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Abstract 

Multi-tissue differential expression analyses between proxy case and control samples 

by Yutong Liu 

Background: The Polygenic Risk Score (PRS) is a widely adopted approach to amalgamate 
information from multiple genetic locations to determine the risk of an individual developing a 
specific medical condition, including Alzheimer's disease (AD). AD is a heritable disease, with 
over 50 risk loci being identified with genome-wide significance. Computational methods, such 
as machine learning and artificial intelligence-driven meta-analysis, are being utilized to reveal 
more novel genes linked to AD, leveraging data from genome-wide association studies 
(GWAS). 

Objectives: This study aims to explore the potential of polygenic risk score (PRS) in defining 
proxy cases and control samples and identify potential biomarkers based on the proxy case and 
control samples. 

Methods: PRS scores are generated for each individual in Genotype-Tissue Expression (GTEx) 
database by weighting their genotype at each SNP by the corresponding log odds ratios 
provided in the PRS. Differential expression analysis is conducted between groups with upper 
10% PRS and lower 10% PRS, and genes that exhibit significant up or down-regulation are 
identified (adjusted p-value < 0.05). The DisGeNET database is utilized to conduct chi-square 
tests to evaluate the extent of enrichment of AD-related genes that were identified through 
differential expression analysis in each tissue. 

Results: PRS scores calculated for participants in GTEx are normally distributed, with a mean 
of 2.63 and a standard deviation of 0.33. The differential expression analysis across all tissues 
identifies 170 genes with significant up or down-regulation, with 154 in brain tissues and 18 in 
whole blood. Several highly significant genes are found related to AD, including MT-TL2, 
POMC, HTR2C, CARTPT, KLHL7-AS1, COL24A1, and SOX14. Chi-square tests revealed that 
AD-related genes are significantly enriched by differential expression analysis stratified by 
PRS in 12 of 14 tissues. 

Conclusions: PRS is useful in defining proxy cases and control samples in AD. Analysis of 13 
brain tissues reveals several genes with substantially different expression levels in individuals 
with higher versus lower PRS scores. PRS is effective in enriching AD-related genes across 
multiple tissues, while the inclusion of unrelated genes with high significance suggests the need 
for the further development of PRS. 
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1. Introduction 

When dealing with a polygenic disorder, a combination of multiple risk variants is necessary 

to obtain an adequate measure that can effectively identify individuals at a high risk of 

developing the disease. [1] There are numerous methods available for consolidating 

information from various gene locations, while the most used one is the polygenic risk score 

(PRS). PRS is a score uses a weighted sum of allele dosages multiplied by their 

corresponding effect sizes to assess the risk of having or developing a particular medical 

condition in each individual. In addition to identifying shared causes of traits, PRS have been 

employed to test for genome-wide interactions between genes and environmental factors or 

between different genes [2], to conduct Mendelian Randomization studies to infer causal 

relationships, and also useful for patient stratification and sub-phenotyping [3]. A PRS 

typically could contain hundreds-to-millions of genetic variants, which makes it usually 

achieve substantially greater predictive power than a small number of genome-wide 

significant Single Nucleotide Polymorphisms (SNPs). [1] There have been 3361 PRS 

established in the Polygenic Score (PGS) Catalog, and there is a shift from utilizing them 

solely in research discovery studies towards clinical research studies. Evidence supporting the 

transition comes widely from cardiovascular disease, type 2 diabetes, breast and prostate 

cancers, as well as Alzheimer’s disease (AD). However, there is still a long route to be 

covered before PRS can be considered practical instruments for clinicians. [4] 

Alzheimer’s disease (AD) is one of the most common forms of neurodegenerative disorder, 

which is estimated affecting 47 million people around the world. [5] Family history is studied 

to be the second great risk factor after aging for AD, which is categorized into two forms: the 



early-onset familial cases and the late-onsite cases. [6] Although the familial clustering is 

found more obvious in the former one, the heritability for late-onsite Alzheimer’s disease is 

estimated up to 58%-79%. [7] Amyloid precursor protein gene (APP) and presenilin genes 

(PSEN1, PSEN2) are found related to early-onset familial cases, while the apolipoprotein E 

gene (APOE) is found associated with the risk of late-onsite Alzheimer’s disease. [8] With the 

development of the genome-wide association study (GWAS), CLU, PICALM and CR1 are 

found showing genome-wide statistically significant association with AD. [8, 9] Now, there 

are over 50 risk loci with genome-wide significance (GWS; P < 5 × 10–8) found associated 

with AD. [9] Thanks to high-throughput genomic approaches, our understanding of the 

genetics of AD has advanced considerably in the past decade. However, there is still much 

work to be done to identify the absent genetic elements and to differentiate the credible 

findings from the less reliable ones. Nowadays, more and more computational methods are 

applied to unmask novel genes related to AD based on information we got from GWAS, such 

as machine learning with random forest and LASSO [10], and artificial intelligence-driven 

meta-analysis [11].  

As for this study, I’d like to conduct differential expression analysis across human brain 

tissues based on PRS to learn about how different people with higher and lower score are in 

their expressions and how well PRS works in defining proxy case and control samples. 

2. Methods 



2.1 Data Source 

The present study employed data obtained from the Genotype-Tissue Expression (GTEx) 

database, a comprehensive resource that integrates tissue banking and genetic analysis to 

facilitate investigations into the relationship between genetic variation and gene expression as 

well as other molecular phenotypes across numerous reference tissues.[12] The database 

encompasses information derived from 54 non-diseased tissue sites, incorporating data from 

approximately 900 individuals. Specifically, this study utilized genotype and expression data 

extracted from whole blood and 13 distinct brain tissue. 

2.2 PRS calculation 

This study employs PRS comprising 19 SNPs that have been strongly associated with AD in 

previous research.[13] PRS scores for each participant are generated by weighting their 

genotype at each SNP by the corresponding log odds ratios provided in the PRS. (Table 1)  

2.3 Differential Expression Analysis 

The study participants were categorized into different groups based on the calculated PRS. 

The individuals with the highest and lowest 10% PRS scores in each tissue were selected for 

differential expression analysis. The analysis was performed using the DESeq2 package in R 

(4.0.0). This analysis was conducted independently for all fourteen tissues, and the results 

were illustrated using volcano plots for each tissue. 

We identified genes that exhibited a significant increase or decrease in expression levels by at 

least a two-fold magnitude from all the thirteen brain tissues (adjusted p-value < 0.05). 

Subsequently, we utilize a heatmap to assess their significance in each tissue. To exclude the 



influence of outliers, we generated some boxplots between the PRS and their expression 

counts for the genes with the highest significance. Moreover, we conducted further 

investigations into the genes that displayed notable up or down-regulation in particular 

tissues, exploring their relationship with AD. 

2.4 Database Search and Chi-Square Test 

DisGeNET is a discovery platform that houses one of the most extensive collections of 

publicly available genes and variants linked to human diseases. [14] This platform includes 

1,134,942 gene-disease associations (GDAs) between 21,671 genes and 30,170 diseases, 

disorders, traits, clinical or abnormal human phenotypes. Among the genes present in the 

database, 3397 are associated with Alzheimer's disease. 

In the present study, we utilized the DisGeNET database about AD to conduct a chi-square 

analysis to evaluate the extent of enrichment of AD-related genes that were identified through 

differential expression analysis based on the PRS in each tissue. Before testing, all genes were 

transformed into symbol format based on the GENCODE database, and any genes not 

annotated by GENCODE were eliminated. The chi-square test was utilized to assess whether 

the proportion of AD-related genes was higher in the top 1000 most significant genes from 

the differential expression analysis, as compared to all genes. The analysis was performed 

using R software version 4.0.0, with a significance threshold set at 0.05. 

3. Results 



3.1 Distribution of PRS Score 

866 samples from GTEx are included in the score calculation with 3 samples without one of 

the SNPs information. The score is roughly normally distributed, with mean of 2.63 and 

standard deviation 0.33. (Figure 1)  

In all the brain tissues, samples available for differential expression analysis are limited, with 

the least from brain amygdala of 26, and the most from brain cerebellum, brain cortex, and 

brain nucleus accumbens (basal ganglia) of 42. (Figure 2) While in whole blood, 134 samples 

in total are recruited into the differential expression analysis, with half in higher PRS group 

and half in lower PRS group. (Figure 2) 

3.2 Differential Expression Analysis in Each Tissue 

In the differential expression analysis across all the tissues, only a few genes show a 

significant up or down-regulation in expression level by at least a two-fold magnitude. 

(Figure 3) In the brain tissues, we found the most of significant genes in the spinal cord 

(cervical c-1) (Figure 4.f), while the nucleus accumbens (basal ganglia) has no significant 

genes (Figure 4.j), which is the least. 

Few genes are found significant across all the brain tissues, and only 7 genes are found 

significant in 2 of the 13 tissues, which are CXCL10, HSPA6, NPAS4, MTCO1P12, SORD2P, 

HIST1H2BG, HIST1H2AE. (Figure 5) There are 154 genes found significant from all the 

brain tissues, and among all these significant genes, eight mitochondrial genes and two 

histone encoding genes. (Figure 5) 



In whole blood, there are eighteen genes that exhibited a significant increase or decrease in 

expression levels by at least a two-fold magnitude, in which three (IL22RA2, LGR4, 

SMPDL3A) are up-regulated and the other fifteen are down-regulated. In all the eighteen 

significant genes, MTCO1P12 is also detected significant in brain anterior cingulate cortex 

(BA24) and brain caudate basal ganglia; SORD2P is also detected significant in brain 

hippocampus and brain cortex. 

In the boxplots of the fifteen most significant genes, some genes are showing significant 

because of some outliers, such as OASL (Figure 6.c), CXCL10 (Figure 6.d), PITX2 (Figure 

6.e), HSPA6 (Figure 6.g), NPAS4 (Figure 6.h), while others are showing expression 

differences in the two groups with different levels of PRS. In these genes, some of them are 

found related to AD in some way.  

For MT-TL2 (Figure 6.a), it has been found some association between mitochondrial DNA 

variations and AD [15], and it’s also been found in Harmonizome [16] database related to AD 

which has 1462 related genes in total. POMC (Figure 6.b)controls the synthesis of pro-

opiomelanocortin (POMC) whose activation could rescue the impairment in hippocampus-

dependent synaptic plasticity in the APP/PS1 mouse model of AD. [17] HTR2C (Figure 6.m) 

is found to be related to the depression of AD [18], CARTPT (Figure 6.n) is found related to 

both obesity and AD [19]. In recent years, with more machine learning and GWAS 

techniques, KLHL7-AS1 (Figure 6.f) [20], COL24A1 (Figure 6.k) [10], SOX14 (Figure 6.o) 

[21] are also found related to AD, although the mechanism involved is not clear. KLHL7-AS1 

is also found highly related to Parkinson's disease (PD) [22], which may be related to the 

comorbid traits between AD and PD [9]. 



3.3 Database Search and Chi-Square Test 

In all the 14 tissues used for chi-square analysis, only in two we failed to reject that the 

proportion of AD-related genes is the same in the top 1000 most significant genes from the 

differential expression analysis, which are brain amygdala (p = 0.668), and brain cortex (p = 

0.267). (Table 2) In seven of all the tissues, the proportion of AD-related genes is highly 

significantly higher in the top 1000 most significant genes from the differential expression 

analysis (p < 0.001), which are brain anterior cingulate cortex (BA24), brain caudate (basal 

ganglia), brain frontal cortex (BA9), brain hypothalamus, brain nucleus accumbens (basal 

ganglia), brain spinal cord (cervical c-1), and brain substantia nigra. (Table 2) 

4. Discussion 

The Polygenic Risk Score (PRS) is a promising tool for defining proxy case and control 

samples for Alzheimer's disease (AD) and identifying novel AD-associated genes. 

Nonetheless, our study demonstrated a lower-than-expected number of significant genes 

identified through differential expression analysis, potentially attributed to the exclusion of 

APOE-related SNPs in the PRS selected. Thus, stratification by APOE genotype may enhance 

the accuracy of gene discovery using PRS. Furthermore, the limited sample size of brain 

tissues may have hindered the identification of well-established AD-related genes, such as 

APOE, CLU, PICALM, and CR1. 

Although our investigation of 18 significant genes discovered in whole blood did not reveal 

any potential biomarkers for AD prediction or diagnosis, our analysis of 13 brain tissues 

disclosed several genes with substantially different expression levels in individuals with 



higher versus lower PRS scores. These findings include some previously identified AD-

related genes with clear mechanisms, such as mitochondrial DNA, which may be linked to the 

shifting of cell dynamics and facilitating neuronal vulnerability, and POMC, which controls 

the synthesis of pro-opiomelanocortin that could alleviate the impairment in hippocampus-

dependent synaptic plasticity. Furthermore, several genes are linked to AD through machine 

learning and GWAS techniques lack clear mechanisms, while others are novel or even 

unannotated. They are potentially associated with unexplored AD mechanisms, which worth 

further investigations. 

Although PRS is effective in enriching for AD-related genes in the overall dataset across 

multiple tissues, there are still unrelated genes, even accounting for mechanisms that have yet 

to be revealed.  

Overall, our findings suggest that PRS is a valuable approach for defining proxy case and 

control samples for AD. However, the development of PRS with an expanded number of 

SNPs may improve its predictive power and reduce the inclusion of unrelated genes with high 

significance. Additionally, we aim to broaden our research pipeline to include other diseases, 

such as Parkinson’s Disease, cardiovascular disease, and diabetes, to further explore the 

potential of PRS in multi-tissue differential expression analysis and disease-related gene 

identification. 

 

 



Reference 

1. Choi, S.W., T.S. Mak, and P.F. O'Reilly, Tutorial: a guide to performing polygenic risk score 

analyses. Nat Protoc, 2020. 15(9): p. 2759-2772. 

2. Agerbo, E., et al., Polygenic Risk Score, Parental Socioeconomic Status, Family History of 

Psychiatric Disorders, and the Risk for Schizophrenia: A Danish Population-Based Study and 

Meta-analysis. JAMA Psychiatry, 2015. 72(7): p. 635-41. 

3. Mavaddat, N., et al., Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer 

Subtypes. Am J Hum Genet, 2019. 104(1): p. 21-34. 

4. Lewis, C.M. and E. Vassos, Polygenic risk scores: from research tools to clinical instruments. 

Genome Medicine, 2020. 12(1): p. 44. 

5. Leonenko, G., et al., Polygenic risk and hazard scores for Alzheimer's disease prediction. Ann 

Clin Transl Neurol, 2019. 6(3): p. 456-465. 

6. Tanzi, R.E., The genetics of Alzheimer disease. Cold Spring Harb Perspect Med, 2012. 2(10). 

7. Gatz, M., et al., Role of Genes and Environments for Explaining Alzheimer Disease. Archives 

of General Psychiatry, 2006. 63(2): p. 168-174. 

8. Bellenguez, C., B. Grenier-Boley, and J.-C. Lambert, Genetics of Alzheimer’s disease: where 

we are, and where we are going. Current Opinion in Neurobiology, 2020. 61: p. 40-48. 

9. Sims, R., M. Hill, and J. Williams, The multiplex model of the genetics of Alzheimer’s disease. 

Nature Neuroscience, 2020. 23(3): p. 311-322. 

10. Sharma, A. and P. Dey, A machine learning approach to unmask novel gene signatures and 

prediction of Alzheimer's disease within different brain regions. Genomics, 2021. 113(4): p. 

1778-1789. 

11. Finney, C.A., et al., Artificial intelligence-driven meta-analysis of brain gene expression 

identifies novel gene candidates and a role for mitochondria in Alzheimer’s disease. 

Computational and Structural Biotechnology Journal, 2023. 21: p. 388-400. 

12. Lonsdale, J., et al., The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 2013. 

45(6): p. 580-585. 

13. Chouraki, V., et al., Evaluation of a Genetic Risk Score to Improve Risk Prediction for 

Alzheimer's Disease. J Alzheimers Dis, 2016. 53(3): p. 921-32. 

14. Piñero, J., et al., The DisGeNET cytoscape app: Exploring and visualizing disease genomics 

data. Computational and Structural Biotechnology Journal, 2021. 19: p. 2960-2967. 



15. Lakatos, A., et al., Association between mitochondrial DNA variations and Alzheimer's disease 

in the ADNI cohort. Neurobiol Aging, 2010. 31(8): p. 1355-63. 

16. Rouillard, A.D., et al., The harmonizome: a collection of processed datasets gathered to serve 

and mine knowledge about genes and proteins. Database, 2016. 2016: p. baw100. 

17. Lau, J.K.Y., et al., Melanocortin receptor activation alleviates amyloid pathology and glial 

reactivity in an Alzheimer's disease transgenic mouse model. Sci Rep, 2021. 11(1): p. 4359. 

18. Cacabelos, R., et al., Pharmacogenetics of anxiety and depression in Alzheimer's disease. 

Pharmacogenomics, 2023. 24(1): p. 27-57. 

19. Zhuang, Q.S., et al., Associations Between Obesity and Alzheimer's Disease: Multiple 

Bioinformatic Analyses. J Alzheimers Dis, 2021. 80(1): p. 271-281. 

20. Monk, B., et al. A Machine Learning Method to Identify Genetic Variants Potentially Associated 

With Alzheimer's Disease. Frontiers in genetics, 2021. 12, 647436 DOI: 

10.3389/fgene.2021.647436. 

21. Jun, G., et al., A novel Alzheimer disease locus located near the gene encoding tau protein. Mol 

Psychiatry, 2016. 21(1): p. 108-17. 

22. Murthy, M.N., et al., Increased brain expression of GPNMB is associated with genome wide 

significant risk for Parkinson's disease on chromosome 7p15.3. Neurogenetics, 2017. 18(3): p. 

121-133. 

 

  



Table 1. Polygenic risk score (PRS) used for analysis. 

   

Locus name rsID Chr name Effect allele Other allele Effect weight Allele frequency effect 

CR1 rs6656401 1 A G 0.166 0.2 

BIN1 rs6733839 2 T C 0.199 0.41 

INPP5D rs35349669 2 T C 0.077 0.49 

MEF2C rs190982 5 A G 0.077 0.59 

HLA-DRB5/HLA-DRB1 rs9271192 6 C A 0.104 0.28 

CD2AP rs10948363 6 G A 0.095 0.27 

NME8 rs2718058 7 A G 0.077 0.63 

ZCWPW1 rs1476679 7 T C 0.095 0.71 

EPHA1 rs11771145 7 G A 0.104 0.66 

PTK2B rs28834970 8 C T 0.095 0.37 

CLU rs9331896 8 T C 0.148 0.62 

CELF1 rs10838725 11 C T 0.077 0.32 

MS4A6A rs983392 11 A G 0.104 0.6 

PICALM rs10792832 11 G A 0.140 0.64 

SORL1 rs11218343 11 T C 0.262 0.96 

FERMT2 rs17125944 14 C T 0.131 0.09 

SLC24A4/RIN3 rs10498633 14 G T 0.095 0.78 

ABCA7 rs4147929 19 A G 0.140 0.19 

CASS4 rs7274581 20 T C 0.131 0.92 



 

Figure 1. The distribution of polygenic risk score (PRS) of 863 samples from GTEx. 

  



 

Figure 2. Number of Samples in Each Tissue Used for Differential Expression Analysis. 

 

  



 

Figure 3. Number of Gene Significantly Up or Down Regulated by at least Two Folds. 
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Figure 4. Volcano Plots for Differential Expression in Each Tissue. 

  



 

Figure 5. Heatmap for the significance of significant genes across all the brain tissues. 
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Figure 6. Boxplots between PRS and Expression counts in 15 most significant genes. 

  



Table 2. Results for chi-square tests in all the tissues. 

Tissue 

Top 1000 DE 

genes related to 

AD 

Top 1000 DE 

genes unrelated 

to AD 

All the other DE 

genes related to 

AD 

All the other DE 

genes unrelated 

to AD 

Chi-Square P-value 

Brain - Spinal cord 

(cervical c-1) 
172 816 2913 30259 85.88 <0.001 

Brain - Anterior 

cingulate cortex 

(BA24) 

148 845 2952 31501 47.76 <0.001 

Brain - Frontal 

Cortex (BA9) 
144 844 2946 31944 45.11 <0.001 

Brain - Caudate 

(basal ganglia) 
136 854 2966 32430 34.77 <0.001 

Brain - Substantia 

nigra 
141 850 2927 28745 27.49 <0.001 

Brain - 

Hypothalamus 
131 863 2975 31910 25.85 <0.001 

Brain - Nucleus 

accumbens (basal 

ganglia) 

119 870 3001 33113 16.84 <0.001 

Brain - Putamen 

(basal ganglia) 
117 872 2962 30478 10.06 0.002 

Brain - 

Hippocampus 
112 875 3006 31748 8.44 0.004 

Whole Blood 105 888 3023 33762 6.76 0.009 

Brain - Cerebellar 

Hemisphere 
107 880 2992 32148 6.33 0.012 

Brain - Cerebellum 101 887 3001 32805 3.99 0.046 

Brain - Cortex 93 895 3016 33022 1.23 0.267 

Brain - Amygdala 92 896 3002 30856 0.18 0.668 

 


