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Abstract 

Characterizing Chromatin Changes Upon Inhibition of Chromatin Remodeling Complexes 

By Kihoon Alan Kang 

BRG1/BRM Associated Factors (BAF) complexes are ATP-dependent chromatin remodelers 

which control chromatin accessibility genome-wide. Mutations in BAF subunits can cause 

neurodevelopmental disease and cancer. While BAF complexes are known to regulate chromatin 

accessibility, the specific mechanisms by which they target genomic regions, and the 

downstream effects of their inhibition remain incompletely understood. In particular, it is unclear 

which transcription factors or chromatin features determine a region’s sensitivity to BAF 

activity. Addressing this gap is critical for interpreting how mutations in BAF subunits contribute 

to disease. Motivated by this, my thesis research aimed to systematically characterize the 

chromatin-level consequences of BAF inhibition and identify the molecular features predictive 

of such changes. To do this, I inhibited BAF activity using a small molecule targeting the 

ATPase subunit of the complex. Using ATAC-seq to profile chromatin accessibility, we 

observed widespread loss of accessible chromatin regions upon BAF inhibition. Machine 

learning models, including a random forest classifier and ridge regression, were then trained to 

predict accessible chromatin sensitive or insensitive to BAF inhibition based on transcription 

factor binding and histone modification profiles. A random forest classifier achieved accuracies 

above 78% with high AUROC values, while feature importance analyses from linear regression 

models highlights distinct roles for promoter-associated factors, CTCF/cohesin subunits and 

lineage-specific transcription factors (e.g., RUNX3, BATF, JUNB, SPI1) in understanding 

chromatin response to BAF inhibition. Analysis of known protein-protein interactions in 

StringDB indicates that transcription factors which bind to BAF subunits are predictive of 

chromatin accessibility loss upon BAF inhibition, suggesting that these TFs may function to 

recruit BAF complexes to chromatin via protein-protein interactions. Overall, this work 

establishes an analytical framework for fundamentally understanding the effects of BAF activity 

on chromatin
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1. Abstract 1 

BRG1/BRM Associated Factors (BAF) complexes are ATP-dependent chromatin 2 

remodelers which control chromatin accessibility genome-wide. Mutations in BAF subunits can 3 

cause neurodevelopmental disease and cancer. While BAF complexes are known to regulate 4 

chromatin accessibility, the specific mechanisms by which they target genomic regions, and the 5 

downstream effects of their inhibition remain incompletely understood. In particular, it is unclear 6 

which transcription factors or chromatin features determine a region’s sensitivity to BAF activity. 7 

Addressing this gap is critical for interpreting how mutations in BAF subunits contribute to disease. 8 

Motivated by this, my thesis research aimed to systematically characterize the chromatin-level 9 

consequences of BAF inhibition and identify the molecular features predictive of such changes. 10 

To do this, I inhibited BAF activity using a small molecule targeting the ATPase subunit of the 11 

complex. Using ATAC-seq to profile chromatin accessibility, we observed widespread loss of 12 

accessible chromatin regions upon BAF inhibition. Machine learning models, including a random 13 

forest classifier and ridge regression, were then trained to predict accessible chromatin sensitive 14 

or insensitive to BAF inhibition based on transcription factor binding and histone modification 15 

profiles. A random forest classifier achieved accuracies above 78% with high AUROC values, 16 

while feature importance analyses from linear regression models highlights distinct roles for 17 

promoter-associated factors, CTCF/cohesin subunits and lineage-specific transcription factors 18 

(e.g., RUNX3, BATF, JUNB, SPI1) in understanding chromatin response to BAF inhibition. 19 

Analysis of known protein-protein interactions in StringDB indicates that transcription factors 20 

which bind to BAF subunits are predictive of chromatin accessibility loss upon BAF inhibition, 21 

suggesting that these TFs may function to recruit BAF complexes to chromatin via protein-protein 22 



 2 

interactions. Overall, this work establishes an analytical framework for fundamentally 23 

understanding the effects of BAF activity on chromatin.  24 

2. Introduction 25 

2.1. The packaging of Eukaryotic DNA into chromatin 26 

In eukaryotic cells, DNA is tightly packaged into a dynamic and hierarchical structure 27 

known as chromatin. This packaging is essential for organizing the genome within the nucleus and 28 

plays a critical role in regulating access to genetic information. The fundamental unit of chromatin 29 

is the nucleosome, which consists of ~147 base pairs of DNA wrapped around a histone octamer. 30 

Nucleosomes are further organized into higher-order structures, creating a physical barrier to the 31 

transcriptional machinery and other DNA-binding proteins (Li et al., 2007). Chromatin structure 32 

is not static; rather, it is continuously remodeled in response to cellular signals, developmental 33 

cues, and environmental stimuli. These structural changes are mediated by chromatin remodelers, 34 

histone modifiers, and non-coding RNAs, which collectively modulate DNA accessibility and 35 

genome function (Kouzarides, 2007). 36 

2.2 Chromatin accessibility and transcriptional regulation.  37 

 The degree to which DNA within chromatin is exposed and available for interaction with 38 

regulatory proteins is referred to as chromatin accessibility. Regions of DNA unbound by 39 

nucleosomes, known as accessible chromatin, are typically associated with active gene 40 

expression, as they allow transcription factors and the transcriptional machinery to bind to DNA. 41 

Conversely, regions of DNA bound by nucleosomes, or inaccessible chromatin, are often linked 42 

to gene silencing due to the obstruction of DNA-protein interaction (Tsompana and Buck, 2014). 43 
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Transcription factors (TFs) are proteins that bind to specific DNA sequences to regulate 44 

the transcription of genes. They play a crucial role in turning genes on or off by facilitating or 45 

hindering the recruitment and stabilization of RNA polymerase to gene promoters. TFs often bind 46 

to cis-regulatory elements (cREs), which are regions of non-coding DNA which control the 47 

regulation of genes. These elements include promoters, enhancers, silencers, and insulators, and 48 

they function as binding sites for TFs to modulate gene expression. 49 

The interplay between chromatin accessibility, cREs, and TFs is fundamental to 50 

transcriptional regulation. Accessible chromatin regions often correspond to active cREs where 51 

TFs can bind and initiate or enhance transcription. Conversely, in regions where chromatin is less 52 

accessible, TF binding is hindered, leading to reduced gene expression. This dynamic regulation 53 

allows cells to fine-tune gene expression programs in response to developmental cues and 54 

environmental stimuli, highlighting the importance of chromatin structure in controlling cellular 55 

function and identity. 56 

2.3. The BRG1/BRM Associated Factors (BAF) Complexes regulate chromatin accessibility at 57 

cis-regulatory sequences. 58 

Proper regulation of chromatin accessibility is critical for both development and disease, 59 

as the regions of the genome that remain open directly determine which genes are expressed. When 60 

genes are inappropriately activated or repressed due to misregulated chromatin accessibility, it can 61 

lead to a variety of diseases (Kouzarides, 2007). The BRG1/BRM Associated Factors (BAF) 62 

family of complexes are ATP-dependent chromatin remodelers that establish and maintain 63 

accessible chromatin. BAF can achieve this function by displacing histone octamers or by shifting 64 
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nucleosome placement, which in turn influences which parts of the genome remain accessible 65 

(Alfert et al., 2019). 66 

BAF complexes are highly modular and can consist of up to 15 different subunits. The 67 

main catalytic component of the complex is the ATPase subunit, which comes in one of two 68 

mutually exclusive forms: either BRG1 (SMARCA4) or BRM (SMARCA2). Without the activity 69 

of this ATPase, the BAF complex cannot remodel chromatin (Mashtalir et al., 2018). In addition 70 

to the ATPase, the complex also contains several other proteins that help recognize histones and 71 

specific histone modifications. For example, some subunits contain bromodomains or double PHD 72 

finger (DPF) domains which allows BAF to bind directly to modified histones. Together, these 73 

subunits work to regulate chromatin accessibility, ensuring that the correct regions of the genome 74 

are opened during development and homeostasis. Consequently, loss-of-function mutations that 75 

inactivate BAF-mediated chromatin remodeling are often associated with diseases like cancer and 76 

various neurodevelopmental disorders (Hodges et al., 2016, Mathur and Roberts, 2018). 77 

2.4. Transcription Factors as Potential Recruiters of BAF 78 

 Although BAF contains subunits which help it bind to chromatin (such as a bromodomain), 79 

it lacks subunits for sequence specificity, meaning that it has no way of knowing from DNA-80 

sequence which areas of the genome to bind to. This raises a central question in chromatin biology: 81 

how do BAF complexes get recruited to specific genomic loci? 82 

A leading hypothesis is that sequence‐specific transcription factors (TFs) act as recruiters 83 

for BAF complexes. Because TFs bind to defined DNA motifs, they can guide BAF complexes to 84 

discrete regulatory regions, thus resulting in specificity (Ho et al., 2019). For example, studies 85 

have demonstrated that TFs such as the AP1 TF, JUNB interact with components of the BAF 86 

complex during key developmental processes (Vierbuchen et al., 2017). Moreover, post‐87 



 5 

translational modifications and additional cofactors are thought to further fine-tune these 88 

interactions, ensuring that chromatin remodeling is both context-dependent and precisely regulated. 89 

Despite these advances, the full spectrum of transcription factors involved in recruiting BAF 90 

complexes, remains an active area of research, and a deeper understanding of this process is crucial. 91 

2.5. GM12878 as a system to study chromatin dynamics upon BAF inhibition 92 

GM12878 is a lymphoblastoid cell line derived from B lymphocytes that have been 93 

transformed by the Epstein–Barr virus. It’s widely used to study gene regulation and chromatin 94 

biology. As an ENCODE Tier 1 cell line, GM12878 has been studied in depth, and there are plenty 95 

of public datasets available on chromatin accessibility, transcription factor binding, and histone 96 

modifications through the ENCODE database (ENCODE Project Consortium, 2012; Thurman et 97 

al., 2012 ). 98 

Since GM12878 cells grow easily in suspension, they are a practical model for conducting 99 

techniques like Hi-C, ATAC-seq, and ChIP-seq to track changes in chromatin structure. All of this 100 

makes GM12878 a useful tool for understanding basic chromatin dynamics and the role of 101 

chromatin remodelers like the BAF in regulating chromatin. 102 

2.6. Accessible chromatin regions display heterogeneous responses to BAF inhibition 103 

Previously, researchers have used a small molecule inhibitor of the BAF ATPase subunit, 104 

BRM014, on different cell lines to characterize chromatin accessibility changes upon loss of BAF 105 

function. These studies concluded that upon BAF loss-of-function, there was global chromatin 106 

accessibility loss and a drastic change in transcription. However, these previous studies also found 107 

that not all accessible chromatin reacted the same to BAF loss-of-function. For example, cis-108 

regulatory elements (cREs) like enhancers were found to be more sensitive to BAF inhibition 109 

compared to other areas of open chromatin (Schick et al., 2021, Iurlaro et al., 2021). cREs are non-110 
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coding regulatory regions that serve as binding sites for TFs, which further recruit additional 111 

transcriptional machinery to control gene expression.  112 

Although it is known that certain broad classes of cREs, such as those bound by CTCF or 113 

found in promoter-associated regions, remain accessible when BAF is inhibited in some cell types 114 

(Bao et al., 2015), there is still a lack of detailed methods to connect the combined effects of 115 

transcription factor binding and histone modifications with changes in chromatin accessibility 116 

upon BAF inhibition. In this study, I propose using a machine-learning feature-analysis based 117 

approach to (1) identify regions of open chromatin that are either sensitive or insensitive to BAF 118 

activity and (2) determine which features - such as specific transcription factor binding profiles or 119 

histone modification patterns - explain these differences. By developing this analytical framework, 120 

I also hope to reveal general patterns of BAF activity and better understand its role in development 121 

and disease. 122 

 123 

3. Methods 124 

 125 
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 126 

Figure 1. Overview of the experimental and computational workflow used to assess chromatin accessibility 127 

changes upon BAF inhibition in GM12878 cells. This diagram details key steps including cell treatment with 128 

the BRG1/BRM inhibitor BRM014, ATAC-seq library preparation, construction of a binary feature matrix from 129 

transcription factor binding sites and histone modification data, and the application of machine learning 130 

models (random forest and ridge regression) to classify BAF sensitivity and conduct feature analysis. 131 

 132 

3.1. Culturing of GM12878 cells 133 

GM12878 is a suspension lymphoblastoid cell line which can be obtained from Coriell. 134 

After cells were brought out from long-term liquid nitrogen storage at passage #7, they were 135 

passaged 2 times in in 20mL of culture media which comprised of 85% RPMI media supplemented 136 

with 15% fetal bovine serum and 1X penicillin/streptomycin in upright T25 flasks following 137 

Coriell’s culture guidelines. The cells were incubated in 37°C and at 5% carbon dioxide. All cell 138 

culture work was done in a sterile environment inside a biosafety cabinet.  139 

3.2. BAF-ATPase inhibition of GM12878 cells 140 

 To inhibit BAF-ATPase activity, I used a small-molecule dual-inhibitor of BRG1/BRM 141 

known as BRM014 (obtained from MedChemExpress Cat. No.: HY-119374) which is dissolved 142 
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and aliquoted in DMSO at a concentration of 10mM. At passage # 9, GM12878 cells were 143 

transferred into a 6-well plate (obtained from Corning Cat. No.: CLS353046) at a concentration of 144 

1 million cells per 3mL of culture media per well. Then two wells were treated with 30uL of 145 

DMSO, and 2 wells were treated with 30uL of BRM014 diluted in DMSO to reach an effective 146 

concentration of 10nM. This gives us 2 replicates BRM014 treated GM12878 cells each paired 147 

with a vehicle treated group of cells. The cells were given its treatment group and incubated in 148 

37°C at 5% carbon dioxide for 24 hours.  149 

3.3. Assay for Transposase Accessible Chromatin with Sequencing (ATAC-seq) 150 

 After GM12878 cells were incubated under appropriate treatment conditions, 250K cells 151 

were collected, spun down, and flash frozen in 1mL of freezing media (90% RPMI and 10% 152 

DMSO) to be stored in –80°C conditions. The ATAC-seq protocol was adapted from Buenrostro 153 

et al., 2015. 154 

3.4. Library preparation and sequencing 155 

 For barcoding of samples, I used primers from IDT’s Nextera Index XT Kit v2 which 156 

provides dual i5 and i7 IDs for each sample. Barcoded and amplified libraries were sent off to 157 

Novogene for sequencing on Illumina’s NovaSeq6000 machine. Information generated from 158 

sequencing was downloaded onto the Lab server.  159 

3.5. ATAC-seq data processing 160 

 The raw ATAC-seq sequencing data obtained from Novogene was processed using the 161 

standardized ENCODE ATAC-seq pipeline. This pipeline consists of adapter trimming, alignment 162 

to the human reference genome (GRCh38), PCR duplicate removal, and peak calling. Adapter 163 

trimming was performed with trim galore to remove Illumina-specific sequencing adapters. 164 

Alignment was executed using BWA, generating aligned BAM files (Li and Durbin, 2009). 165 
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Duplicate reads, indicative of PCR amplification bias, were identified and removed with samtools 166 

(Li et al., 2009). Peak calling was then performed with MACS3 to generate narrowPeak files, 167 

identifying regions of accessible chromatin (Zhang et al., 2008). Quality control metrics, including 168 

those that result from fastQC and FRiP scores (Fraction of Reads in Peaks), were calculated to 169 

ensure high data quality and reproducibility across replicates. 170 

3.6. ENCODE BED file parsing and download 171 

Relevant publicly available BED files representing transcription factor binding sites and 172 

histone modification peaks for GM12878 were identified and retrieved using the ENCODE REST 173 

API. Files were filtered to select datasets with the highest FRiP values, ensuring the use of data 174 

with the highest signal-to-noise ratio. These datasets included ChIP-seq peak files for transcription 175 

factors (e.g., CTCF, JUNB, SPI1) and histone modifications (e.g., H3K27ac, H3K4me3, 176 

H3K27me3) critical for understanding chromatin accessibility and regulatory element activity. In 177 

total, there were 150 DNA-protein interaction CHiP-Seq BED files and 9 Histone Modification 178 

BED files available for us to use. 179 

3.7. Implementation of machine learning algorithms 180 

 3.7.1. Feature Matrix Generation 181 

For this analysis, replicated GM12878 peaks from both BRM-treated and DMSO-treated 182 

cells were obtained to ensure reproducibility in peak detection. These peaks formed the basis for 183 

integrating additional genomic features. A binary feature matrix was constructed by assessing the 184 

overlap between transcription factor (TF) and histone modification BED files and ATAC-seq 185 

peaks, allowing us to encode the presence or absence of key regulatory elements. 186 

The target variable was defined as the log₂ fold change in signal enrichment over the BED 187 

regions, calculated using BigWigAverageOverBed from the UCSC Genome Browser Utilities 188 
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(Perez et al., 2025). A two-fold decrease in signal enrichment (log₂ fold change = -1) was used as 189 

the cutoff to categorize peaks as BAF-sensitive, while peaks above this threshold were considered 190 

BAF-insensitive. 191 

To ensure robust model performance, the feature matrices were class balanced by under 192 

sampling the majority class. This balancing step mitigated bias and enhanced the overall accuracy 193 

of the predictive models. 194 

 3.7.2. Random Forest Classifier 195 

We implemented a random forest classifier using scikit-learn (Pedregosa et al. 2012). The 196 

dataset was randomly partitioned into training, validation, and test subsets, typically at a ratio of 197 

80% training and 20% test. A model consisting of 100 trees was trained on the training set and the 198 

final performance evaluation was conducted on the unseen test set. Feature importance was 199 

analyzed to determine the contribution of individual genomic features to the classification 200 

accuracy using Mean Decrease Impurity (MDI): 201 

 202 

𝑀𝐷𝐼(𝑋𝑗) =  
1

𝑁𝑇
 ∑ ∑ 𝑝(𝑡)∆𝑖(𝑠𝑡 , 𝑡)

𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑗𝑇

 203 

 204 

Where Nt is the number of trees, T represents individual trees, st is the split at node t, v(st) 205 

is the feature used in split st, p(t) is the proportion of samples reaching node t, and Δi(st,t) is the 206 

impurity decrease resulting from split st. 207 

3.7.3. Ridge Linear Regression 208 

Multiple ridge linear regression models were implemented using scikit-learn's Ridge 209 

module with an alpha penalty value of 0.5 (Pedregosa et al. 2012). A sampling approach was 210 
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adopted in which 70% of the dataset was randomly sampled multiple times (e.g., 100 iterations). 211 

Rather than focusing solely on predictive performance, we extracted and analyzed the regression 212 

coefficients (beta values) from each model iteration. These coefficients provided insights into 213 

feature importance, reflecting the magnitude and direction of each feature's relationship with the 214 

response variable. Ridge regression was specifically chosen because its regularization term 215 

addresses multicollinearity among predictors by shrinking coefficient estimates, thereby reducing 216 

variance and improving the model's stability and interpretability.  217 

𝑦 = 𝑋𝑖𝛽 +  𝜖     where     �̂�𝑘 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑦 218 

 219 

3.7.4. Evaluation Metrics 220 

 We evaluated model performance using standard metrics such as Accuracy, Area Under 221 

the Receiver Operating Characteristic Curve (AUROC), and Area Under the Precision Recall 222 

Curve (AUPRC). The formulas are as follows: 223 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 224 

 225 

𝑇𝑅𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 226 

𝐴𝑈𝑅𝑂𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑(𝐹𝑃𝑅)
1

0

 227 

 228 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, Recall =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 229 

𝐴𝑈𝑃𝑅𝐶 =  ∫ 𝑃(𝑅) 𝑑𝑅
1

0

 230 

 231 
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3.8. StringDB to predict BAF-Protein Interaction 232 

StringDB is a comprehensive database that integrates known and predicted protein-protein 233 

interactions from various sources, including experimental data, curated databases, and 234 

computational predictions (Szklarczyk et al., 2023). For this analysis, I input all relevant protein 235 

features alongside the BAF subunits into StringDB. This allowed for a broad exploration of 236 

potential interactions between the BAF complex and other proteins of interest. 237 

To refine the predictions, I focused on selecting the highest interaction score for each BAF-238 

related interaction. Specifically, when multiple scores were available for interactions involving a 239 

BAF subunit, the maximum value was retained. This approach ensured that the strongest and most 240 

confident predictions were considered for downstream analyses. 241 

 242 

4. Results 243 

4.1. Treatment of BRM014 to GM12878 cells results in genome wide loss in accessibility 244 

 Upon processing of BRM014 and DMSO treated GM12878 cell ATAC-seq libraries, 245 

DeepTools was used to plot the enrichment of sequencing signal over bed regions corresponding 246 

to accessible chromatin in both treatment groups (Figure 2a). Such plotting demonstrates that there 247 

is a noticable genome-wide loss of chromatin accessibility, and that inhibition of the BAF-ATPase 248 

subunit in GM12878 achieves similar observations to previous studies in different cell types such 249 

as HAP1 and mESCs (Sheick et al., lurlaro et al.). 250 

 Furthermore, loading the generated signal tracks onto a UCSC genome browser, certain 251 

peaks (often in close proximity to each other) were seen to be differentially affected by BAF 252 

inhibition (figure 2b). This further confirms the findings in Sheick et al. and Lurlaro et al. a 253 
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demonstrates the GM12878 is an appropriate model cell line to investigate differential sensitivity 254 

of accessible chromatin to BAF inhibition. 255 

 256 

Figure 2. (a) A heatmap of ATAC-seq signals over all replicated called peaks from both BRM014 and DMSO 257 

treated GM12878 cells. A significant decrease in chromatin accessibility can be seen from the control to the 258 

BAF inhibited sample. (b) A UCSC genome browser shot demonstrating how even within the same gene, 259 

accessible chromatin reacts to BAF inhibition in different manners. The regions boxed in blue are BAF 260 

insensitive chromatin, while the regions boxed in red are BAF sensitive chromatin.  261 

 262 

4.2. Machine learning predicts BAF sensitivity of open chromatin at high performance 263 

 Creation of the binary feature matrix yields a matrix of 107,335 samples (corresponding to 264 

a region of accessible chromatin) and 162 features comprised of 151 TFs/proteins and 11 Histone 265 

Modifications. Here we filtered out peaks that had a log2FC > 1 as these peaks represent 266 

accessibility gaining peaks which is interesting, but not part of the biological question we hope to 267 

pursue. Upon drawing the BAF-sensitivity cutoff at log2FC = -1, there were 45,517 samples in the 268 

positive case (corresponding with BAF sensitivity) and 57,274 samples in the negative case 269 

(corresponding with BAF insensitivity). After under-sampling the negative class to balance the 270 

data, a final feature matrix of 91,034 samples and 162 features were obtained.  271 
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After creating the binary feature matrix, a scikit-learn random forest classifier comprising 272 

of 100 trees was trained with the following parameters: [criterion='squared_error', 273 

max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 274 

max_features=1.0, max_leaf_nodes=None]. On a held back testing set of 20% of the total data, the 275 

trained model achieves a high performance of 78.80%. Furthermore, the model achieved an 276 

AUROC of 0.86 and an AUPRC of 0.84. The model then attempted to predict on a second 277 

biological replicate of GM12878 cells where it achieved an even better performance at accuracy = 278 

81.71%, AUROC = 0.88, and AUPRC = 0.86 (Figure 3a,b). This gives us confidence that our 279 

model is not overfitting to noise from batch effect.  280 

 281 
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Figure 3. Performance evaluation and feature importance analysis of the random forest classifier. (a) 282 

Receiver Operating Characteristic (ROC) curve demonstrating an AUROC of 0.86, which reflects the model's 283 

ability to distinguish between BAF-sensitive and BAF-insensitive chromatin regions. (b) Precision-Recall (PR) 284 

curve illustrating the balance between precision and recall across different thresholds, with the area under 285 

the curve (AUPRC) indicating robust predictive performance. (c) Feature importance plot based on Mean 286 

Decrease Impurity (MDI), highlighting key genomic features - including transcription factor binding profiles 287 

and histone modifications - that drive the classification. 288 

 289 

4.3. Mean Decrease in Impurity (MDI) index highlight important features in ML prediction 290 

 After training the Random Forest Classifier, an MDI feature importance analysis was 291 

carried out on the model using the formula outlined in Methods: Random Forest Classifier. 292 

Ranking the most important features to the least, features identified as important in previously 293 

publish studies were identified such as CTCF and Cohesin subunits (RAD21 & SMC3), as well as 294 

promoter associated features such as H3K4me4, H3K9ac, and RNA Polymerase II (insert 295 

citations). Interestingly however, certain key transcription factors also get parsed out of this 296 

analysis. Mainly, YY1, ELF1, RUNX3, BATF, NKRF, JUNB, and SPI1 appeared at the top of the 297 

feature importance analysis (Figure 3c). These are all transcription factors which are important for 298 

gene regulation in immune cells which is unsurprising given the fact that GM12878 is a 299 

lymphoblastoid cell line.  300 

4.4. Linear regression helps distinguish features that predict BAF sensitivity vs insensitivity 301 

 While an exploration of RF feature importance can provide us with the importance of the 302 

feature to BAF-sensitive accessible chromatin classification, it cannot provide us the directionality 303 

of the feature. In other words, if a feature exist in a certain sample, does that mean that it is 304 

indicative of a BAF-sensitive chromatin or BAF-insensitive chromatin? To answer this question, 305 

a ridge regularized linear regression model was trained on the same feature matrix used to train 306 
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the random forest classifier. This time, however, the target was not converted to binary as a 307 

regression is able to fit to a continuous target.  308 

From here, the sign and magnitude of the  values inform us about the directionality of 309 

predictiveness for each individual features. Positive values indicate predictiveness for BAF-310 

insensitivity (accessible chromatin that remain accessible upon BAF inhibition) while negative 311 

values predict BAF-sensitivity (accessible chromatin that lose accessibility upon BAF inhibition). 312 

After fitting the ridge regularized linear regression, plotting of the  values from most negative to 313 

most positive result in many of the features appearing on each pole of the plot. As expected, CTCF 314 

and cohesion subunits as well as promoter associated features appear to congregate to the positive 315 

Beta values. Interestingly, much of the TFs identified as important in the MDI feature importance 316 

appears to have the most negative  values (Figure 4a). 317 

Importantly, the magnitude of the Beta values for each feature correlate strongly with the 318 

MDI feature importance upon normalization of feature values, which give us confidence that the 319 

feature importance we are calculating agrees across methods (Figure 4b). 320 
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 321 

Figure 4. Feature analysis and protein interaction enrichment. (a) Ridge regression coefficients, ordered 322 

from most positive to most negative, with the 15 most positive (indicative of BAF-insensitivity) and 15 most 323 

negative (indicative of BAF-sensitivity) coefficients highlighted. (b) Scatter plot illustrating the correlation 324 

between Mean Decrease Impurity (MDI) from the random forest classifier and the absolute value of ridge 325 

regression coefficients, demonstrating strong concordance between the two importance metrics. (c) Boxplot 326 

comparing StringDB interaction scores for the 15 features with the most negative ridge coefficients against 327 

all other features, revealing a statistically significant enrichment of interactions among the top negative 328 

predictors, suggestive of their potential role as BAF recruiters. 329 

 330 

4.5. BAF-sensitivity predicting features are enriched for BAF interaction 331 
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 To assess whether features predictive of BAF-sensitive chromatin are functionally linked 332 

to BAF complexes, we used StringDB to retrieve protein-protein interaction scores between each 333 

transcription factor or cofactor feature and known BAF subunits, retaining the highest interaction 334 

score per feature. We then compared the top 15 features with the most negative Beta values (i.e., 335 

strongest predictors of chromatin accessibility loss upon BAF inhibition) against all other non-336 

histone features. These top features showed a statistically significant enrichment for high StringDB 337 

interaction scores with BAF subunits (p = 0.021; Figure 4c). 338 

5. Discussion 339 

5.1. Machine learning cam predict the loss of chromatin accessibility upon BAF inhibition 340 

based on protein binding and histone modification 341 

A random forest model trained on chromatin features such as TF binding and histone modifications 342 

can accurately predict the BAF-sensitivity of a region of accessible chromatin at a very high 343 

performance. This means that the chromatin landscape is indeed informative in distinguishing 344 

between BAF-sensitive and insensitive chromatin. This finding provides motivation to examine 345 

histone modifications and TFs in relation to BAF activity.  346 

5.2. CTCF/cohesin and promoter-associated modifications are predictive of chromatin 347 

accessibly retention 348 

CTCF, cohesin subunits, and promoter associated factors are implicated as highly 349 

important and highly predictive of BAF-insensitivity in both the MDI feature importance and the 350 

linear regression analysis. This observation is significant as it serves to confirm that certain trends 351 

which are common across different cell types (HAP1 and mESCs) can also be seen in GM12878. 352 

This finding also points towards the fact that loss-of-function mutations in BAF are most likely 353 

not affecting these regions of the genome. 354 
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5.3. Lineage Determining and Enhancer associated TFs are predictive of chromatin 355 

accessibility loss 356 

On the other side of the spectrum, TFs such as RUNX3, BATF, JUNB, SPI1, and IKZF1 357 

are implicated as important to the RF classification and highly predictive of BAF-sensitivity. Many 358 

of these transcription factors, such as RUNX3, BATF, and SPI1 are lineage determining genes and 359 

are indicative of enhancer binding. 360 

5.4. TFs that predict BAF sensitivity point to potential mechanisms of BAF recruitment to 361 

chromatin. 362 

 There is a statistically significant enrichment of experimentally derived StringDB scores 363 

against BAF subunits in the 15 most negative features compared to all other proteins screened in 364 

this study. Among these negative features include many TFs of the AP1 family (such as JUNB, 365 

BATF, ATF2, and ATF7), of which JUNB has been experimentally shown to have BAF recruiting 366 

activity (Vierbuchen et al., 2017). 367 

Altogether, in this paper I present a data analysis pipeline where ML is used to predict 368 

BAF-sensitivity of chromatin based on chromatin features. Upon feature analysis of ML models, 369 

certain patterns can be seen. These patterns point towards a biological significance of BAF 370 

sensitive cREs as binding sites for TFs which may function as BAF recruiters.  371 

5.5. Limitations and Future directions 372 

While the current study offers valuable insights into the chromatin dynamics following 373 

BAF inhibition, several limitations remain. First, my analysis is confined to the GM12878 cell line, 374 

which may not fully capture the characteristics present in other cell types. Moreover, the machine 375 

learning models rely on a predetermined set of chromatin features; additional epigenetic marks or 376 

transcription factors not included in the current feature matrix might also contribute to BAF 377 
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sensitivity. Lastly, although I have proposed certain transcription factors as potential BAF 378 

recruiters, experimental validation is still required to confirm these interactions and prove their 379 

functional significance. 380 

Future research should extend this analysis to multiple cell types, including both 381 

pluripotent and differentiated cells, to enhance the generalizability of the predictive models. 382 

Incorporating additional multi-omics data, such as RNA-seq and ChIP-seq for a broader range of 383 

histone modifications, could refine the feature matrix and improve model performance. 384 

Furthermore, systematic laboratory-based assays are needed to screen and validate the predicted 385 

BAF recruiters, thereby bridging the gap between computational predictions and biological 386 

function.  387 
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