length of the ray through the voxel

(the difference between the current α and the previous α), the midpoint of the ray inside

the voxel (αmid), and the voxel index v. After these values are computed, the process can

begin again and the next intersecting plane is found. This process is repeated until the

parametric value αcurrent is greater than one since we are in case (c) of Figure 9.2 where

the ray begins outside the CT array and ends inside the object.
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9.3 Raytracing in Digital Tomosynthesis

Geometrically, raytracing is the process of determining the length of the intersection of a

given ray with each of the voxels in a discretized object. This operation is inherent to the

digital tomosynthesis problem as we are interested in the interaction of an x-ray sent from

a source at incident angle θ with the matter present in the object. Recall from chapters

four through seven that the discrete formulation of Beer’s law for the polyenergetic digital

tomosynthesis problem is

biθ =

Ne∑
e=1

se exp

− Nv∑
j=1

aijθ µe,j

 (9.7)

where Ne is the number of discrete energies, se is the value of the spectral distribution

function for energy level e, Nv is the number of voxels, µe,j is the attenuation of the voxel j

for energy level e, and aijθ is the length of the x-ray passing through voxel j and contributing

to pixel i in projection θ. Note that the summation inside the exponential in the equation

above is similar to the formula for the radiological path length in Equation (9.1). For the

tomosythesis problem, we can say that µe,j corresponds to the density of the voxel and aijθ

is the length of the ray.

The evaluation of the summation formula

Nv∑
j=1

aijθ µe,j

appears at several points in the reconstruction frameworks outlined in the previous chapters.

We need this quantity to evaluate the expected value of each pixel in a given projection,

evaluate the derivatives of the cost function, and build the Hessian matrix. Since this

formula depends on both the pixel i and the incident angle θ, for a given reconstruction

problem we would be evaluating this summation as many times as the number of pixels in

the detector (which can generally be about 2500 by 4000 pixels) and for as many incident

angles as the number of projections (typically 15 to 30). Therefore, using Algorithm 9.1.10

to evaluate each instance of this summation is too expensive in terms of memory and
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computation time. We need to develop an efficient algorithm to evaluate the summation

expression millions of times in the reconstruction process.

9.3.1 Implementation Considerations for Siddon’s Algorithm

Implementing a direct formulation of Algorithm 9.1.10 in a GPU in posses several challenges.

First, as de Greef et al [34] point out, the amount of memory needed for a worst case scenario

geometry is more than the memory currently available on a GPU. Consider the size of the

clinical data sets we are interested in reconstructing for this thesis where we are raytracing

an object that has been discretized into 2048 × 1280 × 50 voxels. A worst case scenario

geometry would be to assume that the source is just outside the CT array representing

the object and the path of the ray is along the main diagonal. This means the ray will

intersect roughly half of the planes in each direction. If we compute the parametric sets

{αx}, {αy}, {αz} we have 1024, 640, and 25 floating point numbers for each array. When we

merge the arrays into the set {α}, we produce at most 1024+624+25 floating point numbers.

Up to this point we have roughly 2GB of storage for the parametric values resulting from

tracing a single ray from the source to one pixel. If the detector can be as large as 2500

by 4000 pixels and we are using between 15 and 30 projection angles, the storage costs are

unreasonable. This aspect alone shows that this type of implementation is not suitable for a

GPU because the raytrace for all pixels in the detector will not fit in the available memory

for any device in the current market. If we perform each raytrace separately, the CPU-GPU

memory communication will out weigh the reduction of the computational cost.

Another consideration that we must make if we were to use Siddon’s approach directly

on a GPU is how to merge the sets {αx}, {αy}, {αz} into the global set {α} and sort the

values. A sorting operation is notoriously slow on a GPU since it is a memory bound kernel.

For our digital tomosynthesis reconstruction, we need raytracing to happen very fast, and

even optimizing the sorting operation can still make this process very slow in comparison to

other approaches. In order to use Siddon’s algorithm efficiently and accurately on a GPU,

we have to redesign the raytracing kernel.
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9.3.2 Raytracing for Digital Tomosynthesis on a GPU

Our goal is to raytrace the x-ray beam starting at the position of the source, through the

discretized object, and ending at the center of each pixel in the detector (see Figure 9.4).

This means, each pixel in the detector will perform a raytrace using a call to Siddon’s

Figure 9.4: Raytracing in digital tomosynthesis. Multiple rays from a single source ending
at the center of each pixel in the detector to produce one projection.

algorithm. To do this, we need to develop “light weight” tasks that can be mapped to GPU

threads. These threads must have the following two properties:

1. A task should not require too many local variables, the processing unit executing the

task will have limited “fast” memory.

2. A task should be self-contained. That is, a task should be completely independent of

any neighboring task.

In our implementation, an independent task is a single pixel raytracing from the source

to its location on the detector. Therefore, in order to make the task of each pixel light

weight, we must address the two computational weaknesses of Algorithm 9.1.10 which are

the amount of memory needed for a single raytrace and the sorting of the parametric values

{α}. The iterative sorting idea described in Algorithm 9.2.11 effectively addresses these

two issues.

In Algorithm 9.2.11 the computation of the sets {αx}, {αy}, {αz} and the sorting of the

global {α} is combined using a stepping approach. Given a starting {α} = {α(0)} the idea

is to determine the three candidates αx,next, αy,next, αz,next for the next element α(1), select
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the correct value of α(1) and discard the other two values. This decreases the memory

requirement for each task significantly as only the parametric values on the set {α} are

stored, and it eliminates the need to have a global sorting operation since a three element

sort is done before adding a new value to the global parametric set. Once the right α(1)

value is selected, we can use it to compute the length of the ray inside the voxel and the

voxel index. The product of the voxel density and the length of the ray through the voxel is

added to a running sum and the loop moves on to find the next α(2) value for the set {α}.

Using this stepping approach, the task for each pixel only needs to store the geometry of the

problem, size of the voxel, two adjacent α values from the set {α} and the variable storing

the total radiological path. This process continues until the end of the ray is reached.

Our implemented raytrace operation for the digital tomosynthesis reconstruction prob-

lem is a modification of the approach used in [34]. Algorithm 9.3.12 shows our raytracing

kernel for any pixel in the detector and any projection angle. Note that in order to gen-

eralize the kernel to all the pixels in the detector we need to take into account the fact

that the x-rays emitted by the source can approach the center of the pixels in the detector

from different directions along each dimension. To do this, we add checkpoints inside the

kernel to determine the direction in which the ray approaches for each pixel. For example,

if the source is to the left of a pixel, x2 − x1 > 0, if it is to the right then x2 − x1 < 0,

and if x2 − x1 = 0 the ray is parallel to the x-planes and no intersections of this type are

considered.

Our raytrace kernel for a single pixel in the detector is given as follows:

Algorithm 9.3.12

1: Determine the position of the start of the ray (x1, y1, z1)

2: Find the center of the pixel (x2, y2, z2).

3: Compute the ray length d12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

4: Use Siddon’s formulas to compute the parametric range (αmin, αmax)

5: Use Siddon’s formulas and the direction the ray approaches the pixel to compute

(imin, jmin, kmin) and (imax, jmax, kmax)

6: if (X2 −X1) ≥ 0 then
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7: αx,next =
Xplane(1)−imindx−X1

X2−X1

8: else

9: αx,next =
Xplane(1)−(imax−1)dx−X1

X2−X1

10: end if

11: if (Y2 − Y1) ≥ 0 then

12: αy,next =
Yplane(1)−jmindy−Y1

Y2−Y1

13: else

14: αy,next =
Yplane(1)−(jmax−1)dy−Y1

Y2−Y1

15: end if

16: if (Z2 − Z1) ≥ 0 then

17: αz,next =
Zplane(1)−kmindz−Z1

Z2−Z1

18: else

19: αz,next =
Zplane(1)−(kmax−1)dz−Z1

Z2−Z1

20: end if

21: If αx,next = 0, αy,next = 0, or αz,next = 0 set it to a number greater than one.

22: Set αcurrent = αmin

23: Initialize the resulting value for the pixel: pixel value = 0

24: if αmax < αmin then

25: The ray does not intersect the volume to reach the center of the pixel

26: else

27: while αcurrent < αmax (while the ray is inside the CT array) do

28: if (αy,next < αx,next) & & (αy,next < αz,next) then

29: αmid =
αcurrent+αy,next

2 (Ray intersects the x-plane)

30: ` = αy,next − αcurrent; αcurrent = αy,next

31: αy,next = αy,next +
dy

Y2−Y1 (Potential next y-plane)

32: else if (αx,next < αz,next) then

33: αmid =
αcurrent+αx,next

2 (Ray intersects the x-plane)

34: ` = αx,next − αcurrent; αcurrent = αx,next

35: αx,next = αx,next + dx
X2−X1

(Potential next x-plane)

36: else
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37: αmid =
αcurrent+αz,next

2 (Ray intersects the z-plane)

38: ` = αz,next − αcurrent; αcurrent = αz,next

39: αz,next = αz,next + dz
Z2−Z1

(Potential next x-plane)

40: end if

41: Find the coordinates of the current voxel

i =
X1−αmid(X2−X1)−Xplane(1)

dx
, j =

Y1−αmid(Y2−Y1)−Yplane(1)
dy

,

k =
Z1−αmid(Z2−Z1)−Zplane(1)

dz

42: if voxel (i, j, k) is part of the discretized volume then

43: pixel value = pixel value+ d12 × `× volume(i, j, k)

44: end if

45: end while

46: end if

We begin Algorithm 9.3.12 by determining the starting point of the ray and the center of

the pixel in question (the end of the ray). Then use Siddon’s formulas to calculate the range

of the parametric values given by (αmin, αmax). In our case, we must find a value for αmax

because the ray can end outside the volume for some pixels in the detector. This is also why

we must find all three index ranges (imin, jmin, kmin) and (imax, jmax, kmax) to determine

the last voxel the ray crosses before it exits the 3D object. The next step is to determine

the potential intersections of the ray with the orthogonal planes. We use Siddon’s formulas

to determine the possible αnext values. If (x2 − x1) ≥ 0, then by Siddon’s argument the set

{αx} = {αx(imin), ..., αx(imax)}, so we find the next potential parametric value by

αx,next = αx(imin) =
xplane(1) − imindx − x1

x2 − x1
.

However, if (x2 − x1) < 0 then the set corresponding to the parametric values will occur as

{αx} = {αx(imax), ..., αx(imin)}, so we find

αx,next = αx(imax) =
xplane(1)− (imax − 1)dx − x1

x2 − x1
.
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The process follows similarly for the sets {αy} and {αz}. Note that if the values αx,next, αy,next,

or αz,next are equal to zero at any point, we know that the ray will not cross any more planes

in that dimension so we set the corresponding value αnext to a number greater than one to

avoid falling into an infinite loop.

After the initialization process we are ready to begin tracking the ray. Here we check if

the ray actually enters the object by determining if αmin < αmax and break if necessary. If

the ray does enter the object, we use a modification of the loop in Algorithm 9.2.11 to take

advantage of the equidistant z-planes. This eliminates the need to have a separate array

containing the position of the z-planes, and thus an additional access to global memory.

For our algorithm, once the while loop begins we do not need to request global memory

accesses other than to retrieve the attenuation coefficient of the voxel. Inside the while

loop, the ray will be tracked from the starting intersection with the object to the last voxel

the ray crosses before it exits the object to reach the center of the pixel. At each instance

of the while loop, a voxel length is calculated, the corresponding voxel index for that length

is computed, and the sum variable is updated. The output of a single call of this algorithm

is a single value that represents the energy measured by the individual pixel in the detector

after the x-ray attenuates through the object. The set of values collected for all the pixels

in the detector represents a single monochromatic projection of the object acquired by the

imaging system.

9.3.3 Our Modified Raytrace vs. a Direct Implementation of Siddon’s

Algorithm

In order to determine the accuracy of our algorithm we simulate sample projections using

a direct implementation of Siddon’s algorithm (Algorithm 9.1.10) and our own modified

raytrace (Algorithm 9.3.12). We begin by considering a raytrace of a the two dimensional

object. In this setup, we have a one dimensional detector and a two dimensional object

that is discretized into 2D voxels, each having their own attenuation coefficient. For the

simulated sample projections, we assume homogeneous object with attenuation coefficient

one. This allows us to further evaluate the accuracy of the geometry of the ray, since the

resulting value for each pixel in the detector should be the length of the portion of the ray
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that travels through the object, starting at the source and ending at the center of the pixel

in the detector. We generated 15 projections of the object at different incident angles.

While generating our sample projections, we noticed an oscillating artifact begin to ap-

pear in some of the results. The projections generated using Algorithm 9.1.10, our modified

raytrace, and the difference between the two can be seen in Figure 9.5. This oscillation is

Figure 9.5: Comparison of resulting projections in 2D between direct Siddon’s raytrace and
unfiltered tomosynthesis raytrace

more noticeable in some of the projections and a close look at the difference between the

two outputs shows the relative error between our approach and the direct implementation of

Siddon’s raytrace is about 2%. We performed the same comparison for a three dimensional

problem, where the object is discretized into 3D voxels and the detector is two dimensional.

In this case the artifacts are more prominent and create a distinct grid that almost anni-

hilates the expected shape of the raytrace in the projection (see Figure 9.7). The artifacts

are due an overestimation of the length of the ray by the while loop in Algorithm 9.3.12.

To fix the overestimation of the length of the ray we propose conditions to terminate the

while loop earlier. The artifact is purely caused by round off error and it is easily eliminated

by running the while loop for as long as αmax − αcurrent > τ where τ is a tolerance level

depending on machine epsilon. For our experiments, using a tolerance τ = 10−10 for double

precision and τ = 10−6 for single precision produces excellent results. Figures 9.6 and 9.7

show how our modified raytrace compares to a direct implementation of Siddon’s algorithm

in double precision for two and three dimensional problems.

Using a tolerance level to terminate the while loop in our modified raytrace shows that



132

Figure 9.6: Comparison of resulting projections in 2D between direct Siddon’s raytrace and
filtered tomosynthesis raytrace using a tolerance of 1000× machε

Algorithm 9.3.12 is an accurate implementation of Siddon’s algorithm that can run using

multiple threads on a GPU. In numerical experiments, we see that our modified raytracing

algorithm performs significantly better than a direct implementation of Algorithm 9.1.10.

For example, in serial we see that our modified raytrace runs, on average, in about 23% of the

time that Siddon’s algorithm runs, being accurate to fourteen digits in double precision.

For the digital tomosynthesis problem, we use Algorithm 9.3.12 to evaluate the forward

models and the derivatives of our cost function in the reconstruction process.

Figure 9.7: Left: In 3D a filtered raytrace using a tolerance of 1000× machε. Right: In 3D
the same problem using and unfiltered raytrace
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9.4 The Backprojection Operation

As described in Section 3.4.1, the backprojection operation is crucial to the reconstruction

process in digital tomosynthesis. Recall from the previous discussions that in numerical

analysis terms, performing a raytrace operation is the equivalent to performing a matrix

multiplication with the raytrace matrix Aθ. That is, if the vector v represents the discretized

volume, the operationAθv will result in a monochromatic projection of the object at incident

angle θ. We choose to use a raytrace algorithm to perform the matrix vector products as

opposed to storing the full matrix Aθ because of storage limitations. For example, for a

clinical size problem, the size of each Aθ for θ = 1, 2, ..., Nθ is Np × Nv where the values

Np = 2048× 1280, Nv = 2048× 1280× 50, and Nθ = 15 to 30. Even storing Aθ in a sparse

matrix format is unreasonably expensive because the structure of the matrix is completely

determined at the time of image acquisition.

In this chapter, we have thus far developed a modified raytrace kernel from Siddon’s

algorithm to efficiently compute Aθv in a GPU. This allows us to evaluate very quickly any

of the forward models for the reconstruction problem presented in the previous chapters.

However, for the each iteration of the polyenergetic reconstruction problem we also need

to perform a matrix-vector product using the transpose of the raytracing matrix ATθ . In

medical imaging, the product of ATθ and a vector p representing the observed projection of

an object is called a backprojection, and the result is a vector v representing the density

of each voxel in the discretized object. Extending our modified raytrace to compute a

backprojection is not a straightforward process and can be very slow. Therefore, we need

to develop a backprojection kernel that can be executed by independent threads in a GPU

to compute the product ATθ p.

Our backprojection operator extends on the idea presented in Figure 3.3. The goal is

to trace back all rays to a given voxel, and average the measured data in pixel i along all

voxels that the ray crossed giving more “weight” to those voxels where the length of the

ray was longer. That is, for each ray, we compute the length traveled through all voxels,

and the density of the voxel is set to be a weighted average of the energy measured by the

pixel at the end of the ray. If we drive the parallelism of the backprojection operation by
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the resulting voxel value, we can enqueue the backprojection kernel for each voxel. This

leads to independent identical “light weight” tasks that map to GPU threads. Algorithm

9.4.13 shows our backprojection operation for a given voxel indexed (x, y, z) using a single

projection pθ.

Algorithm 9.4.13 Backprojection Operation

1: For given voxel (x, y, z) center of the voxel (x2, y2, z2)

2: Use the positions of the center of the voxel to determine the range of parametric

values for the ray inside the voxel

(αx,min, αx,max), (αy,min, αy,max) and (αz,min , αz,max).

3: Find the parametric values αmin = max(0, αx,min, αy,min, αz,min, ) and

αmax = min(1.0, αx,max, αy,max, αz,max, )

4: if αmax < αmin then

5: The ray does not cross the voxel

6: end if

7: Compute the length of the ray from the source to the center of the voxel

d12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

8: The length of the ray inside the voxel is a fraction of the length of the ray from the

source to the center of the voxel, given by ` = d12 × (αmax − αmin)

9: Retrieve the corresponding value for the pixel in the projection p(i, j)

10: The value of the density of the voxel is given by volume(x, y, z) = `× pθ(i, j)

For multiple projections Nθ, we perform Nθ backprojections and add the density values for

corresponding voxels.

The idea of algorithm 9.4.13 is to limit the scope of the raytrace to the voxel in question.

First, we begin by determining the center of the voxel and the range of parametric values

(αx,min, αx,max), (αy,min, αy,max) and (αz,min , αz,max) that any ray crossing the voxel

can have. Then, we find the global values for αmin and αmax using Sddon’s formulas to

determine if the ray crosses the voxel in question. If the ray crosses the voxel, we calculate

the length of the ray as a fraction of the length of the ray from the source to the voxel.

Then we find the index of the pixel in the projection data that will be averaged over the
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path of the ray and we compute the density of the voxel.

9.5 Summary

In this chapter we have developed two efficient algorithms to perform the matrix vector prod-

ucts Aθv (called a raytrace) and ATθ p (called a backprojection) where Aθ is the raytracing

matrix in the digital tomosythesis problem. An efficient and fast approach to compute these

products is crucial to the polyenergetic reconstruction frameworks described in Chapters 4-7

since these are the building blocks of the cost function and its derivatives. We choose to use

a raytrace and backprojection algorithm to perform the matrix vector products as opposed

to storing the full matrix Aθ because of storage limitations. For our problems, the size of

each Aθ is Np×Nv where the values Np = 2048×1280, Nv = 2048×1280×50, and Nθ = 15

to 30. Even storing Aθ in a sparse matrix format is unreasonablly expensive because the

structure of the matrix is completely determined at the time of image acquisition.

To perform the product Aθv we have described Siddon’s algorithm and its shortcomings.

Using the work in [34] we developed a raytracing kernel that does not require a sort operation

and uses limited memory to store its variables. Our new raytrace kernel can run as fast

as 4× the direct implementation of Siddon’s algorithm. In addition, we can enqueue an

arbitrary number of threads to execute the kernel in parallel, thus making it scalable and

allowing us to compute a full projection in one single GPU function call.

To perform the product ATθ p we have outlined a simple backrojection algorithm that

computes the voxel densities as a weighted average of the pixel value. As in the case with

the raytracing kernel, the backprojecton kernel can be enqueued by an arbitrary number of

threads at once, each representing a voxel in the discretized object. In the next chapter we

discuss the software design for the reconstruction framework we have proposed for the digital

tomosynthesis problem, including the details of execution topology and kernel functionality.

In addition, we describe how the functionality of the raytrace and backprojection kernel can

be extended to produce fast tomosynthesis reconstructions.



136

Chapter 10

Computational Design

As described in Chapter 8, the digital tomosynthesis reconstruction problem is computation-

ally and memory intensive as we deal with millions of input pixels to reconstruct a volume

discretized in terms of billions of voxels. In Chapter 9 we described an optimized raytracing

and backprojection operation that reduces storage requirements and allows us extract the

parallelism of the application by mapping the most intensive computational tasks to the

hardware of a GPU. This allow us to perform matrix-vector products in seconds using one

single GPU. However, optimizing the raytrace and backprojection operations is not enough

to speed-up the reconstruction process to a reasonable time. Ultimately, we would like our

reconstructions to run in a matter of minutes in order to compete with the reconstructions

provided by the imaging device.

In this chapter we describe the implementation details of our application to solve the

polyenergetic digital breast tomosynthesis reconstruction problem using a single GPU. The

application is written in C++ using OpenCL as the API. We focus on efficient handling

of memory communication and increasing computational performance to achieve the best

results. We discuss the execution details of the raytracing and backprojection kernels and

present three implementations of the reconstruction algorithm, a serial approach, an ap-

proach focused on the optimization of the matrix products by threading for functionality,

and a fused kernel approach. We show that of all three implementations a fused kernel

approach is the most effective in our reconstruction framework, producing viable recon-

structions in less than five minutes.
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10.1 Serial Implementation

We begin by considering the reconstruction framework in serial as a basis for our GPU

optimization comparisons. Recall from Chapters 4-7 that the reconstruction framework we

propose in this thesis is either a gradient descent algorithm or a Newton method that finds

the maximum likelihood estimator for the Poisson based likelihood function arising from

the forward model. That is, ultimately, we are solving the optimization problem

wMLE = arg min
w

{
Nθ∑
θ=1

−L(bθ,w)

}
. (10.1)

where w = {w:,2, ...,w:,Nm} is the set of unknown weight fractions that depend on the

forward model used. The cost function is given by

−L(bθ,w) =

Np∑
i=1

(b̄iθ + η̄i)− biθ log(b̄iθ + η̄i) + c (10.2)

and b̄iθ + η̄i depends on the forward model used from Chapter 4-7. Note that the first and

second derivatives of the function L(bθ,w) are known. In this thesis we discuss the im-

plementation details of the gradient descent algorithm, a fully functional Newton approach

implementation is left as future work.

Schematically, the iterative process for any of the four forward models proposed in

Chapters 4-7 is shown in Figure 10.1. For the purpose of this discussion we will use the

simplified multi-material model for attenuation described in Chapter 7 using Nm = 3, that

is, three materials are modeled. This gives the expected value of all pixels as

b̄θ + η̄ =

ne∑
e=1

se exp (− [c3,eAθw:,3 + c2,eAθw:,2 + c1,eAθ1]) + η̄ (10.3)

where the scalars c3,e, c2,e, and c1,e depend on the linear attenuation coefficients of each ma-

terial modeled and w:,∗ represent the weight fractions of the two explicit materials modeled.
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For notation purposes, note that

[c3,eAθw:,3 + c2,eAθw:,2 + c1,eAθ1]i =

Nv∑
j=1

aijθ µe,j

hence, for this problem we have the derivative

∇(−L(bθ,w)) =

ATθ v2

ATθ v3

 (10.4)

where the i -th entry of the vector v2 and v3 is given by

v2(i) =

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se (u2,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j


v3(i) =

(
biθ

(b̄iθ + η̄i)
− 1

) ne∑
e=1

se (u3,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j

 .

(10.5)

According to Figure 10.1, we begin each gradient descent iteration by evaluating the cost

function
∑Nθ

θ=1−L(bθ,w
(k)) as a three step process. First we compute the three matrix-

vector multiplications Aθw:,3 Aθw:,2 and Aθ1 needed inside the exponential. Next, we apply

the fit using the coefficients c3,e, c2,e, and c1,e to evaluate b̄θ + η̄. Finally, we complete the

cost function evaluation by performing the summations over all pixels and all angles as

described in Equations (10.1) and (10.2). After we complete the function evaluation, we

begin to compute the derivative of the function in two steps. First we use the matrix-vector

products from the function evaluation to compute the vectors v2 and v3 corresponding to

each material. Then we perform the matrix transpose-vector products using our backpro-

jection algorithm to find ATθ v2, ATθ v3 and stack the results. To end the iteration we do a

line search to guarantee descent of the function and then start the gradient iteration with

a new starting w(k+1). The process is repeated until convergence or until we are unable to

guarantee descent in the value of the function.

For a clinical size data set, five gradient descent iterations take one to two hours to

reconstruct the volume as shown in the results of Chapter 11. However, generally we need

more than five iterations to obtain good results. We use the serial reconstruction results
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Figure 10.1: Gradient descent iteration serial scheme

shown in this section as a baseline to improve the computation time of our application with

the goal of achieving a full clinical size reconstruction in minutes.

10.2 Matrix Product Optimizations

The first approach to accelerate the performance of the reconstruction algorithm using

a single GPU is to thread the application for functionality, that is, create a kernel for

each computationally intensive portion of the process and allow the device to run that

portion before continuing the process. Profiling the serial code shows that the reconstruction

algorithm spends the majority of the time computing the matrix-vector products.

We begin to improve the serial implementation by looking at our execution of the matrix-

vector and matrix-transpose vector products. For the linear model for attenuation described

in Chapter 4, each gradient descent iteration requires two matrix-vector products and one
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matrix transpose vector product for each Aθ. For the more realistic quadratic and simplified

multi-material cases (modeling three materials) described in Chapters 5 and 7, we need to

perform at least three matrix-vector products and two matrix transpose vector products per

iteration for each Aθ. In our numerical experiments we use data sets containing Nθ = 15

projection angles, so for the quadratic and simplified multi-material cases we need at least

45 matrix-vector products and 30 matrix transpose vector products per gradient descent

iteration. Note that each raytracing matrix Aθ is very large, size Np × Nv which, for our

sample data, translates to 1280 × 2048 rows by 1280 × 2048 × 50 columns. Although we

know that the matrix Aθ is sparse, it is neither symmetric nor structurally symmetric and

the structure of the matrix is hard to estimate as it is completely determined at the time of

image acquisition. The best thing we can say about the sparsity of Aθ is that the maximum

number of nonzeros per row is
nx + ny + nz

2
which corresponds to a ray traversing the

discretized object along the main diagonal.

Although we do not build the matrices Aθ explicitly, we are able to perform very fast

matrix-vector and matrix transpose-vector products with these matrices by implementing

Algorithms 9.3.12 and 9.4.13 described in Chapter 9. Using a modified version of Siddon’s

Figure 10.2: Matrix vector product as a raytrace

algorithm [105] we are able to perform the matrix products as a raytrace by reverting to

the inherent two dimensional index of each entry in the vector, since each vector physically

represents a stacked projection (see Figure 10.2).

However, even by using an optimized raytracing algorithm, enqueuing a kernel call to
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perform a single matrix product Aθ is not an efficient utilization of GPU resources, as

we have to transfer data from CPU to GPU at each matrix product kernel call and then

we have to combine the results for all products using the CPU. Recall that for a single

matrix-vector product Aθu, each thread needs to know the vector u which represents the

discretized volume and the position of the source in the imaging system for projection angle

θ. Since we know the source position for all projections at the start of the reconstruction

process and this information is a small 3×Nθ array of doubles containing the coordinates

of the source, we can load the geometry information for all projections into the device once

for the full reconstruction time. In this set-up, there is still no thread communication or

synchronization needed, as each thread will be computing a single output value for the

pixel corresponding to its thread ID in the execution model. This ensures that there is no

chance of a race condition or data hazards. Therefore, by having the vector and geometry

Figure 10.3: 3D Execution topology for raytrace kernel. Note that the thread blocks are
consecutive pixels and pixels that are traced by the same ray along multiple projections
which ensures memory coalescing.

information in the device, we can avoid the overhead costs of enqueueing each Aθu for

θ = 1, ..., Nθ individually. Furthermore, we can take advantage of a 3D execution topology

to enqueue a single kernel call that will produce all Nθ products at once. The parallelism

for the raytrace is driven by the output data and the execution topology is shown in Figure

10.3.
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The execution model shown in Figure 10.3 allows us to take advantage of data locality

and memory coalescing since a single workgroup will be composed of threads that represent

either neighboring pixels or pixels traced by the same ray along multiple projections. Table

10.1 shows the advantages of enqueueing all matrix-vector products and matrix transpose-

vector products in a single kernel for all angles as opposed to issuing multiple individual

calls for each product. The vector xθ represents a projection at incident angle θ, the vector

x without subscript represents a vector of all projection data xθ for θ = 1, ..., Nθ stacked,

and the matrix A without subscript represents the operator

A =



A1

A2

...

ANθ


, and AT =

[
AT1 AT2 ... ATNθ

]
. (10.6)

The results of Table 10.1 give us two important conclusions. First, the raytracing

Algorithm 9.3.12 and the backprojection Algorithm 9.4.13 run much faster in a GPU as

opposed to a CPU. A single raytrace Aθv can be done in less than two seconds on the device

as opposed to over 30 seconds in serial, representing a speed-up of over 20×. In addition,

a single backprojection ATθ xθ can be done in less than six seconds in the GPU as opposed

to over 130 seconds in serial, representing a speed up of over 22×. The discrepancy in the

time to compute a raytrace and backprojection is attributed to the fact that even though

the two algorithms fundamentally computing the same quantities, they are not the same.

The second conclusion obtained from Table 10.1 is that the overhead cost of enqueuing

multiple kernels is significant. Note that enqueueing 15 raytrace kernels independently will

take approximately 24 seconds whereas a single kernel call that accounts for all projection

angles will run in less than 10 seconds. The same can be said about the backprojection

kernel where multiple calls to the kernel will take about 30 seconds as opposed to the almost

6 seconds it takes for a single kernel execution.

We can optimize the performance of the matrix product kernels even further by using

the available 6GB memory in the Nvidia Tesla 2070c. If we perform the matrix-vector
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Matrix-vector product Matrix transpose-vector product

Implementation one angle all angles one angle all angles
Type Aθv Av ATθ xθ ATx

Serial 33.58 sec 472 sec 9.8 sec 130.8 sec

GPU 1.65 sec 9.94 sec 2.05 sec 5.8 sec

Table 10.1: Times for the execution of the matrix-vector and matrix transpose-vector prod-
uct operations for one angle θ and all angles. The size of matrix Aθ is 1280 × 2048, the
number of angles (Nθ) is 15, the size of vector v is 1280× 2048× 50, and the size of vector
xθ is 1280× 2048.

product for all angles at once as described above, the amount of memory we are utilizing

in double precision for the vector representing the discretized volume is just over 1GB and

the amount of memory needed for the projection data is less than 0.5GB. The geometry

information including the position of source, the size and number of voxels and pixels, the

projection angles and others is negligible, less than 100 doubles. Therefore, we have about

two thirds of the available global memory of the device unused. Since we know ahead of the

kernel call the number of matrix-vector and matrix transpose-vector products we have per

iteration (depends on the forward model of the problem) we can optimize communication

time by extending the kernel to compute multiple products in one call. That is, instead of

enqueueing a single kernel call to compute Av where A is as in Equation (10.6), we can

compute the matrix-vector product A

[
u v w

]
by a simple extension of the raytracing

kernel to take three volumes as input and output three projections. We do this by having

each thread calculate three output values as if we had the same ray going through three

different volumes and landing in three different detectors. The thread is responsible for

following the ray, it takes into account the attenuation of each volume u, v and w, and

it reports as output the value of the pixel corresponding to the thread ID at each of the

three detectors. The only additional operations we are requiring from the raytracing kernel

(Algorithm 9.3.12) is to keep track of two more pixel values quantities in line 43, one for each

new input vector v and w. Similarly for the backprojection operation, we “backproject” to

two volumes from the projections of two different detectors.

By performing the multiple matrix-vector productsA

[
u v w

]
and the matrix transpose-
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Matrix-vector product Matrix transpose-vector product

Implementation Au A
[
u v w

]
ATx AT

[
x y

]
Serial 472 sec 490 sec 130.8 sec 148.83

GPU 9.94 sec 10.94 sec 5.8 sec 7.8 sec

Table 10.2: Times to compute matrix-vector or matrix transpose-vector products using a
single kernel call for one or multiple products. The size of matrix Aθ is 1280 × 2048, the
number of angles (Nθ) is 15, the size of vectors u, v, and w is 1280 × 2048 × 50, and the
size of vectors x and y is 1280× 2048× 15.

vector products AT
[
x y

]
in one single kernel call, we avoid the communication and control

overhead of enqueueing two or three separate kernel calls while maximizing the utilization

of the available device memory. Table 10.2 shows the gains of performing these products in

one call. As can be seen, for A

[
u v w

]
we can compute the three products together in

less than 11 seconds as opposed to about 30 seconds needed to compute all three products

individually. Similarly, for AT
[
x y

]
we can compute two products together in less than

8 seconds as opposed to the almost 12 seconds needed to do both products as independent

function calls. We can also see in this table that the cost of performing the products to-

gether is not significant, even in serial. For the GPU implementation we have an additional

cost of less than one second for the raytrace and about two seconds for the backprojection.

Figure 10.4 shows the schematic representation of the gradient descent process using the

GPU to compute the matrix products.

10.3 Kernel Fusion Implementation

Optimizing the matrix product kernels and performing all products on the GPU as shown

in Figure 10.4 provides a partial speed up of the reconstruction process. However, we can

optimize the implementation even further. Profiling the new reconstruction implementation

shows that at each iteration the application spends less than 10% of the time computing

the matrix-vector and matrix transpose-vector products, and about 33% of the time in the

evaluation of the cost function in Equation (10.1). This is because evaluating Equation
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Figure 10.4: Matrix optimization algorithm scheme. The GPU performs the matrix prod-
ucts and the CPU applies fit coefficients to exponential inside the cost function and deriva-
tive evaluation, performs outer summations for the cost function and derivatives.

(10.1) given the results of the raytracing operation is a memory bound computation. In

order to complete the cost function evaluation in Equation (10.1), we need to apply the

fit coefficients to the results of the raytrace and sum over all energies in Equation (10.3),

sum over all pixels in Equation (10.2), and sum over all angles in Equation (10.3). We

can express this as a triple nested loop where the inner loop goes over all energies (order

of a ten), the outer loop goes over all all pixels (order of a million), and the outside loop

goes over all angles (order of ten). Loading this triple nested loop as a kernel into the

device is possible but problematic because the power of a GPU is its ability to perform fast

calculations and every layer of this loop is memory intensive.

A successful approach to speed up the computation of the function evaluation is to

enhance the functionality of the raytracing kernel to apply the fit coefficients and process the
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energy dependent loop for each pixel. Instead of unloading the quantities Aw:,2, Aw:,3, and

A1 from the device to evaluate Equation (10.3), we can keep these quantities in the device

and load the fit coefficients into the GPU (given we have sufficient memory available) to

perform the fit inside the kernel. In addition, we can use the exponential function provided

by the OpenCL standard to compute the exponential portion. Therefore, we can expand

the functionality of the kernel to compute the equation

b̄θ + η̄ =

ne∑
e=1

se exp (− [c3,eAθw:,3 + c2,eAθw:,2 + c1,eAθ1]) + η̄

for all angles Nθ in one single kernel call. We can expand the functionality of the kernel

even further by computing the inner loops

ne∑
e=1

se (u2,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j


and

ne∑
e=1

se (u2,e − u1,e) exp

− Nv∑
j=1

aijθ µe,j


of the vectors v2 and v3 which are necessary to evaluate ∇(−L(bθ,w)) in Equation (10.4).

Once the kernel execution is completed, we have a single loop over all pixels to complete

the evaluation of Equations (10.2) and (10.5). Note that these loops can run in the CPU

very fast since it is only three lines of memory bound computations that use the cache to

hide memory latency.

We call this a kernel fusion implementation because we have fused the nested loops into

one kernel call as opposed to having separate kernels for the matrix product, the application

of the fit coefficients to the data, and the evaluation of the vectors needed to compute the

derivative of the cost function. Schematically, this approach is shown in Figure 10.5. The

cost of extending the raytrace kernel is not significant. For a small size trial problem

using 15 projections of size 360×648 pixels reconstructing a volume of 467×648×39 voxels,

the fused kernel takes approximately 2.3 seconds to compute the matrix-vector products

A

[
w:,2 w:,3 1

]
, the values b̄θ + η̄ for all Nθ and the derivative vectors v2 and v3. If we
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Figure 10.5: Fused kernel implementation scheme. The matrix-vector product kernel main-
tains vectors in the device to apply the energy fit coefficients and the exponential operation
as well as compute the vectors needed for the derivative calculation.

run the optimized matrix-vector product kernel we have a computation time of 1.8 seconds

for the raytrace and about 18 seconds for the function evaluation loop in the GPU. This

represents a speed up of 8× for this operation. If we consider the clinical size problems

fused in our numerical results, where we have 15 projections of size 1280×2048 pixels to

reconstruct a volume of size 1280×2048×50, the advantage of a fused function evaluation

approach is more noticeable. Performing the optimized matrix products on the GPU as

described in the previous section, we have a computation time of about 11 seconds for

A

[
w:,2 w:,3 1

]
and 90 seconds to complete the evaluation of b̄θ + η̄ for all Nθ and the

derivative vectors v2 and v3. However, using the fused kernel approach we can compute
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all the above quantities in about 11 seconds, representing a speed up of about 9× for the

operation.

One final optimization we maintain in this fused kernel approach is that CPU to GPU

communication during the reconstruction process is absolutely minimal. The kernel calls

for the raytracing and backprojection operation are almost identical since in both cases we

just need to communicate to the geometry of the problem and the necessary vectors to the

device. We have created a function call prior to the beginning of the reconstruction to load

all necessary variables into the global memory of the GPU. This leads to only having to

transfer the necessary vectors to the device at the time of enqueueing the kernel. In this

approach the application spends most of the computation time running in the GPU and we

have much faster line search computations. There is no additional optimizations needed by

profiling the code because, as can be seen in the next chapter, with this application we are

performing clinical size patient reconstructions in under five minutes.

10.4 Summary

In this chapter we have discussed the major implementation details for the digital breast

tomosynthesis reconstruction problem. We have developed three approaches to solve the

problem, a serial implementation, an implementation threaded for functionality, and a fused

kernel approach using a single GPU. We have shown that the bottle necks of the application

are the matrix products and the triple nested loop in the function evaluation. Avoiding an

explicit matrix-vector product and matrix transpose-vector product and using a raytracing

algorithm we can compute fast matrix products on a GPU. By fusing the function evaluation

loops and extending the functionality of the raytracing kernel we reduce the bottle neck

created by the memory bound computations of the function evaluation. Allowing minimal

communication between CPU and GPU also reduces the time the GPU sits idle. Using

all these performance optimizations, we show in the next chapter that our fused kernel

approach attains the best performance and achieves our computational time goal, as it

reconstructs the full clinical size data in under five minutes.
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Chapter 11

Numerical Results

In this chapter we present some numerical results to show the effectiveness and computa-

tion time of our polyenergetic digital tomosynthesis reconstruction frameworks on five real

data sets taken of different phantom breast objects with known materials. The five phan-

tom breast objects are divided into two categories: two homogeneous phantoms and three

heterogeneous phantoms. The two homogeneous phantoms are composed of a consistent

background material with inserts of glandular tissue (called the homogeneous-glands data

set) and micro-calcifications (called the homogeneous-calcs data set) which are two materi-

als of interest in breast cancer detection. The background in these phantoms allows us to

display the distinct features of the inserts for each data set and to quantitatively evaluate

the image reconstruction quality. The three heterogeneous phantoms have a mixed back-

ground material that provides a more realistic representation of actual breast tissue. The

heterogeneous phantoms are composed of a swirl of glandular and adipose tissue (called

the heterogeneous-swirl data set), a swirl of adipose and glandular tissue with glandular

tissue inserts (called the heterogeneous-glands data set), and a swirl of adipose and glandu-

lar tissue with micro-calcification inserts (called the heterogeneous-calcs data set). For the

heterogeneous phantoms we are observing the detection of the given material inserts and

the small features of the mixed background.

We compare the tomographs produced using our polyenergetic reconstruction frame-

works against a filtered backprojection reconstruction and an MLEM reconstruction of

each phantom. The projection images of each phantom object were acquired using a clinical
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breast tomosynthesis system (Selenia Dimensions, Hologic Inc.) that is used exclusively for

research. This system acquires 15 projections over a 15 degree angular range and produces

a reconstruction of the imaged volume using the filtered backprojection (FBP) algorithm

(see Section 3.4). Filtered backprojection is often used in commercial systems because it is a

well-understood method that computes reconstructions very quickly. However, as discussed

in Section 3.4, both filtered backprojection and the MLEM reconstruction approximate

Beer’s law by assuming a monoenergetic x-ray model. As we will see in this chapter, this

assumption leads to artifacts that are not present in our polyenergetic reconstructions. To

compare the reconstructions of the polyenergetic frameworks with the filtered backprojec-

tion reconstructions produced by the tomosynthesis system and the MLEM reconstructions,

the 2 or 3 separate materials reconstructed were combined to obtain one image representing

the estimated linear attenuation coefficient of each voxel, and these were then transformed

into Hounsfield Units (HU) [46].

For our numerical results, each phantom was reconstructed using the polyenergetic re-

construction frameworks (the linear model for attenuation, the quadratic model for atten-

uation, and the simplified multi-material model for attenuation), and the monoenergetic

reconstruction approaches (filtered backprojection and MLEM). For each data set we com-

pare some slices (see Figure 2.11) of the reconstructions and highlight particular features of

interest. We also show the behavior of the relative function value in our iterative processes.

Finally, we compare the runtime for our efficient GPU implementation described in chapter

10 to show how it outperforms a serial implementation to gain up to 28× speed-up. For

these results, the linear model for attenuation refers to the model described in Chapter 4

where we are assuming the presence of only adipose and glandular tissue inside the object,

the quadratic model for attenuation described in Chapter 5 expands on the linear model

by accounting for the presence of air and micro-calcifications inside the object, and the

simplified multi-material model described in Chapter 7 assumes the presence of adipose

and glandular tissue as well as micro-calcifications in the object. Reconstructions using

the multi-material model described in Chapter 6 are shown separately at the end of this

chapter.

A special thank you to Dr. Ioannis Sechopoulos with the Department of Radiology and
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Imaging Sciences and Winship Cancer Institute at Emory University and Steve S. J. Feng

with Georgia Institute of Technology for acquiring the phantom data and processing the

signal analysis information.

11.1 Homogeneous Phantoms

11.1.1 Homogeneous Phantom with Glandular Tissue Inserts

The first phantom we used was made up of four stacked semi-circular, 1 cm thick plates

consisting of a material equivalent to a homogeneous mixture of 50% breast adipose and

50% breast glandular tissue. A fifth plate was inserted in the middle consisting of a material

equivalent to adipose tissue with nine 1 cm diameter holes throughout. The nine holes in

the center plate were filled with 1 cm diameter targets consisting of different materials. For

the images involving soft tissue lesions, six of the hole-filling targets consisted of an adipose-

glandular tissue mixture with varying glandular-to-adipose ratios: 0% : 100%, 20% : 80%,

40% : 60%, up to 100% : 0%. The remaining three holes were filled with other targets that

are not used for this analysis. We begin by using this homogeneous phantom because its

constant background allows for simpler objective analysis of the lesion signal and image

quality.

Figure 11.1 shows the behavior of the relative function value for 15 gradient descent iter-

ations of our polyenergetic reconstructions. All three polyenergetic reconstructions required

less than 15 iterations to produce a good reconstruction of the phantom. It is important

to note that we currently do not have an automatic approach to choosing regularization

parameters (in this case, the stopping iteration), and so our choice of stopping at iteration

15 was determined by experimentation. Figure 11.5 shows the reconstructed slices for the

phantom using our polyenergetic frameworks, filtered backprojection, and MLEM. The re-

constructions were produced using 5 to 8 iterations of gradient descent for the polyenergetic

frameworks and 10 iterations for MLEM.

The signal difference-to-noise ratio (SDNR), which is a common image quality metric,
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Figure 11.1: Relative function value of gradient descent iterations for the reconstruction of
the homogeneous phantom with glandular tissue inserts. Note that the relative function
value for all three methods begins to stagnate after 10 iterations. As expected, this is when
the ill-posedness of the problem corrupts the solution.

Figure 11.2: Signal difference-to-noise ratio (SDNR) for each glandular insert of the
homogeneous-glands data set. A higher ratio signifies a more distinguishable lesion in
the image.

was computed for each of the glandular inserts using the equation

SDNR =
µsignal − µback

σback

where µsignal denotes the mean value of the voxels inside a region of interest (ROI) that rep-

resent a lesion, µback denotes the mean value of the voxels inside the ROI that represent the

background, and σback denotes the standard deviation of the background ROI. Figure 11.2
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shows the SDNR for each of the glandular tissue inserts in the phantom using the filtered

backprojection reconstruction, the MLEM reconstruction, and our simplified multi-material

reconstruction. It is clear that our simplified multi-material reconstruction achieves a higher

SDNR for all glandular tissue inserts. A zoomed-in version of the some of the glandular le-

sions for the filtered backprojection, simplified multi-material model, and MLEM are shown

in Figure 11.3. Note that in addition to having more distinguishable features of interest

(a) Filtered Backprojection (b) Simplified Multi-material (c) MLEM

Figure 11.3: A close up of tomograph 25 for the filtered backprojection, our simplified
multi-material model for attenuation, and MLEM reconstructions showing the percentage
glandular tissue insert. The results of Figures 11.3(a) and 11.3(c) assume a monoenergetic
x-ray beam where as Figure 11.3(b) uses a polyenergetic spectrum in the forward model.

Figure 11.4: Vertical profile through the center of the 100% glandular tissue lesion shown
in Figure 11.3 for the filtered backprojection, MLEM, and simplified multi-material recon-
strucution. The values were normalized by subtracting the average of a background region
and dividing by the average of signal region in each corresponding to display profile in the
same scale.

in the image, our polyenergetic reconstruction 11.3(b) does not show the cupping artifacts
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GPU Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 6.3 min 3.8 min 2.6 min
8 11.2 min 6.1 min 4.4 min
15 23.2 min 11.4 min 11 min

Serial Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 180 min 112 min 68 min
15 603 min 340 min 290 min

Table 11.1: Runtime in minutes for reconstruction of the homogeneous phantom with glan-
dular tissue inserts data set. Note that not all iterations for each model take the same
amount of time because of the line search operation. Some iterations take longer than
others as the step length parameter must be refined.

around the glandular tissue inserts present in the monoenergetic reconstructions Figures

11.3(a) and 11.3(c).

In order to further compare these lesions of interest in the reconstructed phantom, Figure

11.4 shows the vertical signal profile through the center of the 100% glandular tissue lesion.

The vertical signal profile shows that the filtered backprojection and MLEM reconstruction

produce the same cupping artifacts around the glandular insert. Both curves show a very

similar spike and drop at the edges of the feature as they seem to overestimate the signal

at the boundary of insert and underestimate the background signal at the boundary of the

lesion. In contrast, our simplified multi-material model produces a very stable curve that

clearly marks the boundaries of the lesion without overestimating it and reconstructs the

signal of the background equally everywhere around the lesion.

The reconstruction times for the serial implementation and our GPU implementation

as described in Chapter 10 are shown in Table 11.1. It is important to note that our GPU

implementation can outperform serial runtime by 26× up to 30× speed-up for this data set.

This shows that quality reconstructions with our polyenergetic framework can be obtained

in under five minutes (8 iterations).
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(a) Filtered (b) Linear Model (c) Quadratic Model (d) Simplified multi- (e) MLEM

Backprojection for Attenuation for Attenuation material Model

Figure 11.5: Results for homogeneous phantom with glandular tissue inserts. Tomographs 15 (top row), 25 (middle row), and 29
(bottom row) of the reconstructed pseudo 3D volume are displayed where each column represents the slices reconstructed using the
given method. The middle row is the center of the reconstructed volume, where glandular tissue feature is most distinguishable.
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11.1.2 Homogeneous Phantom with Micro-calcification Inserts

The second homogeneous phantom was set-up similarly to the phantom described in the

previous section but we inserted a material equivalent to micro-calcifications in the center

plate. The phantom consisted of four stacked semi-circular, 1 cm thick plates consisting

of a material equivalent to a homogeneous mixture of 50% breast adipose and 50% breast

glandular tissue with a fifth plate consisting of a material equivalent to adipose tissue in

the center. The center plate contained nine holes of 1 cm diameter that were filled with a

material equivalent 100% breast adipose and added inserts representing calcium specks of

diameter sizes 0.130mm, 0.165mm, 0.196mm, 0.230mm, 0.290 and 0.400 mm.

Figure 11.6 shows the behavior of the relative function value for 15 gradient descent

iterations of our polyenergetic reconstructions. All three polyenergetic reconstructions re-

Figure 11.6: Relative function value of gradient descent iterations for the reconstruction of
the homogeneous phantom with glandular tissue inserts.

quired less than 15 iterations to produce a good reconstruction of the phantom. Figure 11.10

shows the reconstructed slices for the phantom using our polyenergetic frameworks, filtered

backprojection, and MLEM. The reconstructions were produced using 5 to 8 iterations of

gradient descent for the polyenergetic frameworks and 10 iterations for MLEM.

Figure 11.7 shows a close up of the micro-calcification features for the filtered backkpro-

jection, our simplified multi-material model, and MLEM reconstructions. In this figure it is

clear that our polyenergetic framework reduces the presence of shadow-like artifacts around
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(a) Filtered Backprojection (b) Simplified Multi-
material

(c) MLEM

Figure 11.7: A close up of tomograph 25 for the filtered backprojection, simplified multi-
material model for attenuation, and MLEM reconstructions shows the presence of beam
hardening artifacts. Figures 11.7(a) and 11.7(c) assume a monoenergetic x-ray beam
whereas Figure 11.7(b) uses a polyenergetic spectrum in the forward model. Note the
cupping artifacts around the glandular feature for the monoenergetic reconstructions which
are not present in our reconstruction.

the lesions of interest. A comparison of the vertical signal profile for this micro-calcification

cluster in the filtered backprojection and in our polyenergetic simplified multi-material

model reconstruction is shown in Figure 11.8. Each graph corresponds to the vertical profile

(a) Filtered Backprojection (b) Simplified Multi-material

Figure 11.8: A comparison of the vertical signal profile for this micro-calcification cluster
in the filtered backprojection (FBP) and simplified multi-material model (spectral) recon-
structions

through the center of the middle speck and the vertical profile of the background next to the

speck. The spike in the graph represents the signal corresponding to the micro-calcification.

To allow for a comparison between the reconstruction methods using the same scale, the
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voxel values of both the signal and background profiles for each method were normalized

by subtracting the minimum value of the corresponding signal profile and then dividing by

the maximum value. Note that in the profile for filtered backprojection in Figure 11.8(a)

the signal at the micro-calcification speck is lower than the background signal at least 1

mm from the center in each direction, while in the profile for the simplified multi-material

model in Figure 11.8(b) the signal matches the background almost immediately, with some

slight and narrower reduction only present towards one side. This drop in the signal for

the micro-calcification corresponds to the cupping-like artifact in Figure 11.7(a). It can

also be seen that the graph in Figure 11.8(b) produces a narrower peak than the peak

in 11.8(a), representing improved spatial resolution by the simplified multi-material model

reconstruction over the filtered backprojection results.

Another feature of interest in the reconstructions is shown in Figure 11.9. Here we see

that our reconstructions eliminate the boundary artifacts that are present in the filtered

backprojection reconstruction provided by the imaging system.

(a) Filtered Backprojection (b) Simplified Multi-material

Figure 11.9: A close up of tomograph 25 for the filtered backprojection and simplified multi-
material model for attenuation shows a boundary artifact for the filtered backprojection
reconstruction not present in our polyenergetic reconstruction.

The reconstruction times for the serial implementation and our GPU implementation

as described in Chapter 10 are shown in Table 11.2. It is important to note that our GPU

implementation can outperform serial runtime by 25× up to 28× speed-up. Quality re-

constructions that account for a polyenergetic spectrum using the simplified multi-material

model for attenuation can be obtained in under five minutes (8 iterations).
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(a) Filtered (b) Linear (c) Quadratic (d) Multi-material (e) MLEM

Backprojection Simplified

Figure 11.10: Results for homogeneous phantom with micro-calcification inserts. Tomographs 14 (top row), 25 (middle row),
and 29 (bottom row) of the reconstructed pseudo 3D volume are displayed where each column represents the slices reconstructed
using the given method. The middle row is the center of the reconstructed volume, where micro-calcification feature is most
distinguishable.
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GPU Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 6.4 min 3.8 min 2.6 min
8 11.1 min 6.1 min 4.4 min
15 21.9 min 11.4 min 10.6 min

Serial Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 179 min 111 min 67 min
15 572 min 336 min 285 min

Table 11.2: Runtime in minutes for reconstruction of the homogeneous phantom with micro-
calcification inserts data set.

11.2 Heterogeneous Phantoms

11.2.1 Heterogeneous Phantom Glandular and Adipose Tissue Swirl

The first heterogeneous phantom used was made up of five stacked semi-circular, 1 cm

thick plates composed of a heterogeneous mixture of materials equivalent to breast adipose

a breast glandular tissue. This heterogeneous phantom provides a more realistic represen-

tation of actual breast tissue. In addition, we use a heterogeneous phantom because the the

presence of overlapping signals allows us to better test the abilities of the tomosynthesis

system and the reconstruction framework. However, in general for heterogeneous phan-

toms, we can only provide a qualitative evaluation because of the random structure of the

background.

Figure 11.11 shows some slices of the reconstructed volume using filtered backprojection

and our polyenergetic frameworks (the linear model for attenuation, the quadratic model for

attenuation, and the simplified muIti-material model). It can be seen that our polyenergetic

frameworks depict the features of the heterogeneous background as well as the filtered

backprojection reconstruction. In addition, we see that our linear model for attenuation

and the simplified multi-material model for attenuation give a smoother reconstruction
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(a) Filtered (b) Linear (c) Quadratic (d) Multi-material
Backprojection Simplified

Figure 11.11: Tomographs 25 (top row), 29 (middle row), and 34 (bottom row) of the
reconstructed pseudo 3D volume are displayed where each column represents the slices
reconstructed using the given method. The middle row is the center of the reconstructed
volume, where micro-calcification feature is most distinguishable.

that does not have the boundary artifacts present in the filtered backprojection slices or

the reconstruction produced using a quadratic model for attenuation.

Figure 11.6 shows the behavior of the relative function value for 15 gradient descent iter-

ations of our polyenergetic reconstructions. All three polyenergetic reconstructions required

less than 15 iterations to produce a good reconstruction of the phantom, but it is important

to note that our simplified multi-material forward model provides a steepest descent in the

relative function value. In Figure 11.13 we show the spectral distribution for the x-ray at

entrance and exit of the phantom. Note that the phantom absorbs the low-energy photons
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Figure 11.12: Relative function value of gradient descent iterations for the reconstruction
of the heterogeneous phantom with adipose and glandular tissue swirl.

in the x-ray beam, thus changing the average energy of the spectrum. This is the beam

hardening effect discussed in Section 3.5. Finally, Table 11.3 shows the reconstruction times

for this phantom using the GPU implementation framework described in Chapter 10.

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 9.5 min 4.4 min 3.1 min
15 29.6 min 13.3 min 15.3 min

Table 11.3: Runtime in minutes for reconstruction of the swirl phantom. Note that not all
iterations for each model take the same amount of time because of the line search operation.
Some iterations take longer than others as the step length parameter must be refined.

11.2.2 Heterogeneous Phantom with Glandular Tissue Inserts

The second heterogeneous phantom used consisted of four stacked semi-circular, 1 cm thick

plates composed of a material equivalent to a heterogeneous mixture of breast adipose and

breast glandular tissue. A fifth plate was inserted in the middle consisting of the same

heterogeneous material mixture as the other plates with nine 1 cm diameter holes through-

out. The six holes in the center plate were filled with 1 cm diameter targets consisting of

an adipose-glandular tissue mixture with varying glandular-to-adipose ratios: 0% : 100%,

20% : 80%, 40% : 60%, up to 100% : 0%. The remaining three holes were filled with other

targets that are not used for this analysis. As in the previous phantom, the heterogeneous

mixture provides a more realistic representation of actual breast tissue and overlapping
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Figure 11.13: Spectral distribution function at entrance and exit of breast for heterogeneous
swirl phantom. Note the preferential absorption of low energy photons.

signals allows us to better test the abilities of the reconstruction framework. However,

here we can only provide a qualitative evaluation because of the random structure of the

background.

Figure 11.14 shows the behavior of the relative function value for 15 gradient descent

iterations of our polyenergetic reconstructions which is similar to the behavior observed

in the previous phantoms. Again, we see that the relative function value for our linear

Figure 11.14: Relative function value of gradient descent iterations for the reconstruction
of the heterogeneous phantom with glandular tissue inserts.

and quadratic models for attenuation stagnates sooner than the relative function value for

the simplified multi-material attenuation model, suggesting the latter numerically provides
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GPU Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 6.8 min 3.8 min 2.6 min
8 9.9 min 6.1 min 4.4 min
15 19 min 11.8 min 12.7 min

Serial Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 178 min 112 min 67 min
15 602 min 347 min 324 min

Table 11.4: Runtime in minutes for reconstruction of the heterogeneous phantom with
glandular tissue inserts.

a better reconstruction framework. All three polyenergetic reconstructions required less

than 15 iterations to produce a good reconstruction of the phantom and the tomographs

are compared against the filtered backprojection and MLEM results in Figure 11.15. The

reconstructions shown were produced using 5 to 8 iterations of gradient descent for the

polyenergetic frameworks and 10 iterations for MLEM.

The reconstruction times for the serial implementation and our GPU implementation as

described in Chapter 10 are shown in Table 11.2. For this data set, we see similar speed-up

as in the homogeneous phantoms, namely 25× up to 29× of our GPU implementation over

serial runtime. This shows that our reconstruction framework is capable of handling the

more complicated breast-like heterogeneous background structures in about the same time

as the easier homogeneous case. For this phantom, we provided quality reconstructions

that account for a polyenergetic spectrum using the simplified multi-material model for

attenuation in under five minutes (8 iterations).

Figure 11.16 shows a zoomed-in version of the some of the glandular lesions for the

filtered backprojection, simplified multi-material model, and MLEM reconstructions of Fig-

ure 11.15. Note that in addition more distinguishable features of interest in the image, our

polyenergetic reconstruction 11.3(b) shows no cupping artifacts around the glandular tissue

inserts and a smoother image.
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(a) Filtered (b) Linear (c) Quadratic (d) Multi-material (e) MLEM

Backprojection Simplified

Figure 11.15: Results for heterogenous phantom with glandular tissue inserts. Tomographs 18 (top row), 25 (middle row), and 38
(bottom row) of the reconstructed pseudo 3D volume are displayed where each column represents the slices reconstructed using the
given method. The middle row is the center of the reconstructed volume, where glandular tissue feature is most distinguishable.
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(a) Filtered Backprojection

(b) Simplified Multi-material

(c) MLEM

Figure 11.16: A close up of tomograph 25 for the filtered backprojection, simplified multi-
material model for attenuation, and MLEM reconstructions shows the presence of beam
artifacts. Figures 11.16(a) and 11.16(c) assume a monoenergetic x-ray beam where as
Figure 11.16(b) uses a polyenergetic spectrum in the forward model. Note the cupping
artifacts around the glandular feature for the monoenergetic reconstructions which are not
present in our reconstruction. Also, the monoenergetic reconstructions show noise.

11.2.3 Heterogeneous Phantom with Micro-calcification Inserts

The last phantom reconstructed consisted of five stacked semi-circular, 1 cm thick plates

composed of a materials equivalent to a heterogeneous mixture breast adipose and breast

glandular tissue. The middle plate contained nine 1 cm diameter holes throughout. Six

of the holes were filled with a material equivalent to the heterogeneous background mix-

ture with added inserts representing calcium specks of diameter sizes 0.130mm, 0.165mm,

0.196mm, 0.230mm, 0.290 and 0.400 mm. As in the previous phantom, the heterogeneous

mixture provides a more realistic representation of actual breast tissue and overlapping

signals allows us to better test the abilities of the reconstruction framework. In addition,

the calcification specs test our framework’s ability to distinguish small features of inter-

est present inside the randomly structured background of breast tissue. In this section we

provide only a qualitative evaluation of the reconstruction.
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Figure 11.17 shows the behavior of the relative function value for 15 gradient descent

iterations of our polyenergetic reconstructions which is similar to the behavior observed

in the previous phantoms. Again, we see a steeper descent in the relative function value

Figure 11.17: Relative function value of gradient descent iterations for the reconstruction
of the homogeneous phantom with glandular tissue inserts.

of the simplified multi-material model, suggesting the it may be the better forward model

numerically of those proposed in this thesis. All three polyenergetic reconstructions required

less than 15 iterations to produce a good reconstruction of the phantom and the tomographs

are compared against the filtered backprojection and MLEM results in Figure 11.19.

(a) Filtered Backprojec-
tion

(b) Simplified Multi-material (c) MLEM

Figure 11.18: A close up of tomograph 43 for the filtered backprojection, simplified multi-
material model for attenuation, and MLEM reconstructions shows our polyenergetic recon-
struction picks up the heterogeneous background features.
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(a) Filtered (b) Linear (c) Quadratic (d) Multi-material (e) MLEM

Backprojection Simplified

Figure 11.19: Results for heterogenous phantom with glandular tissue inserts. Tomographs 18 (top row), 25 (middle row), and 38
(bottom row) of the reconstructed pseudo 3D volume are displayed where each column represents the slices reconstructed using
the given method. The middle row is the center of the reconstructed volume, micro-calcification feature is most distinguishable.
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GPU Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 6.9 min 3.8 min 2.6 min
8 11.6 min 6.1 min 4.4 min
15 23.3 min 11.8 min 10.6 min

Serial Implementation Reconstruction Times

Number of Gradient Linear Model Quadratic Model Simplified Multi-material
Descent Iterations for Attenuation for Attenuation Model for attenuation

5 178 min 112 min 67 min
15 603 min 347 min 313 min

Table 11.5: Runtime in minutes for reconstruction of the heterogeneous phantom with
micro-calcification inserts.

The reconstructions shown were produced using 5 to 8 iterations of gradient descent for

the polyenergetic frameworks and 10 iterations for MLEM. Figure 11.18 shows a close up

of the background features for the filtered backprojection, our simplified multi-material

model, and MLEM reconstructions. Note that the features of the heterogeneous mixture

are accurately reconstructed by our algorithm. In addition, the images produced using the

simplified multi-material forward model are not as grainy as the other two reconstructions.

The reconstruction times for the reconstruction of this data set using the serial imple-

mentation and our GPU implementation as described in Chapter 10 are shown in Table

11.5. Again, we have that our GPU implementation can outperform serial runtime by up

to 28× speed-up. A quality reconstruction for this phantom that accounts for a polyener-

getic spectrum using the simplified multi-material model for attenuation can be obtained

in under five minutes (8 iterations).

11.3 Multimaterial Model Results

To show the effectiveness of the multi-material model described in Chapter 6 we recon-

structed the two homogeneous phantoms. First, we have the homogenous phantom with

glandular tissue inserts which was reconstructed using the multi-material model for attenua-
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(a) Glandular weight fractions (b) Adipose weight fractions (c) Air weight fractions

Figure 11.20: Tomograph 25 of the reconstruction of the homogeneous-glands phantom
using the full multi-material model. The reconstruction was done using two gradient descent
iterations

tion assuming the presence of glandular tissue, adipose tissue, and air. The weight fractions

for each material in the middle tomograph of the reconstructed volume after two gradient

descent iterations are shown in Figure 11.20. As expected, the glandular and adipose weight

fractions capture the inside of the phantom since the materials are complementary for this

problem, and the values of the glandular weight fractions are higher around the features of

interest. Note also that the air weight fractions do not depict the inside of the phantom as

well as the other two images since we are decomposing the volume into individual materials

and there is no air inside the phantom. Figure 11.20 shows the signal profile of the three

Figure 11.21: Vertical profile through the center of the weight fractions reconstructed using
the full multi-material model from Figure 11.20. The values were normalized. The arrows
show the increase of the glandular fractions corresponding to the glandular inserts and the
boundary of the phantom when the voxels are mostly composed of air.
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(a) Adipose weight fractions (b) Micro-calcifications weight
fractions

(c) Air weight fractions

Figure 11.22: Tomograph 25 of the reconstruction of the homogeneous-calcs phantom using
the full multi-material model. The reconstruction was done using two gradient descent
iterations

images through three glandular inserts in the center of the images. In this graph we can

clearly see where the boundary of the phantom lies, as the weight fractions for air increase

and the weight fractions of glandular tissue decrease. The problem is not fully converged

with two gradient descent iterations but the results show that the method is making progress

in the right direction. We leave an efficient implementation of the multi-material model as

future work in this thesis.

The weight fractions corresponding to the middle tomograph for the second homoge-

neous phantom are shown in Figure 11.23. We assumed the presence of adipose tissue,

(a) Adipose (b) Micro-calcifications (c) Air

Figure 11.23: Close up of the micro-calcifications feature of Figure 11.23.

micro-calcifications, and air and used two gradient descent iterations to reconstruct the

volume. Clearly, the method has not fully converged, but the results are promising and

very similar to the previous phantom. As expected, the weight fractions for air and micro-

calcifications barely reconstruct the details of the inserts in the middle plate of the phantom.
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A close up of a calcification lesion is shown in Figure 11.23.

11.4 Summary

In this chapter we have shown through numerical results that the polyenergetic forward

models can provide an accurate reconstruction of the breast. Our reconstructions show

that the polyenergetic nature of the x-ray beam more accurately models the physics of the

problem, while standard approaches such as filtered backprojection and MLEM assume a

monoenergetic x-ray beam. Thus, our polyenergetic model should, and does, produce better

reconstructions than standard algorithms. Moreover, we showed that iterative methods that

take into account the various materials composing the object can be efficiently implemented

in current computing architectures. The effectiveness of our polyenergetic reconstruction

was illustrated with real data taken of an object with known materials that simulates an

actual breast. This data was acquired using a digital tomosynthesis system, not simulated.

This validates the work presented in this thesis as a reconstruction framework that can

work in a clinical setting. In addition, we have shown using our optimized implementation

described in Chapter 10, the time it takes for our reconstruction process is comparable to

standard methods. Using a single GPU we are able to obtain close to 30× speed-up in our

algorithms making a full reconstruction in less than five minutes.
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Chapter 12

Conclusion

The research presented in this thesis shows that large scale, physically accurate medical

image reconstructions can be done using smaller and less costly machines by effectively

harnessing the multi-threading power of GPUs. This allows smaller hospitals and clinics

that lack access to expensive clusters and supercomputers, to use off-the-shelf computing

systems to run the reconstructions needed for diagnostic radiology.

In this work we have proposed four physically accurate forward models for the image

acquisition process that explicitly take into account the polyenergetic nature of the x-

ray beam as well as the attenuation of each material present inside the imaged breast at

each discretized energy level. Using the standard mathematical model for transmission

radiography, where we assume that x-ray transmission imaging is a realization of a Poisson

random process, we employ a Maximum Likelihood Estimator approach (MLE) to formulate

the reconstruction problem as a large scale ill-posed nonlinear inverse problem. We solve

this nonlinear inverse problem in its numerical optimization formulation and describe a

gradient descent and a Newton framework to reconstruct the volume. Gradient descent

methods are slower to converge in terms of number of iterations, but are more robust, and

require less storage and only the first derivative of the cost function, making them our

method of choice. Newton methods provide faster convergence, but are characterized by

costly inner iterations and require storage of the first derivative and the Hessian of the

cost function, making them more expensive for our problem. In addition, our framework

employs regularization by early termination in order to restrict the influence of noise in the
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input data.

We provide an efficient implementation of the iterative reconstruction framework that

takes advantage of the multi-threaded parallelism available in GPUs. The multi-threaded

implementation is written in OpenCL making it scalable and portable to other architectures.

The implementation is designed to increase throughput, minimize storage requirements, and

maximize the utilization of hardware resources. The most computationally intense portions

of the reconstruction process are the matrix-vector and matrix transpose-vector products

of the raytrace matrix, Aθ, which are needed when evaluating the cost function and its

corresponding gradient. Storing Aθ and computing these products explicitly is unrealistic in

terms of memory, thus we compute the entries a(ij) as needed using our optimized raytracing

and backprojection algorithms. To perform these products on the GPU, we drive the

parallelism through the output data and exploit a 3D execution topology. Assigning work

groups to sequential rows in the matrix takes advantage of thread warps and coalesced

memory accessing, and reduces thread divergence because of the structure of Aθ.

We focus on performing the majority of our computation in the device, thus minimizing

host to device communication. To do this we extend functionality and fuse subsequent

kernels, avoiding the overhead cost of data transfer and enqueueing a new kernel. Explicit

kernel fusion also allows us to reduce on chip memory needs, since by performing the

complete function evaluation in the device we are able to avoid storage and communication

of intermediate quantities. By extending kernel functionality and keeping in-process data

on the chip, we keep multiprocessors working the majority of the time. The implementation

we present in this thesis runs a full clinical size reconstruction in under five minutes, using a

single core accelerated with a single GPU. The application framework can easily be extended

to multiple GPUs, which may be needed in the case of several materials present inside the

object or reconstructing a higher resolution volume like those needed in CT scans.

The contribution of this work to medical imaging and diagnostic radiology is a fast

reconstruction of the imaged breast based on a physically accurate polyenergetic x-ray

model. The reconstructed volume shows significantly less beam hardening artifacts and

each voxel contains quantitative information of the object composition. Compared to the

standard filtered backprojection or MLEM methods used by the tomosynthesis imaging
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system, our polyenergetic x-ray reconstruction shows better image quality and less artifacts.

A physically accurate model of the imaging system coupled with our efficient reconstruction

framework allows for a precise characterization of the imaged breast, giving the physician

better information to make a correct clinical diagnosis of the patient.
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