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Abstract

Minimal Models of Flocking
By Charles R. Packard

Living systems provide an abundance of fascinating examples of non-equilibrium col-
lective motion, from microscopic vortices of swimming bacteria to macroscopic mur-
murations in flocks of starlings. Understanding the mechanics of how simple interac-
tions between biological agents can give rise to rich, complex patterns of behavior is
one of the central concerns of the field of active matter. A cornerstone of this field
is the collection of flocking models which, although initially formulated to study the
behavior of flocks of birds, have had their application extended to a diverse range of
biological and synthetic systems across many orders of magnitude in length scale. My
contributions to this sub-field that I present in this dissertation include: (1) resolving
contradictory observations within the literature about the fundamental nature of the
flocking transition, (2) discovering a flocking model which neatly connects disparate
avenues of research on the effect of time-delayed interactions and non-reciprocal field
theory, and (3) revealing a new regime of low-Reynolds-number systems that flocking
models can be applied to. I conclude by discussing my preliminary work on systems
of cooperatively interacting follower and leader cancer cells, and introduce computa-
tional pipeline for inferring models of their interactions. A series of theoretical and
experimental studies that one can do build upon this preliminary work are outlined.
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Chapter 1

Introduction

The collective motion of living systems, from the synchronized flight of starling flocks

(Fig. 1.1a) to the coordinated migration of bacterial colonies (Fig. 1.1b), present

striking examples of how large-scale order can emerge from simple local interactions.

Despite the vast differences in scale and biological complexity, these systems share

fundamental physical principles: organisms consume internally stored energy to main-

tain motility and align their motion with that of their neighbors (either by choice or

by passive forces, such as steric interactions in the case of bacteria). This combination

of behaviors is observed across a diverse range of systems – from microscopic scales in

microtubules [107], cells [113], and spermatozoa [96], to macroscopic systems of worms

[106] and sheep [46] – and raises a central question: can we construct minimal models

that capture the essence of collective behavior without the full complexity of biolog-

ical details? If so, what features are indispensable for emergent order, and which

are incidental? To address these questions, physicists have developed agent-based

models that distill flocking dynamics into basic alignment rules while coarse-graining

system-specific details. When combined with field theories, these models provide a

powerful framework for understanding non-equilibrium phenomena and universality

classes in active matter systems1. This chapter introduces the foundational models of

1Active matter systems are those in which the constituent agents are self-propelled.
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Figure 1.1: Macroscopic and microscopic flocks. (a) Flock of starlings (image
taken by Grahame Hopwood and borrowed from linestrust.org). (b) Swarming Paeni-
bacillus dendritiformis bacteria [8].

flocking, presents empirical evidence for universal behavior across living systems, and

explores how coarse-grained theories bridge the gap between microscopic interactions

and macroscopic collective motion.

1.1 The Surprising Usefulness of Simplistic Mod-

els of Complex Systems

When modeling complex systems composed of many interacting particles, there is

always a trade-off between capturing the intricate details of a particular system and

identifying the broader behavior of an entire class of systems. A well-known example

of this trade-off comes from statistical physics, where different models of magnetism

provide varying levels of detail and generality. At one extreme, density functional

theory resolves the quantum-mechanical interactions of electrons, allowing for highly

precise, material-specific predictions of magnetic properties [129]. However, this pre-

cision comes at a computational cost that makes it impractical for studying large-scale

https://www.lincstrust.org.uk/starling-murmurations


3

statistical behavior. At the opposite end of the modeling spectrum, the Ising model

abstracts away microscopic complexity, representing atomic-scale interactions as ef-

fective binary spins (σi = ±1) that interact via a simple energy function. Despite its

simplicity, the Ising model successfully predicts universal properties of phase tran-

sitions, such as the emergence of ferromagnetism and the scaling of magnetization

fluctuations near criticality [60].

A similar philosophy underlies models of fluid phase transitions. The van der

Waals model for example, a mean-field description of gases composed of particles

with finite volume and weak attractive forces, captures key macroscopic behaviors

of liquid-gas coexistence, such as critical compressibility, while ignoring the atomic-

level intricacies of intermolecular forces. The power of such simplified models lies

in their ability to isolate the essential ingredients necessary to produce emergent

behaviors. By focusing on general properties – such as dimensionality and symmetries

– they provide deep insights into systems that would otherwise be computationally

intractable or analytically unsolvable in full microscopic detail.

This same approach has proven invaluable in the study of active matter, i.e. sys-

tems composed of self-propelled agents such as birds, bacteria, or cells. The precise

interactions governing these biological agents are highly complex, involving biochem-

ical signaling, mechanical forces, and environmental feedback. Yet, by reducing indi-

viduals to simple, point-like agents that follow basic alignment rules, minimal models

of flocking successfully capture the onset of collective motion across vastly different

biological contexts [113, 107, 22, 106, 130]. Rather than attempting to model every

microscopic detail, these coarse-grained descriptions highlight universal behaviors,

providing not only a tractable framework for theoretical analysis but also a means to

draw connections between seemingly disparate systems. In the following section, we

introduce one such minimal model for studying flocking behavior, which serves as a

foundational tool in understanding non-equilibrium phase transitions and exemplifies
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Figure 1.2: Snapshots of Vicsek model flocks. Representative snapshots of a
flocking state in the Vicsek model and a state close to criticality are shown in (a) and
(b) respectively. Figures taken from Ref. [55].

how simple rules at the microscopic scale can give rise to rich macroscopic phenomena

in active matter systems.

1.2 Minimal Agent-Based Models of Flocking

The earliest work on modeling complex bird flocks as simple interacting particles did

not originate from physics but rather from computer graphics. Reynolds’ pioneering

work introduced a computational model in which each ‘boid” – a particle-like repre-

sentation of a bird – follows a minimal set of behavioral rules: (1) avoid collisions,

(2) match the velocity of neighbors, and (3) remain near the group [95]. Despite

its simplicity, this model produced visually striking collective motion, mimicking the

large-scale coordination observed in real flocks. However, visual similarity alone does

not confirm that a model accurately captures the physical principles governing real-

world flocking. A key scientific question is whether a flock composed of thousands of

interacting boids’ exhibits the same statistical and dynamical properties as biological

flocks.
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This question has been probed in the Vicsek model, a simplified but powerful theo-

retical framework for understanding collective motion in biological systems [127]. The

Vicsek model refines Reynolds’ approach by removing specific behavioral heuristics

and instead describing agents as self-propelled particles governed by simple alignment

interactions. In this model, all agents move under their own propulsion at a constant

speed v0, such that their positions evolve in time according to

ri(t+ 1) = ri(t) + v0n̂i(t) , (1.1)

where the unit vector n̂i represents the instantaneous orientation of the ith particle.

Note that time is discretized and that v0 sets the only time-scale in the microscopic

dynamics. Choosing length-scales such that each agent has a length of ℓ = 1, then

ℓ/v0 sets the time-scale at which a particle will travel one full body length. Unlike

in biological systems, where locomotion may involve flapping wings, swimming in a

fluid, or crawling on a substrate, these details are intentionally coarse-grained away

in Eq. 1.1. Instead, the essential ingredient is that each agent consumes energy to

maintain self-propulsion, keeping the system in a non-equilibrium state.

The orientations of agents evolve by aligning with their local neighbors, subject

to noise, such that

n̂i(t+ 1) = N̂ ◦ [⟨n̂j(t)⟩ + ηi(t)] (1.2)

where N̂ is an operator that normalizes its argument to a unit vector, and ηi is a

random Gaussian white noise term that introduces stochastic fluctuations. When

noise is small relative to alignment interactions, the system undergoes a spontaneous

symmetry-breaking transition: agents develop a global flocking direction’ in which

collective motion emerges (Fig. 1.2).

One of the most striking consequences of this transition is the emergence of anoma-

lous density fluctuations in the ordered phase. In equilibrium fluids, density fluctua-
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tions are well understood and are typically quantified using the density field which is

defined in terms of delta functions by

ρ(r, t) =
N∑
i=1

δ [r− ri(t)] . (1.3)

To characterize spatial correlations in these fluctuations, one computes the static

structure factor,

S(q) ∝
〈
|δρ̃(q)|2

〉
, (1.4)

where the tilde denotes the Fourier transform with wave vector q, and δρ(r, t) =

ρ(r, t) − ρ0 represents density fluctuations relative to the global average density ρ0.

Note that the delta function has the inverse units of its arguments, and so ρ has

the familiar dimensions of ℓ−d, where ℓ is length and d is the number of spatial

dimensions. The static structure factor is a dimensionless quantity though, and the

proportionality factors are omitted in Eq. 1.4. In equilibrium systems, the structure

factor is directly related to the isothermal compressibility (κ),

κ =
S (|q| → 0)

ρ0kBT
. (1.5)

A system with a large S(0) is easily compressible, whereas a small S(0) indicates

that density fluctuations are strongly suppressed [93]. In ideal gases, where particles

move independently, one finds S(0) = 1. In equilibrium fluids, the pair correlation

function,

g(r) = ⟨ρ(r′)ρ(r + r′)⟩/ρ20 (1.6)

decays exponentially, ensuring that the long-wavelength limit of the static structure

factor,

S (|q| → 0) = 1 + ρ0

∫
ddr [g(r) − 1] (1.7)
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Figure 1.3: Number fluctuation measurements in 2D and 3D flocking sys-
tems. (a) An example of how number fluctuations, δN , are measured from a con-
figuration of particles using (red) sub-volume bins that contain an increasingly large
expected number of particles, ⟨N⟩ (figure taken from Ref. [43]). (b) Number fluctu-
ation scaling data for Vicsek model simulations in 2D and 3D [21], active colloidal
particles [57], wild type Bacillus subtilis colonies in 2D [138], Escherichia coli colonies
in 3D [68]. Inset shows scaling data for each system with fits to Eq. 1.9, while the
main panel shows a scaling collapse with normalization by the fitting parameter A.
Dashed black line in the main panel denotes a fit to the power-law ⟨N⟩0.8.

remains finite. A remarkable feature of flocking systems, however, is that the structure

factor diverges in the long-wavelength limit as S(q) ∝ |q|−γ with γ > 0, which, in an

equilibrium setting, would be equivalent to an infinitely compressible system in the

thermodynamic limit L→ ∞.

These anomalous density fluctuations, known as giant number fluctuations, can

be quantified by relating the static structure factor to the variance of particle number

fluctuations,

S (|q| → 0) ≈ ⟨δN2⟩
⟨N⟩

, (1.8)

where ⟨N⟩ is the expected number of particles in a sub-volume ℓd, and ⟨δN2⟩ is

the variance in particle count. In equilibrium systems, number fluctuations scale as√
⟨δN2⟩ ∝ ⟨N⟩0.5, whereas in flocking systems,

√
⟨δN2⟩ ∝ ⟨N⟩α (1.9)
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Figure 1.4: Cluster size distributions in 2D flocking systems. (a) Schematic
example of four clusters of sizes 1, 2, 7, and 8 in the active Voronoi model (Figure
taken from Ref. [54]). (b) The probability distribution of finding a cluster with n
agents for the Vicsek model [21], active Voronoi model [54], active colloidal particles
[59], wild type Bacillus subtilis colonies [138], colonies of Serratia marcescens [25]
(all in 2D). Inset shows distribution data for each system with fits to the function
p(n) ∝ An−ζ , and the main panel shows the scaling collapse.

where α > 0.5. Giant number fluctuations have been observed in suspensions of active

colloids2 [57], protein filaments [100], bacterial colonies [138, 87, 68, 10], and confluent

cell monolayers [39, 42, 137], all exhibiting similar scaling behavior (Fig. 1.3).

The emergence of giant number fluctuations in diverse active matter systems un-

derscores the existence of universal statistical properties that transcend the micro-

scopic details of individual agents. However, while structure factor scaling provides a

rigorous mathematical signature of flocking universality, a more intuitive manifesta-

tion of this principle can be seen in the spatial organization of agents within a flock.

In particular, the way individuals aggregate into clusters – self-organized groups of

aligned agents – exhibits strikingly similar patterns across vastly different systems

(Fig. 1.4). Whether in bacterial colonies, synthetic colloidal flocks, or simulated Vic-

2Active colloids are synthetic microscopic particles that exhibit self-propelled motion by exploit-
ing physical or chemical asymmetries. Quincke rollers, for example, are dielectric with a charge
imbalance between their Northern and Southern hemispheres; in the presence of an external electric
field, these particles exhibit spontaneous rotational motion, leading to translational rolling motion
along a surface (see Fig. 2.3f) [14].
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sek models, collective motion often does not arise as a uniform state but rather as a

dynamic network of coalescing and fragmenting clusters. This suggests that the same

underlying physical mechanisms responsible for anomalous density fluctuations also

govern the formation and distribution of flocking clusters, providing another robust

indicator of universality in active matter systems.

1.3 Minimal Field Theory Models of Flocking

The Vicsek model provides a method for numerically studying flocking dynamics, cap-

turing the essential features of collective motion in active matter systems. However,

a complete theoretical understanding requires an analytical framework that describes

the emergent macroscopic behavior from a coarse-grained perspective. The univer-

sality class that encompasses the Vicsek model, along with related models [140], is

described by Toner-Tu theory [118]. Unlike agent-based models that track individ-

ual particles, this theory is formulated in terms of continuum fields, specifically the

density field (Eq. 1.3) and the velocity field, defined by3

v(r, t) =
1

ρ(r, t)

N∑
i=1

v0ni(t)δ [r− ri(t)] . (1.10)

The key insight by Toner and Tu was recognizing that the velocity field serves a dual

role: it acts both as a hydrodynamic variable describing large-scale motion and as an

order parameter that characterizes the onset of collective behavior. This is analogous

to magnetization in the Ising model, which describes the transition from disorder to

order in ferromagnetic systems. To make this analogy explicit, one defines an ‘order

parameter field’,

ϕ(r, t) =
|v(r, t)|
v0

, (1.11)

3The definition of the velocity field in Eq. 1.10 is only valid in the thermodynamic limit, N → ∞,
at which point it becomes a smooth continuous function over space.
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which quantifies the degree of local orientational order in the system. This allows the

application of statistical field theory methods, particularly a Landau-Ginzburg free

energy functional, to describe the emergence and stability of flocking states. This

free energy functional provides a variational framework for studying non-equilibrium

steady-states and their fluctuations by associating a cost to deviations of the order

parameter from its steady-state value.

The core principle of Landau-Ginzburg theory is that, near a critical point, the

large-scale behavior of a system is independent of microscopic details and instead

governed by a small number of key properties: dimensionality and symmetries. For

example, when the total number of agents in a flock is conserved, the density field

evolution must obey the continuity equation:

∂tρ+ ∇ · (ρv) = 0 . (1.12)

This principle also allows one to construct an effective free energy functional for

the system (Eq.1.13) based solely on symmetry arguments. For instance, the Vic-

sek model’s orientational dynamics (Eq.1.2) are rotationally invariant—meaning that

globally rotating all agent orientations leaves the system unchanged. As a result,

only terms respecting this symmetry appear in the free energy. One then obtains the

Landau-Ginzburg free energy functional4.

F [ϕ(r, t),∇ϕ(r, t)] =

∫
Rd

ddr

[
α

2
ϕ2 +

β

4
ϕ4 +

D

2
(∇ϕ)2

]
. (1.13)

Here In principle, higher-order terms such as ϕ6 and ∇4ϕ2 could be included, but they

primarily affect mesoscopic behavior rather than large-scale macroscopic dynamics

[47].

While Landau-Ginzburg theory effectively captures equilibrium phase transitions,

4Note that the symbol α is repeated in Eq. 1.13, but unrelated to the exponent in Eq. 1.9.
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flocking is inherently an out-of-equilibrium phenomenon. The proper dynamical de-

scription is given by Toner-Tu hydrodynamics, which governs the evolution of the

velocity field:

∂tv + λ(v · ∇)v = −δF
δv

− σ∇ρ . (1.14)

This equation is structurally similar to the Navier-Stokes equation of fluid dynamics5,

with key modifications that account for the self-propelled nature of flocking particles.

In a conventional fluid, the advection term has a prefactor of λ = 1, ensuring Galilean

invariance (i.e., physics remains unchanged under a moving reference frame). How-

ever, in active matter systems, where particles maintain a fixed self-propulsion speed,

Galilean invariance is broken, allowing λ to be an arbitrary parameter. This broken

symmetry also allows for additional non-equilibrium advection terms – e.g., (∇ · v)v

and ∇|v|2 – to be present in Eq. 1.14, but we omit them and other permitted higher-

order terms for the sake of conciseness here. The term σ∇ρ represents an effective

pressure that depends on density fluctuations, with σ denoting the compressibility of

the system.

Together, Eqs. 1.13-1.12 define the Toner-Tu hydrodynamic equations, a widely

studied framework that applies to a broad range of active matter systems, from bird

flocks and bacterial swarms to synthetic colloidal rollers. While the specific values of

the phenomenological parameters {α, β,D, λ, σ} depend on microscopic details – such

as whether the agents are swimming bacteria or airborne starlings – the structure of

the equations is expected to be universal and its flocking dynamics are governed by

fundamental principles rather than system-specific interactions.

One of the greatest successes of Toner-Tu theory is its prediction of giant number

fluctuations (Eq.1.9), a hallmark of flocking systems that has been observed in ex-

periments across biological and synthetic active matter systems (Fig.1.3b). Beyond

5Note that upon taking the functional derivative in Eq. 1.14 that one obtains a viscous-like term
D∇2v.
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Figure 1.5: Velocity fluctuations in a starling flock. Instantaneous state of
individual birds within a starling flock of 1246 birds occupying a space with linear size
L = 36.5m (a) The velocity vectors are shown and indicate that the flock is strongly
ordered. (b) The individual velocity fluctuations, away from the global orientation
in (a), are shown. Two large domains of strongly correlated birds are clearly visible.
(Figure taken from Ref. [19]).
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Figure 1.6: Anisotropic sound speed in a flock. Measured values of sound
speeds (circles) at different orientations relative to the spontaneously selected flocking
direction of a system are fit to the functional form of c±(θ) predicted by Toner-Tu
theory (solid lines).. (a) Sound speeds from a Vicsek model simulation are plotted in
a Cartesian coordinate system (Figure taken from Ref. [122]) (b) Sound speeds from
an active colloid experiment are plotted in a polar coordinate system (Figure taken
from Ref. [41]). I note that the functional form being fit in both (a) and (b) is the
same, and its shape simply changes depending on the effective values of the transport
coefficients in the Toner-Tu descriptions of the flocks.
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this prediction of the spatial structure of density fluctuations, Toner-Tu theory also

describes how these density fluctuations should relax and propagate over time. Unlike

in passive simple fluids where density fluctuations relax via Fickian diffusion, fluc-

tuations in active fluids are advected and propagate throughout the system. In the

ordered phase, where rotational symmetry is spontaneously broken and a flock has

selected a collective motion direction, this propagation becomes anisotropic. That

is, fluctuations in the velocity and density fields travel at different speeds depend-

ing on their orientation relative to the flocking direction. Transverse fluctuations –

those perpendicular to the flock’s motion – correspond to Nambu-Goldstone modes,

which are massless and long-lived. The fact that these modes are not damped and

can propagate over arbitrarily long distances means that they remain correlated over

large length scales (Fig. 1.5). In contrast, longitudinal fluctuations – those along the

direction of motion – are quickly damped. Toner-Tu theory makes highly specific

predictions about how exactly the speed of propagation changes as one looks at all

orientations between the purely longitudinal and transverse directions [118]. These

predictions have been proven correct in both Vicsek model simulations Fig.1.6a. as

well as experiments on colloidal flocks Fig.1.6b.

As discussed in this section, further demonstrating the robustness of Toner-Tu theory

in describing real-world flocking phenomena.

1.4 Coarse-Graining Agent-Based Models Into Field

Theories

In Section 1.2 I discussed the key features of flocking systems that the Vicsek model

seeks to incorporate. Then in Section 1.3 I reviewed how one can simply write down

a field theoretic description of the Vicsek model based purely on its dimensional-

ity and symmetries. There are more rigorous methods for directly coarse-graining
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microscopic interactions into effective interactions between fields though. Rigorous

Boltzmann-style calculations, for example, have provided great insight into how the

phenomenological parameters in Eqs. 1.13-1.14 depend on microscopic parameters,

such as self-propulsion speed [9]. The coarse-graining methods can be tedious, but

useful in capturing subtle symmetry breaking that is present in some agent-based

models and that is not accounted for in standard Toner-Tu hydrodynamics. In this

section, I briefly walk through original work I’ve done on a lattice based approach

to coarse-graining the Vicsek model, and an implicit non-reciprocity buried within

it, into a modified Toner-Tu theory. This detour highlights the challenge of thinking

about even the simplest models of flocking, and how we can overcome those challenges

to build on our theoretical understanding of complex systems far from equilibrium.

In its original formulation, the Vicsek model (Eqs. 1.1-1.2) has particles interact by

each particle adopting the average orientation of its neighbors. This interaction is

written explicitly as:

⟨vj(t)⟩j∈Ni(t) ≡
1

|Ni(t)|
∑

j∈Ni(t)

vj(t) , (1.15)

where |Ni(t)| denotes the cardinality (size) of the set of neighbors Ni(t) of particle i

at time t. Many variants of the Vicsek model with different alignment interactions

have been proposed over the years, all of which yield the same transition to collective

motion and differ only in their precise phase boundaries [140]. Among them the

self-propelled XY model is popular for its connection to the traditional XY model of

ferromagnetism and its amenability to analytical study [107, 75, 22, 106, 130]. Its
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equations of motion are

ṙi(t) = v0e[θi(t)] (1.16)

θ̇i(t) =
−∂θiH
|Ni(t)|

+ ηζi(t) , (1.17)

where H is the ferromagnetic Hamiltonian

H =
∑
⟨ij⟩

cos(θj − θi) . (1.18)

The convention of having alignment interactions normalized by the number of inter-

acting neighbors is present in this model, just as in Eq. 1.15, because dense aggrega-

tions of particles can otherwise lead to erroneous simulation behavior [26]. Overlooked

in the literature though is the fact that this normalization introduces non-reciprocity

into the interactions between particles.

In ordinary physical systems, particles respect Newton’s third law (action-reaction

symmetry) and exert equal and opposite forces on one another, fij = −fji. In Eq. 1.17

though, the torques have the relation

fij + fji = −∂θiH
(

1

|Ni|
− 1

|Nj|

)
. (1.19)

That is, there is a non-reciprocity associated with the interaction that is proportional

to the inverse difference in how many neighbors each particle has. In the appendix,

I show that the coarse-grained description of models with such non-reciprocity must

include a “neighbor-number field”

Ni(r, t) =
N∑
i=1

|Ni(t)| δ [r− ri(t)] . (1.20)
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The lowest order correction to Toner-Tu hydrodynamics (Eq. 1.14) that accounts for

the effect of this additional field is given by

∂tv + λ(v · ∇)v = −δF̃
δv

− σ∇ρ− g2

(
∇ 1

N
· ∇
)
v , (1.21)

where f̃ is the modified free energy functional

F̃ [ϕ(r, t),∇ϕ(r, t)] =

∫
Rd

ddr

[
α

2
ϕ2 +

β

4
ϕ4 +

D

2
(∇ϕ)2 − g1

(
∇2 1

N

)
ϕ2

]
. (1.22)

Here g1,2 are phenomenological coupling parameters. The g2 term is particularly in-

teresting because, unlike the g1 term, it cannot be expressed as the gradient of a free

energy. This is a consequence of the non-reciprocal, many-body microscopic dynam-

ics (Eq. 1.19) which themselves cannot be derived from the gradient of a Hamiltonian.

Given the prominence of both the Vicsek model and Toner-Tu theory in the soft

matter and non-equilibrium physics literature, one might wonder why no one has dis-

covered the discrepancy between the standard flocking and neighbor-number modified

flocking in previous numerical studies? As I shown in the appendix, this is because

in the face of external noise-induced fluctuations, Eqs. 1.21-1.22 renormalize to the

standard Toner-Tu hydrodynamics, but with modified transport coefficients that are

functions of g1,2:

∂tv + λ̃(v · ∇)v = −δF
δv

− σ̃∇ρ , (1.23)

F [ϕ(r, t),∇ϕ(r, t)] =

∫
Rd

ddr

[
α̃

2
ϕ2 +

β̃

4
ϕ4 +

D̃

2
(∇ϕ)2

]
. (1.24)

Although large-scale flocking hydrodynamics are ultimately unperturbed by this par-

ticular case of neighbor-number non-reciprocity, similar asymmetries can indeed lead

to entirely new collective behaviors [38]. This example emphasizes though the chal-

lenge in active matter physics of understanding how subtle, implicit features of micro-
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scopic agent-based models can coarse-grain into anomalous effective field interactions.

1.5 High-Complexity, Deep-Learning Models of Flock-

ing

In this introduction, I have reviewed the theoretical basis for highly simplistic micro-

scopic and macroscopic flocking models, as well as the coarse-graining techniques that

connect the two. I have also presented experimental evidence that these frameworks

actually capture structural (Figs. 1.3 and 1.4) and dynamical (Fig. 1.6) features of

real flocks. These models are still unphysical though and cannot predict the true

trajectory of a large collection of biological agents.

It remains an open question what types of systems, if any at all, it is even possible

to write down equations of motion that faithfully reproduce the motion of living

agents. A branch of study utilizing deep-learning techniques has emerged in active

matter physics though to answer this question. Significant progress has been made

with approaches that write down the set of all hydrodynamic interactions that are

permitted by symmetry and learn the fit these models to coarse-grained fields while

encouraging sparse representations [110, 48]. Other machine learning methods exist

though that discover representations for the functional form of particle interactions

– rather than field interactions – without any presupposition of a model [29].

Most of these techniques have only been truly applied to synthetic data of active

particles though. Some recent studies have attempted to tackle the full complexity of

biological systems [120, 67], but the focus has been primarily on uncovering statistical

correlations in heterogeneous cell behavior rather rather than true inference of the

mechanical cell-cell forces exerted on one another.
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1.6 Structure of Dissertation

Toner-Tu theory provides a powerful framework for describing the phenomenon of

flocking and successfully captures aspects of large-scale behavior in many active mat-

ter systems. However, real biological and synthetic flocks often exhibit complexities

beyond the scope of this minimal model and, as discussed in Section 1.4, it is not

always obvious how these complexities affect the stability of flocking phases. While

many systems conform to Toner-Tu predictions, others deviate in ways that suggest

the existence of distinct universality classes. The challenge is not only to determine

where the boundaries of the Toner-Tu universality class lie but also to understand

what new macroscopic behaviors emerge when key assumptions – such as the rules

creating interaction networks, instantaneity of interactions, or locality of interactions

– are violated. Extending the classical flocking framework to account for these com-

plexities requires addressing three fundamental questions: How do different interac-

tion network structures affect macroscopic behavior? What are the consequences of

time-delayed interactions for collective motion? And how does introducing long-range

interactions mediated by an surrounding medium influence the stability of flocking

states? Each of these questions remains an active area of research, and in this disser-

tation I explore how we can begin to make progress on each one.

One major unresolved issue involves the nature of how agents choose the set of

neighbors they interact with. In classical physics, all particles interact with one

another via long-ranged electromagnetic or gravitational forces that decrease with

separation distance according to |ri−rj|−2. When dealing with highly coarse-grained

interactions in active matter physics though, the details of which particles interact

with which, and how those interactions vary with separation distance, depend on the

system in question. For example, in swarms of bacteria, alignment arises through

the simple mechanism of steric collisions between the elongated bodies of bacterial

[34], and thus models of bacteria have distance-dependent interactions with neighbors
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within a single body length [51]. In contrast, birds might align with their k-nearest

neighbors regardless of distance [19, 23], and sheep align with their Voronoi neigh-

bors when migrating [46]. These differences raise the question of whether alignment

based on metric interactions (where an intrinsic length scale determines interaction

range) leads to fundamentally different macroscopic behavior than topological inter-

actions (where alignment is based on neighbor count, independent of distance) [44].

Theoretical studies suggest that both classes should belong to the same universality

class [28, 88], but numerical evidence remains inconclusive [44, 71]. In Chapter 2,

this dissertation presents my publication in Ref. [81] new numerical evidence at pre-

viously inaccessible length and time scales to provide final conclusive evidence that

both metric and topological flocks exhibit the same macroscopic phase behavior at

the order-disorder phase transition.

A second fundamental challenge in active matter physics is the absence of in-

stantaneous, reciprocal interactions in many real biological systems. Toner-Tu the-

ory assumes that interactions are reciprocal—meaning if one agent exerts a force

on another, the second simultaneously exerts an equal and opposite force in return.

However, in real systems, this symmetry is frequently broken. Birds and sheep, for

example, interact only with agents within their forward field of vision, introducing

a fore-aft asymmetry [24]. In active colloidal suspensions, self-propelled particles

interact non-reciprocally because they extract energy from the medium in order to

generate momentum [98]. Recent studies suggest that such non-reciprocal interac-

tions can lead to novel phases of matter that are fundamentally distinct from those

described by equilibrium or near-equilibrium theories [38]. In Chapter 3, this dis-

sertation investigates how breaking action-reaction symmetry through time-delayed

interactions alters flocking behavior and whether it gives rise to entirely new collective

phases.

A third challenge concerns the role of the surrounding medium in active matter
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systems, an aspect overlooked in the original Toner-Tu framework, which was devel-

oped primarily for airborne bird flocks. In macroscopic systems with high Reynolds

numbers6, hydrodynamic interactions are often negligible. However, at microscopic

scales—where swimmers such as bacteria and sperm cells operate at low Reynolds

numbers—the momentum imparted to the surrounding fluid introduces long-range

hydrodynamic interactions that can destabilize conventional flocking states [2]. In

such cases, Toner-Tu theory must be extended to incorporate fluid-mediated interac-

tions and the conservation of momentum in the surrounding medium. Understanding

how fluid coupling modifies flocking behavior is an open problem that this dissertation

addresses through theoretical modeling and comparisons with experimental observa-

tions. In Chapter 4, this dissertation presents my publication in Ref. [82] examines

flocking behavior in low Reynolds number environments and shows that, despite the

strong coupling of the solvent to the swimming agents, there are parameter regimes

where Toner-Tu theory is still predictive of the macroscopic behavior.

Finally, in Chapter 5 I present preliminary work which – rather than modeling

biological systems with simplistic toy models – applies deep learning techniques to

model collective cell migration. I explore how one might use a data-driven machine

learning approach to both discover symbolic representations of cell-cell interactions,

rather than assuming a functional form a priori.

6Reynolds number, the ratio of inertial to viscous forces, is a dimensionless quantity characterizing
the flow pattern of a fluid.
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Chapter 2

Banded Phases In Topological

Flocks

In Chapter 1.3, I discussed how a phenomenological theory of flocking can be derived

by focusing on the symmetries and conservation laws governing the system. However,

when considering systems composed of complex biological agents, additional micro-

scopic details can become significant. One such detail that has garnered considerable

attention is the mechanism by which agents select their interacting neighbors.

The simplest interaction mechanism is the ‘metric’ alignment rule, where agents

align with others within a fixed distance [21]. This approach is well-suited to systems

like bacterial or microtubule suspensions, where steric collisions between elongated

bodies create effective alignment interactions on a characteristic length scale defined

by the size of the agent (Fig. 2.1a). In contrast, more complex systems may rely

on ‘topological’ alignment rules, where agents interact with neighbors independent

of their distance. For instance, starlings [18] and pigeons [23] have been observed

to align with their seven nearest neighbors, adhering to a k-nearest neighbor rule.

Similarly, in confluent monolayers of cells (Fig. 2.1b), interactions are determined by

direct physical contacts, described by the Voronoi neighbor rule [12]1.

1A Voronoi tessellation is a partitioning of space into regions based on distance to a specified set
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Figure 2.1: Metric versus topological interactions. (a) A time-lapse of two
microtubules colliding and aligning their orientations (figure taken from Ref. [107]).
An image of cells in an epithelial monolayer, where the cell nuclei are green and the
cell-cell contacts are colored red and yellow (figure taken from Ref. [12]).

A long-standing debate in the field centers on whether these differences in micro-

scopic alignment rules – metric versus topological – result in fundamentally different

macroscopic flocking behaviors and distinct universality classes. Recent analytical

work suggested that both metric and topological flocks might indeed belong to the

same universality class with an order-disorder phase transition that is made discontin-

uous by the spontaneous formation of propagating, high-density, meso-scale ‘bands’ of

particles [71]. Yet, numerical studies have provided conflicting evidence; while some

Voronoi simulations indicate a continuous transition for topological flocks [44], other

work on k-nearest neighbor models unambiguously report a discontinuous transition

[71]. This discrepancy highlights the need for further investigation. Is it the case that

different topologies for neighbor interactions, i.e. k-nearest neighbor versus Voronoi,

actually do lead to different phase transitions? Or are disagreements in the literature

the consequence of the phase transition being sensitive to factors such as system size

and the precise method of numerical implementation? In this chapter I present my

of seed points, where each region contains all points closer to its seed than to any other.
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work from Ref. [81] investigating this question.

2.1 Introduction

This chapter begins by examining the nature of the order-disorder phase transition

in metric flocks, highlighting the mechanisms that drive collective motion and phase

separation. I then introduce the hydrodynamic theory that governs wave propagation

near the critical point, providing a theoretical framework for understanding phase

separation in flocking systems. Finally, I present my PhD work, which resolves a

key contradiction in the flocking literature: by performing large-scale simulations,

I demonstrate that topological flocks exhibit the same universality class as metric

flocks, confirming that their order-disorder transition is fundamentally discontinuous.

2.1.1 Order-Disorder Transition In Metric Flocks

In metric flocks, agents interact by aligning with all others within a fixed interac-

tion radius (Fig. 2.2a). As a result, increasing the average particle density enhances

the number of alignment interactions, promoting the emergence of collective order

(Fig. 2.2b). Within the framework of Toner-Tu theory, this order-disorder transition

can be understood by considering homogeneous steady-state solutions to Eq. 1.14,

where spatial gradients vanish, reducing the dynamics to δF/δv = 0. In this regime,

the steady-state flock velocity magnitude is given by

v̄ =

√
α

β
(2.1)

where α quantifies the strength of local alignment interactions relative to noise. When

α is negative, the system is in a disordered state and the solution in Eq. 2.1 is not

valid; instead, the only stead-states one obtains are v̄ = 0. A positive α ensures

that alignment overcomes stochastic fluctuations, allowing the system to establish
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Figure 2.2: Phase transition in the metric Vicsek model. Numerical results are
shown from simulations of the Vicsek model (Eqs. 1.1-1.2). (a) Schematic example of
metric alignment interactions in the Vicsek model, where a (red) particle only aligns
with neighbors within an interaction radius R0. (b) The critical noise strength (ηc)
at which the order-disorder transition takes place is shown as a function of average
global particle density; increasing density allows flocking phases to survive at larger
noise strengths. (c) A snapshot of a large-scale simulation in the vicinity of the
critical point ηc at a density of ρ = 2; spontaneously asssembled meso-scale waves
propagate through a background of disordered particles in the direction denoted by
the red arrow. Figures taken from Refs. [21, 43].

global polar order. In metric flocks, local alignment strength is inherently tied to

particle density, leading to a density-dependent form for α that can be approximated

to leading order in ρ by

α(ρ) = a0(ρ− ρc) , (2.2)

where ρc represents the critical density required for ordering, and a0 > 0 is a pro-

portionality constant. Therefore, phase transition in metric flocks can be driven not

only by tuning the strength of the noise acting on agents, but also by tuning the

particle density (Fig. 2.2b). Despite the cartoonishly simple metric interaction rule

for the Vicsek model shown in Fig. 2.2a, the predicted phenomenon of spontaneous

self-organization into collective motion states at some critical density (Fig. 2.2b) has

been observed in a diverse range of biological systems [113, 107, 82].

The Vicsek model predicts not only that metric flocks should have a density-
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dependent phase transition between homogeneously disordered and ordered states,

but that the transition should be discontinuous, with an intermediate inhomogeneous

‘banded phase’. As shown in Fig. 2.2c, one finds that near the critical point – at

sufficiently large system sizes on the order of 105 particles – metric flocks do not

uniformly flock in the same direction or remain globally disordered, but rather meso-

scale ‘bands’ spontaneously form and begin propagating throughout the system. The

formation, stability, and structure of these bands has been rigorously studied by the

active matter physics community using agent-based models [131], Boltzmann-style

coarse-graining methods [9, 73], and Toner-Tu hydrodynamics [104].

This unique flocking phase has even been robustly created in suspensions of active

colloids [16]. As shown in Fig. 2.3, the transition between a disordered, isotropic

‘gas’ phase and a polar ‘liquid’ phase is separated by a well-defined banded phase

qualitatively similar to Fig. 2.2c. The liquid/gas analogy is frequently used to describe

phases of active matter because the banded phase is effectively a state of phase

separation between ordered and disordered particles, similar to phase separation in

the Van der Waals model of liquid-gas phase separation. In Fig. 2.3c, one can see

that the moving front of a propagating wave is effectively an interface between a

disordered region of particles and an ordered one. This analogy is made precise in

the Toner-Tu description of banded phases [104].

2.1.2 Hydrodynamic Theory of Traveling Waves

By considering the nature of microscopic metric alignment interactions one arrives

at the conclusion that local polar order should be proportional to local density

(Eq. 2.2). How does this coupling affect the macroscopic field theory description

of flocks though? Numerous studies have shown that, when α = α(ρ), the homoge-

neous, ordered flocking state of Eq. 1.14 becomes linearly unstable to long-wavelength

fluctuations near the critical point [73, 104, 71]. One can even precisely show that
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Figure 2.3: Propagating waves in an active colloid suspension. Experimental
data for a system of self-propelled colloids. (a) Image of experimental setup, in which
colloids have self-organized into a propagating wave around a circular track. (b) Par-
ticles in the space far away from the front of a propagating wave have a low density
and are disordered. (c) The wave front is characterized by a phase separation between
low-density/disordered and high-density/ordered states. (d) Within the propagating
band, particles collectively flow together along the track. (e) The transition from
homogeneously disordered to ordered states, with the intermediate phase coexistence
regime, is show as a function of colloid packing fraction (Φ0). (f) A schematic repre-
sentation of how active colloids become self-propelled via the Quincke instability in
the presence of an external electric field (E); the torque generated by an unevenly
distribution of charge of the particle’s surface overcomes the restoring torque of the
electric field, leading to a translational speed U . Figures taken from Ref. [16, 14].
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the instability conditions is [71] ∣∣∣∣∂α∂ρ
∣∣∣∣ > 0 . (2.3)

Qualitatively, one can understand Eq. 2.3 as implying that fluctuations in local density

reinforce alignment, creating a feedback loop that amplifies density inhomogeneities.

Toner-Tu theory thus agrees with simulations (Fig. 2.2) and experiments (Fig. 2.3)

that the phase transition in metric flocks is discontinuous. Furthermore, the hydro-

dynamic framework can even predict the structure of the propagating bands observed

near criticality.

The field theoretic understanding of band propagation begins by assuming the

bands are spatially homogeneous along the transverse direction (r⊥) and that the

bands move at a characteristic velocity c in the direction of flocking (r||), permitting

a transformation to the co-moving reference frame:

z = r|| − ct . (2.4)

Under these assumptions, the full two-dimensional system can be reduced to an ef-

fectively one-dimensional description:

⟨ρ(r, t)⟩r⊥ = ρ(z) , (2.5)

⟨v||(r, t)⟩r⊥ = v||(z) , (2.6)

⟨v⊥(r, t)⟩r⊥ = 0 . (2.7)

In this regime, the continuity equation for density (Eq. 1.12) simplifies to a linear

relation between local density and the longitudinal velocity field:

ρ(z) = ρg +
v0
c
v||(z) . (2.8)
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This expression reveals that density variations are directly linked to the velocity

fluctuations within the propagating band. Meanwhile, the equation of motion for the

velocity field (Eq. 1.14) reduces to a Newtonian-like equation for v||(z):

Dv̈|| = −f(v||)v̇|| −
dH

dv||
(2.9)

f(v||) =

(
c− σv0

c

)
− λv|| (2.10)

H(v||) = −(ρc − ρg)

2
v2|| +

v0
3c
v3|| −

β

4
v4||, . (2.11)

The function H(v||) plays the role of an effective potential governing the velocity

profile, while the dissipative term f(v||) controls the stability of fluctuations. The

solutions to these equations determine the steady-state structure of the propagating

bands.

Solving Eqs. 2.9-2.11 yields two primary classes of solutions describing the prop-

agating band structure. The first is a phase-separated profile:

v±|| (z) = A [1 + tanh(k±(z ± z0))] . (2.12)

This solution corresponds to a band with a well-defined, symmetric density interface

about its center, located at z0. The second solution describes an asymmetric soliton-

like profile:

v±|| (z) ∝ ek±(z±z0) . (2.13)

In large-scale simulations, such propagating bands are consistently observed at the

order-disorder phase boundary, confirming these theoretical predictions [21, 73]. These

results both qualitatively and quantitatively establish the nature of the order-disorder

phase transition in metric flocks. In the following sections, I discuss our understanding

of how the same instability mechanism and corresponding phase behavior manifests

in topological flocks.
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2.1.3 Topological Field Theory

The discussion so far has established that in metric flocks, local alignment strength

depends on density, leading to a first-order phase transition marked by phase co-

existence and propagating bands. This behavior arises because density fluctuations

reinforce local alignment, creating a feedback loop that drives the instability. A nat-

ural question follows: does this same mechanism apply to topological flocks, where

interactions are based not on metric distances but on a fixed number of nearest neigh-

bors or a Voronoi-based interaction network?

At first glance, the answer appears to be no. Early numerical studies of topologi-

cal flocking models directly measured the correlation between local density and local

orientational order and found that while these quantities are positively correlated in

metric flocks, they appear statistically independent in topological flocks (Fig. 2.4a).

This suggests that the local alignment parameter α is effectively density-independent

in topological flocks, i.e., ∂α/∂ρ ≈ 0, implying that the instability mechanism respon-

sible for phase coexistence in metric flocks should be absent. Consistent with this

idea, agent-based simulations [44] and hydrodynamic calculations [88, 28] reported

continuous phase transitions with no evidence of band formation or phase separation.

However, recent theoretical developments challenge this long-standing view. A field-

theoretic approach that accounts for the effects of renormalized hydrodynamics in the

presence of stochastic fluctuations suggests that even if explicit density dependence is

absent at the microscopic scale, long-wavelength fluctuations in density and polariza-

tion can dynamically couple, effectively introducing an emergent dependence of α on

ρ [71]. This renormalized hydrodynamic framework predicts that topological flocks

should, in fact, undergo a first-order transition, complete with phase coexistence and

propagating bands—contradicting earlier numerical results [44].

There are two possibilities for the discrepancy within the literature: either the

choice of topological interaction network (i.e. k-nearest neighbor vs. Voronoi tes-
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Figure 2.4: Density statistics of topological flocks. (a) The distribution of dif-
ferent measurements of the polar order parameter field (Eq. 1.11) as a function of
local density (Eq. 1.3) is shown for Vicsek model simulations with Voronoi (topolog-
ical) and metric neighbors. (b) Giant number fluctuation scaling measurements at
increasing system sizes, L = 64, 128, 256, with the dashed red line denoting a fit to
the power law ∝ ⟨n⟩0.88. Figures taken from Ref. [44].

sellation) leads to different phase transitions, or numerical errors such as finite-size

effects are at play in one of the models [44, 71]. To address this issue, we performed

large-scale simulations using a GPU-accelerated simulation package [111], enabling

us to reach system sizes and timescales far beyond those of previous studies. This

approach allows us to systematically test whether Voronoi flocks exhibit phase co-

existence just as metric and k-nearest neighbor have been found to, or whether is

belongs to a distinct class of flocking models.

2.2 Results

In this section, I present original research on the order-disorder transition in topo-

logical (Voronoi) flocking systems. Our findings reveal that the macroscopic phase

behavior is highly sensitive to two often-overlooked numerical details: the numer-

ical integration time-step size and the spatial resolution used to compute coarse-
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grained fields. By systematically extending simulations to the thermodynamic and

time-continuous limits, we demonstrate that the order-disorder transition in topolog-

ical flocks is fundamentally discontinuous, marked by the emergence of propagating

density waves at the critical point. However, in the discrete-time limit, where con-

ventional simulations typically operate, the transition appears continuous across all

computationally feasible system sizes – potentially explaining prior conflicting results

in the literature [44]. Moreover, our analysis confirms that the structure of the prop-

agating bands precisely matches the predictions of Toner-Tu theory (Eqs. 2.12-2.13),

exhibiting true phase separation between ordered and disordered regions. This agree-

ment between numerical results and hydrodynamic theory reinforces the universality

of flocking behavior [71].

2.2.1 Model

In our study, rather than working with the Vicsek model (Eqs. 1.1-1.2), which is

intrinsically time-discrete, we employ a self-propelled XY-like model [26, 140] where

the positions and orientations of particles evolve in time according to

dri(t)

dt
= v0

cos θi(t)

sin θi(t)

 , (2.14)

dθi(t)

dt
= −∇θiH + η ζi(t) . (2.15)

Here v0 is the self-propulsion speed, and the energy of particle i is given by

H[{θi(t)}] = −α
∑

j∈Ni(t)

cos [θi(t) − θj(t)] . (2.16)

The parameter α sets the interaction strength of the polar alignment. In all results

reported here, we simulate incredibly large systems of N = 1280000 particles at a
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Figure 2.5: Order parameter distributions across the transition. The probabil-
ity density function, p(ϕ) of the polar order parameter field (Eq. 1.11) when computed
using square bins with varying linear size ℓ are shown in the (a) disordered phase,
(b) critical point, and (c) ordered phase. Simulation parameters are v0 = 2.0 and
dt = 5 × 10−3.

density of ρ0 = 1.0. The interaction strength is set to α = 1/6, with 6 being the

average number of Voronoi neighbors in a flat, periodic, two-dimensional system.

2.2.2 Coarse-Grained Fields Statistics

Running simulations of Eqs. 2.14-2.16 in the time-continuous limit (dt → 0), we

compute the probability density function, p(ϕ), of the coarse-grained polar order pa-

rameter field (Eq. 1.11) across the phase transition. In a continuous phase transition

scenario, we expect p(ϕ) to vary across the phase transition, with a maximum vari-

ance at the critical point, but always remain Gaussian since the field ϕ(r, t) should

be fluctuating about the mean value of the homogeneous steady-state. In a discon-

tinuous transition, p(ϕ) should become bimodal at the critical point since ϕ(r, t) is

instead fluctuating about an inhomogeneous steady-state that is a coexistence of both

a disordered and ordered phase. In Fig. 2.5 I show that which scenario one observes in

the Voronoi model strongly depends on the length-scale that one is using to compute

the coarse-grained field ϕ(r, t). When local values of polar order are computed using

sub-volume bins of length ℓ containing O(102) particles, the transition appears contin-

uous. At larger length-scales though, averaging over O(104) particles, the transition

is revealed to truly be discontinuous. The qualitative change in the coarse-grained
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Figure 2.6: Coarse-grained fields of a topological flock at criticality. The
density (ρ) and order parameter (ϕ) fields are computed from a single simulation
snapshot in square bins of linear size ℓ. Simulation parameters are v0 = 2.0 and dt =
5 × 10−3. These parameter values were chosen minimize the time for the simulation
to converge to its steady-state.



35

Figure 2.7: Structure of bands in topological flocks. The time-average density
field profiles (Eq. 2.5) for a system with v0 = 2.0 and v0 = 0.5 are shown in (a) and
(b) respectively with solid black lines. The solid red lines denote fits to the phase-
separated (Eq. 2.12) and soliton-like (Eq. 2.13) profiles predicted by Toner-Tu theory.

fields as a function of the length-scale ℓ is shown in Fig. 2.6. These observations

confirm that topological flocks do indeed exhibit the same critical behavior as metric

flocks, and in the following section I show that even the internal structure of the

propagating bands coincides with metric models.

2.2.3 Shape of Propagating Bands

As discussed in Chapter 2.1.2, Toner-Tu theory not only predicts the existence of a

banded phase, but also gives precise details about how the fields should be structured

within the propagating bands. In Fig. 2.7 I show that our simulations indeed con-

form to field theory expectations: at high self-propulsion speeds we observed phase-

separated profile dynamics, while as low speeds the profile becomes asymmetric. How

is it that we obtain such clean agreement with field theory whereas previous numerical

studies – which even conducted finite-size scaling analyses [44] – observed continuous

phase transitions?

The original formulation of the Vicsek model (Eq. 1.2) is inherently time-discrete,

which established a convention in the literature of working in a large time-step (dt =

1.0) regime [44, 26, 71]. Our work has been conducted in the time-continuous regime

(dt→ 0). To evaluate the stability of the banded phases we observe to time-step size,
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Figure 2.8: Sensitivity of banded phases to time-step size. The value of the
banding order parameter (Eq. 2.17) is computed at various noise strengths across the
phase transition for the density (ρ) and polar order parameter (ϕ) fields. Black data
denotes simulations with dt = 0.005, and light blue data denotes simulations with
dt = 1.000.

we look at the value of a ‘banding order parameter’ for a field profile f(z),

Bf =

〈(
f(z) − ⟨f(z)⟩r||

)2〉
r||

, (2.17)

which is simply the variance of the profile. In a homogeneous phase, either ordered

or disordered, the profile is uniformly distributed over the length of the system and

Bf vanishes. In a banded phase though, Bf becomes non-zero and indicates the

presence of inhomogeneous structure. Computing this order parameter for both the

density and polar order parameter field across the phase transition, we show that the

banded phase only manifests in the continuous time limit, whereas in the discrete

time limit the phase transition appears smooth (Fig. 2.8). This provides a resolution

to the contradictory evidence in the literature about why earlier numerical studies

on Voronoi flocks observed continuous phase transitions despite performing rigorous

finite-size scaling analysis [44].
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2.3 Conclusion

Our work conclusively demonstrates that Voronoi flocks exhibit the same discontin-

uous phase transition as both k-nearest neighbor and metric flocks. Moreover, we

establish that the structure of the banded phase precisely conforms to the predictions

of Toner-Tu theory, reinforcing the remarkable predictive power of hydrodynamic de-

scriptions in active matter systems. Our results confirm the theoretical framework

proposed in Ref. [71], which suggests that all flocking systems – whether metric or

topological – exhibit an emergent coupling between density and orientational fluctu-

ations, even when no explicit microscopic mechanism for such coupling is present.

A particularly intriguing observation in our simulations is that, unlike metric and

k-nearest neighbor flocks, Voronoi flocks consistently form only a single propagating

band. In contrast, metric models typically produce multiple bands that arrange

themselves in a periodic fashion throughout the system (e.g., Fig. 2.2c) [21, 71]. We

speculate that the absence of an intrinsic microscopic length scale in the Voronoi

model results in the lack of a characteristic macroscopic length scale in the emergent

banding pattern. However, a precise field-theoretic understanding of how length scale

selection operates in these systems remains an open question.

A natural extension of this work would be to explore whether so-called ‘cross-sea’

phases arise in topological flocks. In large-scale simulations of the Vicsek model, an

additional phase has been observed in which two perpendicular wavevectors define a

complex banding structure [65]. Whether this phase is a universal feature of flocking

models or an emergent property specific to metric interactions remains unknown.

Further numerical and analytical studies of topological flocking models may provide

crucial insight into the universality of this phenomenon.

The results presented in this chapter highlight the robustness of Toner-Tu univer-

sality in flocking systems, even when microscopic interaction rules differ significantly.

However, while metric and topological flocks share the same macroscopic behavior,
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real biological collectives often introduce additional broken symmetries that can fun-

damentally alter their universality class. In the following chapter, we turn our atten-

tion to such biological complexities, focusing on flocking systems with asymmetric and

non-reciprocal interactions. Specifically, we investigate how time-delayed interactions

introduce novel dynamical phenomena beyond the standard Toner-Tu framework.
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Chapter 3

Flocks With Hierarchical Reaction

Times

In the previous chapter, we demonstrated that despite fundamental differences in

how interacting neighbors are selected, both metric and topological flocks belong

to the same Toner-Tu universality class. This result aligns with the principle that

coarse-grained flocking dynamics are governed by symmetries and conservation laws

– specifically, rotational symmetry and mass conservation – both of which remain

unchanged between these interaction rules (as discussed in Chapter 1.3). However,

real biological systems introduce additional complexities, often breaking fundamental

symmetries in ways that profoundly alter collective behavior, leading to entirely new

universality classes.

One prominent example is the vision-based perception that drives topological in-

teractions in bird flocks. While enabling alignment with nearest neighbors regardless

of their distance, this sensory constraint also introduces fore-aft asymmetry and non-

reciprocity in interactions [18, 23], as illustrated in Fig. 3.1. Unlike traditional flocking

models, where interactions are assumed to be reciprocal, birds interact with others

in their forward field of view but are often unaffected by those behind them. Non-
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Figure 3.1: Fore-aft non-reciprocity. A schematic example of how a limited vision
cone leads to fore-aft asymmetry between interacting agents within a flock. (a) An
example of the possible neighbors for a single agent within a flock (b) Agent i interacts
with j, but not vice-versa due to a limited vision cone. Figure taken from Ref. [35].

reciprocal flocking theories that incorporate this asymmetry predict a new universality

class distinct from standard Toner-Tu dynamics [24, 31]. Notably, while Toner-Tu the-

ory predicts that information propagates diffusively and is density-dependent, fore-aft

asymmetric interactions lead to density-independent, ballistic information transmis-

sion, a crucial feature for smooth turns in real bird flocks [6].

Another fundamental asymmetry in biological flocking arises from reaction time

differences among agents. Unlike idealized models where all agents respond instan-

taneously, real animals exhibit delays in perception and decision-making, which can

vary among individuals due to differences in sensory processing and cognitive abil-

ity. This hierarchy1 in reaction times leads to structured, leader-follower dynamics,

which play a key role in collective decision-making [76, 45, 3, 46]. In these systems,

leaders initiate movement decisions, and nearby agents respond with delays that re-

1Within the biological literature [76, 46], a ‘hierarchy’ of reaction times is used synonymously
with, what one calls in physics, a ‘distribution’ of reaction times. The fact that the distribution can
be ordered, and that the ordering leads to effective “follower” and “leader” roles makes the term
hierarchy linguistically useful.
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flect their individual processing constraints. Consequently, the flock does not evolve

synchronously, but instead follows a temporally staggered, hierarchical pattern.

The impact of heterogeneous reaction times on flocking behavior has been explored

in recent studies [83], but significant gaps in our understanding remain. Most existing

models assume a homogeneous time delay across all agents [35, 52, 40], which does not

accurately capture the complexity of real social flocks. In this chapter, we introduce a

new model of hierarchical time-delayed interactions and show that breaking interac-

tion symmetry through heterogeneous time delays leads to a novel parity-time (PT)

symmetry-breaking phase transition within the Toner-Tu flocking framework. Our

results provide new insight into the role of temporal asymmetries in collective motion

and extend the current understanding of flocking dynamics beyond the assumptions

of instantaneous, reciprocal interactions.

3.1 Introduction

Before introducing our novel model for hierarchical flocking and its associated phase

transitions, we first review empirical evidence of hierarchical structures in natural

flocks. We then discuss the current theoretical understanding of time-delayed in-

teractions in flocking systems, highlighting key findings and open questions. Before

jumping into the following section, I first note that observations and measurements

of reaction times on both humans and animals are abundant in the psychological and

kinesiology literature [11, 64, 92]. These studies have rigorously established cognitive

limits and variances in the reaction time of cognitive agents to sensory stimulus. The

literature I review here in this chapter employs more speculative methods of inferring

reaction times than other experiments performed in controlled settings, and should

therefore be properly scrutinized. Their overall conclusions though, namely that there

is a heterogeneous distribution of reaction times in natural flocks, is well established
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by other studies [58].

3.1.1 Measurements of Time-Delayed Interactions in Flocks

A widely used method for inferring pair-wise interactions and quantifying time delays

in biological systems is the velocity-velocity correlation function [76], defined as

Cij(τ) = ⟨vi(t) · vj(t+ τ)⟩ , (3.1)

which measures how well the velocity of agent j at time t+ τ aligns with the velocity

of agent i at time t. The delay τ that maximizes Cij(τ), denoted as τmax, provides an

estimate of the reaction time of agent j in response to changes in agent i’s orienta-

tion. Figure 3.2 illustrates how this method can be used to reconstruct hierarchical

interaction networks in flocks. This approach has revealed dynamic leader-follower

structures in various animal groups. For example, in foraging bat pairs [45], herds

of sheep [46], and packs of dogs [3], individuals interchangeably assume leader and

follower roles over time. In contrast, homing pigeon flocks exhibit more stable hier-

archies, with specific birds consistently maintaining leadership across multiple flights

[76, 77]. These findings indicate that reaction time asymmetries are a fundamental

feature of collective motion in social biological systems.

Despite its utility, the correlation function method has a critical limitation: corre-

lation does not imply causation. That is, while strong correlations between individu-

als’ velocities suggest leader-follower dynamics, they do not confirm whether changes

in one bird’s motion actively influence another’s behavior. To address this, an alter-

native approach, the optimal causal entropy principle (oCEP), explicitly incorporates

causality into the analysis of hierarchical networks [23]. The oCEP method quanti-

fies causation by analyzing how much information one agent’s past behavior provides
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Figure 3.2: Hierarchical time-delayed interactions in pigeons. (a) The trajec-
tory of a small flock of GPS-carrying pigeons is shown, with different bird trajectories
denoted by different colors. (b) Using trajectory data from (a) to compute velocities
in Eq. 3.1, the interaction network between the pigeons is shown, with the inferred
reaction time (τmax) labeling each pair (i, j). Figure taken from Ref. [76].

about another agent’s future state. It does so by computing the causal entropy,

CY→Z|X = H
(
X(t+τ)|Z(t)

)
−H

(
X(t+τ)|Z(t), Y (t)

)
, (3.2)

where H(X|Y ) is the conditional Shannon entropy,

H(X|Y ) = −
∑
x,y

p(x|y) log p(x|y) . (3.3)

This formulation measures the reduction in uncertainty about an agent’s future veloc-

ity (X(t+τ)) given knowledge of another agent’s past state (Y (t)), after controlling for

shared external influences (Z(t)). Applied to pigeon flocks, this method reproduces

the hierarchical structure inferred using correlation functions but with an explicit

causal interpretation [23].

These studies highlight that time delays in biological collectives are not merely an
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artifact of measurement, but an inherent property of collective decision-making. Lead-

ers influence followers through a cascade of delayed interactions, shaping the flock’s

collective motion in a hierarchical manner. Unlike the case of biologically-inspired

topological models in the previous section, time-delayed interactions do fundamentally

change the underlying symmetries of the system. Whereas the orientational dynamics

in Eq. 2.15 with instantaneous interactions are time-reversible, time-delayed interac-

tions mean that there truly is an asymmetry between the system evolving forward in

time and backward in time. In the following section, the current understanding of

how this additional symmetry breaking modifies standard Toner-Tu hydrodynamics

is reviewed.

3.1.2 Time-Delay Models

Time-delayed interactions in flocking models introduce profound changes to the sta-

bility and dynamics of collective motion. One of the most striking effects of increasing

delay is the transition in information propagation from diffusive to ballistic behav-

ior. In systems with short delays, information about orientation spreads gradually,

leading to diffusive adjustments in collective motion. However, as delays increase, in-

formation propagates in a ballistic manner, leading to wave-like, coherent maneuvers

across the system [40, 52].

Beyond altering information transmission, time delays also impact the stability

of flocking phases. Numerical studies on a three-dimensional Vicsek-like model have

shown that increasing delay initially strengthens order before ultimately driving a

transition from ordered to disordered motion [52]. A similar effect has been observed

in two-dimensional flocking models, where reaction time heterogeneity leads to dis-

ordering transitions [83]. These findings highlight a non-monotonic effect of delay:

short delays can reinforce order by filtering out fast fluctuations, but longer delays

introduce competing alignment dynamics, ultimately leading to instability.
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Furthermore, delays also introduce new dynamical phases in flocking models. In

addition to standard coherent flocking and fully disordered motion, recent research

has identified an intermediate patchy phase, where regions of ordered motion coexist

with pockets of disorder [83]. This state emerges at intermediate delay values and

is characterized by localized clusters of aligned agents moving within a background

of randomized motion. Such hybrid phases suggest that delays can drive complex

spatiotemporal structures not captured by traditional flocking models. Time-delayed

interactions can also induce oscillatory and metastable states which arise due to the

memory effects inherent in delayed interactions, leading to periodic bursts of order

and disorder. This phenomenon has been experimentally validated in robotic swarm

systems, where delays could be precisely controlled [114].

The above findings illustrate the diversity of behaviors that arise when time-

reversal symmetry is broken in flocking models via delayed interactions. While mod-

els with a single, homogeneous time-delay can be systematically analyzed [52], real

biological flocks exhibit heterogeneous delays. The challenge in incorporating delay

heterogeneity lies in determining an appropriate distribution of delay times. The sim-

ple case of a Gaussian distribution has been studied [83], but tracking a distribution

of delays requires maintaining long system histories, which becomes computationally

prohibitive for large-scale simulations involving N > 105 agents [21]. As a result,

most studies on time-delayed interactions have been constrained to small-scale sys-

tems with N < 104 agents [109, 35, 83]. To advance our understanding of how hierar-

chical and distributed time delays affect large-scale flocking dynamics, we introduce a

novel model that both represents possibly the simplest choice for delay heterogeneity

that one could write down and enables computationally efficient simulations.
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3.2 Results

Here I present my original work on studying the effect of hierarchical time-delayed

interactions on flocking phases. First, a novel time-delayed model is introduced. Next,

I show how the model exhibits a spontaneous parity-time (PT) symmetry breaking

not seen in conventional flocking models. Finally, I rigorously demonstrate that the

new phase behavior is the result of a self-assembled spatial organization of particles

based on their intrinsic time-delay.

3.2.1 Hierarchical Time Delay Model

Here we perform numerical simulations of Eqs. 2.14-2.16 with N agents in L × L

periodic domains with a fixed density ρ0 = 1.0, self-propulsion speed v0 = 0.5, and a

time-step size dt = 1.0, but with the following modification: over the discrete time-

step, agents sequentially update their positions in time intervals τ = dt/N . In the

first interval, [t, t+ τ ], the particle with index i = 1 first updates its orientation with

the Hamiltonian H[{θ1(t), · · · , θN(t)}] (given by Eq.2.16). In the next interval, [t +

τ, t+2τ ], the particle with index i = 2 updates its orientation in the same manner, but

with the Hamiltonian now having the form H[{θ1(t− τ), θ2(t), · · · , θN(t)}]. Similarly,

when particle i = 3 updates its orientation, the Hamiltonian is H[{θ1(t− 2τ), θ2(t−

τ), θ3(t), · · · , θN(t)}]. This pattern continues such that the Hamiltonian of the ith

agent is2

Hi = H
[
{θk (t− (i− k) τ)}ik=1 ∪ {θk(t)}Nk=i

]
(3.4)

Consequently, the polar alignment force exerted on particle i by particle j,

fij = −∇Hi , (3.5)

2The symbol ∪ denotes the union of two sets.
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will violate Newton’s second law, fij ̸= −fji because Hi ̸= Hj. Note that this non-

reciprocity is unique to models with heterogeneous time-delays [83], while systems

with homogeneous time-delays simply have Eq.2.16 replaced by H = H[{θi(t − τ)}]

[35]. In the rest of this chapter, I will discuss how the non-reciprocal forces produced

by the time-delays in our model drives a novel parity-time (PT) symmetry-breaking

phase transition.

3.2.2 Emergence of PT Symmetry Phase

In Chapter 2 I showed that the topological flocking model (Eq. 2.14-2.16) exhibits a

disorder-to-order transition as the noise strength (η) is decreased past some critical

value ηc. In the ordered phase, there is a global orientation (r̂||) that the system

is moving in, and motion transverse to this global orientation (r̂⊥) are regarded as

undamped, long-lived fluctuations away from global order. In our simulations with the

hierarchical Hamiltonian (Eq. 3.4), the same physics occurs and the model exhibits a

standard Toner-Tu flocking phase (Fig. 3.3a,c). As we continue to decrease the noise

strength though, a second phase transition emerges in which transverse fluctuations

in the velocity field away from the global flocking direction become segragated into

bulk bands (Fig. 3.3b,d). This inhomogeneity is remeniscent of the phase separation

in the banded phase of the standard flocking model (Fig. 2.6). Whereas the transition

from the disordered to banded phase in the standard flocking model is accompanied

by a spontaneous rotational symmetry breaking – as the system develops a global

direction of motion – the transition to the new phase in Fig. 3.3b,d is accompanied

by the spontaneous emergence of a parity-time (PT) symmetry. That is, in a periodic

system of size L and a global flocking speed of c, there is the following equivalency:

v⊥

(
r, t+

L

c

)
= −v⊥

(
r, t+

L

2c

)
. (3.6)
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Figure 3.3: Transition from flocking to PT-symmetric phase. Simulation snap-
shots of the density (ρ) and transverse velocity (v⊥) fields are shown on the top and
bottom respectively. The transverse velocity field corresponds fluctuations in par-
ticle orientations away from the direction of global flocking (r||). Snapshots of the
Toner-Tu flocking phase (η = 0.10) are shown in (a) and (c), and snapshots of the
PT-symmetric phase (η = 0.01) are shown in (b) and (d).
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This expresses the fact that propagating the pattern for a time L/c, i.e. one full ‘lap’

around the periodic domain, is equivalent to propagating for half of a lap followed

by an inversion in the direction of transverse velocity fluctuations. In the flocking

phase (Fig. 3.3c), transverse velocity fluctuations are disordered and decay (albeit at

long time-scales relative to longitudinal fluctuations), so Eq. 3.6 does not hold and

the symmetry is broken.

3.2.3 Phase Separation In the PT-Symmetric State

To quantitatively describe the flocking to PT-symmetric phase transition, we look at

the statistics of the transverse velocity fluctuations. In Fig. 3.4a I show how parti-

cle orientations are distributed relative to the global flocking direction (i.e. θi = 0

indicates a particle is perfectly aligned with the rest of the flock’s center-of-mass mo-

tion). In the standard flocking phase θi is normally distribution about zero. As lower

noise strengths though, fluctuations away from the global direction of motion begin

to (seemingly) paradoxically increase and a bimodality appears in the distribution.

In analogy with the appearance of the banded phase in Fig. 2.5 – and its associated

coexistence of disordered and ordered regions of space – the PT-symmetric phase

we observe in this model can be regarded as a coexistence of counter-propagating

(+r⊥ and −r⊥) bands. This novel state is shown to be robust to a finite-size scaling

analysis in Fig. 3.4b. shows that this non-Gaussian behavior persists in the thermo-

dynamic limit. In the following section, I show that this phase separation is a direct

consequence of the presence of time-delayed interactions within our model.

3.2.4 Self-Assembled Spatial Organization of Agents

Here we study how the macroscopic dynamics of the PT-symmetric phase are related

to the microscopic time-delays in our model. In Fig. 3.5a, we examine the system’s

response to an “index shuffling” operation, where the indices of particles in the model’s
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Figure 3.4: Emergence of non-Gaussian statistics. (a) Probability den-
sity function of single particle orientations relative to the global flocking direc-
tion. (b) Binder cumulant, UL = 1 − ⟨θ4i ⟩/3⟨θ2i ⟩2, is shown for system sizes
N = {211, 212, 213, 214, 215, 216, 217}. In the flocking phase θi is normally distributed
and U ≈ 0, and deviations away from U = 0 denote non-Gaussianity.

update sequence are randomly reassigned. This generates a new hierarchy within the

sequential update process. In the homogeneous ordered phase, this operation has no

impact on the stability of the flocking state. However, in the PT-symmetric phase, it

disrupts global polarization. This result confirms that the introduction of time-delay

in our model is directly linked to the emergence of the novel phase patterning. To

further investigate this connection, we next analyze the precise mechanism by which

time-delayed interactions give rise to the observed macroscopic dynamics.

As discussed in Section 3.2.1, incorporating a time-delay into the model also in-

duces non-reciprocal interactions between agents. While a general analytical expres-

sion for these non-reciprocal forces cannot be explicitly derived, they can be computed

numerically as:

f res
ij = fij + fji, . (3.7)

When Newton’s second law (fij = −fji) holds, f res
ij vanishes. Otherwise, f res

ij quan-

tifies the residual non-reciprocal piece of the pair-wise interaction that arises from

time-delays. One might expect though that these pair-wise non-reciprocal forces will

be randomly oriented in space (because they arise from an abstract index ordering
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Figure 3.5: Spontaneous ordering of time-delays. (a) The response of our model
to an instantaneous re-ordering of particle indices within our sequential update algo-
rithm (described in Sec. 3.2.1) is shown at high noise strengths (red/orange) in the
flocking phase, and low noise strengths (blue/purple) in the PT-symmetric phase. (b)
Time-averaged profile of the transverse velocity field is denoted with the solid black
line, and the profile of the non-reciprocal force field (Eq. 3.10) is denoted by the
solid purple line. Dashed yellow lines indicate the positions of the interfaces between
the counter-propagating bands of the PT-symmetric phase. Data was collected for a
system of N = 320000 particles at a noise strength of η = 0.005.
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that has no intrinsic spatial structure) and, on average, cancel each other out. To

test whether these non-reciprocal forces actually generate new collective motion at

macroscopic scales that would not be present in the synchronously updating system

of Chapter 2, I calculate the difference between Eq. 2.16 and Eq. 3.4 and define

Ψi = −∇θiHi −∇θiH . (3.8)

This quantity denotes the total force on particle i after subtracting the motion that

would arise in the reciprocal model.

To capture the macroscopic effects of these forces Ψi acting on all particles in

our model, we apply the coarse-graining methodology from Section 1.3 and define an

effective non-reciprocal force field as:

Ψ(r, t) =
N∑
i=1

Ψi(t)δ [r− ri(t)] , . (3.9)

Exploiting the symmetry of the PT-symmetric phase along the transverse direction

(Fig. 3.3)—similar to the approach in Eqs. 2.5-2.7—we compute the average non-

reciprocal force along the flocking direction (r||):

Ψ(r||, t) = ⟨Ψ(r, t)⟩r⊥ . (3.10)

In the flocking phase we find that Ψ(r||, t) ≈ 0. This is unsurprising given that

the microscopic pair-wise forces (Eq. 3.7) have no intrinsic spatial organization and

emerge only from the random arrangement of particles with different time-delays.

While we might expect that locally a particle might have a strong force ψij acting

on it, there is no reason to expect that the pair-wise forces would not simply cancel

such that Ψ(r, t) ≈ 0 at large scales. However, in Fig. 3.5c, we illustrate how this

effective force field coherently acts on PT-symmetric phases: in the bulk of each
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counter-propagating band Ψ(r||, t) vanishes, but at the two interfaces of the bands

Ψ(r||, t) exerts strong (relative to the noise strength) torques on the particles. At one

interface, these torques are clockwise, while at the other they are counter-clockwise.

The appearance of any non-zero steady-state non-reciprocal force field is shocking

because it hints at a deeper underlying collective organization that arises from the

hierarchical distribution of time-delays.

3.3 Conclusion

In this chapter, we explored how time-delayed interactions reshape collective motion

by introducing non-reciprocal forces. Rather than acting as a minor perturbation,

time delays fundamentally reorganize the system’s macroscopic behavior, leading to

the spontaneous formation of counter-propagating bands stabilized by a structured

non-reciprocal force field. The emergence of a PT-symmetric phase in our system is,

in retrospect, unsurprising. Recent field theoretic work by Fruchart et al. demon-

strates that non-reciprocity is a hallmark of non-equilibrium systems, and whenever

such interactions are present, we should expect PT-symmetric phases to emerge [38].

Non-reciprocal field theory also predicts the critical point in the transition to the

PT-symmetry phase has the special property of being an exceptional point (the crit-

ical junctures where eigenmodes of two non-reciprocally coupled degrees of freedom

coalesce). In our work, we focused on characterizing the mechanisms that give rise

to the PT symmetric phase of our model, and a natural extension of our findings

would be to investigate the critical behavior of the flocking to PT-symmetric tran-

sition in greater detail. Evidence of an exceptional point would be signaled by the

coalescence of density and transverse velocity field fluctuations (i.e. the slow modes

of the system that relax at much longer time-scales than longitudinal fluctuations);

this measurement has been previously made in simulated and experimental flocks
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[122, 41].

Beyond further numerical study of our model, the effectively one-dimensional

structure of the PT-symmetric phase we observe makes it highly amenable to a

field-theoretic study. This is a very special case, because time-delayed field the-

ories typically take the form of integro-differential equations involving convolution

operations with a memory kernel. Obtaining non-trivial analytic solution in such

models is nearly impossible. Our work suggests that a more fruitful path towards a

field theoretic understanding of time-delayed systems may be to replace convolution

operations with a coarse-grained non-reciprocal force field. The model studied here

presents an ideal case to test this hypothesis on. As discussed in Section 2.1.2, we

already know how to study the dynamics inhomogeneous, patterned states in flock-

ing models by imposing additional symmetry constraints on the Toner-Tu equations

of motion [104]. In our model, we identify sinusoids as the inhomogeneous pattern

selected by the PT-symmetry constraint. Eqs. 1.12-1.14.

Another natural question that this work raises is how does the nature of the PT

symmetric phase change when interactions are metric rather than topological?
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Chapter 4

Flocking and Vortex Phases In Bos

Taurus Sperm Cells

Up to now in this dissertation, flocking agents have been referred to as “self-propelled”

without concern for the origin or mechanism of their propulsion. In reality, an agent’s

motion comes from forces exerted on its surrounding medium. For instance, a bird

flaps its wings against the air, while a bacterium drives itself forward by beating its

flagella against the surrounding fluid. Implicit in Vicsek-like active matter models is

the assumption that the force exerted by the agents on the surrounding medium dis-

sipates rapidly (and thus does not generate long-ranged interactions). Consequently,

momentum is not conserved in such models. Systems for which this approximation

is valid are termed “dry” active matter, and the collective behaviors they exhibit are

governed primarily by local alignment and noise [20]. However, at microscopic scales

where agents swim in low-Reynolds-number conditions, the approximation breaks

down as the flow fields created by the agents decay slowly (∝ 1/r) and mediates

long-ranged interactions [135].

In such “wet” active matter systems, hydrodynamic theory tells us that polar or-
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dered flocking states are inherently unstable, because long-ranged interactions create

feedback loops where small perturbations grow while being convected throughout

the system [1]. Instead, low-Reynolds-number swimmers frequently self-organize into

turbulent-like states characterized by spontaneously forming vortices that interact

with one other and can form complex mesoscale patterning in suspensions of mi-

croswimmers [96, 107, 130]. However, experiments have found that we Bos taurus

sperm cells can be induced into polar flocking states that – while ultimately unstable

– are extremely long-lived. In this chapter, I discuss my work from Ref. [82] studying

the structural properties of these transient flocking states and show that, surprisngly,

many aspects of their behavior still conform to standard Toner-Tu theory despite the

complex, external fluid mechanics involved in their interactions.

4.1 Introduction

I begin this chapter by reviewing the physics of local force flow fields created by

agents moving in a low-Reynolds-number fluid. Then I focus on the specific case of

swimming sperm cells and their complex hydrodynamic interactions. Then, I discuss

the phenomena of emergent flocking and vortex states that emerge in suspensions of

sperm cells under the application of a transient external pulse.

4.1.1 Hydrodynamics of Micro-swimmers

In wet active matter systems, self-propelled agents, often termed micro-swimmers,

exhibit diverse motility strategies and are typically classified based on their hydrody-

namic interactions with the surrounding fluid [36]. The two primary categories are

pushers and pullers. Pushers, such as motile bacteria [5] and spermatozoa [82], gen-

erate thrust by expelling fluid backward with rear-mounted flagella, thereby creating

an extensile force-dipole flow field. This propulsion mechanism leads to hydrody-
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Figure 4.1: Vortex-forming behavior of pusher micro-swimmers. (a) The
effective viscosity (ηp) relative to the solvent viscosity (η0) for Escherichia coli at
different packing fractions (ϕ) and fixed shear rate (γ̇) [69]. (b) Velocity field of a
suspension of ram sperm cells; note that the vortices are all rotating counter-clockwise
(i.e. there is a preferred chirality). Scale bar is 200µm [30].

namic instabilities that can induce collective motion and large-scale correlated flows,

but not global polar ordered states [36]. Conversely, pullers, exemplified by the bi-

flagellate algae Chlamydomonas reinhardtii, utilize front-mounted cilia to pull fluid

inward, producing a contractile dipole flow that tends to stabilize their trajectories

and suppress large-scale collective effects [132].

Pushers have garnered significant attention because their characteristic extensile

stress generation can effectively reduce the viscosity of the suspending fluid [49].

Unlike passive suspensions, where viscosity typically increases with concentration,

active suspensions of pushers such as motile bacteria E. coli and B. subtilis can

exhibit a viscosity lower than that of the solvent, ηp < η0 [69, 51]. This reduction

in effective viscosity has been observed in bacterial swarms [72] and dense sperm

cell suspensions [30]. In extreme cases, highly active micro-swimmer suspensions

can transition into a regime resembling superfluidity, where the resistance to shear

vanishes entirely (Fig. 4.1a). This unique hydrodynamic effect allows pushers to

form self-sustaining vortices [51], which can further self-organize into intricate vortex



58

lattices [96, 130].

While pusher-type microswimmers can profoundly alter their fluid environment

through viscosity reduction and vortex formation, the biological significance of these

effects depends on the functional demands of the system. In bacterial suspensions

for example, active turbulence leads to Lévy walks which are hypothesized to be

advantageous for nutrient diffusion, resource acquisition, and several other biologically

relevant objectives [74]. In contrast, sperm cells have a singular objective: navigating

the complex and dynamic female reproductive tract to fertilize the egg. The efficiency

of this transport is shaped not only by the motility of individual cells but also by

emergent collective behaviors that arise from interactions with surfaces, neighboring

sperm, and the viscoelastic fluids that fill the reproductive tract.

4.1.2 Collective Sperm Motility

As sperm traverse the female reproductive tract—a labyrinth of confined, mucus-

laden, and actively flowing channels—their swimming behaviors are continuously

modulated by environmental factors. The ability of sperm to navigate through these

conditions depends on their capacity to adapt their swimming modes, exploit coop-

erative dynamics, and respond to external flows. In bulk fluids, sperm cells exhibit

a three-dimensional (3D) helical swimming pattern [36]. In the presence of a solid

boundary though, sperm tend to accumulate due to hydrodynamic and steric forces,

leading to a distinct “slithering” swimming behavior characterized by increasing di-

rectional persistence [78]. Even the interactions between cells depends intricately on

the external environment.

Unlike simple Newtonian fluids, the female reproductive tract contains viscoelas-

tic mucus, which exhibits both dissipative and elastic properties [124]. This fluid

gives rise to a hydrodynamic coupling between cells that produces sperm clusters,

where individual cells align and swim cooperatively; these clusters enhance progres-
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Figure 4.2: Viscoelastic fluid induced clustering. A representative image of
sperm cells moving in (a) an ordinary, Newtonian fluid and (b) a viscoelastic fluid.
Scale bar is 50µm (Figure taken from Ref. [124]).

sive motility, increasing both velocity and directional stability by reducing random

re-orientations induced by shear forces [134, 90]. Experiments have also shown that

clustering in viscoelastic fluids enhances the ability of sperm to swim upstream, known

as rheotaxis, allowing them to exploit flow gradients to move against external forces

[123, 136]. In the following section, I discuss how this polar alignment in the face

of an external flow generates flocking-like states not seen in other suspensions of

pusher-type microswimmers.

4.1.3 Pulse-Induced Vortex and Flocking States

Unlike other microscopic systems which can spontaneously self-organize into a flocking

state at high densities, such as active colloids [41] and keratocytes [113], sperm cells

do not exhibit flocking behavior on their own. Instead, dense suspensions of sperm

exhibit turbulent dynamics like that shown in Fig. 4.1b. As mentioned in the previous

section though, when subjected to an external flow field, they align against the flow

and swim collectively in the same direction [123, 90]. Recent experiments have further

shown that when the external flow is applied as a transient pulse, the sperm cells
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Figure 4.3: Pulse-induced collective motion states. Representative snapshots
of the flocking (a) and vortex (b) states that arise when a transient hydrodynamic
pulse is applied to a disordered suspension of sperm cells. White outlines denote
cell segmentations, and blue arrows denote the tail-to-head orientation of each cell
(Figure taken from Ref. [82]).

undergo a fascinating transition into either a macroscopic vortex state or a flocking

state, as depicted in Fig. 4.3. Remarkably, this polarized state persists for nearly an

hour after the flow is removed [82]. The pulse-induced flocking state is particularly

intriguing from a theoretical standpoint, as it provides a rare opportunity to test the

predictions of Toner-Tu theory in a regime where hydrodynamic interactions with the

surrounding fluid play a dominant role. In the remainder of this chapter, I present

original research conducted on pulse-induced collective motion in sperm cells and

its implications for the validity of Toner-Tu theory in strongly fluid-coupled active

matter systems.

4.2 Results

This section summarizes the results of the paper Ref. [82]. Collaborators Chih-Kuan

Tung and Lisa Manning oversaw the experimental data collection that produced
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microscopy videos of cell suspensions. I created a machine-learning image analy-

sis pipeline for extracting quantitative information from microscopy videos and per-

formed all simulations, and Daniel Sussman conceived of the project and facilitated

the collaboration.

4.2.1 Inferring A Density-Dependent Transition Via Machine

Learning

Our primary objective in this study was to investigate the dynamics of the pulse-

induced flocking states observed in Fig. 4.3. However, before addressing the flocking

behavior, we sought to understand why the cells occasionally transitioned into vortex

states instead. Is there an externally tunable control parameter that determines which

state the cells self-organize into? If so, want to study flocking states furthest away

from the vortex-flocking transition point. Or, does the collective behavior depend on

intrinsic cell properties that cannot be directly controlled?

To obtain quantitative insights into the two states, we trained a cellpose seg-

mentation model to extract cell positions and orientations from individual frames of

microscopy videos [105]. The segmentation model produces a high-precision mask of

each individual cell, denoted by the white contour lines in Fig. 4.3. The cell orien-

tations (ni) were determined based on the head-tail asymmetry in their segmented

contours. From this data, we were able to construct coarse-grained density and ve-

locity fields (Eq.1.10) from vast amounts of experimental video data, and categorize

the collective motion states of each cell suspension by the polar order parameter and

enstrophy of the velocity fields.

Enstrophy, which quantifies the magnitude of circulation in a fluid, was derived

from the vorticity field ω(r, t) = ∇ × v(r, t). As shown in Fig. 4.4, the average

global cell density emerged as a key control parameter in determining whether the

cells formed a vortex or a flocking state. Specifically, vortex states predominated
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Figure 4.4: Vortex to flocking transition. The time-averaged polar order param-
eter and enstropy are shown as a function of average global density for suspensions
of sperm cells like those in Fig. 4.3. Each color here corresponds to a different exper-
imental sample, and dashed lines in (a) denote fits to hyperbolic tangent functions.

at low densities, while flocking states emerged at higher densities. This behavior is

reminiscent of the order-disorder transition in metric flocks (discussed in Chapter

2.1.1), though with a crucial distinction: at low densities, rather than remaining

disordered, the cells self-organized into coherent vortex structures.

It is clear from Fig. 4.4 that density alone does not control the transition between

vortex and polar states. Different samples at identical densities can exhibit a wide

range of polar order values, which suggests that there is at least one other parameter

intrinsic to the cells within samples that controls the transition. I return to this

point later later in this section. For now, I note that this analysis informs us that

flocking states in our experiments are most stable at high densities, and so we make

comparisons with Toner-Tu theory in this regime.
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4.2.2 Density Fluctuation Statistics

Toner-Tu theory provides remarkably precise and easily-tested predictions about the

statistical properties of density fluctuations in flocks. Beyond predicting the scaling

exponent for giant number fluctuations (Eq. 1.9), it also asserts that the scaling

coefficient depends on the specific shape of the ‘counting box’ used to measure these

fluctuations [117]. According to the theory, giant number fluctuations follow the

scaling relation: √
⟨δN2⟩ ≡ ∆n = K ′⟨n⟩α , (4.1)

where α = 0.8 and K ′ is a shape-dependent factor that scales with the aspect ratio

β =
ℓ||
ℓ⊥
, (4.2)

in which ℓ|| and ℓ⊥ represent the lengths of the counting box parallel and perpendicular

to the flocking direction, respectively. The theory predicts that this shape dependence

follows the relation:

K ′ = β−1/5 . (4.3)

As shown in Fig. 4.5a, the sperm cell flock exhibits giant number fluctuations with

a scaling exponent of 0.74, which is remarkably close to the theoretical prediction of

α = 0.8. Additionally, the magnitude of the fluctuations decreases as the counting box

becomes increasingly elongated along the flocking direction, approaching the shape

of a ‘needle’. Although the precise scaling with β deviates quantitatively from the

predicted value (Fig. 4.5a, inset), the qualitative agreement with Toner-Tu theory is

striking, demonstrating the robustness of its predictions even in strongly fluid-coupled

systems. These anomalous, anisotropic density fluctuations arise in Toner-Tu theory
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Figure 4.5: Density fluctuation scaling in flocking states. Data shown here
was obtained from flocks of sperm cells with the largest polar order values (highest
densities) from Fig. 4.4. (a) The giant number fluctuation scaling is shown when
fluctuations are computed within boxes of aspect ratio β (Eq. 4.2); for each value
of β, the scaling was fit to Eq. 4.1, and the value of K ′ is plotted in the inset. (b)
Density fluctuation correlation function measured in boxes separated by a distance
|δr| parallel to the flocking direction, δr = |δr|e|| (black), and boxes separated in the
transverse direction, δr = |δr|e⊥ (blue). The prediction from Eq. 4.4 is denoted by
the dashed grey line.

from long-ranged correlations of the form

⟨δρ(r, t)δρ(r + δr, t) ∝ |δr|−α , (4.4)

where α = 0.8. Directly measuring this correlation function is challenging [70], but

we find reasonable agreement with our experimental data Fig. 4.5b.

These results demonstrate that, at very high cell densities, wet active matter

systems with hydrodynamically coupled cells may still be described by standard

Toner-Tu theory. What about at lower densities though, where the system devel-

ops significant vorticity (Fig. 4.4b)? In the following section I discuss how one can

con
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4.2.3 Persistent Turning Particle Model

The mechanism underlying the vortex-flocking transition in our experiments remains

an open question. Direct numerical simulations of wet active matter systems become

computationally prohibitive as the number of agents increases, owing to the neces-

sity of calculating both fluid momentum and long-range particle-particle interactions.

Consequently, when studying collective dynamics involving thousands to millions of

interacting agents, it is essential to adopt a coarse-grained description [47] that cap-

tures the effects of hydrodynamic interactions [34].

The persistent turning model offers a useful framework for describing micro-

swimmers that continuously reorient while maintaining a characteristic trajectory

curvature [75]. In this model, particle positions are updated via self-propulsion as in

Eq. 2.14, while their orientational dynamics evolve according to:

θ̇i(t) =
1

|Ni|
∑
j∈Ni

sin(θi − θj) + ωi(t) (4.5)

ω̇i(t) = −1

τ
ωi(t) +

√
2

τ
σωζi(t), (4.6)

where Ni is the set of neighbors within a radial distance ℓ with which the ith cell aligns

its orientation, θi. The rotational noise ωi obeys an Ornstein-Uhlenbeck process,

with ζi a zero mean, unit variance Gaussian, that is characterized by the persistence

time τ and standard deviation σω. The correlations ⟨ω(t)ω(t′)⟩ ∝ e−(t−t′)/τ of the

rotational noise introduces persistent turning to the model, which at sufficiently large

τ and small σω may compete with the alignment interactions to produce macroscopic

vortex phases [75]. This model has been successfully applied to study various forms of

self-organized collective behavior, including vortex lattice formation in microtubule

suspensions [107], collective oscillations in E. coli suspensions [22], dynamic network

formation in C. elegans [106], and vortex crystallization in S. marcescens suspensions



66

Figure 4.6: Experimental and model trajectories. (a) Trajectories of di-
lute, isolated cells from our experiments. (b) Trajectories from our simulations of
Eqs. 2.14,4.5,4.6 that were fit to the experimental data.

[130]. The persistence time plays a key role in this model’s vortex-forming phase

behavior. When τ = 1, particles “forget” their current rotational frequency at each

time-step, and the dynamics of θi are dictated by polar alignment interactions. At

large values of τ though, ωi becomes correlated in time and introduces a persistent

turning, rotational motion to θi that compete with polar alignment.

Here, we seek to use this model to understand the vortex phase that arises in

Fig. 4.3b. To do so, we fit the freee parameters in Eqs. 2.14,4.5,4.6 to the experimental

data in dilute conditions where cell motion is dominated by the random swimming

motion of isolated cells. The self-propulsion speed (v0) is estimated by the sample

mean displacement of cells’ heads between successive video frames. The estimates for

the noise strength (σω) and memory time (τ) are obtained by fitting the statistics of

θi to an Ornstein-Uhlenbeck process [82]. As shown in Fig. 4.6, this fitting procedure

yields smoothly curving trajectories that qualitatively resemble those observed in
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Figure 4.7: Vortex to flocking phase diagram. The same data as in Fig. 4.4 is
shown here, but with polar and vortex order parameters now shown as a function
of both cell density and persistence time. Dashed black line denotes the order-to-
disorder transition line obtained from simulations of Eqs. 4.5-4.6.

experiments.

4.2.4 Vortex-Flocking Phase Diagram

Having identified cell density and persistence time as likely control parameters in our

toy model of sperm cell vortex and flocking states, we compare the theoretical phase

boundary with experimental observations. Fixing the self-propulsion speed and noise

strength in our model, we systematically study the ρ0 − τ phase diagram and find

a line of critical points that separate polar flocking states and globally disordered

states. In Fig. 4.7 I show that the phase boundary is remarkably close to the phase

boundary separating vortex and flocking states in our experiments.

4.3 Conclusion

In this chapter, we have demonstrated that long-lived flocking states of Bos taurus

sperm cells can be induced through transient pulsed flow in a viscoelastic medium.

The emergent collective behavior is well-captured by numerical simulations of a per-

sistently turning variant of the Vicsek model, which accounts for the intrinsic long-
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lived orientational correlations observed in individual sperm trajectories within this

quasi-2D environment. Notably, we have also identified giant number fluctuations

and transverse density correlation statistics that align, both qualitatively and quan-

titatively, with the expectations of Toner-Tu theory [117].

This agreement between experimental observations and theoretical predictions is

particularly noteworthy given that Toner-Tu theory, in its original formulation, ne-

glects momentum conservation between self-propelled agents and their surrounding

fluid. Such an omission is significant for microswimmers, where hydrodynamic inter-

actions are non-negligible. Prior theoretical work has suggested that flocking should

be inherently unstable in low-Reynolds-number active fluids [1]. The persistence of

collective order in our system, despite these constraints, may be partially explained

by the proximity of sperm to a solid substrate, which alters the surrounding hydro-

dynamic field [97]. However, substrate-induced damping would also be expected to

reduce the sperm-sperm alignment interactions that facilitate collective motion [56].

Another intriguing possibility is that sperm cells may directly transfer momentum

to the substrate, a hypothesis that has been proposed for decades in biological stud-

ies [89] but remains without definitive quantitative validation. The results presented

here provide new evidence in support of this hypothesis, although further investiga-

tion is required to conclusively establish its role.

Beyond the physical mechanisms underlying these collective states, the broader

biological implications of the observed swimming patterns remain uncertain. While

collective motion is widely observed across biological systems spanning many length

scales, the functional significance of sperm flocking or vortex states is unclear. Our

experiments, conducted in a biologically relevant viscoelastic medium under tran-

sient pulsed flow, reveal that sperm exhibit prolonged polar order, consistent with

predictions from Toner-Tu theory. However, in physiological settings, sperm navi-

gate complex, three-dimensional environments en route to fertilization. Recent work
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on active fluids on curved surfaces [103]—such as epithelial cell motion along the

gut [97]—has prompted extensions of Toner-Tu theory to account for topological

constraints [102]. By analogy, the azimuthal flocking modes predicted in tubular ge-

ometries [102] may suggest a potential biological function for the vortex phase, such

as acting as a transient storage or reservoir mechanism for sperm cells.

Finally, our findings bear relevance to agricultural assessments of male fertility.

While human sperm motility is typically evaluated via optical microscopy, such tools

are often unavailable in field settings for livestock breeding. Instead, mass motil-

ity—the collective movement of sperm cells—has been employed as a crude diagnostic

for fertility [32]. However, this approach is often unreliable, as sperm concentration

and collective swimming speed are not always positively correlated [63]. The mech-

anisms governing mass motility remain poorly understood, with evidence suggesting

contributions from both intrinsic sperm properties, such as head morphology [15, 85],

and extrinsic factors, including fluid rheology [53]. The results presented here provide

a novel approach to assessing mass motility by linking it to the fundamental swim-

ming dynamics of individual sperm, offering a more mechanistic perspective on the

emergence of collective sperm motion.
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Chapter 5

Deep Learning the Heterogeneous

Dynamics and Morphology of

Follower/Leader Cancer Cells

All of the systems discussed in this dissertation up to now have been composed of

only a single “species”. In nature though, heterogeneous populations interact with

each other (e.g., via cooperation or competition) at both microscopic and macroscopic

scales. A particularly striking and highly relevant example of heterogeneous interact-

ing active agents is the case of metastatic tumors. These tumors are not composed

of a single type of cancer cell, but instead a diverse micro-ecosystem where cancerous

cells differentiate into distinct ‘leader’ and ‘follower’ subpopulations [128, 91]. Leader

cells (LCs) play a critical role by creating pathways through the extracellular matrix

(ECM), enabling tumor invasion toward nearby blood vessels and facilitating metas-

tasis (see Fig. 5.1). The precise role of follower cells remains under investigation, with

some studies suggesting they are merely non-invasive cancer cells and others propos-

ing that they actively support leader cell proliferation [62]. There is clear evidence,

however, that the interactions between leader and follower cells exhibit non-reciprocal
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Figure 5.1: Schematic diagram of the role LCs play in cancer invasion.
Pericellular proteolysis is used to degrade the ECM and then forcibly deform the
ECM in order to create spaces for them to elongate into. LCs also deposit matrix
components such as fibronectin as they generate low-resistance tracks, which provides
adhesion sites that enhance follower cells mobility (Figure taken from Ref. [128]).

interactions with one another at a coarse-grained level [50]. The presence of leader

cells complicates cancer treatment, as conventional chemotherapy can inadvertently

increase the proportion of aggressive leader cells in the tumor microenvironment [61].

This chapter focuses on the cooperative interactions among heterogeneous cancer

cell populations within the tumor microenvironment, exploring methods for learning

coarse-grained representations of these interactions, and how such representations can

enhance our understanding of tumor metastatic potential.

5.1 Introduction

In this section, I review the diversity of biological settings in which emergent leader-

like behavior manifests, and their relevance to clinical outcomes. The existing active

matter frameworks for studying the dynamics of leader-induced multi-cellular stream-

ing are then discussed, as well as the areas in which future work can improve on.
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5.1.1 Follower and Leader Cell Heterogeneity

As previously mentioned, leader cells are vaguely defined by their functional role

of generating low-resistance tracks through which other follower cells may invade

out from the primary tumor [17]. The lack of a more formal definition is due to

the sheer variety of ways that leader cells can manifest [128]; in fact, in a variety

of settings the leaders are not cells at all but rather cancer-associated fibroblasts

[7, 37, 94]. Leader-like activity has even been reported in wound healing of healthy

tissue [80, 33]. Additionally, leader cell specialization is not restricted to cancers in

any particular bodily location, and has been experimentally observed in brain [79],

breast [86, 139], bladder [119], and lung [62, 108] cancer cells. Across these diverse

settings though, ‘leaders’ are consistently identified as a sub-population of cells with

uniquely persistent trajectories that stimulate the activity of nearby cells.

Regardless of the exact setting and bio-chemical mechanism by which leader and

follower cells interact with one another, the macroscopic phase behavior of the tumor

that arises from their interactions remains effectively the same: starting from a uni-

form configuration (i.e. a spheroid or a monolayer sheet), leader cells appear at the

interface of the cells and the surrounding medium and generate invading multi-cellular

streams. In wound-healing experiments on scratched monolayers of healthy tissues,

this behavior is reffered to as ‘fingering’ [101] because of its resemblance to the viscous

fingering at the interface of two equilibrium fluids. In tumor metastasis experiments,

this behavior is called ‘collective invasion’ [139]. This collective behavior is not a

generic feature of homogeneous cellular aggregates, but rather has been directly at-

tributed to the presence of leader cells. As shown in Fig. 5.6, a tumor composed solely

of follower cells is non-invasive and remains stationary over time As leader cells are

introduced though, multi-cellular streams of cells begin protruding from the tumor.

In vivo experiments have found that the tumors exhibiting multi-cellular streaming

of cells are highly correlated with proximity to blood vessels, whereas tumors with
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Figure 5.2: Functional role of leaders. Snapshots of three different tumors com-
posed of all follower cells except for a leader cell population fraction of 0%, 1% and
10% in (a)-(c) respectively. Images are taken 48 hours after spheroid are initially im-
planted in an extra cellular matrix composed of collagen. Figures taken from Ref. [62].

only single cell invasion have no proximity correlation, suggesting that this mode of

collective dynamics is a key step in tumor metastasis [84].

While the functional role of leader cells is intuitive and ubiquitous, that of follower

cells is less clear. In some experiments on breast cancer cells, leaders were found to

effectively just be high-energy followers which, upon depleting their energy, exchange

positions and roles with a trailing follower [139]. In other experiments on lung cancer

cells, followers secreted a chemical (VEGF) that reduced the number of error made by

leaders during mitosis (Fig. 5.3). This latter case is particularly interesting because

follower cells are not passive agents, but instead interact cooperatively with leader

cells and can be essential for sustained collective invasion [62, 50].

A natural question that arises from these observations is: can one can construct

a phenomenological theory of tumor metastasis for a binary of system of follower

and leader cells with non-reciprocal interactions? And subsequently, could we use

such a model to better understand the mechanical instability that leads “collective

invasion”? In the next section, I review some approaches taken in the literature

to construct minimal agent-based and hydrodynamic models of leader-cell-induced

collective invasion.
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Figure 5.3: Functional role of followers. Pie charts show how often follower and
leader cells (in isolation) make mitotic errors. Follower cells rarely make errors during
cell division, while leaders are plagued by instabilities that result in cell death. Figures
taken from Ref. [62].

5.1.2 Minimal Models of Monolayer Migration

The simplest agent-based model that statistically captures the collective motion of

cells in a confined, actively moving epithelium is [101]

dvi

dt
= −αvi +

∑
j

[
falignment
ij + fatt-repij

]
+ σηi , (5.1)

where the noise (ηi), representing a random motility force generated by the cell,

evolves via an Ornstein-Uhlenbeck process (as in Chapter 4.2.3)

dηi

dt
= −1

τ
ηi + σζi . (5.2)

In addition to capturing the statistical behavior of cells in the ‘bulk’ of an epithelium

[101], it also contains the essential ingredients to spontaneously generate multi-cellular

streams [99].

There have been several attempts to reproduce experimentally observed epithelial
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Figure 5.4: Agent-based and hydrodynamic models of leader-cell invasion.
(a) Simulation snapshot of a variant of Eqs. 5.1-5.2, showing local polarization of
‘bulk’ cells and protruding streams of cells. (b) Schematic of a minimal hydrody-
namic model of multi-cellular streaming. Figures taken from Ref. [99] and Ref. [133]
respectively.

fingering during wound healing with this model [101, 116]. However, in order to

capture the structure of the epithelial fingers – e.g. a decreasing cell density from the

bulk to the tip of a stream and a highly polarized velocity field – several additional

terms need to be added to the model which, while biologically motivated, are rather

arbitrary and ad hoc in their implementation [116]. In the same vein, one can include

information about the role of cell rheology in multi-cellular streaming and study

shape-based cell dynamics, as in the vertex model [111, 112], but parameter phase

space is so large when doing so that a systematic study of it is intractable [66].

Even with just Eqs. 5.1-5.2, the cell-cell interaction term,
∑

j

[
falignment
ij + fatt-repij

]
,

alone can have up to eight free parameters itself, in addition to the other three

free parameters {α, σ, τ}. Some studies have carefully tuned these parameters to

obtain simulations that reproduce experimental observations [101, 116], but their

physical meaning is ambiguous. The conventional method to circumvent the issue of

a large parameter space in agent-based models is to instead study the coarse-grained

dynamics of the agents’ density and velocity fields.
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For example, one model of leader-driven multi-cellular streaming is a modified

Toner-Tu theory (Eqs. 1.13-1.12) which imposes incompressibility condition

∇ · v = 0 , (5.3)

and takes the transport coefficient α in the free energy functional (Eq. 1.13) to be

α(f) = a0 + f a1 , (5.4)

where f is a curvature based force that decays away according to

∂f

∂t
= −rf +Df∇2f , (5.5)

but which has the boundary condition on the leading front

f
∣∣
leading front

= q2h . (5.6)

Eqs. 5.4-5.6 represent a phenomenological description of leader cell dynamics in that

the leading edges of the active fluid, where leader cells are typically found, have higher

levels of activity (α) than the bulk fluid [133]. Other hydrodynamic models have found

that multi-cellular streaming arises from more conventional mechanisms such as cell-

substrate friction [121] or a kinematic instability [4]. Some models even take into

account cell-division and consider a growing tumor invading a passive surrounding

fluid [13].

Still absent in the literature is an experimentally informed model of multi-cellular

streaming that fully takes into account the non-reciprocal interactions of follower and

leader cells. A key difficulty in constructing such a model is that the complexity of

Eq. 5.1 was substantial even for a single-species of cell. Constraining the parameter
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space of a two-species model would be a significant challenge. Another issue is that

even if we could write down such a model and fit it to experimental data, the values

that get will be ambiguous and arbitrary to the specific functional forms we choose

to constrain the cell-cell interactions to. In the following section, I discuss a potential

method that, rather than asserting a specific model and fitting it to data, instead

leverages neural networks to “discover” symbolic forms for the interactions governing

monolayer cell dynamics.

5.2 Methods

In this section I review the theory of force inference neural networks [29], and then

discuss my application of it to living cellular monolayers. The experimental system

considered here is not the two-population follower/leader systems of cancer cells pre-

viously discussed, but a single-species population of MDCK cells in a monolayer. The

implementation is available as a Python package at https://github.com/crpackard/monolayer-

gnn.

5.2.1 Force Inference Graph Neural Network

The method we use is motivated by Cranmer et al.’s work in Ref. [29], in which

they designed a graph neural network model that could learn approximate symbolic

expressions for the interactions between particles from solely their trajectory data.

Within the model, each particle is represented as a graph node, as schematically

depicted in Fig. 5.5a. Each node is equipped with a feature vector containing a list

of degrees of freedom that the interaction between pairs of particles may depend on,

say, position and velocity

ni(t) = {ri(t),vi(t)} . (5.7)
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Each node is also given a label vector containing the degrees of freedom that we

wish to predict, say, acceleration ai. The neural network is then trained to learn the

pair-wise interaction, ϕ (ni,nj), which (when summed over all interacting neighbors)

predicts the label vector. In the case where one is predicting the accelerations of

particles via

apredicted
i (t) =

∑
j∈N

ϕ (ri(t),vi(t), rj(t),vj(t)) (5.8)

the pair-wise interaction can be directly interpreted as Newtonian-like forces. If this

graph neural network model can be trained to predict the instantaneous acceleration

of all objects in a system, then ϕ becomes equivalent to a high-dimensional represen-

tation of the pair-wise interaction. Methods such a symbolic regression can then be

used approximate ϕ with a low-dimensional functional expression that can be further

analytically studied.

In Cranmer et al.’s work, this force inference technique was applied to synthetic

datasets of particles interacting via classical forces such as harmonic, gravitational,

Coulomb forces, etc., and the graph structure is trivially all-to-all. In my work, I apply

force inference to cellular monolayers which have a significantly more complex graph

structure (see Fig. 5.5b). In the following section I review how I employ segmentation

and tracking models to construct these monolayer graphs and extract cell features.

5.2.2 Trajectory Extraction

My Python package (https://github.com/crpackard/monolayer-gnn) extracts single-

cell trajectories from microscopy videos of monolayers by creating a pipeline that

passes raw video data, frame-by-frame, through a segmentation model [105], after

which a probabilistic Bayesian inference neural network tracks individual cell iden-

tities across sequential frames by comparing their segmentations [125]. An example

output of the segmentation model is shown in Fig. 5.6a, and the tracked motion of
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Figure 5.5: Graph construction. Schematic example of how (a) an ensemble of
simple particles are mapped to an all-to-all graph in Ref. [29], and (b) an monolayer
of cells are mapped to a Voronoi graph in our work (white lines denote graph edges
and orange arrows denote cell velocities).

Figure 5.6: Example of segmentation and tracking in a 2D monolayer. (left)
A snapshot of a monolayer of cells from an experiment is shown with the cytoplasm
boundary contours predicted by a segmentation model shown in bright green. (right)
The computationally tracked trajectory of each cell contour from the left plot is shown
here, denoted by sequences of randomly colored circles at cells’ centroids.
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the cells in Fig. 5.6b.

The output of the above process is a time-series of cell contours for hundreds or

even thousands of cells. Seeking a particle-based representation of cells, we define cell

dynamics in terms of the centroid, ri(t), of each cell. The instantaneous velocity and

acceleration of a cell is then defined using finite-differences as

vi(t) ≈
ri(t+ dt) − ri(t)

dt
(5.9)

and

ai(t) ≈
ri(t+ dt) − 2ri(t) + ri(t− dt)

dt
. (5.10)

This information alone is sufficient to train a model via Eq. 5.17 and seek an effective

force law – or, equivalently, an intercellular potential – between cells.

In traditional cellular models, like the Voronoi and vertex models [111], one would

now resort to computing the set of neighbors (i.e. graph edges, N ) in Eq. 5.17 using

the instantaneous configuration of centroid positions. This method yields graphs that

like in Fig. 5.5b. Here though, we have access to the full cell contour data which allows

us to not only measure which cells are in physical contact with each other, but also

quantify the degree of contact. For example, in Fig. 5.7 I train a segmentation model

to identify the nuclear boundary (rather than the cytoplasmic boundary) of each cell,

and then evaluate the lines of contact between all nuclei.

The cell contour data can be used for more than quantifying the connections be-

tween cells. We can, for example, instead of coarse-graining cells into point particles,

we could instead coarse-grain them into ellipses defined by

(x′ − x0)
2

a2
+

(x′ − y0)
2

b2
= 1 , (5.11)
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Figure 5.7: Quantifying cell-cell contact. While pixels denote the contours of cell
nuclei in a monolayer. Green pixels denote the points that are shared between two
cells.

where x′ and y′ are the rotated coordinates

x′
y′

 =

 cos θ sin θ

− sin θ cos θ


x− x0

y − y0

 . (5.12)

Instead of only having a centroid (x0, y0), in this representation cells are now also

characterized by major (a) and minor (b) axes, and an orientation (θ). Now, instead

of Eq. 5.13, we have the feature vector

ni(t) = {ri(t),vi(t), ai(t), bi(t), θi(t)} , (5.13)

which allows us to learn more complex representations for the interactions between

two cells. An example of ellipse fits to cells of various shapes is shown in Fig. 5.8.

This is only one example of a shape-based model that could be studied with the force

inference technique presented here. Alternatively, we could Fourier transform the

cell contour and use the first n Fourier modes as node features in the graph neural
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Figure 5.8: Fitting cell shape to an ellipsoid. (left) a plot of the eccentricity (e) of
a cell as a function of the ratio of its minor axis (b) to its major axis (a), with example
plots of the ellipse at representative values of b/a. (right) Fits of to segmented cells
to ellipses are denoted by red lines, with the corresponding eccentricity displayed on
top.

network. These ideas are pure conjecture at the moment though. Before speculating

any further, in the following section I provide preliminary evidence that the graph

neural network method outlined here can indeed learn effective pair-wise interactions

between cells in the simple case of point particle representations, as in Eq. 5.17.

5.2.3 Proof of Concept

The limiting factor in applying the force inference graph neural network model to

living tissues is the need for a substantial amount of high-resolution microscopy video

data. At present, I have not been able to acquire and study a large number of datasets,

but Thomas Angelini kindly shared a dataset of an MDCK monolayer in fluid-like

state with which I could test the model on [27]. After extracting trajectories from all

cells within the dataset, I trained a model to predict cell accelerations via Eq. 5.17.

In Fig. 5.9 I show that the model does indeed learn an effective pair-wise interaction

between cells that predicts their change in cell velocities. There is a nuance to this

training procedure though.

Within Eq. 5.17 the time-step size dt with which one computes cell velocities

and accelerations is a free parameter. When the time-lapse between successive video

frames is short relative to the time-scale over which cells migrate, then the velocities
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Figure 5.9: Correlation between model predictions and observed values. The
ability of performance of a model (Eq. 5.17) at predicting in a cell’s velocity within a
time-interval dt is shown. Predicted values are shown on the y-axis, and true values
on the x-axis.

and accelerations of the centroid that one measures using a value of dt = 1 will be

dominated by noisy changes in cell shape outputted by the segmentation model rather

than true cell displacements. Alternatively, at time-scales that are long relative to

the characteristic time-scale over which cells exchange neighbors then the observed

velocities and accelerations can no longer be attributed to the interaction of their

instantaneous set of neighbors. There should exist though, some optimal value of

dt that resolves cell-cell interactions that produce changes in cell dynamics that are

discernible from random noisy motion. In Fig. 5.10a I show preliminary data that

such an optimal time-scale does indeed exist, and in Fig. 5.10b I show an example of

the dynamics it predicts.

Having shown that a graph neural network can be trained to learn pair-wise

interactions between cells that predicts their collective motion, we can turn to the

question of exactly what interaction it learned? Here I write this interaction as

fij = ϕ (ri(t),vi(t), rj(t),vj(t)) . (5.14)

In 2D, this interaction a function of eight parameters. However, we can invoke the
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Figure 5.10: Results of training GNNs on experimental data. (a) The loss
function and correlation coefficients of models trained via Eq. 5.17 are shown as a
function of time-step size; correlation coefficients correspond to the same type of
measurements as in Fig. 5.9. (b) A plot of the true cell velocities (green) and the
predicted cell velocities (red) for the model with a value of dt = 20 that had the lowest
loss value in (a). Note that cells which do not have red arrows correspond to cells
that the segmentation and tracking packages were unable to track for the duration of
the time interval [t− dt, t+ dt].
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Figure 5.11: Learned pair-wise interaction. The x and y components of the
learned force (Eq. 5.15) for the optimal value of dt in Fig. 5.10 is shown on the left
and right respectively. The y-axis is scaled by the average linear size of a cell (ℓ0),
and the x-axis is scaled by the characteristic speed v0 = ℓ/dt.

isotropy of space to separate the x and y Cartesian components of our vectors, and

we can invoke the homogeneity of space to demand that interaction depend only on

the relative separation distance between cells and not on their absolute positions.

Therefore, we can reduce the learned model to a function of only three variables,

fij,k = fij,k(rj,k − ri,k, vi,k, vj,k) , (5.15)

where k = x, y denotes the Cartesian axes. In Fig. 5.11 I show the average value

of fij,k for the optimal value of dt in Fig. 5.10. While noisy, the data shows that

there are two distinct regimes of interactions, attractive and repulsive. There is not

sufficient data to fully resolve the interaction, but these results demonstrate that such

inference is possible.
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5.2.4 Application To Heterogeneous Follower and Leader Cell

Populations

The method detailed here can be easily extended to the case of interactions between

heterogeneous species of particles. For the case of collective invasion by cooperatively

interaction follower and leader cells, we can denote species types by and integer si =

{−1,+1} and extend the feature vector in Eq. 5.13 to

ni(t) = {si, ri(t),vi(t)} . (5.16)

This way, the neural network can make predictions

apredicted
i (t) =

∑
j∈N

ϕ (si, ri(t),vi(t), sj, rj(t),vj(t)) , (5.17)

based on interactions that depend on the combination (si, sj).

5.3 Phenotypic Heterogeneity of Follower and Leader

Cells

The ideal setting in which to apply the force inference graph neural network model

to study the heterogeneous interactions between follower and leader cells is the case

of cells crawling in 2D on a dilute substrate. In collaboration with the Winship

Cancer Institute, we conducted a series of these experiments on non-small lung cancer

cells, varying the proportion of follower-to-leader cells in each experiment. After

extracting cell trajectories from all experiments, we found that the data was collected

at improper time-scales for a force inference analysis. Over the 15 hour interval that

data was collected for, cells had migrated, on average, only half a cell diameter. This

meant that we could not acquire sufficiently large datasets with reliable velocities
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Figure 5.12: Heterogeneity in follower and leader cell shapes. Representative
snapshots of follower and leader cells in pure, isolated populations are shown in (a)
and (b) respectively. Note that leaders in (b) tend to be more elongated on average.
Figure taken from Ref. [62].

and accelerations for model training. Although we could not study the cell dynamics,

the experiments did provide us with a wealth of static image data to study the

heterogeneity of follower and leader cell phenotypes.

As shown in Fig. 5.12, follower and leader cells do not only have heterogeneous

interactions with one another, but also tend to have different morphologies. Leaders

tend to be elongated and display a mesenchymal phenotype, whereas followers tend to

be more round and display an epithelial phenotype [101]. Currently, this heterogeneity

is not used to distinguish follower and leader cells and instead a labor-intensive genetic

labeling process is used [62]. Is it possible though to build a classification model that

– given only the static image data of a cell – can identify which sub-species it belongs

to? In the remainder of this section I discuss some of the preliminary research I have

done to explore this question.
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5.3.1 Population Statistics

As a first pass at examining the differences in follower and leader cell shape in our

experiments, I first look at the probability distributions of shape parameters. In

Fig. 5.13 I show the distributions of cell size and shape in dilute, pure populations of

follower and leaders. Separate distributions are shown for different configurations of

cells: singlets, doublets, and triplets, which correspond to the number of cells inter-

acting with each other. Data is separated this way in order to study both the shape

of isolated followers and leaders and the shape differences that arise from their inter-

actions with each other. I find that the distribution of cell areas for all configurations

conforms to a Gamma distribution,

p(x;α, β) =
xα−1e−βxβα

Γ(α)
, (5.18)

and the distribution of cell eccentricities conforms to a Weibull distribution

p(x;α, β) =
β

α

(x
α

)k−2

e−(x/α)β . (5.19)

The fitted values of (α, β) clearly differ between follower and leader cells for both

these distributions, and thus based purely on measuring these coarse-grained shape

parameters we have some predictive ability for classifying a cell.

These distributions have currently only been measured in isolated follower and

leader cell populations. Do characteristic cell shapes change co-cultures in a manner

that causes the two species’ distributions to converge or diverge? Or are these phe-

notypic differences an intrinsic property of follower and leader cells that do not in the

presence of other cell species? The raw experimental data required to answer these

questions has already been collected.
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Figure 5.13: Area and eccentricity statistics. Data shown was collected from
pure populations of either entirely follower (green) or entirely leader (red) cells. Top
row shows data for the cross sectional areas of cells, where solid circles denote ex-
perimental data and dashed lines denote fits to Eq. 5.18. Middle row shows data for
the eccentricity of cells, as defined in Fig. 5.8. The bottom row shows representative
examples of the different cell configurations.
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5.3.2 Image-Based Classification

Comparing statistical differences between populations is a very old technique in anal-

ysis of biological systems. The image data that we have collected in our experiments

is also highly amenable to modern image classification neural network models. Using

a pre-trained image classifier as a feature extractor, as shown in Fig. 5.14, we fine-tune

the model for the task of binary classification of leader and follower cells. The model

takes a 224 × 224 image of a single cell as input, and outputs a 2D vector, {p1, p2},

denoting the probability belongs to one of the two image classes (follower or leader).

In our experiments, leader cells are labeled by a fluorescent chemical that we use

to assign cells truth labels. The model is given gray-scaled image data without the

fluorescent label so that it learns to predict cell type from the structural properties

of the cell.

To test the ability of the image classifier to consistently identify cell types across

multiple experiments, we train a different model for each of the seven experiments

we perform, and test the performance of each one on all other datasets. In each

experiment, the ratio of follower to leader cells is varied (see Table 5.1 for details).

The resulting cross validation matrix is shown in Fig. 5.15. The lower bound of

Date NF NL % leadersa N b
train

2023/05/08 190719 126025 N/A 252050
2023/05/30 199629 235184 N/A 399258
2023/12/04 105605 124520 54.1% 211210
2024/01/31 381109 16585 4.2% 33170
2024/02/09 26674 191731 87.8% 53348
2024/03/08 272336 135159 33.2% 270318
2024/03/12 115189 279443 70.8% 230378

Table 5.1: The number of follower (NF ) and leader (NL) cell images collected each
experiment are shown. For co-cultue experiments, the experiment-averaged percent-
age of leader cells present is listed.

a Defined by NL/(NF +NL) × 100%; N/A for pure cultures.
b Assuming balanced training data, Ntrain = 2 × min(NF , NL).
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Figure 5.14: Schematic diagram of classifier model. We use a ResNet50 back-
bone that has been pre-trained on the imagenet dataset to detect a diverse range of
features. Dense, fully-connected layers are then appended to the model to learn how
to combine the features to predict the species of a cell. Figure taken from Ref. [126].
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Figure 5.15: Cross validation of image classifier model. The classification accu-
racy of a model trained on one day and tested on another day is listed for all possible
pairs. Training accuracy is denoted by the diagonal elements.

accuracy values is set to 0.5, i.e. the probability one would obtain if randomly guessing

cell types. Diagonal elements of the matrix, denote upper bounds of accuracy since

it is the accuracy achieved on the training dataset. Our results demonstrate that

the generic classification model we employed here can consistently identify structural

features of follower and leader cells in both pure populations and co-cultures of cells.

The specific classification model we employ here was chosen as a convenient, low

computational cost option for a preliminary study. More advanced architectures like

EfficientNet [115] may improve overall accuracy scores.
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5.4 Conclusion

In this chapter, I reviewed the phenomenon of collective invasion via multi-cellular

streaming that is observed in diverse populations of cancer cells throughout the body.

Although this mode of migration, and the leader cell heterogeneity that gives rise

to it, are well-known to be associated with metastasis and poor clinical outcome

[84, 61], the mechanical interactions between the cells that gives rise to it remain

elusive. Here, I outlined a computational pipeline – from trajectory extraction to

force inference – for discovering a symbolic expressions for the pair-wise interactions

between cells, and gave a simple demonstration for the case of a fluid-like epithelial

monolayer. With additional data, a future exploratory study could investigate what

cell-cell interactions are consistently learned across multiple experiments, and how

those interactions depend on the cell properties that are included in the feature vectors

of nodes in the graph.

There are other open questions about force inference graph networks that could

be studied without experimental data though. For example, we know that the dy-

namics our model learns is strongly dependent on the time-scale (dt) that we resolve

velocities and accelerations at. It is not obvious though whether varying dt leads to

entirely new functional forms being predicted for the interactions between particles,

or whether parameter values simply get re-scaled. A simple test one could perform is

to generate synthetic particle trajectory data from numerical simulation in which one

knows the true underlying interaction, as in Ref. [29]. Rather than using exact veloc-

ities and accelerations as input into the force inference model though, models would

be trained on velocities and accelerations obtained from finite-difference calculations

as in Section 5.2.2. By varying dt, one could directly observe how the true pair-wise

interaction transforms as forces are inferred at longer and longer time-scales. This

work would provide an incredibly important frame of reference when later choosing

a time-scale to study the dynamics of cellular monolayers.
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Figure 5.16: Correlation between shape and dynamics. The average orienta-
tional alignment between a cell’s axis of elongation (ni) with its instantaneous velocity
vector (vi) for follower (F) and leader (L) cells at different values of eccentricity (as
defined in Fig. 5.8).

I also showed how the segmentation and tracking pieces of the pipeline can be

used to extract vast amounts of single-cell shape and image data that can be used

to study population statistics as well as train image classification neural networks.

A preliminary analysis of this data showed that there are phenotypic heterogeneities

between followers and leaders that is consistent across experiments spaced months

apart. A straight-forward extension of this work would be to test d
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Chapter 6

Conclusions

This dissertation explores the collective behavior of active matter systems through

the lens of minimal models, where complex interactions between self-propelled agents

are distilled into a few fundamental rules, allowing us to identify universal behaviors

across a wide range of systems.

In Chapter 2, we investigated the phase transition in the Vicsek model, a fun-

damental agent-based model of flocking. We provided numerical evidence that both

metric and topological flocks exhibit the same macroscopic phase behavior at the

order-disorder transition. This result supports the hypothesis that the large-scale

behavior of a system is independent of microscopic details and instead governed by

key properties like dimensionality and symmetry.

In Chapter 3, we studied the effects of hierarchical reaction times on flocking dy-

namics. We introduced a model that incorporates time-delayed interactions between

agents and demonstrated the emergence of a novel PT-symmetric phase can be at-

tributed to the presence of microscopic non-reciprocal forces that self-organized in

space to drive the spatial-temporal patterning we observe.

In Chapter 4, we examined the collective behavior of Bos Taurus sperm cells. Us-

ing machine learning techniques, we identified a density-dependent transition between
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vortex and flocking states. We showed that the flocking state exhibits giant number

fluctuations and transverse density correlation statistics consistent with Toner-Tu

theory, and that the transition to the vortex state can be attributed to an intrinsic

persistent turning behavior of the cells.

In Chapter 5, we developed a deep learning framework to infer the heterogeneous

dynamics and morphologies of follower/leader cancer cells. We demonstrated that

a graph neural network can be used to predict collective cell motion from pair-wise

interactions and outlined a strategy to collect trajectory data from heterogeneous

populations of cells and apply this method to identify dynamical and phenotypic

differences.

These studies demonstrate the power of minimal models to capture essential fea-

tures of flocking phenomena across different biological systems. By simplifying com-

plex interactions, we can gain insights into the fundamental principles governing col-

lective behavior and identify potential universality classes.

There are several avenues for future research. One direction is to further explore

the role of non-reciprocal interactions in active matter systems. While Chapter 3

focused on time-delayed interactions, other forms of non-reciprocity, such as those

arising from hydrodynamic interactions or substrate coupling, could be investigated.

It would also be interesting to examine how different types of non-reciprocity influence

the stability and dynamics of flocking phases.

Another promising area is to extend the deep learning framework developed in

Chapter 5. The current model could be refined to incorporate more detailed cell fea-

tures, such as cell shape and internal dynamics. This could lead to a more comprehen-

sive understanding of cell-cell interactions and the emergence of collective behavior

in cellular systems. Additionally, the framework could be applied to other biological

systems, such as bacterial colonies or tissues, to investigate the role of heterogeneity

in collective dynamics.



97

Appendix A

Hidden Non-Reciprocity In The

Vicsek Model

In these notes, I show that the Vicsek model has an implicit non-reciprocity in the

interactions between particles, which is not accounted for in Toner-Tu theory. The

polar alignment interaction in the Vicsek model (Eq. 1.2) is written here explicitly as

an alignment with the mean orientation of its neighboring particles,

⟨vj(t)⟩j∈Ni(t) ≡
1

|Ni(t)|
∑

j∈Ni(t)

vj(t) (A.1)

This many-body alignment interaction can be expressed as the sum of pair-wise,

Newtonian-like forces by considering the case of a (binary) interaction between two

particles where

vb
i (t+ ∆t) ≡ 1

2

[
vi(t) + vj(t)

]
If we define the ‘force’ exerted on particle i within a time-interval ∆t as

fi(t) ≡
∆pi(t)

∆t
= m

∆vi

∆t
= m

vi(t+ ∆t) − vi(t)

∆t
,
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then the force exerted by particle j on particle i in a binary collision is

f bij(t) =
m

2∆t
(vt

j − vt
i) (A.2)

which obeys Newton’s third with f bij = −f bji.

Having defined the reciprocal force (Eq. A.2) exerted between two interacting

Vicsek particles, the many-body alignment interaction (Eq. A.1) can be written in

terms of these forces by a simple re-arrangement of terms

⟨vj(t)⟩j∈Ni(t) =
1

|Ni|
∑
j∈Ni

[
(vj − vi) + vi

]
(A.3)

⟨vj(t)⟩j∈Ni(t) =
1

|Ni|
∑
j∈Ni

vi +
1

|Ni|
∑
j∈Ni

(vj − vi) (A.4)

⟨vj(t)⟩j∈Ni(t) = vi +
2∆t

m|Ni|
∑
j∈Ni

f bij (A.5)

This can be more readily seen to resemble Newton’s second law, F = ma = m∆v
∆t

, by

defining the total force exerted by all neighboring particles on particle i within the

time interval ∆t as

Fi(t) ≡ m
⟨vj(t)⟩j∈Ni(t) − vi(t)

∆t
(A.6)

such that

Fi(t) =
2

|Ni|
∑
j∈Ni

f bij (A.7)

This expression provides a completely equivalent description of the particle dynamics

as Eq. A.1, but is written explicitly in terms of binary reciprocal interactions f bij and

a potentially non-reciprocal weighting |Ni|−1 of those forces.

While the binary collision force (Eq. A.2) obeys Newton’s third law - with f bij+f bji =

0 - when the many-body weighting |Ni|−1 in Eq. A.7 is taken into account, the Vicsek
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model allows this relationship to be violated, and the non-reciprocity of an interaction

can be defined as

ψij ≡
2

|Ni|
f bij +

2

|Nj|
f bji (A.8)

such that ψij = 0 when |Ni| = |Nj|. Written explictly in terms of the velocities of

particles i and j, this non-reciprocity vector takes the form

ψij =
( 1

|Ni|
− 1

|Nj|

)(
vt
j − vt

i

)
(A.9)

for m,∆t = 1.
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Appendix B

Coarse-Graining The Vicsek Model

In the previous section I showed that non-reciprocal forces in the Vicsek model arise

from unequal numbers of interacting neighbors, and that the magnitude of the non-

reciprocity is directly proportional to the difference in the inverse neighbor-number

ui = |Ni|−1 (B.1)

Here I calculate how gradients in ui couple to particle velocities and coarse-grain into

macroscopic interactions. First I consider the term
∑

j µijvi, and write

µij = ui − uj (B.2)

A particle i sitting at the origin of the 2D square lattice shown in Fig. ?? then

experiences the total interaction

−
∑
j

µij =
[(
uϵ,0 − u0,0

)
+
(
u−ϵ,0 − u0,0

)]
+
[(
u0,ϵ − u0,0

)
+
(
u0,−ϵ − u0,0

)]
(B.3)

where the minus sign on the l.h.s. is introduced to write the expression as deviations

from particle i located at (x, y) = (0, 0). Further re-arranging the terms on the r.h.s.
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as

−
∑
j

µij =
[(
uϵ,0 − u0,0

)
−
(
u0,0 − u−ϵ,0

)]
+
[(
u0,ϵ − u0,0

)
−
(
u0,0 − u0,−ϵ

)]
(B.4)

allows the quantities in parentheses to be re-written as forward finite differences by

taking

lim
ϵ→0

−
∑

j µij

ϵ
=
[
∂↑xu0,0 − ∂↑xu−ϵ,0

]
+
[
∂↑yu0,0 − ∂↑yu0,−ϵ

]
Applying the forward finite difference operator again, we obtain the final result

lim
ϵ→0

−
∑

j µij

ϵ2
= ∂↑

2

x u−ϵ,0 + ∂↑
2

y u0,−ϵ (B.5)

Summing this microscopic interaction over all particles in the system, we obtain the

coarse-grained hydrodynamic interaction

N∑
i=1

[
lim
ϵ→0

∑
j µij

ϵ2
vi

]
δ
(
r− ri(t)

)
= −∇2 1

N (r, t)
m(r) (B.6)

which is accurate to O(ϵ).

This approximation is actually accurate to O(ϵ2) though, which can be shown by

instead using the central difference operator defined by

∂↕xu(x, y) =
u(x+ ϵ, y) − u(x− ϵ, y)

2ϵ
(B.7)

∂↕
2

x u(x, y) =
u(x+ ϵ, y) − 2u(x, y) + u(x− ϵ, y)

ϵ2
(B.8)

Applying Eq. B.8 to both bracketed terms in Eq. B.4, leads to the exact same result

Eq. B.6 as obtained with the forward difference operator.

We can gain a physical intuition for Eq. B.6 by recognizing it as a diffusive term
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for the quantity N (r)−1 that senses the net flux of N (r)−1 through a boundary via∫
V
dV ∇ · (∇ 1

N ) =
∫
∂V
dS · (∇ 1

N ). Loosely speaking, the term measures the local

non-reciprocity - proportional to ∇ 1
N - and then compares it with the non-reciprocity

of the surrounding region. The response of the system to such gradients in non-

reciprocity is determined by the coupling constant associated with it for a specific

system of particles.

Repeating the above procedure, here I coarse-grain the ‘true’ non-reciprocal in-

teraction ψi =
∑

j ψij =
∑

j µij(vj − vi) into an approximate continuum interaction.

Once again using the definition Eq. B.1 for the inverse neighbor number, we have

∑
j

µijvij = −
∑
j

(uj − ui)(vj − vi) (B.9)

Coarse-graining this interaction is less straight-forward than
∑

j µijvi since the scalar

and vector quantity at each lattice point is varying. But, we may proceed in the same

manner as above by explicitly writing the interaction for a lattice system as

−
∑
j

µijvij =
[(
uϵ,0 − u0,0

)(
vϵ,0 − v0,0

)
+
(
u−ϵ,0 − u0,0

)(
v−ϵ,0 − v0,0

)]
+
[(
u0,ϵ − u0,0

)(
v0,ϵ − v0,0

)
+
(
u0,−ϵ − u0,0

)(
v0,−ϵ − v0,0

)] (B.10)

The second-order central difference operator (Eq. B.8) cannot be as easily applied

here as it was in Eq. B.4 due to the mixed u and v terms.

Considering first the forward-difference operator, the above expression simplifies

to

lim
ϵ→0

−
∑

j µijvij

ϵ2
=
[
(∂↑xu0,0)(∂

↑
xv0,0) + (∂↑xu−ϵ,0)(∂

↑
xv−ϵ,0)

]
+
[
(∂↑yu0,0)(∂

↑
yv0,0) + (∂↑yu0,−ϵ)(∂

↑
yv0,−ϵ)

]
Note that after applying ∂↑i to both u and v, we have run out of opposite signed
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terms with which to take further differences, so we will once again obtain a term

of O(∇2). Seeking then to simplify the above expression in terms of the differences

already present, we can regroup terms according to

lim
ϵ→0

−
∑

j µijvij

ϵ2
=
[
(∂↑xu0,0)∂

↑
x + (∂↑yu0,0)∂

↑
y

]
v0,0 +

[
(∂↑xu−ϵ,0)(∂

↑
xv−ϵ,0) + (∂↑yu0,−ϵ)(∂

↑
yv0,−ϵ)

]
(B.11)

from which we see that the first bracketed term has the continuum form (∇u · ∇)m.

The second bracketed term can be worked into the same form by noting that ∂↑xf−ϵ,0 =

∂↓xf0,0. Making this substitution for all terms in the second brackets, we obtain the

continuum approximation

N∑
i=1

[
lim
ϵ→0

∑
j µijvij

ϵ2

]
δ
(
r− ri(t)

)
→ −

(
∇ 1

N
· ∇
)
m (B.12)

This completes the coarse-graining of the microscopic neighbor-number-difference

terms into hydrodynamic interactions.
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Appendix C

Non-Reciprocal Fluctuation

Renormalization

Here I apply the fluctuation renormalization technique outlined by Martin & Tailleur

in Ref. [71] to determine the effect of neighbor-number induced non-reciprocity on

the non-linear hydrodynamics of a one-dimensional metric active polar fluid. A large

amount of this section is lifted directly from Ref. [71], since our work follows an

identical analytical path, but with a few extra steps scattered throughout.

C.1 Introduction

Let ρ(x, t) and m(x, t) be the density and orientation fields of a 1D active Ising model

with the hydrodynamics

∂tρ = D∂2xρ− v∂xm (C.1)

∂tm = D∂2xm− v∂xρ− F [ρ,m] −Dρ

(
∂2x

1

N

)
m− g

(
∂x

1

N
∂x

)
m+

√
2σρ η . (C.2)
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Here F ≡ δU/δm is the gradient of the Landau potential

U [ρ(x, t),m(x, t)] =

∫ ∞

−∞
dx

[
α

2
m2 +

γ

4

m4

ρ2

]
. (C.3)

The ρ dependence of the quartic term in Eq. C.3 is a consequence of assuming metric

alignment. Note that α > 0 corresponds to the ‘high-temperature’ disordered phase.

C.2 Perturbation expansion of equations of mo-

tion

Let ρ0 and m0 be the homogeneous solution to Eqs. C.1-C.2 in the absence of noise

(σ = 0), where

m0 = ρ0

√
−α
γ
, (C.4)

and define deviations from these deterministic, mean-field solutions to be given by

∆ρ(x, t) ≡ ρ(x, t) − ρ0 = σ
1
2 δρ1 + σδρ2 + · · · (C.5)

∆m(x, t) ≡ m(x, t) −m0 = σ
1
2 δm1 + σδm2 + · · · . (C.6)

With this perturbation scheme, the free energy gradient, F (ρ,m), in Eq. C.2 can be

expanded about (ρ0,m0) as

F (ρ,m) = F (ρ0,m0) + σ
1
2
∂F

∂ρ
δρ1 + σ

1
2
∂F

∂m
δm1 + σ

∂F

∂ρ
δρ2 + σ

∂F

∂m
δm2

+ σ
∂2F

∂ρ2
δρ21
2

+ σ
∂2F

∂m2

δm2
1

2
+ σ

∂2F

∂ρ∂m
δρ1δm1 + O(σ

3
2 ) ,

(C.7)

where the derivatives in Eq. C.7 are evaluated at (ρ0,m0). Inserting Eqs. C.5-C.6

into Eqs. C.1-C.2 one obtains two sets of equations of motion for the fluctuations at
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the scale of σ1/2 and σ1, given by

∂tδρ1 = D∂2xδρ1 − v∂xδm1 (C.8)

∂tδm1 = D∂2xδm1 − v∂xδρ1 −
∂F

∂ρ
δρ1 −

∂F

∂m
δm1 +

√
2ρ0 η + C1 . (C.9)

and

∂tδρ2 = D∂2xδρ2 − v∂xδm2 (C.10)

∂tδm2 = D∂2xδm2 − v∂xδρ2 −
∂F

∂ρ
δρ2 −

∂F

∂m
δm2

− ∂2F

∂ρ2
δρ21
2

− ∂2F

∂m2

δm2
1

2
− ∂2F

∂ρ∂m
δρ1δm1 +

δρ1√
2ρ0

η + C2 .

(C.11)

The C1 and C2 terms denote the non-reciprocal hydrodynamic corrections to Martin

& Tailleur’s theory, which will be computed later.

C.3 Renormalized field dynamics

Averaging the dynamics of the fluctuations fields over different noise realizations of

Eqs. C.8-C.9 gives the first-order equations of motion

∂t⟨δρ1⟩ = D∂2x⟨δρ1⟩ − v∂x⟨δm1⟩ (C.12)

∂t⟨δm1⟩ = D∂2x⟨δm1⟩ − v∂x⟨δρ1⟩ −
∂F

∂ρ
⟨δρ1⟩ −

∂F

∂m
⟨δm1⟩ + ⟨C1⟩ , (C.13)
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and averaging Eqs. C.10-C.11 gives the second-order equations of motion

∂t⟨δρ2⟩ = D∂2x⟨δρ2⟩ − v∂x⟨δm2⟩ (C.14)

∂t⟨δm2⟩ = D∂2x⟨δm2⟩ − v∂x⟨δρ2⟩ −
∂F

∂ρ
⟨δρ2⟩ −

∂F

∂m
⟨δm2⟩

− ∂2F

∂ρ2
⟨δρ21⟩

2
− ∂2F

∂m2

⟨δm2
1⟩

2
− ∂2F

∂ρ∂m
⟨δρ1δm1⟩ + ⟨C2⟩ .

(C.15)

Now if we define

ρ̃(x, t) ≡ ⟨ρ⟩ ≈ ρ0 + σ
1
2 ⟨δρ1⟩ + σ⟨δρ2⟩ (C.16)

m̃(x, t) ≡ ⟨m⟩ ≈ m0 + σ
1
2 ⟨δm1⟩ + σ⟨δm2⟩ , (C.17)

then the summing of Eqs. C.12 and C.14, as well as Eqs. C.13 and C.15, yields the

evolution of ρ̃ and m̃ up to order σ,

∂tρ̃ = D∂2xρ̃− v∂xm̃ (C.18)

∂tm̃ = D∂2xm̃− v∂xρ̃− σ
1
2
∂F

∂ρ
⟨δρ1⟩ − σ

1
2
∂F

∂m
⟨δm1⟩ − σ

∂F

∂ρ
⟨δρ2⟩ − σ

∂F

∂m
⟨δm2⟩

− σ
∂2F

∂ρ2
⟨δρ21⟩

2
− σ

∂2F

∂m2

⟨δm2
1⟩

2
− σ

∂2F

∂ρ∂m
⟨δρ1δm1⟩ + σ

1
2 ⟨C1⟩ + ⟨C2⟩ .

(C.19)

Eqs. C.18-C.19 constitute the renormalized hydrodynamics for the fields ρ̃ and m̃.

In Eqs. C.18-C.19, averages of individual fluctuation fields evaluate to zero since

the white noise field (η) in Eq C.2 that produces them is equally likely to give rise to

a positive or negative fluctuation. That is,

⟨δρk⟩ = ⟨δmk⟩ = 0 . (C.20)

The non-vanishing correlations between the fluctuations in Eqs. C.18-C.19 though
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make it so that Eqs. C.16-C.17 do not reduce to ρ̃ = ρ0 and m̃ = m0. That is, the

correlators renormalize the noisy, fluctuating dynamics of Eqs. C.1-C.2 into a set of

averaged equations of motion with a new homogeneous steady-state. A convenient

way to express this renormalization is through a modified free energy for the system,

which I construct in the following section.

C.4 Renormalized free energy

The free energy terms already appearing in Eqs. C.18-C.19 were obtained from

⟨F [ρ(x, t), m(x, t)]⟩ =

〈
F

[
ρ0 +

∞∑
k=1

σk/2δρk(x, t), m0 +
∞∑
k=1

σk/2δmk(x, t)

]〉
.

(C.21)

In this expression, m0 is assumed to vary on time-scales much longer than δmk, and

we say that the δmk are fluctuations on top of an effectively fixed energy minimum,

F (ρ0,m0). We wish now though to re-express F solely in terms of the renormalized

fields, ρ̃ and m̃. To do so, we write

F [ρ̃(x, t), m̃(x, t)] = F

[
ρ0 +

∞∑
k=1

σk/2⟨δρk(x, t)⟩, m0 +
∞∑
k=1

σk/2⟨δmk(x, t)⟩

]
.

(C.22)

Expanding this expression to order O(σ) gives

F [ρ̃, m̃] = F (ρ0,m0) + σ
1
2
∂F

∂ρ
⟨δρ1⟩ + σ

1
2
∂F

∂m
⟨δm1⟩ + σ

∂F

∂ρ
⟨δρ2⟩ + σ

∂F

∂m
⟨δm2⟩

+ σ
∂2F

∂ρ2
⟨δρ1⟩2

2
+ σ

∂2F

∂m2

⟨δm1⟩2

2
+ σ

∂2F

∂ρ∂m
⟨δρ1⟩⟨δm1⟩ + O(σ

3
2 ) ,

(C.23)

where the derivatives of F here are evaluated at (ρ̃, m̃); in Eq. C.19, they are evaluated

at (ρ0,m0). Noting that the constant term, F (ρ0,m0), can be freely added to Eq. C.19

since it defines the solution to the mean-field equation ∂tm = F (ρ,m) = 0, we can
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insert Eq. C.23 into Eq. C.19 to obtain

∂tm̃ = −F (ρ̃, m̃) − σ
∂2F

∂ρ2

(
⟨δρ21⟩ − ⟨δρ1⟩2

2

)
− σ

∂2F

∂m2

(
⟨δm2

1⟩ − ⟨δm1⟩2

2

)
− σ

∂2F

∂ρ∂m
(⟨δρ1δm1⟩ − ⟨δρ1⟩⟨δm1⟩) +D∂2xm̃− v∂xρ̃+ σ

1
2 ⟨C1⟩ + ⟨C2⟩ .

(C.24)

In writing Eq. C.24, we implicitly re-establish the dependency of ρ0 and m0 on x and

t and (following Martin & Tailleur) have taken

ρ0 → ρ̃(x, t) and m0 → m̃(x, t) . (C.25)

This is mathematically valid since we are restating Eqs. C.16-C.17 while using Eq. C.20.

From the renormalized dynamics of Eq. C.24, one can compute new steady-state val-

ues of ρ0 and m0 though, and iteratively apply this perturbative renormalization

technique.

Finally, I note that from Eq. C.3 on has

F (ρ,m) = αm+ γ
m3

ρ2
, (C.26)

or equivalently

F (ρ̃, m̃) = αm̃+ γ
m̃3

ρ̃2
. (C.27)

The derivatives of F appearing in Eq. C.24 are then given by

∂2F

∂ρ2
= 6γ

m̃3

ρ̃4
(C.28)

∂2F

∂m2
= 6γ

m̃

ρ̃2
(C.29)

∂2F

∂ρ∂m
= −6γ

m̃2

ρ̃3
. (C.30)
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Inserting Eqs. C.27-C.30 into Eq. C.24 and enforcing Eq. C.20 then yields

∂tm̃ = D∂2xm̃− v∂xρ̃− αm̃− γ
m̃3

ρ̃2

− 3σγ
m̃3

ρ̃4
⟨δρ21⟩ − 3σγ

m̃

ρ̃2
⟨δm2

1⟩ + 6σγ
m̃2

ρ̃3
⟨δρ1δm1⟩ + σ

1
2 ⟨C1⟩ + ⟨C2⟩ .

(C.31)

Note that setting σ = 0 here restores the mean-field dynamics of Eq. C.2. With σ ̸= 0

though, the non-linear terms on the second line of Eq. C.31 lead to fluctuation-induced

renormalized dynamics.

C.5 Fluctuation expansion of non-reciprocal hy-

drodynamic corrections

Here I compute (in tedious detail) the non-reciprocal correction terms appearing in

Eq. C.31,

C1,2 ≡ −Dρ

(
∂2x

1

N

)
m− g

(
∂x

1

N
∂x

)
m. (C.32)

With Eq. ??, we can compute the derivatives appearing in Eq. C.32 to be

µ
∂

∂x

1

N
=

−Q
ρQ+1

(∂xρ) (C.33)

µ
∂2

∂x2
1

N
=

Q

ρQ+2

[
(Q+ 1) (∂xρ)2 − ρ

(
∂2xρ
)]
. (C.34)

The correctness of these expressions has been double-checked using Mathematica.

Now we expand these derivatives in terms of density field fluctuations by inserting



111

Eq. C.5 into Eqs. C.33-C.34 to obtain

µ
∂

∂x

1

N
≈ −Q

(
ρ0 + σ

1
2 δρ1 + σδρ2

)−Q−1

∂x

(
σ

1
2 δρ1 + σδρ2

)
(C.35)

µ
∂2

∂x2
1

N
≈ Q

(
ρ0 + σ

1
2 δρ1 + σδρ2

)−Q−2 [
σ(Q+ 1)(∂xδρ1)

2 − σ
1
2ρ0∂

2
xδρ1

− σ
(
ρ0∂

2
xδρ2 + δρ1∂

2
xδρ1

) ]
,

(C.36)

where in Eq. C.36 I have used the intermediate result

(∂xρ)2 =
(
∂x

(
σ

1
2 δρ1 + σδρ2

))2
(C.37)

= σ(∂xδρ1)
2 + O(σ

3
2 ) (C.38)

and

ρ
(
∂2xρ
)

=
(
ρ0 + σ

1
2 δρ1 + σδρ2

)(
∂2x

(
σ

1
2 δρ1 + σδρ2

))
(C.39)

= σ
1
2ρ0∂

2
xδρ1 + σ

(
ρ0∂

2
xδρ2 + δρ1∂

2
xδρ1

)
+ O(σ

3
2 ) . (C.40)

The correctness of these expressions has also been double-checked using Mathematica.

I handle the prefactors in Eqs. C.35-C.36 (with Q appearing in the exponent) by re-

writing them as

(
ρ0 + σ

1
2 δρ1 + σδρ2

)−Q−1

= ρ−Q−1
0

(
1 +

σ
1
2 δρ1 + σδρ2

ρ0

)−Q−1

(C.41)

(
ρ0 + σ

1
2 δρ1 + σδρ2

)−Q−2

= ρ−Q−2
0

(
1 +

σ
1
2 δρ1 + σδρ2

ρ0

)−Q−2

, (C.42)
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and then making the binomial approximation, (1 + x)α ≈ 1 + αx for |αx| ≪ 1,

(
ρ0 + σ

1
2 δρ1 + σδρ2

)−Q−1

≈ ρ−Q−1
0

[
1 − (Q+ 1)

σ
1
2 δρ1 + σδρ2

ρ0

]
(C.43)

(
ρ0 + σ

1
2 δρ1 + σδρ2

)−Q−2

≈ ρ−Q−2
0

[
1 − (Q+ 2)

σ
1
2 δρ1 + σδρ2

ρ0

]
. (C.44)

Inserting Eqs. C.43-C.44 back into Eqs. C.35-C.36 then yields

µ
∂

∂x

1

N
≈ −Q
ρQ+1
0

[
1 − (Q+ 1)

σ
1
2 δρ1 + σδρ2

ρ0

]
∂x

(
σ

1
2 δρ1 + σδρ2

)
(C.45)

µ
∂2

∂x2
1

N
≈ Q

ρQ+2
0

[
1 − (Q+ 2)

σ
1
2 δρ1 + σδρ2

ρ0

] [
σ(Q+ 1)(∂xδρ1)

2 − σ
1
2ρ0∂

2
xδρ1

− σ
(
ρ0∂

2
xδρ2 + δρ1∂

2
xδρ1

) ]
.

(C.46)

We now discard from Eqs. C.45-C.46 all terms greater than O(σ) to obtain

µ
∂

∂x

1

N
≈ −Q
ρQ+1
0

[
σ

1
2∂xδρ1 + σ

(
∂xδρ2 −

Q+ 1

ρ0
δρ1∂xδρ1

)]
(C.47)

µ
∂2

∂x2
1

N
≈ Q

ρQ+2
0

[
− σ

1
2ρ0∂

2
xδρ1 + σ

(
(Q+ 1)(∂xδρ1)

2 − ρ0∂
2
xδρ2 + (Q+ 1)δρ1∂

2
xδρ1

)]
.

(C.48)

With the gradients of the inverse neighbor-number field now fully calculated, we can

insert Eqs. C.47-C.48 into the original correction term, Eq. C.32, to obtain

C1 ≡ −Dρ

µ

[
−Qσ1/2

ρQ+2
0

ρ0∂
2
xδρ1

]
m0 −

g

µ

[
−Qσ1/2

ρQ+1
0

∂xδρ1

]
(σ1/2∂xδm1 + σ∂xδm2)

(C.49)

The non-reciprocal g term vanishes from the first-order correction since the lowest

order contribution from that term (in a state where m0 is homogeneous) is O(σ1).
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Now, for convenience I define a modified diffusion coefficient

DQ ≡ DρQ

µρQ+1
0

(C.50)

that is indexed by Q, such that

C1 = σ1/2m0DQ∂
2
xδρ1 + O(σ) . (C.51)

The correction Eq. C.51 will be the new term that enters Martin & Tailleur’s cal-

culation of the correlators that renormalize the free energy. Lastly, I note here that

although the g term in Eq. C.49 does not enter into the calculation of the correlators,

it is present in the non-linear dynamics. That is, the correction term to order O(σ)

is given by

C2 = −σDQ

[
Q+ 1

ρ0
(∂xδρ1)

2 − ∂2xδρ2 +
Q+ 1

ρ0
δρ1∂

2
xδρ1

]
m0

+ σgQ(∂xδρ1∂xδm1) + O(σ3/2) .

(C.52)

where I have defined the modified advection strength

gQ ≡ gQ

µρQ+1
0

(C.53)

in analogy with Eq. C.50.
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C.6 Non-reciprocal corrections to renormalized hy-

drodynamics

Having finally obtained Eqs. C.51- C.52, we can return to the renormalized hydrody-

namics of Eq. C.31 and write

σ
1
2 ⟨C1⟩ = σm0DQ∂

2
x⟨δρ1⟩ (C.54)

⟨C2⟩ = −σDQ

[
Q+ 1

ρ0

(
⟨(∂xδρ1)2⟩ + ⟨δρ1∂2xδρ1⟩

)
− ∂2x⟨δρ2⟩

]
m0 + σgQ⟨∂xδρ1∂xδm1⟩ .

(C.55)

Inserting these results back into Eq. C.31 and taking m0 → m̃ in Eq. C.55 (as previ-

ously described in Eq. C.25), we obtain

∂tm̃ = −αm̃− γ
m̃3

ρ̃2
+D∂2xm̃− v∂xρ̃

− σ

[
3γ
m̃3

ρ̃4
⟨δρ21⟩ − 3γ

m̃

ρ̃2
⟨δm2

1⟩ + 6γ
m̃2

ρ̃3
⟨δρ1δm1⟩

−DQ
Q+ 1

ρ0

[
⟨∂xδρ1∂xδρ1⟩ + ⟨δρ1∂2xδρ1⟩

]
m̃+ gQ⟨∂xδρ1∂xδm1⟩

]
.

(C.56)

All that remains to close the renormalized hydrodynamics is to compute the correla-

tors appearing in Eq. C.81.

C.6.1 Computation of correlators near the critical point

In order to compute the correlators ⟨δρ21⟩, ⟨δm2
1⟩, and ⟨δρ1δm1⟩ appearing in Eq. C.81

(as well as their associated derivatives), we Fourier transform the linear fluctuating
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hydrodynamics in Eqs. C.8-C.9 with modes eiqx to obtain the system of equations

d

dt

 δρq1
δmq

1

 =

M q
11 M q

12

M q
21 M q

22


 δρq1
δmq

1

+

 0

√
2ρ0η

q

 (C.57)

where the matrix elements are copied below from Ref. [? ], except for M q
21 which has

a non-reciprocal contribution from Eq. C.51 such that

M q
11 = −Dq2 (C.58)

M q
12 = −ivq (C.59)

M q
21 = −ivq + 2γ

m3
0

ρ30
−m0DQq

2 (C.60)

M q
22 = −Dq2 − α− 3γ

m2
0

ρ20
(C.61)

From Eq. C.57, one obtains the following system of equations for the Fourier-space

correlators

d

dt
⟨δρq1δρ

q′

1 ⟩ =
(
M q

11 +M q′

11

)
⟨δρq1δρ

q′

1 ⟩ +M q
12⟨δm

q
1δρ

q′

1 ⟩ +M q′

12⟨δρ
q
1δm

q′

1 ⟩ (C.62)

d

dt
⟨δmq

1δρ
q′

1 ⟩ =
(
M q

22 +M q′

11

)
⟨δmq

1δρ
q′

1 ⟩ +M q
21⟨δρ

q
1δρ

q′

1 ⟩ +M q′

12⟨δm
q
1δm

q′

1 ⟩ (C.63)

d

dt
⟨δρq1δm

q′

1 ⟩ =
(
M q′

22 +M q
11

)
⟨δρq1δm

q′

1 ⟩ +M q′

21⟨δρ
q
1δρ

q′

1 ⟩ +M q
12⟨δm

q
1δm

q′

1 ⟩ (C.64)

d

dt
⟨δmq

1δm
q′

1 ⟩ =
(
M q

22 +M q′

22

)
⟨δmq

1δm
q′

1 ⟩ +M q
21⟨δρ

q
1δm

q′

1 ⟩ +M q′

21⟨δm
q
1δρ

q′

1 ⟩ +
2ρ0
L
δq+q′,0 .

(C.65)
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Now I take q′ = −q and solve the system of equations in the steady-state such that

0 =
(
M q

11 +M−q
11

)
⟨δρq1δρ

−q
1 ⟩ +M q

12⟨δm
q
1δρ

−q
1 ⟩ +M−q

12 ⟨δρ
q
1δm

−q
1 ⟩ (C.66)

0 =
(
M q

22 +M−q
11

)
⟨δmq

1δρ
−q
1 ⟩ +M q

21⟨δρ
q
1δρ

−q
1 ⟩ +M−q

12 ⟨δm
q
1δm

−q
1 ⟩ (C.67)

0 =
(
M−q

22 +M q
11

)
⟨δρq1δm

−q
1 ⟩ +M−q

21 ⟨δρ
q
1δρ

−q
1 ⟩ +M q

12⟨δm
q
1δm

−q
1 ⟩ (C.68)

0 =
(
M q

22 +M−q
22

)
⟨δmq

1δm
−q
1 ⟩ +M q

21⟨δρ
q
1δm

−q
1 ⟩ +M−q

21 ⟨δm
q
1δρ

−q
1 ⟩ +

2ρ0
L

. (C.69)

Directly solving this system of equations yields the following solutions

⟨δρq1δρ
−q
1 ⟩ =

ρ0v
2

L(α + 2Dq2)(αD +D2q2 + v2)
+ O(m2

0) (C.70)

⟨δρq1δm
−q
1 ⟩ =

−iqDρ0v
L(α + 2Dq2)(αD +D2q2 + v2)

−m0
q2DQρ0v

2

L(α + 2Dq2)2(αD +D2q2 + v2)
+ O(m2

0)

(C.71)

⟨δmq
1δm

−q
1 ⟩ =

ρ0(αD + 2D2q2 + v2)

L(α + 2Dq2)(αD +D2q2 + v2)
+ O(m2

0) . (C.72)

The solutions here are reported to linear order in m0 as we assume that we are in the

vicinity of the critical point where global order is weak. In the limit DQ → 0, these

correlators reduce to the result obtained in Ref. [71]. Their real-space counter-parts

are straight-forwardly obtained by integrating over all q modes, yielding

⟨δρ21⟩ =
ρ0v

2

2

√
2

αD
− 1√

αD+v2

αD + 2v2
(C.73)

⟨δρ1δm1⟩ = −m0
DQρ0v

2

8

3
√

2αD − 4
√
αD(αD + v2) + 2

√
2v2√

αD3/2(αD + 2v2)2
+ O(m3

0) (C.74)

⟨δm2
1⟩ =

ρ0
2

√
2v2 +

√
αD(αD + v2)√

αD(αD + 2v2)
. (C.75)

Eqs. C.73 and C.75 are identical to Martin & Tailleur’s results in Ref. [? ], while

Eq. C.74 is only non-zero due to the presence of the non-reciprocal DQ term. Still

remaining is the task of computing the correlators for the fluctuation field gradients
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appearing in Eq. C.81. To do so, we use the Fourier-transform definition to write as

lim
L→∞

⟨f(x)2⟩ = lim
L→∞

∑
q,q′

〈
f qf q′

〉
eiqx+iq′x = lim

L→∞

∑
q

〈
f qf−q

〉
=

1

L

∫ ∞

−∞

dq

2π

〈
f qf−q

〉
.

(C.76)

From this identity, we can also obtain the relations

lim
L→∞

⟨∂xf(x)∂xf(x)⟩ = lim
L→∞

∑
q,q′

(q q′)
〈
f qf q′

〉
eiqx+iq′x =

−1

L

∫ ∞

−∞

dq

2π
q2
〈
f qf−q

〉
.

(C.77)

lim
L→∞

⟨f(x)∂2xf(x)⟩ = lim
L→∞

∑
q,q′

(q′ 2)
〈
f qf q′

〉
eiqx+iq′x =

1

L

∫ ∞

−∞

dq

2π
q2
〈
f qf−q

〉
.

(C.78)

Therefore, the ⟨∂xδρ1∂xδρ1⟩ term and ⟨δρ1∂2xδρ1⟩ term in Eq. C.81 will cancel, and

we are left only with the non-linear, truly non-reciprocal term

〈
∂xδρ1∂xδm1

〉
=

−1

L

∫ ∞

−∞

dq

2π
q2⟨δρq1δm

−q
1 ⟩ (C.79)

= m0DQ
ρ0v

2

16D3

−5
√

2(αD)3/2 − 6v2
√

2αD + 8v2
√
αD + v2 + 8αD

√
αD + v2

(αD + 2v2)2
+ O(m3

0)

(C.80)

Collecting the results in Eqs. C.73-C.75 and Eq. C.80 and inserting them into Eq. C.81,

the renormalized hydrodynamics become

∂tm̃ = −α̃m̃− γ̃
m̃3

ρ̃2
+D∂2xm̃− v∂xρ̃ (C.81)
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where

α̃ = α− σ

ρ̃2

[
3γ⟨δm2

1⟩ −
gQ
m0

⟨∂xδρ1∂xδm1⟩
]

(C.82)

γ̃ = γ − σ

ρ̃2

[
3γ⟨δρ21⟩ −

6γ

m0

⟨δρ1δm1⟩
]

(C.83)

are the renormalized transport coefficients. Below in Fig. C.1 I plot the value of each

of the correlators appearing in Eqs. C.82-C.83 as a function of distance to the critical

point (α = 0). We see that the ⟨∂xδρ1∂xδm1⟩ correlator is sub-dominant to ⟨δm2
1⟩ in

the vicinity of the critical point, while ⟨δρ1δm1⟩ remains competitive with ⟨δρ21⟩ and

thus may affect critical dynamics.

Figure C.1: The correlators in Eqs. C.73 and C.75 are plotted here to leading order
in α.
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Tomas S Grigera, Asja Jelić, Stefania Melillo, Leonardo Parisi, Oliver Pohl,

Edward Shen, et al. Information transfer and behavioural inertia in starling

flocks. Nature physics, 10(9):691–696, 2014.

https://link.aps.org/doi/10.1103/PhysRevLett.89.058101
https://link.aps.org/doi/10.1103/PhysRevLett.89.058101


120

[7] Youmna Attieh, Andrew G Clark, Carina Grass, Sophie Richon, Marc Pocard,

Pascale Mariani, Nadia Elkhatib, Timo Betz, Basile Gurchenkov, and Dani-

jela Matic Vignjevic. Cancer-associated fibroblasts lead tumor invasion through

integrin-β3–dependent fibronectin assembly. Journal of Cell Biology, 216(11):

3509–3520, 2017.

[8] Avraham Be’er, Shinji K Strain, Roberto A Hernández, Eshel Ben-Jacob, and

E-L Florin. Periodic reversals in paenibacillus dendritiformis swarming. Journal

of bacteriology, 195(12):2709–2717, 2013.

[9] Eric Bertin, Michel Droz, and Guillaume Grégoire. Boltzmann and hydrody-
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[46] Luis Gómez-Nava, Richard Bon, and Fernando Peruani. Intermittent collective

motion in sheep results from alternating the role of leader and follower. Nature

Physics, 18(12):1494–1501, 2022.

[47] Robert Großmann, Pawel Romanczuk, Markus Bär, and Lutz Schimansky-

Geier. Vortex arrays and mesoscale turbulence of self-propelled particles. Phys-

ical review letters, 113(25):258104, 2014.

[48] Daniel R Gurevich, Matthew R Golden, Patrick AK Reinbold, and Roman O

Grigoriev. Learning fluid physics from highly turbulent data using sparse

physics-informed discovery of empirical relations (spider). Journal of Fluid

Mechanics, 996:A25, 2024.

[49] Brian M Haines, Andrey Sokolov, Igor S Aranson, Leonid Berlyand, and

Dmitry A Karpeev. Three-dimensional model for the effective viscosity of bac-

terial suspensions. Physical Review E—Statistical, Nonlinear, and Soft Matter

Physics, 80(4):041922, 2009.

[50] Seth Haney, Jessica Konen, Adam I Marcus, and Maxim Bazhenov. The com-

plex ecosystem in non small cell lung cancer invasion. PLoS computational

biology, 14(5):e1006131, 2018.

[51] Sebastian Heidenreich, Jörn Dunkel, Sabine HL Klapp, and Markus Bär. Hydro-

dynamic length-scale selection in microswimmer suspensions. Physical Review

E, 94(2):020601, 2016.

[52] Viktor Holubec, Daniel Geiss, Sarah AM Loos, Klaus Kroy, and Frank Cichos.



126

Finite-size scaling at the edge of disorder in a time-delay vicsek model. Physical

review letters, 127(25):258001, 2021.

[53] Kristin A Hook and Heidi S Fisher. Methodological considerations for ex-

amining the relationship between sperm morphology and motility. Molecular

reproduction and development, 87(6):633–649, 2020.

[54] Junxiang Huang, Herbert Levine, and Dapeng Bi. Bridging the gap between

collective motility and epithelial–mesenchymal transitions through the active

finite voronoi model. Soft Matter, 19(48):9389–9398, 2023.

[55] Cristián Huepe and Maximino Aldana. Intermittency and clustering in a system

of self-driven particles. Physical review letters, 92(16):168701, 2004.

[56] Kenta Ishimoto and Eamonn A Gaffney. Hydrodynamic clustering of human

sperm in viscoelastic fluids. Scientific Reports, 8(1):15600, 2018.

[57] Junichiro Iwasawa, Daiki Nishiguchi, and Masaki Sano. Algebraic correlations

and anomalous fluctuations in ordered flocks of janus particles fueled by an ac

electric field. Physical Review Research, 3(4):043104, 2021.

[58] Katherine A Jones, John R Krebs, and Mark J Whittingham. Heavier birds

react faster to predators: individual differences in the detection of stalking and

ambush predators. Behavioral Ecology and Sociobiology, 63:1319–1329, 2009.

[59] Hamid Karani, Gerardo E Pradillo, and Petia M Vlahovska. Tuning the random

walk of active colloids: From individual run-and-tumble to dynamic clustering.

Physical review letters, 123(20):208002, 2019.

[60] Mehran Kardar. Statistical physics of fields. Cambridge University Press, 2007.

[61] Nazanin Karimnia, Amy L Wilson, Emma Green, Amelia Matthews, Thomas W

Jobling, Magdalena Plebanski, Maree Bilandzic, and Andrew N Stephens.



127

Chemoresistance is mediated by ovarian cancer leader cells in vitro. Journal of

Experimental & Clinical Cancer Research, 40:1–13, 2021.

[62] J Konen, E Summerbell, B Dwivedi, K Galior, Y Hou, L Rusnak, A Chen,

J Saltz, W Zhou, LH Boise, et al. Image-guided genomics of phenotypically

heterogeneous populations reveals vascular signalling during symbiotic collec-

tive cancer invasion. Nature communications, 8(1):15078, 2017.

[63] J.H. Koziol and C.L. Armstrong. Manual for breeding soundness examination

of bulls. Soc Theriogenology, pages 1–147, 2018.

[64] Yau Meng Kuan, Nurul Atikah Zuhairi, FA Manan, Victor Feizal Knight, and

Rokiah Omar. Visual reaction time and visual anticipation time between ath-

letes and non-athletes. Malaysian Journal of Public Health Medicine, 1:135–141,

2018.
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[76] Máté Nagy, Zsuzsa Ákos, Dora Biro, and Tamás Vicsek. Hierarchical group

dynamics in pigeon flocks. Nature, 464(7290):890–893, 2010.
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