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Abstract

Statistical Methods for Mediation Analysis of Omics Data
By Andrea N. Lane

Epigenome-wide association studies (EWAS) have identified associations between epi-
genetic modifications (e.g. DNA methylation) and both exposures (e.g. smoking sta-
tus) and certain health outcomes (e.g. lung function). These associations naturally
lead to an interest in studying DNA methylation as a potential mediator between an
exposure and outcome. To this point, EWAS mediation studies adopted the canoni-
cal mediation analysis method and ignored a very important aspect of the data: the
sample complexity. The samples being studied (such as blood) are comprised of a mix
of cell types. Distinct cell types are known to present distinct methylation profiles
and play unique mediation roles in disease pathogenesis.

In this dissertation, we develop novel statistical methods to study the cell type-specific
mediating e↵ects from population level EWAS data. In the first project, we present
a novel statistical method called TOols for the Analysis of heterogeneouS Tissues –
Mediation with a Continuous outcome (TOAST-MC) to detect this cell-type-specific
mediation e↵ect with a continuous outcome. Our method extends the traditional
mediation models by treating the unobserved cell type-specific methylation as miss-
ing data. We then derive an EM-algorithm for parameter estimations and perform a
bootstrap test of the indirect e↵ect.

In the second project, we develop a procedure called TOAST-MB that can han-
dle both a continuous and a binary outcome. The method utilizes a Bayesian model
framework to obtain a marginal posterior distribution of the indirect e↵ect for each
cell type. Posterior samples are obtained via Hamiltonian Monte Carlo MCMC.

In the third project, we conduct a series of simulation studies to compare the perfor-
mance of three methods of high dimensional mediation analysis: HIgh dimensional
Mediation Analysis (HIMA), Divide-Aggregate Composite-null Test (DACT), and
BAyesian Mediation Analysis (BAMA). We then apply the three methods to a dataset
from the Grady Trauma Project, in which we analyze the role of DNA methylation
as a mediator between smoking and weight.

The statistical methods and tools developed in this dissertation help to better analyze
EWAS data and can potentially aid in the discovery of novel diagnostic biomarkers
and therapeutic targets.
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Chapter 1

Introduction

1.1 The omics revolution

In the last twenty years, developments in high-throughput technologies have dramat-

ically reduced the cost of genetic sequencing [14]. These technological advancements

have led to a new era of biological discovery known as the “omics revolution” [3]. Sev-

eral areas of “omics” have emerged, including genomics, epigenomics, transcriptomics,

proteomics, and metabolomics. Genomics refers to the examination of variability in

the genome; epigenomics refers to epigenetic modifications of DNA; transcriptomics

refers to the assessment of gene expression via mRNA; proteomics refers to the anal-

ysis of proteins; and metabolomics refers to variation in metabolites [3]. In public

health research, the emergence of these new types of data present exciting oppor-

tunities to achieve a better understanding of the biological mechanisms underlying

complex diseases. Omics data also present unique statistical challenges that must

be addressed to e↵ectively answer research questions about how these processes are

related to health outcomes.

Research questions (and therefore statistical methods) have largely been focused on
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finding associations between di↵erent types of omics and health outcomes. Because

Genome-Wide Association Studies (GWAS) preceded other types of omics analyses,

statistical focus was first on developing methods to analyze genomic data. These

methods primarily sought to address the inflated rate of false discoveries that can

result from multiple testing [4]. Because each type of omics data presents unique

statistical challenges due to di↵ering characteristics and correlation structures, new

statistical methods have emerged to assess associations for each area of omics, largely

building on the foundation laid by genomics analysis methods [11].

In this dissertation, we primarily focus on applications in epigenomics, which refers to

the analysis of variability in epigenetic modifications to DNA [3]. Epigenetics is com-

prised of changes that occur to DNA that do not alter the genetic sequence itself, but

rather, can alter the way the genetic material functions [49]. Epigenetic mechanisms

include histone modifications and DNA methylation. Histone modifications refer to

the alteration of chromatin structure, which can change gene expression by a↵ecting

the access to DNA for transcription [5]. Most Epigenome-Wide Association Studies

(EWAS), however, have focused on DNA methylation (DNAm). DNA methylation is

the epigenetic phenomenon in which a methyl group attaches to a cytosine nucleotide

[49], as shown in figure 1.1. Most often, this occurs on a cytosine nucleotide that

precedes a guanine nucleotide, and the pair is referred to as a CpG site. In EWAS,

associations are assessed between patterns of DNAm at several CpG sites (often as

high as 400-800K sites) and various health outcomes. Figure 1.2 illustrates the gen-

eral workflow for a case-control EWAS.

EWAS have resulted in the discovery of relationships between DNA methylation and

many health-related factors, including diet, air pollution, tobacco smoke, reproduc-

tive conditions, asthma, neurological disorders, and cancer [16]. While some of these,
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Figure 1.1: DNA methylation [25]

like diet, air pollution, and tobacco smoke, can be categorized as exposures, oth-

ers, such as asthma and cancer, can be categorized as outcomes. Categorizing these

associations in this way has led to increased interest in moving beyond association

analyses to investigate causal relationships with DNA methylation.

1.2 Omics mediation

More recently, interest has arisen in multiple areas of omics to move beyond asso-

ciation analyses and investigate causal relationships [53, 55]. Investigating causal

relationships with DNAm is particularly intriguing because methylation is a dynamic

process that can change over time [49]. More specifically, researchers have become

more interested in studying DNAm as a mediator between an exposure and an out-

come.
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Figure 1.2: Case-control EWAS workflow [1]

Mediation analysis is generally defined as the investigation of how one variable, known

as the mediating variable, operates along the causal pathway between an exposure

and an outcome. A diagram of a simple mediation model is shown in figure 1.3. Me-

diation analysis has been heavily used in the social sciences since the seminal Baron

and Kenny publication in 1986 [7]. More recently, however, the field of causal infer-

ence has transformed mediation analysis by defining causal e↵ects and specifying the

necessary assumptions to draw causal conclusions [51, 59, 44, 72]. As the statistical

approaches to mediation have modernized, mediation analysis has expanded into sev-

eral scientific fields, including omics studies.
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Figure 1.3: A mediation model [2]

Omics, and specifically DNAm, has been investigated as a mediator between expo-

sures and outcomes including age and diabetes risk [26], genetic risk and rheumatoid

arthritis [40], prenatal adversity and metabolic disease [70], and genetic variants and

multiple sclerosis [35]. These analyses face three main challenges that motivate the

work in this dissertation: 1) cell type heterogeneity, 2) assessing causality, and 3)

high-dimensionality.

1.3 Outline

In this dissertation, we present novel statistical methods that seek to address the

methodological challenges in EWAS mediation. Chapters 2 and 3 primarily focus

on the first two challenges: cell type heterogeneity and assessing causality. In chap-

ter two, we present a novel method called TOols for the Analysis of heterogeneouS

Tissues - Mediation with a Continuous outcome (TOAST-MC). TOAST-MC detects

mediators at the cell type-specific level by using EM algorithm and a bootstrap pro-

cedure. In chapter 3, we present TOols for the Analysis of heterogeneouS Tissues -

Mediation with a Binary outcome (TOAST-MB). Here we utilize a Bayesian frame-

work to detect cell type-specific mediators when the outcome of interest is binary. In
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chapter 4, we address the third challenge of EWAS mediation, high-dimensionality.

In this chapter, we present an overview of current high-dimensional mediation statis-

tical methods and then compare three of those methods in a simulation study. In the

final chapter, we present a discussion of current challenges and future research plans

in omics mediation.
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Chapter 2

Detecting cell type-specific

mediation e↵ects from bulk omics

data with continuous outcomes

2.1 Introduction

In recent years, health researchers have utilized Epigenome-Wide Association Stud-

ies (EWAS) to elucidate factors associated with various diseases that cannot be ex-

plained by genetics alone [57]. Specifically, EWAS typically measure DNA methy-

lation (DNAm), an epigenetic mechanism in which a methyl group attaches to a

cytosine nucleotide, potentially impacting gene expression [49]. DNA methylation

has now been shown to be associated with several exposures and diseases, including

diet, air pollution, tobacco smoke, reproductive conditions, asthma, neurological dis-

orders, and cancer [16]. In fact, a recent catalogue of EWAS identified over 1 million

associations from 342 peer-reviewed publications [8].

Because EWAS have found associations between DNA methylation and exposures
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(e.g., smoking), and between DNA methylation and health outcomes (e.g., lung can-

cer), interest has naturally arisen in studying DNA methylation as a mediator between

an exposure and an outcome [16]. For example, DNA methylation has been investi-

gated as a medatior between age and diabetes risk [26], genetic risk and rheumatoid

arthritis [40], prenatal adversity and metabolic disease [70], and genetic variants and

multiple sclerosis [35]. But EWAS mediation analyses face three key methodological

challenges: 1) accounting for cell type heterogeneity, 2) assessing causality, and 3)

dealing with high dimensionality.

DNA methylation is often measured at the bulk tissue level, meaning multiple cell

types are mixed together. Figure 2.1 illustrates the structure of this bulk level methy-

lation data. For example, samples may include blood, tumor, or brain tissues; each

of these tissue types are comprised of di↵erent cell types, each of which may present

unique methylation profiles [58]. A single sample can contain millions of cells and

while the technology to sort cell types does exist, these processes are expensive and

laborious. An ongoing challenge of DNAm mediation analyses, and DNAm associ-

ation studies in general, is not only how to properly account for distinct cell types,

but also how to identify biologically meaningful cell type-specific signals. Despite the

di↵erential functions of unique cell types, initial attention was primarily aimed at

accounting for cell type proportions as a confounding factor rather than a primary

source of scientific interest [31], [83], [69], [48]. In DNAm association studies, cell type

proportions (or their principal components) are often included in statistical models

to control for the confounding e↵ect.

More recently, however, scientific interest has grown in identifying cell type-specific

e↵ects in DNAm association analyses. For example, Chan et al. sought to identify cell

type-specific e↵ects in major depressive disorder [12]. Accordingly, statistical methods



9

Figure 2.1: Bulk level omics data collection [61, 25]

have been developed to identify cell type-specific e↵ects in DNAm association studies.

TOols for the Analysis of heterogeneouS Tissues (TOAST) utilizes a linear model to

dissect cell type-specific signals and will be discussed in more detail in the meth-

ods section [39]. HIgh REsoluation (HIRE) employs the Expectation-Maximization

algorithm to detect cell type-specific e↵ects [42], and Tensor Composition Analysis

(TCA) estimates the individual cell type methylation values to assess associations [56].

Mediation analysis seeks to assess the e↵ect of an exposure on an outcome that op-

erates through a third variable, known as the mediator. Baron and Kenny proposed

the product of coe�cients approach that is often used for such analyses [7]. More

recently, causal inference principles have been proposed to clarify the assumptions

and methods necessary to assess a causal mediation e↵ect. Assessing mediation is

inherently a causal question, so analyses should take these principles into account

when studying DNA methylation as a mediator [51]. The causal inference approach

to mediation analysis involves three steps: 1) e↵ect definition, 2) e↵ect identification,

and 3) e↵ect estimation.



10

E↵ect definition refers to the process of selecting which specific causal mediation

e↵ect is of interest based on the research question [51]. The total e↵ect is defined

as the e↵ect of the exposure on the outcome. This includes both the e↵ect of the

exposure on the outcome that operates through the mediator and the remaining e↵ect

of the exposure on the outcome that does not go through the mediator. The total

e↵ect can be decomposed into the sum of the natural indirect e↵ect and the natural

direct e↵ect. The natural indirect e↵ect refers to the e↵ect of the exposure on the

outcome that operates through the mediator, and this is what is most often of interest

in mediation analyses. The natural direct e↵ect describes the e↵ect of the exposure

on the outcome that does not operate through the mediator [71]. Another class of

e↵ects called interventional e↵ects include the controlled direct e↵ect, which is the

e↵ect of the exposure on the outcome if the mediator were set to a specific value.

In this work, we do not focus on interventional e↵ects because we are interested in

mediation from an explanatory perspective rather than an interventional perspective

[51].

The second step of the causal mediation analysis process is e↵ect identification, which

involves careful consideration of particular assumptions to determine if the e↵ect of

interest can be learned from the data [51]. In this work, the natural indirect is of

primary interest, so we will focus on the assumptions needed to identify the natural

indirect e↵ect. Identifying a natural indirect e↵ect in mediation studies relies on the

following assumptions: 1) no unmeasured confounding of the exposure-outcome rela-

tionship, 2) no unmeasured confounding of the mediator-outcome relationship, 3) no

unmeasured confounding of the exposure-mediator relationship, and 4) no mediator-

outcome confounder that is a↵ected by the exposure [71]. Identification also inher-

ently relies on the assumption of appropriate temporality, i.e., the exposure precedes
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the mediator and the mediator precedes the outcome.

The third step in causal mediation analysis, e↵ect estimation, refers to the process

of selecting a model for the mediator and the outcome and deriving the e↵ect(s) of

interest from those models. The natural indirect e↵ect is defined in counterfactual

notation as E[Y (e,M(1)] � E[Y (e,M(0)], given an outcome Y , a binary exposure

e that takes values 0 or 1, and a mediator M . The counterfactual notation M(1)

refers to the value the mediator M will naturally take when the exposure is set to

e = 1. Similarly, Y (e,M(1) refers to the value of the outcome if the exposure were

set to level e and the mediator takes the value it would take if e = 1. If main e↵ects

models are used, as they are in this work, the natural indirect e↵ect coincides with

the traditional Baron and Kenny definition of the indirect e↵ect [71].

Developing statistical methods for mediation in the context of EWAS is an ongoing

and rich area of research. Of primary focus has been the problem of high dimension-

ality, given that DNAm data can include hundreds of thousands of CpG sites. For

example, Illumina Infinium microarray measures the methylation levels for between

400,000 and 800,000 CpG sites. Some approaches have been to analyze DNAm me-

diation at the region or gene level, or to employ dimension reduction techniques [76],

[19], [21], [22], [79]. However, less attention has gone toward the problem of cell type

heterogeneity and identifying cell type-specific mediation e↵ects.

Figure 2.2 depicts the problem of identifying cell type-specific mediation e↵ects. The

primary statistical challenge is that the individual cell type methylation values are

unobserved. Therefore, this can be treated as a latent class mediator problem, where

the observed bulk data is comprised of a weighted sum of the unobserved compo-

nents. Additionally, decomposing the bulk data transitions the mediation model
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Figure 2.2: Observed data vs. desired cell type-specific mediators [61]

from a single to a multiple mediator model. Luo et. al proposed Mediation in a Cell-

type-Specific Fashion (MICS), which uses an inverse linear regression approach to

identify mediating cell types [43]. One could also utilize TCA in a two step procedure

where the first step is to obtain estimates for the unobserved cell type-specific methy-

lation values, and the second step is to plug the estimates into the mediation models.

We present a novel statistical method called TOAST-MC (TOols for the Analysis

of heterogeneouS Tissues - Mediation with a Continuous outcome), which builds on

the previously described TOAST method, to detect a cell type-specific mediation

e↵ect between an arbitrary exposure and a continuous outcome. The method uti-

lizes the Expectation-Maximization (EM) algorithm. We treat the cell type-specific

methylation values as missing data, and the EM algorithm o↵ers a way to obtain

parameter estimates in the presence of missing data.
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In this paper, we first introduce TOAST-MC, which is comprised of three primary

steps to obtain an estimate of the indirect e↵ect and assess statistical significance.

We then present results from an extensive simulation study. Finally, we apply the

TOAST-MC method to a subset of the Grady Trauma Project dataset.

2.2 Methods

2.2.1 Notation and Models

Assume we have a sample of N individuals in which we have measured the following

quantities: an exposure, E, which can be either binary or continuous, a continuous

outcome, Y , a matrix of L binary or continuous covariates XN⇥L, and DNA methy-

lation beta value matrix M . The matrix M has dimension N ⇥ J , where J is the

total number of CpG sites.

DNA methylation values are often measured at the bulk level, meaning the observed

values are a weighted sum of the cell type-specific methylation values and the cell

type proportions. The cell type proportion matrix may be known but is often es-

timated using reference-based or reference-free methods [39]. Denote the cell type

proportion matrix for K distinct cell types as PN⇥K . Denoting the (unobserved) cell

type-specific methylation value as mk, the observed methylation vector M is therefore

written as the following weighted sum for each subject i and CpG site j:

Mij =
KX

k=1

mijkpik (2.1)

We utilize the multiple mediator models proposed by VanderWeele and Vansteelandt
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[72] . Although we use separate models for each CpG site, we omit the site index j

for simplicity. The mediator model assesses the relationship between the mediator

and the exposure, and there is a separate model for each mediator (e.g., cell type).

The outcome model assesses the relationship between the outcome and mediator,

accounting for the relationship between the outcome and the exposure.

E[mk|E,X] = �0k + �1kE +
LX

l=1

�2lkxl (2.2)

E[Y |E,M,X] = ✓0 + ✓1E +
LX

l=1

✓2lxl +
KX

k=1

✓3kmk (2.3)

Using these models, we can then define the natural indirect e↵ect, the natural direct

e↵ect, and the total e↵ect. The natural indirect e↵ect, or the e↵ect of the exposure

on the outcome that operates through the mediator, is defined as E[Y (e,M(1)] �

E[Y (e,M(0)] = �1k✓2k for each cell type k. Note that we assume no interaction

among the cell types to decompose the natural indirect e↵ect from the multiple me-

diator model into distinct components. The natural direct e↵ect, or the e↵ect of the

exposure on the outcome that does not operate through the mediator, is defined as

E[Y (1,M(0))]�E[Y (0,M(0))] = ✓1. The total e↵ect is the sum of the natural indi-

rect e↵ect and the natural direct e↵ect, �1k✓2k + ✓1. TOAST-MC obtains an estimate

and significance test of the natural indirect e↵ect, as that e↵ect is of primary scientific

interest in EWAS mediation analysis.

The statistical challenge of cell type-specific mediation analysis is that the cell type-

specific methylation values, mk, are unobserved. Because we will use EM algorithm

to obtain parameter estimates, we establish the following classifications for each com-

ponent of the models:
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• Observed quantities: exposure E, continuous outcome Y , number of cell types

K, cell type proportions P , and bulk level methylation M

• Unobserved quantities: cell type-specific methylation mk

• quantity of interest: indirect e↵ect for each cell type �1k✓2k

We present a three-step procedure (TOAST-MC) to detect a cell type-specific medi-

ation e↵ect in bulk omics data:

1. Utilize TOAST to analyze the cell type-specific exposure-mediator relationship.

Use the results to select a subgroup of CpG sites with which to move forward in step

2 and 3.

2. Use EM algorithm to analyze the cell type-specific mediation e↵ect, one CpG site

at a time, in the subgroup of CpG sites obtained in step 1. Obtain parameter esti-

mates and calculate the observed indirect e↵ect.

3. Apply a bootstrap procedure to test the significance of the indirect e↵ect in each

cell type and CpG site.

Step 1: Use TOAST to analyze exposure-mediator relationship

TOAST provides a computationally e�cient method to assess a cell type-specific re-

lationship between DNAm and an exposure of interest [39]. To reduce the number

of CpG sites under consideration in steps 2 and 3, the TOAST-MC procedure begins

by analyzing the exposure-mediator relationship.

The TOAST model utilizes the relationship between the unobserved cell type-specific

methylation values, the observed bulk data, and the cell type proportions to assess

cell type-specific associations with a linear model. The model regresses the observed
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methylation matrix M on the cell type proportions and the proportion-exposure in-

teraction term. We can see how the model is derived by substituting the expectation

of the observed data as follows:

E[Mi|Ei, Pi] =
KX

k=1

pikE[mik] =
KX

k=1

(pik�0k + pik�1ei +
LX

l=1

pik�2lkxl) (2.4)

Step 2: Use EM algorithm to assess cell type-specific mediation e↵ects

In the second step, TOAST-MC utilizes the Expectation-Maximization algorithm to

detect mediating cell types. The EM algorithm allows us to obtain parameter esti-

mates in the presence of missing data [18]. We obtain the complete data log-likelihood

by augmenting the missing data to observed data. EM then iterates between the ex-

pectation step and the maximization step. The unobserved cell type-specific methy-

lation levels are considered missing data, while the outcome, exposure, bulk methy-

lation, and cell type proportions constitute the observed data. Rewriting equations

1.1, 1.2, and 1.3, we present the components to be used in EM:

mk ⇠ N(�0k + �1kE +
LX

l=1

�2lkxl, ⌧
2
k ) (2.5)

Y ⇠ N(✓0 + ✓1E +
LX

l=1

✓2lxl +
KX

k=1

✓3kmk, �
2) (2.6)

M ⇠ N(
KX

k=1

mkpk, �
2) (2.7)

After augmenting the missing data M = {mk : 1  k  K} to the observed data,

the complete-data log-likelihood function has a tractable form:
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lc(⇥|Y,E,M ,M,P ) =
nX

i=1

⇥
� 1

2
log�2 � (Mi �

P
k mikpik)2

2�2

� 1

2

X

k

log⌧ 2k �
X

k

(mik � �k
0 � �k

1Ei �
P

l �
k
l xil)2

2⌧ 2ik

� 1

2
log�2 � (Yi � ✓0 � ✓1Ei �

P
l ✓lxl �

P
k ✓

k
2mik)2

2�2

⇤
.

Here ⇥ = {�,✓, ⌧ 2k , �2, �2 : 1  k  K}. We will estimate M in the E-step and ⇥

in the M-step.

E-step

Taking the expectation of the complete-data log-likelihood, we have:

nX

i=1

� 1

2
log�2(t) � E[(Mi �

P
k mikpik)2|Yi,Mi, Ei,⇥]

2�2(t)

� 1

2

X

k

log⌧ 2(t)k �
X

k

E[(mik � �k
0 � �k

1Ei �
P

l �
k
l xil)2|Yi,Mi, Ei, xil,⇥]

2⌧ 2(t)k

� 1

2
log�2(t) � 1

2�2(t)
E[(Yi � ✓0 � ✓1Ei �

X

l

✓lxil �
X

k

✓k2mik)
2|Yi,Mi, Ei, xil,⇥]

To calculate these expectations, we need f(mik|Yi, Ei,Mi, xil,⇥)

f(mik|Yi, Ei,Mi, xil,⇥) / f(Yi|Ei,Mik, xil, ;⇥)f(Mi|mik, pik;⇥)f(mik|Ei, xil, ;⇥)

/ e
�(yi�✓

(t)
0 �✓

(t)
1 Ei�

P
l ✓

(t)
l

xil�mT
i ✓

(t)
2 )2

2�(t)2 e
�(Mi�mT

i ⇡i)
2

2�(t)2 e�
1
2 (mi��

(t)
0 ��

(t)
1 Ei�

P
l �

(t)
l xil)T⌃(t)�1(mi��

(t)
0 ��

(t)
1 Ei�

P
l �

(t)
l xil)

where mi = (Mi1, ...,MiK)T , �0, �1, �l, ⇡i and ✓2 are k-length vectors, and ⌃ =

diag(⌧ 21 ...⌧
2
k ) We can combine these in this form:
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/ e
� 1

2

⇥
mT

i (
✓
(t)
2 ✓

(t)T
2

�(t)2
+

pip
T
i

�(t)2+⌃(t)�1)mi�2(
(yi�✓

(t)
0 �✓

(t)
1 Ei�

P
l ✓

(t)
l

xil)✓
(t)T
2

�(t)2
+

Mip
T
i

�(t)2 +(�
(t)
0 +�

(t)
1 Ei+

P
l �

(t)
l xil)T⌃(t)�1)mi

⇤

Therefore, the conditional distribution of mi is N(µ(t)
i⇤ ,⌃

(t)
i⇤ ), where ⌃

(t)�1
i⇤ := ✓

(t)
2 ✓

(t)T
2

�(t)2 +

pipTi
�(t)2 + ⌃(t)�1 and µ(t)

i⇤ ⌃
(t)�1
i⇤ :=

(yi�✓
(t)
0 �✓

(t)
1 Ei�

P
l ✓

(t)
l xil)✓

(t)T
2

�(t)2 + MipTi
�(t)2 + (�(t)

0 + �(t)
1 Ei +

P
l �

(t)
l xil)T⌃(t)�1. Note that µi⇤ is a k-length vector and ⌃i⇤ is a k ⇥ k matrix.

So then

E[(Mi �
X

k

mikpki)
2|Yi,Mi, Ei, xil, pi,⇥] = pTi ⌃

(t)
i⇤ pi + (Mi � µ(t)T

i⇤ pi)
2

E[(Yi � ✓0 � ✓1Ei �
X

k

✓k2mik)
2|Yi,Mi, Ei, xil, pi,⇥]

= ✓T2 ⌃
(t)
i⇤ ✓2 + (Yi � ✓0 � ✓1Ei �

X

l

✓lxil � µ(t)T
i⇤ ✓2)

2

and

E[(mi � �0 � �1Ei �
X

l

�lxil)
T⌃�1(mi � �0 � �1Ei �

X

l

�lxil)|Yi,Mi, Ei, xil, pi,⇥]

= (µ(t)
i⇤ � �0 � �1Ei �

X

l

�(t)
l xil)

T⌃�1(µ(t)
i⇤ � �0 � �1Ei �

X

l

�lxil) +
X

k

�(t)2
i⇤,kk

�2
k

where �(t)2
i⇤,kk is the kth diagonal element of ⌃(t)

i⇤
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M-step

Using the general form of derivative of quadratic form, d
dxx

TAx = xT (A + AT ), we

have

dE[lc]

d�k
0

=
nX

i=1

�(µ(t)
i⇤ � �k

0 � �k
1Ei �

X

l

�k
l xil)

T (⌃�1 + ⌃�1T ) := 0

=)
nX

i=1

µ(t)
⇤ �

nX

i=1

�k
0 �

nX

i=1

�k
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nX

i=1

X

l

�k
l xil = 0

=) n�k
0 =

nX
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(µ(t)
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1Ei �
X

l
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=) �k(t+1)
0 =

Pn
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(t)
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P

l �
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l xil)

n

Similarly, we have
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dE[lc]
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=
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We will calculate the observed log-likelihood to assess convergence.

Y ⇠ N(✓0 + ✓1E +
X

l

✓lxl +
X

k

✓k2(�
k
0 + �k

1E +
X

l

�k
l xl),

X

k

✓k22 ⌧ 2k + �2)

M ⇠ N(
X

k

pk(�
k
0 + �k

1E +
X

l

�k
l xl),

X

k

p2k⌧
2
k + �2)

lo(⇥|Y,M, P ) =
nX

i=1

logN(Y ) + logN(M)

where N(Y ) and N(M) indicate the normal density evaluated with the above means

and variances. Note that pk depends on i, so the variance of M is di↵erent for each

i, while the variance of Y is the same for each i.
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Step 3: Use a bootstrap procedure to test the significance of the indirect

e↵ect in each cell type and CpG site

After obtaining parameter estimate and an estimate of the indirect e↵ect, we utilize

a bootstrap procedure to generate a standard error estimate and p-value for the

indirect e↵ect. Bootstrap procedures are generally preferred to the Sobel method and

the joint significance test as they are more powerful while maintaining type 1 error

control [27]. For the bootstrap procedure, we sample N rows of the observed data

with replacement, obtain parameter estimates with the resampled data using the EM

algorithm, and calculate the estimated indirect e↵ect. A p-value is calculated as the

minimum of the number of bootstrapped indirect e↵ect estimates that are greater

than zero and the number that are less than zero. To account for multiple testing

with multiple cell types and CpG sites, we use the Benjamini-Yekutieli adjustment;

this conservative approach accounts for possible dependence among the cell types and

CpG sites [10].

2.2.2 Simulation Study

We performed simulation studies to assess the performance of TOAST-MC. We gen-

erated cell type-specific methylation values from a beta distribution using mean and

standard deviation parameters from purified human blood cell methylation data [58].

Cell type proportions were generated from a dirichlet distribution. We generated 2,

3, and 4 distinct cell types with mean proportions as follows:

• 2 cells: 0.4, 0.6

• 3 cells: 0.2, 0.3, 0.5

• 4 cells: 0.1, 0.2, 0.3, 0.4

The bulk level methylation values were then generated by equation 2.7 with �2 = 0.03.
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In the absence of confounders, the exposure was binary with 50% of the sample ex-

posed and 50% unexposed. One mediating cell was designated in each case, and the

exposure-mediator e↵ect was induced by adding �1 ⇠ Unif(0.1, 0.5) to the cell type-

specific methylation value in the mediating cell type. The mediator-outcome e↵ect

✓2 ⇠ Unif(0.1, 0.5) was multiplied by the cell type-specific methylation in the medi-

ating cell type. The outcome was then generated by adding a direct e↵ect generated

from Unif(0.01, 0.05) and random noise (� = 0.05).

We generated three types of confounders that should be controlled in mediation

analyses: an exposure-mediator confounder, a mediator-outcome confounder, and

an exposure-outcome confounder. For confounders related to the exposure, the con-

founder x was generated from Unif(0.3, 0.7) and the binary exposure was then gen-

erated from a binomial distribution with p = 0.4 + 0.5x. The mediator and outcome

confounder e↵ect sizes were drawn from Unif(0.01, 0.05).

We compared the performance of TOAST-MC to TCA and MICS. Tensor Com-

position Analysis (TCA) is not specifically a mediation method, but it can be used

to generate estimates of the cell type-specific methylation values. These estimates

can then be plugged in to the mediation models. Coe�cient estimates are obtained

through least squares regression, and the estimate of the indirect e↵ect is assessed

with the same bootstrap procedure used in TOAST-MC. Mediation in a Cell-type

Specific fashion (MICS) utilizes an inverse regression approach to detect cell type-

specific mediating CpG sites. Unlike TOAST-MC and TCA, MICS does not provide

an estimate of the indirect e↵ect. Therefore, we only included MICS in the ROC

curve comparison.

In the simulation study, we sought to assess two key aspects of the TOAST-MC
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method compared to TCA and MICS: 1) estimation bias, and 2) ability to detect

significant cell types.

2.3 Results

2.3.1 Simulation Study

Figure 2.3 shows the estimation bias of the indirect e↵ect for TOAST-MC and MICS.

While TOAST-MC tends to accurately estimate the indirect e↵ect, TCA consistently

underestimates the indirect e↵ect. This is not surprising given that the TCA esti-

mates vary in accuracy among the cell types. Cell types with larger proportion tend

to be more accurate while cell types with a lower proportion tend to have less accurate

TCA estimates. TCA estimates are also less stable when the true methylation value

is close to 0 or 1, or when the variance of the cell type-specific methylation is small.

Given that TCA underestimates the indirect e↵ect, we would expect to see that TCA

is less powerful in detecting significant mediating cell types.

Table 2.1 shows the number of TOAST-MC discoveries for each cell case. The cell

type proportion increases going left to right across the table. Given this, we see that

power improves as the cell type proportion increases. Power appears to depend more

on the cell type proportion than on the number of cell types. The cell 1 proportion

in the 2 cell case is 0.4, which has 89 true discoveries. In the 4 cell case, cell 4 has

proportion 0.4, and the result is very similar at 86 discoveries. This is also evident

in the 3 cell case, cell 1, and 4 cell case, cell 2, which both have proportion 0.2, and

have 72 and 69 discoveries, respectively.

Figures 2.4 and 2.5 compare the performance of TOAST-MC, TCA, and MICS in

detecting mediating cell types. We present ROC curves in which discoveries in non-
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Figure 2.3: Bias in the estimate of the natural indirect e↵ect: Each plot represents
a unique simulation setting. The row indicates how many cell types are present in
that simulation, and the column indicates which cell type is the correct mediating cell
type. The boxplots display the distribution of the di↵erence between the true indirect
e↵ect and the estimated indirect e↵ect over 100 simulation replicates. TOAST-MC is
shown on the left side of each plot in blue and TCA is shown on the right side in red.
Moving from left to right, the proportion of the mediating cell type increases. Note
that MICS is not included because it does not give an estimate of the indirect e↵ect.
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mediating cell types are categorized as false positives. The sample size in figure 2.4

is 500 and in 2.5 the sample size is 1,000. TOAST-MC consistently has higher AUC

than TCA and MICS, indicating superior performance in detecting mediating cell

types. As expected, the performance generally improves as the mediating cell type

proportion increases (moving from left to right in the figure). Figure 2.6 compares the

performance of the three methods in the presence of confounding. Again, TOAST-

MC outperforms TCA and MICS in its ability to detect mediating cell types in the

presence of an exposure-outcome confounder, a mediator-outcome confounder, or an

exposure-mediator confounder.

Number of cells Mediator Cell 1 Cell 2 Cell 3 Cell 4

2 cells
Cell 1 89 12
Cell 2 7 93

3 cells
Cell 1 72 7 16
Cell 2 11 81 10
Cell 3 10 16 95

4 cells

Cell 1 56 19 14 23
Cell 2 19 69 12 12
Cell 3 19 14 80 19
Cell 4 16 16 20 86

Table 2.1: Simulation results: number of times each cell type was identified as a
mediator by TOAST-MC. The row indicates which cell type is the true mediator.
Therefore, the diagonal entries (bolded) are true positives and o↵ diagonal elements
are false positives. Numbers are out of 100 simulation replicates.

2.3.2 Real Data Analysis

To further evaluate the performance of TOAST-MC, we analyzed a dataset from

the Grady Trauma Project, which assesses the influence of various factors, including

DNAm, on response to traumatic events [24]. The cohort is predominantly com-

prised of African American individuals of low socioeconomic status in Atlanta, GA.

Data were collected via interviews in waiting rooms of primary care or obstetrical-

gynecological clinics. Clinical and life experience data, as well as blood samples, were
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Figure 2.4: ROC curves for TOAST-MC, TCA, and MICS simulation study, N=500:
Each plot represents a unique simulation setting. The row indicates how many cell
types are present in that simulation, and the column indicates which cell type is the
correct mediating cell type. Detections in the true mediating cell type are classified
as true positives while detections in the non-mediating cell type(s) are classified as
false positives. The proportion of the mediating cell type increases from left to right.

collected. We analyzed 679 individuals for whom EPIC array DNA methylation data

were available. Binary smoking status was the exposure of interest and weight (kg)

was the continuous outcome. Both smoking status and weight have been shown to

be associated with epigenetics [20], [37], [73], [17], [33], [46], [77]. Additionally, cell

type-specific associations have been found for both smoking and weight, providing

motivation for studying cell type-specific DNAm in a mediation context [75], [9], [52],

[68]. Specifically, neutrophil cells have been found to be associated with both smoking

and obesity in African American males [75], [9]. Sex and age were controlled for as

confounding variables. Observations with missing values for smoking status, weight,
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Figure 2.5: ROC curves for TOAST-MC, TCA, and MICS simulation study, N=1000:
Each plot represents a unique simulation setting. The row indicates how many cell
types are present in that simulation, and the column indicates which cell type is the
correct mediating cell type. Detections in the true mediating cell type are classified
as true positives while detections in the non-mediating cell type(s) are classified as
false positives. The proportion of the mediating cell type increases from left to right.

sex, or age were excluded. Cell type proportions were estimated using publicly avail-

able reference data and Robust Partial Correlation (RPF) method implemented in

the R package EpiDish [69]. Six cell types were ascertained: CD8T, CD4T, Natural

Killer (NK), Neutrophill, B cells, and monocyte cells.

Of the 679 individuals, 273 (40%) were smokers and 406 (60%) were nonsmokers.

The mean weight in nonsmokers was 96.7 kg (SD=26.1) and 90.0 (25.1) in smokers

(p¡0.001, two sample t-test). 79.8% of nonsmokers were female with a mean age of 40.8

(SD=12.7), while 62.3% of smokers were female with a mean age of 44.5 (SD=11.0).
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Figure 2.6: ROC curves for performance in the presence of confounding: The row
indicates the type of confounder that is present, covering the three primary assump-
tions to identify the natural indirect e↵ect. The column indicates which cell type is
the mediating cell type. Mean cell type proportions are 0.4 and 0.6 for cell 1 and cell
2, respectively.

Mean cell type proportions were as follows: CD8T - 0.11, CD4T - 0.17, NK - 0.05, B

cell - 0.07, Monocyte - 0.08, Neutrophill - 0.51.

CD8T CD4T NK B cell Mono Neu

TOAST-MC 185 304 294 351 194 140
TCA 0 0 0 0 0 1
MICS 236 274 25 5 44 1

Table 2.2: Grady Trauma Project data: number of CpG sites detected as mediators
for each cell type

In accordance with the first step of TOAST-MC, we used TOAST to select a subset

of 1522 CpG sites (out of 819708) using a p-value threshold of 1e � 5. Table 2.2
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shows the number of significant CpG sites detected as significant mediators for each

cell type. TCA only detects one site in one cell type, indicating very low power for

this two step procedure. MICS detects the most CpG sites in CD8T cells, while

TOAST-MC detects more CpG sites in every other cell type. A particular result

of interest is in neutrophill cells, in which TOAST-MC detects 140 sites while TCA

and MICS only detect one site each. In this dataset, neutrophills are present in the

highest proportion at around 50%. Given this, we would hope to find a mediating

e↵ect specifically in this cell type, which TOAST-MC does.

We also conducted gene and pathyway analyses on the detected CpG sites using

Enrichr [13, 36, 74]. The AHRR gene, which is well known to be associated with

smoking, is detected in every cell type. Other genes detected include F2RL3, PRSS23,

GFI1, LRP5, MYO1G, GNG12, ANPEP, RARA, C5orf62, and ITPK1, which have

all been previously shown to be associated with smoking [38]. In neutrophills, GFI1

and F2RL3 were detected, which have been previously shown to be associated with

smoking [9]. GFI1 and F2RL3 were also detected in monocytes, which aligns with

previous results [9], [68]. Genes detected for B cells, NK cells, and CD4T cells are

involved in energy/metabolism pathways which, given that the outcome of interest

was weight, provides further evidence of the biological plausibility of the TOAST-MC

results. Although we would be hesitant to assert that we adequately controlled for

confounding to justify a causal interpretation, these results demonstrate the power of

TOAST-MC in exploratory cell type-specific mediation analysis.

2.4 Discussion

We present a novel method, TOAST-MC, to detect a cell type-specific mediation ef-

fect and estimate the natural indirect e↵ect. The method involves three steps: first,
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we select a subset of CpG sites with TOAST; second, we employ the EM algorithm

to estimate the indirect e↵ect for each cell type in each CpG site in the subset; third,

we use a bootstrap procedure to assess statistical significance of each cell type and

CpG site. TOAST-MC outperforms competing methods TCA and MICS in simula-

tion studies. When applied to a real dataset, TOAST-MC detects more CpG sites in

each cell type, and the results are biologically plausible. Although we focus on DNA

methylation data, this method can be applied to any bulk omics data in which there

is scientific interest in a cell type-specific e↵ect. Even more generally, this method

can be framed as a way to detect latent mediators when only a linear combination of

those mediators is observed.

To make a causal conclusion from a mediation analysis, one must make strict assump-

tions regarding the control of confounding. Moreover, in the TOAST-MC bootstrap

procedure, we separate the natural indirect e↵ect from the multiple mediator models

into individual components. To do this, we assume that the mediators (in this case,

cell types) do not interact. We also assume independence among the CpG sites since

we analyze them separately in steps two and three of TOAST-MC. Because of these

strict assumptions, we recommend using TOAST-MC primarily for exploratory anal-

ysis of cell type-specific mediation e↵ects. Much rigor must be employed in the data

analysis to justify these assumptions to utilize a causal interpretation of the natural

indirect e↵ect. However, we maintain that this method is an important innovation in

DNAmethylation mediation analysis that can lead to important biological discoveries.

In this method, we also assume that the number of cell types and their proportions are

known, and that they operate independently. In reality, cell types have a hierarchical

structure, and the cell types identified likely have more specific sub-types. Because of

the statistical challenge of identifying cell type-specific signals when cell type-specific
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data are unavailable, the method (and any deconvolution method at present) works

best for major cell types and up to about 8 di↵erent cell types. With too many cell

subtypes, signals are weaker and therefore statistical power is limited. Large sample

sizes are needed to overcome this challenge.

More research is needed to improve cell type-specific methods. Most notably, a com-

putationally e�cient method that jointly analyzes CpG sites and cell types remains

an important future research goal. TOAST-MC also requires a continuous outcome,

and many DNA methylation mediation analyses have a binary or count outcome of

interest. Finally, more work is needed to relax the modeling assumptions of media-

tion analyses in many areas of omics data to allow for more flexible models, including

interaction terms and non-parametric models.
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Chapter 3

Detecting cell type-specific

mediation e↵ects from bulk omics

data with binary outcomes

3.1 Introduction

Epigenome-Wide Association Studies (EWAS) have become a valuable way to study

the e↵ects of di↵erential DNA methylation (DNAm) on a variety of diseases. EWAS

commonly utilize case-control study designs in which participants are recruited based

on the disease of interest [57]. A key advantage of this study design is that it is more

cost-e↵ective than longitudinal cohort studies and many case-control cohorts already

exist [57]. However, a drawback is that it can be di�cult to draw causal conclusions

based on a retrospective study design because of the challenges of controlling for all

confounding factors. Because case-control design remains the primary study design

used in EWAS mediation, it is important for statistical methods to handle a binary

outcome in a mediation context.
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In mediation analysis, the primary e↵ect of interest is often the natural indirect e↵ect,

or the e↵ect of the exposure on the outcome that operates through the mediator [72].

When the outcome is binary, the natural indirect e↵ect is defined on the odds ratio

scale as ORNIE = exp((✓2�1)(a� a⇤)), where a and a⇤ are two levels of the exposure,

and ✓2 and �1 are based on the following mediation models (where E is the exposure,

Y is the outcome, and M is the mediator) [71]:

E[M |E] = �0 + �1E (3.1)

logit[P (Y = 1|E,M)] = ✓0 + ✓1E + ✓2M (3.2)

Note that the mediator is assumed to be continuous here, as is the case with DNAm

mediation. Mediation analysis with a binary outcome relies on an important assump-

tion that the outcome is rare. A prevalence of 10% is typically used as a cuto↵. This

is because the natural indirect e↵ect is defined on the odds ratio scale and the odds

ratio only approximates the risk ratio when the outcome is rare. When the outcome

is common, using logistic regression can be a conservative approach to detecting me-

diation [71]. To address this, a log-linear model can be used to model the outcome

when it is binary and common [71]. Moreover, in a case-control study design, it is

recommended to fit the mediator model only for the control subjects. This is due

to the oversampling of the cases in this study design; if the outcome is rare, then

fitting the mediator model only in control subjects will approximate what would be

obtained in a cohort study [71].

It is also important to establish temporal relationships to study mediation, and this

is particularly true in a case-control study design. One of the primary challenges
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of DNAm studies has been establishing causality because of the mutable nature of

methylation patterns [57]. Therefore, one must carefully consider temporal ordering

when a causal interpretation is desired [71].

Nonlinearities present particular statistical challenges that must be addressed in the

case of a binary outcome. In the case of the continuous outcome, we employed EM

algorithm to obtain maximum-likelihood estimates. We assumed linear models for

the outcome and multiple mediator models, which resulted in closed form solutions

for the M-step equations. With a binary outcome, however, we no longer have closed

form solutions for the M-step, so optimization algorithms must be employed to obtain

estimates. This presents computational challenges that may prove too burdensome

in the development of a user-friendly method.

Currently, there is a lack of methods to analyze a cell type-specific mediation ef-

fect with a binary outcome. In this paper, we present TOols for the Analysis of

heterogeneouS Tissues - Mediation with a Binary outcome (TOAST-MB), which uti-

lizes a Bayesian framework to detect a cell type-specific mediation e↵ect. We first

describe the models and the three-step TOAST-MB procedure. We then describe a

simulation study to compare the performance of TOAST-MB to TCA and MICS, and

apply the three methods to a dataset from the Grady Trauma Project.

3.2 Methods

3.2.1 Notation and Models

Assume we have a sample of N individuals in which we have measured the following

quantities: an exposure, E, which can be either binary or continuous, a binary out-

come, Y , a matrix of L binary or continuous covariates XN⇥L, and DNA methylation
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beta value matrix M . The matrix M has dimension N ⇥ J , where J is the total

number of CpG sites.

DNA methylation values are often measured at the bulk level, meaning the observed

values are a weighted sum of the cell type-specific methylation values and the cell

type proportions. The cell type proportion matrix may be known but is often es-

timated using reference-based or reference-free methods [39]. Denote the cell type

proportion matrix for K distinct cell types as PN⇥K . Denoting the (unobserved) cell

type-specific methylation value as mk, the observed methylation vector M is therefore

written as the following weighted sum for each subject i and CpG site j:

Mij =
KX

k=1

mijkpik (3.3)

We utilize the multiple mediator models proposed by VanderWeele and Vansteelandt

[72] . Although we use separate models for each CpG site, we omit the site index j

for simplicity. The mediator model assesses the relationship between the mediator

and the exposure, and there is a separate model for each mediator (e.g., cell type).

The outcome model assesses the relationship between the outcome and mediator,

accounting for the relationship between the outcome and the exposure.

E[mk|E,X] = �0k + �1kE +
LX

l=1

�2lkxl (3.4)

logit[P (Y = 1|E,M,X)] = ✓0 + ✓1E +
LX

l=1

✓2lxl +
KX

k=1

✓3kmk (3.5)

Using these models, we can then define the natural indirect e↵ect, the natural direct

e↵ect, and the total e↵ect. The natural indirect e↵ect, or the e↵ect of the exposure
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on the outcome that operates through the mediator, is defined on the odds ratio scale

as e�
k
1 ✓

k
2 for each cell type k. The natural direct e↵ect, or the e↵ect of the exposure

on the outcome that does not operate through the mediator, is defined on the odds

ratio scale as e✓1 . For a continuous exposure, the natural indirect e↵ect and natural

direct e↵ect are defined on the odds ratio scale as e�
k
1 ✓

k
2 (e�e⇤) and e✓1(e�e⇤), respec-

tively, where e and e⇤ are two values of the exposure. The total e↵ect in this case is

the product of the natural direct e↵ect and the natural indirect e↵ect. TOAST-MB

obtains an estimate and significance test of the natural indirect e↵ect, as that e↵ect

is of primary scientific interest in EWAS mediation analysis.

The statistical challenge of cell type-specific mediation analysis is that the cell type-

specific methylation values, mk, are unobserved. Because we will use a Bayesian

hierarchical model to obtain posterior distributions of the parameters, we summarize

the model components as follows:

• Observed quantities: exposure E, binary outcome Y , number of cell types K,

cell type proportions P , and bulk level methylation M

• Unobserved quantities: cell type-specific methylation mk

• quantity of interest: indirect e↵ect for each cell type e�
k
1 ✓

k
2

We present a three-step procedure called TOAST-MB to detect a cell type-specific

mediation e↵ect in bulk omics data:

1. Utilize TOAST to analyze the cell type-specific exposure-mediator relationship.

Use the results to select a subgroup of CpG sites with which to move forward in step

2 and 3.

2. Use Bayesian hierarchical modeling to fit the three models, one CpG site at a time,

in the subgroup of CpG sites obtained in step 1. Obtain posterior distributions for
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the indirect e↵ect in each cell type.

3. Categorize each cell type as mediating or non-mediating using posterior probabil-

ities.

Step 1: Use TOAST to analyze exposure-mediator relationship

TOAST provides a computationally e�cient method to assess a cell type-specific re-

lationship between DNAm and an exposure of interest [39]. To reduce the number

of CpG sites under consideration in steps 2 and 3, the TOAST-MC procedure begins

by analyzing the exposure-mediator relationship.

The TOAST model utilizes the relationship between the unobserved cell type-specific

methylation values, the observed bulk data, and the cell type proportions to assess

cell type-specific associations with a linear model. The model regresses the observed

methylation matrix M on the cell type proportions and the proportion-exposure in-

teraction term. We can see how the model is derived by substituting the expectation

of the observed data as follows:

E[Mi|Ei, Pi] =
KX

k=1

pikE[mik] =
KX

k=1

(pik�0k + pik�1ei +
LX

l=1

pik�2lkxl) (3.6)

Step 2: Use Bayesian hierarchical modeling to fit mediation models

Given the models above, assume the following distributions:

mk ⇠ N(�0k + �1kE +
LX

l=1

�2lkxl, ⌧
2
k ) (3.7)
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Y ⇠ Bern(
1

1 + exp(�(✓0 + ✓1E +
PL

l=1 ✓2lxl +
PK

k=1 ✓3kmk))
) (3.8)

M ⇠ N(
KX

k=1

mkpk, �
2) (3.9)

Prior specification

We specify prior distributions for the coe�cient parameters �0k, �1k, �2kl, ✓0, ✓1,

✓2l, and ✓3k, as well as the variance parameters �2 and ⌧ 2k . Although each individual

model is not high dimensional, we fit each CpG site independently. To avoid falsely

detecting cell types as mediators due to the number of CpG sites tested, we assume

small variances in the coe�cient priors and a mean of 0; thus, we require strong evi-

dence to arrive at a non-zero e↵ect. The priors for the coe�cient parameters are as

follows:

✓0 ⇠ N(0, 0.1)

✓1 ⇠ N(0, 0.1)

✓2l ⇠ N(0, 0.1)

✓3k ⇠ N(0, 2)
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�0k ⇠ N(0, 0.1)

�1k ⇠ N(0, 1)

�2lk ⇠ N(0, 0.1)

For the variance parameters, we specify a gamma(2, 1) as recommended in the Stan

User’s Guide [66]. Posterior samples are obtained via Markov chain Monte Carlo

(MCMC) sampling in Stan [67]. Specifically, Stan uses the No-U-Turn variant of

Hamiltonian Monte Carlo (HMC), which has been shown to be e�cient and robust

[28].

Step 3: Categorize each cell type as mediating or non-mediating

Because we obtain a marginal posterior distribution for �1k and ✓2k, we can obtain

a posterior distribution for the odds ratio of the natural indirect e↵ect for each cell

type, exp(�1k✓2k). We classify a cell type as a mediator if min(P (exp(�1k✓2k) <

1), P (exp(�1k✓2k) > 1) < p. The user can select the probability threshold p, where

a lower value represents a more conservative threshold. In the following simulation

study and analysis of Grady Trauma Project data, we use p = 0.05.

3.2.2 Simulation Study

We performed simulation studies to assess the performance of TOAST-MB. We gen-

erated cell type-specific methylation values from a normal distribution with mean 0.5

and standard deviation 0.2. Cell type proportions were generated from a dirichlet

distribution. We generated 2, 3, and 4 distinct cell types with mean proportions as

follows:
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• 2 cells: 0.4, 0.6

• 3 cells: 0.2, 0.3, 0.5

• 4 cells: 0.1, 0.2, 0.3, 0.4

The proportions in the 4 cell type case were varied to investigate the e↵ect of the

distribution of cell type proportions. The bulk level methylation values were then

generated by equation 3.9 with �2 = 0.03, reflecting the variance seen in bulk methy-

lation data. In the absence of confounders, the exposure was binary with 50% of the

sample exposed and 50% unexposed. The sample size was 1000. One mediating cell

was designated in each case, and the exposure-mediator e↵ect was induced by adding

�1 = 0.3 to the cell type-specific methylation value in the mediating cell type. The

mediator-outcome e↵ect ✓2 = 3 was multiplied by the cell type-specific methylation in

the mediating cell type. The outcome was then generated using a bernoulli distribu-

tion with probability of success 1/[1+exp(�(�0.5+Oa+DE⇥E))], where Oa refers

to the mediating cell type-specific methylation after inducing the mediator-outcome

e↵ect, and DE refers to the direct e↵ect, generated from Unif(0.01, 0.05).

We generated three types of confounders that should be controlled in mediation

analyses: an exposure-mediator confounder, a mediator-outcome confounder, and

an exposure-outcome confounder. For confounders related to the exposure, the con-

founder x was generated from Unif(0.3, 0.7) and the binary exposure was then gen-

erated from a binomial distribution with p = 0.4 + 0.5x. The mediator and outcome

confounder e↵ect sizes were drawn from Unif(0.01, 0.05).

We compared the performance of TOAST-MB to TCA and MICS. Tensor Com-

position Analysis (TCA) is not specifically a mediation method, but it can be used to

generate estimates of the cell type-specific methylation values. These estimates can
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then be plugged in to the mediation models. Coe�cient estimates are obtained with

a logistic regression model, and the estimate of the indirect e↵ect is assessed with

a bootstrap procedure. Mediation in a Cell-type Specific fashion (MICS) utilizes an

inverse regression approach to detect cell type-specific mediating CpG sites.

3.3 Results

3.3.1 Simulation Study

First, we assessed the performance of the Bayesian hierarchical model via trace plots.

An example of the trace plots are shown in figure 3.1. This figure shows the case

where there are two cell types and cell type 1 is the mediating cell type. The two

parameters shown, �2 and ✓3 are the parameters used to estimate the indirect e↵ect.

We see that the four chains converge around the true values.

Figure 3.2 presents ROC curves to demonstrate the comparative performance of

TOAST-MB, TCA and MICS in detecting a mediating cell type. In each case, one

cell type is a mediator. TOAST-MB consistently outperforms TCA and MICS. The

di↵erence is most pronounced when the mediating cell type proportion is low. As

the mediating cell type proportion increases, MICS and TCA improve in their abil-

ity to detect the mediating cell type, while TOAST-MB slightly declines; however,

TOAST-MB continues to outperform TCA and MICS in each case. Table 3.1 dis-

plays these simulation results for the four cell type case using a posterior probability

cuto↵ of 0.05, which represents the cell types that would be selected as mediators.

TOAST-MB consistently shows higher power in its ability to detect the mediating

cell type compared to TCA and MICS. Additionally, using this probability cuto↵, we

see that the proportion of false positives for each case does not exceed 0.1. TCA,

on the other hand, exhibits lower power and higher false discovery rate compared to
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TOAST-MB. MICS appears to be conservative with zero false discoveries and highest

power of 0.25.

Figure 3.1: Trace plots for the parameters used to calculate the indirect e↵ect. In
this case, there are 2 cell types, where the first cell type is the mediating cell type.
The true values are as follows: �21 = 0.2, �22 = 0, ✓31 = 4, ✓32 = 0

We also assessed the performance of TOAST-MB, TCA, and MICS in the presence

of confounders. The key assumptions in causal mediation analysis relate to control-

ling for exposure-outcome, exposure-mediator, and mediator-outcome confounders to

identify the natural indirect e↵ect. In the presence of a single confounder, in this

case an exposure-mediator confounder, as shown in figure 3.3, TOAST-MB contin-

ues to outperform TCA and MICS. We see the same pattern in that TOAST-MB

performance declines as the mediating cell type proportion increases, while TCA and
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Figure 3.2: ROC curves for TOAST-MB, TCA, and MICS simulation study: Each
plot represents a unique simulation setting. The row indicates how many cell types
are present in that simulation, and the column indicates which cell type is the correct
mediating cell type. Detections in the true mediating cell type are classified as true
positives while detections in the non-mediating cell type(s) are classified as false
positives. The proportion of the mediating cell type increases from left to right.

MICS improve, though again in each case, TOAST-MB outperforms TCA and MICS.

Figure 3.4 shows the performance of TOAST-MB in the presence of all three types

of confounders at once. TOAST-MB continues to outperform TCA and MICS in this

case. [h!] Additionally, we assessed the e↵ect of the cell type proportions on the

TOAST-MB performance. The results of this analysis are shown in figure 3.5. We

found that in all three methods, the performance varies based on the distribution of

the cell type proportions. In the top row, the proportions gradually increase; as seen

in previous results, TOAST-MB performance decreases as the proportion increases,

but MICS and TCA improve as the proportion improves. The second row shows a
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Mediator Cell 1 Cell 2 Cell 3 Cell 4

TOAST-
MB

Cell 1 85 0 0 0
Cell 2 2 55 0 0
Cell 3 7 2 35 1
Cell 4 5 1 1 54

TCA

Cell 1 11 5 2 7
Cell 2 5 6 3 7
Cell 3 3 8 20 8
Cell 4 7 4 4 34

MICS

Cell 1 1 0 0 0
Cell 2 0 5 0 0
Cell 3 0 0 17 0
Cell 4 0 0 0 25

Table 3.1: Simulation results: number of times each cell type was identified as a
mediator in the 4 cell type case. The row indicates which cell type is the true mediator.
Therefore, the diagonal entries (bolded) are true positives and o↵ diagonal elements
are false positives. Numbers are out of 100 simulation replicates.

Figure 3.3: ROC curves to demonstrate the performance of TOAST-MB, TCA, and
MICS in the presence of a single confounder
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Figure 3.4: ROC curves to demonstrate the performance of TOAST-MB, TCA, and
MICS in the presence of all three types of confounding: exposure-mediator, mediator-
outcome, and exposure-outcome
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more extreme case in which one cell type has a very large proportion compared to the

other three. In this case, the performance of TOAST-MB is consistent in the three

cell types with proportion 0.1, and performs similarly when the cell type proportion

is 0.7. TCA and MICS, however, perform quite poorly when the cell type proportion

is 0.1, and improve when the cell type proportion is 0.7. The bottom row shows the

case where all cell types are distributed equally, and performance is consistent across

cell types for all methods. In each case, regardless of the distribution of the cell type

proportions, TOAST-MB outperforms TCA and MICS.

Figure 3.5: ROC curves to demonstrate the performance of TOAST-MB in the 4 cell
type case when the cell type proportions are varied. Each row shows a di↵erent cell
type proportion setting.
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3.3.2 Real Data Analysis

To further evaluate the performance of TOAST-MB, we analyzed a dataset from

the Grady Trauma Project, which assesses the influence of various factors, including

DNAm, on response to traumatic events [24]. The cohort is predominantly com-

prised of African American individuals of low socioeconomic status in Atlanta, GA.

Data were collected via interviews in waiting rooms of primary care or obstetrical-

gynecological clinics. Clinical and life experience data, as well as blood samples, were

collected. The exposure of interest was trauma as measured by the Trauma Events

Inventory (TEI), a continuous measure of self-reported trauma experience [24]. The

outcome was binary PTSD status as measured by the Clinician-Administered Post-

traumatic Stress Disorder Scale (CAPS) for DSM-IV, or the modified PTSD Symp-

tomatic Scale (PSS) when CAPS data were unavailable [32]. Sex and age were in-

cluded as covariates. After removing subjects with missing data for trauma, PTSD,

sex, or age, we analyzed a set of 660 individuals for whom EPIC array DNA methyla-

tion data were available. Cell type proportions were estimated using publicly available

reference data and Robust Partial Correlation (RPF) method implemented in the R

package EpiDish [69]. Six cell types were ascertained: CD8T, CD4T, Natural Killer

(NK), Neutrophill, B cells, and monocyte cells.

The relationship between trauma exposure and PTSD is not yet well understood.

Although experiencing a traumatic event is common, the prevalence of PTSD in the

general population is estimated to be about 7% [50]. Although some predisposition to

PTSD can be explained by genetics, epigenetics, and specifically DNA methylation,

is thought to play a role in the causal pathway from exposure to a traumatic event to

PTSD [50, 34, 60, 47]. Two key areas of interest in this relationship are the immune

system and the central nervous system, both of which provide motivation for cell

type-specific mediation analysis [50].
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In the sample of 660 study participants, 166 (25%) were PTSD cases and 494 (75%)

were controls. The TEI ranges from 0 to 16, with a higher value indicating more

trauma exposure. The overall mean TEI score in the sample was 5.2 (SD=3.2); the

mean TEI in cases and controls was 6.9 (3.2) and 4.6 (3.1) respectively. In a logistic

regression model of PTSD regressed on trauma exposure, sex, and age, the odds of

PTSD increased by 1.28 per unit increase in trauma exposure (p < 0.001). Mean cell

type proportions were as follows: CD8T - 0.11, CD4T - 0.17, NK - 0.05, B cell - 0.07,

Monocyte - 0.08, Neutrophill - 0.51.

We first analyzed the cell type-specific relationship between trauma exposure and

DNA methylation with TOAST. Using a p-value threshold of 0.0001, 1269 CpG sites

out of a total of 819708 were selected to analyze with TOAST-MB. Table 3.2 displays

the number of CpG sites detected as mediators by TOAST-MB, TCA, and MICS.

TCA fails to detect any CpG sites. For each cell type except CD8T, TOAST-MB

detects more CpG sites than MICS. Figure 3.6 contains Manhattan plots for each

cell type indicating the chromosome for each CpG site selected with a mediating cell

type. The chromosomes with significant CpG sites di↵er for each cell type, which

provides further justification for the cell type-specific analysis. Corresponding to ta-

ble 3.2, CD4T, B, and neutrophill cells are detected as mediators in the most CpG

sites. All six cell types are involved in the immune system, which is a primary system

of interest in the relationship between trauma exposure and PTSD [50].

Gene and pathway analyses with Enrichr were conducted for each cell type to further

evaluate the TOAST-MB results [13, 36, 74]. The FKBP gene, detected in monocyte

cells, has been shown to be involved in the relationship between DNA methylation

and stress-related disorders [50]. Methylation in SATB1, detected in neutrophill cells,
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CD8T CD4T NK B cell Mono Neu

TOAST-MB 13 335 48 152 44 133
TCA 0 0 0 0 0 0
MICS 44 47 27 35 18 5

Table 3.2: Grady Trauma Project data: number of CpG sites detected as mediators
for each cell type

has been shown to be associated with suicide [34]. Methylation in SLC6A, detected in

CD8T cells, has been shown to be associated with PTSD [34]. ANXA has previously

been shown to be di↵erentially methylated in PTSD cases and controls, and this gene

was detected in CD4T cells [34]. The DOCK gene was also detected in CD4T cells,

and methylation in this gene has been shown in multiple studies (including an analy-

sis of Grady Trauma Project data) to be associated with PTSD [50]. The DLG4 gene

is also implicated in psychiatric disorders, and this gene was detected in neutrophill

cells [47].

In the Enrichr analysis, the genes di↵erentially methylated in natural killer, B cells,

monocytes, and neutrophills are involved in the central nervouse system. Those found

in monocytes and neutrophills specifically are related to depression, acute stress dis-

order, PTSD, and increased blood pressure and heart rate. These connections provide

evidence that the TOAST-MB results are biologically plausible and valuable for ex-

ploratory analysis of cell type-specific mediation.

3.4 Discussion

In this chapter, we presented a novel method called TOAST-MB to detect a cell type-

specific mediation e↵ect in bulk omics data. The method involves three steps. First,

we select a subset of CpG sites by analyzing the cell type-specific exposure-mediator

relationship with TOAST. Second, we employ Bayesian hierarchical modeling to fit
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Figure 3.6: Manhattan plots for each cell type analyzed in the Grady Trauma Project
dataset. The subset of 1269 CpG sites selected by TOAST are shown. The x axis
indicates the chromosome for each CpG site. Note that here p refers to the posterior
probability min(P (exp(�1k✓2k) < 1), P (exp(�1k✓2k) > 1) The blue line indicates the
threshold for the posterior probability at which a cell type was selected as a mediator
(�log10(0.05))
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the mediation models of interest using MCMC sampling; from this, we obtain a

marginal posterior distribution of the natural indirect e↵ect on the odds ratio scale.

Third, we use this posterior distribution and calculate a posterior probability to clas-

sify each cell type as a mediator or non-mediator for each CpG site. For identification

of the natural indirect e↵ect, we rely on the assumptions outlined in the causal infer-

ence literature: namely, we assume that exposure-mediator, mediator-outcome, and

exposure-outcome confounders are controlled for in the analysis. Moreover, to de-

compose the natural indirect e↵ect from the multiple mediator model into individual

e↵ects for each cell type, we assume there is no interaction among the mediators (cell

types). Finally, because we analyze one CpG site at a time, we assume independence

among CpG sites.

Through simulation, we showed that TOAST-MB is more powerful than compet-

ing methods while controlling for false discoveries. This remains true when we add

exposure-mediator, mediator-outcome, and exposure-outcome confounders. In analy-

sis of the Grady Trauma Project dataset, TOAST-MB detected more CpG sites than

competing methods. Using gene and pathway analyses, we found that the results are

biologically plausible and meaningful in the context of trauma exposure and PTSD.

However, we are hesitant to claim that the assumptions regarding confounding are

met in this analysis by merely controlling for sex and age.

The proposed method faces some limitations. Most consequentially, the method re-

lies on a number of assumptions, some of which may not be biologically plausible.

Assumptions related to confounding required for a causal interpretation are subject

to scrutiny on a case by case basis. As is true for any causal analysis, care must

be taken to consider if these assumptions are met before employing a causal inter-

pretation of results. That said, mediation is inherently a causal question, so these
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assumptions must be accounted for to the extent possible in the data collection phase.

Other assumptions inherent in TOAST-MB include that the cell types do not interact

and there is independence among CpG sites. It is likely reasonable to assume that

cell types do not operate completely independently of one another, and CpG sites,

particularly close to one another, are known to be correlated [80]. Still, TOAST-MB

provides a powerful method for exploratory analysis of cell type-specific mediation.

One advantage of TOAST-MB is that it can easily be extended to accommodate

di↵erent types of outcomes. Although we focus on the binary outcome case, one

could specify a linear model for a continuous outcome or a poisson model for a count

outcome. Using Stan for MCMC sampling makes it straightforward to adjust the

model structure depending on the research question. A more di�cult hurdle lies in

the correct model specification more generally. A key advantage of causal mediation

over the traditional Baron and Kenny approach is that the e↵ects of interest are

defined outside of, rather than based, on the specified model [51]. This gives the

researcher flexibility in the choice of the model. For example, it may be of interest

to add an interaction term for the exposure and mediator, and indeed much of the

causal inference literature encourages such a term and defines the natural indirect

e↵ect accordingly [72]. More work is needed to better understand cell type-specific

biological mechanisms to determine if such a term is needed, and then statistical

methods should accommodate the appropriate models. Currently, most statistical

methods in this realm (including TOAST-MB) employ main e↵ects models, which

may not match biological reality.

Accommodating the high dimensionality of omics data also remains a challenge in

cell type-specific mediation and the field of causal genomics more broadly. High

dimensionality is a challenge from both the statistical and the computational per-
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spective. To relax the assumption of independence among CpG sites, we would want

to include all CpG sites in a single model rather than fitting the mediation models

separately for each site. However, separating and defining causal e↵ects for each cell

type and CpG site would require careful consideration of how the sites and cell types

interact. It is logical to think that the mediation e↵ect of one cell type in one CpG

site would not be independent of its e↵ect in a second CpG site. In such a case,

developing a robust statistical model that accurately reflects these interactions would

be di�cult. One approach might be to combine CpG sites into methylation regions

and assess cell type-specific regional e↵ects.

The application of causal inference to omics data o↵ers many opportunities for future

research. Mediation analysis in particular has become a strong area of interest, with

applications in many omics realms including methylation, metabolomics, and micro-

biome data. Each of these present unique statistical challenges. Additionally, as more

studies begin to collect multiple types of omics data, there is a need for mediation

methods that can parse through the di↵erent types of omics mediation e↵ects. Al-

though this may be theoretically and computationally di�cult, this area of research

could likely lead to valuable discoveries to better understand biological mechanisms

of disease.
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Chapter 4

A comparison of high dimensional

mediation methods

4.1 Introduction

Mediation analysis has grown in popularity over the last several years, and is now

an active area of research in both methodological and applied settings. In fact, the

number of Google scholar entries with ”mediation analysis” in the title or abstract

has grown exponentially over the last ten years [51]. The goal of mediation analysis

is to assess the role that a factor of interest (called the mediator) plays in the inter-

mediate path between an exposure and an outcome. Modern mediation analysis uses

the causal inference counterfactual framework, which requires particular assumptions

to identify a causal mediation e↵ect [59, 44, 71].

As high-throughput omics data have become more accessible, researchers have natu-

rally become interested in how di↵erent types of omics may mediate the relationship

between an exposure and an outcome [16]. Assessing these relationships could revo-

lutionize the way that many health conditions are understood and treated. But these
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data are high-dimensional, and traditional approaches to mediation analysis are in-

adequate. Although omics data may have hundreds of thousands of components,

sample sizes for these studies are typically in the hundreds. Fitting linear models in

this case will then be inadequate because the number of predictors vastly outnumbers

the number of observations. One could assess each mediator individually, but this

fails to account for potential correlations among the mediators. Several methods have

been developed in recent years to assess high-dimensional mediation models. Broadly,

these methods fall into four categories: 1) methods that utilize dimension reduction

or group mediators, 2) methods based on the composite null, 3) penalized regression

methods, and 4) Bayesian methods.

In this work, we present a simulation study comparing three methods of high-dimensional

mediation analysis. Although these methods can be employed in a range of high-

dimensional omics contexts, we focus on the setting in which DNA methylation serves

as the mediator of interest. DNA methylation has been studied as a mediator be-

tween multiple exposures and outcomes, including age and diabetes risk [26], genetics

and rheumatoid arthritis [40], and prenatal adversity and metabolic disease [70]. We

then apply the three methods to a dataset from the Grady Trauma Project to assess

DNA methylation as a possible mediator between smoking and weight. The paper is

organized as follows: first, we present a general overview of mediation models with

multiple mediators, which serves as a foundation for omics mediation analysis. We

then present a categorical overview of current methods for high-dimensional media-

tion. Next, we present the simulation study comparing three methods (HIMA, DACT,

and BAMA) and apply the three methods to data from the Grady Trauma Project.

We conclude with a summary and future directions in high-dimensional mediation.
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4.1.1 General overview of mediation with multiple mediators

VanderWeele presents the following framework to analyze the joint e↵ect of multiple

mediators [72]. Suppose we have an exposure E, a continuous outcome Y , a set

of covariates X, and a set of K mediators M = (M (1), . . . ,M(K)), and that the

following regressions are specified:

E[M (i)|e, x] = �0 + �1e+ �0
2X (4.1)

E[Y |m, e,x] = ✓0 + ✓1e+ ✓(1)2 m(1) + . . .+ ✓(K)
2 m(K) + ✓04X (4.2)

Then the controlled direct e↵ect, or the e↵ect of E on Y not mediated through M,

is given by ✓1(e � e⇤). The natural direct e↵ect, or the e↵ect of E on Y if M takes

the value it would naturally take based on the value of E, is given by ✓1(e � e⇤).

The natural indirect e↵ect, or the e↵ect of E on Y that is mediated through M ,

is given by [�(1)
1 ✓(1)2 + . . . + �(K)

1 ✓(K)
2 ](e � e⇤). e and e⇤ represent two levels of the

exposure, so in the case of a binary exposure, this term is 1. Although the controlled

direct e↵ect and the natural direct e↵ect coincide in this case, they diverge when

other models are specified, e.g., when an interaction between the exposure and me-

diator is used. In the case of a binary outcome, a logistic or log-linear model can be

specified for the outcome model and the e↵ects are defined on the odds ratio scale [72].

This approach di↵ers from assessing mediators one at a time because it includes

all mediators in the outcome model, equation 4.2. If mediators do not a↵ect one

another, the multiple mediator approach is equivalent to assessing mediators one at a

time using the single mediator model approach. However, in omics applications, the

nature of the relationship among mediators is often not well understood, so making
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the assumption that mediators do not a↵ect one another may be too strong.

Testing the indirect e↵ect

Multiple procedures have been proposed to assess statistical significance of the natural

indirect e↵ect, �k
1✓

k
2 . The two most common methods are the Sobel test and the joint

significance test [78]. The Sobel test constructs a test statistic directly for the product

�k
1✓

k
2 by using the delta method to obtain an estimate of its standard error [62]. The

joint significance test obtains p-values for �k
1 and ✓k2 from fitting the mediator and

outcome models, respectively, and defines the mediation p-value as the maximum of

the two p-values [15]. Resampling methods such as bootstrap and permutation tests

have also been proposed to test the indirect e↵ect [54]. These methods have been

compared in simulations, though not always in the context of multiple mediators

[27, 6, 45]. The Sobel test has been found to achieve lower statistical power compared

to other methods. Resampling methods, namely bootstrap procedures, have been

shown to be more powerful than the Sobel test and the joint significance test, and

are generally recommended [6, 27].

4.1.2 General overview of proposed high-dimensional medi-

ation methods

Dimension reduction or grouped mediators methods

Some proposed methods of high-dimensional mediation analysis have first reduced the

number of mediators through either dimension reduction or grouping. Huang and Pan

proposed transforming the mediators using Principal Component Analysis [30]. This

method benefits from the fact that it addresses correlation among the mediators,

which is often the case in DNAm. However, using principal components as mediators

makes biological interpretation of results more di�cult. Derkach et al. employ a
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similar approach in which they assume that the high-dimensional group of mediators

comes from an underlying group of latent factors [19]. Another method, proposed

by Fang et al. called g-HMA, assesses a mediation e↵ect based on genes rather

than individual CpG sites [22]. A similar approach might be to assess methylation

regions (DMRs) as mediators. These methods may be e↵ective approaches to high-

dimensional mediation but depend on the researcher’s interest in the biological unit

of the mediator.

Composite null methods

Other proposed methods are based on the composite nature of the null hypothesis in

mediation analysis. When the interest lies in hypothesis testing of the natural indirect

e↵ect (as is often the case in mediation analysis), and when main e↵ects linear models

are used to model the mediator(s) and the outcome, the null hypothesis takes the form

H0 : �k
1✓

k
2 = 0. Here �k

1 represents the coe�cient of the exposure in the mediator

model and ✓k2 represents the coe�cient of the mediator in the outcome model. This

null hypothesis is a composite null because any of the following conditions can be

satisfied for the null to hold:

8
>>>><

>>>>:

�k
1 = 0, ✓k2 6= 0

�k
1 6= 0, ✓k2 = 0

�k
1 = 0, ✓k2 = 0

The methods in this category analyze one mediator at a time but pool information

across mediators to account for the composite null hypothesis. For example, Huang

et al. developed the JT-comp method, which uses single mediator models to obtain p-

values za and zb from the mediator and outcome models, respectively, then assesses the

distribution of these p-values under the three null scenarios. JT-comp then estimates

the probability of each null scenario and uses those estimates to generate an adjusted
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p-value for each mediator [29]. JT-comp requires several assumptions that may not

hold in real data, particularly when the sample size is greater than ⇡500, which may

lead to inflated type 1 error [78]. Similarly, DACT analyzes mediators one at a time,

but directly obtains estimates of the proportions of each component of the composite

null hypothesis to generate a calibrated p-value [41]. A third method in this category,

JS-mixture, directly constructs the null distribution but does so by estimating the

proportions of the three null components, similarly to JT-comp and DACT. These

methods may benefit from higher power compared to methods that do not directly

address the composite null hypothesis. However, assessing mediators one at a time

does not account for potential correlation among the mediators.

Penalized regression methods

The third type of high-dimensional mediation analysis method employs penalized re-

gression to identify true mediators. Penalized regression methods, such as LASSO,

add a penalty term to the objective function to be minimized; by doing so, penalized

regression methods can handle regression scenarios in which the number of explana-

tory variables is greater than the sample size (p > n) [82]. LASSO shrinks some

coe�cients to 0 and therefore can serve as a variable selection procedure [82]. This

technique can be useful in high-dimensional mediation problems to analyze all medi-

ators jointly. Because the number of mediators is often much larger than the sample

size in omics mediation analysise (p >> n), a screening procedure is often employed

in these methods as a first step prior to penalized regression [79, 81].

Zhang et al. proposed the method HIMA, which analyzes a set of high-dimensional

mediators in three steps [79]. In the first step, HIMA employs Sure Independence

Screening to reduce the number of mediators from ultra high-dimensional to high-

dimensional. Then, HIMA uses penalized regression to perform variable selection.
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In the third step, HIMA evaluates the remaining candidate mediators in a multiple

mediator model and performs the joint significance test with a Bonferroni multiple

comparisons adjustment.

Another method in this category is Pathway Lasso [81]. Pathway Lasso adds two

penalty terms, one aimed at shrinking estimates for the product �1✓2, and one aimed

at shrinking �1 and ✓2 individually. This method does not use an initial screening

procedure. In the original paper presenting Pathway Lasso, it is applied to a neu-

roimaging dataset with 76 potential mediators. Therefore, it is unclear whether or

not this method can handle high-dimensional mediation. For example, in the context

of DNA methylation, the number of potential mediators can be as high as 400, 000

or more.

Bayesian methods

Finally, Song et al. have proposed a series of Bayesian methods for high-dimensional

mediation analysis [63]. The set of methods, called BAMA, use the same general

framework but di↵er in the structure of the prior distributions. BAMA applies a

sparsity assumption that only a small proportion of the potential mediators are true

mediators. The first iteration of BAMA, which will be used in the simulation study,

models all mediators jointly by applying a Bayesian sparse linear mixed model prior.

This assumes that all mediator e↵ects follow a two-component normal mixture model

in which one component has a large variance and one has a small variance. BAMA

uses an MCMC sampling procedure to obtain posterior samples. BAMA produces a

posterior inclusion probability (PIP), defined as the probability that both �1 and ✓2

belong to to the normal component with a large variance, and are therefore active

mediators. The user can specify a PIP threshold at which to select true mediators.

Song et al. have proposed some extensions to BAMA to jointly model the �1 and ✓2
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e↵ects and explicitly model the correlation structure among mediators [64, 65].

4.2 Methods

4.2.1 Selected high-dimensional mediation methods

We conducted a comprehensive simulation study to compare the performance of

HIMA, DACT, and BAMA. These three methods were chosen based on the following

considerations: 1) to achieve representation from each category of methods, 2) avail-

ability of an R package to use for analysis, and 3) popularity of use (based on Google

Scholar citations). The first category of methods, dimension reduction or group-based

methods, was omitted because the interpretation of the results di↵ers from methods

that test individual CpG sites.

Figure 4.1 illustrates the three main steps of HIMA. The HIMA method and corre-

sponding R package is self-contained and uses the Bonferroni correction for multiple

comparisons [79]. Figure 4.2 illustrates the DACT method. The DACT function

requires two vectors of p-values as inputs, one from the mediator models and one

from the outcome models. The user is responsible for correcting for multiple testing.

Equations 4.1 and 4.2 were fit for each CpG site individually and the p-values for �1

and ✓2 were used for DACT inputs. Following the procedure used by Liu et al. in the

real data analysis, q-values were computed to correct for multiple testing [41]. FDR

thresholds of 0.05 and 0.1 were compared, with the lower value being the more con-

servative case. BAMA produces a posterior inclusion probability (PIP) for each CpG

site, and the user can decide a threshold to use to classify a site as a mediator [63].

PIP thresholds of 0.1, 0.3, and 0.5 were compared. Note that the higher value of PIP

represents the more conservative threshold. Table 4.1 summarizes the characteristics

of the three methods.
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Figure 4.1: HIMA first uses sure independence screening to reduce the dimension
of the mediators from ultra high to high dimensional. Then it utilizes a penalized
regression method to further reduce the dimension of the mediators. Once the set of
mediators is su�ciently reduced (p < n), HIMA fits the multiple mediator models
and uses the joint significance test with the Bonferroni multiple testing correction.

Method Category Input Summary

HIMA Penalized regression Full methylation data
1. Sure independence screening

2. penalized regression
3. joint significance test

DACT Composite null

vector of p-values from
mediator models and
vector of p-values

from outcome models

Estimates proportions of each
null case and calculates
new p-value accordingly

BAMA Bayesian
Subset of methylation

data based on
marginal analysis

Assumes each mediator
comes from a normal mixture
and calculates a probability
that each site is a mediator

Table 4.1: Summary of the three selected methods
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Figure 4.2: DACT requires the user to fit individual models for each CpG site and
input two vectors of p-values, one from the mediator model and one from the outcome
model. DACT then pools information from these p-values to estimate the proportion
of each null hypothesis case and combine the given p-values into a single value using
the estimated proportions.

4.2.2 Simulation

To capture the correlation and variance structure of methylation data, an open source

dataset from a multi-ethnic cohort was used in the simulation [23]. The methylation

matrix of beta values contained 1,219 total subjects and 386,362 CpG sites. Random

samples of subjects and CpG sites were taken to compare di↵erent settings. Sample

sizes were 200, 500, and 1000, and the number of CpG sites were 1, 000 or 100, 000.

The proportion of CpG sites designated as mediating sites was compared between 0.1

and 0.001. The sampled subjects and CpG sites were fixed for each setting, but the

sampled mediating sites varied for each simulation replicate. In the case of 1,000 CpG

sites, to ensure a mediator-exposure e↵ect would be evident, CpG sites were sampled
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from those with mean methylation value between 0.4 and 0.6. A random covariate

was generated from Unif(0.3, 0.7). A binary exposure was generated with 50% of sub-

jects classified as exposed and 50% classified as unexposed. A direct e↵ect was drawn

from Unif(0.01, 0.05). The exposure-mediator e↵ect was induced using equation 4.1

with �1 = 0.4 and random noise added from N(0, 0.01). The methylation values were

then bounded at 0.01 and 0.99. A continuous outcome was generated by adding ✓2

in the mediating CpG sites and then summing over CpG sites and adding the direct

e↵ect and random noise N(0, 0.01). Two values of ✓2 were compared: 0.4 and 2.

Each simulation setting specified a number of CpG sites and a proportion that would

serve as mediating CpG sites. BAMA is computationally intensive and it is not fea-

sible to run on the entire set of CpG sites. Therefore, BAMA was included in the

simulations for 1,000 sites but not for 100,000 sites. Proportions of CpG sites were

compared because 1,000 sites could represent a selected subset of CpG sites following

marginal mediation analysis, and the true biological proportion of mediating sites is

unknown. False discovery rate (FDR) and power were compared for the three meth-

ods. Because each simulation contained mediating sites and non-mediating sites,

FDR was calculated as the number of significant discoveries in non-mediating sites

divided by the total number of significant discoveries. Power was calculated as the

mean proportion of mediating sites that were detected.
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4.3 Results

4.3.1 Simulation

False Discovery Rate

Figure 4.3 shows the distribution of the FDR for each method over 100 simulation

replicates by sample size and proportion of mediators with 1,000 CpG sites. 1,000

sites mimics the case where a subset of CpG sites is selected to be used in the high-

dimensional mediation method. This is particularly relevant for BAMA, which re-

quires significantly more computation time than HIMA or DACT. In the case where

the proportion of mediating sites is 0.001, meaning there is only 1 mediating site,

FDR is largely controlled by both methods for N=200 and N=500. For N=1000, we

see more variability in the FDR for BAMA and DACT, though the median FDR is

still below 0.1 for each method except BAMA-0.1. The bottom row shows the FDR

when the proportion of mediating sites is 0.1, meaning there are 100 mediating sites

in this case. We see large variability in the FDR of BAMA-0.1, but this is not sur-

prising given that 0.1 is the most liberal PIP threshold of the three BAMA cases. In

each BAMA case, the median FDR is below 0.1. For DACT, we see similar variability

regardless of sample size, though the median indicates FDR inflation for sample sizes

of 200 and 500. HIMA appears to control FDR in each case.

Figure 4.4 shows the distribution of the FDR for DACT and HIMA with 100,000 CpG

sites. BAMA is omitted because of the increased computation time. This case is per-

haps more relevant for DACT and HIMA than the 1,000 CpG site case because it is

feasible to run these methods on the full set of CpG sites in a given dataset. When

the proportion of mediating CpG sites is 0.001 (100 sites), FDR is controlled in each

sample size and method, as indicated by the median. However, these is more variation

in FDR in the N=500 case, and some outliers in the other sample size settings. When

the proportion of mediators is 0.1 (10,000 sites), there is more variability in FDR for
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Figure 4.3: FDR for 1,000 CpG sites. The top row shows the FDR with a mediating
site proportion of 0.001, meaning in this case there is 1 mediating CpG site. The
bottom row shows the FDR with a mediating site proportion of 0.1, meaning there
are 100 mediating CpG sites. FDR is calculated as the number of discoveries in non-
mediating sites divided by the total number of discoveries. The boxplots show the
distribution of FDR for 100 simulation replicates.

DACT. The median FDR for DACT increases as the sample size increases. The 0.1

FDR threshold is more liberal, so it is not surprising that FDR is more inflated in

this case. HIMA appears to control in the larger CpG site setting as well.

Power

Figure 4.5 shows the distribution of power, as calculated by the proportion of medi-

ating sites detected, in the 1,000 CpG site case. Because in the top row there is only

1 mediating site, the site is either detected or not, which explains the shape of the

BAMA and DACT boxplots. For N=200 and N=500, BAMA and DACT have median

power of 1, and means above 0.65 for every case except BAMA-0.5, which has mean

0.54 for both sample sizes. The mean power decreases for BAMA and DACT in the

N=1000 case (as does the median except for BAMA-0.1 and BAMA-0.3). This could

be a result of the variability inherent in selecting a single CpG site as the mediating

site. Because a random sample of both subjects and CpG sites were taken from the
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Figure 4.4: FDR for 100,000 CpG sites. The top row shows the FDR with a mediating
site proportion of 0.001, meaning in this case there are 100 mediating CpG site. The
bottom row shows the FDR with a mediating site proportion of 0.1, meaning there
are 10,000 mediating CpG sites. BAMA is omitted because of the higher computation
time required. FDR is calculated as the number of discoveries in non-mediating sites
divided by the total number of discoveries. The boxplots show the distribution of
FDR for 100 simulation replicates.

full dataset, and only one CpG site is a mediator in this case, the methods could be

sensitive to characteristics (such as mean or variance) of the CpG site selected. The

bottom row of 4.5 shows the distribution of power when the proportion of mediating

sites is 0.1 (100 sites). BAMA demonstrates low power, and the power decreases as

the PIP threshold increases, as expected. DACT has the highest median power for

both 0.05 and 0.1 thresholds, though FDR was shown to be inflated in some of these

cases (primarily for DACT=0.1). HIMA fails to detect any CpG sites in any case.

Figure 4.6 shows the distribution of power for the 100,000 CpG site case. When the

proportion is 0.001 (100 mediating sites), both methods have very low power, though

DACT appears to occasionally be better than HIMA. This case is likely the most

biologically realistic setting for DACT and HIMA. Although FDR was controlled for

both methods in this case, the power is quite low. The second row contains power dis-
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Figure 4.5: Power for 1,000 CpG sites. The top row shows the power with a mediating
site proportion of 0.001, meaning in this case there is 1 mediating CpG site. The
bottom row shows the power with a mediating site proportion of 0.1, meaning there
are 100 mediating CpG sites. Power was calculated as the fraction of mediating sites
detected. The boxplots show the distribution of power for 100 simulation replicates.

tributions for proportion 0.1 (10,000 mediating sites). Although DACT shows higher

power than HIMA, the FDR was inflated in this case, particularly for DACT-0.1. For

DACT-.05, the mean power was 0.07, 0.08, and 0.12 for sample sizes 200, 500, and

1000, respectively.

Computation

Table 4.2 shows the computation time for each method and each simulation setting.

For the 1,000 CpG site case, the run time for HIMA ranges from 1.7-3.2 seconds

depending on the sample size. DACT computation time is similar but slightly lower

in this case, ranging from 1.8-2.2 seconds. BAMA has the highest computation time,

taking 2.8 mins for N = 200, 6.2 mins for N = 500, and 12.0 mins for N = 1, 000.

Because of the increased computation time for BAMA, it is recommended by Song

et al. to use with a subset of CpG sites after marginal mediation analysis. In the

100,000 CpG site case, HIMA requires between 2.5 and 3.5 mins to run depending on
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Figure 4.6: Power for 100,000 CpG sites. The top row shows the power with a me-
diating site proportion of 0.001, meaning in this case there are 100 mediating CpG
site. The bottom row shows the power with a mediating site proportion of 0.1, mean-
ing there are 10,000 mediating CpG sites. BAMA is omitted because of the higher
computation time required. Power was calculated as the fraction of mediating sites
detected. The boxplots show the distribution of power for 100 simulation replicates.

sample size, and DACT requires between 2.9 and 3.6 minutes.

Method Number of CpG sites Sample size Computation time

HIMA

1,000
200 1.7 sec
500 2.1 sec
1,000 3.2 sec

100,000
200 2.5 min
500 2.8 min
1,000 3.5 min

DACT

1,000
200 1.8 sec
500 1.9 sec
1,000 2.2 sec

100,000
200 2.9 min
500 3.1 min
1,000 3.6 min

BAMA 1,000
200 2.8 min
500 6.2 min
1,000 12.0 min

Table 4.2: Simulation results: computation time for each method based on the number
of CpG sites and the sample size
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4.3.2 Real Data Analysis

To further evaluate the performance of TOAST-MC, we analyzed a dataset from

the Grady Trauma Project, which assesses the influence of various factors, including

DNAm, on response to traumatic events [24]. The cohort is predominantly com-

prised of African American individuals of low socioeconomic status in Atlanta, GA.

Data were collected via interviews in waiting rooms of primary care or obstetrical-

gynecological clinics. Clinical and life experience data, as well as blood samples, were

collected. We analyzed 679 individuals for whom EPIC array DNA methylation data

were available. Binary smoking status was the exposure of interest and weight (kg)

was the continuous outcome. Both smoking status and weight have been shown to

be associated with epigenetics [20], [37], [73], [17], [33], [46], [77]. Sex and age were

controlled for as confounding variables. Observations with missing values for smok-

ing status, weight, sex, or age were excluded. Cell type proportions were estimated

using publicly available reference data and Robust Partial Correlation (RPF) method

implemented in the R package EpiDish [69], and cell type proportions were included

as covariates.

Of the 679 individuals, 273 (40%) were smokers and 406 (60%) were nonsmokers.

The mean weight in nonsmokers was 96.7 kg (SD=26.1) and 90.0 (25.1) in smokers

(p¡0.001, two sample t-test). 79.8% of nonsmokers were female with a mean age of 40.8

(SD=12.7), while 62.3% of smokers were female with a mean age of 44.5 (SD=11.0).

HIMA and DACT were used to analyze the full set of 761,950 CpG sites. HIMA did

not detect any significant CpG sites. Based on the simulation results for FDR, the

0.05 FDR threshold was used for DACT. Four CpG sites were detected, as shown in

table 4.3. Most notably, two sites on the AHRR gene were detected, and this is a

gene known to be associated with smoking [38]. Site cg05575921 was also detected

in the DACT analysis of the mediating e↵ect of DNA methylation between smoking
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and lung function in the Normative Aging Study [41]. The computation time for

DACT was 29 minutes. A subset of 834 CpG sites was selected based on a marginal

p-value of < 0.001 in the mediator model to be analyzed with BAMA. BAMA did

not detect any CpG sites at the 0.1 PIP threshold (and, therefore, neither the 0.3 nor

0.5 thresholds).

CpG CHR Gene

cg05575921 5 AHRR
cg17287155 5 AHRR
cg17739917 17 RARA
cg07390844 18 TSHZ1

Table 4.3: Grady Trauma Project data: CpG sites detected by DACT

4.4 Discussion

In this chapter, we presented an overview of high-dimensional mediation methods and

compared the performance of three methods. HIMA performs two screening steps to

reduce the number of mediators, and then uses the joint significance test with the

Bonferroni correction to classify significant mediators. DACT analyzes mediators one

at a time but pools information across the p-values to estimate proportions of each

null hypothesis case, and then recalculates an overall p-value using those proportions.

BAMA assumes sparsity and utilizes continuous shrinkage priors to select true medi-

ators in a Bayesian framework.

In the simulation study, all methods controlled FDR fairly well. The most biologically

realistic settings are 1,000 sites with mediator proportion 0.1, and 100,000 sites with

mediator proportion 0.001. Although DACT shows FDR inflation in some cases, it

does not appear to be inflated in the more biologically realistic cases. BAMA showed
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inflated FDR when using the 0.1 PIP threshold. This is not surprising as that is the

most liberal of the three thresholds used. All three methods show very low power in

general, with the exception being the case with 1,000 CpG sites with proportion 0.001

in smaller samples. HIMA fails to detect a CpG site in any case. In the analysis of

the Grady Trauma Project data, only DACT detects significant CpG sites. Because

it shows the highest power in the simulation study and controls FDR in most cases,

DACT appears to be the best choice for high-dimensional mediation at this time.

This is further evidenced by its ability to detect sites in the real data. Additionally,

the sites detected in the Grady Trauma Project data are on the AHRR gene, which

is well understood to be associated with smoking.

The comparison of these methods demonstrate the challenge of high-dimensional me-

diation, specifically with DNA methylation data, and motivate the need for more

statistical methods development in this area. A primary challenge of DNA methyla-

tion data is that beta values lie between 0 and 1, so the variance is limited. Upon close

inspection of the original simulation study for HIMA, this setting was not accounted

for. Therefore, HIMA may still be a useful method in other high-dimensional omics

cases that do not face this limitation. Moreover, the Bonferroni correction is known

to be conservative; perhaps if another approach to multiple testing were used, HIMA

may see improved overall performance. DACT has not been previously tested in set-

tings where some CpG sites are considered mediators while others are not, and FDR

and power are calculated accordingly. In the original simulation study for DACT,

type 1 error and power were assessed separately, so the set of CpG sites were either

all non-mediating or all mediating. This may impact the di↵erence in FDR and power

reported in the original study as opposed to the simulation presented here. Similarly,

the results seen here (namely, low power) are consistent with those reported in the

original BAMA simulation study.
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While more research is needed to develop more powerful statistical methods for high-

dimensional mediation, these analyses can also stand to benefit from larger samples

sizes in the data collection phase. Particularly for DNA methylation studies, where

the e↵ect size is limited by the range of the beta values, an increase in sample size

can help to increase the power to detect significant mediators.

While we omitted grouping or dimension reduction-based methods from the simu-

lation study, these methods represent an important collection of approaches to high-

dimensional that may be more powerful than the CpG site approaches. Using prin-

cipal components as mediators su↵ers from di�cult interpretation, but may help in

addressing the research question of the presence or absence of an overall mediating

e↵ect. Gene-based methods, or those that use DNA methylation regions, combine

the signals from multiple CpG sites, which may be a more powerful initial approach

than looking at CpG sites individually. Once a particular gene or region is identified,

the researcher then could look at individual CpG sites without facing the challenge

of such a high dimension.

The application of causal inference principles to high-dimensional mediation also re-

mains an important area of future work. Although more attention has been drawn

to the assumptions regarding control of confounding factors, more work is needed to

better understand the causal structure of omics mediation problems. For example,

although CpG sites near each other are known to sometimes be correlated, the causal

structure of this relationship is unknown. More clarity on these relationships can help

to more accurately model and assess the role of omics data as a mediator between an

exposure and outcome.
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Although challenges remain, omics mediation represents a promising area of future

biological discovery. A better understanding of the mediating role of epigenetics, the

microbiome, proteomics, metabolomics, or a combination thereof, between an expo-

sure and outcome may transform the approach to the treatment of many diseases.
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Chapter 5

Discussion

Recent technological innovations in sequencing techniques have led to a tremendous

increase in the availability of di↵erent kinds of omics data. These data can help to

better understand the biological mechanisms by which complex diseases originate. In

this dissertation, we have presented three chapters exploring statistical methods to

better answer research questions related to omics mediation. In the second chapter,

we presented TOAST-MC, a procedure based on EM algorithm to identify mediating

cell types in the relationship between an arbitrary exposure and a continuous out-

come. Then, to have a unified method, we presented TOAST-MB in chapter three.

TOAST-MB utilizes a Bayesian framework to identify mediating cell types between

an arbitrary exposure and a binary outcome. This framework can easily be extended

to accommodate other types of outcomes, including count outcomes. In the fourth

chapter, we compared methods of high-dimensional mediation. These methods do

not explore cell type-specific relationships, but attempt to jointly analyze CpG sites

to better account for the correlation among the mediators.

The key innovation of this dissertation is providing an approach to detect cell type-

specific mediation e↵ects between an exposure and an outcome. Although we focus
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on the application to DNA methylation, the method can be extended to other types

of omics data. Interest in omics data mediation analysis has increased in recent years,

but these studies have faced three main challenges: 1) accounting for cell type hetero-

geneity, 2) assessing causality, and 3) dealing with high-dimensionality. In the first

two projects, we sought to address the first two challenges. We utilized the causal

inference framework of mediation to develop methods to assess cell type-specific me-

diators. More generally, these methods can be viewed as methods to deal with medi-

ation problems where the mediators of interest are observed at the bulk level rather

than the individual level. In this way, we contribute not only to innovations in omics

mediation, but in statistical mediation analysis more generally.

This work faces a few limitations which provide opportunities for interesting fu-

ture research. First, cell type-specific mediation methods, including TOAST-MC,

TOAST-MB, and MICS, analyze CpG sites one at a time. This assumes that CpG

sites operate independently, which is known to be untrue. Specifically, CpG sites close

to each other in genomic location are understood to be correlated [23]. To account

for this correlation, CpG sites could either be analyzed jointly or grouped (e.g., DNA

methylation regions) before analysis. The primary challenges with analyzing CpG

sites jointly in this context are 1) computational time, and 2) clarifying the causal

structure of multiple cell types and multiple CpG sites in the same model. By ana-

lyzing multiple sites in the same model, one would need to be careful about defining

and modeling the relationship between the same cell type on di↵erent sites. Even

without analyzing CpG sites jointly, these methods face computational challenges.

DNA methylation data often contain hundreds of thousands of CpG sites. More work

is needed to e�ciently analyze this many sites and the cell type-specific e↵ects within

them.
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The fourth chapter, which compares three methods of high-dimensional mediation

analysis, displays the challenge of developing a powerful method that controls FDR

in the high-dimensional setting. One might naturally wonder why these methods

detect so few CpG sites as significant, while the cell type-specific methods presented

detect tens or hundreds in each cell type. One possible explanation is that separating

the e↵ects into specific cell types may elucidate signals that, when combined at the

bulk level, cancel out. If this is the case, cell type-specific analysis provides a great

opportunity for future discovery. However, more work is needed to compare these

methods and the statistical mechanisms by which the cell type-specific methods de-

tect so many more signals than the general high-dimensional mediation methods.

The structure of DNA methylation data presents unique challenges that may not

be present in other types of omics data. Specifically, beta values for DNA methyla-

tion are bounded between 0 and 1. This limits the variability of the data and possible

e↵ect sizes. Statistically, the small variance makes it more di�cult to develop pow-

erful methods to detect small di↵erences between subjects. Because of this, it is

important to increase the sample size as much as possible in these studies during the

study design phase, and limit missing data as much as possible. Additionally, more

biological insight into what constitutes a meanginful di↵erence in methylation level

can help in the development of statistical methods and power analyses in the future.

Focusing on these aspects during study design can help to add statistical power and

lead to more biological discoveries in DNA methylation mediation.

This work is motivated by the fact that EWAS data have historically been collected

at the bulk level, where di↵erent cell types are mixed together. More recent tech-

nology has allowed for the advent of single cell omics data. If single cell omics data

are available, mediation models can be fit more directly, though the challenges of



78

high-dimensionality and assessing causality would remain. However, single cell omics

is currently di�cult to obtain for a population level study because of its high cost.

Still, as single cell data become easier to obtain, statistical methods will be needed to

analyze them in a mediation context. Even more beneficial would be methods that

can jointly analyze bulk and single cell data to reap the benefits of both accessibility

and biological accuracy.

A better understanding and application of causal inference principles is vital to the

success of omics mediation analysis in the future. At present, there remains much

to learn about the relationships between omics processes, exposures, and health out-

comes. Causal interpretations rely on several assumptions related to the control of

confounding factors. As knowledge grows about these processes, researchers will be

better able to control for as many confounding factors as possible, thus leading to a

better understanding of the causal processes by which an exposure leads to a disease.

The need to control for confounders in the exposure-mediator, mediator-outcome,

and exposure-outcome relationships presents a further argument for increasing sam-

ple sizes in omics mediation studies. One must have a su�cient size to appropriately

model the necessary confounding factors. Similarly, more biological understanding

is needed to design statistical models that accurately represent biological processes.

For example, in the context of DNA methylation mediation, a better understand-

ing is needed regarding the temporal relationship and biological interactions between

certain exposures and methylation. Mediation methods in the causal inference lit-

erature can accommodate interaction and non-linear terms, but a better biological

understanding is needed to justify more complex models.

Finally, more work is needed to enhance the reproducibility of EWAS and omics

mediation studies broadly. Developing powerful statistical methods can help with
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this, as more powerful methods that detect specific mechanisms may help researchers

identify similar results across studies. Significant technical variability remains a chal-

lenge in omics studies more generally; however, as sequencing technology continues

to improve, so will the reproducibility of these analyses.

Facing these biological and statistical challenges can lead to important discoveries

and a better understanding of the mechanisms by which health outcomes occur. In

this work, we have taken an important step forward by presenting a method to detect

cell type-specific mediation e↵ects. A better understanding of these mechanisms could

lead to great innovations in how many health outcomes are treated and, ultimately,

prevented.
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berth, and Irina Lehmann. Tobacco smoking di↵erently influences cell types of

the innate and adaptive immune system—indications from cpg site methylation.

Clinical epigenetics, 8(1):1–12, 2016.

[10] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in

multiple testing under dependency. Annals of statistics, pages 1165–1188, 2001.

[11] Marc Chadeau-Hyam, Gianluca Campanella, Thibaut Jombart, Leonardo Bot-

tolo, Lutzen Portengen, Paolo Vineis, Benoit Liquet, and Roel CH Vermeulen.

Deciphering the complex: Methodological overview of statistical models to de-

rive omics-based biomarkers. Environmental and molecular mutagenesis, 54(7):

542–557, 2013.

[12] Robin F Chan, Gustavo Turecki, Andrey A Shabalin, Jerry Guintivano, Min

Zhao, Lin Y Xie, Gerard van Grootheest, Zachary A Kaminsky, Brian Dean,

Brenda WJH Penninx, et al. Cell-type-specific methylome-wide association stud-

ies implicate neurodegenerative processes and neuroimmune communication in

major depressive disorder. bioRxiv, page 432088, 2018.

[13] Edward Y Chen, Christopher M Tan, Yan Kou, Qiaonan Duan, Zichen Wang,

Gabriela Vaz Meirelles, Neil R Clark, and Avi Ma’ayan. Enrichr: interactive and



82

collaborative html5 gene list enrichment analysis tool. BMC bioinformatics, 14

(1):1–14, 2013.

[14] Jared M Churko, Gary L Mantalas, Michael P Snyder, and Joseph C Wu.

Overview of high throughput sequencing technologies to elucidate molecular

pathways in cardiovascular diseases. Circulation research, 112(12):1613–1623,

2013.

[15] P Cohen, J Cohen, SG West, and LS Aiken. Applied multiple regres-

sion/correlation analysis for the behavioral sciences . hillsdale, nj: Erlbaum.

INTELLIGENCE AND ASSESSMENT, 531, 1983.

[16] Victoria K Cortessis, Duncan C Thomas, A Joan Levine, Carrie V Breton,

Thomas M Mack, Kimberly D Siegmund, Robert W Haile, and Peter W

Laird. Environmental epigenetics: prospects for studying epigenetic mediation

of exposure–response relationships. Human genetics, 131(10):1565–1589, 2012.

[17] Ellen W Demerath, Weihua Guan, Megan L Grove, Stella Aslibekyan, Michael
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Lindén, Bartosz Górnikiewicz, et al. Dna methylation as a mediator of hla-drb1*

15: 01 and a protective variant in multiple sclerosis. Nature communications, 9

(1):1–15, 2018.

[36] Maxim V Kuleshov, Matthew R Jones, Andrew D Rouillard, Nicolas F Fer-

nandez, Qiaonan Duan, Zichen Wang, Simon Koplev, Sherry L Jenkins, Kath-

leen M Jagodnik, Alexander Lachmann, et al. Enrichr: a comprehensive gene

set enrichment analysis web server 2016 update. Nucleic acids research, 44(W1):

W90–W97, 2016.

[37] Ken WK Lee and Zdenka Pausova. Cigarette smoking and dna methylation.

Frontiers in genetics, 4:132, 2013.

[38] Shuai Li, Ee Ming Wong, Minh Bui, Tuong L Nguyen, Ji-Hoon Eric Joo, Jennifer

Stone, Gillian S Dite, Graham G Giles, Richard Sa↵ery, Melissa C Southey, et al.

Causal e↵ect of smoking on dna methylation in peripheral blood: a twin and

family study. Clinical epigenetics, 10(1):1–12, 2018.

[39] Ziyi Li, Zhijin Wu, Peng Jin, and Hao Wu. Dissecting di↵erential signals in

high-throughput data from complex tissues. Bioinformatics, 35(20):3898–3905,

2019.

[40] Yun Liu, Martin J Aryee, Leonid Padyukov, M Daniele Fallin, Espen Hesselberg,

Arni Runarsson, Lovisa Reinius, Nathalie Acevedo, Margaret Taub, Marcus Ron-

ninger, et al. Epigenome-wide association data implicate dna methylation as an

intermediary of genetic risk in rheumatoid arthritis. Nature biotechnology, 31(2):

142–147, 2013.

[41] Zhonghua Liu, Jincheng Shen, Richard Barfield, Joel Schwartz, Andrea A Bac-



86

carelli, and Xihong Lin. Large-scale hypothesis testing for causal mediation

e↵ects with applications in genome-wide epigenetic studies. Journal of the Amer-

ican Statistical Association, pages 1–15, 2021.

[42] Xiangyu Luo, Can Yang, and Yingying Wei. Detection of cell-type-specific risk-

cpg sites in epigenome-wide association studies. Nature communications, 10(1):

1–12, 2019.

[43] Xiangyu Luo, Joel Schwartz, Andrea Baccarelli, and Zhonghua Liu. Testing cell-

type-specific mediation e↵ects in genome-wide epigenetic studies. Briefings in

Bioinformatics, 22(3):bbaa131, 2021.

[44] David P MacKinnon. Introduction to statistical mediation analysis. Routledge,

2012.

[45] David P MacKinnon, Chondra M Lockwood, Jeanne M Ho↵man, Stephen G

West, and Virgil Sheets. A comparison of methods to test mediation and other

intervening variable e↵ects. Psychological methods, 7(1):83, 2002.

[46] J Alfredo Mart́ınez, Fermı́n I Milagro, Kate J Claycombe, and Kevin L

Schalinske. Epigenetics in adipose tissue, obesity, weight loss, and diabetes.

Advances in nutrition, 5(1):71–81, 2014.

[47] Natalie Matosin, Cristiana Cruceanu, and Elisabeth B Binder. Preclinical and

clinical evidence of dna methylation changes in response to trauma and chronic

stress. Chronic Stress, 1:2470547017710764, 2017.

[48] Kevin McGregor, Sasha Bernatsky, Ines Colmegna, Marie Hudson, Tomi Pasti-
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