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Abstract

Multi-timescale representation of animal behavior
By Kanishk Jain

This dissertation focuses on developing computational methods to identify and char-
acterize long-timescale dynamics in behavioral data across multiple spatiotemporal
scales. Utilizing the dynamical nature of Recurrent Neural Networks (RNNs), we for-
mulate novel approaches to learn dynamical models from large timeseries datasets of
animal postures. We introduce LIDAR, a framework for training RNNs on extensive
timeseries data while maintaining temporal coherence through statefulness. Apply-
ing this to human gait data, we generate quantitative gait signatures that encode
individual and group-specific locomotor patterns, with potential clinical applications
in diagnosis and therapy development. We extend our methodology to create multi-
timescale representations of behavior using hierarchical RNN models. We apply this
approach to a dataset containing simulataneous neural and behavioral recordings,
allowing us to explore neural correlates underlying behavior at multiple timescales.

To address limitations in existing methods for reconstructing state-space dynam-
ics, we propose a novel encoder-decoder RNN architecture capable of identifying long-
timescale non-stationarities in time series data generated from a modified Lorenz
system. Our work demonstrates the utility of RNNs in approximating dynamical sys-
tems from vast behavioral datasets, intentionally leveraging these overparameterized
models to learn underlying dynamical timescales. These approaches offer promising
avenues for disentangling the hierarchical organization of behavioral patterns, char-
acterizing long-timescale physiological states, and understanding neural dynamics
underlying complex behaviors.
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List of Figures

1.1 Various approaches to represent posture. a) Postural representations

(such as joint angles) in fruit flies can be derived from body frame

coordinates tracked using machine learning techniques. [1] b) Left

panel shows tracked variations in a nematode’s (C. elegans) center-

line [2]. Right panel displays postural modes (eigenworms) identified

using principal component analysis. Linear combinations of these com-

ponents can reconstruct the original centerline shapes. c) Using im-

age compression, fly images can be decomposed to identify postural

modes [3]. Corresponding postural eigenvectors (right panel) concen-

trate data’s variance in minimal directions. The original image can

be reconstructed by linearly combining these modes with an overall

mean, and a projection onto these modes generates a postural time

series. Figure adapted from [4]. . . . . . . . . . . . . . . . . . . . . . 6



1.2 Using a markerless deep learning tracking tool [5]. a) Training these

tools requires extracting representative frames from the video dataset.

A region of interest (ROI) can be selected for faster computation.

b) Extracted frames are manually annotated with relevant postural

markers on the body. When occlusions are present, annotations must

be skipped. c) A deep neural network model is trained using man-

ual annotations. Parameters that are updated during training include

the backbone architecture as well as readout layers. Marker-specific

readout layers generate the probability of detection for each annotated

postural marker. d) A trained model can generate frame-by-frame pre-

dictions on video data, generating a postural time series. Figure taken

from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Neural network architecture for LEAP (figure borrowed from [1]). Raw

images enter the system (top left), passing through a series of convo-

lutional, max pooling, and transposed convolutional layers (center).

The network outputs confidence maps matching the input image di-

mensions (top right). During training, these outputs are compared to

ground truth maps derived from user labels (bottom left), and a mean

squared error loss function quantifies the difference, which is minimized

to optimize network performance (bottom right). Arrows indicate data

flow and feedback loops in the training process. . . . . . . . . . . . . 8



1.4 Representing postural dynamics across species (taken from [4]). a)

C. elegans : Histogram of projections onto the first two ”eigenworms”

(from Fig. 1.1b) reveals a structure parameterizable by a single phase

variable ϕ. b) Fitting the dynamics of this variable to a determinis-

tic dynamical system yields this phase map of C. elegans locomotion

(derived from a), forward and backward movements are represented

as wave trajectories, with two fixed points representing pause states.

(a and b adapted from [2]). c) Time-series projections onto eigen-

worms can be used to identify repeated motifs (blue and red curves),

and sequences of motifs can then be used for behavioral representation

(adapted from [6]). d) Alternatively, worm behavior can be described

as a series of discrete postures (from [7]). e) Autoregressive Hidden

Markov Model (AR-HMM) trained on mouse postural data obtained

from a depth-sensing camera and decomposed using ideas similar to

Fig.1.1c. Here, Pt and St represent postural mode values and the un-

derlying state influencing posture dynamics, respectively. Arrows indi-

cate the direction of dependencies amongst variables in the model [8].

f) Phenotypic signatures showing behavior usage frequencies obtained

using e across four mouse genotypes. g) Distinct walking gaits identi-

fied between two different genotypes using behavioral signatures from

f (e-g adapted from [8]). h) Time-frequency analysis of fruit fly move-

ment: Continuous wavelet transform amplitudes for different postural

modes over time. i) 2D embedding of fruit fly movements: Probabil-

ity density map where similar movements cluster together and peaks

representing stereotyped behaviors. j) Behavioral map: Breakdown

of i with manually labeled regions and transition probabilities (black

lines). (h-j adapted from [3, 9]) . . . . . . . . . . . . . . . . . . . . . 12



1.5 Workflow underlying VAME [10] a) Videos were recorded of mice freely

behaving in a circular arena for 25mins from a bottom-up camera. b)

4 paws, nose, and tailbase of mice were tracked using DeepLabCut

[5]. c) Tracked keypoints were ego-centered and aligned along a fixed

direction (facing right). d) 12-dimensional postural trajectories were

used for training the subsequent model. e) The VAME model consists

of bidirectional recurrent neural networks, where the encoder RNN

receives a 500ms trajectory sample and embeds it into a lower dimen-

sional variational latent space. This representation is fed into 2 RNN

decoders, one reconstructing the input data and one predicting the

subsequent 500ms section of the postural time series. f) Latent repre-

sentations are used to train a Hidden Markov Model (HMM) for motif

detection. Figure borrowed from [10]. . . . . . . . . . . . . . . . . . . 16

1.6 State-space reconstruction and ensemble dynamics (figure taken from

[11]). a) From a complex dynamical system (top left), partial observa-

tions are measured and are then used to reconstruct the state space us-

ing delay-embedding (top right). To maximize short-term predictabil-

ity, partitioning is performed in multiple delay-embedded spaces con-

structed with different delay lengths, and unpredictability is measured

through the short-term entropy rate (bottom right). This allows se-

lecting a maximally predictive delay embedded space that reflects the

properties of the original dynamics (bottom left). b) The eigenspectra

of transition operator Pij(τ) at different τ captures multiple charac-

teristic timescales. At appropriate τ ∗, where long-timescale dynamics

are approximately Markovian and the spectral gap is large, the slowest

eigenvector (ϕ∗
2) reveals metastable states of the system (bottom). . . 18



1.7 Reconstructing state-space of an underdamped particle in a double-

well potential (figure borrowed from [11]). Using only the position

of the particle (left), delay-embedded spaces are constructed, and en-

tropy rates are measured (center). Inset shows an increase in entropy

rate with the number of partitions (N) for spaces with different delay

lengths (K). N∗ = 103 is picked to avoid finite-size effects, and K∗

= 7 is chosen beyond which the entropy production rate becomes con-

stant. Particle trajectories can be reconstructed using simulations of

the Markov chain inferred in the previous step. . . . . . . . . . . . . . 19

1.8 a) The characteristic timescale of the time-symmetric transition matrix

P ′
τ estimated from the reconstructed state-space of the underdamped

double well system (left). At short transition timescales τ , transient

dynamics dominate, resulting in large characteristic time scales and

eigenvalues converging close to 1 (left inset). As τ increases, the longest

relaxation time becomes constant at τ ∼ 5 seconds, equal to half the

mean first passage time. The characteristic timescale for double well

dynamics at different temperatures (β−1) predicts the hopping rate

between wells (a, right). b) For β−1 = 0.5J , the first two leading

singular modes of the second leading eigenvector ϕ2 splits the two wells.

Figure taken from [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Example phase averaged gait kinematics. 6 joint angles were measured

from participants walking at variable speeds. Here, phase-averaged

kinematics are shown from one gait cycle. . . . . . . . . . . . . . . . 35



2.2 Training RNN model on kinematics data. A. A sequence-to-sequence

RNN model was trained using kinematic data, where each input to

the model is a sequence of kinematic data, and the model predicts

a sequence of kinematic data shifted by one time step, i.e., the model

predicts kinematics data at t+1 given kinematics at time t. B. A simple

RNN architecture with one hidden LSTM layer with 512 units and 1

dense output layer was used. The input layer and output (dense) layer

had 6 units, corresponding to the dimensionality of kinematics data. C.

The model was trained statefully, where each sample in each mini-batch

was temporally consecutive, resulting in temporal continuity across

batches. The hidden states of the model were not reset after each

batch was processed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



2.3 Identifying gait-signatures from kinematic data. A) Continuous, multi-

joint movement data from multiple individuals are input into a Recur-

rent Neural Network (RNN) model. The model is trained to predict

kinematic output one time step ahead using data from all individ-

uals. Using the trained model, high-dimensional internal states (⃗h

and h⃗) from each individual are extracted from the model. Princi-

pal component analysis is then applied to reduce the data’s dimen-

sionality, forming individual gait signatures. B)(Left) Visualization

of the first 3 principal components of gait signatures from 3 individ-

uals: able-bodied (blue), high-functioning stroke survivor (red), and

low-functioning stroke survivor (orange). B)(Right) 3D projections of

the 6D gait signatures using multi-dimensional scaling (MDS) reveal

different gait dynamics among the three groups. The size of each circle

represents the individual’s walking speed during the trial, with smaller

circles indicating slower speeds and larger circles representing faster

speeds. Figure taken from [12]. . . . . . . . . . . . . . . . . . . . . . 39



2.4 Gait signatures are individual and group-specific. 3D gait signatures

for unimpaired subjects (left) and impaired subjects (right) are color-

coded in two ways: i) by individual and ii) by gait phase. In the

individual-based coloring (i), signatures cluster according to specific

subjects within both groups. For unimpaired subjects (i, left), similar

shades of blue group together, while for impaired subjects (i, right),

similar shades of red form clusters. This grouping indicates that each

person has a unique gait signature. When color-coded by gait phase

(ii), unimpaired gait signatures (ii, left) show a consistent looped struc-

ture across the four phases of a gait cycle: leg 1 swing, leg 1 stance,

leg 2 swing, and leg 2 stance. In contrast, impaired signatures (ii,

right) exhibit subject-specific variations across these four phases and

demonstrate greater overall variability. Figure taken from [12]. . . . . 41

2.5 Comparison of gait signatures between three distinct locomotor sub-

groups: able-bodied (AB), high-functioning stroke survivors (HF), and

low-functioning stroke survivors (LF). 3D gait map created using multi-

dimensional scaling shows the relative spatial relationships between AB

subjects (in blue), HF stroke survivors (in red), and LF stroke survivors

(in orange). LF stroke survivors exhibit less cohesive clustering, occu-

pying unique regions within the map. These regions are notably distant

from the centroid of the able-bodied group, which is represented by a

black square marker. Figure taken from [12]. . . . . . . . . . . . . . . 42



2.6 Biomechanical analysis of gait signatures. A) The gait signatures

demonstrate distinct walking dynamics among representative able-bodied

(AB) individuals, low-functioning, and high-functioning stroke sur-

vivors. B) The weightings of each principal component (PC) fluctuate

throughout the gait cycle. These can be contrasted with the 95% con-

fidence interval of the AB group (shown in gray). C) When used to

drive the gait model, each PC produces specific multi-joint walking

coordination patterns. This enables a biomechanical interpretation of

gait impairments and the effects of interventions. Figure taken from [12]. 43

2.7 Generalizing to new gait speeds. Joint kinematic predictions (shown

in green) for intermediate walking speeds were excluded from model

training. They were generated by first interpolating gait signatures

(hidden-states) obtained from slow (dashed grey) and fast (dashed

black) speed trials and then driving the model with the interpolated

gait signatures to predict kinematics at the intermediate speed. Joint

kinematics interpolated directly from kinematics data (blue) and the

measured reference kinematics (solid black) are also shown. A) For a

representative able-bodied (AB) participant, predictions are more ac-

curate when interpolating gait signatures compared to interpolating

gait kinematics across speeds. B) In a representative low-functioning

stroke survivor, interpolated gait signatures more accurately predict

non-linear changes in kinematics at intermediate speeds than inter-

polated gait kinematics. Simple averaging of kinematics fails in this

case, where larger differences exist between the slow and fast speed

paretic kinematics. The averaged kinematics (blue) follow the fast

speed paretic hip kinematics, while other joint angles do not resemble

waveforms from either the fast or slow speed. Figure taken from [12]. 44



2.8 Visualization of features in a multilayer convolutional neural network

trained on ImageNet 2012 dataset. For layers 2-5, the nine highest

activations in a randomly selected subset of feature maps across the

validation dataset are shown. These activations are projected back

to pixel space using the method described in [13]. Individual feature

maps are highly clustered, and there is increased feature invariance in

higher layers. Layers 4 and 5 show strong activation for distinct image

elements such as canine eyes and noses. Figure taken from [13]. . . . 47

2.9 Behavioral datasets used here. A) Leap Fly Dataset. Postures were

tracked from videos of freely behaving fruit flies (imaged at 100 Hz)

obtained from [3] using LEAP [1]. 32 keypoints on the body of the

fly were tracked. B) OFT Rat Dataset. Freely behaving rats in an

enriched arena were imaged from above at 60 Hz, and 13 postural

markers on the rat were tracked using DeepLabCut [5]. C) Motion

Capture Rats. This dataset is taken from [14], 3D motion tracking of

20 postural markers was performed on rats at 300 Hz using infrared

beads attached. Simultaneous neural recordings from the dorsolateral

striatum (DLS) were also performed. . . . . . . . . . . . . . . . . . . 48



2.10 Level 1 RNN model for generating behavioral representation. (Top)

A 3-layer recurrent neural network with U-Net-inspired architecture

and LSTM units receives the posture of the animal at time t X⃗(t) and

predicts the posture at t+1 X⃗(t+1). (Middle) After training, the entire

postural time series X⃗(t) is fed through the network, and the internal

states from layer 2 y⃗1(t) are extracted containing both h⃗(t) and c⃗(t)

variables of the internal states. (Bottom) y⃗1(t) is used to build a 2D

representation following a pipeline inspired from [3]. Each dimension

in y⃗1(t) is first decomposed into a spectrogram using wavelet transform

and then concatenated together, the high-dimensional representation

is then embedded in 2D (Z1) using t-SNE [15]. . . . . . . . . . . . . . 50

2.11 Power spectral density (left, normalized across layers on right) of ex-

tracted hidden state dynamics from each layer of level 1 RNN model

trained Motion Capture Rat Dataset. . . . . . . . . . . . . . . . . . . 51

2.12 2D representations of each dataset from Fig.2.9 obtained using the level

1 RNN model(Fig.2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.13 Hierarchical RNNs. (Top) Hidden state dynamics y⃗1(t) obtained from

the level 1 RNN model are subsampled by a factor of 2 (Y⃗1(t
′)) and are

used to statefully train a different but identical RNN model (level 2).

After training, hidden states of the level 2 model are extracted y⃗2(t)

and embedded into a 2D representation Z2. This process is repeated

until level 6, after which there is not enough data left to train the

subsequent model due to subsampling. . . . . . . . . . . . . . . . . . 53

2.14 Power spectral density (normalized) of hidden state dynamics y⃗1(t)

to y⃗6(t) obtained from models from each level trained on the Motion

Captured Rats dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 54



2.15 2D representations obtained using RNN models (levels 1 to 6) for

LEAP Fly Dataset (left), Open Field Rat dataset (middle), and Mo-

tion Capture Rats dataset (right). Representations show coarsening at

deeper levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.16 (Top) Using the 2D representation from level 1 (Z1) for Motion Capture

Rat dataset, Deterministic Information Bottleneck [16] (DIB) is used

to minimize F , identifying a minimally complex partitioning of Z1 (for

a fixed number of partitions) while preserving information between the

partitions and spiking data from a neural unit i. (Bottom) Pareto front

obtained during DIB optimization, optimal solutions lie in the direction

indicated by the arrow indicating low complexity of partitioning while

maximizing the encoded information. . . . . . . . . . . . . . . . . . . 57

2.17 (Continuation of Fig.2.16) Pareto curves obtained while partitioning

level 1 representation from Motion Capture Rats while encoding a spike

train from each neural unit. For each unit, the maximum possible

information encoded (Imax) is measured. . . . . . . . . . . . . . . . . 58

2.18 Pareto fronts curves obtained for each unit at each level of represen-

tation (Z1 to Z6 from Motion Capture Rats. Unit a (solid) and b

(dashed) lines represent two units with statistically significant infor-

mation encoding in level 1 (in case or unit a) and level 6 (for unit

b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.19 (Left) Given a behavioral representation (p(B)), a conditional repre-

sentation is calculated for when unit a is spiking (p(B|A)). (Right)

Conditional representation of behavior when spiking occurs in unit a

(top) and unit b (bottom). Unit a shows a punctate representation

in level 1 (thus high information encoding). Similarly, unit b shows a

clustered representation in level 6. . . . . . . . . . . . . . . . . . . . . 59



3.1 Unveiling sex-specific behaviors through unsupervised behavioral rep-

resentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Stress alters behavioral profiles in female mice from active to inac-

tive behaviors. A. Mice were exposed to either a chronic (21-day) or

subchronic (6d) variable stress before being tested in the OFT. B,C

Time spent in the center of open field, a field-standard metric for as-

sessing response to stress. SCVS females show less time spent in the

center, while CVS females show no difference compared to the control

animals. D,E. Sub-chronic stressed females show upregulation of male-

typical less active behaviors like still nose sweeps, idling, and rearing

in female mice, whereas control animals show upregulation of active

behaviors like walking and running and controls show upregulation of

female-typical active behaviors. F. Logistic regression coefficients show

less active behaviors like still nose sweeps, idling, and pause and runs

as more predictive of sub-chronic stress, and active behaviors like run,

pause and run, walk and rear are more predictive of control condition.

G,H. Chronic stressed female mice also show upregulation of less active

behaviors but distinctly upregulated in walking and rearing behaviors,

while controls show upregulation in active as well as inactive behav-

iors like running, idling, and still nose sweeps. I. Logistic regression

coefficients show still and reared nose sweep behaviors to have strong

predictive power for CVS females, and running, intermittent running,

and still nose sweep behaviors to be predictive of control females. . . 72



3.3 Chronic and sub-chronic stress changes male mice behaviors differen-

tially. A. Control males show upregulation of male-typical less active

behaviors like nose sweeps, idling, and grooming. B. SCVS male mice

show upregulation of active behaviors like walking, intermittent run-

ning, and running. C. No SCVS-dependent differences were observed

in time in the center of the open field for males. D,E. Chronically

stressed male mice also show upregulation of some active behaviors

like intermittent running compared to controls but retain male-typical

less-active behaviors like still nose sweeps. F. CVS males spend less

time in the center of OFT. G. Logistic regression coefficients show

active behaviors like intermittent running and running as more pre-

dictive of SCVS males and less active behaviors like idle, nose sweeps,

and rearing to be more predictive of controls. H. For CVS males, in-

termittent running and still nose sweeps are more predictive, whereas

rearing, walk and rear, still nose sweeps, and intermittent running are

more predictive of the control condition. . . . . . . . . . . . . . . . . 74



3.4 Chemogenetic activation of susceptibility circuit drives similar upreg-

ulations in both sexes. A. Mice were injected with a retrograding

AAV-cre into the NAc and a cre-dependent excitatory DREADD into

the vHIP to target NAc projecting vHIP cells. C21 injection was given

30 minutes before the OFT to activate the projections. B. Logistic

regression coefficients for pairwise classification of behavioral cluster

densities from control males and females. C. Behavioral upregula-

tion in control females following CNO administration. D. Behavioral

upregulation in DREADD-injected females post-CNO administration.

E. Logistic regression coefficients showing sex-specific and treatment-

dependent behavioral predictors in female subjects. Positive values

indicate DREADD-associated behaviors, while negative values repre-

sent control-associated behaviors. F. Behavioral upregulation in con-

trol males following CNO administration. G. Behavioral upregulation

in DREADD-injected males post-CNO administration. H. Logistic re-

gression coefficients showing sex-specific and treatment-dependent be-

havioral predictors in male subjects. . . . . . . . . . . . . . . . . . . . 76

4.1 Reconstructing the state=space of Lorenz attractor. A) 2D projection

of the standard Lorenz system with σ = 10, ρ = 28 and δ = 8/3,

showing 2 attractor states. Only x(t) is measured from the system

(partial observation). B) (Inset) Entropy rate (h(N,K)) as a function

of N (number of partitions) and K (delay length) of transition dynamics

in the reconstructed state-space. h(N,K) saturates after N∗ = 3162,

indicating maximum predictability. The entropy rate stops changing

after K∗=12, indicating saturation of predictive information. Figure

taken from [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



4.2 a) Relaxation timescales vs. transition time (τ) of the inferred tran-

sition operator in delay embedded state-space of the Lorenz system.

Transient dynamics (within a partition) contribute to the initial peak in

relaxation times after which they settle to near-constant value. Beyond

this regime, the relaxation times are driven by the quasi-periodicity of

the Lorenz attractor. B) The first non-trivial eigenvector ϕ2 projected

onto the first 2 SVD modes of the delay-embedded space. The phase

space is split into two metastable states by ϕ2. Figure taken from [11]. 85

4.3 Modified Lorenz attractor. a) Particle in a double well potential (left)

is simulated and positions (h(t)) are extracted (right). b) Mean escape

time of the particle as a function of inverse temperature β. c) Modified

Lorenz attractor equations. Only ˙⃗x is modified, where parameter σ is

scaled based on the position of the particle in double well potential. γ

determines the strength of scaling, σ = 10, ρ = 28 and δ = 8/3 are

Lorenz attractor parameters. . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Sample trajectories from modified Lorenz system for 4 pairs of (γ, β)

values, where γ determines the extent of scaling of σ parameter and β

is the inverse temperature for the particle in the double well. As the

particle shifts from left to right well, sigma values modulate between

σ1 and σ2 values (calculated at the center of the wells). Trajectories

are colored red when the particle is in the left well and blue for the

right well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Entropy rate for the modified Lorenz system with (γ,β) = (1,0.40).

Here we choose N∗=2512 and K∗=6. . . . . . . . . . . . . . . . . . . 89

4.6 Characteristic timescales for the system with various values of β and γ

with (right) and without (left) making the transition matrix reversible

at a transition timescale of τ ∗=0.10 s. . . . . . . . . . . . . . . . . . . 90



4.7 First five non-trivial eigenvectors of the delay-embedded modified Lorenz

system (similar to Fig.4.2B) for various values of γ and β = 0.40. . . 91

4.8 Mutual Information between the leading non-trivial eigenvector ϕ2 and

partitioned delay embedded space (KNN)(left), between the position

of the particle in left or right well and KNN (center), and between the

position of the particle in the well and ϕ2. . . . . . . . . . . . . . . . 91

4.9 Encoder-Decoder RNN Model. Temporal segments of length (L) are

used to drive an encoder Recurrent Neural Network model, generating

a final hidden state h1(L). A decoder RNN model uses h1(L) as its

initial state and is driven without any input to reconstruct the temporal

segment input into the encoder RNN. Concurrent temporal segments

are used during training for statefulness. . . . . . . . . . . . . . . . . 92

4.10 3D UMAP[17] projections of hidden states extracted from trained en-

coder model in Figure 4.9. Here 3 different models were trained for

each (γ, β) pair and hidden states were extracted as each model is

driven with time series from each system. . . . . . . . . . . . . . . . . 94

4.11 Level 2 model. We train another encoder-decoder RNN model (inspired

from Section 2.5.3 using hidden states extracted from the previous

model. We follow the same training style as before, training the model

statefully. After training, hidden states h2(t) were extracted using h1(t). 95

4.12 3D UMAP[17] projections of hidden states extracted from level 2 en-

coder model from Figure 4.11. Here 3 different models were trained

for each (γ, β) pair using corresponding h1(t) and hidden states h2(t)

were extracted as each model is driven with h1(t). . . . . . . . . . . . 96



xxi

List of Tables

3.1 Experimental design. Table showing different experimental groups,

stress conditions for each experiment, and the number of animals from

each sex in each experiment. . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Logistic regression parameters. Logistic regression parameters

used to train pairwise classifiers between class 1 and class 2. All clas-

sifiers shared the following parameter values other than L1 strength:

penalty=l1, dual=False, tol=0.0001, fit intercept=True, intercept scal-

ing=1, class weight=balanced, solver=saga. . . . . . . . . . . . . . . 81



xxii

List of Algorithms

1 Stateful RNN Training Epoch . . . . . . . . . . . . . . . . . . . . . . . 31



1

Chapter 1

Introduction

Despite the presence of conceptual frameworks to study behavior in the current litera-

ture, it remains a challenge to measure and quantify behavior across the wide range of

spatio-temporal scales it spans. This difficulty often arises from a difficulty in defining

behavior, which remains subjective across scientific fields [18, 19, 20]. In current lit-

erature, behavior is defined and studied across a wide range of spatiotemporal scales,

from fast muscle twitches occurring over milliseconds to physiological responses such

as sweating and salivating that span multiple seconds, and from complex sequences

of postural actions that symbolize behaviors like courtship [21] to longer timescale

internal processes such as hunger [22] and migration [4].

Advances in technology have allowed measuring some of these paradigms pragmat-

ically and accurately. For example, we have the ability to attach electrodes to specific

muscles and detect precise electrical activity associated with each muscle contraction

[23] while simultaneously recording ultrasound data, allowing us to correlate electri-

cal activity with physical movement of a muscle [24]. Similarly, thermal cameras [25]

and skin conductance [26] measurements can be used to detect thermoregulatory pro-

cesses like sweating. Moreover, the last two decades saw unprecedented advances in

image processing, computing, and machine learning that have resulted in significant
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progress in our ability to measure animal postures extremely precisely during exper-

iments [27, 1], as well as building statistical [8, 28] or dynamical characterizations

[2, 3] of stereotyped postural movements. However, many of the currently available

methods focus on modeling postural dynamics, and the intricate interplay between

short-term actions and long-term behavioral states still remains unknown. That is,

we currently do not have the ability to quantify long-timescale states like hunger cy-

cles, circadian rhythms, and aging. We need a theoretical framework that can bridge

these disparate temporal scales while accounting for inter- and intra-individual vari-

ability, as well as other genetic, environmental, and physiological factors, all without

any deterministic and empirical measures of these long-timescale states.

Overcoming this limitation can help us better understand adaptive behavioral

strategies over the lifetime of an animal, the evolution and genetic predispositions of

behaviors, internal metabolic processes, and the neural processing of motor control

and decision-making. A coarsened understanding of behavior will also likely reveal

different phenomena and inspire new theories of behavior [29, 30]. In this disserta-

tion, I focus on developing methods to identify and measure the internal dynamics

governing temporal structures and patterns in behaviors that are not directly ob-

servable, explicitly focusing on dynamics happening far beyond the typical postural

timescales. I begin this chapter by briefly discussing the history of the field of ethol-

ogy and its rise as a quantitative discipline. I then discuss technical advancements

in the field of postural measurement and methods that build statistical and dynamic

representations of postural movements. Subsequently, I will discuss the limitations

and shortcomings of current behavioral mapping approaches in discovering longer

timescale dynamics and discuss the merits of recently published ideas on data-based

state-space reconstruction of dynamical systems.
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1.1 A brief history of ethology

Ethology is the study of animal behavior in naturalistic environments. Behavior is a

result of hierarchical state-dependent computations in the brain. That is, it depends

on interactions between internal states, external inputs, and multiple levels of neural

dynamics across various timescales. [31, 32, 33, 34]. Measuring behavior in addition

to neural activity in the brain is essential to understanding the functional context of

neural processing [35, 36]. However, measuring behavior is difficult, and the quest

to understand and define behavior has captivated thinkers and philosophers for ages.

Notably, Aristotle [37] observed and described behavioral phases in organisms such as

reproduction, migration, and hibernation. His student, Theophrastus, later studied

[38] physiological color changes (metachrosis) in chameleons and octopuses, noting

differentiated internal states of metachrosis, particularly fear in chameleons versus

foraging in octopuses [39].

In the modern age, the study of physiological phenomena driven by the envi-

ronment has been brought to new light, particularly with a focus on quantitative

approaches to measure animal behavior. In the late 19th and early 20th centuries,

Ivan Pavlov’s groundbreaking study on measuring physiological responses in dogs to

external stimuli inspired the beginning of quantitative ethology [40]. Pavlov’s interest

resided in understanding the interplay of conditioned vs. unconditioned reflexes and

sought to understand the behavioral reflexes of dogs in response to external stimuli.

He studied how the salivary glands in canines responded to food, a well-known un-

conditioned response. In his experiments, trained dogs were able to pair novel neutral

stimuli such as visual, auditory, or olfactory cues with food, turning them into con-

ditioned stimuli that generated salivary reflexes. However, these conditioned reflexes

were found to weaken if not repeated without reinforcement. He showed how lost

reflexes can quickly be restored if paired unconditioned stimulus is presented to dogs.

Moreover, a temporal delay of up to 2 minutes between stimuli did not affect condi-



4

tioning; however, there is a failure in conditioning if the delay is more than 3 minutes.

The dogs also developed an ability to distinguish between similar conditioned stimuli

(such as musical notes and timbre) and sensitivity to intensity and complexity stimuli

(e.g. musical chords). [40].

Later in the 1930s, Konrad Lorenz and his student Nikolaas Tinbergen proposed

new directions in ethology, focusing on studying a full range of animal behavior in

naturalistic environments. Lorenz proposed a dichotomous separation in behavior,

particularly between rigid innate behaviors that develop independently of the ani-

mal’s experience and its environment and learned behaviors that are acquired during

ontogenic development. Lorenz hypothesized the stereotypy in instinctive behaviors

is driven by coordination centers in the central nervous systems and that environment

stimuli and inner drive force animals to perform these innate behaviors. [41, 42]. He

gave the example of egg retrieval behavior in Greylag geese, where geese move closer

to the egg and maneuver the egg back into the nest using a stereotyped sequence of

actions. When exploring learned behaviors, Lorenz focused on imprinting in young an-

imals across species and showed that this imprinting occurred across multiple senses.

Famously, he showed how Greylag goslings, when hatched in his presence, would fol-

low and imitate him, as they would imitate the behaviors of their mother. He noted

imprinting as a form of irreversible innate learning, occurring during a temporary

window of time where young animals are very receptive to stimuli around them. Tin-

bergen progressed Lorenz’s ideas forward, emphasizing on conceptual frameworks to

study behavior in naturalistic environments [43]. He proposed the following four aims

of ethology -

• Causation: physiological and neurological causes of behavior.

• Development: non-stationarity in behavior as a result of ontogeny (growth and

development)
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• Function: survival and success of the animal in the environment.

• Evolution: the evolutionary history of behavior across species.

Tinbergen supported his proposal with observations and experiments with various

species of fish and birds. Notably, he presented gull chicks with a cardboard replica

of adult gull heads. Some of these replicas had red spots on them (as present on real

adult gulls while some did not have the red spots. He discovered that young chicks

prefer pecking at adult replicas with red spots. Baby chicks were exhibiting feeding

behavior [32]. He also observed and quantified eggshell removal behavior in black-

headed gulls and the development of red coloring on the belly of Stickleback fish.

These were a step forward in meaningfully quantifying behavior in animals. Other

examples of substantial contributions to ethology in the 20th century include Karl von

Frisch’s experiments with honeybees. He discovered the presence of color perception

in bees and, most notably, observed the use of “waggle dance” by honeybees for social

communication [44]. For their fundamental contributions to the field of ethology,

Lorenz, Tinbergen, and von Frisch were jointly awarded the Nobel Prize in Physiology

or Medicine in 1973.

1.2 Tracking Posture

Once the behavior of interest is identified, a quantitative framework is needed to

measure that behavior. Recent progress in deep-learning techniques has allowed for

the high-throughput measurement of animal posture, and current tools allow the

identification of stereotypical postural movements in animals and the identification of

low-dimensional sub-spaces that describe behavioral dynamics over short timescales.

The first step in modeling postural dynamics is to quantify the posture (or pose)

of animals. Early tools like Ethovision [45], introduced in 1993, use simple image

processing algorithms to monitor and track movements of animals in video files over
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Figure 1.1: Various approaches to represent posture. a) Postural representations
(such as joint angles) in fruit flies can be derived from body frame coordinates tracked
using machine learning techniques. [1] b) Left panel shows tracked variations in a
nematode’s (C. elegans) centerline [2]. Right panel displays postural modes (eigen-
worms) identified using principal component analysis. Linear combinations of these
components can reconstruct the original centerline shapes. c) Using image compres-
sion, fly images can be decomposed to identify postural modes [3]. Corresponding
postural eigenvectors (right panel) concentrate data’s variance in minimal directions.
The original image can be reconstructed by linearly combining these modes with an
overall mean, and a projection onto these modes generates a postural time series.
Figure adapted from [4].

long durations, providing mobility measures such as distance traveled, 2-dimensional

movement speed, and movement duration. Applications of behavioral measures from

Ethovision include the analysis of motor deficits in aging monkeys [46], measuring

fear-related immobility in mice [47], and quantifying opioid withdrawal in rat pups

[48]. Stephens et al. [2] use image processing to go beyond kinematic descriptions

and develop a dynamical description of worm posture during locomotion. They image

and process freely moving worms using tracking microscopy, obtaining a single-pixel

backbone of the worm. By applying a spline fit to this backbone, they measure

tangential angles along the curvature to characterize the posture of worms in each

frame(Fig1.1B).

More recently, deep learning methods have significantly simplified pose estimation

in video data. A major breakthrough in deep learning was AlexNet [49], a convolu-

tional neural network with 8 layers that gained prominence after winning a state-of-

the-art object detection challenge. Its success catalyzed the adoption of convolutional
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Figure 1.2: Using a markerless deep learning tracking tool [5]. a) Training these tools
requires extracting representative frames from the video dataset. A region of inter-
est (ROI) can be selected for faster computation. b) Extracted frames are manually
annotated with relevant postural markers on the body. When occlusions are present,
annotations must be skipped. c) A deep neural network model is trained using man-
ual annotations. Parameters that are updated during training include the backbone
architecture as well as readout layers. Marker-specific readout layers generate the
probability of detection for each annotated postural marker. d) A trained model can
generate frame-by-frame predictions on video data, generating a postural time series.
Figure taken from [5].
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Figure 1.3: Neural network architecture for LEAP (figure borrowed from [1]). Raw
images enter the system (top left), passing through a series of convolutional, max
pooling, and transposed convolutional layers (center). The network outputs confi-
dence maps matching the input image dimensions (top right). During training, these
outputs are compared to ground truth maps derived from user labels (bottom left),
and a mean squared error loss function quantifies the difference, which is minimized
to optimize network performance (bottom right). Arrows indicate data flow and feed-
back loops in the training process.
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layers in deep learning models, transforming the field of computer vision. Later on,

enabled by hardware advancements, much deeper architectures like ResNets [50] were

developed with hundreds of convolutional layers. A key innovation in ResNet was the

use of skip connections that bypass one or more layers, allowing gradients to flow

through the deeper architecture without vanishing. Another big idea in the era of

deep learning has been transfer learning, where a foundational model trained on a

large dataset (such as AlexNet) is used, and a few later layers (closer to the output)

are modified and trained to adapt to a new task while retaining the architecture

and weights from the foundational model for other layers. Human pose estimation

models like DeeperCut [51] leveraged both ideas – using a ResNet architecture as its

backbone and employing transfer learning for training later layers of the pre-trained

deep learning models using annotated data of human pose from a small training set.

Soon after, these ideas were adapted for scientific use by tools like DeepLabCut [5]

and LEAP [1]. DeepLabCut extends the usability of DeeperCut, allowing an easy

interface for training models for pose estimation on videos of single animals taken

in a lab setting, as well as providing the option for other smaller architectures for

training (Figure 1.2). LEAP uses stacked hourglass convolutional networks – another

class of networks popular for human pose estimation (Figure 1.3).

Since the development of DeepLabCut and LEAP, many improvements and ad-

vancements have been made for human and animal pose estimation, and subsequently

these new tools, including updated versions of DeepLabCut and LEAP, have emerged

for tracking animal pose. More importantly, many methods extend these ideas for

the problem of tracking posture in 3D, either by utilizing multiple camera angles

[52, 14, 53, 54], learning the skeletal structure of animals [55] or recording pose using

depth sensing cameras [8]. When multiple animals are present in a video frame (e.g.,

when studying social behavior), tracking the pose of each animal across time becomes

challenging as there are three steps required - 1). Identifying the presence of multiple
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animals in the frame, 2). Tracking poses for each identified animal 3). Maintaining

identities of individuals over time (video frames). Recent tools have come close to

bridging the gap between single and multi-animal posture tracking, addressing these

challenges with varied approaches. However, while 1 and 2 are technically straightfor-

ward to address, 3 becomes challenging especially when physical or visual identifiers

are absent or when animals cross over each other, masking each other in the camera

view. Multiple deep learning tools now allow pose-estimation of multiple animals in

a frame, either by detecting pose and identity using a single deep learning model [56]

or employing separate multi-step processes to detect identity and estimate pose, some

providing the ability to switch the order of steps [57].

Despite access to many morphological degrees of freedom, postural dynamics are

highly correlated, and studies have found lower-dimensional representations that cap-

ture these stereotypes in animals [2, 3]. Hence, when tracking posture, one choice

the user needs to make is which posture-relevant locations (keypoints) to track on

the body of the animal. B-KinD [58] is a self-supervised method that addresses this

issue, identifying meaningful keypoints from behavioral videos. Specifically, it forces

the learned key points to have predictive information over time, and this is shown to

encourage the selection of consistent and semantically meaningful key points. How-

ever, like pose detection algorithms, some limitations apply to this method as well -

such as tracking errors during occlusions of the animal’s body (by itself or by a cable),

tracking jumps between laterally symmetric keypoints, and difficulties when animals

rotate along an axis parallel to the imaged plane.

1.3 Postural Dynamics

Access to these pose estimation tools has largely discounted the cost of acquiring

high throughput behavioral data over long timescales, even up to multiple weeks
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[59]. This is unprecedented, and there is a need for phenomenological modeling of

behavior over very long timescales. To build a representation of behavioral dynamics

from posture, we must think in terms of characterizing and quantifying movements

rather than postural snapshots. To that extent, a primary early goal in this direction

is identifying stereotypical postural dynamics.

Current methods take varied approaches to this end. One popular direction is

taking a supervised approach, where a machine learning model is trained to do frame-

by-frame classification of postural data, sometimes appending additional position,

locomotion, and social features to postural data. These models are usually trained

using training datasets annotated by behavioral experts, and sometimes annotations

are pooled from multiple annotators to reduce bias in the training set [60, 61, 28, 62].

However, there are significant limitations when using supervised approaches for

behavioral classification. A primary concern is the presence of human bias when

labeling training data with behavioral annotations, where the annotator can not a

priori know the full spectrum of behavior variability. It is also possible that not

all postural actions are interpretable by humans, and we may innocently anthropo-

morphize other actions. Moreover, some tools generate behavioral classification using

data from a single frame, imposing a short behavioral timescale. Behavioral dynamics

are also non-stationary, and a supervised model may not be able to capture the rich

complexity and repertoire of behaviors recorded in a large dataset.

A contrary approach is using unsupervised methods for discovering a represen-

tation and repertoire of behaviors from the postural time series of an animal. We

discuss some of these methods below, and while some methods predate the conve-

nience of large-scale pose estimation tools and use image processing techniques to

capture coarser measures of animal pose dynamics, these methods are also largely

applicable to postural time series data with additional data-specific pre-processing.

MoSeq [8] is developed to quantify and characterize movement patterns in freely
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Figure 1.4: Representing postural dynamics across species (taken from [4]). a) C.
elegans : Histogram of projections onto the first two ”eigenworms” (from Fig. 1.1b)
reveals a structure parameterizable by a single phase variable ϕ. b) Fitting the dy-
namics of this variable to a deterministic dynamical system yields this phase map
of C. elegans locomotion (derived from a), forward and backward movements are
represented as wave trajectories, with two fixed points representing pause states. (a
and b adapted from [2]). c) Time-series projections onto eigenworms can be used
to identify repeated motifs (blue and red curves), and sequences of motifs can then
be used for behavioral representation (adapted from [6]). d) Alternatively, worm be-
havior can be described as a series of discrete postures (from [7]). e) Autoregressive
Hidden Markov Model (AR-HMM) trained on mouse postural data obtained from
a depth-sensing camera and decomposed using ideas similar to Fig.1.1c. Here, Pt

and St represent postural mode values and the underlying state influencing posture
dynamics, respectively. Arrows indicate the direction of dependencies amongst vari-
ables in the model [8]. f) Phenotypic signatures showing behavior usage frequencies
obtained using e across four mouse genotypes. g) Distinct walking gaits identified be-
tween two different genotypes using behavioral signatures from f (e-g adapted from
[8]). h) Time-frequency analysis of fruit fly movement: Continuous wavelet trans-
form amplitudes for different postural modes over time. i) 2D embedding of fruit fly
movements: Probability density map where similar movements cluster together and
peaks representing stereotyped behaviors. j) Behavioral map: Breakdown of i with
manually labeled regions and transition probabilities (black lines). (h-j adapted from
[3, 9])
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behaving mice, originally applied to 3D data obtained from depth-sensing cameras.

Its core framework is an autoregressive hidden Markov (AR-HMM) model(Fig.1.4e-

g), which is trained on postural data to identify stereotyped movement syllables.

AR-HMM models behave as discrete dynamical models where each discrete state

corresponds to a locally linear dynamical system with a characteristic timescale chosen

from an explicitly chosen exponential distribution of timescales. Moseq successfully

manages to identify about 50-100 discrete syllables of mouse behavior that persist

for 300-600 milliseconds. However, several limitations apply to this approach. First,

the process of discretization of behavioral motifs into finite states loses important

variability at the motif scale. Also, the number of HMM states, optimized using

Bayesian model selection, can dictate a false limit to the repertoire of behaviors

available to the animal. Second, the persistent timescale of HMM states is required

to be explicitly set by the user, limiting the timescale of each behavioral state. This

requires a priori information about the behavioral timescale that typically spans

multiple orders of magnitude [63, 9].

A complementary approach is a method known as MotionMapper [3]. Here, the

authors decomposed images of freely behaving fruit flies into a lower-dimensional pos-

tural representation that captures maximal variance using radon transformation and

PCA. Then, postural movements are identified using a continuous wavelet transform,

obtaining power at dyadically spaced range of frequencies for each postural dimension.

This results in a very high-dimensional spectral representation at each time t, which

is embedded into a 2-dimensional representation using dimensionality reduction algo-

rithms. This representation is shown to identify and cluster a variety of stereotyped

behaviors such as wing movements, locomotion gaits, grooming, and idle(Fig.1.4h-j).

Here, decomposition of postural data into a spectral representation allows capturing

dynamics across a range of timescales, however, these timescales need to be manually

selected by the user. Moreover, spectral decomposition is highly sensitive to input
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postural measurements, and variations in stereotyped behaviors and measurement

noise can highly affect the resulting representation.

While unsupervised discovery of behavioral motifs can address several limitations

found in supervised methods, these still have some limitations of their own, either in

the form of computational intractability on large datasets, or the need for hand-tuning

of parameters that fundamentally limit the behavioral timescale being resolved. A

favorable solution to this limitation is to build dynamical models of behavioral data,

as these can learn and capture the wide range of timescales that generate behavior.

A notable approach for generating dynamical representations of behavior without

explicitly setting a timescale is proposed by Stephens et al [2]. Here, they imaged

freely moving worms using tracking microscopy and obtained a single-pixel backbone

of the worm using image processing. They fit a spline to this backbone, measuring

100 tangential angles along the pixel backbone curvature characterizing worm pose in

each frame, and found a low dimensional (4-D) subspace that captured 95% variance

in worm pose during locomotion. They observe emergent oscillatory dynamics along

the 2 leading eigenmodes corresponding to forward or backwards locomotion, and

the phase velocity along this manifold is found to predict the physical velocity of

the worm(Fig.1.4a-d). Unlike former approaches, they model the phase dynamics of

the worm during locomotion as a stochastic dynamical system and find metastable

behavioral states corresponding to forward crawling, backwards crawling, and pauses,

with noise-induced transitions between these states.

Building such dynamical models from postural time series data is extremely useful,

as they naturally represent temporal continuity and allow smooth trajectories through

learned internal phase space. Dynamical models are also generative by design and can

be simulated to generate new trajectories that may be experimentally unobservable.

For continuous dynamical systems, models trained on data can infer low-dimensional

manifold structures such as attractors and can be used to study state-dependent
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transitions and bifurcations.

Recurrent Neural Networks are deep-learning models that can behave as dynam-

ical models and are introduced in more detail in Chapter 2. VAME [10], a recent

deep-learning framework, uses bidirectional Recurrent Neural Networks (RNNs) to

encode snippets (500ms) of postural time series into a low-dimensional variational

latent space (Fig.1.5). It then uses a Hidden Markov Model (HMM) to infer hidden

states in the low dimensional latent space thus learning behavioral motifs. How-

ever, in this method, a fixed sequence length is encoded using RNNs, restricting the

temporal scale that the model is able to learn to encode.

1.4 Takens’ Embedding Theorem and ensemble meth-

ods for state-space reconstruction

Real-world complex systems often involve a large number of interacting components,

interactions among which often lead to emergent dynamics and disparate spatio-

temporal scales that we observe. However, when measuring from such systems, we

may not be able to observe all dynamically relevant variables necessary to recon-

struct the entire state-space of the system. For example, in the basic Lotka-Volterra

model, prey and predator population dynamics follow a pair of first-order nonlinear

differential equations

dx

dt
= αx− βxy (1.1)

dy

dt
= δxy − γy (1.2)

where (x) is the prey population and (y) is the predator population. If we attempt to

reconstruct these dynamics from only the predator population, we will be unable to

reconstruct the 2-dimensional phase space, losing important information about the
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Figure 1.5: Workflow underlying VAME [10] a) Videos were recorded of mice freely
behaving in a circular arena for 25mins from a bottom-up camera. b) 4 paws, nose,
and tailbase of mice were tracked using DeepLabCut [5]. c) Tracked keypoints were
ego-centered and aligned along a fixed direction (facing right). d) 12-dimensional
postural trajectories were used for training the subsequent model. e) The VAME
model consists of bidirectional recurrent neural networks, where the encoder RNN
receives a 500ms trajectory sample and embeds it into a lower dimensional variational
latent space. This representation is fed into 2 RNN decoders, one reconstructing the
input data and one predicting the subsequent 500ms section of the postural time
series. f) Latent representations are used to train a Hidden Markov Model (HMM)
for motif detection. Figure borrowed from [10].
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trajectories and steady states of this system.

Takens’ embedding theorem, proposed by Floris Takens in 1981 [64], provides

a robust framework that can reconstruct the topological structure of phase spaces

without observing all state variables of the system. Consider the case where only a

single variable x(t) is observed from the system. Takens’ embedding theorem states

we first create a delay vector x̂(t) from x(t) such that

x̂(t) = x(t), x(t− τ), x(t− 2τ), . . . , x(t− (K − 1)τ), (1.3)

where τ is a chosen time delay and d is the embedding dimension. Takens proved

that if K is sufficiently large (specifically more than twice the dimension of the orig-

inal system), the delay vectors x̂(t) form an embedding of the original phase space

that is topologically equivalent to the original phase space, preserving the dynamical

properties of the original system.

Recently, these ideas were extended to discover long-timescale structures from

partially observed dynamics by Costa et al in a series of publications [30, 11, 65].

Specifically, their goal is to reconstruct the dynamics of a system of differential equa-

tions ˙̄x = f(x̄) where x̄ is the unobserved state of the system. The partially observed

time-series data is then denoted by ȳ = M(x̄(t), which will have non-Markovian

dynamics due to the underlying long-timescale dynamical structure that remains un-

observed. To reconstruct the state space from ȳ, authors use delay embedding with

varying delay lengths K, obtaining candidate state-space reconstructions (Fig.1.6a

top).

To search for a maximally Markovian state-space from data, they analyze ensemble

dynamics in this reconstructed space. Specifically, high-dimensional space spanned

by ȳ is partitioned into N Voronoi cells using clustering algorithms, and a transition

matrix Pτ at timescale τ is then estimated from the transitions observed between
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Figure 1.6: State-space reconstruction and ensemble dynamics (figure taken from
[11]). a) From a complex dynamical system (top left), partial observations are mea-
sured and are then used to reconstruct the state space using delay-embedding (top
right). To maximize short-term predictability, partitioning is performed in multiple
delay-embedded spaces constructed with different delay lengths, and unpredictability
is measured through the short-term entropy rate (bottom right). This allows select-
ing a maximally predictive delay embedded space that reflects the properties of the
original dynamics (bottom left). b) The eigenspectra of transition operator Pij(τ)
at different τ captures multiple characteristic timescales. At appropriate τ ∗, where
long-timescale dynamics are approximately Markovian and the spectral gap is large,
the slowest eigenvector (ϕ∗

2) reveals metastable states of the system (bottom).
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Figure 1.7: Reconstructing state-space of an underdamped particle in a double-well
potential (figure borrowed from [11]). Using only the position of the particle (left),
delay-embedded spaces are constructed, and entropy rates are measured (center).
Inset shows an increase in entropy rate with the number of partitions (N) for spaces
with different delay lengths (K). N∗ = 103 is picked to avoid finite-size effects, and K∗

= 7 is chosen beyond which the entropy production rate becomes constant. Particle
trajectories can be reconstructed using simulations of the Markov chain inferred in
the previous step.

these cells. This creates a dynamical representation of the reconstructed structure,

however, these dynamics may not be strictly Markovian and close to the true state-

space description of the system (Fig.1.6a bottom). To test this, authors vary K

and N , measuring the Kolmogorov-Sinai (KS) entropy hPN,τ
(K) = −

∑
ij πiPijlogPij

where π is the stationary distribution of Pτ . KS entropy is a fundamental measure of

compressibility of a dynamical system, and measures the degree of unpredictability

in the dynamics.

Once a maximally predictive state-space is reconstructed, spectral properties of a

time-symmetric transition operator P ′
τ = (Pτ + P †

τ )/2 are analyzed. Specifically, the

largest non-trivial eigenvalue λ2 of P ′
τ determines the longest relaxation timescales

of the inferred dynamics (Fig.1.7), and the corresponding eigenvectors ϕ2 determines

the directions of slow relaxation in the state space (Fig.1.8).
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Figure 1.8: a) The characteristic timescale of the time-symmetric transition matrix P ′
τ

estimated from the reconstructed state-space of the underdamped double well system
(left). At short transition timescales τ , transient dynamics dominate, resulting in
large characteristic time scales and eigenvalues converging close to 1 (left inset). As τ
increases, the longest relaxation time becomes constant at τ ∼ 5 seconds, equal to half
the mean first passage time. The characteristic timescale for double well dynamics
at different temperatures (β−1) predicts the hopping rate between wells (a, right). b)
For β−1 = 0.5J , the first two leading singular modes of the second leading eigenvector
ϕ2 splits the two wells. Figure taken from [11].

1.5 Thesis Outline

The objective of this dissertation is to formulate and develop tools and methodologies

to identify long-timescale structures within behavioral dynamics. I have developed

computational approaches that utilize the large time series data available from the

postural tracking of animals. Specifically, I focus on utilizing the dynamical nature of

Recurrent Neural Networks (RNNs), and employ them not just for predictive learning

of postural dynamics, but also utilizing their internal representations to learn the

dynamics encoded in temporal data.

In Chapter 2, I introduce RNNs and their ability to model dynamical systems.

I introduce a novel tool based on RNNs designed to learn dynamical models from

data. I apply this tool to gait data from humans and show its ability to generate gait

signatures that quantify properties of gait cycles in human subjects. Subsequently, I

develop novel RNN architectures for creating dynamical representations of behavior

at multiple timescales and discuss its potential applications.
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In Chapter 3, I highlight my contribution to extending an existing method to gen-

erate behavioral representations of freely behaving mice. I use these representations

across a cohort of mice with and without exposure to stress and identify sex-specific

behavioral signatures in mice exposed to acute and chronic stress.

In Chapter 4, I investigate the limits of a recently published method where authors

reconstruct state space dynamics and identify long-timescale structure from time

series data measured at very short timescales. I apply this method to time series

data generated from a modified Lorenz system with a very long-timescale latent non-

stationarity and discuss its shortcomings in identifying the slow latent dynamics. I

then propose a novel encoder-decoder RNN architecture that is able to identify this

long-timescale non-stationarity from data.

In Chapter 5, I summarize the contributions of this thesis, highlighting various

computational methods developed here to identify long-timescale structures from

large datasets. Moreover, the strengths and limitations of each approach are dis-

cussed, and potential solutions are proposed to address these limitations. Finally,

potential applications of these approaches are presented, which outline promising

avenues for future research.
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Chapter 2

Using Recurrent Neural Networks

to mimic dynamical systems1

2.1 Introduction

Dynamical systems have a time-dependent behavior that is governed by underlying

deterministic laws or equations. When observing physical or biological phenomena

with disparate timescales where analytical solutions aren’t possible, it is often de-

sirable to have the ability to infer governing equations using experimental data and

use these equations to build a fundamental understanding of the system. A tradi-

tional theme to discover governing equations from data involves defining a repertoire

of candidate functions that can capture the non-linearities underlying experimental

data, and use symbolic regression to find data-appropriate coefficients. This remains

a highly active area of research, and recent work in this direction addresses several

limitations of this approach such as being computationally intractable for systems

with large degrees of freedom, overfitting from regression, incomplete library of basis

1Portions of this chapter appear in T.S. Winner, M.C. Rosenberg, K. Jain, T.M. Kesar, L.H.
Ting, and G.J. Berman, “Discovering individual-specific gait signatures from data-driven models of
neuromechanical dynamics,” PLOS Computational Biology 19(10), e1011556 (2023).
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functions, noisy datasets, and complex systems. Notably, the SINDy algorithm [66]

uses sparse regression techniques to select the most important nonlinear terms that

govern a system’s dynamics from a large library of candidate functions. This allows it

to balance model complexity with descriptive ability, producing parsimonious models

that avoid overfitting. However, adapting these methods to data from a system with

disparate timescales still remains a challenge because of: a) noisy and/or incomplete

measurements, b) large experimental datasets, and c) the complexity of the under-

lying phenomena. When underlying dynamics are nonlinear, non-stationary, chaotic,

and embedded in higher-dimensional spaces, using traditional approaches to building

phenomenological models from such data becomes difficult.

Recurrent Neural Networks (RNNs), which will be described in detail in the next

section, are designed to behave as overparametrized dynamical systems and can learn

to mimic complex dynamical systems when trained on vast amounts of data. The

recurrent links in RNNs allow them to have a dynamic memory [67], allowing RNNs

to integrate information over time and synthesize internal representations that incor-

porate task-based memory. A single-layer Recurrent Neural Network (also known as

the Elman network) can be mathematically described as follows [67]:

h⃗t = σh(Whhh⃗t−1 + Wxhx⃗t + b⃗h) (2.1)

y⃗t = σo(Whyh⃗t + b⃗y) (2.2)

where

x⃗t: input to the network at time t

h⃗t: state of RNN units at time t

y⃗t: network output at time t

σh, σo : nonlinearities or activation functions
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and the learnable parameters are

Whh,Why,Wxh : the recurrence, input and output kernels (weights)

b⃗h, b⃗y : biases

Elman RNNs have been theoretically proven to be highly efficient at modeling

a wide range of discrete and continuous non-linear dynamical systems [68, 69, 70],

even when training data is sparse [71]. Their continuous, multivariate internal states’

information capacity is shown to grow linearly with the network’s size [72]. RNNs

are able to recapitulate chaotic, periodic, or fixed point attractor-like dynamics, even

in the absence of any input to the network [73], and can provide a robust universal

approximation of any open dynamical system [74].

However, current implementations train RNNs over a finite timescale (i.e., train-

ing over a short sequence of multi-dimensional inputs at a time), utilizing mini-batch

training where network parameters are updated as each batch is processed and gra-

dients are calculated using Back Propagation Through Time (BPTT). Each batch

contains a number of training samples (equal to the user-defined batch size), and

each sample contains a short sequence of training data. As discussed in the following

sections, this training timescale (also known as ‘timesteps’ in implementations) needs

to be sufficiently small to avoid instabilities when calculating gradients after each

batch is processed. Moreover, during training, after each batch in the training set has

been trained on (e.g., over one epoch of training), the internal state of the RNN layers

can be reset to their predefined initialization scheme (commonly set to be initialized

as 0⃗) or can be passed over to the next batch. If we choose to reset states after each

batch, information accumulated over the last batch is not handed over to the next

batch, and any long-timescale training signal is lost. If states obtained after process-

ing each batch are utilized as the initial hidden state for the next batch, we can force

continuity in the internal dynamics of the RNN over long timescales. This process is

called statefulness and can allow the RNNs to learn long-timescale structure in data.
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In this chapter, we introduce a new framework to train RNNs on large biological

time series datasets. Our new approach allows training RNNs on longer timescales by

allowing persistent internal states to propagate across batches of training data and

allowing RNN hidden states to evolve continuously through each epoch of training.

Subsequently, we showcase the application of this framework to train RNN models on

human gait data, leading to individual-specific gait signatures in healthy and stroke

survivor patients. We also propose a method to train novel RNN architectures on

behavioral data, using this method to identify behavioral representations at multiple

timescales.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), first proposed in 1986 [75], are artificial neural

networks constructed using recurrent neural units (or cells). These recurrent units

are interconnected to each other, unlike traditional feedforward networks, forming

directed cycles [67]. That is, during training and inference, each forward pass through

the network updates the state of the recurrent units, and this update process depends

on the current input and the previous state of the recurrent units. This updates the

internal state of each recurrent unit following this equation 2.3

h⃗(t) = f(x⃗(t), h⃗(t− 1)) (2.3)

where x⃗(t) is the input to the network, h⃗i is the state of unit i in the current layer,

and h⃗ is the state of all units in the current layer, thus emulating the classical form

of a dynamical system.

As ideas on using recurrence in neural networks were being developed in the late

20th century, parallel efforts were made to invent methods to train such networks.

A popular algorithm to train multi-layer neural networks is the Back-propagation
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algorithm [75], grounded in the principles of gradient descent and the chain rule of

derivatives. It was later modified to adapt to recurrent connections within the net-

work, and this modified approach is called Back-Propagation Through Time (BPTT)

[76]. BPTT unrolls a traditional recurrent network over multiple time steps (also

referred to as truncated BPTT if done over τ time steps), effectively creating a multi-

layer feedforward network. It then applies standard backpropagation to this unrolled

network and is able to propagate errors through the temporal dimension in the data.

Additional methods like Real-Time Recurrent Learning [77] (RTRL) also exist. How-

ever, they were never adapted in practice because of quadratic and cubic complexities

in space (memory) and time respectively [78]. Back-Propagation Through Time has

been practically tractable and is the primary algorithm used to train Recurrent Neural

Networks today.

Some early applications of RNNs have shown complex linguistic structures rep-

resented by the internal state dynamics of the RNNs [79]. They surpassed Hid-

den Markov Models in identifying continuous handwritten text trajectories and were

shown to store a long temporal context length of 120 time steps [72]. Later on,

they were also shown to significantly outperform standard n-gram techniques when

performing speech recognition tasks [80].

RNNs, however, are famously prone to instability in gradients during learning,

where correction gradients flowing through the network could diminish or explode

exponentially as the network is unrolled over time when training [81, 82]. If we train

an RNN over k steps, the error (ϵ) with respect to network parameters (θ) can be

written as

δϵt
δθ

=
∑
1≤k≤t

(
δϵt
δxt

δxt

δxk

δ+xk

δθ
), (2.4)

where

δxt

δxk

=
∏

k<i≤t

δxi

δxi−1

, (2.5)
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which is the propagation of error in time from step t back to step k. When k ≪ t, it

refers to the error contributions from longer terms (far back in history).

Now, for all k that exist such that δxk+1

δxk
≤ η < 1, the temporal error term can be

shown to be

| δϵt
δxt

(
t−1∏
i=k

δxi+1

δxi

)| ≤ ηt−1| δϵt
δxt

|.‘ (2.6)

If (t − k) is large and η < 1, it is apparent that long-term contributions will

vanish (go to 0) exponentially fast. Exploding gradients can be seen by inverting this

argument and assuming η ≫ 1.

One alternative to deal with this gradient instability is the use of gating within

recurrent units, as proposed in the Long Short-Term Memory (LSTM) [83] or the

Gated Recurrent Units [84] (GRUs). LSTMs introduce forget, input, and output

gating mechanisms, as shown in the equations below

f⃗t = σ(Wf [⃗ht−1, x⃗t] + b⃗f ) (2.7)

i⃗t = σ(Wi [⃗ht−1, x⃗t] + b⃗i) (2.8)

⃗̂
Ct = tanh(Wc [⃗ht−1, x⃗t] + b⃗c) (2.9)

C⃗t = f⃗t ∗ C⃗t−1 + i⃗t ∗ ⃗̂Ct (2.10)

o⃗t = σ(Wo [⃗ht−1, x⃗t] + b⃗o) (2.11)

h⃗t = o⃗t ∗ tanh(C⃗t). (2.12)

Here, f⃗t, i⃗t, and o⃗t are the forget, input, and output gates, C⃗t is the cell state,

and h⃗t is the hidden state, and σ is the sigmoid activation function. Note that each

unit now maintains a cell (C⃗t) and a hidden state (⃗ht). Wf ,Wi,Wc,Wo are weight

matrices learned during training.
⃗̂
Ct represents the candidate cell state containing

new information that can be added to the actual cell state C⃗t. This addition of
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new information to the cell state is controlled by the forget and input gates through

Equation 2.10.

GRUs combine the forget and input gates found in LSTMs into a single update

gate, obtaining a single state for each cell. Their equations are as follows:

z⃗t = σ(Wx [⃗ht−1, x⃗t] + b⃗z) (2.13)

r⃗t = σ(Wr [⃗ht−1, x⃗t] + b⃗r) (2.14)

⃗̂
ht = tanh(Wg[r⃗t ∗ h⃗t−1, x⃗t] + b⃗h) (2.15)

h⃗t = (1− z⃗t) ∗ h⃗t−1 + z⃗t ∗ h⃗t. (2.16)

These gating mechanisms in LSTMs and GRUs help recurrent networks learn long-

timescale dependencies in data in two ways: 1) they control the flow of information

through time as the cell (in the case of LSTMs) and state updates are controlled,

and 2) gradients flowing through time in the network are regularized, i.e., the partial

derivative for cell updates is dCt

dCt−1
= ft, and the gradients cannot explode or vanish as

long as ft is close to 1 (the same can be extended for GRU cells). Hence, gating allows

for better control of timescales and dimensionality in network dynamics [85, 86], and

the update gate in GRUs and forget gate in LSTMs are particularly important for

accumulating slow modes and maintaining long-term dependencies [87]. However, the

nonlinearities in gates force saturation of gradients at the extrema, hindering their

ability to learn new information, and can be avoided by reparameterizing the gate

equations and careful initialization [88]. Additionally, novel gated architectures like

the STAR cell have been developed to allow for deeper and more efficient RNNs while

mitigating gradient issues [89].

The introduction of gating allowed RNNs to be adapted for numerous applications

in science and technology, notably for music generation [90], speech recognition [91,
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92], machine translation [93], acoustic modeling [94], image captioning [95], sentiment

analysis [96], video analysis [97], and bioinformatics [98].

2.3 LIDAR: a python package to train RNNs state-

fully

LIDAR is a Python package that implements a specialized routine to train Recurrent

Neural Networks on large, high-dimensional time series datasets obtained from bio-

logical systems. The goal of LIDAR is to build RNN models that can learn to mimic

the multi-scale dynamical structure inherent in the underlying data, capturing both

long-timescale non-stationarities and short-term dynamics. LIDAR uses Long Short-

Term Memory (LSTM) units to avoid vanishing gradients and support the network’s

capacity to learn long-timescale structures. Crucially, it employs statefulness during

training, which allows the model to have persistent states across training batches. It

also includes easy functionality for extracting internal state variables from the trained

model, as well as the ability to drive the network forward autonomously in generative

mode to observe the model dynamics to perturbed inputs. In this section, we explain

the mechanism to train RNNs statefully as implemented in LIDAR.

As discussed in the previous section, RNNs are sequential models and are well-

suited for training on temporal data. Each term in the input data is sequentially

processed, and the output from the model depends both on the input as well as

the hidden state vector carried forward from the previous time step. In stateful

RNNs, the hidden state is not reset after processing each batch, and requires temporal

continuity of input data across batches. Thus, to perform stateful training, we need

to meticulously structure the training data to ensure the continuity of the hidden

state is maintained appropriately.

We can illustrate this concept by first assuming that we have a single d-dimensional



30

time series data set X = (x1, x2, ..., xn), where each xi ∈ Rd and n is the total number

of time steps. To curate a training set with a batch size of 1 and sequence length τ ,

we first partition X into ⌊n/τ⌋ subsequences, each of length τ . Let Si denote the i-th

subsequence:

Si = (x(i−1)τ+1, x(i−1)τ+2, ..., xiτ ) for i = 1, 2, ..., ⌊n/τ⌋.

With a batch size of 1, each subsequence Si constitutes a single batch for training,

and the network can be trained statefully. The input tensor for each batch thus

has dimensions (1, τ, d). Please note that during training, shuffling should not be

performed as is typical when not training statefully, to maintain the temporal order

of the sequences.

In the case where we have multiple datasets, X(1), X(2), ..., X(k), where each X(j) =

(x
(j)
1 , x

(j)
2 , ..., x

(j)
nj ) and x

(j)
i ∈ Rd, and nj represents the length of the j-th time series

which may vary across the set but are close to each other, we partition each time series

X(j) into ⌊nj/τ⌋ subsequences of length τ . Let S
(j)
i denote the i-th subsequence of

the j-th time series: S
(j)
i = (x

(j)
(i−1)τ+1, x

(j)
(i−1)τ+2, ..., x

(j)
iτ ) for i = 1, 2, ..., ⌊nj/τ⌋.

With k time series, we construct batches of size k, where each batch contains one

subsequence from each time series: Bi = (S
(1)
i , S

(2)
i , ..., S

(k)
i ) for i = 1, 2, ...,minj⌊nj/τ⌋.

The input tensor for each batch has dimensions (k, τ, d). Before a training epoch

begins, k hidden states, one for each time series, are initialized h
(j)
0 ∈ Rh, all set to

zero initially. The stateful RNN training process then proceeds following Algorithm

1.

2.4 Characterizing human gait dynamics using RNNs

2.4.1 Introduction

Locomotion is ubiquitous and often involves repeating a pattern of limb movements,

resulting in behaviors like walking, running, crawling, flying, and swimming. This
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Algorithm 1: Stateful RNN Training Epoch

Input: N : number of batches
Input: k: number of time series
Input: τ : sequence length
Input: BN

i=1: batches where Bi = (Si
(1), Si

(2), . . . , Si
(k))

Input: f(·, θ): RNN cell function with parameters θ
Input: g(·, ϕ): output function with parameters ϕ

1 for i← 1 to N do
2 if i = 1 then

3 h0
(j) ← 0 for j = 1 to k;

4 else

5 Use hτ
(j) from previous batch as initial state;

6 end
7 for t← 1 to τ do
8 for j ← 1 to k do

9 ht
(j) ← f(xt

(j), ht−1
(j); θ);

10 yt
(j) ← g(ht

(j);ϕ);

11 end

12 end

13 Compute loss L({y1:τ (j)}, {ŷ(j)1:τ});
14 Update parameters θ and ϕ via backpropagation;

15 Retain hτ
(j) for each j for the next batch;

16 end
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precise movement of limbs, however, requires a complex interaction between our ner-

vous system, muscles, bones, and the environment. Even though these behaviors

appear highly rigid and stereotyped, studies have shown that there are significant

variations within and across individuals in these behaviors that can stem from neural

[99, 100, 101, 102] and biomechanical perturbations [103, 104, 105, 106], environ-

mental challenges [107, 108], psychological state [109, 110], social status [111, 112],

presence of injuries [113, 114, 115] and diseases [102, 116, 117, 118, 119, 120, 121].

For example, lower socioeconomic status was found to aggravate gait speed decline

with aging [111]. Another study used CO2 inhalation to induce anxiety in healthy

volunteers and observed them walking through an aperture slightly larger than their

shoulder width. They found volunteers with induced anxiety decreased their gait

speed, but also observed superfluous yaw rotation as they passed through the aper-

ture, indicating increased caution and alteration of gait [109].

Deficits in crucial neural and biomechanical mechanisms underlying gait often lead

to gait patterns that are qualitatively and subjectively apparent and easy to detect

using simple kinematic variables such as gait speed and joint angles. However, what

would be desirable is the ability to quantitatively and precisely characterize each gait

cycle with or without such neuromotor deficits. Analyzing just the raw kinematic

parameters to characterize the nuances of each gait cycle is difficult, as these result

from complex neuromechanical dynamics that remain unobservable [122, 123, 124].

One approach to this is building musculoskeletal models that learn optimal control

strategies to build predictive models of gait in humans [125, 126, 127]. While these

approaches are able to simulate unimpaired gait, as well as gait affected by biomechan-

ical or neural perturbations, they do not accurately predict gait dynamics resulting

from neurological injuries [126] or more subtle perturbations [128, 127]. An alternate

approach is building models based on the neural circuitry that generates movement

[129, 130]. However, these models are typically trained across all individuals and
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are thus limited in their ability to capture the unique gait characteristics of each

individual [123, 131]. A holistic approach would be to discover individual-specific

parameters using a large model based on both neural and biomechanical dynamics,

however, these parameters may not be unique as in a high-dimensional model different

set of parameters could lead to the same dynamical output.

These observations beg the question of whether building an individual-specific

model is even required. Do we all just walk the same walk? We know that the

latter is not the case, however, as numerous studies point to evidence that humans

can identify gender [132], body size [133], sexual orientation [134], emotion [135],

individual differences in dancing [136], perceived affective states [137] and underlying

intention [138] based on gait. There is also evidence that humans use gait to determine

attractiveness [139], derive diagnoses [140, 141], and to make treatment plans [142,

143].

The ability to measure high-throughput kinematics data has allowed researchers to

create supervised machine learning models [144, 145], such as prediction of individual

or group-level differences in orthosis design needs in a cohort of children with cerebral

palsy [144]. However, these models do not provide individual-specific signatures of

gait as they do not model individual-specific inter-limb coordination dynamics.

Here, we utilize LIDAR to establish a novel framework to characterize gait dy-

namics across multiple individuals within a low-dimensional latent space, identifying

individual and group-level variations in the gait dynamics. Kinematic data is collected

from a diverse cohort including both healthy and neurologically impaired individuals

walking at varying gait speeds across trials. We train Recurrent Neural Networks

using this data, building a generative model that captures the intricate dynamical

structure underlying observed kinematic data. We extract the internal dynamics of

the model after training and find a stride-averaged representation of gait dynamics

across individuals. We denote this representation as gait signatures and utilize it
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as a quantitative descriptor of gait cycles for individuals. We find that gait signa-

tures elucidate differences across individuals, groups, walking speeds, and degree of

neurological impairment. To test the generalizability of this model, predictions are

generated from the model at novel gait speeds, and find that the model performs

better compared to direct kinematic interpolation in healthy individuals.

Lower-dimensional projections of gait signatures are found to be biomechanically

interpretable and relate to inter- and intra-limb coordination patterns. Manipulat-

ing these projections results in changes to model predicted gait dynamics, creating

a framework to infer relationships between perturbed dynamical components and

their kinematic manifestations. When this approach is applied to a different dataset

of healthy individuals with widely different walking speeds from exceptionally slow

(0.3m/s) to exceptionally fast (as transitioning from walk to run), gait signatures are

found to remain individual-specific across all walking speeds and are found to contain

predictable linear changes across the entire speed range.

2.4.2 Dataset

Continuous gait kinematics were recorded from 12 individuals - 5 able-bodied (age =

24 ± 4 years; 4 female) and 7 stroke survivors (age = 56 ± 12 years; 2 females; 48 ±

25 months post-stroke; > 6 months post-stroke). Post-stroke participants experienced

a cortical or subcortical ischemic stroke and were able to walk on a treadmill for one

minute without an orthotic device without any signs of hemi-neglect or orthopedic

conditions. All participants walked for 15 seconds, each on the treadmill at 6 different

speeds that were gradually and evenly increased from the participant’s self-selected

speed to the fastest safe and comfortable speed. Participants rested for 1-2 minutes

between consecutive gait trials. Gait speeds ranged from 0.1 to 0.8 m/s for stroke-

surviving participants. The fastest safe speed was determined as the speed that

participants on the treadmill could safely and comfortably maintain for 30 seconds.
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Figure 2.1: Example phase averaged gait kinematics. 6 joint angles were measured
from participants walking at variable speeds. Here, phase-averaged kinematics are
shown from one gait cycle.
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Sagital-plane kinematic data was recorded using motion capture from bilateral hip,

knee, and ankle joints, resulting in a 6-dimensional time series from 72 distinct trials

across all participants. Each time series was sampled at 100 Hz, resulting in 1500

time points per trial.

2.4.3 Model training and selection

We trained a sequence-to-sequence RNN model that uses input data (0 to τ -1) to

predict kinematics one time step in the future (1 to τ + 1). The model was trained

statefully with a batch size equal to the total number of trials in the dataset (72)

and training time steps equal to 499. With 1500 total time points in each trial, we

were able to create 3 mini-batches (2 training batches and 1 validation batch) with

499 time points in each sample. For example, the first mini-batch consisted of time

points 0 to 499 from all trials, and the corresponding 1-shifted output consisted of

time points 1 to 500 from all trials. The networks were trained using mean-squared-

error as the loss function and ADAM optimizer algorithm for 5000 iterations or until

training and validation errors converged (< 0.75◦).

Single-layer RNN architectures were evaluated with varying the number of LSTM

units and training time steps. Specifically, models with the following LSTM units

: [128,256,512,1024] and training time steps : [249,499,749] were trained, and the

training and validation loss associated with each pair of hyperparameters was ob-

tained. Following are the training and validation losses for each [units-time steps]

pair of hyperparameters - 512–499 (MSEtrain = 0.010 ± 0.001 deg2; MSEval = 0.018

± 0.000 deg2), 256–749 (MSEtrain = 0.010 ± 0.002 deg2; MSEval = 0.015 ± 0.001

deg2), 256–499 (MSEtrain = 0.010 ± 0.001 deg2; MSEval = 0.017 ± 0.000 deg2).

The training loss was not different between hyperparameter pairs (p > 0.235). The

validation loss differed between all three models (p < 0.001), with the 256–749 model

having the lowest validation loss. However, if the differences in validation loss of less
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Figure 2.2: Training RNN model on kinematics data. A. A sequence-to-sequence RNN
model was trained using kinematic data, where each input to the model is a sequence
of kinematic data, and the model predicts a sequence of kinematic data shifted by
one time step, i.e., the model predicts kinematics data at t+1 given kinematics at
time t. B. A simple RNN architecture with one hidden LSTM layer with 512 units
and 1 dense output layer was used. The input layer and output (dense) layer had
6 units, corresponding to the dimensionality of kinematics data. C. The model was
trained statefully, where each sample in each mini-batch was temporally consecutive,
resulting in temporal continuity across batches. The hidden states of the model were
not reset after each batch was processed.
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than 0.003 deg2 corresponded to meaningful differences in performance was unclear.

2.4.4 Measuring gait signatures from RNNs

Once the RNN model was trained, the hidden and cell states (h and c variables) from

the LSTM units were extracted from the model by feeding the kinematics of each trial

through the model. As shown in equations 2.7 to 2.12, LSTM units use 2 variables

to characterize their internal state; a cell state (ct) and a hidden state (ht). With 512

units in the LSTM layer, this results in a 1500 x 1024 dimensional time series for each

trial, concatenating h and c state variables (2.3A). To reduce the dimensionality of

this representation, Principal Components Analysis (PCA) was performed to linearly

project high-dimensional dynamics along directions with maximal variance. The first

6 PCA components account for 72% variance of the high-dimensional dataset and

are denoted as gait signatures. When the first 3 dominant principal components are

plotted in 3D (2.3B) for 3 representative individuals (able-bodied, high-functioning,

and low-functioning stroke survivor), differences are observed in the dynamical tra-

jectories between able-bodied and stroke survivor participants. To determine whether

some structure exists amongst the three different subject groups, the time series of

6-dimensional gait signatures from each participant was projected into 3-dimensions

map using Multidimensional scaling, an unsupervised dimensionality reduction algo-

rithm that preserves relative distances between low-dimensional projections and the

high-dimensional gait signature space, to visualize relative distances between all gait

signatures (2.3B, right). Multi-dimensional Scaling (MDS) projections from partici-

pants belonging to each group cluster together, highlighting the potential ability of

gait signatures to identify participant groups and other clinically relevant features.

Since participants performed each trial at different speeds but with well-defined

periodic gaits, we can use phase averaging to align kinematics. This process was
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Figure 2.3: Identifying gait-signatures from kinematic data. A) Continuous, multi-
joint movement data from multiple individuals are input into a Recurrent Neural
Network (RNN) model. The model is trained to predict kinematic output one time
step ahead using data from all individuals. Using the trained model, high-dimensional
internal states (⃗h and h⃗) from each individual are extracted from the model. Princi-
pal component analysis is then applied to reduce the data’s dimensionality, forming
individual gait signatures. B)(Left) Visualization of the first 3 principal components
of gait signatures from 3 individuals: able-bodied (blue), high-functioning stroke sur-
vivor (red), and low-functioning stroke survivor (orange). B)(Right) 3D projections
of the 6D gait signatures using multi-dimensional scaling (MDS) reveal different gait
dynamics among the three groups. The size of each circle represents the individual’s
walking speed during the trial, with smaller circles indicating slower speeds and larger
circles representing faster speeds. Figure taken from [12].
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performed using the Phaser algorithm2 [146] on gait signatures, translating each gait

signature to a phase from 0 to 2π, resulting in a speed-independent measure of each

gait cycle.

2.4.5 Gait signatures are individual and group-specific

To what degree do gait signatures encode individual-specific information? To answer

this question, we plot the first three principal components of the phase-averaged gait

signatures from all trials from all individuals (Fig2.4i). Gait signatures of individuals’

six speed trials within both healthy and impaired groups are tightly grouped together.

Gait signatures within the unimpaired group are highly stereotyped and live on a

low-dimension structure across individuals, whereas those from the impaired group

exhibit highly variable gait signatures. Moreover, we see that gait signatures from

both groups are aligned over the four gait phases (leg 1 swing, leg 1 stance, leg 2 swing,

leg 2 stance). However, there is more variation in the impaired group as expected.

To quantify the similarity between gait signatures, we reduce gait signatures into

a 3-dimensional representation using MDS, as before. The unimpaired group forms

a tight cluster in this lower-dimensional representation (Fig2.4Bi) away from the

impaired individuals highlighting distinct traits of gait signatures from the two groups.

The representation of impaired individuals in this space is very sparse, highlighting

heterogeneity in gait deficits in the stroke cohort. We find that within an individual,

walking speed imparts a relatively minuscule change in gait signatures compared to

the change in gait signatures between individuals(Fig2.4Bii).

Moreover, to quantify the degree of separability between unimpaired and impaired

gaits, we calculate the Euclidean distance between the centroid of all unimpaired gait

signatures and each of the impaired gait signatures in the 3-dimensional MDS space.

When plotting this distance against gait speed (Fig2.4Bii orange inset), it is clear that

2https://github.com/sheim/phaser
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Figure 2.4: Gait signatures are individual and group-specific. 3D gait signatures
for unimpaired subjects (left) and impaired subjects (right) are color-coded in two
ways: i) by individual and ii) by gait phase. In the individual-based coloring (i),
signatures cluster according to specific subjects within both groups. For unimpaired
subjects (i, left), similar shades of blue group together, while for impaired subjects (i,
right), similar shades of red form clusters. This grouping indicates that each person
has a unique gait signature. When color-coded by gait phase (ii), unimpaired gait
signatures (ii, left) show a consistent looped structure across the four phases of a gait
cycle: leg 1 swing, leg 1 stance, leg 2 swing, and leg 2 stance. In contrast, impaired
signatures (ii, right) exhibit subject-specific variations across these four phases and
demonstrate greater overall variability. Figure taken from [12].



42

Figure 2.5: Comparison of gait signatures between three distinct locomotor
subgroups: able-bodied (AB), high-functioning stroke survivors (HF), and low-
functioning stroke survivors (LF). 3D gait map created using multi-dimensional scal-
ing shows the relative spatial relationships between AB subjects (in blue), HF stroke
survivors (in red), and LF stroke survivors (in orange). LF stroke survivors exhibit
less cohesive clustering, occupying unique regions within the map. These regions are
notably distant from the centroid of the able-bodied group, which is represented by
a black square marker. Figure taken from [12].

low-functioning stroke survivors are further away from the unimpaired individuals

than high-functioning stroke survivors. Gait signatures in the MDS space also show

separation between high and low-functioning stroke survivors (Fig2.5).

2.4.6 Biomechanical interpretability of gait signatures

When projected onto the first six principal components, gait signatures exhibit a pe-

riodic pattern that fluctuates over the gait cycle (Fig. 2.6B). Using these projections,

we see that high and low-functioning stroke survivors have very similar dynamics to

able-bodied participants over the first 2 principal components (within 95% confidence

interval, shaded gray). However low-functioning survivors differ significantly over the
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Figure 2.6: Biomechanical analysis of gait signatures. A) The gait signatures demon-
strate distinct walking dynamics among representative able-bodied (AB) individuals,
low-functioning, and high-functioning stroke survivors. B) The weightings of each
principal component (PC) fluctuate throughout the gait cycle. These can be con-
trasted with the 95% confidence interval of the AB group (shown in gray). C) When
used to drive the gait model, each PC produces specific multi-joint walking coordina-
tion patterns. This enables a biomechanical interpretation of gait impairments and
the effects of interventions. Figure taken from [12].

third principle component. To derive biomechanical interpretability of these princi-

pal components, we re-project each principal component into the high-dimensional

hidden-state space of the model and use these hidden states to predict joint angles

using our trained model. We visualize the corresponding kinematics through movie

representations3 and find the first three components represent hip flexion/extension,

knee flexion/extension, and high-level postural coordination, respectively.

2.4.7 Using RNNs to generalize to new gait speeds

To test the generalizability of the RNN model, we train a new model with data from

only the 2 slowest and 2 fastest gait speed trials from each participant and use a speed-

weighted average of gait signatures at these speeds as a predictive measure of gait

signatures at the average speed of the 2 slowest and 2 fastest trials. When driving

the trained model with interpolated gait signatures, the generated joint kinematic

predictions in unimpaired (Fig. 2.7A) and low-functioning stroke survivors (Fig.

3https://doi.org/10.1371/journal.pcbi.1011556.s001

https://doi.org/10.1371/journal.pcbi.1011556.s001
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Figure 2.7: Generalizing to new gait speeds. Joint kinematic predictions (shown in
green) for intermediate walking speeds were excluded from model training. They
were generated by first interpolating gait signatures (hidden-states) obtained from
slow (dashed grey) and fast (dashed black) speed trials and then driving the model
with the interpolated gait signatures to predict kinematics at the intermediate speed.
Joint kinematics interpolated directly from kinematics data (blue) and the measured
reference kinematics (solid black) are also shown. A) For a representative able-bodied
(AB) participant, predictions are more accurate when interpolating gait signatures
compared to interpolating gait kinematics across speeds. B) In a representative low-
functioning stroke survivor, interpolated gait signatures more accurately predict non-
linear changes in kinematics at intermediate speeds than interpolated gait kinematics.
Simple averaging of kinematics fails in this case, where larger differences exist between
the slow and fast speed paretic kinematics. The averaged kinematics (blue) follow the
fast speed paretic hip kinematics, while other joint angles do not resemble waveforms
from either the fast or slow speed. Figure taken from [12].
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2.7A) show similarities with experimental data acquired at the average gait speed

from the same participants. We also predict joint kinematics at the average gait

speed by directly interpolating the phase-averaged kinematics data (joint angles) at

slower and faster speeds. We find that kinematics predicted from the model perform

considerably better, highlighting the generalizability of the model.

2.5 Building multi-timescale representation of an-

imal behavior using RNNs

Recurrent Neural Networks are powerful deep-learning tools that build internal rep-

resentations that can reflect dynamical structures underlying data. To mimic the

dynamical structure underlying postural time series data, we can use RNNs as an

over-parameterized dynamical model and use the representations learned by the model

to understand the dynamical structure. In this section, we begin with developing a

novel multi-layer Recurrent Neural Network model to build representations of behav-

ioral time series data using multiple distinct datasets of flies and rats. We show these

representations are meaningful and capture stereotyped behaviors performed by these

animals.

We first draw inspiration for the model architecture from the work of Zeiler et al

[13], where they visualize the representations learned by each layer in a deep learn-

ing model. They train a multi-layer convolutional network with 8 layers that takes

a 224x224 pixel image as input and classifies the image. They train this network

on ImageNet 2012 training set, a standard dataset with 1.3 million images spanning

1000 different classes such as animals, household objects, vehicles, food items, etc. To

understand the convolution structures learned by the network, the learned convolu-

tion filters are reconstructed and projected back to the input image pixels to identify

spatial structures learned by the convolution in the original image. Fig2.8 presents
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this visualization of convolutional filters from layers 1 to 5 of the trained network.

They find these features are not random or uninterpretable, but rather show compo-

sitionality and increased invariance in deeper layers of the network. The convolution

filters discriminate specific structures in the input image, hierarchically identifying

features across layers. For example, filters in layer 2 responds to linear featuers like

corners and edges in the image, layer 3 captures more complex features such as tex-

tures (mesh patters, text). Layer 4 identifies compositionally complex class-specific

structures such as dog faces, and bird legs, and layer 5 represents entire objects with

significant postural variations.

Further in this section, we discuss a novel method to build coarsened representa-

tions of behavior at timescales longer than postural dynamics by training Recurrent

Neural Network models recursively, using the hidden state dynamics from each net-

work to train the subsequent model. We find that each subsequent network builds

an internal representation of the data at a coarser timescale across all datasets. To

showcase potential applications of this method, we apply the deterministic informa-

tion bottleneck [16, 147] formalism to the obtained representations from a dataset

containing simultaneous neural activity recorded from the dorsolateral striatum, a

brain region relevant to motor learning and control. We ask if there is any predic-

tive information about neural dynamics in the behavioral representations at different

timescales, and find different timescales encode predictive information for distinct

neural units.

2.5.1 Datasets

Fly Dataset

LEAP Fly Dataset : This dataset was original taken from Berman et al. [3].

Individual flies were imaged in a clear plastic dome 100mm in diameter and with

gently sloping sides forcing flies to avoid jumping, flying, and adhering upside-down
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Figure 2.8: Visualization of features in a multilayer convolutional neural network
trained on ImageNet 2012 dataset. For layers 2-5, the nine highest activations in a
randomly selected subset of feature maps across the validation dataset are shown.
These activations are projected back to pixel space using the method described in
[13]. Individual feature maps are highly clustered, and there is increased feature
invariance in higher layers. Layers 4 and 5 show strong activation for distinct image
elements such as canine eyes and noses. Figure taken from [13].
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Figure 2.9: Behavioral datasets used here. A) Leap Fly Dataset. Postures were
tracked from videos of freely behaving fruit flies (imaged at 100 Hz) obtained from
[3] using LEAP [1]. 32 keypoints on the body of the fly were tracked. B) OFT Rat
Dataset. Freely behaving rats in an enriched arena were imaged from above at 60 Hz,
and 13 postural markers on the rat were tracked using DeepLabCut [5]. C) Motion
Capture Rats. This dataset is taken from [14], 3D motion tracking of 20 postural
markers was performed on rats at 300 Hz using infrared beads attached. Simultaneous
neural recordings from the dorsolateral striatum (DLS) were also performed.

in this arena. Flies were imaged from above with a camera, and online tracking was

performed to move the arena to keep flies centered in the camera view. A total of 59

male flies and 51 female flies were imaged at 100 Hz for 1 hour, generating frames

1088 x 1088 pixels in size. The flies were isolated in each frame, and the frame was

cropped and rotated to keep flies rotationally and translationally invariant. This

resulted in images that were 200 x 200 pixels in size(Fig. 2.9A). Pereira et al. [1]

develop an open-source deep-learning tool for animal pose estimations and apply it

to this dataset, training their model using manually annotated frames from the fly

dataset. 32 locations on the body of the fly were manually annotated (Fig. 2.9A). The

trained model generates a postural time series tracking 32 locations in 2 dimensions,

resulting in a 64-dimensional time series dataset.

Open-field Rat Dataset
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OFT Rat Dataset : This dataset was acquired in Dr. Aman Saleem’s lab at Uni-

versity College London by Drs. Tomaso Muzzu and Elena Menichini. The dataset

consists of individual rats exploring a 1m x 1m open arena for 3 hours imaged from

above for 3 hours using an IR camera. 13 locations on the rat’s body were tracked

using DeepLabCut [148], and the tracked postures were rotationally and translation-

ally aligned (Fig2.9B). The arena is enriched with toys, food, and water to encourage

interactions, and, as a result, more active behaviors. The resulting video is 1280 x

1024 pixels in resolution and is recorded at 60 Hz.

Motion captured Rat Dataset

Motion Capture Rats : This dataset was introduced in Marshall et al. [14], where

a novel approach is developed for 3-dimensional tracking of rat posture using retrore-

flective markers. 20 such markers were fused with transdermal body piercings that

were attached to each rat. This allowed 3-D triangulation and tracking using 12

cameras, providing robustness against occlusions that typically occur in 2-D posture

tracking setups(Fig2.9C). 5 rats were continuously tracked for a week at 300hz with

sub-millimeter precision. The dataset also contains simultaneous electrophysiological

recordings from the dorsolateral striatum (DLS) region in the brain.

2.5.2 Building representations at a single timescale

Each dataset described above contains a multi-dimensional postural time series ob-

tained from multiple animals. We create a model with 3 LSTM layers: layer 1 receives

the multidimensional postural input, it is then connected directly to layers 2 and 3,

and layer 2 is also connected to layer 3. A dense layer after the third LSTM layer

projects the hidden states from layer 3 back into the postural space (Fig. 2.10 top).

This U-shaped architecture with a skip connection between layers 1 and 3 helps pre-

serve fine-grained temporal information encoded in layer 1 (as layer 1 is driven by

inputs), allowing layers 2 and 3 to build representations of longer-timescale dynamics.
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Figure 2.10: Level 1 RNN model for generating behavioral representation. (Top) A
3-layer recurrent neural network with U-Net-inspired architecture and LSTM units
receives the posture of the animal at time t X⃗(t) and predicts the posture at t+1

X⃗(t+ 1). (Middle) After training, the entire postural time series X⃗(t) is fed through
the network, and the internal states from layer 2 y⃗1(t) are extracted containing both

h⃗(t) and c⃗(t) variables of the internal states. (Bottom) y⃗1(t) is used to build a 2D
representation following a pipeline inspired from [3]. Each dimension in y⃗1(t) is first
decomposed into a spectrogram using wavelet transform and then concatenated to-
gether, the high-dimensional representation is then embedded in 2D (Z1) using t-SNE
[15].
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Figure 2.11: Power spectral density (left, normalized across layers on right) of ex-
tracted hidden state dynamics from each layer of level 1 RNN model trained Motion
Capture Rat Dataset.

We create a stateful training dataset using our approach explained before, and train

the model statefully, predicting postural tracking 1 time step in the future.

Once the model is trained, the network is driven statefully by using the postural

time series, and hidden layer activities (both h⃗ and c⃗ variables) from all layers are

extracted and saved. Fig. 2.11 shows the power spectral density of the concatenated

hidden state activities from each layer when trained on the Motion capture Rats

dataset. We observe that layer 2 activities encode slower dynamics, as evident from

low normalized power at higher frequencies (Fig. 2.11 right). To find the longest-

timescale structure possible, we pick the 2nd LSTM layer to build our behavioral

representations.

Using a previously established pipeline [3], a 2-D representation of the 2nd LSTM

layer hidden layer activities (y⃗1(t)) is created (Fig. 2.10 bottom). Specifically, the

extracted hidden state activities are transformed into a spectrogram using a Morlet

wavelet transform, decomposing each hidden state variable into 25 dyadically spaced

frequencies between 1 Hz and the Nyquist frequency (half of the sampling rate of

the dataset). This results in a 25 × d dimensional time series, where d is the di-

mensionality of the hidden states. To reduce the dimensionality of this data while

preserving the local structure, we use t-distributed stochastic neighbor embedding (t-

SNE) technique [15], a dimensionality reduction algorithm, to embed this data into
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Figure 2.12: 2D representations of each dataset from Fig.2.9 obtained using the level
1 RNN model(Fig.2.10.

2-dimensions (Z1). t-SNE works by minimizing the difference between the probability

distribution of pairwise distances between points in the high-dimensional space and

the low-dimensional embedding of these points. The 2-D representations obtained for

each dataset are shown in Fig. 2.12.

2.5.3 Building representations at coarsened timescales

To build coarser representations, we use the hidden state activities obtained from

layer 2 from the previous model y⃗1(t). RNN hidden states integrate information over

time, and to identify long-timescale structure from data, we downsample y⃗1(t) by a

factor of 2 to get Y⃗1(t
′). We create a stateful training set using Y⃗1(t

′) to train a new

RNN model (calling it Level 2 model) with an identical architecture as before. After

training, we obtain hidden state activities from the 2nd LSTM layer of this network

and denote it as (y⃗2(t
′)). We perform this process recursively, training 6 models (Level

1 to Level 6) in total, extracting hidden states from each model after training and

obtaining {y⃗1(t), y⃗2(t), y⃗3(t) ... y⃗6(t)}. To check for timescales encoded in each level,

we look at the distribution of power across different frequencies in each signal (Fig.

2.14). We observe that earlier levels are richer in power at higher frequencies and
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Figure 2.13: Hierarchical RNNs. (Top) Hidden state dynamics y⃗1(t) obtained from

the level 1 RNN model are subsampled by a factor of 2 (Y⃗1(t
′)) and are used to

statefully train a different but identical RNN model (level 2). After training, hidden
states of the level 2 model are extracted y⃗2(t) and embedded into a 2D representation
Z2. This process is repeated until level 6, after which there is not enough data left to
train the subsequent model due to subsampling.
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Figure 2.14: Power spectral density (normalized) of hidden state dynamics y⃗1(t) to
y⃗6(t) obtained from models from each level trained on the Motion Captured Rats
dataset.

latter levels are rich in power at lower frequencies. There is a gradual shift in this

power, denoting a coarsening of temporal representation at each level.

Similar to the level 1 model, we reduce the hidden state activities from each level

to a 2-dimensional representation obtaining {Z1, Z2, Z3 ... Z6}. We apply this process

to all 3 datasets, obtaining the representations shown in Figure 2.15.

2.5.4 Linking behavioral and neural representations across

timescales

An important aspect of building computational tools for creating behavioral represen-

tations at disparate timescales is the ability to explain neural correlates that underlie

behavior. This is crucial to generate a mechanistic understanding of neural processes

in the brain and could help propose new experimental designs [149].

We explore such neural encoding of behavior using the Motion Capture Rats
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Figure 2.15: 2D representations obtained using RNN models (levels 1 to 6) for LEAP
Fly Dataset (left), Open Field Rat dataset (middle), and Motion Capture Rats dataset
(right). Representations show coarsening at deeper levels.

dataset, which contains simultaneous neural and behavioral recording. For these

animals, neural activity recorded from the dorsolateral striatum was spike-sorted,

yielding 60 neural units for each animal. Using the representations {Z1, Z2, Z3 ... Z6}

obtained from this dataset, we try to infer if we can optimally decode behavioral

repertoires in each representation using these units and if different units encode be-

havioral repertoires differently at each coarsening level.

To find this encoding, we use the deterministic information bottleneck formalism

[16, 147]. Here, we try to partition the space Z into a clustered representation T in

a way that minimizes the function:

min
T
F = H(T )− βI(T ; spikes), (2.17)

where H(T ) corresponds to the entropy of the partitioned space, β is the Lagrange

multiplier, and I(T ;Spikes) is the mutual information preserved between the par-

titioned space and the neural spikes from a unit. As we minimize F for varying
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values of β and the number of partitions in T , we find solutions that try to minimize

the complexity (and thus the entropy) of T while preserving the predictability be-

tween the T and neural spikes. This optimization results in the Pareto front shown

in Figure 2.16. Here, ideal solutions lie in the direction denoted by the large arrow

where solutions with maximum information and minimum complexity exist. We ob-

tain such Pareto fronts for each unit(Fig. 2.17) and measure the maximum possible

information (Imax) encoded by each neural unit at each level (Fig. 2.18) of behavioral

representation without constraining the complexity of partitioning. We observed a lot

of variance in information encoded by each unit across all 6 levels, denoting different

encoding capacities of each unit across coarsening levels of behavioral representation.

To illustrate, we identify units a and b (Fig. 2.18 solid and dashed black lines) which

have statistically high Imax in levels 1 and 6 respectively, and check the conditional

representation of behavior at each level when these units were spiking (Fig. 2.19).

Unit ’a’ has a punctate representation in level 1, which spreads out into a sparse

representation in level 6, whereas unit ’b’ shows a sparse representation in level 1,

which subsequently becomes relatively peaked in level 6. This method provides a new

framework to get insights into how these neural units encode behaviors at different

timescales.

2.6 Conclusion

At the beginning of this chapter, I introduced RNNs and motivated their utility in

modeling dynamical systems. However, RNNs are shown to be prone to gradient

instabilities when training on large time series datasets, hindering their ability to

learn long-timescale structures from data. Here, we introduce LIDAR, a Python

package and training formalism that uses a careful curation of training data from

large time series data sets to allow for stateful propagation of hidden states of the
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Figure 2.16: (Top) Using the 2D representation from level 1 (Z1) for Motion Capture
Rat dataset, Deterministic Information Bottleneck [16] (DIB) is used to minimize F ,
identifying a minimally complex partitioning of Z1 (for a fixed number of partitions)
while preserving information between the partitions and spiking data from a neural
unit i. (Bottom) Pareto front obtained during DIB optimization, optimal solutions
lie in the direction indicated by the arrow indicating low complexity of partitioning
while maximizing the encoded information.
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Figure 2.17: (Continuation of Fig.2.16) Pareto curves obtained while partitioning
level 1 representation from Motion Capture Rats while encoding a spike train from
each neural unit. For each unit, the maximum possible information encoded (Imax)
is measured.

Figure 2.18: Pareto fronts curves obtained for each unit at each level of representation
(Z1 to Z6 from Motion Capture Rats. Unit a (solid) and b (dashed) lines represent
two units with statistically significant information encoding in level 1 (in case or unit
a) and level 6 (for unit b).
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Figure 2.19: (Left) Given a behavioral representation (p(B)), a conditional rep-
resentation is calculated for when unit a is spiking (p(B|A)). (Right) Conditional
representation of behavior when spiking occurs in unit a (top) and unit b (bottom).
Unit a shows a punctate representation in level 1 (thus high information encoding).
Similarly, unit b shows a clustered representation in level 6.
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RNN during training and inference.

We use this framework to train RNN models on gait data from humans, finding

that emergent dynamics from these simple RNN models characterize and quantify

gait signatures in able-bodied and stroke survivor participants. These gait signa-

tures encode individual as well as group-specific information, capturing variance in

gaits within and across groups that allows comparison and prediction of locomotor

patterns without requiring physiological mechanistic models. These signatures also

provide biomechanical interpretability and are shown to generalize to new dynamical

regimes. Overall, our gait signatures provide a robust framework that can be applied

to diagnose disease, develop targeted therapies, and characterize the neuromechanical

mechanisms underlying locomotion.

A primary limitation here is the linear projection of the internal dynamics of the

RNNs for generating gait signatures. While these projections still capture important

representations that were previously unavailable, the neurophysiological mechanisms

that generate gait are highly non-linear, and our low-dimensional linear projection

could limit a precise characterization of gait signatures. A potential future direction

here would be to constrain these dynamics to a lower-dimensional space within the

model, either by regularizing the internal dynamics of the RNN or by introducing a

bottleneck layer within the model.

In the second portion of this chapter, I introduced a new approach to build rep-

resentations of animal behavior at multiple timescales using RNNs. Here, I use a

hierarchical modeling method, where internal states from each model are used to

train the subsequent model, allowing information to accumulate in these states over

longer and longer timescales. I apply this approach to three distinct datasets and

obtain representations that show temporal coarsening for each dataset. Using simul-

taneous neural recording from one of the datasets, I showcase important potential

applications for building multi-timescale representations of behavior.
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Building these representations, however, requires sub-sampling of hidden states

from each level to train the next model. This quickly depletes the length of the data

set available at each level, highly limiting the ability to train RNN models at deeper

levels without overfitting. This limitation can be potentially mitigated by acquiring

longer behavioral datasets (over multiple days to weeks), an approach that has been

recently adopted by some research labs [59].
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Chapter 3

Unsupervised learning algorithms

reveal sex biases in baseline and

stress adaptive behavior1

3.1 Introduction

Stress-related disorders such as depression and anxiety continue to increase in preva-

lence [150, 151, 152, 153], resulting in a pressing need for more targeted treatments

supported by mechanistic understanding. Pre-clinical animal models probing be-

haviors relevant to psychiatric symptoms are an essential foundation for mechanistic

studies that could potentially generate insight into the underlying mechanisms of these

disorders [154, 155]. An inherent limitation of much existing research, however, is the

exclusive focus on males [156, 157, 158, 159] in most of these studies. Mandates from

NIH and other funding agencies to include females in research prompted a surge in in-

terest in studying both sexes [160, 159] and a modest increase in publications studying

1Data presented in this chapter was collected by Jessie Muir in Bagot Lab (McGill University),
and the following analyses were performed by KJ. This work will appear in K. Jain*, J. Muir*, G.
Berman, and R. Bagot, ”Unsupervised learning algorithms reveal sex biases in baseline and stress
adaptive behavior” (to be submitted to Digital Psychiatry & Neuroscience)
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female animals. However, existing animal models and behavioral metrics were devel-

oped in males and have not been validated for use with females. The approach of sim-

ply including females rests on an untested (and almost certainly erroneous) assump-

tion that the behavioral repertoire of females is similar to males. This assumption

can lead to questionable conclusions that behavior diverging from the male-defined

norm indicates a diverging emotional state when it could simply reflect baseline diver-

gences in behavioral repertoires [158]. In behavioral paradigms where sex differences

have been investigated, there is ample evidence of female-specific behavioral profiles.

For example, females show increased generalization in fear conditioning paradigms, as

well as increased active escape behaviors [161, 162, 163, 164, 165]. To study the neural

mechanisms of behavior in females as well as males, we must begin with behavioral

models that capture variability in both sexes [159].

Many sex differences in stress adaptation have been documented, most notably

that females are more susceptible to chronic stress than males, developing depres-

sive and anxiety-like behaviors at times when males remain similar to the controls

[166, 167, 168, 169]. These have been associated with distinct functional, struc-

tural, and molecular changes throughout the brain [170, 171, 172, 173, 167, 174, 175].

Specifically, differences in excitability in the ventral hippocampal inputs to the nu-

cleus accumbens (vHIP-NAc), a pathway whose activity has been associated with

vulnerability to stress in both sexes [169, 176, 177], has been linked to this increased

vulnerability in females [168]. However, assessments of these behavioral adaptations

have been benchmarked in males, and very little has been done to interrogate how

females adapt to stress and how these sex differences in neuronal properties may

underlie qualitatively different reactions to stress.

While sex differences in commonly used tests, such as the open field or light-dark

box have been reported, a comprehensive mapping of male and female behavioral

repertoires and their adaptation to stress is lacking. Emerging methods employing
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machine learning algorithms to generate high-resolution behavioral maps allow for the

high-throughput analysis of moment-to-moment behaviors [3, 8]. These approaches

offer unprecedented insight into the rich behavioral repertoire of model organisms and

have high sensitivity in revealing behavioral modulation across varying conditions

[3, 8]. Here we leverage a data-driven approach to understand sex biases in behavior

in a simple, widely used behavioral test of habituation and anxiety-like behavior, the

open field test. We systematically interrogate how a range of stress manipulations

used to model stress-induced psychopathology shape behavior in male and female

mice. We identify distinct behavioral signatures enriched in females and in males,

with females displaying a characteristic active behavioral profile. We find that stress

upregulates opposite-sex signatures, such that stress increases male-biased behaviors

in females and female-biased behaviors in males. Finally, we show that increasing

activity in a neural circuit that is known to increase susceptibility to chronic stress,

the vHIP-NAc drives similar upregulations in both sexes, driving upregulations in

both female and male-biased behaviors. This work illustrates an important point

about sex differences in behavior, showing that, even in simple behavioral tasks,

males and females may adopt different strategies. As such, studying stress through

an exclusively male- (or female-) centered lens risks incorrect assumptions.

3.2 Methods

3.2.1 Animals

7-week-old male and female C57BL/6J mice from Jackson Laboratories (Bar Harbor,

Maine) were maintained on a 12-h light-dark cycle (lights on at 7:00AM) at 22-25◦C

with ad libitum access to food and water. Mice were group-housed in groups of 5

same-sex cage mates and habituated to the colony room for 1 week before the start

of experiments. All experimental manipulations occurred during the light cycle, and
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the testing order was counterbalanced. All experiments were conducted in accor-

dance with the guidelines of McGill University’s Comparative Medicine and Animal

Resources Center and approved by the McGill Animal Care Committee.

3.2.2 Stress

Variable stress was performed as previously described in LaPlant et al [178]. Briefly,

animals were subjected to either 28 days (chronic variable stress; CVS or 6 days

(subchronic variable stress; SCVS) of variable stress with one of three stressors pre-

sented in the same order across days. Stressors were: 100 random mild foot shocks

(0.45mA/1s) for 1hr (administered in same-sex groups of 10); 1hr tail suspension; 1hr

restraint inside a 50-mL falcon tube, with holes for air circulation inside the home

cage.

3.2.3 Surgeries

Stereotaxic surgery was performed under ketamine (100 mg/kg)/xylazine (10 mg/kg)

anesthesia. To achieve projection-specific DREADD expression in ventral hippocam-

pal (vHIP) nucleus accumbens (NAc)-projecting cells, 0.5 µl of AAV-pkg-Cre and 0.5

µl of was infused bilaterally in the NAc (A/P: +1.3, M/L: +0.60, D/V: -4.9) and

pAAV-hSyn-DIO-hM3D(Gq)-mCherry or pAAV-hSyn-DIO-mCherry in vHIP (A/P:

-3.40, M/L: -3.95, D/V: -4.17 @ 12 deg angle) at a rate of 0.1 µl per min and allowed

to diffuse for 10 min before withdrawing the needle.

3.2.4 Behavioral Assessments

Open Field Test (OFT). Mice were placed in the center of an open arena (44 x 44cm;

white matte acrylic) under red light. A standalone camera (FLIR Blackfly) and FLIR

spinnaker software running through Bonsai recorded behavior during one 20-minute
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session. A field-standard metric of anxiety-like behavior was assessed using time in

the center of the open field in the first 5 minutes, calculated by video tracking software

(Ethovision XT 13, Noldus). Animals were also tracked throughout the entirety of

the 20-minute video using automated tracking software (DeepLabCut [5]) (see below).

3.2.5 Chemogenetic Manipulation

To inhibit the vHip-NAc pathway, male and female mice with AAV-DIO-hM4Di-

mCherry or control AAV-DIO-mCherry in vHip were intraperitoneally injected with

Compound 21 (3mg/kg) 30 minutes before the start of the OFT.

3.2.6 Posture Tracking

170 open-field video datasets across various experimental paradigms (Table 1) be-

tween 15 and 20 minutes in length were recorded at 30 frames per second. We used

DeepLabCut (DLC) [5] (v2.1.4) to track 14 postural marks on the mice. We trained

the DLC model iteratively, extracting outliers from the test set using heuristics (joint

distances, lateral swapping) and retraining the model with manually labeled outlier

frames. The tracked posture was transformed into an egocentric frame using one

tracked point on the spine. We then rotationally aligned the postures across time to

enforce rotational invariance. To accommodate the postural variances generated from

morphological variations between individuals, rotationally and translationally aligned

postural tracking was used to calculate 18 body angles to represent the posture of the

mice. These angles were selected to maximize the representation of various postural

dynamics of the animals.
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3.2.7 Quantitative identification of behaviors

Autoencoder Model

To reduce the dimensionality of the postural representation an Autoencoder model

was trained using the joint angle data. The joint angles were first independently cen-

tered using the median values and then scaled based on their respective interquartile

ranges. The training and validation datasets were created from the scaled data. A

hyperparameter grid search was performed across different architectures, layer pa-

rameters, and regularizations. The best-performing model was selected.

Behavioral Representation

Using output from the bottleneck layer of the autoencoder, the 16-dimensional pos-

tural representations were used to create a 2-D behavioral density map, following the

approach in Berman et al [3]. A continuous wavelet transform was applied to the

autoencoder representation using Morlet wavelets, decomposing them into 25 dyadi-

cally spaced frequencies between 0.5 Hz and 15 Hz. These wavelet amplitudes were

obtained for each of the 16 dimensions, resulting in a 400-dimensional time series.

This high dimensional data was then embedded into 2 dimensions using UMAP [17],

a dimensionality reduction algorithm that preserves connections in local and global

neighborhoods when embedding high-dimensional data into lower-dimensional em-

beddings. We subsequently use the PhenoGraph [179] method was used to cluster

the resulting 2-dimensional data into 149 clusters. The Phenograph method first

identifies clusters of nearest-neighbor networks by connecting each point to its closest

neighbors, and then uses the Louvain community detection algorithm to prune these

clusters, keeping only densely connected communities of points in a cluster. The

method does this process iteratively to identify clusters that form densely connected

communities. After clustering the data, each cluster was then manually assigned a
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behavioral name by observing video segments extracted from each of the clusters.

3.2.8 Training classifiers across assays

Logistic Regression (LR) classifier models were trained on experimental assay pairs

(Table 3.1). For each pair, an LR classifier was trained to generate a binary class

prediction using the probability distribution across 149 Phenograph clusters from

individual mice. L1 regularization was used with different regularization strengths

along with other model parameters for each classifier (Table 3.2).

3.2.9 Calculating statistical upregulation between two assays

Using the set of cluster assignments from two assays, which we shall refer to as ϕ1 and

ϕ2, hierarchical bootstrapping [180] (random sampling with replacement both within

and between individuals) was performed 1000 times to produce a distribution over

p(c|ϕ1) and p(c|ϕ2) for each of the 149 potential cluster assignments, c. Following the

procedure described in [181], we assumed that these two distributions are indepen-

dent of one another and performed numerical integration to find the probability that

p(c|ϕ1) > p(c|ϕ2). Small probabilities imply that c is upregulated in ϕ2 compared to

ϕ1, and large probabilities imply the reverse. Here, we used Bonferroni corrections to

account for multiple hypotheses.

3.3 Results

3.3.1 Sex biases in the exploration of an open field

To characterize male and female behavioral repertoires, we placed mice in an open

field test (OFT), a standard test for probing anxiety-like behavior, and recorded for 20

minutes while the animal explored the arena. The field standard metric for quantify-
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ing anxiety-like behavior in an OFT, time in center, did not reveal sex differences (Fig.

3.1D). Simple metrics incompletely sample the rich behavioral repertoire. We thus

used a modified behavioral mapping approach [3] to examine the structure of mouse

behavior while exploring an open field. Using DeepLabCut, we tracked 14 postural

markers across 170 open-field video datasets and used tracked points to calculate 18

body angles, accounting for varying body sizes. We trained an Autoencoder model to

reduce the dimensionality of normalized body angle data, generating a 16-dimensional

postural representation that we used to create a 2-D behavioral density map, referred

to as the behavioral space. Males and females across all experiments were embedded

into a unified behavioral space to allow for comparisons between sexes and different

experimental conditions. The map clustered into 149 clusters (Fig. 3.1B), each of

which was manually annotated, revealing nine broad behavioral clusters (Fig. 3.1C).

Comparing baseline behavioral profiles for males and females reveals clusters of

behaviors that are upregulated in females (Fig. 3.1E) and others that are upregulated

in males (Figure 3.1F). Females engage in more active behaviors including running,

intermittent running, and walking and rearing, while males exhibit elevated idling,

still and reared nose sweeps, grooming, and rearing. We then trained logistic regres-

sion models to generate a binary class prediction using the behavioral probability

distributions across these 149 clusters for each individual mouse. We find that idling

and still nose sweeps were the best predictors of maleness while running, pausing

and running, and walking and rearing were the best predictors of femaleness in these

baseline data (Figure 3G), revealing novel sex-biased signatures of behavior.

3.3.2 Stress reverses baseline sex differences

We applied our behavioral space mapping technique to examine stress-induced be-

havioral change in males and females. Mice were exposed to either a subchronic or

3https://github.com/bermanlabemory/motionmapperpy

https://github.com/bermanlabemory/motionmapperpy
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Figure 3.1: Unveiling sex-specific behaviors through unsupervised behavioral repre-
sentation. A. Data from mice across all sessions was tracked using DeepLabCut and
18 joint angles were calculated from head-to-rear scaled postures of freely behaving
mice. These angles were reduced to 14 dimensions via an autoencoder, and each
dimension was further transformed into a spectrogram, and finally embedded into 2
dimensions UMAP using MotionMapper3, obtaining a behavioral map. B. 2-D behav-
ioral density of all animals clustered into 149 regions using the Phenograph clustering
method [179]. C. Multiple videos from each Phenograph cluster were extracted, and
behaviors were manually annotated. D. No sex differences were observed in time in
the center of the open field. E,F. Relative upregulation of behavioral clusters in fe-
male and male mice obtained from bootstrapping (see Methods). Female mice show
active behavior upregulation (such as locomotion and rearing). Male mice exhibit
less active behaviors such as idle and grooming) G. Logistic regression coefficients for
pairwise classification of behavioral cluster densities from control males and females.
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chronic variable stress protocol (SCVS or CVS) with daily exposure to one of three

stressors (footshock, tail suspension, or restraint) for 6 or 21 days respectively (Fig.

3.2A) and were then tested in the OFT.

In females, relative to stressed animals, controls show upregulation in the fre-

quency of female-typical behaviors, including pausing and running, walking and rear-

ing, and running (Fig. 3.2B) and increased the frequency of male-typical behaviors

such as still nose sweeps, idling, and rearing, while still exhibiting pausing and run-

ning (Figure 3.2C). Logistic regression identified still nose sweeps, idling and pausing,

and running as the primary predictors of SCVS, whereas active behaviors such as run,

pause and run, and walk and rear are the primary predictors of the control condition

(Figure 3.2F). Exposure to an extended CVS also upregulated male-typical behaviors:

still nose sweeps, idling, and rearing (Figs. 3.2D,E). However, patterns of upregu-

lation differ from that following SCVS, notably with upregulations in walking and

rearing, while, in comparison, controls show upregulations in running and intermit-

tent running (female-typical behaviors) but also idling and still nose sweeps. Lo-

gistic regression defined the CVS condition mainly through still nose sweeps, reared

nose sweeps, and the control condition as running, intermittent running, and still

nose sweeps. Overall, in female mice, subchronic and chronic stress induces a more

male-like behavioral profile, upregulating idle and slow behaviors compared to control

animals, where active behaviors are upregulated, although CVS females still display

upregulations in some female-typical behaviors.

We observed a similar phenomenon in males with stress upregulating female-

typical active behaviors. As before, control males show upregulations in less active

behaviors such as idling, still nose sweeps, reared nose sweeps, and grooming (Fig.

3.3A), with idling and still nose sweeps being the main predictors of the no stress con-

dition (Fig. 3.3E). Following a 6d SCVS, males show elevated running, intermittent

running, and walking and rearing (Fig. 3.3B), with running, walking and running and
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Figure 3.2: Stress alters behavioral profiles in female mice from active to inactive
behaviors. A. Mice were exposed to either a chronic (21-day) or subchronic (6d)
variable stress before being tested in the OFT. B,C Time spent in the center of open
field, a field-standard metric for assessing response to stress. SCVS females show
less time spent in the center, while CVS females show no difference compared to the
control animals. D,E. Sub-chronic stressed females show upregulation of male-typical
less active behaviors like still nose sweeps, idling, and rearing in female mice, whereas
control animals show upregulation of active behaviors like walking and running and
controls show upregulation of female-typical active behaviors. F. Logistic regression
coefficients show less active behaviors like still nose sweeps, idling, and pause and runs
as more predictive of sub-chronic stress, and active behaviors like run, pause and run,
walk and rear are more predictive of control condition. G,H. Chronic stressed female
mice also show upregulation of less active behaviors but distinctly upregulated in
walking and rearing behaviors, while controls show upregulation in active as well as
inactive behaviors like running, idling, and still nose sweeps. I. Logistic regression
coefficients show still and reared nose sweep behaviors to have strong predictive power
for CVS females, and running, intermittent running, and still nose sweep behaviors
to be predictive of control females.
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intermittent running being the main predictors of the stress condition (Fig. 3.3E). A

21d CVS also induces upregulation in running and intermittent running (Fig. 3.3C)

compared to control while still maintaining male-typical behaviors such as still nose

sweeps and rearing. Logistic regression defines CVS through intermittent running

and still nose sweeps and the control condition through rearing, walking, and rearing,

still nose sweeps, and intermittent running(Fig. 3.3D).

Overall, while we observe that stress modulates the frequency of distinct behav-

ioral motifs in males and females, interpreting these changes in relation to baseline

differences in behavioral repertoire reveals that, in both sexes, stress reverses sex

biases in behavior. However, CVS animals still maintain sex-typical behaviors, indi-

cating perhaps that stress slowly attenuates sex biases in behavior.

3.3.3 Chemogenetic activation of susceptibility circuit drives

similar upregulations in both sexes

Our algorithm revealed sex differences in baseline exploratory behavior which reverse

as mice are exposed to chronic stress, with males and females converging on similar

behavioral patterns as stress continues. Stress is also accompanied by dysregulations

in neural circuits which are thought to underlie these behavioral adaptations. The

ventral hippocampus (vHip) projection to the nucleus accumbens (NAc) modulates

stress susceptibility in both males and females, and androgen signaling suppresses

vHip-NAc excitability, mediating male resilience to SCVS [176]. We hypothesized

that increasing activity in this pathway would at least partially recapitulate the ef-

fects of stress on the expression of sex-biased behavioral repertoires. To test this idea,

we used an intersectional viral strategy for pathway-specific inhibition, injecting ret-

rograding AAV-cre into NAc and AAV-DIO-hM3Dq-mCherry, or AAV-DIO-mCherry

into vHip (Fig. 3.4A). We then injected the DREADD actuator C21, 30 minutes prior

to behavioral testing. Comparing male and female mCherry controls revealed similar
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Figure 3.3: Chronic and sub-chronic stress changes male mice behaviors differen-
tially. A. Control males show upregulation of male-typical less active behaviors like
nose sweeps, idling, and grooming. B. SCVS male mice show upregulation of active
behaviors like walking, intermittent running, and running. C. No SCVS-dependent
differences were observed in time in the center of the open field for males. D,E.
Chronically stressed male mice also show upregulation of some active behaviors like
intermittent running compared to controls but retain male-typical less-active behav-
iors like still nose sweeps. F. CVS males spend less time in the center of OFT. G.
Logistic regression coefficients show active behaviors like intermittent running and
running as more predictive of SCVS males and less active behaviors like idle, nose
sweeps, and rearing to be more predictive of controls. H. For CVS males, intermittent
running and still nose sweeps are more predictive, whereas rearing, walk and rear, still
nose sweeps, and intermittent running are more predictive of the control condition.
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sex biases as in non-stressed controls (Fig. 3.4E-G), with still nose sweeps and groom-

ing predicting maleness and running and pausing and running predicting femaleness

(Fig. 3.4B). Examining the effect of vHip-NAc activation surprisingly revealed sim-

ilar effects in males and females. DREADD-injected females show upregulations in

pause and run, still nose sweeps and running, and are identified primarily by still

nose sweeps and running using a logistic regression model (Figs. 3.4D,E). Controls,

however, show scattered upregulations in several behaviors but are primarily defined

by grooming and pause and run (Figs. 3.4C,E). Similarly, DREADD injected males

show upregulations in still nose sweeps, idling, and running, but are identified pri-

marily by running and still nose sweeps (Figs. 3.4F,H), while controls show elevations

in rearing, walking and rearing, pause and run, and still nose sweeps, but are mainly

defined by grooming (Figs. 3.4G,H). Overall, controls maintain typical sex differences

in their behavioral space. In both sexes, DREADD activation of vHip-NAc upregu-

lates the same pattern of behaviors across both sexes, and these behaviors map onto

sex-typical male and female behaviors, suggesting that this manipulation partially

reverses sex-biases in behavior.

3.4 Discussion

Despite the increasing inclusion of female animals in basic research, much of this

work still defaults to a male-centric lens. Commonly used behavioral models have

not been systematically validated in both sexes. This is despite increasing evidence

of sex differences in behavior in paradigms wherein both sexes have been rigorously

examined. The lack of an unbiased account of female behavior across different envi-

ronments presents a major limitation to behavioral neuroscience. Here, we used an

unsupervised learning algorithm to quantify sex differences in a mouse’s behavioral

repertoire at baseline and following chronic stress. We identify sex-specific behavioral
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Figure 3.4: Chemogenetic activation of susceptibility circuit drives similar upregu-
lations in both sexes. A. Mice were injected with a retrograding AAV-cre into the
NAc and a cre-dependent excitatory DREADD into the vHIP to target NAc project-
ing vHIP cells. C21 injection was given 30 minutes before the OFT to activate the
projections. B. Logistic regression coefficients for pairwise classification of behavioral
cluster densities from control males and females. C. Behavioral upregulation in con-
trol females following CNO administration. D. Behavioral upregulation in DREADD-
injected females post-CNO administration. E. Logistic regression coefficients showing
sex-specific and treatment-dependent behavioral predictors in female subjects. Pos-
itive values indicate DREADD-associated behaviors, while negative values represent
control-associated behaviors. F. Behavioral upregulation in control males follow-
ing CNO administration. G. Behavioral upregulation in DREADD-injected males
post-CNO administration. H. Logistic regression coefficients showing sex-specific and
treatment-dependent behavioral predictors in male subjects.
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motifs that emerge as animals explore an open field. Intriguingly, these differences are

attenuated when animals are exposed to subchronic stress, with males displaying a

more female-like profile and females a more male-like profile. Longer stress exposure

also leads to males and females displaying similar behavioral profiles. Further, manip-

ulating the vHIP-NAc, a susceptibility pathway, partially recapitulates the pattern

of attenuated sex differences. These results identify unique behavioral signatures in

males and females, hinting at sex-specific behavioral strategies that may drive differ-

ences in stress vulnerability.

Using an OFT to examine exploratory behavior in a novel context, we identify

sex-specific behavioral motifs, whereby females exhibit more active behaviors such as

running, intermittent running, and walking and rearing, while males exhibit elevated

idling, still and reared nose sweeps, grooming, and rearing. Previous literature has

shown that activity levels are higher in female rodents compared to males as mea-

sured in home cage activity and voluntary wheel running [182]. This effect may be

mediated by estrogen signaling, as ovariectomized females show reduced activity that

is rescued through estrogen supplementation [183]. Increased estradiol increases DA

levels in the striatum and, as a consequence, drives elevated activity levels. This effect

has been explained in terms of evolutionary pressure, with female rodents needing to

be more active to seek out food sources for their offspring [184]. We confirm that

females display a more active behavioral profile, but we also identify specific behav-

ioral motifs that define the two sexes, potentially revealing sex-specific strategies in

exploring a novel environment. Indeed, sex differences in behavioral strategies are

well documented, specifically in threat learning with males typically being slower to

discriminate threat and safety conditions as well as displaying riskier behaviors in the

face of threat, while females tend to display active avoidance and typically will avoid

risk in situations of threat.

In addition to baseline sex differences, we also identified changes in male and fe-
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male behavioral repertoires following a 6d SCVS. Chronic stress increases anxiety- and

depressive-like behavior across a series of tests. Previously, females were shown to be

more vulnerable than males to chronic stress, exhibiting anxiety and depressive-like

behavior following a 6d-sub-chronic stress, whereas behavioral differences were not

observed in males until 21 days of repeated stress exposure. Indeed, using traditional

metrics for anxiety and depressive-like behavior, we observe the same phenomenon.

However, using semi-automated pose tracking combined with unsupervised learning

algorithms to quantify an animal’s adaptation to stress in a data-driven manner, we

identify behavioral adaptation in both sexes following a 6d SCVS. We see females

exhibiting a more male-typical profile, with increases in still nose sweeps, pausing

and running, and idling, while males adopt a more female-typical profile with upreg-

ulations in more active behaviors such as running, pausing and running, and walking

and rearing. This finding points to a potential limitation of the standard approach of

evaluating the effects of stress manipulations using a limited set of metrics that have

only been validated in males. There is ample evidence to suggest that under similar

conditions, females and males exhibit divergent behavior. Fear conditioning presents

a prominent example; males typically show freezing behavior when presented with a

cue paired with foot-shock. Experiments assessing freezing as a metric of learning in

females concluded that females were slower to learn cue-shock associations. However,

work by Gruene et al[165] revealed that female rats are learning similarly to male rats

but they express this learning through distinct behaviors. A careful analysis of behav-

ioral responses showed that female rats are more likley to exhibit darting behavior to

shock-associated stimuli. Failure to account for sex differences in behavioral expres-

sion has led to erroneously characterizing females as poor learners when, in fact, they

simply express this learning through active, rather than passive responses. Similarly,

our analyses demonstrate that male and female mice exhibit distinct behaviors while

exploring an open-field test that should be taken into account when interpreting the
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effects of experimental manipulations.

Here, through highly resolved behavioral analysis, we identified the effects of ex-

perimental manipulations that are missed in analyses relying on the field-standard

time in center metric. For example, we observed that, while SCVS reduced time in

center in females, there was no effect in males, which is consistent with the estab-

lished interpretation that male mice are insensitive to shorter periods of stress and

that longer duration stress exposure is necessary to produce effects in males. Our

analyses show that SCVS already induces considerable behavioral adaptation in male

mice, showing that both sexes are adapting their behavioral repertoire to SCVS. Simi-

larly, manipulations of the vHIP-NAc pathway have been shown to have no impact on

depressive or anxiety-like behavior in stress-naive mice. However, we found that, in

both males and females, excitation of this pathway drives similar changes, including

upregulations in still nose sweeps and pausing and running, examples of female and

male-typical behaviors. Individual differences in vHip-NAc activity measured during

an OFT are predictive of adaptation to future stress, with higher vHip-NAc activity

associating with increased stress vulnerability in both sexes. Our analysis suggests

that this increased excitability may induce some of the behavioral profiles of suscep-

tibility, without inducing the full behavioral adaptation of chronic stress exposure.

Females show upregulations in still nose sweeps, which is a male-typical behavior,

while still maintaining elevated pausing and running, a female-typical behavior; the

same holds true in males as well. Similar to the effects of stress, increasing the vHip-

NAc activity appears to reverse baseline sex differences although without inducing

the extent of the shift that is associated with stress. This finding again illustrates

the potential of highly resolved behavioral analysis for capturing subtle behavioral

changes that are missed with conventional metrics.

While established metrics can offer ease of interpretability and simplicity for high-

throughput experiments, they necessarily obscure the intricacies of an animal’s be-
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havior. Here, we identify fundamental changes in behavioral motifs in circumstances

where the conventional metric finds no effect, indicating that time in the center does

not fully describe the effects of stress on behavior in an open field. For this reason,

more highly resolved behavioral analyses are becoming increasingly common in the

field, with new supervised and unsupervised algorithms allowing for more thorough

and precise investigation of behavior. This presents both opportunities and chal-

lenges for researchers. Comprehensively profiling behavioral repertoires can support

stronger conclusions when determining if the manipulation has any effect or if mea-

suring the extent to which two groups differ. For example, a similar approach has

been used to quantify individual variability in female behavior across the estrous cycle

and between male and female animals. The method revealed that variability between

female mice is greater than variability within female mice attributable to the estrous

cycle, and that, in general, inter-individual variability in males exceeds that in fe-

males. This finding provides important evidence to counter a contentious claim in

the field that cycling females are inherently more variable, an argument that has long

been used to justify the exclusive use of male animals. However, these approaches

also raise new questions. Here we reveal novel stress-induced modulation in male

mice after SCVS, suggesting they are not entirely insensitive to shorter stress. This

finding suggests that more work is needed to fully characterize sex differences in be-

havioral adaptation. For example, using highly resolved behavioral analysis to probe

the effects of stress sampling across increasingly chronic stress in male and female an-

imals may reveal differences in the trajectories of stress adaptation to inform a more

accurate understanding of sex differences in susceptibility. Further, there is a ques-

tion of the interpretability of behavioral motifs, requiring thoughtful consideration of

the relevance of specific patterns of behaviors within the experimental context and

potentially further experimentation. Overall, our model provides a thorough investi-

gation of behavior in both male and female mice, revealing sex differences in baseline
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behaviors and exploration strategies, as well as surprising similarities in responses to

subchronic stress. This work makes an important point about not only the inclusion

of, but also the proper investigation of, females in behavioral studies.

Table 3.1: Experimental design. Table showing different experimental groups,
stress conditions for each experiment, and the number of animals from each sex in
each experiment.

Experiment Conditions Males Females

Control CON 12 12

DREADD
DR 9 9

CON 6 10

SCVS
SCVS 10 10
CON 10 10

CVS
CON 10 10
CVS 10 10

Table 3.2: Logistic regression parameters. Logistic regression parameters used to
train pairwise classifiers between class 1 and class 2. All classifiers shared the following
parameter values other than L1 strength: penalty=l1, dual=False, tol=0.0001, fit
intercept=True, intercept scaling=1, class weight=balanced, solver=saga.

Class 1 Class 2 L1 Penalty Strength Classifier Accuracy

CON CON M CON CON F 300 1.00
CVS CON M CVS CVS M 300 0.90
CVS CON F CVS CVS F 300 1.00

SCVS CON M SCVS SCVS M 300 0.95
SCVS CON F SCVS SCVS F 300 1.00
CSDS CON M CSDS CON F 300 1.00

DREADD CON M DREADD CON F 600 0.94
CVS CON M CVS CON F 300 1.00

SCVS CON M SCVS CON F 300 0.95
DREAD CON M DREAD DR M 600 0.93
DREAD CON F DREAD DR F 600 0.89

CVS CVS M CVS CVS F 400 0.95
SCVS SCVS M SCVS SCVS F 600 0.95

DREADD DR M DREADD DR F 600 0.89
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Chapter 4

State-space reconstruction of

dynamical systems with long

timescale non-stationarities

4.1 Introduction

In section 1.4, we discussed a new approach[11] where authors use delay embedding

to reconstruct the state-space of the dynamical system underlying partially observed

data. Specifically, the authors assume there is a dynamical system ˙⃗x(t) = f(x⃗(t))

whose phase variable remains observable, but we can only measure some noisy non-

linear projections of these variables, y⃗ = M(x⃗(t)). They then use an ensemble

dynamics-inspired approach to find long-timescale dynamics within the system. While

the authors show that this method is effective at finding these dynamics for a variety

of systems, none of these systems possess non-stationarities in their dynamics with

large gaps in timescales. In this Chapter, I will investigate how well this approach is

able to perform on systems of this type – which are common across fields like animal

behavior and neuroscience – finding that if the gap between system timescales be-
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comes too large, the method no longer is able to find the longest timescale structures.

In addition, I will demonstrate a novel method that is able to capture these longest

timescale dynamics through the use of recurrent neural networks.

4.2 The Lorenz System

The initial study demonstrating the method[11] uses the Lorenz system as an example

of the types of complicated dynamics that it can uncover. The Lorenz system exhibits

3-dimensional dynamics that are governed by the following differential equations:

dx

dt
= σ(y − x) (4.1)

dy

dt
= x(ρ− z)− y (4.2)

dz

dt
= xy − δz (4.3)

If σ = 10, ρ = 28, and δ = 8/3, the system exhibits chaotic behavior and results in two

unstable attractor states (Fig.4.1A). Here, they assume partial observations of this

system, generating simulated trajectories of x̄(t) at δt = 0.01s for T = 5 × 105s. To

reconstruct the state-space of the system, the authors used delay embedding at vary-

ing delays (K) and partitioned the delay-embedded space into N clusters to obtain

a discrete representation of the dynamics that are maximally Markovian. Thus, they

found K and N by maximizing the short-term predictability of the partitioned rep-

resentation, which can be quantified by the entropy production rate [185] as follows:

hδt(N,K) = − 1

δt

N∑
i,j

πiPij(δt)logPij(δt), (4.4)

where Pij(δt) = p(sj(t + δt)|si(t) is a row-stochastic Markov chain and π is the sta-

tionary distribution of P. Increasing number of partitions, N , highlights finer struc-
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Figure 4.1: Reconstructing the state=space of Lorenz attractor. A) 2D projection of
the standard Lorenz system with σ = 10, ρ = 28 and δ = 8/3, showing 2 attractor
states. Only x(t) is measured from the system (partial observation). B) (Inset)
Entropy rate (h(N,K)) as a function of N (number of partitions) and K (delay length)
of transition dynamics in the reconstructed state-space. h(N,K) saturates after N∗

= 3162, indicating maximum predictability. The entropy rate stops changing after
K∗=12, indicating saturation of predictive information. Figure taken from [11].

tures in the reconstructed space, and for stochastic processes where information is

not bounded by the scale of the system, the entropy rate, hδt(N,K), is expected to

increase monotonically. However, for chaotic systems, the fractal structure imparts

deterministic dynamics, and hδt(N,K) will saturate after a certain N . In practice,

however, finite size effects affect the estimation of Pij(δt), which results in an under-

estimation of the entropy rate when N is sufficiently large. Thus, to find a maximally

Markovian structure in this system, N∗ is selected where the rate of entropy pro-

duction stops increasing(Fig.4.1B inset). Similarly, K is gradually increased until

reaching a point where hδt(N
∗, K) stops changing, indicating a saturation of pre-

dictive information or memory in the system(Fig.4.1B inset). The authors select

N∗ = 3162 and K∗ = 12 for the Lorenz system.

After choosing N∗ and K∗, the transition matrix P τ
ij is estimated by counting the

number of transitions between the partitions in the discretized state-space. Then, the
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Figure 4.2: a) Relaxation timescales vs. transition time (τ) of the inferred transition
operator in delay embedded state-space of the Lorenz system. Transient dynamics
(within a partition) contribute to the initial peak in relaxation times after which they
settle to near-constant value. Beyond this regime, the relaxation times are driven by
the quasi-periodicity of the Lorenz attractor. B) The first non-trivial eigenvector ϕ2

projected onto the first 2 SVD modes of the delay-embedded space. The phase space
is split into two metastable states by ϕ2. Figure taken from [11].
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authors choose to time-symmetrize the transition matrix P τ∗
ij (r) =

P τ∗
ij +P τ∗†

ij

2
where

P τ∗†
ij is the dual operator of P τ∗

ij . The eigenspectrum of P τ∗
ij (r) then reveals the di-

rections of long-lived dynamics as well as the relaxation times associated with each

direction. The chosen discretization of state-space maximizes predictability while ig-

noring finer-scale structure within each partition. Because of this, the eigenspectrum

of P τ∗
ij (r) at different values of τ reveals a spectral gap after faster dynamics are set-

tled (Fig.4.2A), and slower dynamics emerge, and relaxation times become constant

to show the underlying Markovian nature of the dynamics(Fig.4.2A inset). In this

way, τ ∗ is chosen to capture the important long-term dynamics of the reconstructed

state-space. The implied relaxation times corresponding to each eigenvalue of P τ∗
ij (r)

are then as follows:

timp
i (τ ∗) =

−τ ∗

logλi(τ)
(4.5)

The eigenvector ϕ2 corresponding to the longest timescale timp
2 (τ ∗ = 0.1) 8sec is

3162-dimensional, equal to the number of partitions chosen in the delay-embedded

spaces. To visualize this eigenvector, trajectories in the reconstructed state-space are

decomposed using SVD (singular value decomposition). The partition centers in the

delay-embedded space are then mapped onto the obtained singular vectors, and a

contour plot of ϕ2 onto the first two singular vectors is shown in (Fig.4.2A). This

plot shows ϕ2 dividing the state-space into its almost invariant sets, partially split

along the shortest unstable periodic orbit. It is important to note that the unstable

periodic orbit for this Lorenz system is 1.3 seconds, and the identified long-timescale

dynamics are predictable for 3.04 Lyapunov times.
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Figure 4.3: Modified Lorenz attractor. a) Particle in a double well potential (left) is
simulated and positions (h(t)) are extracted (right). b) Mean escape time of the par-
ticle as a function of inverse temperature β. c) Modified Lorenz attractor equations.
Only ˙⃗x is modified, where parameter σ is scaled based on the position of the particle
in double well potential. γ determines the strength of scaling, σ = 10, ρ = 28 and
δ = 8/3 are Lorenz attractor parameters.

4.3 Modified Lorenz System

The Lorenz system, however, has only a single long timescale – the timescale of

switching between the two unstable periodic orbits. To determine whether the en-

semble approach described above works on a system with an additional, potentially

much longer, timescale, we apply this approach to a modified Lorenz system that is

driven by a function, h(t):

dx

dt
= σ(1 +

γ

1 + e−h(t)
)(y − x) (4.6)

dy

dt
= x(ρ− z)− y (4.7)

dz

dt
= xy − δz. (4.8)
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Here, h(t) is generated by simulating a particle in a 1-dimensional double-well

potential at thermal equilibrium V (h) = ah4 − bh2 (Fig. 4.3a), and β = 1/(kBT )

defines the inverse temperature of the system. The trajectory of the particle hopping

between the two wells is shown in Figure 4.3 a (right). As the position h(t) of the

particle moves between the left and right well, it drives scaling of the σ parameter,

and the strength of this scaling depends on γ. This allows us to modulate the σ

parameter of the Lorenz system. We set the inverse temperature β in a range where

the mean dwell time, ⟨τw⟩, of the particle in a well changes linearly between 3.8s and

31s, which is much longer than the timescale of the switching between periodic orbits

in the Lorenz attractor (∼ 1.4s). This setup allows us to introduce a non-stationarity

in the Lorenz system without greatly altering the underlying state-space. Figure 4.4)

shows trajectories of the modified Lorenz system for various values of β and γ. In

this figure, the color of the trajectory is blue when the particle is in the left well and

red when the particle is in the right well.

We apply the ensemble method for state-space reconstruction to the modified

Lorenz system, selecting K∗ and N∗ as described in the previous section. As an

example, the entropy production rate for the system with γ = 1 and β = 0.40 is

shown in Fig. 4.5. We note that the entropy rate does not become constant in this

case, as we do not encounter finite-size effects because of the longer simulation times

we chose to perform.

Following the previously stated analyses, we construct the transition matrix and

calculate the eigenvectors to find metastable states for each system. We visualize these

eigenvectors for β = 0.40 (⟨τw⟩ ≈ 14s) in Fig. 4.7. Qualitatively, we observe that the

second leading eigenvector ϕ2 captures metastable states of the Lorenz attractor for

values of γ ≤ 1.00, and for γ > 1, coupling with the double well dynamics modulates

σ by a larger factor, and the metastable states of Lorenz attractor are not detected

by ϕ2. The corresponding characteristic timescales for these plots are shown in Fig.
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Figure 4.4: Sample trajectories from modified Lorenz system for 4 pairs of (γ, β)
values, where γ determines the extent of scaling of σ parameter and β is the inverse
temperature for the particle in the double well. As the particle shifts from left to
right well, sigma values modulate between σ1 and σ2 values (calculated at the center
of the wells). Trajectories are colored red when the particle is in the left well and
blue for the right well.

Figure 4.5: Entropy rate for the modified Lorenz system with (γ,β) = (1,0.40). Here
we choose N∗=2512 and K∗=6.
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Figure 4.6: Characteristic timescales for the system with various values of β and γ
with (right) and without (left) making the transition matrix reversible at a transition
timescale of τ ∗=0.10 s.

4.6.

To measure whether ϕ2 encodes information about the position of the particle

in the wells, I calculate the Mutual Information between the position of the driving

particle (left or right well) and ϕ2 (Fig.4.8 right). The mutual information is very low

compared to the maximal value of 1 bit for all pairs of values of β and γ. We measure

a low MI value between the partitioned delay-embedded space and ϕ2(Fig.4.8 left),

as well as between the delay-embedded space and the position in the well.

Here, the Lorenz system is modified in a way where the dynamics are modulated

at timescales at the same order of magnitude as the dynamics of the Lorenz system

for β = (0.30,0.35; Fig.4.3b). These modulations occur at much longer timescales

β = (0.30,0.35). We attempt to reconstruct the state-spaces of these modified sys-

tems by finding maximally predicted delay-embedded spaces. However, we find the

ensemble-based delay embedding approach fails to identify these timescales, even

when non-stationarities are present at timescales equivalent to the timescale of the

Lorenz system. This is evident from the low predictive power of the double well dy-

namics by the leading non-trivial eigenvector. In the next section, we address this

limitation, proposing a new framework to reconstruct state-space dynamics using

recurrent neural networks.
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Figure 4.7: First five non-trivial eigenvectors of the delay-embedded modified Lorenz
system (similar to Fig.4.2B) for various values of γ and β = 0.40.

Figure 4.8: Mutual Information between the leading non-trivial eigenvector ϕ2 and
partitioned delay embedded space (KNN)(left), between the position of the particle
in left or right well and KNN (center), and between the position of the particle in the
well and ϕ2.
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Figure 4.9: Encoder-Decoder RNN Model. Temporal segments of length (L) are used
to drive an encoder Recurrent Neural Network model, generating a final hidden state
h1(L). A decoder RNN model uses h1(L) as its initial state and is driven without any
input to reconstruct the temporal segment input into the encoder RNN. Concurrent
temporal segments are used during training for statefulness.

4.4 Reconstructing state-space dynamics using RNNs

To identify the hidden long-timescale driving underlying dynamical system, a novel

approach using Encoder-Decoder Recurrent Neural Networks is introduced in this

section. Here, a section of partially observed dynamics (of length TRNN) is used to

drive an encoder RNN model, while the hidden state representation of the network

evolves statefully (see section 2.3), encoding information from the input in this rep-

resentation. The final hidden state from the encoder RNN is then transferred to a

decoder RNN and is utilized as the initial state for the decoder RNN as the decoder

RNN runs forward autonomously (with 0⃗ input) for TRNN time steps. These time

steps are projected back into reconstructing the input to the encoder RNN. The model

is trained statefully, utilizing concurrent sections of time series data during training.

Separate models are trained for each pair of β and γ pair.
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After the model is trained, trajectories are fed through the encoder model, and

the hidden states computed by the model are extracted. To visualize the structure of

these hidden states, UMAP (Uniform Manifold Approximation and Projection)[17]

is used to project these into a 3-dimensional space. These projections are shown

in Fig. 4.10 for three different values of γ for β = 0.40, and colored to reflect the

position of the driving particle in left (red) and right (well). A separation in the

hidden state-space correlated with the identity of the wells is observed for γ ≥ 1.

We train another encoder-decoder RNN model to encourage encoding of longer

timescales in the hidden states (Fig. 4.11), calling it the level 2 model.

The representations obtained by the level 2 model are shown in Fig. 4.12. Here, a

larger separation in the encoded representation is observed, indicating more predictive

information about the driving system.

4.5 Conclusion

This chapter explores the limitations of the ensemble dynamics-inspired approach for

state-space reconstruction when applied to systems with underlying non-stationarities

at large time scales. This approach fails to identify dynamical timescales introduced

by the double-well potential underlying the modulated dynamics of a Lorenz system.

The ensemble approach, while adept at capturing the metastable states of the Lorenz

attractor for modest values of the coupling parameter (γ ≤ 1.00), fails to detect the

longer timescale dynamics introduced by the double-well potential. This limitation is

evident from the low mutual information between the leading non-trivial eigenvector

ϕ2 and the position of the driving particle, even for cases where the timescales of the

non-stationarities equal those of the Lorenz system’s intrinsic dynamics.

In subsequent sections, a novel framework utilizing Encoder-Decoder Recurrent

Neural Networks is implemented to address these limitations. The hidden state dy-
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Figure 4.10: 3D UMAP[17] projections of hidden states extracted from trained en-
coder model in Figure 4.9. Here 3 different models were trained for each (γ, β) pair
and hidden states were extracted as each model is driven with time series from each
system.
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Figure 4.11: Level 2 model. We train another encoder-decoder RNN model (inspired
from Section 2.5.3 using hidden states extracted from the previous model. We follow
the same training style as before, training the model statefully. After training, hidden
states h2(t) were extracted using h1(t).
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Figure 4.12: 3D UMAP[17] projections of hidden states extracted from level 2 encoder
model from Figure 4.11. Here 3 different models were trained for each (γ, β) pair
using corresponding h1(t) and hidden states h2(t) were extracted as each model is
driven with h1(t).
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namics of the trained encoder model show superior capability in identifying and en-

coding the hidden long-timescale dynamics, as evident from the physical separation

emerging in hidden state-space when the particle is in different wells. Training a level

2 model hierarchically is shown to amplify this separation, indicating an improvement

in capturing the latent non-stationary timescales.

Looking ahead, these frameworks can be applied to behavioral time series data,

where non-stationarities are ubiquitous and often occur across multiple timescales.

This approach could potentially disentangle the hierarchical organization of behav-

ioral patterns and could help characterize long-timescale physiological states and un-

derstand neural dynamics underlying complex behaviors and the evolution of behavior

over long timescales such as aging.
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Chapter 5

Discussion

In this thesis, I focus on developing computational methods for identifying and char-

acterizing long-timescale dynamics in behavioral data. In particular, I use Recurrent

Neural Networks as a tool to approximate dynamical systems from vast amounts of

data, using these overparameterized models to learn about the dynamical timescales

that underlie large behavioral datasets. I focus on training RNNs while maintain-

ing temporal coherence through statefulness to closely resemble a dynamical system.

This allows RNNs to capture and propagate information over long timescales and

generate interpretable hidden states, as found in this thesis.

While I focus specifically on using RNNs in this thesis, several deep learning mod-

els have been developed to emulate the behavior of dynamical systems. A notable

class of models is Neural Ordinary Differential Equations (NeuralODEs), which pa-

rameterize the derivative of the hidden state using a feedforward neural network and

learn continuous time dynamics in the latent space. When compared to RNNs, these

architectures are computationally efficient, more interpretable, and do not encounter

gradient instabilities of the kind seen in RNNs. However, the (current) Achilles heel

for NeuralODEs is the difficulty in training them, as operating in continuous time

requires the numerical integration of a vector field using ODE solvers, making these
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models harder to optimize because of numerical instabilities. Their continuous time

design also creates a more convoluted loss landscape, leading to highly sensitive hy-

perparameters and gradient instabilities. However, optimizing NeuralODEs remains

a highly active area of research, and potential future solutions that address these

limitations could accelerate the use of Neural ODEs for multi-timescale modeling of

dynamics.

Where does this work go from here? In Chapter 2, I highlighted potential clin-

ical applications of gait signatures for diagnosis and therapy development. Here,

we decomposed RNN dynamics linearly using PCA and embedded these into a low-

dimensional description using multi-dimensional scaling. However, the neurophysio-

logical mechanisms underlying gait are highly non-linear, and to use gait signatures

for clinical applications, it would be desirable to have more precise measures of charac-

terizing gait signatures. This can potentially be achieved by regularizing the internal

state dynamics of the RNN network to constrain learned dynamics onto simpler man-

ifolds. Another approach could be to use an encoder-decoder architecture, as seen in

Chapter 4, which can help constrain the representation of information flowing through

the network. Since gait data is highly periodic, it would also be intriguing to extend

these approaches to simple RNN units (instead of LSTM units) to make the model

more interpretable. This requires careful training of the RNN model to avoid gradient

instabilities, one approach being incrementally changing the RNN timescale during

training.

I also propose hierarchical RNN models in Chapter 2 for creating multi-timescale

representations of behavioral data. A primary limitation of that approach is that

we exhaust our datasets because of sub-sampling at each level. Training deep learn-

ing models from scratch requires a large amount of data, and a small dataset at

higher levels of training greatly limits our ability to identify non-stationarities at long

timescales. However, this limitation is possible to address by taking longer and longer
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behavioral measurements, and research labs have already extended continuous behav-

ioral measurements to multiple weeks [59]. Another goal here is to go beyond mark-

erless tracking data as a measure of the behavior of the animal at short timescales,

perhaps adding additional behavioral degrees of freedom like vocalizations.

Another area of research where these ideas can be extended is in understanding

long-timescale dynamics in the social behavior of animals. Social behavior is complex

and requires careful consideration of interaction measures one chooses to measure

(e.g., the distance between animals, relative orientation, etc.) to build social behav-

ioral representations using current methods[54]. Deep-learning tools like RNNs are

readily adaptable to complex datasets and can potentially infer joint representations

of posture and interactions with just postural markers. It remains a really exciting

avenue of research to extend these approaches for social behavior analysis.

In Chapter 3, we extend a current method to quantify behavioral repertoires[3] to

study stress-induced changes in mice behavior. Our unsupervised approach is data-

driven and provides unbiased quantification of behavioral adaptations to stress in

male and female mice. This highly resolved behavioral analysis revealed effects that

are overlooked by field-standard coarse metrics such as time spent in the center of a

field. Notably, we find novel behavioral changes in male mice exposed to sub-chronic

variable stress, contradicting previous conclusions of short-term stress resilience in

male mice. We also find sex-specific differences in baseline behaviors, as well as

surprising similarities in behavioral changes in response to subchronic stress. For

future efforts, our approach can be extended to understand the behavioral trajectory

of adaptations to stress, leading to a more accurate account of sex-specific differences

in stress susceptibility.

In Chapter 4, I discuss a novel method to identify non-stationarities acting at dis-

parate timescales in a dynamical system. A major limitation of the delay-embedding

approach is that the reconstructed state-space is assumed to partition into disjoint
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non-overlapping sets, which is ill-posed for dynamical systems with a fractal structure

(such as the Lorenz system). However, if projected to high enough dimensions, such

fractal measures can be smoothed out if the system has a rich dynamical structure

consisting of many chaotic systems with fractal attractors [186]. While the encoder-

decoder RNN model proposed in Chapter 4 captures non-stationarities encoded into

the Lorenz system at very long timescales, it remains a possible direction to explore if

simply projecting the delay-embedded space to a higher dimension is able to identify

the underlying non-stationarity. It is possible that we are essentially performing this

projection using the encoder-decoder architecture, however this connection remains

unexplored.
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Meng-Xing Tang, and Dario Farina. Kinematics of individual muscle units in

natural contractions measured in vivo using ultrafast ultrasound. Journal of

Neural Engineering, 19(5):056005, September 2022. Publisher: IOP Publishing.

[25] Boris G Vainer. FPA-based infrared thermography as applied to the study of

cutaneous perspiration and stimulated vascular response in humans. Physics in

Medicine and Biology, 50(23):R63–R94, December 2005.



106

[26] Marieke van Dooren, J. J. G. (Gert-Jan) de Vries, and Joris H. Janssen. Emo-

tional sweating across the body: Comparing 16 different skin conductance mea-

surement locations. Physiology & Behavior, 106(2):298–304, May 2012.

[27] Alexander Mathis, Alexander Mathis, Pranav Mamidanna, Pranav Mami-

danna, Taiga Abe, Taiga Abe, Kevin M. Cury, Kevin M. Cury, Venkatesh

Murthy, Venkatesh N. Murthy, Mackenzie Weygandt Mathis, Mackenzie Wey-

gandt Mathis, Matthias Bethge, and Matthias Bethge. Markerless tracking of

user-defined features with deep learning. arXiv: Computer Vision and Pattern

Recognition, 2018.

[28] Alexander I. Hsu and Eric A. Yttri. B-SOiD, an open-source unsupervised

algorithm for identification and fast prediction of behaviors. Nature Communi-

cations, 12(1):5188, August 2021. Publisher: Nature Publishing Group.
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