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Abstract 
 

Estimating the Association Between Extreme Heat and Acute Kidney 
Injury Using Serum Creatinine-Derived Case Definitions 

By Benjamin Rabin 
 

Introduction: Acute kidney injury (AKI) exacts significant morbidity for patients. In 
addition to well-known clinical risk factors, extreme heat exposure may contribute to the 
burden of community-acquired AKI. The use of administrative coded data to identify AKI cases 
has important limitations in estimating the heat-AKI effect. Applying the Kidney Disease: 
Improving Global Outcomes (KDIGO) criteria instead may improve AKI surveillance while also 
differentiating hospital-acquired AKI from community-acquired AKI – critical to evaluating risk 
related to ambient heat.  

Methods: We conducted a case-crossover analysis investigating the relationship 
between daily temperature and AKI-related emergency department (ED) visits in Atlanta, 
Georgia during consecutive warm seasons between 2016 and 2019. We created six case 
definitions for AKI using both ICD-coded data and KDIGO-derived equations. KDIGO definitions 
identified AKI cases by comparing patients’ ED serum creatinine values to surrogate measures 
for baseline renal function. The KDIGO definitions were designed a priori to identify 
community-acquired AKI cases as opposed to hospital-acquired AKI. 

Results: 264,415 ED visits across 4 warm seasons were included in our analysis. AKI case 
numbers ranged from 16,647 events using coded data to 54,320 under the most liberal KDIGO-
derived definition. We found positive associations between same-day maximum temperature 
and ED visits for AKI across six definitions. The strongest heat-AKI effects were observed in the 
KDIGO definitions derived from the 2021 CKD-EPI equation.  

Conclusion: Administrative coded data for AKI may underestimate the incidence of 
community-acquired AKI as well as its association with extreme heat. Applying the KDIGO 
criteria represents an alternative approach to better estimate the heat-AKI risk. 
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Introduction 

Acute kidney injury (AKI) exacts significant morbidity for patients, and its prevalence is 
increasing nationally.1 The consequences of severe AKI are well known, but even mild cases are 
associated with greater risks of de novo chronic kidney disease, progression of CKD, and 
mortality.1–3 AKI also comes with immense economic expense. One study estimated costs to 
exceed $1700 for an inpatient episode of AKI, and more than $11,000 in cases where dialysis 
was required.4  Identifying individuals at high risk for AKI, and appropriately managing these 
patients, is therefore of public health and clinical importance.  

The clinical risk factors for developing AKI have been previously documented to include 
pre-existing renal disease, diabetes mellitus, dehydration and critical illness.5 Advanced age and 
female gender are thought to increase one’s susceptibility for AKI.5,6 Prior studies have also 
observed higher incidence rates of AKI among Black patients compared to White patients. This 
disparity may stem from multiple causes, including inequities in healthcare access, as well as 
differences in socioeconomic status and baseline health.7,8  

In addition to clinical and demographic factors, environmental exposure may play a role 
in the onset of AKI. Several studies have observed an association between extreme 
temperatures and the risk of AKI.9–15 A mechanism explaining this relationship is premised on 
extreme heat disrupting the kidney’s physiologic role in thermoregulation. Acute, sustained 
heat exposure leads to increases in serum osmolality, vasopressin release and fructokinase 
generation, with the latter possibly driving tubular inflammation.16,17 Pre-renal kidney injury 
may develop under these circumstances without adequate fluid repletion.16,17   

Understanding the scope of heat-related renal disease is critical in the era of climate 
change. Human-caused climate change has driven global temperatures to rise 0.8°C to 1.3°C 
above pre-industrial times.18 As a result, the proportion of vulnerable populations exposed to 
extreme heat has increased globally.19 A cross-sectional study of U.S. counties found extreme 
heat days were associated with 1,373 excess deaths annually during the summer months 
between 2008 and 2017.20 Mortality rates were higher for older adults, males, and non-
Hispanic Blacks, underscoring disparities in extreme heat vulnerability.20 Ambient heat 
exposure has been linked to higher rates of kidney-related morbidity as well, including renal 
failure, electrolyte derangements, urolithiasis, and early development of CKD.16,21–23  
 To date, heat and AKI studies have identified cases of acute kidney injury and other 
manifestations of renal dysfunction using International Classification of Diseases (ICD) diagnosis 
codes, which are documented by clinicians contemporaneously in the health record. Reliance 
on ICD-coding is common for AKI surveillance but has several key limitations. Multiple studies 
have observed low sensitivities for AKI detection using billing codes, ranging from 15 to 81%.24–

28 On the other hand, ICD-coding has a high specificity exceeding 90%.24–28 Cases of AKI 
captured by billing code methods also tend to be more severe.28  The poor sensitivity of ICD-
coded data, combined with a propensity for identifying severe cases of AKI, together suggest 
this method may underestimate the incidence of mild AKI.  

Another important consideration in characterizing AKI is the difference between 
community-acquired AKI (CA-AKI) and hospital-acquired AKI (HA-AKI), which have unique risk 
factors, etiologies and prognoses.29,30 HA-AKI frequently arises in the context of severe clinical 
illness, such as post-operative AKI, cardiac dysfunction, or contrast administration.31 CA-AKI, 
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meanwhile, occurs outside the healthcare setting. Individuals at heightened risk include those 
with pre-existing renal dysfunction, gastrointestinal illness causing pre-renal azotemia, as well 
as patients using non-steroidal anti-inflammatory medications and diuretics.29,32 CA-AKI is 
accompanied by a lower risk of dialysis and in-hospital mortality relative to HA-AKI.1,33,34 Still, 
patients with CA-AKI compared to those without any AKI experience longer hospital stays and 
worse rates of 30-day mortality.29 ICD-coded billing data cannot distinguish between CA-AKI 
and HA-AKI because a single code is used to capture all AKI events. The codes are also not time-
stamped, which prevents researchers from delineating CA-AKI from HA-AKI based on when the 
patient presented and when the diagnosis was recorded. Including HA-AKI is problematic for 
heat-AKI studies because patients who develop AKI while hospitalized are not likely to have 
been exposed to ambient temperature. 

The shortcomings of ICD-coded billing data in terms of underestimating AKI and failing 
to differentiate CA-AKI from HA-AKI have challenged previous studies of temperature and AKI. 
An alternative to administrative billing data for AKI identification is the Kidney Disease: 
Improving Global Outcomes (KDIGO) criteria.5 The KDIGO definition for AKI relies on laboratory 
data such as serum creatinine (SCr) or urine output measurements to identify cases of AKI. Two 
studies comparing the KDIGO criteria with ICD-billing information found better sensitivities with 
the KDIGO definition.24,25 The KDIGO criteria improved estimations of CA-AKI incidence as 
well.35 With a KDIGO-based approach, researchers can compare an individual’s kidney function 
early in their presentation with a known or presumed baseline value. This method may help 
delineate CA-AKI from cases of HA-AKI that arise during a patient’s subsequent hospital stay. 
KDIGO-definitions may also identify AKI events missed by ICD diagnosis codes. One barrier to 
using the KDIGO definition in clinical or research settings, though, is that it requires an accurate 
estimate of a patient’s baseline renal function.36 

Here, we use detailed electronic medical records to investigate the relationship 
between ambient heat and AKI in the Atlanta, Georgia metropolitan area, where previous work 
has shown an association between renal-associated ED visits and heat exposure.12 To date, no 
study to our knowledge has applied the KDIGO criteria to investigate the association between 
ED visits related to AKI and exposure to high ambient temperatures. We hypothesized that 
KDIGO-based methods may improve estimation of AKI compared to ICD-coded data and help 
differentiate between cases of CA-AKI and HA-AKI. We conducted a case-crossover analysis 
investigating the relationship between AKI-related ED visits among adults in Atlanta during the 
four consecutive warm seasons between 2016 and 2019. Our objectives were to compare 
estimated effects of heat on ED visits across multiple definitions of AKI, and to identify 
individual-level factors that may exacerbate this risk, including age, sex, race, CKD, diabetes, 
and hypertension.  
  

Methods 
Clinical Database 

De-identified patient information was provided by the Emory University Clinical Data 
Warehouse (CDW). CDW data comprised clinical and demographic data for patients at four 
major non-pediatric Atlanta, Georgia-area hospitals: Emory University Hospital, Emory 
University Midtown Hospital, Emory Saint Joseph’s Hospital, and Emory Johns Creek Hospital.  
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Data for this study was available for the warm seasons (May 1 through September 30) 
from 2016 to 2019. The CDW provided individual-level data including ED visit date and time of 
arrival, patient age, sex, race, residential zip code, and primary and secondary diagnosis codes 
from the International Classification of Diseases, 10th Revision (ICD-10). Clinical variables of 
importance included all measured serum creatinine values with datetime stamps.  

ED visits were defined as any patient seen through the ED as an outpatient and 
subsequently discharged, or those admitted from the ED to an inpatient service. We excluded 
patients who were registered to the ED in error, left prior to triage, or whose ED disposition 
was not recorded in the dataset. Patients residing in a zip code outside of the 10-county Atlanta 
area were also excluded, as were patients undergoing dialysis (ICD-10 codes N185, N186 or 
Z992), and individuals younger than 18 years old.  
 
Exposure Data 

Outdoor temperature data was obtained from the Daymet meteorological product 
(https://dayment.ornl.gov/), which provides daily estimates of temperature at a 1 km by 1 km 
grid resolution. The Daymet data were aggregated to ZIP code tabulation areas (ZCTA) using 
spatial averaging. Exposures were linked to each individual hospital visit by date and the 
patient’s reported residential address. The a priori exposure of interest was same-day 
maximum temperature, but we also tested minimum temperature in sensitivity analyses. The 
study was limited to the 10-county Atlanta, Georgia metropolitan area.  
 
AKI Case Definitions 

We explored the association of heat and AKI using six distinct case definitions (Table 1). 
The first AKI definition, “ICD,” includes any patient that had an ICD-10 code of N17 as either a 
principal or secondary diagnosis at any point during their hospital stay. The diagnosis codes 
were not time stamped, which prevented us from differentiating between CA-AKI and HA-AKI. 
This case definition reflects the definition used in most prior studies on the association of 
temperature with AKI.37–40 

All subsequent definitions used the KDIGO criteria to identify AKI cases, which requires 
two serum creatinine (SCr) values: a baseline reference and a comparator. Baseline SCr values 
are ideally estimated using longitudinal outpatient data.30 However, like in many hospital 
datasets, outpatient data prior to the patient’s ED visit was not available to us. Therefore, we 
assessed multiple approaches to estimating baseline SCr. In all cases, for the comparator, we 
used the maximum measured SCr value within 48 hours of a patient’s arrival to the ED; a 48 
hour cutoff has been previously applied to distinguish cases of CA-AKI from HA-AKI.30,33,41,42 An 
AKI case was assigned if the comparator reflected an increase of at least 0.3mg/dL in a patient’s 
SCr above the baseline.5,35 The different approaches to estimating baseline SCr are described 
below and in Table 1. 

The second AKI definition, “CRUDE,” sets a sex-specific baseline equal to the upper limit 
of the reference values for SCr defined by Emory Healthcare, which is 1.3 mg/dL for males and 
1.2 mg/dL for females. Therefore, patients with a maximum SCr within the first 48 hours of 
their arrival that was greater than or equal to 1.6mg/dL for males, or 1.5mg/dL for females, 
were classified as having AKI under this definition.  

https://dayment.ornl.gov/
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The third definition, “MIN,” sets the baseline equal to the minimum SCr measured 
during a patient’s hospitalization.  

The final three KDIGO definitions rely on the 2021 CKD-EPI equation to assign a baseline 
estimate for renal function.43 The original CKD-EPI equation was developed in 2009 to improve 
estimation of glomerular filtration rate (GFR) by adjusting for patient age, sex, and race.44 The 
CKD-EPI equation improved GFR estimates compared with older GFR-estimating equations, but 
was found to systematically overestimate GFR in Black individuals.45 A new 2021 CKD-EPI 
equation aimed to address this disparity by eliminating the race coefficient from the formula.46 
The modified equation incorporates age, sex, and either cystatin, SCr, or both cystatin and SCr, 
to estimate GFR. We specifically used the 2021 CKD-EPI creatinine equation to back-calculate 
estimates of SCr baselines from a set eGFR value because cystatin clearance was not available 
in the dataset. The ADQI 16 Workgroup recommends using an eGFR value of 75 ml/min/1.73 m2 

for back-calculations when outpatient SCr values are unavailable.47 An eGFR equal to 75 
assumes a population with moderately preserved renal function. We tried to account for 
individuals with either further reduced or well-preserved renal function by varying our choice of 
eGFR values in the 2021 CKD-EPI back-calculation. Therefore, we created three case definitions 
with eGFR set to 60 (Definition 4), 75 (Definition 5) and 90 (Definition 6) ml/min/1.73 m2. We 
applied these values along with the patient’s age and sex to generate estimates of baseline SCr. 
Sex-stratified plots reporting the range of baselines back-calculated using the 2021 CKD-EPI 
equations are included in Supplemental Figures 1-3. 
 We anticipated advantages and disadvantages for each case definition. The definition 
derived from billing code information, “ICD,” would not distinguish between CA- and HA-AKI. 
ICD-coding also has low sensitivity for mild AKI, which is a common phenotype for CA-AKI.48 We 
expected that the “MIN” definition would be the most flawed definition. Minimum SCr values 
measured during hospitalization may approach an individual’s baseline, but patients are 
frequently discharged prior to complete resolution in their AKI. This means the observed 
inpatient minimum SCr value for CA-AKI cases may exceed their true baseline, leading to 
underestimates of the AKI case incidence.49 The “CKD-EPI 90” and “CRUDE” case definitions 
assume a population with preserved renal function. This approach maximizes sensitivity and 
negative predictive value at the potential expense of specificity and positive predictive value.50 
The poor positive predictive value stems from these definitions’  inability to distinguish patients 
with chronic versus acute elevations in SCr. Patients with CKD but without AKI are therefore 
vulnerable to misclassification under these case definitions. The “CKD-EPI 75” and “CKD-EPI 60” 
equation account for patients with reduced renal function to varying degrees, though neither 
account for patients with a GFR in the CKD range. In contrast, the “ICD” better accounts for a 
patient’s CKD status because this information was available to the billing provider. Overall, we 
hypothesized that the KDIGO-based definitions would produce a more accurate estimate of the 
burden of CA-AKI compared to ICD-coded definitions, and ultimately a more robust assessment 
of the effect of ambient temperature on CA-AKI.  In particular, given the distribution of SCr 
baselines, our a priori preferred approach was the “CKD-EPI 75” as it would offer the best 
estimate of patients with relatively preserved renal function. 
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Study Design and Statistical Analysis 
 We employed a case-crossover study design, which is a common approach to evaluate 
associations between acute health outcomes and an environmental exposure.51 Individuals in a 
case-crossover study act as their own control where the day of ED visit is assigned as the case 
day and control days were defined as the same day of week, month, and year, leading to 3-4 
control days for each case. This approach controls for day of week, month, and individual-level 
factors like age, sex, race, and comorbidities since each individual acts as their own control. Our 
analysis was limited to the warm season between May 1st and September 30th.  

We conducted separate analyses for each of the six AKI case definitions described above 
to investigate the relationships between short-term heat exposure and CA-AKI incidence. We 
applied a conditional logistic regression model that included squared and cubic terms to 
evaluate potential non-linear effects of temperature on hospital visits for AKI. We produced 
exposure-response functions with 95% confidence intervals for each AKI case definition using a 
reference value of the median daily maximum temperature. To do so, the median temperature 
reference was compared to every half-degree temperature increment between 19° C and 36° C, 
which encompassed the 1st through 99th percentile of daily maximum temperature during the 
study period. As a straightforward way of comparing results across the AKI definitions, we also 
calculated odds ratios with 95% confidence intervals contrasting the 95th versus 5th percentiles 
for daily maximum temperatures at lag 0 days.  Finally, we conducted stratified analyses for 
different sub-groups across each case definition for the 95th versus 5th contrasts. Our stratifying 
variables were sex (male vs female), race (Black vs non-Black), age (≥65 years old vs <65 years 
old), CKD (yes vs no), Diabetes mellitus (yes vs no), and hypertension (yes vs no).  

Finally, we conducted a sensitivity analysis using daily minimum temperature. All 
analysis was carried out using SAS, Version 9.4, statistical software (SAS Institute, Inc., Cary, 
North Carolina).  
 

Results 
We received individual-level data for 298,628 ED visits during the 4 warm seasons of 

May through September (n = 612 days). 264,415 ED visits were included in the analysis after 
excluding visits of individuals younger than 18 years old (n=2031), those undergoing dialysis 
(n=773), those with erroneous or missing disposition (n=4919), or visits with residential zip 
codes outside of the 10-county study area (n=26415).  

The median daily maximum temperature for the 10-county Atlanta area was 31.37° C 
(IQR 29.14 - 32.93). A summary of additional meteorological exposure data is provided in Table 
2.  

Descriptive statistics of the cohort are presented in Table 3. When compared to all 
hospital visits, individuals with AKI across the case definitions were older, more likely to be 
male, and experienced higher rates of CKD, hypertension, and diabetes. The proportion of Black 
patients was lower in the “ICD” cohort compared to the overall population; all other case 
definitions had a higher proportion of Black patients compared to the population. The average 
maximum SCr value measured within 48 hours of ED arrival was greater in the case cohorts 
than the study population across all definitions. “ICD” cases had the lowest maximum SCr 
values within 48 hours of ED arrival compared to the KDIGO case definitions, which is not 
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unexpected since it includes both HA-AKI as well as CA-AKI; early SCr values could be normal for 
HA-AKI cases that developed after the first 48 hours of ED arrival. 

Overall, the CKD-EPI 90 definition captured the most AKI cases while the ICD definition 
captured the fewest (Table 3). The 2021 CKD-EPI-based definitions identified increasing 
numbers of AKI cases as the assigned baseline GFR increased from 60 to 75 to 90 ml/min/1.73 
m2. We anticipated this result, as a GFR set to 60 ml/min/1.73 m2 corresponded to a median 
SCr baseline using the 2021 CKD-EPI equation of 1.12 mg/dL for females, and 1.41 mg/dL for 
males. An estimated GFR equal to 75 ml/min/1.73 m2 generated a median SCr baseline of 0.934 
mg/dL for females and 1.17 mg/dL among males. The most liberal assigned GFR of 90 
ml/min/1.73 m2 led to median SCr baseline values of 0.802 mg/dL for females and 1.01 mg/dL 
for males. Applying these distributions to the KDIGO equation meant that lower absolute 
thresholds were necessary to be assigned a case under CKD-EPI 90, followed by CKD-EPI 75 and 
lastly CKD-EPI 60.  

Table 4 reports the agreement between the case definitions. The CKD-EPI 90 definition 
identifies the greatest number of AKI cases of all the definitions, and (by definition) it also 
captures 100% of those under the CKD-EPI 75 and CKD-EPI 60 definitions. CKD-EPI 90 also 
captured 100% of CRUDE cases. The CKD-EPI 75 definition that we preferred a priori illustrates a 
significant discrepancy compared to the “ICD” definition. The “ICD” definition identifies only 
33.1% of CKD-EPI 75 cases. Conversely, the CKD-EPI 75 definition captures 83.4% of ICD cases. 
 Figure 1 depicts exposure-response functions with 95% confidence intervals for same-
day maximum temperature across each case definition. The functions exhibit similar shapes 
across definitions, with a generally increasing risk as temperatures increase. The effects are 
summarized further in Figure 2, which compares the risks at the 95th versus the 5th percentile 
temperatures. Effects were strongest in the definitions that relied on the CKD-EPI equation, 
with CKD-EPI 75 – our a priori definition of choice – showing the highest effect overall (albeit 
only marginally) with an odds ratio of 1.049 (95% CI 1.007 – 1.093).  

Results of the subgroup analysis are summarized in Figure 3. Males were at higher risk 
than females across all definitions and Black patients similarly experienced increased risk 
compared to non-Black patients; however, differences across groups were not statistically 
significant at the 5% level. Individuals without hypertension were at higher risk than those with 
a diagnosis of hypertension, though these results did not reach statistical significance at the 5% 
level either. Differences by age and diabetes status were not consistent in direction or 
magnitude. Individuals with CKD experienced a non-statistically significant increased risk in the 
ICD, MIN, and CRUDE definitions, but the opposite pattern emerged in the CKD-EPI case 
definitions.  
 In our sensitivity analysis, results using daily minimum temperature at lag 0 days were 
similar to our maximum daily temperature findings (Figure S4). 
 

Discussion 
We present an analysis comparing KDIGO-based definitions of AKI with ICD-coded data 

to estimate the risk of AKI at high ambient temperature exposure. This paper adds to the 
existing literature of ambient heat exposure and risk of AKI in several key ways. First, it applies 
KDIGO-based case definitions to a cohort to identify patients with likely CA-AKI, as opposed to 
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HA-AKI. Second, it uses case definitions that likely capture AKIs that would be excluded by ICD-
coding, which is known to under-diagnose AKI.24,26,28 And third, this is one of a few studies to 
examine heat-AKI relationships in patients by demographic group and the existence of co-
morbidities.  

There were notable differences between the sub-cohorts defined by each case 
definition. The ICD definition assigned 6.3% of all visits to an AKI, which was the smallest 
percentage across all definitions. The KDIGO-based cohorts ranged from 9.1% to 20.5% of the 
total hospital visits, possibly reflecting a significant undercount of CA-AKI cases in the ICD 
cohort. Prior studies have found a 2-3x greater prevalence of CA-AKI compared to HA-AKI, 
which is supported by our results.29 Interestingly, the ICD cohort had the lowest maximum SCr 
in the first 48 hours from ED arrival. This may reflect differences in the timing of CA-AKI and HA-
AKI. Patients with CA-AKI present with early elevations in SCr, while HA-AKI can develop at any 
point during hospitalization; prior studies have reported that SCr values among HA-AKI cases 
peak between days 4 and 5 of hospitalization.52 Together, this supports our assessment that the 
ICD definition likely comprised a greater proportion of HA-AKI than the KDIGO definitions, 
which is highly relevant to studies of environmental determinants of AKI, including heat.  
Because HA-AKI patients are not exposed to ambient temperature, including these cases would 
downward-bias any heat effect. 

The agreement between case definitions illustrates a trade-off between sensitivity and 
specificity in identifying CA-AKI. Lower baseline estimates increase CA-AKI sensitivity. We 
maximized sensitivity with the CKD-EPI 90 definition. In contrast, the CKD-EPI 60 definition 
assigned higher baseline SCr estimates and ultimately increased the case definition’s specificity. 
We are unable to calculate positive and negative predictive values for the definitions without 
longitudinal outpatient measurements to validate baseline estimates.   

We decided not to evaluate the other sub-criteria of the KDIGO definition for AKI, which 
include a 1.5 times increase in SCr within 7 days, or a decrease in urine volume by < 0.5 
ml/kg/hour for 6 hours.5 Urine output was not reliably recorded in our dataset, so this would 
not have been a reliable measure to identify cases of AKI. An increase in SCr by 1.5 times the 
baseline within 7 days represents a more specific threshold than an increase of 0.3 mg/dL 
within 48 hours. However, our focus in this study was evaluating the association of CA-AKI with 
heat exposure. Comparing SCr values across a 7-day window of hospital data may have 
increased the proportion of HA-AKI cases in our cohort, and could therefore have increased 
outcome misclassification. Another important consideration was that CA-AKI are milder in 
severity compared to HA-AKI, with one meta-analysis noting lower rates of oliguria, ICU 
admission and mortality.1,34 Applying a threshold increase of 0.3 mg/dL instead of 1.5 times the 
baseline would improve our sensitivity for mild cases of AKI.  

The exposure response functions revealed a positive effect where the risk of AKI 
increased at higher temperatures. The shapes of the curves were consistent across case 
definitions. Stronger effects appeared in the KDIGO case definitions than the ICD definition. This 
could be explained by the ability of KDIGO definitions to distinguish CA-AKI from HA-AKI. The 
presence of HA-AKI cases under the ICD definition could have represented outcome 
misclassification, which, again, may have down-biased results.  

Our results add to a body of literature supporting an association between ambient heat 
exposure and acute renal disease. An analysis of Atlanta area ICD-coded data from 1993 to 
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2012 found a positive effect for heat on renal-associated ED visits with a slightly larger 
magnitude than our study.12 A case-crossover analysis in Seoul, South Korea observed a smaller 
but statistically significant effect for AKI at high temperatures, again using ICD diagnosis 
codes.10 A study analyzing ICD data across multiple South Korean cities found larger, statistically 
significant effect sizes for acute renal failure risk.11 A case-control study of older adults in 
Ontario, Canada between 2004 and 2013 revealed a slightly larger magnitude of AKI risk during 
extreme heat periods.37 Another large case-crossover analysis from 2005 to 2013 in New York 
State revealed an positive association of AKI with extreme heat exposure of similar magnitude 
to our findings.40 

These results are supported by a biological mechanism for heat-induced renal injury. 
Heat stress contributes to dehydration and eventual reductions in intravascular blood volume. 
A compensatory mechanism allows the kidneys to maintain renal perfusion pressures, but 
under sufficient stress, these processes may fail and lead to renal hypo-perfusion and injury.53 
Pre-renal azotemia is a common etiology for CA-AKI.29 
 The subgroup analysis revealed several interesting patterns. Males had elevated 
temperature effects across all case definitions compared to females. A prior study identified 
male sex as a risk factor for CA-AKI compared to non-AKI controls.48 Heat-AKI studies have also 
previously identified non-significant increases in AKI risk among males compared to females, 
similar to our results.15,40,54 Our subgroup analysis also found non-significant increases in AKI 
risk among Black patients compared to non-Black patients. This result is in contrast with a New 
York-based study, which found higher excess rates of kidney disease related to extreme heat 
among non-African Americans compared to African Americans.40 We did not find a consistent 
signal of age-specific (above/below age 65) effects. Results from other studies overall suggest 
an elevated effect in the elderly, which is consistent here for the ICD and MIN 
definitions.9,10,40,55  

Stratifying our cohorts by CKD allowed us to evaluate if the heat-AKI effect differed 
depending on CKD status. Only ICD-defined AKI could account for CKD because both CKD and 
AKI cases under this definition were drawn from diagnosis codes in the medical record. The 
“ICD” definition suggested a small increase in risk among patients with CKD and those without a 
CKD diagnosis. This difference did not reach statistical significance at the 5% level. 

The CKD subgroup analysis also evaluated potential bias in our outcome ascertainment. 
In our study, KDIGO-defined AKI could not account for patients with CKD because our baseline 
estimates assumed normal-range renal function. Odds ratios were higher in the non-CKD group 
for all three CKD-EPI case definitions. This result suggests there is a heat effect for the risk of 
CA-AKI among patients with previously normal renal function. It is likely that pre-existing CKD 
further magnifies this risk given that CKD is a known risk factor for AKI.56 Future research using 
KDIGO definitions that can account for CKD-range renal function could further elucidate this 
relationship.   

We acknowledge several limitations of this paper. Access to outpatient SCr 
measurements would have allowed us to compare the positive and negative predictive values 
to a gold standard. Unfortunately, access to accurate baseline creatinine values is rare.47 With 
partial outpatient data, we could have estimated baseline renal function using a multiple 
imputation, as has been previously suggested.57 This method may have improved baseline 
estimates beyond the eGFR 75 approach that we pursued. However, imputation was 
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impractical for our dataset given that baselines were missing across all observations. We hope 
our approach will inform future studies as epidemiologists continue to move towards 
laboratory-based analyses available through the electronic medical record. 

We had access to patient data across a relatively short time period of 4 warm seasons. 
This contributed to uncertainty in our odds ratio estimates. Our data was also confined to a 
single metropolitan area, so our results may not be generalizable to other urban or non-urban 
regions. There are also inherent challenges to estimating disease risk related to ambient heat 
exposure. Our exposure data summarized daily ambient temperatures across a residential zip 
code rather than directly measuring individual-level temperature exposure. Therefore, patients 
who stayed indoors in air-conditioned facilities on warm days would not have experienced our 
exposure of interest. Area-income could serve as an imperfect proxy for air conditioning 
utilization to potentially account for this confounder.58 Using payor information may also help 
approximate socioeconomic status.59 This data was not available to us, unfortunately. We also 
did not control for air pollution or vapor pressure, although a prior Atlanta-based study found 
that these variables did not substantially impact their results.12 

Each case definition had unique limitations as well. As previously described, ICD-defined 
AKI fails to distinguish HA-AKI from CA-AKI. The KDIGO-based definitions relied on imperfect 
estimates of baseline kidney function because the gold standard for estimating baseline 
function – outpatient SCr measurements – were unavailable. The CRUDE definition assigned a 
sex-specific baseline that failed to account for pre-existing renal disease. The MIN-defined AKI 
assumed the minimum SCr measured during hospitalization approximated the patient’s 
baseline. Patients who were discharged from the hospital prior to complete resolution of their 
AKI may therefore have had falsely elevated baselines assigned. The 2021 CKD-EPI equations 
generated age- and sex-specific baselines for three set values of GFR: 60 ml/min/1.73 m2, 75 
ml/min/1.73 m2, and 90 ml/min/1.73 m2. Together, these definitions attempted to account for 
variation in baseline renal function, but they still could not account for patients with pre-
existing CKD, which is defined as a GFR less than 60 ml/min/1.73 m2. However, as we describe 
above, stratifying by the CKD variable in our subgroup analysis, enabled us to estimate the 
heat-AKI effect more accurately among individuals with preserved renal function. 

 
Conclusion 

In summary, we demonstrate that KDIGO-based AKI definitions are a viable and 
potentially improved tool to estimate the heat effect on CA-AKI compared to ICD-based 
definitions. Using KDIGO definitions enables researchers to distinguish HA-AKI from CA-AKI 
based on the timing of serum creatinine measurements. This is of critical importance to 
accurately estimate ambient heat-AKI effects. Our results also suggest that KDIGO definitions 
may capture additional AKI cases that are otherwise missed with ICD-based AKI definitions. 
Future studies with access to outpatient SCr measurements could build on this research to 
estimate the risk of AKI superimposed on CKD. This paper has important clinical and public 
health implications as healthcare providers adapt to health risks from extreme heat related to 
global warming. 
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Tables and Figures 
 
Table 1: Acute kidney injury (AKI) case definitions 
  

AKI Case Definition 

(1) ICD ICD-10 classification coding of N17  

(2) CRUDE Maximum SCr value within 48 hours of ED arrival ≥ 0.3 + sex-specific 
baseline: 1.3 mg/dL for males, 1.2 mg/dL for females. 

(3) MIN Maximum SCr value within 48 hours of ED arrival ≥ 0.3 + the minimum SCr 
value measured during a patient’s entire hospital stay  

(4) CKD-EPI 60 Maximum SCr value within 48 hours of ED arrival ≥ 0.3 +  baseline back-
calculated using the 2021 CKD-EPI equation, where eGFR = 60 
ml/min/1.73m2.  

(5) CKD-EPI 75 Maximum SCr value within 48 hours of ED arrival ≥ 0.3 + baseline back-
calculated using the 2021 CKD-EPI equation, where eGFR = 75 
ml/min/1.73m2.  

(6) CKD-EPI 90 Maximum SCr value within 48 hours of ED arrival ≥ 0.3 + baseline back-
calculated using the 2021 CKD-EPI equation, where eGFR = 90 
ml/min/1.73m2.  

 
Table 2: Daymet temperature data for the 10-county Atlanta, Georgia metropolitan area 
 

10-County Atlanta 
Temperature 

Median (IQR) 95% 5% 

Daily Maximum (°C) 31.37 (29.14 – 32.93) 34.78 24.74 
Daily Minimum (°C) 19.75 (17.58 – 21.11) 22.45 12.48 
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Table 3: Demographic and clinical descriptive statistics for all ED visits and sub-cohorts defined 
by each AKI case definition. (CKD = Chronic Kidney Disease, HTN = Hypertension, DM = Diabetes 
Mellitus, SCr = Serum Creatinine) 
  

Cases 
(% of 
total) 

Mean 
Age 
(SD) 

 Female 
(%) 

Black 
(%) 

CKD 
(%) 

HTN 
(%) 

DM 
(%) 

Mean Maximum 
SCr within 48 hours 
(SD) 

All visits 264415 
(100%) 

51.1 
(19.8) 

58.5 55.6 4.36 43.7 18.7 1.48 mg/dL (2.1) 

ICD 16647 
(6.3%) 

65.4 
(17.1) 

46.4 51.8 35.0 80.3 43.0 2.23 (1.7) 

CRUDE 28205 
(10.7%) 

63.3 
(16.8) 

45.9 65.9 27.2 85.6 47.2 4.71 (4.2) 

MIN 23979 
(9.1%) 

63.2 
(17.4) 

48.4 55.9 24.0 80.7 43.8 3.62 (3.9) 

CKD-EPI 60 31484 
(12.0%) 

65.9 
(16.7) 

52.4 63.4 27.3 86.4 46.6 4.35 (4.1) 

CKD-EPI 75 41938 
(15.9%) 

66.5 
(16.5) 

52.2 60.4 23.8 84.0 43.5 3.60 (3.8) 

CKD-EPI 90 54320 
(20.5%) 

66.2 
(16.5) 

51.7 58.5 19.8 80.8 40.2 3.06 (3.5) 
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Table 4: Percent Concordance between AKI case definitions  
  

ICD  
(n = 
16647) 

CRUDE 
(n = 
28205) 

MIN 
(n = 
23979) 

CKD-EPI 60 
(n = 
31484) 

CKD-EPI 75 
(n = 41938) 

CKD-EPI 90 
(n = 54320) 

ICD 100% 36.6% 48.7% 36.2% 33.1% 28.0% 

CRUDE 62.1% 100% 62.9% 86.6% 67.2% 51.9% 

MIN 70.1% 53.4% 100% 51.0% 44.1% 37.3% 

CKD-EPI 60 68.5% 96.7% 67.0% 100% 75.1% 58.0% 

CKD-EPI 75 83.4% 99.9% 77.1% 100% 100% 77.2% 

CKD-EPI 90 91.4% 100% 84.5% 100% 100% 100% 
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Figure 1: Exposure-response functions by case definition for the risk of AKI across maximum 
daily temperature at lag 0 days. (Odds ratios provided with 95% confidence intervals, Red 
dashed line: Median daily maximum temperature, Green dashed line: 95th and 5th percentile 
daily maximum temperatures). 
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Figure 2: Contrast studies across case definitions for the risk of AKI at the 95th vs 5th percentile 
for daily maximum temperature. Odds ratios provided with 95% confidence intervals (Red 
dashed line: null hypothesis).   
 

 
 
 
 
 
 
 
 



 20 

 
Figure 3: Subgroup analysis across case definitions comparing risk of AKI across the 95th vs 5th 
percentile for daily maximum temperature. Odds ratios with 95% confidence intervals. (Red = 
subgroup where stratifying variable = 1, Green = subgroup where stratifying variable = 0). 
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Supplemental Figures 
 
Supplemental Figure 1: Sex-stratified baseline serum creatinine values (md/dL) where 2021 
CKD-EPI was back-calculated using a set GFR of 60 ml/min/1.73 m2 (Above: Female patients; 
Below: Male patients). 
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Supplemental Figure 2: Sex-stratified baseline serum creatinine values (md/dL) where 2021 
CKD-EPI was back-calculated using a set GFR of 75 ml/min/1.73 m2 (Above: Female patients; 
Below: Male patients). 
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Supplemental Figure 3: Sex-stratified baseline serum creatinine values (md/dL) where 2021 
CKD-EPI was back-calculated using a set GFR of 90 ml/min/1.73 m2 (Above: Female patients; 
Below: Male patients). 
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Supplemental Figure 4: Sensitivity analysis with daily minimum temperature. Exposure 
response functions for the risk of AKI across case definitions by daily minimum temperature. 
(Odds ratios provided with 95% confidence intervals, Red dashed line: Median daily maximum 
temperature, Purple dashed line: 25th  and 75th percentile daily maximum temperatures, Green 
dashed line: 95th and 5th percentile daily maximum temperatures). 
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