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Abstract

Distributional Semantic word representation allows Natural Language Processing systems

to extract and model an immense amount of information about a language. This technique

maps words into a high dimensional continuous space through the use of a single-layer neural

network. This process has allowed for advances in many Natural Language Processing research

areas and tasks. These representation models are evaluated with the use of analogy tests,

questions of the form “If a is to a’ then b is to what?” are answered by composing multiple

word vectors and searching the vector space.

During the neural network training process, each word is examined as a member of its

context. Generally, a word’s context is considered to be the elements adjacent to it within

a sentence. While some work has been conducted examining the effect of expanding this

definition, very little exploration has been done in this area. Further, no inquiry has been

conducted as to the specific linguistic competencies of these models or whether modifying

their contexts impacts the information they extract.

In this paper we propose a thorough analysis of the various lexical and grammatical

competencies of distributional semantic models. We aim to leverage analogy tests to evaluate

the most advanced distributional model across 14 different types of linguistic relationships.

With this information we will then be able to investigate as to whether modifying the training

context renders any differences in quality across any of these categories. Ideally we will

be able to identify approaches to training that increase precision in some specific linguistic

categories, which will allow us to investigate whether these improvements can be combined

by joining the information used in different training approaches to build a single, improved,

model.
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Chapter 1

Introduction

The field of Natural Language Processing is generally concerned with the computational

extraction and manipulation of language information. In order to extract as much information

as possible, NLP systems find it useful to represent words in different ways. The obvious, and

most common, method is to represent each word as an index into a vocabulary. While this

approach is useful for many basic tasks it imposes a limit on the complexity of information

that can be extracted from raw text. Distributional semantics gives us a new approach,

statistically analyzing word occurrence to develop a better understanding of the entire

language. Distributional semantics recently have introduced methods to map words to high-

dimensional vectors which can capture an immense amount of syntactic information. These

vectors are also referred to as word embeddings. The impact of advances in distributional

semantics, particularly that of word embeddings generated with neural network models, can

not be understated.

The use of high-quality continuous word embeddings has been one of the most useful

recent advances in Natural Language Processing. Models can be built to contain an incredible

amount of information about each individual word, particularly in relation to other words.

One of the most interesting benefits of this approach is the ability of these models to perform

logical operations on words. Notably, this means that many computational linguistic models
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can now represent relationships between words and solve basic analogy problems of the

form a is to a′ as b is to blank. This capability is a direct result of the continuous nature

of word embeddings. The offset between two words a and a′ can be interpreted as their

syntactic difference, it therefore follows that the relationship between any two words can

be extracted in this way. This offset can then be applied to some other word b to find the

appropriate b′, if it exists. Analogy tests of this form have been found to be very effective

measures of overall word embedding quality[12].

In this paper we analyze the quality of word embedding models across different syntactic

categories. We accomplish this by utilizing a relationship extraction technique to perform

analogy tests across a diverse test set composed of questions in 14 different linguistic categories.

Additionally, we introduce methods to create a variety of alternative word embeddings utilizing

different forms of syntactic and semantic information. These new embeddings are used in

conjunction with our test sets to determine a link between specific linguistic information

leveraged in training and particular competencies of word embedding models.

In order to achieve these results we introduce an expanded implementation of Mikolov’s

Word2Vec[16] that creates word embeddings based on arbitrarily defined linguistic information,

a multithreaded analogy testing framework to massively decrease the time taken by this task

and demonstrate an analysis methodology to help determine the optimal embedding training

method for particular tasks. Additionally we provide novel set of word embedding models

trained based on a variety of different linguistic information.
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1.1 Thesis Statement

By analyzing lexical and grammatical competencies across a set of word embedding models,

including a set created by using syntactic information, we intend to discover whether current

techniques insufficiently model particular aspects of language. Further, we intend to explore

whether linguistic information can be used to guide model training in a way that combines

and enhances model competencies across syntactic categories. We finally introduce a system

capable of selecting the best possible model to use at run-time, thereby utilizing unique or

difficult-to-replicate model competencies.
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Chapter 2

Background

The field of Natural Language Processing (NLP) is largely concerned with the development

of algorithms that can extract information from human language. Problems in this field have

focuses ranging from semantic to purely linguistic tasks, including examples such as sentiment

analysis and dependency parsing respectively. NLP systems generally utilize at least one

word representation method in their approaches to these problems. Word representation can

be achieved in many different ways, from simply using text representation to leveraging high

dimensional vectors.

The most influential recent advance in word representation is the success of distribu-

tional semantics, which represents words using high-dimensional vectors. Distributional

representation entails mathematically mapping words into a high dimensional space, generally

accomplished using a neural network. The end result of this process is usually referred to

either as a word embedding model or distributional semantic model. This representation of

words in a continuous space has proven immensely useful for a large variety of NLP tasks.

Building word embedding models has been most effectively achieved as the result of

a neural network training task. Specifically, Mikolov’s neural network training method is

considered to be the most advanced way to generate word embeddings[16][7]. They present

a neural network which trains using a large raw text corpus to perform a slot-filling task.
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Given a series of words xi−n, xi−n−1, ..., xi−1, xi+1, . . . xi+n called C, where i is the position

of the training word in a sentence and n is the context window size, the task is to select from

the vocabulary some word y to fill position i such that:

arg max
y

p(y|C)

which is equilvalent to:

arg max
y

p(y|xi−n, xi−n−1, ..., xi−1, xi+1, ..., xi+n)

This approach extracts an incredible amount of information from language, particularly

in terms of relationships between different words. The success of this approach is often

explained with the Distributional Hypothesis. This hypothesis states that the frequency with

which words co-occur, or do not co-occur, with each other contains all of the information

about a language. The basis of this argument is that words that frequently appear together

are similar, therefore knowing the total frequencies with which a given word x appears with

every other word should render a complete definition the meaning of x[8].

One of the problems of distributional semantics is model evaluation. There is no easily

determined ground truth for a vectorized representations of words. Mikolov presented a frame-

work to solve this challenge leveraging the unique capability of word embeddings to capture

the relationship between two words. A set of questions of the form “a is to a′ as b is to blank”

are posed to the word embedding model, which is tasked to find the best possible word to fill

in the blank.[17] Analogy tests are one of the most frequently used methods to evaluate word

embedding quality.
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2.1 Word Representation

One of the most useful basic tools of NLP is word representation. In human language, words

are generally either represented as audio signals or printed text. Humans are trained to

understand and process language represented in these and other forms, but machines have

no innate ability to achieve this same result. Methods to computationally represent words

include tokenization (indexing into a text vocabulary), Brown Clustering[2] (associating

words by the amount of information they share under an N-gram model), Latent Semantic

Analysis[5] (term frequency and document similarity) and Distributional Word Embeddings

(mapping words onto a high-dimensional continuous space). Distributional semantics methods

are the most advanced techniques available for word representation. For this reason we focus

our discussion of word representation on distributional semantic models.

2.1.1 Word Embeddings

High-dimensional word embeddings have recently been widely utilized to better represent

semantic meaning in language. Word embeddings, which map words into high-dimensional

vector spaces, allow for many novel approaches to language modeling.

The most influential neural network architecture for distributional word representation is

Mikolov’s SkipGram with negative sampling[16]. This approach utilizes word tokenization

to train a single-layer neural network to efficiently generate high-quality word embeddings.

The original C implementation of this approach can be found in the Word2Vec package[16],

but many other implementations exist in various languages such as the Python Gensim

package[14] and the Java EmoryNLP package[3].
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Distributional Semantic Hypotheses

Distributional semantics is concerned with the representation of words and meaning in a

high dimensional vector space. The work in this field generally has a theoretical basis in the

following hypotheses which posit the possibility of learning language meaning through purely

statistical measures. These hypotheses provide the underpinnings of the findings of this paper

and an explanation for the effectiveness of high dimensional continuous word embeddings in

a variety of tasks.

Statistical Semantics Hypothesis The statistical semantics hypothesis states that the

meaning behind a sentence can be determined by observing statistical patterns of natural

language usage. Practically, it implies that if vectorized representations of two words are

similar then those words will likely have similar meanings. This hypothesis is a more formal

and broader statement of the following theories.[18]

Bag of Words Hypothesis Given a query Q, a document D is likely to be found to be

relevant to Q if their word frequencies are similar. The more similar the word frequencies are

between Q and D the more likely it is for D to be a relevant answer to Q. More specifically,

the two items are thought to be similar in meaning if their word frequencies are similar.[15][18]

Distributional Hypothesis The distributional hypothesis posits that all the information

about a word in a language can be determined by its statistical relationship with other words.

Less formally, Firth put forward the idea that “a word is characterized by the company it

keeps”[6]. The implication here is that words are similar to other words they cooccur with

and dissimilar from words that they do not cooccur with. This means that, for a given word,
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the exact meaning of that word can be captured by the the frequency with which it word

appears, or does not appear, with every other word in the language. Aggregated over a

sufficiently large corpus, it follows that such a method could capture all semantic meaning

from an entire language.[8]

Applications

Possibly the most important aspect of modern distributional semantics is its incredible

effectiveness in a wide range of NLP tasks. Many different tasks, including Named Entity

Recognition, Question Answering and Dependency parsing, have been dramatically improved

by their use of distributional semantic models.

2.2 Analogy Tests

Analogy testing is one of the most well-regarded word embedding quality assessment frame-

works currently used. This method is generally only used to show a single score as the total

competency of the model, without much linguistic interpretation or insight. We believe

analogy testing has an unexplored potential to provide analysis of very specific competencies

and qualities of language models.

2.2.1 Vector Offset

Possibly the most useful aspect of distributional semantic models is their ability to capture

the relationship between two words. This is achieved by taking the offset between two

vectors. For instance, extracting the offset between vector(Man) and vector(Woman) gives

the relationship of gender. This is accomplished by the following formula:
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relationship(a : a′) = ~a′ − ~a

Where a and a′ are a pair of words and ~a′ and ~a are their vector representations. This

offset can be taken and applied to other words, say vector(Boy) to find the word embedding

representation of the word Girl. More generally, given a pair a and a′ and some other word b

we can apply relationship(a : a′) to b with:

~b′ = relationship(a : a′) +~b

Therefore:

~b′ = ~a′ − ~a +~b

This implies that the relationship between any pair of words should be found as a constant

offset between those words, and that this offset will be the same for all other similar pairwise

relationships.

2.2.2 Analogies

Analogies themselves obey the following pattern: given two similar pairs of words a,a’ and

b,b’ the relationship between a and a’ is the same as that between b and b’. This relationship

is used to create a slot-filling task: given a, a’ and b the goal is to pick the best possible

value for b’.

This task can be translated for distributional semantic models easily. We simply take the

vector representations of a,a’ and b, use the following formula[12]:
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arg max
~x

CosineSimilarity(~x, ~a′ − ~a +~b)

where ~x should be the vector representation of b′.

The results from this task are often surprising in how well they expose semantic meaning.

One common example is that, on sufficiently high quality embeddings, it is possible to take x

= vector(King) - vector(man) + vector(woman) such that searching the vector space for the

most similar word to x gives vector(Queen). This process uses the continuous nature of word

embedding models to extract a relationship, in this case gender, from two words and then

apply it to a third word to complete the analogy.

2.2.3 Syntactic Test Set

We base our evaluation on a collection of tests from Mikolov, with a total of 19544 individual

tests[17]. We broke the tests down into fine-grained categories relating to different parts of

speech and semantic meanings. Each test is of the form “a is to b as b is to x” where the

task is to find the best possible value for x.

The test set includes both lexical and grammatical tests. The lexical categories that it

tests are common world capitals (Madrid is to Spain as Beijing is to China), all world capitals

(a superset of the common world capitals), city in state (Atlanta is to Georgia as Chicago is

to Illinois), currency (Mexico is to Peso as England is to Pound) and family (Mother is to

Daughter as Father is to Son). The grammatically focused categories are adjective-to-adverb,

opposites, comparatives, superlatives, present-participles, nationality-adjectives, past tenses,

plurals and plural verbs.
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2.2.4 Test Set Customization

To more properly analyze results from these test sets we reorganized them for our uses. The

grammatical category of opposites was moved to the lexical category, while the remaining

grammar-focused test sets were merged to form a grammatical test set. This left us with a

final lexical test set and grammatical test set, each split into seven subcategories. Additionally,

upon examining the family test cases it turned out that every single test only actually required

a model to determine difference in gender, not actual family relations. For example, there

were tests along the lines of “brother is to sister as son is to daughter”, but none along the

lines of “son is to father as father is to grandfather”. To enhance the clarity of our findings

we refer to the family test set as the gender test set from this point on. Examples and

categorizations of these test sets can be found in Table 2.1.

Table 2.1: Analogy Examples

Category Type Example
capital-common-countries Lexical England is to London
capital-world Lexical Nigeria is to Abuja
city-in-state Lexical Los Angeles is to California
currency Lexical England is to Pound
gender Lexical King is to Queen
adjective-to-adverb Grammatical Amazing is to Amazingly
opposite Lexical Hot is to Cold
comparative Grammatical Warm is to Warmer
superlative Grammatical Loud is to Loudest
present-participle Grammatical Coding is to Code
nationality-adjective Lexical American is to America
past-tense Grammatical Dancing is to Danced
plural Grammatical City is to Cities
plural-verbs Grammatical Describe is to Describes
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2.2.5 Scoring - Precision and Recall

Precision and recall are measures generally used for information retrieval with binary clas-

sification and pattern recognition. The premise is that a model may retrieve information

from four different general categories: correct and relevant, incorrect and relevant, correct

and irrelevant and correct and irrelevant. Precision is a fraction of how much retrieved

information is relevant. Recall is a fraction of how much of the total relevant information was

returned. This difference becomes very important in understanding the quality of a given

model or approach. Analogy Test results are given as the precision of the model, essentially

the number of correct answers returned as a percentage of all of the answers returned as seen

here:

Precision =
Correct Analogies

Answerable Analogies

We use this measure because recall in this case is linked strongly to the vocabulary of

the model, which is predominantly a function of the corpus used. Additionally, there is

no current method to register that a word embedding model is attempting to return an

out-of-vocabulary word. In this work “score” and “accuracy” may be used interchangeably

in place of “precision”.

2.3 Linguistic Structure

2.3.1 Dependency Structure

The syntactic theory of dependency is the idea that a sentence can be modeled using directed

binary relations between words. Using dependency, words can be organized into a graph by

treating each word as a node and their relations as arcs. Each word in a dependency graph
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may have multiple outgoing arcs but only one incoming arc. This means that dependency

graphs naturally organize themselves into trees, where a word has a single head and may

have any number of children. Dependency is a one-to-one relation, any given word in a

sentence maps to exactly one member of the resulting graph. To keep these rules consistent,

a false head node is usually introduced, whose only rule is to provide a head to the root

of the dependency tree. For example, in Figure 2.1, “bought” is the head of “He”, “car”,

and “yesterday”. The head of “bought” is the false head. The siblings of “car” are “He” and

“yesterday”.

Figure 2.1: Dependency Tree[4]

2.3.2 Predicate Argument Structure

Predicate argument structure is largely concerned with the role of semantic arguments in

language. Semantic arguments are words in a sentence that are associated with the predicate

or a verb. Each argument is classified by its role and the meaning that it adds to the

sentence. The semantic role label is the label attributed to a specific relation between a word

and its semantic argument. For example, in the sentence “I saw a car”, the verb “saw”

takes arguments “I” and “car”. This kind of semantic abstraction provides very specific

information about the sentence as the role of semantic arguments are very strictly defined.
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As illustrated in Figure 2.2, each verb only accepts very specific arguments. For instance

the verb “open” will only accept arguments that provide either an opener, thing opened,

instrument or a benefactor. Given a sentence “Mary opened the bottle with a corkscrew.” the

words “Mary”, “bottle” and “corkscrew” would serve as ARG0, ARG1 and ARG2 respectively.

Not all arguments must be present every time a verb or predicate is used.

Figure 2.2: Possible semantic role arguments for “open” words.[4]

2.3.3 Morphemes

A morpheme is the linguistic atom, it is a language’s smallest possible grammatical unit that

still contains meaning while possibly standing alone (but not necessarily). Broadly speaking,

a single morpheme can be classified as a member of one of two categories: Inflectional or

Derivational. Membership in either group is based on the effect a morpheme has on the word

that it is paired with and in what manner it changes that word’s original meaning.

Inflectional Morphemes

Inflectional morphemes do not alter the part of speech of any word they are paired with. For

nouns, pronouns and adjectives an inflectional morpheme can change a word’s number, gender

or case. In the case of verbs, this kind of morpheme might change tense, mood, number,
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person or aspect. For instance, adding -ed to the word play to form played and adding -s to

run to form the word runs are both examples of inflectional morphemes.

Derivational Morphemes

Derivational morphemes, on the other hand, affect the actual meaning of a word in a much

more pronounced way. Generally speaking, a derivational morpheme will either change the

part of speech or semantic meaning. Adding -en to dark to form the word darken changes an

adjective to a verb. Alternatively, adding -un to the word helpful renders the word unhelpful,

thereby reversing the semantic meaning of the original word.

2.4 Neural Network Models

The Feedforward Neural Network Language Model and the Recurrent Neural Network

Language Model were two of the earlier proposed architectures to create continuous word

embeddings leveraging machine learning techniques. They both share a significant training

complexity, inspiring advances such as utilizing hierarchical versions of softmax as well as the

Bag of Words and SkipGram architectures.

2.4.1 NNLM

The representation of words in a continuous vector space has been achieved in various forms

for several years. One of the earliest successful proposals that incorporated a neural network

was the Feedforward Neural Net Language Model (NNLM). This network is comprised of

input, projection, hidden and output layers. The computational complexity of this model

can quickly become massive, inspiring various improvements[1].
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2.4.2 RNNLM

The feedforward NNLM is limited in the need to specify, and therefore optimize for, context

training size as well as the theoretical limits on its capability to learn complex patterns. This

problem is rooted in the seeming lack of memory that a model has, the output from any

previous iteration has no real effect on future outputs. In order to compensate for these

problems, the Recurrent Neural Network Language Model (RNNLM) was introduced[11][10].

These networks are also composed of an input, hidden and output layer, but with a key

difference. Recurrent Neural Networks pass their output back to the hidden layer while

accepting new input. Each iteration is now a step forward in time, where the Network receives

information from previous epochs at each time t > 0. This creates a weak form of memory

inside of the neural network, later improved upon by the Long Short Term Memory neural

network[9]. This RNN forgoes the projection layer of the NNLM, only using an input, hidden

and output layer.

2.4.3 Word2Vec

While Mikolov et al. draw inspiration from NNLM and RNNLM, their Word2Vec model is

built upon a more efficient architecture, of which there exist two variants. The effectiveness,

and subsequent popularity, of these architectures is due in part to its use of negative sampling

and very efficient training[16]. These architectures are visualized in Figure 2.3.

SkipGram The SkipGram architecture is a neural network model with a single hidden

layer. It trains by taking each word x in each sentence and predicting what other words are

adjacent to x. For our research we also leverage the SkipGram architecture in our generation
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Figure 2.3: SkipGram and Continuous Bag-of-Words Architectures[17].

of word embedding models. Given some text corpus we take each word w and its context in

order to examine the conditional probability of each word appearing with its context. Given

training words w1, w2, ..., wT and a context size c SkipGram maximizes the following:

1

T

T∑
t=1

∑
−c≤j<c,j 6=0

log p(wt+j|wt)

Continuous Bag-of-Words The reverse training task, predicting a single word from its

context, is the continuous Bag-of-Words model. The goal of continuous Bag-of-Words is to

take any given context and predict the missing word.[16].

Complexity The training complexity of both the SkipGram and Continuous Bag-of-Words

architectures is

O = E × T ×Q

where T is the number of words in the corpus, E is the number of training iterations and Q

is the compexity of a single training iteration. Q is defined differently for each architecture.
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For SkipGram, Q is:

Q = C × (D + (D × log2(V ))

where C is the context size, D is the size of the hidden layer and V is the number of

words in the vocabulary. The complexity of the models we use in this work is largely the

same, where we vary C based on the current experiment.

2.4.4 Contexts

Word2Vec trains each word in a corpus differently based on its context. In this case, the

context of a word is defined as whichever words are closest to it within the sentence. The

SkipGram model is trained by maximizing the likelihood that, given a word, its context can

be found. One problem with this is that important semantic meaning is often spread out

distantly through a sentence, meaning that it is possible that related word pairs may not be

trained together.

Arbitrary and Dependency Contexts

Arbitrary contexts have been used in order to explore different possible information extraction

strategies for word embedding generation. The abstraction of this training method allows us

to redefine what the context of a word consists of. For instance, the dependency structure of a

sentence contains a huge amount of information regarding both the meaning of the sentence as

a whole and of each individual word. Levy and Goldberg introduce this approach by training

each word against its dependency head and the syntactic dependency label connecting the two

tokens.[13] The major advantage of this approach is that it intelligently selects the context
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based on words that interact within the sentence instead of having to guess a window size.

This increases the likelihood that words selected as context will provide valuable information,

especially for tokens that would have been too distant from each other to be included in their

respective SkipGram contexts.

Levy and Goldberg only attempt using the dependency head of each word as context.

There is, however, a rich amount of syntactic information readily available to improve the

training contexts. Mikolov recognizes that the SkipGram and Bag-of-Words architectures

are limited by how quickly complexity increases as their context window increases. It is put

forward that this potential loss of information is somewhat inconsequential as “distance words

are usually less related to the current word than those close to it”[17]. This may or may

not be true, but using expanded contexts that leverage syntactic information could greatly

improve training by creating even more relevant context windows. In turn this should improve

the quality of word embedding models while also decreasing the computational complexity

from using large contexts.
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Chapter 3

Approach

3.1 Corpus

We created our word embedding models using the 2015 dump of Wikipedia, a freely available

dataset, as well as the New York Times news corpus. We preprocessed both of these corpuses

using the EmoryNLP package[3] in order to obtain specific linguistic information to use in

our training models including dependency and semantic role relations. The combination of

these sources gives a total of 6,406,418,032 words, including 1,531,163 unique words.

3.2 Syntactic Contexts

In order to investigate the linguistic competencies gained by a word embedding model trained

on different sets of information, we first extended the Python Gensim package[14] to train

each word on an arbitrarily defined context. Eventually we also implemented arbitrary

contexts in the Java EmoryNLP package in order to take advantage of its significantly faster

training speed as well as its advanced dependency parsing library. All results presented are

based off of our results from the modified EmoryNLP package.

Our corpus is first processed for dependency and semantic role labels. This processed

corpus can later be used to train additional models. Each word is treated as a node with
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information including word form, dependents, dependency head as well as semantic role

arcs and labels. Our training method makes heavy use of this dependency graph, traversing

it locally to build most word embedding contexts. Crucially, we replace the windowed

context training phase of Mikolov’s Word2Vec[16] with a new context generating phase. The

context of a word is generated based on linguistic information passed through to the main

neural network training algorithm, thereby allowing new models to be dynamically and easily

created.

The linguistic relationships we chose to explore at first were that of each given word’s

siblings, dependents and semantic head.

Refer to Appendix B for visualizations of each approach.

3.2.1 First Order Dependency (dep1)

The First Order Dependency model (dep1) made use of dependency structure, specifically

the children of a particular node. For a word x in a sentence, any words with incoming links

that originated at x were used as the context to train x.

3.2.2 Semantic Role Label Head (srl1)

Under the semantic role label head training method, each word is trained against any other

word in the sentence that uses it as an argument. Therefore, in the sentence “I bought a

car.”, the word I would be trained against the word bought, as would the word car. The

major drawback of this is data scarcity, very few words are semantic heads.
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3.2.3 Closest Dependency Siblings (sib1)

Closet dependency siblings also takes advantage of dependency structure. For a given word x

in a sentence, the context of that word is constructed by taking the dependency children of

x’s head which are adjacent to x. The neural network then attempts to determine the best

possible missing sibling in this context set.

3.2.4 First and Second Closest Siblings (sib2)

This model is built in the same way as sib1, but the second closest siblings of the given word

are also used to build its context.

3.3 Composite Models

After building this set of models leveraging basic syntactic information we decided to explore

whether a more complex and linguistically-rich approach to training would improve the quality

of our distributional representations. We combined and extended the training contexts of

several of our basic syntactic models in order to determine whether we could effectively

combine the information learned by different models.

3.3.1 All Siblings (allsib)

This model further explores the idea that valuable information is contained in knowing which

words share a common head, while also trying to mitigate the problem of having too small of

a context as much as possible.
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3.3.2 Second Order Dependency (dep2)

This training method is most similar to first order dependency, but it also includes the

dependents of all dependents of the given word. This provides the model with a greater

understanding of the dependency structure of each sentence that it trains on.

3.3.3 Second Order Dependency with Head (dep2h)

This method is identical to second order dependency, but with the head of the given word

added to the context.

3.3.4 Siblings with Dependents

In order to examine the effect of building contexts from those of smaller syntactic models

we tried three different approaches that took disjoint contexts from previous models and

combined them.

First Order Dependency with Closest Siblings (sib1dep1)

The context for this model is built by combing first order dependency with closest siblings.

First Siblings and First Order Dependency (sib2dep1)

This model is similar to sib1dep1 but with the addition of the second closest siblings of each

word to its context.

First Siblings and Second Order Dependency (sib2dep1) This model is an attempt to

combine the contexts of sib1 and dep2.
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3.4 Ensemble Models

In order to maximize the information available in any given Natural Language processing task,

we devised a method to create ensemble models from multiple different word embeddings with

differing linguistic competencies. Our goal was to be able to pair distributional representations

that performed well in different categories and then dynamically switch between them as the

current task demanded.

In order to build an ensemble model we first established techniques to select which word

embeddings would be included in the model. Next we created a new analogy testing framework

to support evaluating a model that dynamically selects which word embeddings to use for

each individual task. While our implementation is specific to analogy tests, the principle

pre-processing technique can easily be extended to any other natural language processing

task.

3.4.1 Model Inclusion

We selected models to use in our ensemble model in three different ways, by sum of ranking

score, sum of categorical accuracy score, and our maximum information selection process

which selects models by the amount of new and unique information they contribute. The

goal was to maximize the competency with which the ensemble model could perform on

any given natural language processing task where the linguistic category of the task was

known or detectable given an arbitrary set of word embedding models. In the case of analogy

testing this means being able to detect whether a task is focused on grammar, syntax or a

subcategory thereof. For each method we took the top N models for different values of N and
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evaluated them using our analogy testing framework.

Ranking Score

For each category of analogy test we ranked our word embedding models by their accuracy

on that task and assigned each a score. The score for the top model for a category is the

number of models being evaluated. The second best word embedding model gets one point

less than that, and so on where the nth best model gets 1 point, assuming no ties. These

scores are then aggregated across all tasks. We take N word embedding models with the

highest ranking scores in order to build the ensemble model.

Sum of Categorical Scores

For each word embedding model we summed their overall performance in each different

category and ranked them by average categorical score. This allowed for the possibility of a

word embedding model to move up or down in the ranking because of a select few extremely

high or low scores, reflecting data that the ranking score does not include.

Maximum Information Selection

The previous two methods are at risk of picking several models that performed very similarly

on most tasks. For example if some word embedding model A received the highest accuracy

in 70% of test sets, and another word embedding model B received the second best score in

the exact same categories, then it is possible that the ensemble model would only consist of

A and B. This would not improve the total information leveraged for any task. In effect the

ensemble model would likely use the embeddings from A in every situation, not improving

overall accuracy at all on the remaining 30% of tasks. Additionally, if some model C exists
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where C achieves the highest score in one particular test set but the worst in all other test

sets it is highly unlikely that it will be included in the ensemble model when using either

of the previous two selection methods. This presents a problem because it is obvious that

model C has learned some amount of unique, and possibly very useful, information.

To mitigate these problems we introduce Maximum Information Selection. First we create

a set of word embedding models whose only element is the top ranked model from either

of the previous two methods. Then the remaining word embedding models are ranked by

the count of categories in which they achieve a higher score than any model in the set. If

this number is nonzero for any model, we take the highest ranked word embeddings by this

new methodology and add it to the set of ensemble models. If two models are tied then we

use whichever is ranked higher by the method used to select the first model. We repeat this

process until either there are no models that can possibly improve the ensemble model, or

the desired number of models in the ensemble model has been reached.

This selection process prioritizes increasing the total amount of information used by the

ensemble model. It attempts to ensure that any model included in the ensemble model will

be useful, and that the maximum amount of language information is represented in the final

ensemble model.

3.4.2 Categorical Model Selection

For analogy testing where the categories of each task are known, choosing a word embedding

model at run-time is straightforward. Our selection process gives us knowledge of which

categories each word embedding model has a higher or lower degree of competency in.

Therefore, the ensemble model picks which vectors to use based on the category of the task.
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This method allows us to determine the theoretical upper limit of the performance of an

ensemble model built with a specific model set. This upper limit is the measure against which

any truly dynamic model should be evaluated.

3.5 Analogy Testing

We broke down our test set into its two main categories, grammatical tests and syntactic

tests. Each of these two categories was then split further into more subcategories. Under

lexical tests there were the subcategories of family, currency, common country capitals, global

country capitals, city in state, nationality-adjective and opposites. For grammatical tests

we had the categories of comparatives, adjective-to-adverb, present-participle, superlative,

plurals, verb plurals and the past tense.

3.5.1 Scoring

For a given question, a model received a point for each question answered correctly and each

question is categorized as “answerable” if every word in the test is in the model’s vocabulary.

Scores are then found across the entire dataset and within each category and subcategory

by dividing questions correctly answered by the number of answerable questions. This is

therefore a measure of model precision, it is the fraction of all results which were both relevant

and correct. It is only possible for the model to return relevant answers as any word from

the vocabulary is a relevant answer.

We analyze the rankings of each subcategory as well as the overall variation between the

models. This helps to determine which problems are “easier” or “harder” for this kind of

model to answer, as well as providing information as to what types of distributional models
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excel at which particular tasks. We also made use of ranked scoring methods to normalize

the effect of certain models being exceptionally good within only one category.

3.6 Implementation

All Java code discussed in this section can be found in the EmoryNLP Github repository, see

footnotes for full implementation1.

3.6.1 Arbitrary and Dependency Contexts

In order to create our new models we expanded on the existing code in the EmoryNLP

project. The Word2Vec2 and Syntactic Word2Vec3 classes provided the basis for our work.

Among our changes the most important was the implementation of context selection based

on some input parameter. We replaced the original context selection routine with our more

generalized version (see Algorithm 1). Each individual context extraction method was created

with the use of the NLPNode object which maintains information regarding dependency and

semantic arcs.

We implemented the same changes in the Python implementation of Word2Vec found

in the Gensim package as well as adding functionality to utilize dependency and semantic

information. However, we found that this method was significantly slower than the Java

version. For this reason we used the EmoryNLP implementation for all of our experiments.

1www.github.com/emorynlp/text analysis
2github.com/emorynlp/text analysis/tree/master/src/main/java/edu/emory/mathcs

/nlp/vsm/Word2Vec.java
3github.com/emorynlp/text analysis/tree/master/src/main/java/edu/emory/mathcs

/nlp/vsm/SyntacticWord2Vec.java
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Algorithm 1 Context Selection Procedures

1: procedure Adjacent
2: for all word in corpus do
3: index← corpus.getIndex(word)
4: i← −WindowSize
5: while i ≤ index+WindowSize do
6: train(word, corpus.getWordAtIndex(i)
7: i← i + 1

8: context← wordNode.getContext(contextType)
9: for all contextWord in context do

10: train(word, contextWord)

1: procedure Arbitrary
2: for all word in corpus do
3: wordNode← NLPNode(word)
4: context← wordNode.getContext(contextType)
5: for all contextWord in context do
6: train(word, contextWord)

3.6.2 Analogy Testing Framework

A single analogy test is performed by extracting the relationship between two words a and a′

and then applying it to some word b. The word b is chosen such that there exists some word

b′ that shares the same relationship with b that a′ does with a.

See Algorithm 2 for details. The time complexity of an analogy test is approximately:

O(|~x| × V )

where ~x is an arbitrary vector and V is the size of the vocabulary. This means that for an

entire test set, the complexity of evaluating a single model is

O(|~x| × V × T )

where T is the number of tests.
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Generally we have |~x| on the order of 100, V of approximately 1,531,163 and a test set

composed of 19,544 tests. However, running a single test set is highly parallelizable. By

implementing a multithreaded approach we decreased the impact of T by a factor of 4845.

The score for an individual model is calculated as correct/total possible where total possible

is the number of tests where each word used is within the model’s vocabulary. The single-

threaded approach to analogy testing across an entire test set can be found in Algorithm

3.

4Using 48 cores with a single thread per core gave us a total testing time of under 20 minutes.
5github.com/emorynlp/text analysis/tree/master/src/main/java/edu/emory/mathcs

/nlp/vsm/evaluate/AnalogyTestMulti.java

Algorithm 2 Single Analogy Tests

1: procedure Analogy Test(a, b, c, gold, wordVectors)
2: d← subtractVectors(b,a)
3: d← addVectors(d,c)
4: bestMatch← null
5: maxSimilarity ←MIN VALUE
6: for all wordV ector in wordV ectors do
7: if max < cosineSim(d, wordV ector) then
8: max← cosineSim(d, wordV ector)
9: bestMatch← wordV ector

10: if d = gold then
11: return True
12: else
13: return False

1: procedure CosineSim(x,y)
2: dotProduct← 0
3: xFactor ← 0
4: yFactor ← 0
5: i← 0
6: while i < x.length do
7: dotProduct← dotProduct + x[i] ∗ y[i]
8: xFactor ← xFactor + x[i] ∗ x[i]
9: yFactor ← yFactor + y[i] ∗ y[i]

10: i← i + 1

11: return dotProduct/(sqRoot(xFactor) ∗ sqRoot(yFactor))
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Algorithm 3 Analogy Testing Framework

1: procedure All Analogy Tests(TestPairs,wordVectors)
2: score← 0
3: for all A, B, C, Gold in TestPairs do
4: testDidPass ← Analogy Test(A,B,C,Gold, wordV ectors)
5: if testDidPass then
6: score← score + 1

7: return score/TestPairs.length

3.6.3 Ensemble Models

For this research we implemented the ensemble model as a subclass of the analogy testing

framework in order to integrate the two modules as much as possible. Each word embedding

model is loaded along with its rank in each linguistic subcategory. During analogy testing

the category of each test is compared to the list of model ranks and selects the best possible

model. A dynamic ensemble implementation would replace the model selection process by a

classifier meant to determine which category the task is a member of6. In Algorithm 4 we

lay out the way in which we change our analogy testing framework to utilize an ensemble

model. The high-level changes to the algorithm are kept simple to maintain flexibility in

attempting different strategies for dynamic model selection. Our current model selection

model is essentially picking a string from a list and so was left out as trivial.

Algorithm 4 Ensemble Analogy Tests

1: procedure Ensemble Analogy Tests(TestPairs, embeddingModels)
2: score← 0
3: for all A, B, C, Gold in TestPairs do
4: wordV ectors← embeddingModels.selectModel(a, b)
5: testDidPass ← Analogy Test(A,B,C,Gold, wordV ectors)
6: if testDidPass then
7: score← score + 1

8: return score/TestPairs.length

6github.com/emorynlp/text analysis/tree/master/src/main/java/edu/emory/mathcs/
nlp/vsm/evaluate/EnsembleAnalogyTest.java



32

Chapter 4

Experiments

Before any other experiment we built a word embedding model using the EmoryNLP

implementation of Word2Vec. Our theory at this point was that there were some particular

tasks on which Word2Vec would perform better because of biases in its training. After this

we designed and built alternative models rooted in syntactic theory. We intended to show

that models built with different linguistic information have unique competencies on different

language tasks, eventually composing the trainings of different models together to maximize

the total useful information that could be learned at once. This would provide a way to build

higher quality embeddings while also demonstrating that meaning learned by a distributional

semantic model can be enhanced by optimizing the type of syntactic information extracted

in training.

4.1 EmoryNLP Word2Vec

Table 4.1: Word2Vec Iteration Scores

Iterations Grammatical Lexical Overall Score
1 0.2561 0.0552 0.2080
2 0.1923 0.0311 0.1535
3 0.2367 0.0541 0.1907
4 0.2561 0.0552 0.2080
5 0.6289 0.0047 0.2686
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We first analyzed Word2Vec’s training process. Table 4.1 shows that by the end of its 5th

training iteration Word2Vec extracts a huge amount of grammatical information from its

training corpus. Interestingly, it seems like improvement in linguistic competency comes at

the cost of losing most lexical information learned during this process.

Figure 4.1 shows the lexical competency of Word2Vec almost completely disappearing just

as the model’s performance in grammatical categories surges. It is notable that performance

across both categories generally trend together until the 5th iteration where they abruptly

diverge.

Figure 4.1: Word2Vec Lexical and Grammatical Performance Trends Over Training
Iterations

While the decrease of lexical competency seems like a substantial drawback to training

Word2Vec until the 5th iteration, the overall improvement driven by grammatical information

actually substantially increases the model’s overall quality.

Our goal at this point was to determine whether the traditional method of training

Word2Vec led to particular competencies or deficiencies in the model. The answer to this

was a resounding “yes”. Table 4.1 shows that Word2Vec performs very well on grammatical

tasks but poorly on lexical oens.

Table 4.2 breaks down the Lexical and Grammatical tests into their component analogy



34

Table 4.2: EmoryNLP Word2Vec Categorical Scores

Analogy Test Set Category Score
plural-verbs Grammatical 0.94023
plural Grammatical 0.74249
past-tense Grammatical 0.73269
superlative Grammatical 0.69430
present-participle Grammatical 0.65625
comparative Grammatical 0.58183
nationality-adjective Lexical 0.01313
family Lexical 0.00988
capital-common-countries Lexical 0.00791
capital-world Lexical 0.00442
opposite Lexical 0.00123
city-in-state Lexical 0.00081
currency Lexical 0.00000
adjective-to-adverb Grammatical 0.00000

test sets. While we had already shown that Word2Vec does not very effectively learn lexical

information, it is interesting to see that there is not a single exception to this rule. There is

so little lexical information extracted by this model that only a single non-grammatical test

set received over 1% precision across all of its tests.

The particular competencies of the EmoryNLP Word2Vec model are made clear by its

precision score on the adjective− to−adverb, the category it learned the least material about,

acheiving a 0% score. This is telling because adjective− to− adverb is the only grammatical

category in which Word2Vec could not correctly answer at least 50% of all questions. The

tests that comprise adjective− to− adverb, as shown in Table 2.1, concern themselves with

relations of the form Amazing is to Amazingly or Slow is to Slowly.

Extracting and applying the relationship between these words transforms the part-of-

speech of the target, a unique trait among all other grammatical tests. adjective− to−adverb

is the only grammatical test set that requires knowledge of derivational morphemes, every
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single other test set is based upon inflectional morphemes. This narrows the competency of

the Word2Vec model to a much more concrete subset of linguistic information, it excels at

learning information regarding inflectional morphemes.

4.2 Lexical Evaluation

The adjacency-window approach of Word2Vec is seemingly only capable of learning information

about inflectional morphemes and grammar. The case for this claim is bolstered by the

results of our basic and composite syntactic word embedding models.

Table 4.3: Lexical Tests

Model Score
dep2 0.2836
dep2h 0.2832
AllSiblings 0.2551
sib1dep1 0.2189
sib1dep2 0.1890
sib2dep1 0.1841
srl1 0.1731
dep1 0.1496
sib2 0.1486
sib1 0.0781
w2v 0.0047

Table 4.3 shows that every single alternative context extraction method we attempted was

at least an order of magnitude more effective than that used by Word2Vec in terms of lexical

information. It provides a high-level look at each model’s overall competence across a variety

of specific tasks. Based on this data, the dep2 approach of training on all of the dependents

of each word and on their dependents is the most generally useful word embedding model

for lexical tasks. It also seems that training on the head of a node, at least in this case, can

decrease the quality of distributional word representations. It should be noted that the top
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few models all performed very similarly, even though they were occasionally trained with

disjoint training methods. That is, the dep2 model and AllSiblings model seemed to have

extracted almost the same amount of language information from our corpus, even though

dep2 never trained any word on its sibling, and AllSiblings does not utilize a single word’s

dependents.

The information from Table 4.4 includes the competencies of each model across each

lexical task category. We can quickly ascertain from this data a few important facts. First,

no single context generation approach was uniquely more adept at extracting and learning

lexical information. Second, in every lexical category the most information was learned

by either a composite model or an extended version of a basic model. Perhaps even more

important is the fact that it was only the simplest composite models that were successful,

more complicated methods like sib1dep2 not only did worse than the sum of their predecessor

methods, but often even performed poorly compared to composite models that used a subset

of their training contexts. Specifically, sib1dep1 frequently was found to have built higher

quality word representations than either sib1dep2 or sib2dep1. This is particularly striking

in respect ot sib2dep considering that at most each context will only contain two additional

words, and that in generally adding additional siblings to the training context seemed to be

helpful in other models such as sib2. In the lexical categories of capital − world, opposite,

currency, capital− common− countries and nationality− adjective it is found that sib2 is

a significant improvement over sib1.

The decreased quality of the sib1dep2 and sib2dep1 models are a clear indication that more

training information does not always guarantee an improvement in word embedding quality.

In fact even adding context information that seems to generally work well in other composite
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Table 4.4: Lexical Score Breakdown

gender Score capital-world Score opposite Score
sib1dep1 0.2154 dep2 0.3722 AllSiblings 0.0591
AllSiblings 0.2134 dep2h 0.3689 sib1dep1 0.0530
sib1 0.1680 AllSiblings 0.3081 dep2h 0.0517
dep2 0.1423 sib1dep2 0.2314 dep1 0.0493
dep2h 0.1423 sib1dep1 0.2202 dep2 0.0480
sib2 0.1383 srl1 0.2053 srl1 0.0369
srl1 0.1304 sib2dep1 0.2016 sib2dep1 0.0345
sib2dep1 0.1087 dep1 0.1691 sib1dep2 0.0308
dep1 0.1087 sib2 0.1477 sib2 0.0296
sib1dep2 0.0731 sib1 0.0595 sib1 0.0197
w2v 0.0099 w2v 0.0044 w2v 0.0012

currency Score
capital-common
countries

Score

AllSiblings 0.0751 dep2h 0.5632
sib1dep1 0.0751 dep2 0.5257
sib2 0.0670 AllSiblings 0.5099
sib2dep1 0.0658 sib1dep2 0.4802
sib1dep2 0.0612 sib1dep1 0.4466
sib1 0.0485 srl1 0.4328
dep2 0.0381 dep1 0.3972
dep2h 0.0370 sib2dep1 0.3755
srl1 0.0162 sib2 0.3123
dep1 0.0104 sib1 0.1897
w2v 0.0000 w2v 0.0079

nationality
adjective

Score city-in-state Score

dep2 0.6648 dep2h 0.0170
dep2h 0.6579 dep2 0.0170
sib1dep1 0.6310 sib2dep1 0.0138
AllSiblings 0.6085 AllSiblings 0.0130
sib2dep1 0.5009 sib1dep1 0.0085
sib1dep2 0.4472 dep1 0.0069
sib2 0.4340 sib1 0.0061
srl1 0.4271 srl1 0.0049
dep1 0.3759 sib1dep2 0.0049
sib1 0.2239 sib2 0.0016
w2v 0.0131 w2v 0.0008
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models does not necessarily indicate that the language model will improve. These results

suggest that there may be a point after which training on additional dependency information

will not provide any benefit at all. However we recognize that it is certainly possible that we

simply did not train enough complicated models to discover which combinations of linguistic

features are complementary.

One reason these models may have done so poorly is that their constituent models could

have actually been learning at least some of the same information to start with. That is

to say, it is possible that some overlap existed in information between sib2 and dep1 such

that sib2dep1 would end up distorting distorting this information through over-training.

It’s certainly plausible that a sibling node and a dependent node could convey similar

information about a node they are both connected to. This could result in the composite

model unnecessarily over-training on certain (possibly useless) information and losing quality

in the process.

4.3 Grammatical Evaluation

As we saw previously, building contexts from a window of adjacent words in order to perform

a training task is an incredibly effective way to extract grammatical relationships between

words. The most striking aspect of this fact is that this competency seems exclusive to

adjacency-context training. Not a single syntactic context model achieved over 3% precision

on any task which involved inflectional morphemes while Word2Vec consistently displayed

precision of anywhere from 58% to 94%. The single grammar task in which syntactic models

learn more information than the Word2Vec model is adjective − to − adverb. Even the

adjective− to− adverb test set is an outlier in that it is the single relationship that concerns
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Table 4.5: Grammatical Score Breakdown

present-participle Score plural-verbs Score comparative Score
w2v 0.6563 w2v 0.9402 w2v 0.5818
srl1 0.0199 dep2 0.0012 AllSiblings 0.0120
sib1dep1 0.0189 sib1dep2 0.0012 sib1dep1 0.0075
dep2h 0.0152 dep1 0.0012 sib2dep1 0.0053
dep1 0.0114 sib1dep1 0.0012 dep2 0.0038
AllSiblings 0.0104 sib2dep1 0.0000 sib2 0.0030
dep2 0.0095 sib1 0.0000 dep2h 0.0030
sib1dep2 0.0038 srl1 0.0000 sib1dep2 0.0030
sib2dep1 0.0028 dep2h 0.0000 dep1 0.0015
sib2 0.0019 AllSiblings 0.0000 srl1 0.0008
sib1 0.0009 sib2 0.0000 sib1 0.0000

past-tense Score plural Score superlative Score
w2v 0.7327 w2v 0.7425 w2v 0.6943
srl1 0.0013 AllSiblings 0.0031 sib1dep1 0.0223
AllSiblings 0.0013 srl1 0.0023 AllSiblings 0.0187
sib1dep1 0.0013 dep2 0.0023 sib2dep1 0.0134
sib1 0.0006 sib1dep1 0.0023 dep2h 0.0080
dep1 0.0006 dep2h 0.0015 dep2 0.0071
sib2dep1 0.0000 dep1 0.0015 srl1 0.0045
dep2 0.0000 sib1dep2 0.0008 sib1dep2 0.0045
dep2h 0.0000 sib2 0.0008 dep1 0.0036
sib1dep2 0.0000 sib1 0.0000 sib2 0.0036
sib2 0.0000 sib2dep1 0.0000 sib1 0.0000

adjective-to-adverb Score
srl1 0.0524
sib1dep1 0.0494
dep1 0.0433
dep2h 0.0383
AllSiblings 0.0383
sib1 0.0333
dep2 0.0302
sib2dep1 0.0252
sib2 0.0242
sib1dep2 0.0151
w2v 0.0000
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derivations morphemes, decidedly the more lexical of the two categories.

4.3.1 Rank Scoring

Table 4.6: Rank Scores

Grammatical
Rank

Lexical
Rank

Total

sib1dep1 74 63 137
AllSiblings 69 67 136
dep2h 61 64 125
dep2 58 64 122
srl1 65 37 102
sib2dep1 54 45 99
dep1 59 35 94
sib1dep2 50 43 93
w2v 75 12 87
sib2 47 35 82
sib1 45 30 75

After gathering our initial results and ranking them by category we wanted to get a better

idea of which models were more generally useful across all categories. We took each model

and assigned it points for each category, where the model that ranked highest for a particular

category would get a number of points equal to the number of models we were examining,

the second highest ranked model would get one point less than that and so forth. Using

the analysis shown in Table 4.6 we determined that six of the syntactic models we built

performed better on a wider range of tasks than Word2Vec did, while four of our models

were generally less useful than Word2Vec. All siblings, sib1dep1, dep2, dep2h, srl1 and dep1

all received a higher ranked score than Word2Vec did. This analysis indicates that models

using the sib1dep1 and AllSiblings context
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4.4 Context Analysis

We found that while the previous Word2Vec training approach performs particularly well on

inflectional morphemes, every model that leveraged syntactic information to build training

contexts outperformed Word2Vec on every lexical task in our inventory. In order to start to

determine why these training methods capture such different information we first look at the

difference between the contexts of traditional Word2Vec and our new approach.

Table 4.7: Context Statistics

New
Information

Lexical
Score

Grammatical
Score

Language
Score

w2v 0.000 0.005 0.629 0.269
dep2h 0.742 0.283 0.008 0.168
dep2 0.702 0.284 0.007 0.167
allSiblings 0.559 0.255 0.011 0.152
sib1dep1 0.832 0.219 0.013 0.132
sib1dep2 0.751 0.189 0.004 0.111
sib2dep1 0.770 0.184 0.006 0.109
dep1 0.821 0.150 0.008 0.090
dep1 0.821 0.150 0.008 0.090
sib2 0.738 0.149 0.004 0.088
sib1 0.843 0.078 0.004 0.047

For simplicity we’ll focus on models that exploit dependency relationships. For each

context building approach we counted the total number of words that would be included in

that context over the course of a single training iteration. We then determined how many of

those words would not have been included if a adjacent context-window approach had been

used, assuming a window size of 5.

The reason we did this is that one might suspect that training on words that are not

present in Word2Vec’s context window would correlate with a word embedding gaining

competency in categories where Word2Vec is not able to build a high quality model. This
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would mean that the improvements we have created are a result of simply choosing words to

train on that are further than 5 positions away, not because of the use of linguistic information

to build contexts.

However, given the data in Table 4.7 we can see that this is not the case. In fact, it

almost seems as if more utilization of new information negatively correlates with lexical model

strength based on Figure 4.2. We certainly have too little data to make any formal claim

along these lines, but this does tell us that it is not an explicit trade-off, more information

outside of the context window does not necessarily increase competency in lexical tasks. The

model which used all dependency siblings as context actually only used roughly 56% different

information than Word2Vec but was one of the top performing models. This indicates that

building word embedding models for lexical tasks is mostly affected by improving the way

in which each word is selected, not by the context size itself or the position of the context

words within the sentence.

Figure 4.2: Lexical Competency vs. Percentage of Training Words Outside of Word2Vec
Context Window
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4.5 Ensemble Models

We built our ensemble models using the full set of our distributional representation models.

By ranking model performance and selecting ensemble members with three different methods

we aimed to dynamically detect the best possible way to answer any given analogy test.

Table 4.8: Ensemble Analogy Scores

Ensemble
Maximum
Model Size

Score

maxinfo 7 0.437218584
rank 11 0.437218584
rank 10 0.437218584
rank 9 0.437218584
maxinfo 6 0.437065084
sum 12 0.436927954
sum 10 0.436905614
sum 9 0.436905614
sum 11 0.436905614
maxinfo 5 0.436809251
sum 6 0.436752224
sum 8 0.436752224
sum 7 0.436752224
sum 5 0.436138664
maxinfo 4 0.435478919
sum 4 0.434809285
maxinfo 3 0.431283258
sum 3 0.430974537
maxinfo 2 0.268624642
maxinfo 1 0.268446081
sum 1 0.268432355
rank 5 0.175419683
rank 6 0.175419683
rank 7 0.175419683
rank 8 0.175419683
rank 4 0.175214333
rank 3 0.173879563
rank 2 0.155654808
rank 1 0.132398994

This method was to be used as an alternative to building composite models which were
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often inefficient in combining competencies from different training methods. We also sought

to establish a hypothetical maximum amount of information that could be extracted from

word embedding models with different competencies.

Three different ensemble models were tested, Sum of Categorical Scores, Rank Scores

and Maximum Information Selection. Each of these was made to select one distributional

word representation of the set we had created and then passed through our analogy tests. At

the completion of the analogy tests the ensemble would choose another model to add and

repeat the process. The algorithm with which each ensemble selects its word representations

greatly affects its overall performance and the speed at which each one reaches the theoretical

maximum that can be achieved with a finite and known set of word embeddings.

Every method of building sufficiently large ensemble models significantly outperformed any

individual model, as shown in Table 4.8. The most efficient model by far was the maximum

information selection model, which only used 7 different distributional representations to tie

for the maximum analogy test score. In comparison, choosing models by the sum of their

categorical scores required 9 models to achieve the same result, and selection by ranking

score could not reach this point using 11 different models, the maximum we used to test1.

Ranking score selection was the least efficient of all of these methods in other regards as well,

it required 9 models to achieve a score greater than or equal to EmoryNLP Word2Vec, a

threshold which took maximum information selection only 2 models to pass while sum of

categorical score selection did the same with 3 models.

It is interesting to note that the 9th model chosen by ranking score selection, the one with

which it first achieved a higher accuracy than Word2Vec, had enough unique information

1Had we allowed every ensemble to use every model there would have been no difference in performance.
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to cause the ensemble to achieve our theoretical maximum score along with several other

ensembles. This directly indicates the necessity of optimal model selection in creating an

ensemble model, occasionally all of the unique information is in only a few models.

4.5.1 Diminishing Information

A significant trend in the ensemble model results is that after the point at which an ensemble

model reaches a certain degree of accuracy it is very difficult to improve it any further. As

shown in Figure 4.3, once a model surpasses Word2Vec in terms of accuracy (about 26%)

it immediately jumps to approximately 43% and no amount of additional information will

improve it beyond an additional percentage point.

Figure 4.3: Precision by Total Models Included in Ensemble

This implies two realities: 1) much of the important information learned by these

distributional representations can be leveraged with a very small, but well constructed,

ensemble model and 2) it is unlikely that we can push the ensemble model any further without

creating additional models based upon new syntactic information. Based on our results,

in fact, it only takes an ensemble model with 2 different distributional representations to

achieve accuracy within a percentage point of the maximum that we have observed. Both
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sum of categorical score selection and maximum information selection achieve this, however

for every additional representation that maximum information selects it receives a much more

significant accuracy increase than sum of categorical scores receives. After a certain point,

even adding four more representation models to sum of categorical scores would not change

its performance at all. It is also worth noting that selecting models based on the sum of their

categorical accuracies is significantly better than ranked scoring for the first 8 models in this

specific circumstance. While this does not necessarily indicate a superior selection process, it

definitely indicates that each of these two methods suffers from choosing models that have

overlapping competencies.

For these reasons we believe it is clear that maximum information selection is the optimal

method to build an ensemble model. In this case composing an ensemble model with only

EmoryNLP Word2Vec and dep2h provides immense model synergy and captures almost all

of the information that our models have extracted.
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Chapter 5

Conclusion

In this paper we have explored the distributional hypothesis, but no distributional semantic

model currently in use trains each word on each other word it occurs with. This means

that, assuming the hypothesis to be correct, we are currently unable to build a distributional

language model that learns the total possible amount of meaning from language. However,

we can leverage the insight of the hypothesis to build competent but imperfect models.

The difference in linguistic competency between models leads us to believe not only that

the meaning of a word can be drawn from its statistical co-occurrences, but also that the

degree of meaning extracted from these occurrences is not uniform. That is to say that given

some word x there likely exist two words y and z, both of which x occurs with, where there

is more information to the meaning of x in its statistical relationship with y than with z.

Having shown that the simple inclusion of new information is not the root of the various

competencies of our dependency word embeddings, we feel confident in positing that building

training contexts based off of syntactic information allows the model to more efficiently

extract language information. Consider the very nature of dependency structure: each pair

of tokens connected by an arc has a specific relationship and are therefore related in some

way in the language. This is not necessarily the case with adjacent words. By traversing

these arcs in building training contexts we are, in a way, overcoming the brute-foce guesswork
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inherent in using a context window of adjacent terms and choosing to only perform training

tasks on pairs of words that have a syntactic relationship.

Our research shows that training using an adjacency context is an incredibly effective

method of extracting information about inflectional morphemes from a corpus. It seems

that statistical co-occurrence relationships between nearby words conveys a disproportionate

amount of information about the foundations of english grammar. Additionally, we find that

learning lexical information is very effectively done by leveraging a word’s relationship with

words below it on a dependency tree as well as the those with which it shares a head.

Practically, this means that there exist different methods of context building that more

are more effective at training words together to maximize the total information extracted

from their language. By leveraging our analysis framework we were able to identify key

competencies in basic word embeddings and construct composite models that captured

unique language information. We found that combining the training procedures of basic word

embedding models was effective in improving language model competency across specific

categories. We presented and implemented an approach that allows for categorical switching

of word embeddings depending on current task in order to maximize the total language

information used in a specific task. Our best ensemble approach using maximum information

selection improves over the original EmoryNLP Word2Vec by 16.9 percentage points, while

also achieving the top result for every single analogy category. Our most effective composite

model, dep2, shows improvement over EmoryNLP Word2Vec of approximately 27.9 percentage

points in lexical categories.
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5.1 Future Work

Possible future work on this task includes vector space analysis, model training with additional

linguistic information, extending the ensemble model framework to automatically detect

which distributional semantic representation to use on a given task and a more in-depth

linguistic investigation of the competencies of these models.

5.1.1 Additional Models

We have shown that leveraging different linguistic information in the training of distributional

models can improve the quality of embeddings in discrete syntactic categories. We built a

large model set leveraging dependency and semantic role information in a novel way, while

also extending our implementation to ensure that any new training methods would be easy

to implement. There remains a massive wealth of linguistic information that can be utilized

in training distributional models, much of which may improve language models in ways not

yet conceived.

5.1.2 Ensemble Models

We have provided the framework with which to benchmark any ensemble model that performs

categorical model switching by extracting syntactic task information. The next step is to devise

methods to classify tasks on the fly in order to maximize the relevant model competencies

applied to every task. The best case scenario would be developing a reliable method to

compose training methods in a way that extracts all of the information learned by single

word embedding models, but as we have shown this approach becomes highly unpredictable

as more information is leveraged and more contexts are combined. The difficulty of this task
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makes the usefulness of ensemble models obvious.

5.1.3 Vector Space Analysis

To better understand how to advance distributional semantics we should analyze to a much

greater extent the high-dimensional vector spaces of the different models we are building.

A stronger grasp of the relationships between different vectors may render some idea as to

why certain tasks are failing or why specific training methods provide differing linguistic

competencies.

Distance Distortion

It is possible that in local spaces, containing generally similar word vectors, structures will

be more similar than in distant spaces. To some degree this appeals to intuition, it doesn’t

make sense that a cluster of animal -related vectors would share perfect high-dimensional

organizational similarities with a cluster of programming language-related vectors. However,

analogy tests and other NLP systems rely on these relationships to be regular and predictable

throughout the vector space. Analyzing whether distance between analogy pairs correlates

with the probability of successfully completing that particular analogy test would immensely

further our understanding of word embedding competency and create a path forward to

improve distributional semantic models by manipulating the vector space.

Intra-Cluster Distance Variance

Similar to the idea of relationships between vector pairs distorting over distance, it is also

plausible that different semantic clusters might maintain the same local structure but at a

different scale. While the vectors within some cluster A might relate to each other in the
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same way as the vectors within some other cluster B, the magnitude of their vector offsets

may be scaled by some multiplicative factor. This would cause the relationships between

words in local structures to remain predictable and extensible, but only within similarly

structured spaces. An answer to this question could be sufficiently generated by analyzing the

variance of vector offsets between analogy pairs that belong to the same syntactic category.

If this hypothesis were found to be accurate it would allow for the improvement of word

embedding models by normalizing intra-cluster vector offsets, thereby universally improving

the usefulness of distributional word representations.
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Appendix A

Glossary

Table A.1: Model Abbreviations

Abbreviation Description Model Type
w2v EmoryNLP Word2Vec word embedding
dep1 Only dependents word embedding
sib1 Nearest right and left sibling word embedding
sib2 Nearest two right and left siblings word embedding
srl1 Semantic Role Head word embedding

allsibs
All nodes that share the current node’s
head

composite embedding

dep2 Dependents and their dependents composite embedding

dep2h
Head node, dependents and their
dependents

composite embedding

sib1dep1
Dependants and nearest right and left
sibling

composite embedding

sib1dep2
Dependents, their dependents and nearest
right and left sibling

composite embedding

sib2dep1
Dependents and nearest two right and left
siblings

composite embedding

maxinfo
Next model selected has most categorical
scores higher than any currently in
ensemble

ensemble

ranked
Next model selected has the current
highest rank score

ensemble

sum
Next model selected has the current
highest sum score across analogy tasks

ensemble
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Appendix B

Syntactic Context Comparisons

Figure B.1: Dep1 Model Context Example

Figure B.2: Srl1 Model Context Example
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Figure B.3: Dep2 Model Context Example

Figure B.4: Dep2h Model Context Example
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Figure B.5: All Siblings Model Context Example

Figure B.6: Sib1 Model Context Example
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Figure B.7: Sib2 Model Context Example

Figure B.8: Sib1Dep1 Model Context Example
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Figure B.9: Sib1Dep2 Model Context Example

Figure B.10: Sib1Dep2 Model Context Example
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