
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or
books) all or part of this thesis.

Will Theodore April 10, 2024

Creativity in Programming

by

Will Theodore

Davide Fossati
Adviser

Computer Science

Davide Fossati

Adviser

Nosayba El-Sayed

Committee Member

Robert Roth Jr.

Committee Member

2024

Creativity in Programming

By

Will Theodore

Davide Fossati

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Computer Science

2024

Abstract

Creativity in Programming
By Will Theodore

Creative thinking is a valuable skill in professional and academic settings. Being able to
quantitatively define and measure creativity is a fundamental step toward helping students
improve it. However, in the context of computer programming, effectively measuring creativity
is still an open problem.

In this paper, we present a framework based on clustering to assess the creativity of computer
programmers from the code they wrote. In particular, we focus on measuring three dimensions
of creativity: (1) originality, i.e., how much an individual programmer's solution differs from
other solutions to the same problem written by other programmers; (2) fluency, i.e., how many
solutions can one programmer produce; and (3) flexibility, i.e., how many substantially different
solutions to the same problem an individual programmer is able to write.

We evaluate these dimensions of creativity using a machine-learning model that transforms
computer programs into code embeddings, which are real-valued vectors summarizing the
semantics of a program in an abstract set of features. We use these embeddings to cluster
programs into semantically similar solution types. The distance between a solution and the
cluster centers can provide a measure of originality. When we have access to multiple solutions
by the same programmer, we can evaluate flexibility by determining the number of clusters the
solutions belong to.

We evaluate this approach using a preexisting dataset and new experimental data. The
distribution of results and resulting originality scores are generally consistent with theoretical
predictions. We also compare student-generated code with AI-generated code from OpenAI's
ChatGPT, one of the most popular large language models. The AI-generated programs tended
to have higher originality scores than students in our dataset.

Finally, we conducted an experiment with students in the secondary Computer Science course
at Emory. These students solve a single problem repeatedly, allowing for measures of flexibility
to be assessed. We find a lot of variation within the students' results that generally follow
expectations. When evaluating the system against human graders, we found moderate
agreement, demonstrating the viability of the system.

Creativity in Programming

By

Will Theodore

Davide Fossati

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Computer Science

2024

Table of Contents

1. Introduction ………………………………………………………………………………………….…..…………..1

2. Background ……………………………………………………………………………………..….….….………….2

2.1. Studying …………………………………………………..………………………………….….…….………..2

2.2. Measuring Creativity in Programming ……………………………………………..…….………..4

2.3. Word embeddings and code embeddings ……………………………………….……….……..5

3. Approach ……………………………………………………………………………………………….……….……..7

3.1. Method Overview and Definitions …………………………………………………………….……7

3.2. Data ……….…9

3.2.1. CS170 Dataset ……………………………………………………………………………………..9

3.2.2. AI-generated Programs ……………………………………………………………………..10

3.2.3. Experimental Dataset ………………………………………………………………………..11

3.2.4. Human-assessment Dataset ………………………………………………………………11

3.3. Preprocessing ..…………………………………………………………………………………………….12

3.4. Evaluation of Clustering Methods ………………………………………………………………..13

3.5. Validation of Originality Scores on 170 Dataset ……………………………………………13

3.6. Repeated Solutions Experiment …………………………………………………………………..14

3.7. Comparison with Human Analysis ………………………………………………………………..14

4. Experiments ………………………………………………………………………………………………………..16

4.1. Evaluation of Clustering Methods …………………………………………………………………16

4.1.1. Clustering a single question ………………………………………………………………. 19

4.2. Validation of Originality Scores on 170 Dataset …………………………………………… 21

4.3. Repeated Solutions Experiment ………………………………………………………………….. 22

4.3.1. Clustering …………………………………………………………………………………………..22

4.3.2. Student Analysis ……………………………………………………………………………….. 23

4.4. Validation against human graders ……………………………………………………………….. 26

5. Analysis …….28

5.1. High AI Originality …………………………………………………………………………………………28

5.2. Accuracy vs Originality ………………………………………………………………………………….29

5.3. Agreement with Human Graders ………………………………………………………………….30

5.4. Applications ………………………………………………………………………………………………….31

6. Conclusion ……..33

6.1. Limitations ……………………………………………………………………………………………………33

6.2. Conclusion ……………………………………………………………………………………………………34

A. Chat-GPT Transcripts ……………………………………………………………………………………………35

A.1. Simple solution ……………………………………………………………………………………………. 35

A.2. Creative solutions ………………………………………………………………………………………….36

B. Repeated Solutions Experiment Problem ……………………………………………………………..39

Bibliography …….41

List of Figures

2.1 The original circles test [21] . 3

4.1 K-means clustering of CS170 dataset 17

4.2 DBSCAN vs HDBSCAN Clustering of All Questions in CS170 Dataset 18

4.3 Mean Shift clustering of CS170 dataset 19

4.4 Density-based algorithms applied to a single question 20

4.5 Originality scores for students . 21

4.6 Embeddings of Programs in the Repeated Solutions Experiment . . . 22

4.7 Histograms of Originality in the Repeated Solutions Experiment . . . 24

4.8 Originality vs. Flexibility . 25

5.1 Performance vs. Originality in the Repeated Solutions Experiment . . 29

iii

List of Tables

3.1 Comparison of Definitions with Minnesota Tests (Circles Test) [21] . . 9

4.1 Clusters and Noise for Initial Algorithms 19

4.2 Clusters and Noise for a single question 20

4.3 Originality distances for AI programs 22

4.4 Comparison of Systems and Human Graders 26

4.5 Comparison Amongst Human Graders 26

iv

Chapter 1

Introduction

Creative thinking is a valuable skill in professional and academic settings, and it is

essential to a productive society. The goal of this research is to develop a system that

promotes creative thinking by creating a computational model for evaluating creativity

in programming and providing direct feedback. We also explore the creativity of

programs generated by large language models, since AI tools are commonly used by

programmers in industry. 1 After establishing a theoretical framework for measuring

creativity, we train and evaluate one dimension (originality) on an existing dataset of

human-generated code. We then compare originality scores for students’ code with

AI-generated code. We conduct a second experiment, designed around our framework,

in which we ask students to solve a single programming question as many ways as

they can. The second experiment allows us to capture more dimensions of creativity

beyond originality: fluency and flexibility. Finally, we compare the performance of

our originality scores with consensus among human graders and previous research.

1
Github claims that its tool ”Copilot” is writing 46% of code [8].

1

Chapter 2

Background

2.1 Studying Creativity

Measuring creativity is not a novel challenge; researchers have been attempting to

devise tests that quantify creativity since as early as 1964. One popular suite of tests

called the Minnesota Tests for Creative Thinking and Writing was widely used. These

tests were first created in 1959 [20], but were continuously revised until a scoring

manual [21] was published in 1964. It introduces a theoretical framework that breaks

creativity into four dimensions: fluency, flexibility, originality, and elaboration.

Fluency ”is represented by the mere number of distinct, non-repetitious ideas given

by a subject in his response to the respective tasks.” Flexibility ”is obtained by paying

attention to the number of runs of ideas belonging to a few but inclusive categories,

operations, or principles.” Originality in the original design ”[takes] the basic principles

or operations into consideration and gives di↵erential weights to them according to

the frequency of their occurrence in the general population.” Finally, elaboration ”is

evaluated under the assumption that one must develop and work through his ideas to

arrive at better responses and to communicate the results successfully.” [21].

The circles test from Yamamato’s revised 1964 manual illustrates these principles.

2

3

In the circles test, subjects were given ten minutes to draw in and around as many

circles as they can while using the circle as a core component of the drawing.

Figure 2.1: The original circles test [21]

Researchers derived fluency from the number of drawings entirely or partially

completed. They determined flexibility by sorting drawings into three categories

and counting the number of runs. They defined a run as a sequence of consecutive

responses that fall into the same category. Originality came from a distribution of

how often they saw certain elements in real life. The less common a certain principle

was in practice, the more originality points it was worth. Elaboration was based on

4

the detail of the drawings and how well they were labeled.

These tests received criticism for being correlated with intelligence [7], and particu-

larly for the design of the tests with regards to fluency. Because the other dimensions

require many unique responses, a more fluent subject will typically have high scores in

other dimensions. Subsequent studies found that participants’ scores were correlated

with their intelligence and each other [15]. Correcting for the bias in fluency seemed to

alleviate some of these concerns [7]. Although it has flaws, the Minnesota Tests model

serves well as a starting point for evaluating creativity in the context of programming.

2.2 Measuring Creativity in Programming

Other studies have attempted to use machine learning techniques to assess creativity

in computer programming. Manske and Hoppe [16] use a predictive model trained on

expert assessments to directly emulate human evaluations of creativity in code. They

found the model was able to correctly predict human assessments of creativity. The

Hoppe model was later used to establish a correlation between creative thinking and

computational thinking [9]. Kolvakov, et al. [12, 13] also use a predictive model to

generate creativity scores from Scratch programs. They find their model agrees with

human consensus more often than the experts agreed with each other.

Hershkovitz, Israel-Fishelson, et al. have demonstrated associations between

computational thinking (CT) and creativity. After finding preliminary evidence of

some association [4], they conducted a randomized experiment with Spanish middle

school students. The experiment used an online learning platform, Kodetu, to assess

CT and a human-scored assessment, similar to the Minnesota Tests, to assess creativity.

Researchers found that creativity contributes to CT and computational creativity

can be improved over time [10]. The second finding reinforces the motivations of our

research, since a system for providing feedback on creativity may facilitate improvement

5

in computational creativity.

The critical precursor to this study, written by Elijah Chou and Davide Fossati,

similarly uses the dimensions presented in the Minnesota Tests [6]. They start by

converting programs to an abstract syntax tree, or AST, that represents the structure

of a program’s operation. ASTs are commonly generated by code compilers as an

intermediary step for generating machine code [11]. They then used tree edit distance

to generate scores for originality, defined as ”the minimum-cost sequence of node edit

operations that transform one tree into another.” To compute the distance they used

a recursive algorithm proposed by Zhang and Shasha [22].

2.3 Word embeddings and code embeddings

To evaluate programs along these dimensions, it is necessary to encapsulate the

meaning of the code in some way. Simply evaluating the raw text will not provide

an accurate representation of what the program does. To achieve this, we utilize the

same principle as word embeddings from natural language processing.

A word embedding is a distributed, one-dimensional, vector representation of the

meaning of a word. One classic example of this principle shows that vec(”king”)�

vec(”man”) + vec(”woman”) ⇡ vec(”queen”). Tools such as ”word2vec” [17] first

applied this to a single word, and later ”doc2vec” [14] was able to generate embeddings

for sentences and paragraphs.

Our research relies on Code2vec [3], which applies this principle to computer

programs. Simply using Doc2vec on a program wouldn’t be e↵ective, since those

models are trained based on language patterns and not coding syntax. Instead,

Code2vec uses an abstract syntax tree, or AST, that represents the structure of a

program’s operation. During the training of the model, the paths are given weights

called attention scores. Attention is the model’s way of determining the key aspects

6

of a program, and it is calculated during preprocessing into ASTs. These weights

are then run through the deep learning network, converting them to a vector that

represents the program.

Chapter 3

Approach

3.1 Method Overview and Definitions

Creativity is an inherently subjective trait, and research on creativity has found that

humans often do not agree on what is more creative. For this paper, we use the

definition as outlined by the Minnesota Tests [20] consisting of the four dimensions

we previously outlined.

By using code embeddings and experimental design, we can get a range of values

for three of the four dimensions. The Minnesota Tests quantified originality using

the frequencies of similar responses in the population. Our metric works similarly: we

define originality as the Euclidean distance of a code embedding from the center of its

membership cluster, adjusted for cluster size. In essence, this asks the question: How

di↵erent is this solution from other solutions that take a similar approach?

Due to a limitation we noticed after our first experiment, we adjusted the repeated

solutions experiment to the way we calculate originality scores: we also consider the

number of other solutions in a program’s cluster. For instance, if a program is in its

cluster it is substantially di↵erent from other programs, but will only have a distance

of 0 from the center. To adjust, we use the following formula to compute a cluster size

7

8

adjustment that we add to the distance-based score. dmax is the maximum distance

score of any solution without any adjustments. N is the number of solutions for a

problem and nc is the number of solutions in the cluster being evaluated.

adj = dmax ⇤
N � nc

nc

This adjustment is structured such that ”singleton” solutions that make up their

cluster are always the most original, as one would expect. It also provides a bonus for

membership in a rare cluster, similar to the frequency adjustment in the Minnesota

Tests. Overall, this metric provides a comprehensive picture of originality that considers

the frequency of similar responses and the distance from the consensus solutions.

Our measure of flexibility also relies on the clustering of solutions. Each cluster

represents a di↵erent way of approaching the problem. In the context of multiple

solutions, we define flexibility as the number of unique clusters an individual can

produce solutions for. For instance, if a subject generates solutions in 3 di↵erent

clusters for a single problem, that student has a flexibility score of 3 for that problem.

Producing many solutions in a single cluster is representative of less creative thinking

than producing many solutions across several clusters, and our flexibility score can

capture this.

Finally, we can define fluency simply as the total number of solutions a subject

generates for a given problem. This closely follows the definition used in the Minnesota

Tests, where it is defined as the ”number of distinct, non-repetitious ideas given by a

subject.” [20]

Our research di↵ers substantially from these tests in that they do not involve

human grading to come up with the creativity scores. This is intentional since our

goal is to explore methods for automated feedback, but the text analysis and program

classification required to generate a meaningful score for elaboration cannot be done

with a machine at this point. Therefore, we chose to omit elaboration scores from this

9

study.

Dimension Minnesota Tests Definition Our Definition
Originality sum of weighted scores given to

each drawing based on frequency
in the natural world

distance of solutions from cluster
centers and weighted for cluster
size

Fluency number of unique drawings gener-
ated by a single subject

number of solutions generated by
a single subject

Flexibility number of runs of drawings belong-
ing to a few distinct categories

number of clusters a subject’s so-
lutions have membership in

Elaboration ability to accurately label and de-
scribe drawings

N/A

Table 3.1: Comparison of Definitions with Minnesota Tests (Circles Test) [21]

3.2 Data

3.2.1 CS170 Dataset

To evaluate the system, we used a dataset from Emory’s introductory computer

science course, CS170. The dataset includes questions and responses from 12 quizzes

throughout the course. The quizzes were administered in a controlled setting with

robust anti-plagiarism protections. It includes five semesters of data, starting in the

fall of 2016 and ending in the fall of 2018. In total, there are 33,437 responses. Each

response was given a score by human graders, and we exclude any responses that did

not receive full credit in our analysis of the 170 data.

After determining the best clustering method on the entire dataset we test our

system on a single question. We considered the capacity for flexible solutions, the

period in the course when the question was asked, and the number of functions in

the answers when selecting a question. Code2vec is designed to work with a single

function, so although multiple functions do not cause an error, questions that require

a single-function answer are best. To ensure students have the capacity for flexible

solutions, we use questions from later in the course when students have learned more

10

techniques.

For this single-question analysis, we chose the following question from week 7:

”Write a method named mergeRepeat(String[] s, int k) that takes an array of

strings s and an integer k. The method returns a string which is the concatenation

of all the elements in s repeated k times.” This question allows for both recursive

and iterative solutions and asks students to write a single function with a consistent

signature. Any variation within the code sample should, therefore, be indicative of

original thought. We analyze 206 unique responses to mergeRepeat.

3.2.2 AI-generated Programs

To generate synthesized code to evaluate the framework against AI solutions, we used

the widely available and popular GPT-3.5 model through the Chat-GPT interface [1].

We only tested a few solutions, so we generated them by interacting with the chatbot

directly 1.

We generated four code samples from two conversations for clustering with our

single-question analysis. In the first, we asked the LLM the exact text of the above

question. In the second, I again used the exact question language, but I asked it to

come up with a creative solution to the problem. I then asked the model to make the

solution more creative, and finally, I asked it to come up with the most creative solution

it could. The resulting programs were then cleaned of any helped functions and copied

to .java files for preprocessing. We use these four programs to provide qualitative

analysis of the di↵erences between originality in AI-generated and human-generated

code.
1
Transcripts of these conversations are included in Appendix A.

11

3.2.3 Experimental Dataset

After evaluating the system to find the optimal clustering technique, we conducted

a similar experiment to the circles test. In this test, each student solves a single

problem as many times as they can within a two-hour time limit. The dataset

includes a short survey in addition to the program submissions. The survey primarily

contains questions about the students’ computer programming background. To ensure

no external assistance was used on the assessment, it was proctored in the Emory

Computer Lab using the Qtest program.

We sourced the question for the experiment from Leetcode, a popular programming

practice site [2].2 On Leetcode, the problem had an acceptance rate of 81.7%. We

chose a problem with a relatively high acceptance rate because we did not want

students to get stuck on their first solution to the problem. Each submission was

graded individually using the review system of the Qtest program as a pass or a fail.

Any program with compilation errors or that did not generate the correct output was

classified as incorrect. Of the five students who took the assessment, only one was

unable to submit any acceptable response during the time limit. Overall, there were

26 programs considered. Due to the limited sample size, we restrict our analysis to a

qualitative focus in this experiment.

3.2.4 Human-assessment Dataset

We compare our system’s originality scores to the evaluation of human graders. Elijah

Chou’s previous work on creativity in programming provides the dataset for this

experiment. Three human graders were asked to pick the more creative option out

of two program submissions sourced from the CS170 dataset. The majority vote of

these human graders can then be compared to the system to evaluate its e↵ectiveness.

There were 30 questions used in the original assessment, but we eliminated two of

2
The full question is available in Appendix B.

12

the questions because the helper functions interfered with preprocessing. The specific

submissions for each question were randomly selected from a pool of programs that

all scored full points. To help eliminate bias over correctness, human graders were

informed that all programs received full credit. Since the original survey involved

problems where each solution corresponded with an individual student, there was no

way to check fluency or flexibility scores against human graders using this dataset.

3.3 Preprocessing

Preprocessing Java code submissions for our analysis involves three main phases. First,

each submission must be cleaned individually. We used a script to change the .txt

files to .java files and split the dataset into testing, training, and validation sets. For

any data that required vector conversion, we had to remove the main method and

any helper methods from the code. Stripping extra methods prevents Code2vec from

converting them to vectors.

Second, we run the cleaned programs through the Code2vec preprocessing script,

converting each folder of submissions into a single file where each line contains a label

and the abstract syntax tree for the program. Since the original Code2vec script did

not retain any information from the file during preprocessing, we changed parts of the

Code2vec program to retain the program metadata in the vector representation.

After training the Code2vec model on the 170 submissions, we perform the final

step of preprocessing. In this final step, we run the Code2vec model on the testing set

with the export vectors flag enabled. This generates a .c2v.vectors file where each

line contains a program. The first value contains the program metadata, and the rest

of the line contains the embedding of that program. Each code embedding has 384

unnamed features that describe that program.

13

3.4 Evaluation of Clustering Methods

After converting this dataset to vector format using code2vec, we need to determine

the most e↵ective clustering algorithm for our research. We do this by evaluating

each of the clustering algorithms based on the number of points it can classify in a

cluster and the number of clusters it generates. We conducted the initial analysis of

clustering methods on all of the questions, and we expected to see 50-100 clusters. We

try to optimize for a minimal percentage of noise points in the clustering algorithms.

Nose points are defined as points without cluster membership. We try to minimize the

number of noise points when comparing clustering algorithms since we cannot compute

originality from our definition of a noise point. We then confirm the e↵ectiveness of

the clustering on a smaller dataset comprised of a single question. This allows us to

begin calculating originality scores for the students’ code.

3.5 Validation of Originality Scores on 170 Dataset

After identifying the algorithm, we tune the hyperparameters for a single-question

scenario, simulating the circles test [21]. We separate all the solutions from the

170 dataset for mergeRepeat that received full points and fine-tune the Mean Shift

clustering for the reduction of noise points. We then evaluate the framework on the

originality dimension by generating distances for each sample from their respective

clusters and organizing the results into a histogram. We then repeat the process

for the AI-generated solutions to mergeRepeat and compare the originality scores

between the AI and human-generated code. The system will show promise if it can

correctly identify di↵erences in originality between the two. We choose not to look at

flexibility during this stage since each student is submitting a single program.

14

3.6 Repeated Solutions Experiment

We conducted the repeated solutions experiment after evaluating the di↵erent clustering

methods. After collecting the submissions and conducting the preprocessing for the

data, we clustered all the solutions using the optimal method. We changed the criteria

for this experiment due to the smaller sample size. While we only used correct solutions

to evaluate clustering methods, we included both correct and incorrect responses in

this experiment so we could evaluate any correlation between correctness and cluster

membership. We show 2D representations of the embeddings with their cluster

membership, cluster centers, subject number, and grading status. We also evaluate

originality scores for each submission and present them in a histogram. We expect

the originality scores to show variation and be relatively unbiased for correctness.

The priority of this experiment is to evaluate the system at the individual unit

of analysis instead of the submission. To achieve this, we calculate an average

originality score across all responses for a given student, as well as a flexibility score

and fluency score as previously defined. We then plot originality vs flexibility with

fluency represented as marker size to give a comprehensive picture of the participants’

creativity. We expected the system to capture variation in the students’ responses. A

successful system will also be able to di↵erentiate between these dimensions. In other

words, we should not see that flexibility and fluency provide similar results to average

originality scores.

3.7 Comparison with Human Analysis

Finally, we compare code embedding-based originality scores with human graders and

an approach based on Tree Edit Distance. As discussed previously, we eliminated two

of the questions due to the di↵erent helper functions required. For each remaining

question, we pulled all of the responses that received full credit into a new dataset.

15

We then fine-tuned the clustering for each question by re-running our algorithm while

incrementing the bandwidth. We chose the bandwidth that resulted in the maximum

clusters of fewer than 12 with no noise points.

After fine-tuning the clustering for each question, we clustered each question

individually to generate originality scores for the programs that were randomly chosen

in the human survey. The program with the highest originality score was considered

more creative by our system. We then compare our system’s choices for the more

creative program with the human graders and Elijah’s Tree Edit Distance scores. We

expect our system to generally show a correlation with human graders, although we

do not expect it to be perfect. Human graders only had access to two solutions when

making their decision, whereas the Tree Edit Distance scores and our originality scores

both depend on all solutions for a given problem. Therefore, the human graders are

being asked a slightly di↵erent question than the computer systems, and we should

see some inconsistency.

Chapter 4

Experiments

4.1 Evaluation of Clustering Methods

Training a code2vec model requires a training set, testing set, and validation set.

Once the model is trained, vectors can be generated for any code. We randomly

classified 80% of the 170 dataset into a training set, 10% into a validation set, and

10% into a test set. Each embedding is a 1D array with 384 features that represent

the neural network’s interpretation of the weighted AST. Since each feature is simply

a real number, we can apply machine learning clustering algorithms and calculate the

Euclidean distance between the samples.

K-means is a classic ML clustering algorithm that uses the distance between vectors

to cluster them. We considered this algorithm first due to its simplicity, and we used

the sci-kit learn python package to apply this and the other clustering algorithms [18].

Figure 4.1 shows the CS170 dataset as clustered by K-means.

The 2D representations of vectors are only an approximation due to their high

dimensionality. One significant limitation of K-Means is that it requires a set number

of clusters. Since participants’ results could take any number of forms, it is better

for our purposes to use an approach that builds clusters dynamically. We therefore

16

17

Figure 4.1: K-means clustering of CS170 dataset

consider density-based clustering techniques: DBSCAN, HDBSCAN, and Mean Shift.

DBSCAN uses density to create clusters, allowing them to be any shape. This

di↵ers from k-means, which is distance-based and therefore requires clusters to have

a convex shape [18]. DBSCAN separates high-density areas, creating neighborhoods

that consist of core points. Points in low-density areas are instead classified as noise

points and are not given a cluster.

HDBSCAN also uses density-based clustering, but it relaxes an assumption made

by DBSCAN that the density requirement of neighborhoods is globally homogeneous

[18]. This fits the theoretical model of creativity well since we can think of di↵erent

clusters as ”categories” of solutions to a specific problem. One category may be more

popular than another and therefore have a higher density. It would be incorrect for our

18

model to presume that all clusters require the same density, so we expect HDBSCAN

to perform better on our data. Figure 4.2 shows the initial results of DBSCAN and

HDBSCAN on the CS170 dataset.

(a) DBSCAN (b) HDBSCAN

Figure 4.2: DBSCAN vs HDBSCAN Clustering of All Questions in CS170 Dataset

DBSCAN can separate the largest clusters, but areas of lower density are not

categorized. HDBSCAN does not encounter this problem; by varying the density

across the solution space, fewer noise points are captured. We desire the least noise

points possible; since these solutions do not belong to any cluster, we have to come

up with a workaround for originality.

Finally, we consider Mean Shift. Mean Shift is a centroid-based algorithm that

considers samples as candidates to be a centroid for a cluster [18]. It then iterates

over each sample to find blobs of smooth density for clusters. Centroids shift as the

density areas change, but they all start as part of the sample. The algorithm can be

adjusted by the bandwidth parameter that sets the size of the region to search around

each potential centroid. Figure 4.3 shows the initial results of Mean Shift in 2-d.

19

Figure 4.3: Mean Shift clustering of CS170 dataset

Table 4.1 shows the evaluation criteria for all of the density-based models.

Method # Clusters Noise Points
DBSCAN 387 32.44%
HDBSCAN 79 7.87%
Mean Shift 72 5.97%

Table 4.1: Clusters and Noise for Initial Algorithms

DBSCAN produced far too many clusters and was unable to classify several of

the points. HDBSCAN and Mean Shift performed similarly, producing around 70-80

clusters with a low percentage of noise points. Based on these criteria, Mean Shift

seemed to be the best choice, due to the lower percentage of noise points when

compared to HDBSCAN. However, further analysis with a single-question dataset was

required to determine the optimal density-based algorithm.

4.1.1 Clustering a single question

To address these concerns, we tried each of the models again on a subset of the data

comprised only of our specific question. Figure 4.4 and Table 4.2 show the results.

20

(a) DBSCAN (b) HDBSCAN (c) Mean Shift

Figure 4.4: Density-based algorithms applied to a single question

Method # Clusters Noise Points
DBSCAN 10 3.85%
HDBSCAN 3 4.71%
Mean Shift 2 1.07%

Table 4.2: Clusters and Noise for a single question

In the context of the entire dataset, we expected 50-100 clusters. Since we are now

looking at one question, fewer than 5 clusters are ideal. Although the two-dimensional

representation of vectors does not show the full picture, it seems that two categories

are most appropriate for this question based on the scatterplots. As with the dataset

comprised of all the questions, a minimal number of noise points was desired.

We selected the algorithm that shows an appropriate number of clusters with

minimal noise: Mean Shift. It logically divides the sample into two clusters, which we

can think of as di↵erent approaches to solving the problem. DBSCAN performs better

on the reduced dataset but produces too many clusters in this situation HDBSCAN

had an appropriate number of clusters but had more than four times as many noise

points when compared to Mean Shift. Considering these factors, we chose Mean Shift

to perform the clustering for our analysis.

21

4.2 Validation of Originality Scores on 170 Dataset

Once we determined that Mean Shift was optimal, we clustered the single-question

responses from the 170 dataset together with the AI-generated programs. As described

above, we use Euclidean distance to generate scores. At this point, we do not include

any adjustments for cluster size. Figure 7 shows a histogram of the students’ responses

only and their distances, ranging from 0 to 10.

Figure 4.5: Originality scores for students

These results are encouraging, since the distribution generally follows expectations

based on theory. We expect that most students will come up with similar answers,

and the majority of solutions will therefore have a low originality score. There are

a few students who slightly varied from these dominant solutions that make up the

second ”bump” in the histogram. At the tail of the distribution are the highly original

solutions that varied a lot from the clusters. Then, we followed the same process to

determine scores for the AI programs, shown in Table 4.3.

These results are particularly intriguing. The system finds that AI programs are

generally more original by these criteria, earning a distance of 7.176 for the simple

22

Program Originality Distance (unadjusted)
simple 7.176
creative 9.642
more creative 8.732
most creative 8.683

Table 4.3: Originality distances for AI programs

prompt without asking for a creative solution. Another interesting finding is that

asking the LLM to increase the creativity of the program actually decreased the

distance to its closest center. The most original AI-generated solution was its first

response when asked to provide a creative solution.

4.3 Repeated Solutions Experiment

4.3.1 Clustering

(a) Colored by program score (b) Colored by student number

Figure 4.6: Embeddings of Programs in the Repeated Solutions Experiment

After clustering all of the solutions for the repetition experiment and fine-tuning

23

the model for the most clusters under 10 with no noise points, we found four clusters

in the solutions. One cluster contained most of the solutions, and another cluster

contained only one solution. There were two other clusters that each had a few

submissions. All of the clusters had at least one incorrect submission, including the

singleton.

Of the 26 total solutions, the majority (17) were placed in a single cluster, denoted

by the downward triangle on the charts. This cluster also contained the highest correct

result percentage. 82.35% of the solutions in this cluster were accurate, and the

next-highest cluster had 60%. One might interpret the large cluster as the ”simple”

approach to the problem and the other clusters as more ”unique” approaches that

weren’t attempted as frequently. We see lower accuracy in the more unique approaches,

as we would expect since they are less commonly practiced.

The student-by-student breakdown also provides an intriguing case study for

embeddings. Due to imbalances in the fluency of students, many of the solutions in

the largest cluster come from student 4. That student was an outlier in terms of their

fluency, but they were not the most flexible since student 3 produced the singleton.

Student 2 was the least flexible, producing two incorrect results in the largest cluster.

Overall, the students showed an ability to produce a range of solutions with strengths

and weaknesses in di↵erent dimensions of creativity.

4.3.2 Student Analysis

After clustering, we calculate the originality scores from the cluster distance. We also

introduce the cluster size adjustment at this stage to compensate for outliers such as

the singleton cluster that wasn’t present in the larger dataset. We find that student 4,

while being highly fluent, produced several similar solutions. The similarities limit the

originality of all of them, leading to several entries at the low end of the histogram.

Students 1 and 2 produced mostly original, albeit incorrect, solutions. We see from the

24

(a) Colored by program score (b) Colored by student number

Figure 4.7: Histograms of Originality in the Repeated Solutions Experiment

accuracy histogram that incorrect solutions are generally more original than correct

solutions in our experiment. This could suggest that the cluster center represents some

amount of accuracy for a given solution, but the small sample size of this experiment

prevents us from making strong claims about the correlation between accuracy and

originality.

Finally, we average the originality scores for each student and plot all three

dimensions together in a scatter plot. Originality is on the x-axis, flexibility is on the

y-axis, and the size of each dot represents fluency. We see that student 4 is penalized

in originality due to many of the solutions being similar. One might consider student 3

to have the most creative response overall; they have the strongest average originality

and are considerably more flexible than the other students. Another could argue that

student 4 is the most creative, since their fluency was significantly higher than the

other students, and the di↵erence in flexibility is smaller when accounting for incorrect

solutions.

25

Figure 4.8: Originality vs. Flexibility

We note that many of the most original solutions are incorrect. This is true for

student 3 as well, including the very original singleton cluster. We leave the balancing

of the dimensions as a composite score as an open question for further research, since

we cannot say whether originality, flexibility, or fluency contributes more to creativity.

Answering this question involves some degree of subjectivity and is not the goal of

this research.

26

4.4 Validation against human graders

Our results for validation against human graders largely follow expectations. Our

system generates a few ties in cases where singletons run against each other. In this

case, they both receive the same score and a tie occurs. We exempt these cases from

the final accuracy calculations. We include a simple agreement percentage, correlation

coe�cient, and  (kappa) statistics for each system and the majority opinion of the

human graders. We also show agreement between the human graders themselves, who

generally disagreed.

System A System B Agreement %  Pearson Coef.
Embeddings Humans 72 0.4337 0.447
Tree Edit Humans 76 0.5192 0.519
Tree Edit Embeddings 64 0.2718 0.280

Table 4.4: Comparison of Systems and Human Graders

Human A Human B Agreement %  Pearson Coef.
Grader 1 Grader 2 40 -0.2058 -0.207
Grader 2 Grader 3 72 0.4373 0.439
Grader 1 Grader 3 36 -0.2821 -0.282

Table 4.5: Comparison Amongst Human Graders

We see that our embeddings-based system agrees with majority opinion 72% of

the time. The  and Pearson correlation coe�cient show agreement outside of what

we expect from random chance. These results suggest that the originality scores

encapsulate some degree of creativity in the students’ responses. Since humans are

imperfect judges and they did not have access to the full pool of submissions, these

results are inconclusive and do not suggest the system is entirely accurate.

Although Tree Edit Distance seemed to perform slightly better than code embed-

dings, the di↵erence is within the range of error we expect to see from a small sample

of human graders. When both systems agreed, they matched the human graders

87.5% of the time, for 14 out of 16 problems where there was consensus. Although

27

this only happened for 64% of problems, the high accuracy of the combined systems

is particularly encouraging. This suggests that both methods are worth exploring

further and elucidate a degree of creativity that is clear to the majority opinion of

human graders.

Chapter 5

Analysis

5.1 High AI Originality

We observe high originality distances for the AI-generated programs we analyzed. The

dataset involved in training the model is predominantly written by CS170 students,

who are new to programming and do not have access to every technique or library.

GPT-3.5, however, is trained on a large dataset containing of millions of lines of code.

Therefore, it follows that there would be a large distance between AI code and clusters

that are primarily comprised of human code. For instance, it is entirely possible that

the AI solutions, although original when compared to human solutions, lack flexibility

and form a cluster themselves.

We observe similar cases of AI di↵ering from humans in other areas. For instance,

it has been well-documented that LLMs have a tendency to overproduce certain

adjectives, such as meticulous or commendable. Liang, et al. find a sharp increase

the frequency of these words in peer review since the introduction of these models [5].

Research like this would suggest that AI models, while trained on human-generated

content, tend to produce content that is substantially di↵erent from humans and

similar to itself.

28

29

Further research on the topic should include solutions from multiple models to

compare the e↵ect. Do solutions from the same model cluster closely together? Do all

models form a cluster or does each model generate their own cluster? What about

the fluency of an AI model, and how would prompt it to exhaust all solutions? These

are all worthwhile questions that go beyond the scope of this paper.

5.2 Accuracy vs Originality

Our research replicates the finding from Elijah’s work that performance decreases

with increased originality scores. We coded program acceptance or rejection in our

repetition experiment as a dummy variable, and we ran a simple linear regression with

originality scores as the independent variable. We find a negative correlation between

originality scores and accuracy of with a coe�cient of �0.378 and a standard error of

0.137. However, the R2 was only 0.24, indicating that performance stems from several

other factors in addition to originality.

Figure 5.1: Performance vs. Originality in the Repeated Solutions Experiment

30

We believe this correlation occurred in our experiment because incorrect solutions

were often very di↵erent from correct solutions. The correct solutions in our experiment

were more similar to each other and generally closer to cluster centers. Incorrect

solutions were more likely to be in smaller clusters or make up a singleton cluster.

Due to this discrepancy, we expect to see a boost in originality scores for incorrect

solutions.

Another theoretical framework might explain this correlation. We start by consid-

ering a theoretical clustering of all programs for a specific problem, with an extremely

large number of programs. For instance, one might imagine clustering every Leetcode

submission for a single problem. Due to the thousands of programs, we do not expect

to see any singleton clusters. In this context, we can think of cluster centers as platonic

forms [19] of solutions, where each center captures the meaning of that approach.

We would expect the cluster centers that represent correct approaches to have more

solutions than cluster centers that represent incorrect approaches since programmers

are trying to solve the problem. In a similar theoretical clustering of every correct

solution, we might think of the centers as an exhaustive set of approaches to solving

a problem. We cannot confirm this framework with the small sample sizes in our

research, yet it demonstrates the possibilities of clustered code embeddings and their

deeper meaning.

5.3 Agreement with Human Graders

We find the tree edit distance approach has slightly better performance than the code

embeddings approach when compared to the majority opinion of human graders. This

could simply be due to disagreement among human graders, who seldom agreed on

the more creative solution. If tree edit distance is truly closer to human consensus, it

could be explained by the method behind tree edit distance when compared to code

31

embeddings. Since the embeddings are generated through a deep learning model, the

meaning of each feature is a black box. Tree edit distance, however, is computed

directly from di↵erences in the program structure. Although the embeddings also

originate from abstract syntax trees, the direct distance comparison is likely closer to

what humans subconsciously do when identifying an original program. For instance,

one might consider other approaches to di↵erent problems they had already seen, and

consider the program most di↵erent from those approaches as the most original.

We also find low levels of agreement between the two systems when compared

to human graders. While each system had a moderate agreement with the majority

opinion, they had a low agreement with each other. This indicates that each system

has its strengths since they were able to disagree on solutions and still agree with

humans most of the time. A comprehensive picture of program originality likely

incorporates tree edit distances with the insights gained from clustering.

5.4 Applications

One challenge with expanding the system for automatic feedback is the model fine-

tuning. Although Mean Shift was able to provide an appropriate clustering for all of

the problems, each problem required individualized fine-tuning. We solved this in the

human grading experiment by setting subjective parameters for the resulting clusters

and retraining the model through a range of bandwidth settings to find the optimal

clustering. In the context of an automated system that clusters a large number of

responses, this would be computationally expensive and undesirable.

An application of clustering in an educational setting would likely rely on an

existing solution pool from previous semesters. A solution pool would allow faculty

to pre-train a model for each question and find an optimal bandwidth ahead of

time. Existing bandwidths significantly reduce the computational load and allow for

32

real-time feedback.

Feedback on flexibility and fluency may be impossible in existing classroom sit-

uations. While we were able to engineer an experiment that specifically assessed

these dimensions of creativity, students are rarely asked to do so in the classroom.

Computer Science students are seldom asked to solve the same problem again with

a di↵erent approach. Providing feedback on these dimensions would likely require a

specific course designed around expanding creative thinking in programming. Such a

course might regularly ask students to think about problems in di↵erent ways and

consider solutions that are not obvious. We believe such a course has the potential

to drive students to consider new approaches to solved problems or to attempt new

methods for unsolved problems in the field, leading to new discoveries.

Chapter 6

Conclusion

6.1 Limitations

There are a few limitations to the research presented here. Firstly, several aspects

of the study su↵ered from a small sample size. We had five students in the repeated

solutions experiment, and only three human graders. Additionally, we only considered

responses from a single AI model, since it was not the focus of the research. Replicated

findings with a larger sample size would bolster the research.

We also acknowledge limitations in the research design of the survey given to

human graders. Since they were unable to compare the solutions they were grading

with the rest, there was little basis for choosing the more creative program beyond their

personal experiences. Another limitation is the lack of experience many programmers

in the study had. Because the system is intended for an educational study, we chose

to use students early in their careers. This limits the ability of some students to come

up with new approaches since they haven’t been exposed to every concept yet. A final

limitation of our research is the applicability of fluency and flexibility. As previously

discussed, these dimensions are rarely seen in the curriculum and are di�cult to apply

in practice.

33

34

6.2 Conclusion

Creative programmers are an asset to society, and providing direct feedback on

creative thinking for students would help them acquire this critical skill. Without a

standardized measurement for creativity, we explored methods for quantifying three

dimensions: fluency, flexibility, and originality. Code embeddings show promise for

encapsulating the meaning of a program into a set of features, and these features

can be e↵ectively clustered to show di↵erent approaches to solving a problem. By

generating an originality score based on the distance to the cluster center, we can begin

to quantify one aspect of creativity in programming. Our repeat solutions experiment

derived from the circles test [21] demonstrates that we can apply code embeddings

and experimental design to gain scores for fluency and flexibility as well. We find that

more original solutions tend to be less accurate, although this is not always the case.

Our research raises questions about AI-generated code that are worthy of further

consideration. With a larger sample of LLM-generated programs, what clusters form

and how do solutions interact? And at what point does the model run out of new

ideas and start to repeat old ones? Further research may also consider clustering

with a much larger sample size for a single question. Another study might consider

the repetition experiment with more experienced programmers and a more di�cult

question with a lower acceptance rate. A more challenging problem would more closely

emulate the tasks that professional programmers and academics regularly encounter.

Improving creativity will always be a goal of education, and the potential applica-

tions of an automated feedback system for creativity could help students learn creative

thinking skills and how to apply them to programming. Developing creative thinking in

coordination with computational thinking is critical to developing productive citizens.

By incentivizing students to be more creative, we can develop programmers that have

the skills to break down barriers on unsolved problems in the field.

Appendix A

Chat-GPT Transcripts

A.1 Simple solution

USER: Write a method named mergeRepeat(String[] s, int k) that takes an array of

strings s and an integer k. The method returns a String which is the concatenation of

all the elements of s repeated k times.

Examples:

mergeRepeat(”A”, ”BC”, 3) returns ”AAABCBCBC”

mergeRepeat(”hey”, ”you”, ”hi”, 2) returns ”heyheyyouyouhihi”

ASSISTANT: Certainly! Here’s a Java method named mergeRepeat that fulfills

the specified requirements:

This Java program includes the mergeRepeat method, and in the main method,

there are examples demonstrating how to use this method with di↵erent input arrays

and values of k.

35

36

A.2 Creative solutions

USER: Write a method named mergeRepeat(String[] s, int k) that takes an array of

strings s and an integer k. The method returns a String which is the concatenation of

all the elements of s repeated k times.

Examples:

mergeRepeat(”A”, ”BC”, 3) returns ”AAABCBCBC”

mergeRepeat(”hey”, ”you”, ”hi”, 2) returns ”heyheyyouyouhihi”

Come up with a creative solution that others might not think of.

ASSISTANT: Certainly! Here’s a creative solution for the mergeRepeat method:

This solution calculates the total length of all the strings in the array and then uses

a StringBuilder to e�ciently concatenate the repeated strings by iterating through

each string and appending it multiple times based on the given k. The additional part

result.append(str, 0, Math.min(len, i + 1)); is used to append a portion of the string

in each repetition, creating a unique concatenation pattern.

USER: Please make the program more creative

ASSISTANT: Certainly! Here’s a more creative solution for the mergeRepeat

method using a mix of string manipulation and randomization:

37

In this creative solution, a generateRandomSubstring method is introduced to

generate a random substring from each string in the array. This adds an element of

unpredictability and uniqueness to the repeated concatenation. The random substring

is generated by selecting a random starting index within the length of the original

string and extracting the substring from that point onward. This results in a more

varied and creative output.

USER: Please provide a more creative solution - the most creative you can think

of.

ASSISTANT: Certainly! Here’s a more creative solution for the mergeRepeat

method, introducing a playful twist by shu✏ing the characters within each string

before concatenating them:

In this creative solution, the shu✏eString method is introduced to shu✏e the

characters within each string before concatenating them. This adds a playful and

unpredictable element to the output, making it more creative. The shu✏eString method

converts the string into a list of characters, shu✏es the list, and then reconstructs the

string with the shu✏ed characters.

38

Appendix B

Repeated Solutions Experiment

Problem

Intro Statement

Thank you for your participation in the study. You will be asked to complete

a programming question in Java. Your goal is to come up with as many distinct

solutions to the question as possible. All the solutions will be tested for accuracy, and

you can test your code as you go. If you’re spending too much time on one approach

and it still doesn’t work, please submit it anyway and try another. We have included

a template for your code with some test cases. Please do not add “helper methods”.

Write your entire solution inside the provided method. There is a time limit of 2

hours, but you may finish early if you cannot think of any other solutions.

Problem

Given an n x n binary matrix image, flip the image horizontally, then invert it,

and return the resulting image.

To flip an image horizontally means that each row of the image is reversed.

For example, flipping [1,1,0] horizontally results in [0,1,1]. To invert an image

means that each 0 is replaced by 1, and each 1 is replaced by 0.

39

40

For example, inverting [0,1,1] results in [1,0,0].

Example 1:

Input: image = [[1,1,0],[1,0,1],[0,0,0]] Output: [[1,0,0],[0,1,0],[1,1,1]] Explanation:

First reverse each row: [[0,1,1],[1,0,1],[0,0,0]]. Then, invert the image: [[1,0,0],[0,1,0],[1,1,1]]

Example 2:

Input: image = [[1,1,0,0],[1,0,0,1],[0,1,1,1],[1,0,1,0]] Output: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]

Explanation: First reverse each row: [[0,0,1,1],[1,0,0,1],[1,1,1,0],[0,1,0,1]]. Then invert

the image: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]

Constraints:

n == image.length n == image[i].length 1 ¡= n ¡= 20 images[i][j] is either 0 or 1

Starter Code

public class FlipInvert {

public static int[][] flipAndInvertImage(int[][] image) {

}

}

Exit Statement

Thank you for participating in the study. If you asked to receive results in the

survey, you will receive aggregated results before the end of the semester.

Bibliography

[1] OpenAI. (2024) ChatGPT (GPT 3.5 version) [Large Language Model]

http://chat.openai.com.

[2] Leetcode. (2024) Flipping an Image. https://leetcode.com/problems/flipping-an-

image/description/.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning

distributed representations of code. Proc. ACM Program. Lang., 3(POPL):

40:1–40:29, January 2019. ISSN 2475-1421. doi: 10.1145/3290353. URL http:

//doi.acm.org/10.1145/3290353.

[4] Rotem Israel-Fishelson Andoni Egúıluz Pablo Garaizar Arnon Hershkovitz,

Raquel Sitman and Mariluz Guenaga. Creativity in the acquisition of computa-

tional thinking. Interactive Learning Environments, 27(5-6):628–644, 2019. doi:

10.1080/10494820.2019.1610451. URL https://doi.org/10.1080/10494820.

2019.1610451.

[5] Sameer Badaskar, Sachin Agarwal, and Shilpa Arora. Identifying real or fake

articles: Towards better language modeling. In International Joint Conference on

Natural Language Processing, 2008. URL https://api.semanticscholar.org/

CorpusID:4324753.

[6] Elijah Chou and Davide Fossati. Measuring creativity in computer programming:

41

http://doi.acm.org/10.1145/3290353
http://doi.acm.org/10.1145/3290353
https://doi.org/10.1080/10494820.2019.1610451
https://doi.org/10.1080/10494820.2019.1610451
https://api.semanticscholar.org/CorpusID:4324753
https://api.semanticscholar.org/CorpusID:4324753

42

A code distance approach. Emory Theses and Dissertations, 2023. URL https:

//etd.library.emory.edu/concern/etds/b8515p78f?locale=en.

[7] Philip M. Clark and Herbert L. Mirels. Fluency as a pervasive element in the

measurement of creativity. Journal of Educational Meaurement, 7(2):83–86, 1970.

[8] Thomas Dohmke. Github copilot x: The ai-powered developer experience. The

Github Blog, 2023.

[9] Ekohariadi, Yeni Anistyasari, and Ricky Eka Putra. Rasch and classical test

theory validation of automated assessment tool for measuring students’ creativity

in computer programming. In Proceedings of the International Joint Conference

on Arts and Humanities (IJCAH 2020), pages 1155–1160. Atlantis Press, 2020.

ISBN 978-94-6239-285-4. doi: 10.2991/assehr.k.201201.193. URL https://doi.

org/10.2991/assehr.k.201201.193.

[10] Rotem Israel-Fishelson, Arnon Hershkovitz, Andoni Egúıluz, Pablo Garaizar, and

Mariluz Guenaga. A log-based analysis of the associations between creativity

and computational thinking. Journal of Educational Computing Research, 59

(5):926–959, 2021. doi: 10.1177/0735633120973429. URL https://doi.org/10.

1177/0735633120973429.

[11] Jaehyun Kim and Yangsun Lee. A study on abstract syntax tree for development

of a javascript compiler. International Journal of Grid and Distributed Computing,

11(6):37–48, 2018. doi: 10.14257/ijgdc.2018.11.6.04.

[12] Anastasia Kovalkov, Benjamin Paaßen, Avi Segal, Niels Pinkwart, and Kobi Gal.

Automatic creativity measurement in scratch programs across modalities. IEEE

Transactions on Learning Technologies, 14(6):740–753, 2021. doi: 10.1109/TLT.

2022.3144442.

https://etd.library.emory.edu/concern/etds/b8515p78f?locale=en
https://etd.library.emory.edu/concern/etds/b8515p78f?locale=en
https://doi.org/10.2991/assehr.k.201201.193
https://doi.org/10.2991/assehr.k.201201.193
https://doi.org/10.1177/0735633120973429
https://doi.org/10.1177/0735633120973429

43

[13] Anastasia Kovalkov, Benjamin Paaßen, Avi Segal, Niels Pinkwart, and Kobi

Gal. Modeling creativity in visual programming: From theory to practice. In

Proceedings of The 14th International Conference on Educational Data Mining,

EDM 2021, virtual, June 29 - July 2, 2021. International Educational Data

Mining Society, 2021.

[14] Quoc Le and Tomas Mikolov. Distributed representations of sentences and

documents. Proceedings of the 31st International Conference on Machine Learning,

2014. URL http://jmlr.org/proceedings/papers/v32/le14.pdf.

[15] G. F Madaus. Divergent thinking and intelligence: another look at a controversial

question. Journal of Educational Measurement, 4:227–235, 1967.

[16] Sven Manske and H. Ulrich Hoppe. Automated indicators to assess the creativity

of solutions to programming exercises. pages 497–501, 2014. doi: 10.1109/ICALT.

2014.147.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Je↵rey Dean. E�cient estimation

of word representations in vector space. CoRR abs/1301.3781, 2013. URL

http://arxiv.org/abs/1301.3781.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[19] Plato. Republic. Ware, England : Wordsworth Editions, 1997.

[20] E. P. Torrance and H. W. Michie. Explorations in creative thinking in the early

school years: I. Scoring manual for ”How good is your imagination?” (Form C).

Bureau of Educational Research, University of Minnesota, 1959.

http://jmlr.org/proceedings/papers/v32/le14.pdf
http://arxiv.org/abs/1301.3781

44

[21] Kaoru Yamamoto. Experimental Scoring Manuals for Minnesota Tests of Creative

Thinking and Writing. Bureau of Educational Research, Kent State University,

1964.

[22] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing

distance between trees and related problems. SIAM Journal on Computing,

18:1245–1262, 1989. doi: 10.1137/0218082. URL https://doi.org/10.1137/

0218082.

https://doi.org/10.1137/0218082.
https://doi.org/10.1137/0218082.

	Introduction
	Background
	Studying Creativity
	Measuring Creativity in Programming
	Word embeddings and code embeddings

	Approach
	Method Overview and Definitions
	Data
	CS170 Dataset
	AI-generated Programs
	Experimental Dataset
	Human-assessment Dataset

	Preprocessing
	Evaluation of Clustering Methods
	Validation of Originality Scores on 170 Dataset
	Repeated Solutions Experiment
	Comparison with Human Analysis

	Experiments
	Evaluation of Clustering Methods
	Clustering a single question

	Validation of Originality Scores on 170 Dataset
	Repeated Solutions Experiment
	Clustering
	Student Analysis

	Validation against human graders

	Analysis
	High AI Originality
	Accuracy vs Originality
	Agreement with Human Graders
	Applications

	Conclusion
	Limitations
	Conclusion

	Chat-GPT Transcripts
	Simple solution
	Creative solutions

	Repeated Solutions Experiment Problem
	Bibliography

