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Abstract 
Epiphany2: A Novel CNN-Transformer Method for Predicting 3D Chromatin Structure from 

Epigenetic Data 
By Alex Belov 

Understanding the three-dimensional (3D) organization of chromatin and its regulation by the 
epigenome is critical for unraveling the complexities of gene expression, cellular differentiation, 
and disease mechanisms. While current models leveraging 1D epigenomic data to predict 3D 
chromatin structure have shown promise, many suffer from key weaknesses, including a limited 
ability to capture cell-type-specific interactions and a lack of global contextual understanding of 
chromatin dynamics. This thesis presents a novel model architecture with state-of-the-art 
performance in predicting Hi-C contact maps. Our model is the first to use transformer layers to 
capture long-range dependencies for this task. 
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Chapter 1 

Introduction 
 

The three-dimensional (3D) organization of chromatin within the nucleus plays a crucial role in 

regulating gene expression, replication timing, and cellular differentiation. Understanding how 

this 3D structure is influenced by epigenetic modifications, such as histone marks, is critical for 

deciphering the mechanisms that drive cellular function and phenotypic diversity. These 

epigenetic marks, which include modifications like methylation and acetylation, dictate how 

tightly or loosely DNA is packaged, affecting its accessibility to transcription machinery. As a 

result, different cell types, despite sharing the same DNA sequence, exhibit different 3D 

chromatin structures that contribute to their unique gene expression profiles. 

 

Hi-C assays have emerged as one of the most powerful tools for studying the 3D folding of 

chromatin. These assays capture interactions between genomic regions and produce contact 

maps, which provide insights into how the genome is organized within the nucleus. However, the 

experimental generation of high-resolution Hi-C data is both time-consuming and costly. 

Additionally, interpreting this data requires sophisticated computational models due to the 

complexity of chromatin folding patterns. 

 

Given the complexity and volume of chromatin interaction data, deep learning has become an 

essential tool for predicting 3D chromatin structure from more easily accessible 1D epigenomic 



data. By leveraging information such as histone modifications, transcription factor binding, and 

chromatin accessibility data, machine learning models can generate predictions of chromatin 

contact maps, allowing for the exploration of chromatin organization without the need for 

expensive Hi-C experiments. 

 

The primary motivation for predicting 3D chromatin structure from epigenomic data is: 

1. To answer fundamental questions about how epigenetic modifications lead to 3D 

structural changes in chromatin. These predictions enable the study of chromatin 

remodeling processes that underlie gene regulation and cell differentiation. 

2. To provide a proxy for studying enhancer-promoter interactions, which are essential 

long-range regulatory interactions that play a critical role in gene expression. 

3. To generate synthetic Hi-C data for downstream analysis, making it possible to perform 

genomic studies in cases where high-resolution Hi-C data is not available due to cost or 

practical constraints. 

 

Here, we aim to use transformers' success to find long-range dependencies in sequence data; our 

inputs are long sequences of epigenetic marks. In this thesis, we present Epiphany-2, a deep 

learning model that predicts 3D chromatin structure (Hi-C) from epigenetic marks. Our model is 

the first to use transformer layers to capture long-range dependencies between the epigenome 

and Hi-C. Epiphany-2 builds on Epiphany [5], a convolutional neural network (CNN) for the 

same task. Finally, we demonstrate that using transformer layers drastically improves our model's 



ability to pick up chromatin loops and accurately predict topologically associated domains 

(TADs), presenting state-of-the-art performance.  



Chapter 2 

2.1 Background 

Epigenomics is the study of the epigenetic changes in a cell that affect gene expression without 

altering the DNA sequence. These changes primarily involve chemical modifications of DNA or 

histone proteins around which DNA is wrapped. Histone marks are one of the most significant 

forms of epigenetic regulation. These chemical modifications—such as methylation and 

acetylation—on histones influence how tightly or loosely DNA is packaged in the chromatin. 

 

Histone modifications vary between cell types, which leads to different regions of DNA being 

more accessible or restricted. This differential accessibility plays a key role in controlling gene 

expression, allowing different cells to take on specialized roles (i.e., different cell phenotypes) 

despite having the same underlying DNA sequence. For example, in muscle cells, certain genes 

that are required for muscle function are made more accessible, while the same genes may be 

tightly packed and inaccessible in neurons. 

 

One way to analyze chromatin structure is through Hi-C, a genome-wide chromosome 

conformation capture assay that allows researchers to measure the 3D organization of chromatin. 

Hi-C produces a contact matrix that reflects how often two genomic loci interact in 3D space. 

The folding of chromatin influences which genes are active and which are silent, with tightly 



packed regions (heterochromatin) typically being less transcriptionally active than loosely 

packed regions (euchromatin). 

 

Through these 3D interactions, topologically associating domains (TADs) emerge, which are 

clusters of regions in the genome that interact more frequently with one another than with 

regions outside the TAD. Understanding how epigenetic marks impact the folding and structure 

of chromatin at this level is crucial for understanding gene regulation, development, and disease 

processes.  



2.2 Motivation 

A nuanced understanding of chromatin remodeling through epigenomic marks requires the 

analysis of vast datasets that are often too complex to interpret with heuristics or simple models. 

While we understand that epigenomic marks influence chromatin structure, we lack the tools to 

precisely predict or explain which marks lead to specific 3D structural changes. Machine 

learning provides a powerful tool to analyze these data and help identify which epigenomic 

features are most related to structural changes. With models trained on epigenomic data, we can 

conduct virtual perturbation studies—where we manipulate the influence of specific epigenomic 

marks and predict their impact on chromatin structure. Understanding 3D chromatin structure 

can serve as a proxy to predict long-range interactions, such as enhancer-promoter interactions. 

These interactions play a critical role in gene regulation, allowing regulatory elements far from 

the promoter to influence transcriptional activity. High-resolution Hi-C data is often expensive 

and impractical to collect for every sample. With machine learning models, we can generate 

synthetic Hi-C data based on epigenomic input, which can be used for downstream analyses such 

as identifying TAD boundaries, predicting interactions, and understanding regulatory changes.



2.3 Challenges 

There are several key challenges in fully understanding how epigenetic modifications influence 

the 3D structure of chromatin. One major challenge is the complexity of the chromatin folding 

process, which is influenced by a combination of DNA sequence, epigenetic marks, and 

regulatory protein interactions. The sheer volume of potential combinations makes it difficult to 

generalize findings across different cell types and conditions.  

 

For example, current models often use either DNA sequence or epigenomic data to predict 3D 

structure, but there is a growing need for cell-type-specific models that can incorporate multiple 

layers of information. Moreover, generating synthetic Hi-C data remains a challenge, as models 

must balance the accuracy of prediction with the biological realism of the synthetic data 

produced. Finally, another ongoing difficulty is transferring models across species or cell types 

without introducing biases or losing accuracy. 

 

Summary of Challenges: 

1. Complexity of epigenetic regulation and chromatin folding: Understanding how 

different histone marks and chromatin-associated proteins collectively impact 3D 

chromatin structure is a non-trivial problem that involves complex interactions. 



2. Need for cell-type-specific models: Many models lack the capacity to fully integrate 

cell-type-specific information from both epigenomic marks and chromatin structure, 

limiting their generalizability. 

3. Synthetic Hi-C generation challenges: Balancing the accuracy and realism of synthetic 

Hi-C data while ensuring it is usable for downstream biological applications is a key area 

of improvement for current models. 

 



Chapter 3: Existing Works 

There has been substantial work to model chromatin contact maps using epigenetic marks, DNA 

sequences, and other input features. These models have three significant differences: model 

architectures, prediction aggregation techniques, and input features. Because the genome is large, 

predicting the entire chromatin contact map is computationally infeasible. Instead, 

state-of-the-art methods predict sections of the Hi-C matrix and aggregate their predictions to 

output a final prediction. The three most successful prediction techniques we observed were 

predicting V-stripes, vertical (one-pixel-wide zigzags) stripes, and individual pixels of the Hi-C 

map. 

 

 



3.1 Epigenome → Hi-C 

Chromafold [3], a model that uses bulk epigenetic signal data and single-cell ATAC-seq data, is 

the state-of-the-art model to predict Hi-C data. The reason for Chromafold's superior success, in 

terms of correlation of its predicted Hi-C map across distance away from the genome and 

insulation score, is difficult to pinpoint; its use of single-cell ATAC-seq data provides a unique 

variety of training examples which allow for greater model generalizability. However, its 

implementation of a V-stripe prediction is a strong choice compared to the vertical-stripe 

prediction of Epiphany. For a visual depiction of the V-stripe prediction method, see Figure #1b. 

Predicting a V-stripe from the genome represents using one epigenomic bin to predict the contact 

map values of each of its neighbors. However, predicting a vertical stripe (Figure #1c)  poses a 

less biologically meaningful task. In the Hi-C matrix, each pixel h pixels above a genomic bin 

represents the contact value of the genomic positions h cells to the left and h cells to the right, 

which does not relate to the center genomic position, shown in Figure #1a. Therefore, 

vertical-stripe predictions predict contact values that are not necessarily representative of the 

epigenomic data given as their input. Epiphany uses a vertical stripe prediction method, but to 

improve biological relevance, in hopes of capturing more epigenetic signal correlated with 3D 

chromatin structure, we use the V-stripe prediction method in Epiphany2. 

However, one major limitation of the V-stripe prediction is the idea of "one-sided predictions." 

By this, we mean that each pixel uses the epigenetic data from just one bin, instead of the two 

they represent. However, it is important to note that each pixel will be covered twice in our 

sliding window, once by the left arm and once by the right arm of the V-shape. However, each 

pixel value prediction only has local information from one bin. The solution used by 



ChromaFold [3] is to represent a wide enough epigenetic window to cover all of the potential 

range of genomic positions represented in the V-shape. However, one problem with this solution 

is that it adds largely redundant input data between model runs. 

Additionally, each pixel is predicted by two V-stripes, and these two "one-sided" predictions are 

simply averaged together. Zhang et al. [6], a predecessor to ChomaFold and Epiphany, takes in 

just the two epigenomic profiles bins and directly predicts the pixel representing the genomic 

interaction without including the signal from other bins (Figure #1d). Another important concept 

to consider is the variability in the exact locations of chromatin loops and topologically 

associated domains. Although this method likely decreases signal noise, it also risks omitting 

relevant signals outside its window. To represent the maximum window size for which we expect 

a meaningful epigenetic signal, we use a window size of 2.4 Mb. We expect ~1Mb to be the 

farthest distance for epigenomic interactions to our center point and include this distance to the 

left and right of our center with a 0.2 Mb buffer zone on each side. 

Epiphany uses an adversarial loss term to create more realistic-looking, less blurry Hi-C maps, 

but this method has worsened the model's accuracy. To compare biologically meaningful results, 

all iterations of Epiphany (and Epiphany2) are trained without an adversarial loss term; however, 

we recognize this worsens Epiphany2's interpretability.  

 

 



   

(a) Demonstration of what 
each pixel in the Hi-C 
contact map represents 

(b) V-Stripe Prediction (c) Vertical Stripe Prediction 

 

  

 (d) Single Pixel Prediction (e) Square Stride Prediction 

Figure 1: Illustrations of different prediction methods in Hi-C contact maps. 

 



3.2 Similar Biological Tasks 

Although we aim to understand only epigenetic inputs, DNA sequence is a well-studied input to 

predict chromatin contact maps. For a summary of existing methods, see Table #1. Because they 

use fundamentally different input data, the results of these sequence models, like DeepC [4] and 

Akita [2], are not directly comparable to those discussed above. However, we can learn from 

their model architecture and prediction aggregation methods. We identified several models that 

either use epigenetics and DNA sequence or just DNA sequence. Sliding window CNNs to 

predict the Hi-C contact map is standard for well-performing models. However, more nuanced 

implementation of transformers and attention mechanisms have been adopted in these tasks. 

C.Origami is a state-of-the-art model to predict Hi-C from both epigenetic marks and DNA 

sequence and uses CNN encoders, a self-attention transformer layer, and then a CNN decoder to 

leverage the strengths of both the CNN and the transformer [4]. However, C.Origami struggles to 

generalize to new cell types as it often focuses too heavily on its DNA input, which is identical 

across cell types of the same organism; we hypothesize that epigenetic information is sufficient 

to predict 3D chromatin structure and leads to more generalizable predictions. Surprisingly, 

transformers have not been widely adopted in predicting from just epigenetic data; we believe 

transformers' ability to achieve a nuanced understanding of global dependencies is a powerful 

tool that has been underutilized in the task we are interested in. 

 



 

Article Name Inputs Architecture Prediction Method 

Epiphany [5] Epigenome CNN + Bi-LSTSM Vertical Stripe 

ChromaFold [3] Epigenome CNN V-stripe 

In silico prediction… [6] Epigenome Random Forest Single Pixel 

C.Origami [4] Epigenome + 
DNA 

CNN + Transformer Square Stride 

DeepC [4] DNA CNN Vertical Stripe 

Akita [2] DNA CNN Square Stride 

Table 1: Overview of Hi-C Contact Map Prediction Methods 

 



Chapter 4: Technical Designs 

 

Figure 2: Outline of the Epiphany-2 Architecture to Predict Epigenomic 

Features with 3D Chromatin Structure (Hi-C Assay) 

Epigenomic signal tracks are first presented to the model in a sliding window fashion, with a 

window size of 2.4 Mb and a step size of 10 kb. The generator first uses convolution modules to 

extract features from the processed input data, followed by a transformer block to capture the 

long-range dependencies between bins. After a fully connected layer, the predicted contact map 

is generated. An MSE loss between the predicted map and the ground truth is calculated to train 

the generator to predict correct structures. A visual depiction of our model is in Figure 1. We 

used a V-stripe prediction scheme to match Chromafold and other state-of-the-art models 



because this prediction scheme is more consistent with the biological meaning of the HiC map 

values. 

 

Our model employs a hybrid architecture combining convolutional layers, a transformer encoder, 

and attention pooling, culminating in a classification head. The input data is first processed 

through a 1D average pooling layer that reduces the resolution by pooling over a kernel size 

proportional to the input dimensions. This operation is followed by a sequence of 1D 

convolutional layers designed to extract hierarchical features. Each convolutional layer uses a 

progressively increasing dilation rate to capture multi-scale contextual information. The output 

of these layers undergoes batch normalization and ReLU activation, with intermediate 

max-pooling steps to downsample the feature maps. 

 

Figure 3: Illustration of the Sliding Window Prediction Scheme 



The first window of input data (light green horizontal line, 2.4 Mb) is used to predict a vector on 

the Hi-C contact map that is diagonal (v-shape) to the center line (light green vector, covers 1 

Mb from the diagonal to the left and right). Note that an extra .2 Mb of input is added to either 

side of each input window (a total length of 2.4 Mb instead of 2 Mb) to give the model additional 

context. 

Next, the feature maps are concatenated with the pooled outputs along the channel dimension, 

forming a unified representation. This representation is projected into a 512-dimensional space 

using a linear transformation preceded by layer normalization. The resulting tensor is reshaped 

and fed into a transformer encoder. The transformer encoder consists of six layers of 

self-attention modules, each configured with eight attention heads and a feedforward network 

with 2048 hidden units. This architecture enables the model to capture long-range dependencies 

in the data. 

 

After passing through the transformer, the features are aggregated using a multi-head attention 

pooling mechanism. This step selectively focuses on the most relevant features by applying 

learned attention weights. Finally, the aggregated features are processed through a fully 

connected classification head consisting of two linear layers. The first layer expands the feature 

space to 1024 dimensions, applies a ReLU activation, and then reduces the dimensionality to the 

desired output size of 200. The model integrates convolutional feature extraction, long-range 

contextualization through transformers, and attention-based feature aggregation to produce 

robust predictions 

 



Chapter 5: Experimental Settings 

5.1 Preprocessing 

The epigenetic marks used in this study, including DNase I, CTCF, H3K4me3, H3K27ac, and 

H3K27me3, were sourced from the ENCODE data portal [7] for the hg38 genome assembly. 

DNase I is an assay similar to ATAC-seq that measures the openness of chromatin, which is 

essential for the binding of transcription factors and other regulatory proteins. CTCF is a zinc 

finger protein that is a regulator of chromatin looping, bringing together distant genomic 

elements for joint regulation. The other epigenomic marks, H3K4me3, H3K27ac, and 

H3K27me3, are common histone modifications that are known to regulate gene expression, 

however, their contextual meaning is difficult to study without computational methods. Our data 

was initially downloaded in BAM format, and replicate files were merged using the pysam 

Python module. The merged BAM files were then converted to BigWig format using the 

bamCoverage tool in deepTools, with a bin size of 10 bp and normalization by Reads Per 

Genomic Content (RPGC). The genome-wide coverage was segmented into 100-bp bins to 

prepare the data for model input, and bin-level signals for the five epigenomic tracks were 

extracted. All data used in this thesis can be found in Table #2. 

 

 

 



Cell type Dnase I CTCF H3K27ac H3K27me3 H3K4me3 Hi-C 

GM12878 - human B 
lymphocytes 

ENCSR000
EMT 

ENCSR0
00DRZ  

ENCSR000D
RY 

ENCSR000
DRX 

ENCSR000
AKC 

4DNFI1UE
G1HD 

H1-hESC - human 
embryonic stem cell 

ENCSR000
EMU 

ENCSR0
00AMF 

ENCSR000A
NP 

ENCSR216
OGD 

ENCSR019
SQX 

4DNFIQYQ
WPF5 

K562 - human chronic 
myeloid leukemia 

ENCSR000
EOT 

ENCSR0
00DWE 

ENCSR000A
KP 

ENCSR000
AKQ 

ENCSR000
DWD 

4DNFITUO
MFUQ 

Table 2: Data Availability for Epigenomic Tracks and HiC Maps Used in 

Experiments 

 

The Hi-C data, obtained from the 4DN data portal, were provided in the .hic format. The data 

was binned at resolutions of 10 kb for downstream analyses. To normalize our Hi-C, Z-scores 

were calculated with the HiC-DC+ package [8], which employs a negative binomial regression 

model to estimate expected interaction counts. This regression model adjusts for genomic 

distance, GC content, mappability, and effective bin sizes, enabling the computation of 

normalized ratios. These preprocessing steps ensured the Hi-C data was prepared at high 

resolution and corrected for confounding factors, making it suitable for integration with the 

epigenetic marks during model training. 

 

 

https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000DRZ/
https://www.encodeproject.org/experiments/ENCSR000DRZ/
https://www.encodeproject.org/experiments/ENCSR000DRY/
https://www.encodeproject.org/experiments/ENCSR000DRY/
https://www.encodeproject.org/experiments/ENCSR000DRX/
https://www.encodeproject.org/experiments/ENCSR000DRX/
https://www.encodeproject.org/experiments/ENCSR000AKC/
https://www.encodeproject.org/experiments/ENCSR000AKC/
https://data.4dnucleome.org/files-processed/4DNFI1UEG1HD/
https://data.4dnucleome.org/files-processed/4DNFI1UEG1HD/
https://www.encodeproject.org/experiments/ENCSR000EMU/
https://www.encodeproject.org/experiments/ENCSR000EMU/
https://www.encodeproject.org/experiments/ENCSR000AMF/
https://www.encodeproject.org/experiments/ENCSR000AMF/
https://www.encodeproject.org/experiments/ENCSR000ANP/
https://www.encodeproject.org/experiments/ENCSR000ANP/
https://www.encodeproject.org/experiments/ENCSR216OGD/
https://www.encodeproject.org/experiments/ENCSR216OGD/
https://www.encodeproject.org/experiments/ENCSR019SQX/
https://www.encodeproject.org/experiments/ENCSR019SQX/
https://data.4dnucleome.org/files-processed/4DNFIQYQWPF5/
https://data.4dnucleome.org/files-processed/4DNFIQYQWPF5/
https://www.encodeproject.org/experiments/ENCSR000EOT/
https://www.encodeproject.org/experiments/ENCSR000EOT/
https://www.encodeproject.org/experiments/ENCSR000DWE/
https://www.encodeproject.org/experiments/ENCSR000DWE/
https://www.encodeproject.org/experiments/ENCSR000AKP/
https://www.encodeproject.org/experiments/ENCSR000AKP/
https://www.encodeproject.org/experiments/ENCSR000AKQ/
https://www.encodeproject.org/experiments/ENCSR000AKQ/
https://www.encodeproject.org/experiments/ENCSR000DWD/
https://www.encodeproject.org/experiments/ENCSR000DWD/
https://data.4dnucleome.org/files-processed/4DNFITUOMFUQ/
https://data.4dnucleome.org/files-processed/4DNFITUOMFUQ/


Chapter 6: Experiments & Results 

Each model was trained on chromosomes 1-22 while excluding chromosomes 3, 11, and 17 for 

testing; this train-test split is consistent with several other works using the hg38 genome 

assembly. Each training example was an epigenomic window-V-stripe pair, randomizing the 

order of training examples with stochastic gradient descent. Our hyperparameters chosen for all 

model versions were an initial learning rate of , a learning rate decay factor of 0.5 1 × 10−4

applied every 16 epochs, a minimum learning rate of , batch size of 1, and max epochs 1 × 10−6

of 55. All models took approximately 50 hours to train on an NVIDIA RTX A6000. We used 12 

convolutional layers and six transformer layers in our experiments.  

To test our method's generalizability within cell types, we trained Epiphany2 on each cell type’s 

training chromosome and evaluated it on its test chromosomes. We ran this experiment for 

GM12878, H1-hESC, and K562 separately and visualized their results in Table #3. 

To test the generalizability of our method across cell types, we trained Epiphany2 on the 

GM12878 and H1-hESC cell types and evaluated this model on the K562 cell line. Unless stated 

otherwise, all head-to-head comparisons of models in this study are trained on the same data and 

from random parameters for a fair comparison with the same training time (55 epochs). 

We visualized the outputs for our test chromosomes, including the first 4 kb of GM12878 

chromosome 3 in Figure 4. There, we see several chromatin loops (small highly-associated 

regions) that can only be identified by our new model Epiphany-2 and were missed by Epiphany; 

this pattern was consistent across our test chromosomes. In Table 3, we report the correlations 

between the insulation scores of the predicted Hi-C map and the ground-truth Hi-C. Our 



insulation score was calculated at a distance of 1Mb or 100 10Kb Hi-C bins, representing our 

entire HiC matrix. However, future experiments should consider analyzing all distances to 

determine differential performance for different distances away from the genome. We ran three 

intra-cell-type experiments, with models trained on one cell type and evaluated on that cell type’s 

test chromosomes.  

For all tests, we say Epiphany-2 outperforms Epiphany. However, there was not a significant 

difference between the intra-cell-type experiments for H1-hESC Chr11; perhaps this K562 

(blood cancer) chromosome is difficult to predict or highly stochastic in its 3D organization, so 

both methods had only moderate performance in the intra-cell-type setting. We saw an average 

insulation score correlation increase of 0.34 in the GM12878 cell line, 0.14 in the H1-hESC line, 

and 0.16 in the K562 line. 

We also ran an inter-cell-type experiment, training on the GM12878 and H1-hESC cell types and 

generalizing to the K562 cell type test set. This model generalized very well to this new cell type 

with an average insulation score correlation of 0.66, demonstrating our method can identify 

cell-type-specific and conserved epigenomic rules that regulate the 3D chromatin structure, even 

in cancerous cells. Using data from a similar cell type without cancer, GM12878 as the healthy 

lymphoblast line and K562 as the cancerous lymphoblast line seems to improve performance in 

unseen chromosomes, with an increase of 0.12 insulation score correlation points on average. 

 

 

 



Trained On  Chr3 Chr11 Chr17 
 GM12878 

GM12878 Epiphany 0.43 0.28 0.41 

GM12878 Epiphany-2 0.78 0.53 0.84 

 Δ +0.35 +0.25 +0.43 

 H1-hESC 

H1-hESC Epiphany 0.63 0.42 0.68 

H1-hESC Epiphany-2 0.77 0.59 0.80 

 Δ +0.14 +0.17 +0.12 

 K562 

K562 Epiphany 0.24 0.49 0.40 

K562 Epiphany-2  0.56 0.50 0.56 

 Δ +0.32 +0.01 +0.14 
 

H1-hESC+GM1278 Epiphany-2 0.71 0.57 0.70 

 Δ +0.15 +0.07 +0.14 

Table 3: Insulation Score Correlations for Epiphany 1 and 2 on our Cell Lines. 

 

Figure 4: Example Output of Initial 4 kb of GM12878 Chromosome 3 

 



Chapter  7: Conclusion 

In this thesis, we introduced Epiphany2, a novel deep learning model that integrates 

convolutional neural networks with transformer layers to predict 3D chromatin structure from 1D 

epigenomic data. By incorporating a V-stripe prediction scheme alongside a transformer-based 

architecture, we address key limitations of prior models, such as Epiphany, which relied on 

biologically less relevant vertical stripe predictions and outdated mechanisms for modeling 

long-range dependencies. 

Epiphany2 demonstrates state-of-the-art performance in predicting Hi-C contact maps, 

significantly improving the resolution of topologically associated domains (TADs) and 

chromatin loops. Our experiments show an increase in insulation score correlation between 

predicted and ground-truth Hi-C maps across multiple chromosomes and cell types. Our model 

generalizes well not only to unseen chromosomes within the same cell type but also across 

different cell types, including cancerous lines such as K562. This suggests Epiphany2 captures a 

robust, conserved understanding of the epigenomic rules governing 3D chromatin architecture 

across cell types. 

This work positions transformer layers as a powerful and underutilized tool in 

epigenome-to-structure modeling. Their ability to capture global context enables our model to 

infer complex structural features that were previously difficult to predict with local architectures 

alone. The shift from vertical stripe to V-stripe prediction also enhances biological accuracy, 

ensuring that predictions more faithfully reflect the local epigenetic context of genomic 

interactions. 



 

Ultimately, Epiphany2 brings us closer to a functional, computational proxy for experimental 

Hi-C assays. Its capacity to predict TAD boundaries and chromatin loops using only epigenomic 

input opens the door for cost-effective and scalable 3D genome inference—an essential step for 

understanding genome regulation, development, and disease.  



Chapter  8: Limitations & Future Work 

Several meaningful experiments fell out of the scope of this thesis. Primarily, we would like to 

investigate the performance of Epiphany2 at varying distances away from the genome; here, we 

evaluated the insulation scores (triangular sliding window average) out to 1Mb or our entire HiC 

contact map. However, evaluating the insulation score at closer distances may reveal a limited 

ability to capture certain short-range interactions and loops. We would also like to investigate 

which of our major contributions, transformer layers and the V-stripe prediction method, was 

more significant in improving our performance. We believe the transformer architecture was the 

major factor in Epiphany2’s success, but further ablation studies should be performed. Moreover, 

biological ablation studies of zeroing out certain regions associated with chromatin loops may 

help us confirm our model has learned biologically accurate signals. Lastly, running experiments 

with different input tracks would reveal clues into what information is relevant to the 3D 

structure of chromatin. Finding a minimal subset of tracks that provide relatively high-quality 3D 

structures would help identify which marks are correlated with chromatin structure, and this line 

of experiments may find redundant or synergistic information between tracks. 

Our current method is a sliding window across the genome with a relatively small window size. 

Each pixel is predicted twice, once by the left arm of the V and once by the right, and these 

predictions are averaged together. Inspired by the study of graph link prediction, implementing a 

graph-based method for aggregating Hi-C predictions will allow future models to overcome the 

major challenges with current methods, including "one-sided predictions," and improve its 

ability to capture long-range context [1]. Thinking about the epigenome as a graph where local 

epigenetic structure (nodes) are linked by edges (embedding distance on the 1D genome) leads to 



adaptable and biologically meaningful predictions because 1) each prediction attends to its local 

context to infer local chromatin structure, and 2) message-passing algorithms can be used to 

learn complex long-range epigenetic relationships. For future studies, we recommend continued 

experimentation with our architectural choices and implementing a graph-based method for 

aggregating Hi-C pixel predictions, using our architecture as the encoder for each genomic 

position.  
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