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Abstract

Statistical Performance of Spatial Systems

By Yuemei Wang

Detection of disease outbreaks is a crucial issue in public health. Therefore, we
want statistical methods to evaluate the accuracy and reliability of proposed detection
systems.

Furthermore, detecting outbreaks in space is very challenging as the shapes and
locations of outbreak clusters of disease can be unpredictable. In this thesis, we use
area under the receiver operating characteristic (ROC) curve to evaluate statistical
performance of several proposed spatial detection systems. Specifically, we assess
spatial statistical performance of two spatial scan statistics, and their applications
to cardiac birth defect data from Santa Clara County, California. The results reveal
SaTScan performs better if the cluster is compact, and Upper Level Set approaches
offer improved performance when clustering is irregularly shaped.

We also investigate performance of cluster detection methods when adjusting for
covariates via Generalized Additive Models (GAM). We apply GAMs to archaeolog-
ical data from Black Mesa, Arizona to identify clusters of early versus late Anasazi
settlement sites when adjusting for exposure to rivers around those sites. Further-
more, we evaluate spatial variations in power to detect different levels of clustering
when clusters are allowed to occur at different locations within this application. We
compare the GAM results and performance of the GAM methodology with those
based on kernel density estimation of the early-to-late relative risk surface.

Finally, we assess spatial performance of detection systems using decision fusion
theory for the situation where a detection system can be comprised of a few expensive,
precise detectors and many inexpensive, imprecise detectors. The performance of a
system depends not only on the total allowable cost for the system, but also the
performance of each individual detector, as well as the balance between expensive,
precise and inexpensive, imprecise detectors. We quantify how, if we improve the
performance of imprecise detectors even slightly, the performance of the resulting
system improves dramatically. In addition, we show that lower-cost systems can
perform as well as or better than systems expending the full allowable cost. These
results indicate the need for careful calculation and computation to identify an optimal
system, especially for systems comprised of small numbers of components.
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Chapter 1

Introduction and Background

1.1 Introduction

Detection of disease outbreaks is a crucial issue in public health. If a communicable

disease outbreak is detected within a population at a very early stage, mortality and

morbidity may be significant decreased by prompt response of health officials. Failure

or delay in detecting an outbreak could jeopardize more people’s lives. However, false

alarms could cause public panic and waste resources. Therefore, accurately detecting

an outbreak in a timely manner is very important.

Statistical methods are useful in outbreak detection. The software program SaTscan

has been used for monitoring West Nile virus (18) and New York City public health

surveillance (63). Autoregressive analysis has been applied to disease outbreak detec-

tion system in the Washington DC area (50). Survey analysis and case control studies

have contributed to detecting Salmonella infections in Oregon in 1996 using CDC’s

FoodNet surveillance system(17). Evaluation of the accuracy and reliability of sta-

tistical detection algorithms and systems is critical to accurate disease surveillance.

Bravata et. al. reviewed 115 systems involving surveillance systems, however, only

three systems have evaluated sensitivity and specificity as a measure of performance
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of the systems (14).

In many instances, detection of disease outbreaks involves spatial analysis. Our

goal is to derive methods to evaluate the statistical performance of spatial surveillance

systems. We are particularly interested in methods that assess performance spatially,

i.e., we want maps of how well methods detect outbreaks at different locations.

1.2 Public Health Surveillance

Surveillance is the action watching over activities. A surveillance system includes data

collection, data analysis and dissemination of results of the analysis (73). Specific to

our application, the US Centers for Diseases Control and Prevention (CDC) defines

public health surveillance as “the ongoing, systematic collection, analysis, and inter-

pretation of data (e.g., regarding agent/hazard, risk factor, exposure, health event)

essential to the planning, implementation, and evaluation of public health practice,

closely integrated with the timely dissemination of these data to those responsible for

prevention and control” (73). Public health surveillance can be used to detect new

outbreaks of a disease, to provide information about scope, size or history of a disease

or an epidemic, and to evaluate the impact of health interventions (61).

The history of public health surveillance goes back at least to the fourteenth

century and the Black Death in Europe, where the disease was kept under control

by 40-day detention of travellers from infected areas (68). After September 11, 2001,

the objectives of public health surveillance focused not only on naturally occurring

diseases, but also shifted to include potential bioterrorist attacks (1; 23; 40; 59;

70). Therefore, early detection has become an increasingly important criterion within

public health surveillance. With the rapid development of geographic information

systems and availability of locations of cases, spatial analysis also is becoming a

routine part of surveillance including the detection and evaluation of incident clusters.
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Public health surveillance can be passive or active. A passive surveillance system

relies on hospitals, health care providers, laboratories, pharmacies, or other reporters

to provide case information to the system. In contrast, an active surveillance system

will contact clinics, hospitals, or other resources for required information rather than

wait for reports. Usually, an active approach will have higher quality of data than a

passive system, but the cost is often higher (3).

There are two types of evaluation commonly related to public health surveillance

systems. The first is to decide whether a particular health event should be under

surveillance, and the second is to evaluate an existing surveillance system to check

its usefulness, effectiveness, simplicity, flexibility, acceptability, cost and efficiency.

Here we concentrate on the second type and focus on quantitative attributes of a

public health surveillance system, such as sensitivity, specificity, and predictive value

positive (PVP), each of which focuses on the extent to which true cases are among

those identified by the system (61).

1.3 Clustering

Spatial surveillance often involves a search for disease clusters (2; 12). A disease

cluster refers to areas of abnormal observations, such as those with a higher incidence

rate, compared to other areas in a particular time period, in space or both (12; 61).

Methods for detecting disease clusters provide tools for exploring data, but causal

effects are typically drawn by further research (28).

The public is very concerned with disease clustering, and over 1,000 cancer cluster

reports are filed each year in USA, and more than one cluster is reported per week

in the UK (10; 12; 58). One goal of disease cluster analysis is to test whether a

suspect area is a cluster with statistical elevated risk. For example, in 1981 a leak

of methyl chloroform was detected in Santa Clara County, California. This report
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was accompanied by reports of increased numbers of congenital cardiac anomalies

and adverse pregnancy outcomes from residents in those areas where they might be

exposed to the contaminated water (43; 71). It is important to note that further

evidence beyond a simple spatial pattern analysis is required to support exposure to

the solvent as the definitive cause of this cluster.

Another goal of disease cluster analysis is to identify clusters independently of

putative causes (25), then conduct further investigation to find the cause of these “hot

spots”, but such goals are subject to debate (10; 12). Rothman has warned that little

scientific value has been gained by retrospective cluster analysis (41; 65). Rather than

respond to each report individually, health departments often build on-going active

cluster detection within proactive surveillance systems on a state or national level.

With the rapid development of geographic information systems, software tools, and

statistical methods, one can identify patterns, and further pursue in-depth research.

For example, an ongoing surveillance system could provide notification when the

median relative interval of certain disease or the mean time interval of, say, five cases

reach a cut off value in one county (62).

1.4 Measure of Performance

To place these concepts in a statistical framework, suppose the null hypothesis is that

the disease rate is the same across the region, and the alternative hypothesis is that

some areas have higher incidence rate than the other areas. That is,

H0 : Ri = λ ∀i ∈ I

H1 : Ri > λ for some j ∈ I

where Ri is the disease rate at location i, and λ is the average disease rate across the

region.
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In this thesis, we investigate the statistical performance of tests based on such

hypotheses. The following are some ways to measure performance of an individual

test.

1.4.1 Sensitivity

Sensitivity is the probability of detecting an outbreak given the outbreak truly exits.

Let T denote the binary outcome of a detection test (present/absent), then Sensitivity

= Prob(T = present|H1). For normally distributed tests, we assume that under the

null hypothesis T follows a standard normal distribution, that is, T ∼ N(µ0, σ
2
0) =

N(0, 1), and under the alternative hypothesis T follows a normal distribution T ∼

N(µi, σ
2
i ) at location i, where µi 6= 0 and/or σi 6= 1. In addition, if t∗ is the cut

point of the test, we declare the outbreak is present when we observe T > t∗. Also

let Z ∼ N(0, 1) and Φ denote the cumulative distribution function of Z, then the

following basic result holds:

Sensitivity = Prob(T = present|H1)

= Prob(T > t∗|µ = µi, σ
2 = σ2

i )

= Prob

(
T − µi

σi

>
t∗ − µi

σi

)
= Prob

(
Z >

t∗ − µi

σi

)
= 1− Prob

(
Z <

t∗ − µi

σi

)
= 1− Φ

(
t∗ − µi

σi

)
(1.1)
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t*

H0 H1

Figure 1.1: Sensitivity and Specificity

1.4.2 Specificity

Specificity is the probability of declaring no outbreak given the outbreak is truly

absent. Similar to our discussion of sensitivity, for a binary outcome of a normally

distributed tests, the following result holds:

Specificity = Prob(T = absent|H0)

= Prob(T < t∗|µ = 0, σ2 = 1)

= Prob(Z < t∗)

= Φ(t∗) (1.2)
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As shown in Figure 1.1, sensitivity is the area on the right side of t∗ under H1, and

specificity is the area on the left side of t∗ under H0.

1.4.3 PPV and NPV

Positive predictive value (PPV) is the probability that an outbreak truly exists given

a positive test result. Negative predictive value (NPV) is the probability that the

outbreak is absent given a negative test result. However, PPV and NPV not only

depend on the background performance of a test, but also on the prevalance of the

disease, i.e., P (H1). The relationships between PPV, NPV and sensitivity, specificity

are shown in equations (1.3) and (1.4).

PPV = Prob(H1|T = present) (1.3)

=
Prob(H1, T = present)

Prob(T = present)

=
Prob(T = present|H1)× Prob(H1)

Prob(T = present)

=
Prob(T = present|H1)× Prob(H1)

Prob(T = present|H1)× Prob(H1) + Prob(T = present|H0)× Prob(H0)

=
Sensitivity× Prob(H1)

Sensitivity× Prob(H1) + Specificity× (1− Prob(H1))
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NPV = Prob(H0|T = absent) (1.4)

=
Prob(H0, T = absent)

Prob(T = absent)

=
Prob(T = absent|H0)× Prob(H0)

Prob(T = absent)

=
Prob(T = absent|H0)× Prob(H0)

Prob(T = absent|H0)× Prob(H0) + Prob(T = absent|H1)× Prob(H1)

=
(1− Specificity)× Prob(H0)

(1− Specificity)× (1− Prob(H1)) + (1− Sensitivity)× Prob(H1)

1.4.4 ROC and AUC

Receiver operating characteristic (ROC) curves are popular summaries of statistical

performance and combine information related to both sensitivity and specificity. In

particular, the ROC curve plots sensitivity vs. false alarm rate (1- specificity), across

a range of potential critical values.

Figure 1.2 shows simulated ROC curves with T ∼ N(0, 1) under H0 and T ∼

N(1, 1), T ∼ N(2, 1) or T ∼ N(4, 1)under H1, where the cut points range from 5 to

-5 with increment of -0.01. When the cut point is set very high, the false alarm rate

is low, but the probability of catching a true positive is also low as shown on the left

of ROC curve. On the other hand, if the cut point is set very low, we will identify

most outbreaks, but the false alarm rate will be high as shown on the right of the

ROC curve. Therefore, a reasonable cut point should be used with acceptable false

alarm rate and sensitivity level. A perfect test should have false alarm rate equal to

zero, and sensitivity equal to one. On the other hand, a noninformative test has a
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false alarm rate equal to sensitivity, i.e., an ROC curve lying on the 45 degree line.

Therefore, the closer the ROC curve is to the diagonal, the less useful the test is; and

the more steeply the curve moves up to the upper left corner of the ROC plot, the

more useful the test is. As a result, the area under the ROC curve (AUC) is a good

indicator of the performance of a test. The closer the AUC is to 1.0, the better the

test, and the closer the AUC is to 0.5, the worse the test. If the AUC is 1.0, the test

is perfect.

Assume T ∼ N(0, 1) under H0 and T ∼ N(µi, σ
2
i ) under H1, Figure 1.3 shows

that AUC decreases as σi increases when µi is held constant (right panel), and AUC

increases as µi increases and σi is held constant (left panel). Figure 1.4 shows the

contour plot of AUC with normally distributed test statistics as both σi and µi change.

In summary, the more overlap between the distribution of T under the null hypothesis

and the alternative hypothesis, the smaller the AUC is.

The ROC curve and AUC have seen broad application in many areas, including,

but not limited to, medical decision making (53) and signal processing (72).

1.5 Summary of Thesis and Primary Contributions

In the following chapters, we first review cluster detection methods, then describe

two data sets to be used later in our research. Detecting outbreaks in space is very

challenging as the shapes and locations of outbreak clusters of disease can be unpre-

dictable. In chapter four, we assess spatial statistical performance of two spatial scan

statistics (the SaTScan and the Upper Level Set stastistics), and their applications

to cardiac birth defect data from Santa Clara County, California. In chapter five, we

investigate performance of cluster detection methods when adjusting for covariates

via Generalized Additive Models (GAM). We apply GAMs to archaeological data

from Black Mesa, Arizona to identify clusters of early versus late Anasazi settlement
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sites. We also compare the GAM results and performance of the GAM methodology

with those based on kernel density estimation of the early-to-late relative risk surface.

Finally, we assess spatial performance of detection systems using decision fusion the-

ory for the situation where a detection system can be comprised of a few expensive,

precise detectors and many inexpensive, imprecise detectors in chapter six. In this

thesis, we not only add new methods of evaluating cluster detection methods, but

also bridge spatial performance of surveillance systems and sensor detection systems.
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Chapter 2

Cluster Detection Methods

This chapter summarizes a set of statistical techniques for detecting spatial anomalies.

We will use these to build spatial detection systems in subsequent chapters.

2.1 Detecting Clusters vs. Detecting Clustering

A cluster defines a collection of events that is different from the rest of a collec-

tion of events, while clustering defines a tendency for cases to gather together (25).

Detecting clusters involves finding whether one or more collections of events are sig-

nificantly different from the null hypothesis of no cluster, while detecting clustering

tests whether cases tend to occur together. Detecting clustering usually provides a

single test statistic and a single p-value for the entire data set, but detecting clusters

could involve multiple testing with more than one p-value, one for each potential

cluster.

Methods for detecting clusters and clustering can further be distinguished between

general tests and focused tests (25). A general test investigates patterns within the

entire study area, and a focused test is interested in a potential abnormal region, such

as a neighborhood close to a waste site, or an area sharing the same water recourse.

In this research, our primary research interest involves detecting clusters with general
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or focused tests.

There are many methods for identifying clusters in spatial epidemiological, sta-

tistical, and geographic analysis fields (8; 12; 25; 26; 28; 44; 46; 57; 58; 64). In

the following sections we will introduce some popular methods used in public health

surveillance. We will further evaluate the performance of these cluster detection

methods in Chapter 4 and Chpater 5.

2.2 Spatial Scan Statistic

Joseph I. Naus studied scan statistics in detail in 1965 (34; 35). Since then, this

method has been widely used in archaeology, epidemiology, geography, biology, eco-

logic, environment, sociology, and many other scientific and engineering fields (27).

A scan statistic involves moving a “window” across the study area and comparing

the incidence/prevalence rate observed within the window to that observed outside

of the window. We test each window as a potential cluster. A spatial scan statistic

was developed by Martin Kulldorff (45), and his popular SaTScan software system is

free for users from the website http://wwww.satscan.org (45). The SaTscan software

has been used in infectious diseases (38; 67), cancer (4; 47), diabetes (7), syndromic

surveillance (29; 39), brain imaging (82), history (9), criminology (79), and many

other fields.

In most applications, a circular window is used in the SaTScan under both Poisson

and Bernoulli models of the counts within and outside of the window. The user is

allowed to define the centers and radii of the circular windows under consideration,

where each circle defines a potential cluster. Applications typically only consider

circles covering less than half of the study area. Under the Poisson model, the null

hypothesis assumes that the number of cases is proportional to the population size,

that is, the rate is equal across the study region, while the alternative hypothesis
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assumes that the rate inside the window is higher than outside the window (45). The

test statistic is the maximum value of the likelihood function associated with the

potential cluster, which is proportional to:

(
cin

Ein

)cin
(

cout

Eout

)cout

I(cin > Ein)

where cin, cout are the observed number of cases inside and outside the potential

cluster, Ein, Eout are the expected number of cases, I() in a indicator function, I()

equal to one if cin > Ein, zero otherwise.

Under the Bernoulli model, the null hypothesis assumes that p = q, where p is the

probability that an event occurs inside the window, while q is the probability that

the event occurs outside of the window. The alternative hypothesis assumes that

p > q (45). The likelihood is proportional to:

(
cin

nin

)cin
(

nin − cin

nin

)nin−cin
(

cout

nout

)cout
(

nout − cout

nout

)nout−cout

I()

where cin, cout are the observed number of cases inside and outside the potential

cluster, nin, nout are the observed number of cases and controls inside and outside the

potential cluster, I() in a indicator function, I() equal to one if cin

nin
> nin

nin+nout
, zero

otherwise.

The distribution of the maximum observed likelihood ratio statistic across all win-

dows under the null hypothesis can be simulated by Monte Carlo sampling, providing

a single p-value associated with the observed maximum, i.e. the most likely cluster.

A space-time scan statistic for surveillance is also implemented in the SaTScan

software (49). Cylinders are used as the space-time scanning window in this model.

The base of the cylinder represents space, and the height of the cylinder represents

the length of time. The null hypothesis of a space-time permutation model assumes

that there is no space-time interaction in disease incidence. Recently, the SaTScan
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was extended to also allow elliptical cylinders as well (48).

2.3 Upper Level Set Scan Statistic

The upper level set (ULS) scan statistic is an extension of the circle-based scan

statistic (20; 21). Circles used in the SaTScan methods may have low power for

detecting irregularly shaped clusters, or may include smaller or larger areas than

necessary. In addition, the SaTScan approach may not be able to address clusters

defined on the network, such as stream and highway systems, instead of geographical

regions. On the other hand, Upper level set scan statistics can be used to detect

arbitrarily shaped but still connected hotspots.

Similar to the SaTScan, the ULS computes the likelihood function associated the

potential cluster defined by the connected cells.

L(Z) = maxL(Z, p0, p1) = L(Z, p̂0, p̂1)

where Z is the potential cluster region, and inside Z all cells have the probability p1 of

experiencing an event. Outside of Z, all cells have the probability p0 of experiencing

an event, and p1 > p0.

It is usually very difficulty to do an exhaustive search for all potential hot spots

in a large region. The primary difference between the spatial scan statistic and the

upper level set scan approach lies in the set of potential clusters under consideration.

The SaTScan approach uses expanding circles to reduce the number of potential hot

spots, and the Upper level set scan uses connected components in the upper level

sets to reduce the searching space. The connected components could be physical or

arbitrarily defined.

An upper level set is determined by the empirical cell rates. The empirical cell

rate could be calculated by Ga = Ya/Aa, where Ga is the empirical rate, Ya is the
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number of events in cell a, and Aa is the number at risk in cell a. To construct the

ULS tree, first order the rates Ga, from top to down to construct the tree. If the

area of interest is finite, so is the number of rates. An upper level set is the collection

of cells whose rate Ga exceeds value g, where g could be any value from the set of

empirical cell rates. Elements in the upper level set may not be connected, but a

candidate for a hotspot should be a region with connected cells.

Therefore, a zone with certain connected cells in an upper level set is a potential

hotspot. The null hypothesis is that the rates are same for all regions, while the

alternative hypothesis is that a hotspot has higher rate than other regions. Data

under the null hypothesis are easily simulated, and the p-values could be obtained

from the resulting Monto Carlo null distribution.

2.4 Ratio of Kernel Estimators

The third analytic technique under consideration is due to Kelsall and Diggle who

developed a non-parametric density ratio method based on kernel estimation (31; 32;

33). It is used for case and control point data. For a case/control study, we assume

that the collections of case and control locations s follow heterogeneous Poisson pro-

cesses with intensity functions λ1(s) and λ2(s), respectively. The log intensity ratio

is defined by

ρ(s) = log{λ1(s)/λ2(s)}.

When conditioning on the number of case and control sites n1 and n2, the data can

be regarded as a pair of independent random samples with bivariate distributions

across the study area with probability densities f(s) and g(s), where f(s) and g(s)
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are proportional to λ1(s) and λ2(s).

ρ(s) = log
f(s)/

∫
R

λ1(s)ds

g(s)/
∫

R
λ2(s)ds

= log{f(s)/g(s)} − log

∫
R

λ1(s)ds∫
R

λ2(s)ds

Since the second part is just a constant across the region R, the spatial variation in

the log intensity ratio is proportional to the log density ratio, ie.,

ρ̂(s) ∝ log{f̂(s)/ĝ(s)}

where f̂(s) and ĝ(s) are kernel estimators of f(s) and g(s) respectively.

A tolerance interval covers a proportion with a stated confidence, similarly to a

confidence interval covers a parameter with a stated confidence. In order to provide

a measure of statistical significance, Kelsall and Diggle proposed a tolerance interval

for ρ̂(s) defined by Monto Carlo simulation under the null hypothesis.

The computation can be performed in R using kernel estimation functions avail-

able in the KernSmooth package (15; 51). We use a standard bivariate normal density

for our spatial 2-dimensional data.

2.5 Generalized Additive Models

We next consider extensions to the kernel smoothing approaching that allow local

covariate effects. Hastie and Tibshirani introduced Generalized Additive Models

(GAMs) in 1984 based on nonparametric regression or smoothing techniques (37;

76; 77). GAMs are extensions of generalized linear models. In generalized linear

models, we have

g(µ) = α +

p∑
i=1

xiβi
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where µ = E(Y ), Y is distributed according to a member of the exponential family, or

with known mean-variance relationship, g(.) denotes a link function, α is the intercept,

xi is the ith independent variable, and βi is the ith parameter coefficient.

In GAMs, some or all parametric terms in GLM could be replaced by smooth

functions, such as LOESS or cubic splines, but the additive form is still kept.

g(µ) = α +

q∑
i=1

ziθi + f1(x1) + f2(x2, x3) + . . .

where µ = E(Y ), Y is distributed according to a member of the exponential family, or

with known mean-variance relationship, g(.) denotes a link function, α is the intercept,

zi is the ith independent variable, and θi is the ith parameter coefficient, the f(.)s

are smooth functions, and x1, x2, x3 are independent variables in the smooth terms.

Most GAM applications use one-dimensional smoothing functions (75; 80), and

regression splines, such as cubic splines, are widely used to represent smooth functions.

Cubic splines are one popular way to represent one-dimensional smoothing functions.

A set of knots are placed among the data points, then a set of cubic polynomial

functions are fitted to each section, those cubic spline are joined at those knots to

make the whole spline continuous up to its second derivative. A cubic spline can be

written as

f(x) =
(xj+1 − x)

hj

βj +
(x− xj)

hj

βj+1

+
1

6
[(xj+1 − x)3/hj − hj(xj+1 − x)]δj +

1

6
[(x− xj)

3/hj − hj(x− xj)]δj+1

if xj ≤ x ≤ xj+1.

where x1 . . . xk are knots, hj = xj+1 − xj, βj = f(xj), and δj = f ′′(xj).

If we estimate coefficients in GAMs by likelihood maximization, this will often

lead to a overfitted wiggly model. To control the model smoothness, a penalty term

is introduced in our objective functions, therefore, we maximize a penalized likelihood
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for the model.

lp(β) = l(β)− 1

2

∑
j

λiβ
T Sjβ, (2.1)

where λ is the smoothing parameter, and λ ∈ [0,∞), and 1
2
βT Sjβ is the penalty

for the jth smoothing term. When λ = 0, we obtain an un-penalized regression

spline, and when λ → ∞ we obtain a straight line estimate for f . Choosing the

smoothing parameter λ is crucial to model fitting. If λ is too small, the data will be

undersmoothed, if λ is too large, the data will be oversmoothed.

As a result, GAMs are often fitted through a penalized iteratively re-weighted least

squares method given the penalized matrix, and the optimal fit is obtained when it

converges. GAMs can also be fitted by backfitting (77), which iteratively smoothing

partial residuals from the model.

Besides the choice of the smoothing parameter, another challenge in fitting GAMs

is how to represent the smooth functions. The choice of knots in cubic splines is

subjective, and the cubic smooth spine is limited to one predictor variable. In spatial

applications, it makes more sense to use 2-dimensional smooth functions to define

surfaces.

Thin plate splines are suitable to multiple predictor variables (74). Thin plate

splines also have the attractive property of being equivalent to best linear unbiased

spatial predictions obtained via kriging (19; 54; 55). A thin plate smoothing spline

for estimating a 2-dimensional data yi = g(x1, x2) + εi minimizes

‖ y − f ‖2 +λJ22(f)

where λ is the smoothing parameter, and the penalty function for smoothing two
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predictor variables is

J22 =

∫ ∫ [(
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)2
]

dx1dx2.

When GAMs are applied to point data, as in a case and control study, one common

link function is the logit, i.e.,

g(µ) = log
P [Yi = 1]

1− (P [Yi = 1])
.

Compared to the ratio of density based on kernel estimation from previous section,

ρ(s) = log{λ1(s)/λ2(s)},

the linear predictors of GAMs are related to the ratio of density, since

g(µ|event at s) = log
P [Yi = 1|event at s]

1− (P [Yi = 1|event at s])

= log
P [Yi is a case|event at s]

P [Yi is a control|event at s]

and the predicted ratio of density is

ρ(s) = log
f(s)

g(s)

= log
Pr[case event at s]

Pr[control event at s]

∝ log
λ1(s)

λ2(s)

Therefore, both ratio of kernel density estimation method and GAMs should reveal

similar results for point process data even though kernel density estimation method

incorporate 2D binned kernel density smoothing while GAMs apply thin plate re-

gression smoothing. However, GAMs offer the opportunity to incorporate parametric
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covariate terms, while kernel estimates do not.

In spatial epidemiology, GAMs have been applied to predict lung cancer rate in

five countries (52), model HIV incidence (24), describe the cancer mortality rate trend

in EU (56). GAMs have been implemented in the “gam” and “mgcv” packages in R,

providing a convenient computing platform for our studies.
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Chapter 3

Data Sets

In this chapter, we introduce two data sets we will use to motivate our proposed

methods for assessing statistical performance in spatial systems.

3.1 Severe Cardiac Defects in Santa Clara County,

California

In 1981-1982, two wells in Santa Clara County, California were contaminated with

organic solvents. As a consequence, public concern arose regarding a perceived cluster

of children born with severe cardiac anomalies in seven census tracts served by these

two wells (crude relative risk =2.2) during the same time period (71). In addition, the

spontaneous abortion rate was also reported to be higher in this region (43). Here

we focus on the cardiac anomalies, and the data include 259 census tracks containing

20,799 live births with 71 experiencing severe cardiac defects (16). The location of

each case and control is defined by the centroid of the census tract of birth residence

due to confidentiality restrictions. Census tracts are land areas defined by the U.S.

Bureau of the Census, and they vary in size. A census tract typically contains about

4,000 residents. Therefore, census tracts are usually geographically smaller in cities,
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but much larger in rural areas. The centroid is the center of the population mass of

a tract. This data set has been previously analyzed by Shaw et. al. (71) and used to

compare cluster detection methods by Ding et.al. (16) and Waller et.al. (42)

Figure 3.1 and Figure 3.2 shows the locations of cases and live births in this data

set. In Chapter 4, we apply both the SaTScan and the Upper Level Set Scan methods

to this data set to detect clusters and assess spatial performance of these two methods.
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Figure 3.1: Contour map of locations of cases in Santa Clara County
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Figure 3.2: Contour map of locations of live birth in Santa Clara County
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3.2 Anasazi Settlement sites on Black Mesa, Ari-

zona

The Anasazi were an ancient population of Native Americans who lived in the south-

western United States including Arizona, Colorado, New Mexico and Utah (13; 36;

69). Even though this region is mainly composite with rugged mountain ranges, high

plateaus, and a few rivers, the great ecological variety provided plenty of natural food

to feed people for more than 3,000 years. The Anasazi were the largest and most well

known among those lived in the area in ancient times. The modern day Pueblo tribes

are descendents of the Anasazi. Our knowledge of the Anasazi primarily derives from

archaeological remains, the records written by the Spanish explorers of the sixteenth

century, or the traditions of the modern-day Pueblo, descendants of the Anasazi, since

the Anasazi had no written history. Many archeological studies of past residential

sites reveal a sharp growth in population up to 1000 A.D. followed by a sudden and

fairly simultaneous abandonment of most sites around 1050 A.D. The question of

what happened at that time remains a mystery.

There are thousands of Anasazi archaeological sites, and we are focusing on the

sites studied by Peabody Coal Company’s Black Mesa archaeological project. The

Peabody Coal Company Black Mesa archaeological project is one of the largest ar-

chaeological projects in the American Southwest and was conducted in northeastern

Arizona from 1967 to 1983. Hundreds of students and scholars worked on this project,

and more than 700 settlement sites have been found and dated by pottery types and

tree-ring dating. In the next chapter, we investigate whether the pattern of late sites

dated between 950 and 1050 A.D., which spans the time from rapid population growth

to the abandonment of settlements, are different from those early sites dated between

850 and 949 A.D. occuring prior to the sudden population growth. Our data include

100 early sites and 389 late sites. As the majority of the Anasazi in Black Mesa lived
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in small groups as farmers (13), we used geographic information systems to compute

distance measures between sites and local streams and stream beds around those sites

to explore the effects of these covariates on patterns of early and late sites.

The locations of early and late settlement sites appear in Figure ??. In Chapter

five, we apply ratio of density estimation, and GAM methods to this data set, then

explore our spatial performance measures on them. The primary research questions

of interest of this data set is comparison of the late and early site locations and the

relationship between these patterns and proximity to rivers.
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Figure 3.3: Settlement sites, red indicates early sites, and blue indicates later sites
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Chapter 4

Spatial Measures of Performance:

Regional Count Data

4.1 Introduction

In this chapter, we derive several spatial measures of statistical performance for clus-

ter detection methods. Our motivating goal is to define how well statistical detection

systems detect clusters occurring at various locations in data consisting of regional

counts of disease. We introduce the spatially-referenced area under a receiver operat-

ing characteristic (ROC) curve (AUC) as a measure of local statistical performance

summarizing local sensitivity and specificity. This work build on earlier examinations

of spatially referenced power by Waller et. al (42).

The data set used in this section was introduced in the previous chapter. In 1981-

1982, two wells in Santa Clara County, California were contaminated with organic

solvents. Children born with severe cardiac anomalies in seven census tracts served

by these two wells had crude relative risk of 2.2 compared to reference rates during

the same time period (71). This data set includes 259 census tracts containing 20,799

live births with 71 experiencing severe cardiac defects (16). The location of each case
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and control is defined by the centroid of the census tract of birth residence due to

confidentiality restrictions. Figure 4.1 and Figure 4.2 shows the locations of cases and

live births in this data set.
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Figure 4.1: Contour map of locations of cases in Santa Clara County

We applied the spatial scan statistic implemented in the SaTScan software system

(referred to as the SaTScan approach below), developed by Martin Kulldorff (45),

and a second scan approach, the Upper Level Set Scan method, developed by G.P.

Patil (20; 21), to the same simulated data sets based on the null and alternative
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Figure 4.2: Contour map of locations of live birth in Santa Clara County
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hypotheses to compute and plot AUC for each tract. The Upper Level Set (ULS)

scan method requires information regarding connectivity between tracts. We use

GeoDA, the software packages developed at the Spatial Analysis Lab, University of

Illinois, to identify and output the connected tracts given a map with census tracts.

The ULS method is executed by software written in the C programming language and

provided by Dr Patil’s research group. We modified the C code to fit our application

here. We reviewed the results application of both SaTScan and ULS to this Santa

Clara data, and compared spatial performance between them as well in the following

sections.

4.2 Hypothesis

Under the null hypothesis, we assume the probability that a baby is born with a

cardiac defect is the same everywhere. Therefore, the expected number of cases

(E(Ci)) in each census tract is proportional to the number of live births (ni) in

the tract. Let γ be the baseline incidence rate, then, the null hypothesis could be

represented as:

H0 : Ci are independent Poisson random variables with E(Ci) = γni

Hill et. al. (42) consider an alternative hypothesis defined by

Ha : E(ci) = γni(1 + δiε)

where

δ =


1 if tract i is in the cluster

0 otherwise

and ε = RR− 1, RR= relative risk of disease within the cluster.
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For unknown γ, we redefine the hypotheses conditional on the sufficient statistic c+:


H0 : C1, . . . , CI |C+ ∼ multinomial(c+, n1/n+, . . . , nI/n+)

Ha : C1, . . . , CI |C+ ∼ multinomial(c+, π1, . . . , πI)

where

πi =
ni(1 + δiε)∑
ni(1 + δiε)

4.3 Test Statistics

4.3.1 Kulldorff’s SaTScan Statistics

Kulldorff’s spatial scan statistic (45) is the maximum of Lz, where Lz is the local

likelihood ratio statistic. Based on a Poisson model,

Lz =

(
cz

γ̂nz

)cz
(

c+ − cz

c+ − γ̂nz

)c+−cz

I[cz > γ̂nz] (4.1)

where γ̂ is the estimated baseline incidence rate, i.e. γ̂ = c+
n+

and I[cz > γ̂nz] is an

indicator function equal to 1 when the number of observed cases in zone z exceeds

that expected under H0, and is equal to zero otherwise. The most likely cluster is

defined to be the zone z with the maximum Lz.

We apply the SaTScan method to the Santa Clara data, and the most likely cluster

is a circular cluster centered at (-121.814, 37.1939) with radius 0.15 (Figure 4.3),

including tracts listed in table 4.1. This cluster contains 7997 live births with 40 of

them experiencing severe cardiac defects. Some tracts with zero event are included

in this circular cluster. The log likelihood ratio is 4.636 with associated p-value of

0.562. Therefore, the most likely cluster is not significant.
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Figure 4.3: Most likely cluster identified by SaTScan in Santa Clara data.

4.3.2 Patil’s Upper Level Sets Statistics

The Upper Level Set scan statistic (21) is the local likelihood ratio statistic, the same

as the SaTScan. The difference between the Upper Level Set scan statistic and the

SaTScan lies in the set of potential clusters considered by each approach. In the

SaTScan, a set of circular windows with various radius are the potential zones; while

in the Upper Level Sets Scan, a sets of connected regions are the potential zone to be

detected. Therefore, even though the formulae of test statistics are the same, they

could have very different identified zones.

We apply the ULS method to the Santa Clara data, and the most likely cluster

is a cluster with 23 tracts, and none of these tracts has zero event (Figure 4.4). This

cluster contains tracts listed in Table 4.2 This cluster contains 3,728 live births with

33 of them experiencing severe cardiac defects, and none of these tracts has zero
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events. The log likelihood ratio is 30.3935 with associated p-value of 0.40. Therefore,

the most likely cluster is not significant.

Compared to the cluster identified by the SaTScan, the cluster identified by the

ULS is smaller, and by construction it only contains non-zero event tracts. Three

tracts (Figure 4.5) were in the ULS cluster but not in SaTScan.

Figure 4.4: Most likely cluster identified by ULS in Santa Clara data.
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Figure 4.5: Tracts identified as most likely cluster by ULS but not by SaTScan in
Santa Clara data.
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Table 4.1: Cluster detected by SaTScan

Tract Number of Number Tract Number of Number
Live Birth of Cases Live Births Cases

06085501500 195 1 06085501600 123 0
06085501700 117 0 06085501800 87 1
06085502300 64 0 06085502400 105 1
06085502500 88 0 06085502601 17 0
06085502602 57 0 06085502701 77 0
06085502702 95 1 06085502800 77 0
06085502901 69 0 06085502902 103 1
06085502903 48 0 06085502905 130 0
06085502906 66 0 06085502907 57 0
06085502908 100 1 06085503001 41 0
06085503002 33 0 06085503003 76 0
06085503101 168 0 06085503102 382 3
06085503103 120 1 06085503104 74 0
06085503203 144 1 06085503204 117 1
06085503205 162 0 06085503206 247 1
06085503207 65 1 06085503208 87 2
06085503304 129 0 06085503305 156 0
06085503306 73 0 06085503308 150 0
06085503309 222 0 06085503310 50 0
06085503400 269 2 06085503502 155 2
06085503504 150 1 06085503505 200 2
06085506801 51 0 06085506802 62 0
06085506803 93 0 06085506804 34 0
06085506900 80 2 06085507000 30 0
06085511800 54 0 06085511901 128 0
06085511903 44 0 06085511904 48 0
06085511905 25 0 06085511906 55 0
06085511907 52 1 06085511908 83 0
06085512002 290 1 06085512005 123 0
06085512006 102 0 06085512007 252 3
06085512008 180 1 06085512009 190 1
06085512010 123 0 06085512011 133 1
06085512012 132 2 06085512013 168 2
06085512014 92 0 06085512015 81 1
06085512016 125 0 06085512100 40 0
06085512301 182 2

Total 7997 40
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Table 4.2: Cluster detected by ULS

Tract Number of Live Births Number of Cases
06085501400 134 1
06085501500 195 1
06085501800 87 1
06085502400 105 1
06085503102 382 3
06085503103 120 1
06085503203 144 1
06085503204 117 1
06085503207 65 1
06085503208 87 2
06085503400 269 2
06085503502 155 2
06085503504 150 1
06085503505 200 2
06085503705 177 1
06085504000 205 1
06085512007 252 3
06085512008 180 1
06085512009 190 1
06085512011 133 1
06085512012 132 2
06085512013 168 2
06085512015 81 1

Total 3728 33
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4.4 Simulations

The simulation based on the null hypothesis is randomly assigning cases in the study

region with the probability proportional to the number of live births in the tract. We

simulated 9999 realizations.

For simulations under the alternative hypothesis, three types of clusters were

defined as below.

4.4.1 Compacted Circular Cluster

The first type of cluster is a compacted circular cluster, and it is based on a tract

and its six closest neighbors defined by the Haversine Formula, which is the distance

on the globe:

R = earths radius (mean radius = 6, 371km)

∆lat = lat2 − lat1

∆long = long2 − long1

a =

(
sin(

∆lat

2
)

)2

+ cos(lat1) · cos(lat2)

(
sin

∆long

2

)2

c = 2 arcsin(min(1,
√

a))

d = R · c

Examples of this kind of circular cluster are shown in Figure 4.6 and Figure 4.7. The

centriods of these seven cluster are inside a circle even though these tracts do not

appear like a circle.
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Figure 4.6: An example of circular cluster under the alternative hypothesis in the
Santa Clara data.
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Figure 4.7: Another example of a circular cluster under the alternative hypothesis in
the Santa Clara data.
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We simulated two sets of data for this circular based cluster with relative risk at 3

and 5, respectively. The empirical histograms of relative risk from simulated data in

Figure 4.8 show that the mean of the relative risk was 3.0 with range from 0 to 14.3,

and 5.1 with range from 0 to 21.1, respectively. There are almost always tracts in the

cluster experiencing zero events due to rareness of events as shown in Figure 4.9.
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Simulated circular cluster with RR=3

The relative risk based on simulated circular cluster with RR=3 data
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Figure 4.8: Histograms of the relative risk based on the simulated data of the alterna-
tive hypothesis in Santa Clara data. The top panel is based on simulated data with
the relative risk of three, and the bottom panel is based on the simulated data with
the relative risk of five.
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Zeros in the simulated circular cluster with RR=3 

The number of zero events in the simulated circular cluster data with RR=3
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Figure 4.9: Histograms of the number of zero events based on the simulated data.
The top panel is based on simulated data with the relative risk of three, and the
bottom panel is based on the simulated data with the relative risk of five.
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4.4.2 Closest Neighbor Cluster

The second type of cluster consisted of seven tracts with non-circular clusters defined

by the following algorithm:

• define tract i as the starting point in the cluster.

• Randomly choose one connected neighbor of i as the 2nd tract in the cluster.

• Randomly choose one connected neighbor of the 2nd tract excluding those al-

ready in the clusters as the 3rd cluster.

• . . .

• Randomly choose one connected neighbor of the 6th tract excluding those al-

ready in the clusters as the 7th cluster.

There are three tracts whose associated clusters have only six tracts as all the neigh-

bors for the 6th tract are already in the cluster. Examples of these closely connected

clusters are shown in Figure 4.10 and Figure 4.11.

Relative risk was set at RR = 3 for the simulation. The histograms of empirical

relative risk in Figure 4.12 show that the mean of the relative risk was 3.05 with range

from 0 to 12.72. Again, there are many tracts in the cluster with zero events due to

the rareness of events as shown in Figure 4.12.
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Figure 4.10: An example of a non-circular cluster under the alternative hypothesis in
the Santa Clara data.
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Figure 4.11: Another example of a non-circular cluster under the alternative hypoth-
esis in the Santa Clara data.
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Histogram of RR

RR based on H1 close 7 tract simulated data
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Figure 4.12: The top panel is the histogram of the relative risk estimated by simulation
under the alternative hypothesis of closest connected neighbors in Santa Clara data
with RR=3; the bottom panel is the number of zero events in the simulated closest
neighbor cluster data.
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4.4.3 Elongated neighbors cluster

The third type of cluster is more elongated than the previous one, and was defined

by the following algorithm:

• define tract i as the starting point in the cluster.

• choose the farthest connected neighbor of i as the 2nd tract in the cluster.

• Choose the farthest connected neighbor of the 2nd tract excluding those already

in the clusters as the 3rd tract.

• . . .

• Choose the farthest connected neighbor of the 6th tract excluding those already

in the clusters as the 7th tract.

There are two tracts whose associated clusters have less than seven tracts, one

with five and the other with six tracts due to the last tract’s neighbors already being

in the cluster, and there are no other neighbors to include. Examples of these clusters

are shown in Figure 4.13 and Figure 4.14.

Relative risk of the simulated data were set at RR = 3. The histograms of

empirical relative risk in Figure 4.15 show that the mean of the relative risk was 3.05

with range from 0 to 12.72. Yet again, there are many tracts in the cluster with zero

events due to the rarity of events.
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Figure 4.13: An example of a elongated cluster under the alternative hypothesis in
the Santa Clara data.
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Figure 4.14: Another example of a elongated cluster under the alternative hypothesis
in the Santa Clara data.



53

Histogram of RR

RR estimated by the simulated data from 
stretched cluster of RR=3
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Figure 4.15: The top panel is the Histogram of the relative risk estimated by sim-
ulation under the alternative hypothesis of elongated neighbors in Santa Clara data
with RR=3; the bottom panel is the number of zero events in the simulated elongated
neighbor cluster data.
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4.5 Defining the Spatial AUC for Regional Data

As a measure of performance, we consider a ROC curve associated with each tract’s

cluster. We estimate area under receiving operating characteristic curve via Monte

Carlo simulations as detailed in the following sections.

4.5.1 Cut Points

First, we define cut points (critical values) for Kulldorff’s scan statistic Lz associated

with cumulative probabilities of 0.05, 0.1, 0.15, ... , 0.90, 0.95 based on the null

distribution defined via Monte Carlo simulation as in Table 4.3.

Table 4.3: Cut Point defined by SaTScan from 9,999 simulated data based on the
null hypothesis

probability cut point
0.05 7.652
0.10 6.875
0.15 6.394
0.20 6.070
0.25 5.783
0.30 5.551
0.35 5.329
0.40 5.133
0.45 4.964
0.50 4.806
0.55 4.657
0.60 4.498
0.65 4.333
0.70 4.194
0.75 4.050
0.80 3.885
0.85 3.693
0.90 3.484
0.95 3.192
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Next, cut points for the ULS statistics are based on the 9,999 simulations of the

null hypothesis, and listed in table 4.4

Table 4.4: Cut Points defined by ULS from 9,999 simulated data based on the null
hypotheis

probability cut point
0.05 15.97
0.10 18.26
0.15 20.04
0.20 21.54
0.25 22.90
0.30 24.19
0.35 25.45
0.40 26.66
0.45 27.90
0.50 29.13
0.55 30.43
0.60 31.77
0.65 33.23
0.70 34.77
0.75 36.46
0.80 38.43
0.85 40.84
0.90 43.94
0.95 48.89

4.5.2 Estimating spatial AUC

For each tract’s cluster,we estimate AUC based on these simulated data. The sen-

sitivity is calculated as the proportion of the test statistics Lmax values from sim-

ulated data sets exceeding each cut point based on the methods used. The area

under the curve (AUC) is calculated via the Trapezoid Rule using Area =
∑n

i=j aj =∑n
j=1

hj+1−hj

2
(bj + bj+1), where hj is the false alarm rate at cut point j, and bj is the

sensitivities at the cut point j.

The algorithm can be summarized as the following:

• Simulate 9999 data sets under the null hypothesis.
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• Compute Kulldorff’s or Patil’s scan statistics Lmax based on each simulated

data set under the nulll hypothesis.

• Order Lmax, and get cut points at 5th, 10th, . . . , 95th percentiles.

• Simulate 100 data sets under the alternative hypothesis assuming that tract i

is the center of the cluster.

• Compute Kulldorff’s or Patil’s scan statistics Lmax based on each simulated

data set.

• Calculate the proportion that Lmax exceeding the cut points

• Compute AUC for tract i.

• Repeat for each tract.

In the following section, we presented spatial AUC for those three types of clusters

defined previously.

4.5.3 Case I: compact circular cluster

As noted in section 4.4.1, two sets of data were simulated under the alternative

hypothesis that there is a circular cluster consisting of one tract and its six closest

neighbors defined by Haversine distance on the globe. Based on these simulated data,

we calculated local AUC values by the algorithm stated above. Figure 4.16 shows

the contour plot based on our local AUC values for the circular cluster at RR = 3.

We note that the AUC varies with location, ranging from near-noninformative levels

of 0.5 up to above 0.8. The map reveals areas where SaTScan would have better or

worse ability to detect the type of clusters under consideration.

Figure 4.17 shows the contour plot based on our local AUC values based on the

ULS on simulated circular cluster with RR=3. We note that AUC varies from 0.3 to
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0.7. Usually, when AUC is below 0.5, people would flip the sign of the hypothesis,

that is, instead of finding a region with higher risk, we may declare that a region

with unexpected lower risk. Here we keep the original testing hypothesis of looking

for higher risk regions. Therefore for those regions with AUC less than 0.5, there is

little chance of detecting them even though they truly experience a higher risk.

In order to assess whether the observed variation in AUC is driven entirely by

local variation in the number of live births, Figure 4.18 reveals a general trend of

increasing AUC with increasing number of live births for both the SaTScan and the

ULS, but also reveals substantial variation about this trend, indicating influences

outside of simple variations in the local number of live births.

The seven tracts falling outside of the general point cloud are located at the

far south end of the region as shown in map 4.19. In most locations the SaTScan

outperforms the ULS as shown in Figure 4.20. We further examined the empirical

mean number of zero events in the predefined seven tract cluster. Figure 4.21 shows

the number of zero event affect performance for both SaTScan and ULS dramatically.
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Figure 4.16: Contour map of AUC for SaTScan with RR=3 and simulated circular
clusters.
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Figure 4.17: Contour map of AUC for ULS with RR=3 and simulated circular clusters.
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Figure 4.18: Scatter plot of AUC vs. the number of live births in the circular cluster.
Red denotes AUC of SaTScan, and black denotes AUC of ULS with RR=3.
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Figure 4.19: Map showing the seven tracts with different pattern of trending plot of
AUC for ULS vs. the number of live births in the cluster.
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Figure 4.20: Difference in AUC between ULS and SaTScan (ULS-SATSCAN) with
RR=3 for simulated circular clusters. It shows that ULS is worse than SaTScan
almost everywhere except a very tiny region.
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Figure 4.21: Scatter plot of AUC vs. the average number of zero event in the pre-
defined circular cluster for RR=3. Red denotes AUC for SaTScan and black denotes
AUC for ULS.
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When the relative risk of simulated data is increased to five, AUC values are

improved in general for both the SaTScan and the ULS as shown in Figure 4.22 and

Figure 4.23. The SaTScan approach performs well across the region. It reveals the

similar increasing AUC trend with the rising people at risk for both the SaTScan and

the ULS as when RR=3. The same seven tracts fall outside outstand the trend again.
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Figure 4.22: Contour map of AUC for SaTScan with RR=5 for simulated circular
clusters.

Figure 4.24 shows the difference of AUC between the ULS and the SaTScan based

on simulated circular clusters with RR=5. In every location, the SaTScan approach
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out performed the ULS. We further examined the empirical mean number of zero

events in the predefined seven tract cluster. Figure 4.25 shows the number of zero

events affects the preformance of the ULS dramatically.
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Figure 4.23: Contour map of AUC for ULS with RR=5 for simulated circular clusters.
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Figure 4.24: Difference of AUC between ULS and SaTScan (ULS-SATSCAN) for
RR=5 for simulated circular clusters.
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Figure 4.25: Scatter plot of AUC vs. the average number of zero event in the pre-
defined circular cluster for RR=5. Red denotes AUC for SaTScan and black denotes
AUC for ULS.
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4.5.4 Case II: Closest Neighbors Cluster

Since the Upper Level Set scan method preforms better for irregular shaped cluster,

we might expect ULS to outperform SaTScan when simulated some clusters based on

their neighbors as describe in the previous section. Figure 4.26 shows the contour plot

based on our local AUC values for the connected neighbors cluster with RR = 3 by

the SaTScan approach. We note that the AUC varies fairly dramatically with location

ranging from 0.5 to 0.8, and performs worse than for circular cluster simulations as

shown in Figure 4.27 in most locations. Therefore, SaTScan performs better when

the underlying cluster is circular than when it follows irregular shapes.

Figure 4.28 shows the contour plot based on our local AUC values for the connected

neighbors cluster with RR = 3 for the ULS. We note that the AUC varies fairly widely

with location ranging from 0.3 to 0.7. It performs better than for circular simulations

as shown in Figure 4.29 in some locations, but worse in other locations. It still reveals

a general trend of increasing AUC with increasing number of live births except for

five tracts at the far south corner since their choice of neighbors are limited in the

corners. The only tract in this corner that performs better is the one has its neighbors

beyond that corner. When comparing with the SatScan results, in most locations the

ULS is performance worse as shown in Figure 4.30, but the regions that outperform

the SaTScan are larger than in the circular situation.

Figure 4.31 shows the number of zero event tracts in the predefined close neighbor

cluster affects AUC for both the SaTScan and the ULS, however, it affects the ULS

more dramatically especially when the number of zero events are higher than three.

Figure 4.32, Figure 4.33, and Figure 4.34 show the number of live births, the

number of cases, and the incidence rate, which is defined as the ratio of the number

of cases and the number of live births in the predefined close neighbor cluster, affects

both the performance of the SaTScan and the ULS. Furthermore, the ULS has more

variability, specially at the lower number of live births in the predefined close neighbor
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cluster. The ULS performance is much closer to that of SaTScan at higher number of

live births for regions in the close neighbor cluster compared to the circular cluster.

In summary, the performance of the ULS is improving with non circle clusters.

However, SaTscan still performs better in most locations, and SaTScan follows the

population contours more closely.
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Figure 4.26: Contour map of AUC for SaTScan with RR=3 for simulated close neigh-
bor clusters.
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Figure 4.27: Contour map of AUC for difference between circular and non-circular
clusters (DIFF = circular-close neighbor) for SaTScan with RR=3.
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Figure 4.28: Contour map of AUC for ULS with RR=3 for simulated non circular
clusters.
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Figure 4.29: Difference of AUC for ULS between circular and non-circular clusters
(circle - non-circular) with RR=3.
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Figure 4.30: Difference of AUC between ULS and SaTScan (ULS-SATSCAN) with
RR=3 for simulated non circle clusters.
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Figure 4.31: Scatter plot of AUC vs. the average number of zero event in the pre-
defined non-circular cluster with RR=3. Red denotes SaTScan, and black denotes
ULS.
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Figure 4.32: Scatter plot of AUC vs. the number of live births in the predefined close
neighbor cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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Figure 4.33: Scatter plot of AUC vs. the number of cases in the predefined close
neighbor cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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Figure 4.34: Scatter plot of AUC vs. the incidence rate in the predefined close
neighbor cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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4.5.5 Case III: Elongated Neighbors Cluster

Since neighbors may be still close to each other, we next purposely selected the

furthest neighbor to make the cluster elongated. We applied ULS and SaTscan to

this type of cluster to test if it favors upper level set scan method. Figure 4.35 shows

the contour plot based on our local AUC values for the farther elongated clusters at

RR = 3 by the SaTScan. We note that the AUC varies from 0.4 to 0.7. It performs

worse than the underlying cluster is circular in most locations as shown in Figure 4.36.

We applied the ULS to the same simulated data used for SaTScan, and Figure 4.37

shows the contour plot. We note that AUC varies dramatically with location, and

the area that it performs better than SaTScan in enlarged over that in the previous

two cases as shown in Figure 4.38. In addition, in many locations, especially in the

middle section it performs better than when the underlying cluster is circular as shown

in Figure 4.39. This confirms that the ULS is better at detecting irregular shaped

clusters.

Figure 4.40 shows that the number of zero events affects the performance of the

ULS dramatically. Figure 4.41, Figure 4.42, and Figure 4.43 show the number of live

births, the number of cases, and the incidence rate, which is defined as the ratio of

the number of cases and the number of live births in the predefined elongated cluster,

affect both the performance of the SaTScan and the ULS. Furthermore, the ULS has

more variability than SaTScan.
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Figure 4.36: Difference of AUC for SATSCAN between circular and elongated clusters
(circular - elongated) with RR=3.
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Figure 4.37: Contour map of AUC for ULS with RR=3 for simulated elongated
clusters
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Figure 4.38: Difference of AUC between ULS and SaTScan (ULS-SATSCAN) with
RR=3 for simulated elongated clusters.
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Figure 4.39: Difference of AUC for ULS between circular and elongated ( circular -
elongated) with RR=3 for simulated clusters.
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Figure 4.40: Scatter plot of AUC vs. the average number of zero event in the prede-
fined elongated cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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Figure 4.41: Scatter plot of AUC vs. the number of live births in the predefined
elongated cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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Figure 4.42: Scatter plot of AUC vs. the number of cases in the predefined elongated
cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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Figure 4.43: Scatter plot of AUC vs. the incidence rate in the predefined elongated
cluster with RR=3. Red denotes SaTScan, and black denotes ULS.
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4.6 Conclusions

In this chapter, we applied both the SaTScan and the Upper Level Set scan to the

Santa Clara data set, and computed area under the receiver operating characteris-

tic curve for these types of clusters by Monte Carlo simulations. The results reveal

the SaTScan performs better if the cluster is compact, and the Upper Level Set ap-

proaches offer improved performance when clustering is irregularly shaped. Therefore,

when irregular cluster is suspected, the ULS method should be considered. In addi-

tion, the performance of cluster detection methods can be highly variable in space,

often ranging from completely ineffective (AUC < 0.5) to extremely accurate.
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Chapter 5

Spatial Measures of Performance:

Regional Point Data for Cases and

Controls

In this chapter, we investigate the problem of cluster detection in regional point data.

The spatial performance of Kernel Density method and Generalized Additive Models

are compared.

5.1 Introduction

Quantification of spatial pattern is of interest in a variety of disciplines. For example,

detection of disease outbreaks often involves spatial analysis. In archaeology, identi-

fication of significant local differences in artifact or settlement patterns can provide

a clue to underlying behavioral drivers operating in the past. As in previous chap-

ter, our goal is to derive methods to evaluate the statistical performance of spatial

surveillance systems. Spatial surveillance often involves a search for clusters (2; 12). A

cluster refers to areas of abnormal observations, such as those with a higher incidence

rate, compared to other areas in a particular time period, in space or both (12; 61).
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Methods for detecting disease clusters provide tools for exploring data, but as noted

earlier, causal effects are typically drawn by further research (28).

In this chapter, we develop an approach to assess and compare performance of two

cluster detection methods and illustrate the approach on archaeological data involving

Anasazi settlement sites in northeastern Arizona. The Anasazi (or Ancestral Pueblo

peoples) were an ancient population of Native Americans who lived in the southwest-

ern United States including Arizona, Colorado, New Mexico and Utah (13; 36; 69).

There are thousands of Anasazi archaeological sites, and we focus on the sites studied

by Peabody Coal Company’s Black Mesa archaeological project, one of the largest

archaeological projects in the American Southwest, and conducted in northeastern

Arizona from 1967 to 1983. In the following sections, we investigate whether the

pattern of late sites dated between 950 and 1050 A.D., which spans the time from

rapid population growth to the abandonment of settlements, are different from those

early sites dated between 850 and 949 A.D. occuring prior to the sudden population

growth. Our data include 100 early sites and 389 late sites. As the majority of the

Anasazi in Black Mesa lived in small groups as farmers (13), we use geographic infor-

mation systems to compute distance measures between sites and local streams and

stream beds around those sites to explore the effects of proximity to seasonal water

sources on patterns of early and late sites.

While we are still focused on the detection of spatial clusters, the data format differs

slightly from that in the previous chapter. Here we have point locations and two

type of points: cases or controls (non-cases). In the Anasazi example, there is no

obvious classification of early sites as “case” or “controls”, rather the choice is up to

the analyst. The locations of early and late settlement sites appear in Figure 5.1 as

well as locations of local rivers and streams. In the following sections, we apply ratio

of density estimation and Generalized Additive Models (GAM) methods to this data

set, then explore our spatial performance measures on them.
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5.2 Methods

5.2.1 Density Ratio Method

The first analytic technique under consideration is due to Kelsall and Diggle who

developed a non-parametric density ratio method based on kernel estimation (31; 32;

33). For a case/control study, we assume that the collections of case and control

locations s follow heterogeneous Poisson processes with intensity functions η1(s) and

η2(s), respectively. The log intensity ratio is defined by

ρ(s) = log{η1(s)/η2(s)}.

When conditioning on the number of case and control sites n1 and n2, the data can

be regarded as a pair of independent random samples with bivariate distributions

across the study area with probability densities f(s) and g(s), where f(s) and g(s)

are proportional to η1(s) and η2(s).

ρ(s) = log
f(s)/

∫
R

η1(s)ds

g(s)/
∫

R
η2(s)ds

= log{f(s)/g(s)} − log

∫
R

η1(s)ds∫
R

η2(s)ds

Since the second part is a constant across the region R, the spatial variation in the

log intensity ratio is proportional to the log density ratio, ie.,

ρ̂(s) ∝ log{f̂(s)/ĝ(s)}

where f̂(s) and ĝ(s) are kernel estimators of f(s) and g(s) respectively.

In order to provide a measure of statistical significance, Kelsall and Diggle propose a
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Figure 5.1: Settlement sites, red indicates early sites, and blue indicates later sites
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tolerance interval for ρ̂(s) defined by Monto Carlo simulation under a null hypothesis

of random labelling (33; 42).

The computation can be performed in R using kernel estimation functions available in

the KernSmooth package (15; 51). For the studies below, we use a standard bivariate

normal density for our spatial 2-dimensional data.

5.2.2 Generalized Additive Models (GAM)

We next consider extensions to the kernel smoothing approaching that allow local

covariate effects. Hastie and Tibshirani introduced Generalized Additive Models

(GAMs) in 1984 based on nonparametric regression or smoothing techniques (37;

76; 77). GAMs are extensions of generalized linear models. In generalized linear

models, we have

g(µ) = α +

p∑
i=1

xiβi

where µ = E(Y ), Y is distributed according to a member of the exponential family, or

with known mean-variance relationship, g(.) denotes a link function, α is the intercept,

xi is the ith independent variable, and βi is the ith parameter coefficient.

In GAMs, some or all parametric terms in GLM are replaced by smooth functions,

such as LOESS or cubic splines, but the additive form is still kept.

g(µ) = α +

q∑
i=1

ziθi + f1(x1) + f2(x2, x3) + . . .

where µ = E(Y ), Y is distributed according to a member of the exponential family, or

with known mean-variance relationship, g(.) denotes a link function, α is the intercept,

zi is the ith independent variable, and θi is the ith parameter coefficient, the f(.)s

are smooth functions, and x1, x2, x3 are independent variables in the smooth terms.

If we estimate coefficients in GAMs by likelihood maximization, this will often lead
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to a overfitted wiggly model. To control the model smoothness, a penalty term is

introduced in our objective functions, therefore, we maximize a penalized likelihood

for the model.

lp(β) = l(β)− 1

2

∑
j

λjβ
T Sjβ, (5.1)

where λ is the smoothing parameter, and λ ∈ [0,∞), and 1
2
βT Sjβ is the penalty

for the jth smoothing term. When λ = 0, we obtain an un-penalized regression

spline, and when λ → ∞ we obtain a straight line estimate for f . Choosing the

smoothing parameter λ is crucial to model fitting. If λ is too small, the data will be

undersmoothed, if λ is too large, the data will be oversmoothed.

As a result, GAMs are often fitted through a penalized iteratively re-weighted least

squares method given the penalized matrix, and the optimal fit is obtained when it

converges. GAMs can also be fitted by backfitting (77), which iteratively smooth

partial residuals from the model.

In spatial applications, it makes more sense to use 2-dimensional smooth functions to

define surfaces. Therefore, thin plate splines which are suitable to multiple predictor

variables (74) are applied here. Thin plate splines also have the attractive property of

being equivalent to best linear unbiased spatial predictions obtained via kriging (19;

54; 55). A thin plate smoothing spline for estimating a 2-dimensional data

yi = g(x1, x2) + εi

minimizes

‖ y − f ‖2 +λJ22(f)

where λ is the smoothing parameter, and J22 is the penalty function for smoothing

two predictor variables.
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GAMs have been implemented in the “gam” and “mgcv” packages in R, providing a

convenient computing platform for our studies.

5.3 Results

To begin, we present results based on applying Kelsall and Diggle’s method to the

observed Anasazi data. Figure 5.2 shows the estimated densities using Gaussian

kernels with bandwidth 800 units for early and late sites. It reveals different patterns

between early and late sites as shown in the log relative risk surface plot 5.3. Extreme

high log relative risk appear at the right bottom corner as there is no early sites

discovered in this region. The symbols “+” and “-” in the contour plot 5.4 indicate

the areas where the estimated log relative risk surface is above or below the 95%

pointwise tolerance intervals defined by 999 random labelling null hypothesis (i.e.,

randomly assignment of the “case” and “control” labels) .

The ratio of density estimation method reveals that neither early sites nor late sites

are uniformly randomly distributed in the study area. The early sites tend to be clus-

tered near the left middle near coordinates (560000,4035000), while late sites are clus-

tered in the left and right lower corner as well as near coordinates (564000,4038000)

when the bandwidth is set at 800 units. When the bandwidth is reduced to 400 units

(Figure 5.5), the clusters of early site and late site are shown in Figure 5.6.
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Figure 5.2: Estimated densities (normalized intensities) using Gaussian kernels and
a bandwidth of 800 units for early and late sites in the Black Mesa
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Figure 5.3: Estimated log relative risk surfaces in the Black Mesa Anasazi data
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Figure 5.4: Contour plots in the Black Mesa Anasazi data
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Figure 5.5: Estimated densities (normalized intensities) using Gaussian kernels and
a bandwidth of 400 units for early and late sites in the Black Mesa Arizona data
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To explore the effect of streams around the sites, we next use GAMs and include

the following covariates one at a time: minimum distance between a site to a stream,

average distance between a site to streams within a 2,000 meter radius, number of

streams within a 2,000 meter radius, total measure of segments of streams within

2,000 meters, average measure of segments of streams within 2,000 meters, and total

measure of full streams who are within 2,000 meters of a site. The measure “full

stream” is the length of the entire stream from end to end. In our results, we find that

the natural log of the total measure of full streams is marginally significant. Therefore,

if a site is close to longer streams, it is more likely to be a late site (Table 5.1). In

addition, both models with or without covariates (Table 5.2) reveal that smooth terms

are significant. Hence, spatial location associates with whether a site be early or late,

above and beyond the impact of the observed local covariates.

Figure 5.7 shows the log relative risk based on GAM with or without covariates.

Figure 5.8 show the contour plot, and the symbols “+” and “-” indicate the areas

where the estimated log relative risk surface is above or below the 95% pointwise

tolerance intervals defined by 999 random labelling null hypothesis.

Compared to results from kernel density estimation methods, generalized additive

models showed that sites in the north region tend to be early sites. In addition, the

areas with significant high or low relative risk of being an early site are generally

larger than the results showed in previous section. Furthermore, the model including

a covariate of total stream length reveals more detailed contours, and adapts the

relative risk surface to the hydrographic landscape.
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Table 5.1: GAM results with covariate

Parametric coefficients Estimate Std. Error z value Pr(> |z|)
Intercept -5.8609 3.7976 -1.543 0.123
Stream length 0.7492 0.3920 1.911 0.056
Approximate significance of smooth terms

edf Est.rank Chi.sq p-value
s(X,Y) 10.79 22 41.28 0.00764

edf is estimated degrees of freedom.

Table 5.2: GAM results without covariate

Parametric coefficients Estimate Std. Error z value Pr(> |z|)
Intercept 1.4194 0.1168 12.16 < 2e− 16
Approximate significance of smooth terms

edf Est.rank Chi.sq p-value
s(X,Y) 13.32 27 47.24 0.00932
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Figure 5.7: Estimated relative risk based on GAMs in the Black Mesa Anasazi data,
the top panel shows the estimated log relative risk without covariate, and the bottom
panel shows the estimated log relative risk with covariate.
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Figure 5.8: Estimated contour plots based on GAMs in the Black Mesa Anasazi data,
the top panel shows the contour plot without covariate, and the bottom panel shows
the contour plot with covariate.
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5.4 Simulations and the Spatial AUC

In the previous chapter, we assessed spatial performance of count data. We apply

similar ideas to regional point data in this chapter. Receiver operating characteristic

(ROC) curves are popular summaries of statistical performance and combine infor-

mation related to both sensitivity and specificity. In particular, the ROC curve plots

sensitivity vs. false alarm rate (1- specificity), across a range of potential critical

values. The area under the ROC curve (AUC) is a good indicator of the performance

of a test. The closer the AUC is to 1.0, the better the test, and the closer the AUC

is to 0.5, the worse the test. If the AUC is 1.0, the test is perfect. The ROC curve

and AUC have seen broad application in many areas, including, but not limited to,

medical decision making (53) and signal processing (72).

To evaluate statistical performance of spatial systems, we compute the ROC curve

and AUC based on both kernel density ratio method and generalized additive models

based on their ability to detect a hypothetical cluster representing a given increase

in relative risk at a given location. By moving the location of this cluster around

the study area, we can map the ability of each method to detect the cluster in any

location. First, we simulate 1000 data sets based on the null hypothesis that the

probability of an event being a case remains the same for all events. That is:

H0 : πi = π =
number of case

total number of events
(5.2)

We also simulate data sets under the alternative hypothesis defined by a relative risk

of 2.0 inside the cluster compared to outside the cluster, conditional on the numbers

of case and control, i.e.,

Ha : RR =
πin

πout

= 2 (5.3)

For the Anasazi data set with 100 early sites and 389 late sites, we set the cluster size

to be 25. Inside the cluster, we randomly choose 10 sites to be early, and the other
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be late sites. Outside the cluster, we will randomly choose 90 sites to be early sites,

and the rest will be late sites. Therefore, πin = 10/25 = 0.4, and πout = 90
489−25

=

0.194, and RR = 0.4/0.194 = 2.06, and a cluster is defined as a site and its 24

nearest neighbors. Figure 5.9 illustrate two such simulated data sets and identifies

the clusters.

We use the same simulated data sets to compute the spatial AUC using both kernel

density ratio method and generalized additive models. We next move the simulated

cluster to different locations to see if performance changes with cluster location.

Based on the spatial AUC, the kernel density ratio method illustrates some areas

with very good AUC values (above 0.9), but other areas with poor (nearly non-

informative) AUC values ranging between 0.45 to 0.55, shown in Figure 5.10. The

spatial AUC maps in Figure 5.11 for the generalized additive model approach shows

that clusters in the corners are easier to identify and clusters in the middle are harder

to identify. In addition, the addition of covariate information generates AUC perfor-

mance above 0.75 for most areas.
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Figure 5.9: Simulated data sets with RR=2 inside the cluster. The green circle is the
selected sites, the red circles indicated the 24 nearest neighbors. Open circles are late
sites, closed circles are early sites
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Figure 5.10: AUC plots based on KD method
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Figure 5.11: AUC plots based on GAM, the top panel shows AUC plot without
covariates, and the bottom panel shows the AUC plot with covariates
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5.5 Conclusions

In conclusion, we find that performance of cluster detection methods varies in space

with the location of the cluster. The spatial AUC approach is effective for point data,

and it can reveal the impact of data structure on cluster detection performance. In

addition, local covariates also can influence detection and performance. For example,

in the Black Mesa data set, late sites tend to be built near longer streams than are

early sites. Finally, maps of performance can identify areas where clusters may be

hard to detect.
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Chapter 6

Spatial Performance for Outbreak

Detection Systems

6.1 Introduction

In previous chapters we compared four different approaches for detecting outbreaks

in surveillance data. In each case we essentially have several local tests investigating

whether each local area (census tract or grid point) is part of a hot spot. In public

health surveillance, detection of a cluster in a local area may affect larger areas by

declaring a state of emergency or elevating security level for the entire country, even

warning the whole world. For example, if one local clinic found evidence of human-to-

human transmission of avian influenza, a global response would ensue. In this chapter

we shift our focus from the detection of an individual cluster to the performance of

these individual components as elements in an overall detection system.

To improve system performance, more than one test could be performed by each

local office to detect an outbreak. For example, we may compute test statistics

based on different data sources such as over-the-counter medicine sales or emergency

room visits as in syndromic surveillance; we may also run different models on the
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same data. Based on results in previous chapters, we are particularly interested

in combining tests with different levels of performance in such a way as to ensure

acceptable global detection performance by the system. Here we explore decision

theoretic approaches to combine multiple local tests into a system, and evaluating

the statistical performance of such systems.

Some ways to combine local tests and maintain acceptable system level perfor-

mance include Bonferroni adjustment, false discovery rates, and decision fusion. Bon-

ferroni adjustments tend to increase the type II error while attempting to maintain

Type I error rates (60; 78). The false discovery rate (FDR) is the expected propor-

tion of false positive predictions among a large number of declared significant results.

FDR has been widely used in the multiple comparisons problem in the fields of gene

expression arrays, proteomics, and imaging analysis (22; 30), and FDR could be much

higher than the traditional p-value critical value of 0.05.

A global system-wide decision could be based on all the information passed to and

processed by a central office, and this is referred as data fusion. On the other hand,

each local office could process the information first, and send its binary decision

(outbreak/no outbreak) to the central office, then the central office could make a

global decision based on the reports of these local offices, and this is referred as

decision fusion. By this decision fusion approach, the central office does not require

transmitting and storing huge amounts of information nor does it require the ability

to process this information in a short time period, but some information may be

lost. In this chapter, we focus on the statistical performance of the decision fusion

approach.

Theory and application of data fusion rapidly developed during the last two

decades especially in engineering and defense technology fields (6; 11). In partic-

ular, we follow work by Carol Lin (11) and add an explicitly spatial dimension to the

problem. We focus on a decision fusion approach due to its direct links to system de-
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sign and decision theory. In addition, the decision fusion approach takes into account

disease prevalence information, as detailed in the following section. In contrast, it is

hard to implement prevalence information directly within Bonferroni adjustment or

false discovery rate methods.

6.2 Decision Fusion

Carol Lin et. al. evaluated the performance of systems with multiple tests and cost

constraints (11). To define ideas, suppose we have two types of detectors: A and

B. Further suppose that A has better sensitivity and specificity than B, but A costs

more money. Given the total cost of the system, we are trying to design a system

with better performance than either one of its components.

Let ui denote the binary decision of detector i, i.e.,

ui =


0 detector i decides H0

1 detector i decides H1

(6.1)

The optimal system level decision is based on decisions of individual detectors (5; 83),

i.e.,

u = γ(u1, ..., un) =


0 fusion center decides H0

1 fusion center decides H1

(6.2)

Let J(u, Hj) be the cost of central decision choosing u (0 or 1) when Hj is true.

To minimize this cost, the optimal decision of the central could be derived from the

likelihood ratio test, i.e.,

P (u1, ..., un|H1)

P (u1, ..., un|H0)
≷H1

H0

P (H0)[J(1, H0)− J(0, H0)]

P (H1)[J(0, H1)− J(1, H1)]
= β (6.3)
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If we assume a minimum probability of error criterion, J(0, H0) = J(1, H1) = 0,

and J(1, H0) = J(0, H1) = 1, then the right side of equation (6.3) only depends

on the prevalance of the disease. If we assume statistical independence among local

detectors, the left side of equation (6.3) would be determined by the performance of

individual tests A and B in the following manner,

P (u1, ..., un|H1)

P (u1, ..., un|H0)
=

n∏
i=1

P (ui|H1)

P (ui|H0)

=
∏
S1

P (ui|H1)

P (ui|H0)

∏
S0

P (ui|H1)

P (ui|H0)

=
∏
S1

PDi

PFi

∏
S0

1− PDi

1− PFi

=
∏
S1

PDA

PFA

∏
S1

PDB

PFB

∏
S0

1− PDA

1− PFA

∏
S0

1− PDB

1− PFB

=

(
PDA

PFA

)a1
(

PDB

PFB

)b1 (
1− PDA

1− PFA

)a0
(

1− PDB

1− PFB

)b0

(6.4)

where PDi
indicates the probability of detection of the ith detector, PFi

indicates the

false alarm rate of the ith detector, PDA and PDB indicate the probability of detection

of the A and B detectors respectively, PFA and PFB indicate the false alarm rate of

A and B detectors respectively, S1 indicates the set of detectors claiming positive

detection, S0 indicates the set of detectors claiming false detection, a1 is the number

of A detectors claiming positive, a0 is the number of A detectors claiming negative,

b1 is the number of B detectors claiming H1, and b0 is the number of B detectors

claiming H0. Therefore, by taking the natural logarithm on both sides of equation

(6.3) the decision rule could be represented as:
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a1 × log

(
PDA

PFA

)
+ b1 × log

(
PDB

PFB

)
+a0 × log

(
1− PDA

1− PFA

)
+ b0 × log

(
1− PDB

1− PFB

)
≷H1

H0
log(β) (6.5)

The performance of the system wide decision would be measured as:

PF = P (u = 1|H0)

= P

[
a1 × log

(
PDA

PFA

)
+ b1 × log

(
PDB

PFB

)
(6.6)

+ a0 × log

(
1− PDA

1− PFA

)
+ b0 × log

(
1− PDB

1− PFB

)
> log(β)|H0

]

PD = P (u = 1|H1)

= P

[
a1 × log

(
PDA

PFA

)
+ b1 × log

(
PDB

PFB

)
(6.7)

+ a0 × log

(
1− PDA

1− PFA

)
+ b0 × log

(
1− PDB

1− PFB

)
> log(β)|H1

]

Therefore, given the total number of A detectors (na), the number of A tests

claiming an outbreak (a1) follows a binomial distribution. Under the null hypothesis

H0,

P (n = a1) =

(
na

a1

)
P a1

DA(1− PDA)na−a1 .
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Under the alternative hypothesis H1,

P (n = a1) =

(
na

a1

)
P a1

FA(1− PFA)na−a1 .

Similarly, the number of B tests claiming an outbreak (b1) following a binomial dis-

tribution, and under the null hypothesis H0,

P (n = b1) =

(
nb

b1

)
P b1

DB(1− PDB)nb−b1 .

Under the alternative hypothesis H1,

P (n = b1) =

(
nb

b1

)
P b1

FB(1− PFB)nb−b1 .

Therefore, combining all the possible system outcomes that claim an outbreak, we

obtain the system probability of detection with na A and nb B detectors, denoted PD.

PD =
∑
u=1

(
na

a1

)
P a1

DA(1− PDA)na−a1 ×
(

nb

b1

)
P b1

DB(1− PDB)nb−b1 (6.8)

Similarly, we could also obtain the system false alarm rate with na A and nb B

detectors, denoted PF .

PF =
∑
u=1

(
na

a1

)
P a1

FA(1− PFA)na−a1 ×
(

nb

b1

)
P b1

FB(1− PFB)nb−b1 (6.9)

In Lin’s thesis (11), she concluded that increasing the number of tests will improve

the performance of the system in general, but that some counterintuitive results occur

for systems comprised of small numbers of tests. Lin (11) also extended her results

to assess the performance of collections of correlated tests.
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6.3 Comprehensive Evaluation

To further explore the statistical performance for outbreak detection systems, we use

Lin’s general results to explore performance of outbreak detection systems with two

types of detectors (A and B) with different cost and different sensitivity and specificity

to find the best system under the constraint of total cost.

First, we consider the situation where the cost of the outbreak detection systems

is Ct, and the cost of A and B are CA and CB respectively. Assume all the potential

systems satisfy

nA × CA + nB × CB = Ct,

where nA is the number of A detectors, and nB is the number of B detectors. Fur-

thermore, we assume the sensitivity of A and B are PDA and PDB, respectively, and

the false alarm rates of A and B are PFA, PFB, respectively. The prevalence of the

outbreak is P (H1) = 0.01. In addition, we assume PDA=0.80, PDB=0.55, PFA=0.20,

PFB=0.45, CA=20, CB=1, P (H0)=0.99, P (H1)=0.01. The cost ratio of A and B

is 20:1. We consider total costs Ct of 100, 200 or 500. Therefore, nA could range

from 0 to nA,max = bCt/CAc, and given the number of A detectors, the number of B

detectors is defined, ie,

nB = b(Ct − nA × CA)/CBc.

Hence, the best system can be chosen from these nA,max+1 potential systems matching

the cost constraint..

Next, we will relax the constraint of the fixed total cost, and consider only an

upper bound, i.e.,

nA × CA + nB × CB ≤ Ct.

In this case, given any number of A detectors, the number of B detectors could go

from zero to the maximum that the system could afford. Therefore, the number of
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possible designs would be much larger than the previous one. Among these designs,

we may also find a system with similar performance but lower cost than Ct.

6.4 Results

To begin, we consider systems with fixed total cost and use Lin’s results to balance

between the number of expensive, precise detectors and inexpensive, imprecise detec-

tors. Figure 6.1 shows the performance of a set of systems composed of expensive,

precise A detectors and inexpensive, imprecise B detectors. As noted above, A has

sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.55 and

false alarm rate of 0.45. The cost ratio between A and B is 20:1. The cost of the

system is 100. These assumptions yield six systems as listed in Table 6.1. The left

panel in Figure 6.1 demonstrates the probability of detection of the systems, and the

right panel shows the false alarm rate of the systems. The same color points in these

four panels correspond to the same system. For example, a system with zero expen-

sive, precise detector and 100 inexpensive, imprecise detectors has a probability of

detection of 0.0951, and false alarm rate of 0.0005; while a system with one expensive,

precise detector and 80 inexpensive, imprecise detectors has a probability of detection

of 0.1747, and false alarm rate of 0.0010.

In general, the probability of detection and false alarm rate of the system is increas-

ing with increasing number of precise detectors, but decreasing with the increasing

number of imprecise detectors. However, given our assumed performance values for

individual detectors, a system with five expensive, precise detectors and no inexpen-

sive, imprecise detector has a lower probability of detection, and lower false alarm

rate than a system with four expensive, precise detectors and twenty inexpensive,

imprecise detectors. To see why, note that, again under our assumptions, a system

with only five expensive, precise detectors requires all five detectors declare positive
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in order for the system to declare positive that satisfy the following condition,

(a1 − a0)× log
0.8

0.2
> log(β) (6.10)

On the other hand, the system with four expensive, precise detectors, twenty

inexpensive, imprecise detectors will need all four expensive and at least eight inex-

pensive or three expensive and at least fifteen inexpensive ones to declare positive for

the system in order to satisfy the following condition,

(a1 − a0)× log
0.8

0.2
+ (b1 − b0)× log

0.55

0.45
> log(β) (6.11)

Table 6.1: A set of systems of expensive, precise A detectors and inexpensive, impre-
cise B detectors. A has sensitivity of 0.80 and false alarm rate of 0.2; while B has
sensitivity of 0.55 and false alarm rate of 0.45. The cost ratio between A and B is
20:1. The total cost of each system is 100.

Number of Number of Probability of False alarm
expensive, inexpensive, detection rate
precise detectors imprecise detectors of the system of the system
0 100 0.0951 0.0005
1 80 0.1747 0.0010
2 60 0.2281 0.0011
3 40 0.3041 0.0012
4 20 0.4085 0.0014
5 0 0.3277 0.0003
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Figure 6.1: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.55 and
false alarm rate of 0.45. The cost ratio between A and B is 20:1. The total cost of
each system is 100. Each color represents one system.
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If we double the allowable cost of the system to 200, the probability of detection

of the system is dramatically improved compared to the system with total cost of

100 as shown in Figure 6.2. Table 6.2 shows the eleven ways to comprise the system.

In general, the probability of detection of the system is increasing with increasing

number of precise detectors, and the false alarm rate is decreasing with the increasing

number of imprecise detectors. It is interesting to see that systems with odd number

of expensive, precise detectors have a linear decreasing false alarm rate as the number

of precise detectors increasing, and the systems with even number of precise detectors

have a flatter trend as noted in Figure 6.2. Table 6.3 shows the combinations of a1

and b1 that will declare an outbreak for the system. A system with just imprecise

detectors will require 56% of them showing positive to declare system wide positive

conclusion, and systems with six precise detectors can declare positive with 91% of

imprecise detectors showing positive, but systems with more than six precise detectors

can never declare positive without any positive precise detectors. A system with nine

precise detectors will require at least five of them showing positive to declare system-

wide positive. For systems with fewer than nine precise detectors, they all need some

imprecise detectors showing positive to declare system-wide positive.

When we allow the cost of the system could go to 500, the performance is even

better as shown in Figure 6.3.
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Table 6.2: A set of systems of expensive, precise A detectors and inexpensive, impre-
cise B detectors. A has sensitivity of 0.80 and false alarm rate of 0.2; while B has
sensitivity of 0.55 and false alarm rate of 0.45. The cost ratio between A and B is
20:1. The total cost of each system is 200.

Number of Number of Probability of False alarm rate
expensive, inexpensive, detection of the system
precise detectors imprecise detectors of the system
0 200 0.4165 0.0012
1 180 0.5129 0.0015
2 160 0.5500 0.0013
3 140 0.6116 0.0013
4 120 0.6591 0.0012
5 100 0.6976 0.0011
6 80 0.7425 0.0011
7 60 0.7652 0.0009
8 40 0.8059 0.0009
9 20 0.8108 0.0007
10 0 0.8791 0.0009
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Table 6.3: Conditions that a set of systems declare positive. A has sensitivity of 0.80
and false alarm rate of 0.2; while B has sensitivity of 0.55 and false alarm rate of 0.45.
The cost ratio between A and B is 20:1. The total cost of each system is 200.

Number of Number of Number of Minimum number
expensive, inexpensive, a1 of b1
precise detectors imprecise detectors in the system in the system
0 200 0 112
1 180 0 105

1 98
2 160 0 99

1 92
2 85

3 140 0 92
1 85
2 78
1 72

4 120 0 86
1 79
2 72
3 65
4 58

5 100 0 79
1 72
2 65
3 58
4 52
5 45

6 80 0 73
1 66
2 59
3 52
4 45
5 38
6 31

7 60 1 60
2 52
3 45
4 38
5 32
6 25
7 18

8 40 3 39
4 32
5 25
6 18
7 11
8 4

9 20 5 18
6 12
7 5
8 0
9 0

10 0 7 0
8 0
9 0
10 0
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Figure 6.2: Performance of a set of systems with two types of detectors, A and B.
A has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.55
and false alarm rate of 0.45. The cost ratio between A and B is 20:1. The total cost
of each system is 200. Each color represents one system. The connected lines in the
upper right plot represent systems comprised of even (black) and odd (blue) numbers
of detectors.
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Figure 6.3: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.55 and
false alarm rate of 0.45. The cost ratio between A and B is 20:1. The total cost of
each system is 500.
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Furthermore, if the performance of the imprecise detectors is slightly improved

to a sensitivity of 0.6 and false alarm rate of 0.4, the performance of the systems is

improved as shown in Figure 6.4, Figure 6.5 and Figure 6.6 for total cost of 100, 200

and 500 respectively. In contrast to the previous systems, in general, the probability of

detection of the system is decreasing with increasing number of precise detectors, and

the false alarm rate is increasing with the increasing number of imprecise detectors.

Table 6.4 and Table 6.5 show six and eleven ways to comprise the systems of total

cost of 100 and 200 respectively. Table 6.6 shows the combinations of a1 and b1 that

will declare an outbreak for the system. A system with just imprecise detectors will

require 53% of them showing positive to declare system wide positive, and systems

with eight precise detectors can declare positive with 100% of imprecise detectors

showing positive and no precise detector showing positive. A system with nine precise

detectors can never declare positive with fewer than four positive precise detector.

Hence, the influence of imprecise detectors to the system is more important when their

performance improved. In addition, the systems with even numbers of expensive,

precise detectors seem to have a distinct trend from the systems with odd number of

expensive, precise detectors.

Table 6.4: A set of systems of expensive, precise A detectors and inexpensive, impre-
cise B detectors. A has sensitivity of 0.80 and false alarm rate of 0.2; while B has
sensitivity of 0.6 and false alarm rate of 0.4. The cost ratio between A and B is 20:1.
The total cost of each system is 100.

Number of Number of Probability of detection False alarm rate
expensive, inexpensive,
precise detectors imprecise detectors of the system of the system
0 100 0.8211 0.00088
1 80 0.7879 0.00113
2 60 0.7112 0.00099
3 40 0.6762 0.00144
4 20 0.5646 0.00123
5 0 0.3277 0.00032
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Table 6.5: A set of systems of expensive, precise A detectors and inexpensive, impre-
cise B detectors. A has sensitivity of 0.80 and false alarm rate of 0.2; while B has
sensitivity of 0.6 and false alarm rate of 0.4. The cost ratio between A and B is 20:1.
The total cost of each system is 200.

Number of Number of Probability of detection False alarm rate
expensive, inexpensive,
precise detectors imprecise detectors of the system of the system
0 200 0.9812 0.00014
1 180 0.9775 0.00017
2 160 0.9697 0.00017
3 140 0.9661 0.00024
4 120 0.9549 0.00025
5 100 0.9487 0.00034
6 80 0.9331 0.00036
7 60 0.9226 0.00048
8 40 0.9003 0.00052
9 20 0.8815 0.00065
10 0 0.8791 0.00086
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Table 6.6: Conditions that a set of systems declare positive. A has sensitivity of 0.80
and false alarm rate of 0.2; while B has sensitivity of 0.6 and false alarm rate of 0.4.
The cost ratio between A and B is 20:1. The total cost of each system is 200.

Number of Number of Number of Minimum number
expensive, inexpensive, a1 of b1
precise detectors imprecise detectors in the system in the system
0 200 0 106
1 180 0 98

1 94
2 160 0 90

1 86
2 83

3 140 0 81
1 78
2 74
1 71

4 120 0 73
1 70
2 66
3 63
4 59

5 100 0 65
1 61
2 58
3 54
4 51
5 48

6 80 0 56
1 53
2 50
3 46
4 43
5 39
6 36

7 60 0 48
1 45
2 41
3 38
4 34
5 31
6 28
7 24

8 40 0 40
1 36
2 33
3 30
4 26
5 23
6 19
7 16
8 12

9 20 4 18
5 14
6 11
7 8
8 4
9 1

10 0 7 0
8 0
9 0
10 0
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Figure 6.4: Performance of a set of systems with two types of detectors, A and B.
A has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.6
and false alarm rate of 0.4. The cost ratio between A and B is 20:1. The total cost
of each system is 100. Each color represents one system. The connected lines in the
upper right plot represent systems comprised of even (black) and odd (blue) numbers
of detectors.
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Figure 6.5: Performance of a set of systems with two types of detectors, A and B.
A has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.6
and false alarm rate of 0.4. The cost ratio between A and B is 20:1. The total cost
of each system is 200. Each color represents one system. The connected lines in the
upper right plot represent systems comprised of even (black) and odd (blue) numbers
of detectors.
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Figure 6.6: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.6 and
false alarm rate of 0.4. The cost ratio between A and B is 20:1. The total cost of
each system is 500.
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When we consider Ct as the upper bound, we have many more possible systems

to work with. For example, for the same resource available as in Table 6.1, a system

could have three expensive detectors, and zero, one, two, . . . , 40 imprecise detectors.

Therefore, there are 306 possible systems given the same resource. The performance

of these 306 systems are shown in Figure 6.7, which include systems showed in Fig-

ure 6.1 as marked by stars. Systems with one or two expensive, precise detectors

have the maximum of probability of detection with maximum numbers of inexpen-

sive detectors. Systems with zero, three or four precise detectors could use less than

the maximum numbers of the imprecise detectors to reach better probability of de-

tection. Except for systems comprised with four expensive detectors, adding more

imprecise detectors increases the probability of detection, but also increases the false

alarm rate as we expected. For every fixed number of precise detectors, there are

two curves based on the number of imprecise detectors, one corresponds to an even

number of imprecise detectors, the other for an odd number of imprecise detectors.

This is because the number of detectors declaring outbreak required to trigger the

system-wide warning follows different patterns for odd and even number of imprecise

detectors. In general, systems with more precise detectors have higher probability of

detection.

However, when the imprecise detector is slightly improved, systems with fewer

precise detectors but many imprecise detectors have higher probability of detection

than systems with more precise detectors as shown in Figure 6.8. Almost all the

systems with the maximum number of imprecise detectors have better probability of

detection than those with fewer than the maximum number of imprecise detectors

given the same number of expensive detectors. Furthermore, the false alarm rate

of the system increases when adding more imprecise detectors first, then reaches

maximum and decreases afterwards.

Figure 6.9 and Figure 6.10 show the performance of systems with total cost of 200
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with different imprecise detectors. The probability of detection of the system benefits

from the increasing number of imprecise detectors, but false alarm rates are more

complicated. Overall, systems with more precise detectors have higher probability of

detection
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Figure 6.7: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.55 and
false alarm rate of 0.45. The cost ratio between A and B is 20:1. The maximum cost
of the system is 100. Systems with total cost of 100 are marked by symbol *, which
are the systems showing in Figure 6.1. Each color represents systems with the same
number of expensive, precise detectors.
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Figure 6.8: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.6 and
false alarm rate of 0.4. The cost ratio between A and B is 20:1. The maximum cost
of the system is 100. Systems with total cost of 100 are marked by symbol *, which
are the systems showing in Figure 6.4. Each color represents systems with the same
number of expensive, precise detectors.
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Figure 6.9: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.55 and
false alarm rate of 0.45. The cost ratio between A and B is 20:1. The maximum cost
of the system is 200. Systems with total cost of 200 are marked by symbol *, which
are the systems showing in Figure 6.2. Each color represents systems with the same
number of expensive, precise detectors.
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Figure 6.10: Performance of a set of systems with two types of detectors, A and B. A
has sensitivity of 0.80 and false alarm rate of 0.2; while B has sensitivity of 0.6 and
false alarm rate of 0.4. The cost ratio between A and B is 20:1. The maximum cost
of the system is 200. Systems with total cost of 200 are marked by symbol *, which
are the systems showing in Figure 6.5. Each color represents systems with the same
number of expensive, precise detectors.
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6.5 Conclusions

In summary, the performance of a system depends not only on the total allowable

cost for the system, but also the performance of each individual detector, as well

as the balance between expensive, precise and inexpensive, imprecise detectors. We

quantify how, if we improve the performance of imprecise detectors even slightly, the

performance of the resulting system improves dramatically, and patterns of perfor-

mance can change. In addition, we show that lower-cost systems can perform as well

as or better than systems expending the full allowable cost. These results indicate

the need for careful calculation and computation to identify optimal system design,

especially for systems comprised of small numbers of components.
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Chapter 7

Summary and Future Research

In summary, we define and apply an approach using area under the ROC curve to

evaluate statistical performance of spatial systems. We assessed spatial statistical

performance of the spatial scan statistics SaTScan, Upper Level Set, and their appli-

cations of Santa Clara cardiac defects data. We defined how to assess spatial statistical

performance of these methods and compare their results. The results showed that the

SaTScan method performs better if the cluster is compacted, and the Upper Level

Set Scan method is improving when the cluster is irregular shaped. The results also

show that the Upper Level Set Scan Statistic can be quite sensitive to the presence

of zero counts for very rare outcomes.

We also investigate the problem of cluster detection in regional point data, and

compared spatial performance between Kernel Density method and Generalized Ad-

ditive Models. We apply both methods to the Black Mesa archaeological project to

identify clusters of early versus late Anasazi settlement sites when adjusting for expo-

sure to rivers around those sites. We evaluate the spatial power of these applications,

and generate the receiver operating characteristic (ROC) curve based on Monte Carlo

simulations.

Finally, we assess performance of detection systems composite with multiple de-
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tectors with different sensitivity and false alarm rates based on decision fusion theory.

In summary, the performance of a system depends not only on the total resources

available, but also the performance of each individual detector, as well as the balance

between expensive, precise and inexpensive, imprecise detectors. Slightly improving

the inexpensive, imprecise detectors can dramatically increase the probability of de-

tection of the system. Careful calculation or computation are required to identify

an optimal system since it’s hard to guess a good design. Non-intuitive results often

appear for systems comprised of a small number of detectors.

In the future, we could explore other spatial detection methods. There are more

than 100 global clustering methods reviewed by Kulldorff (46). We could also extend

the system with more than two types of detectors, and investigate how each type of

detectors would affect the performance of the system. In addition, we could extend

these applications beyond public health, such as inspiring network sensor detection

designs in signal precessing etc (66; 81). In addition, one could use other measures

of performance in spatial settings, such as positive predictive values and negative

predictive values.
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