
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Chang Meng Date



Large Scale Inverse Problems: Low-Rank Approximations and Optimization

By

Chang Meng

Doctor of Philosophy

Mathematics

James G. Nagy

Advisor

Lars Ruthotto

Committee Member

Yuanzhe Xi

Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D., MPH

Dean of the James T. Laney School of Graduate Studies

Date



Large Scale Inverse Problems: Low-Rank Approximations and Optimization

By

Chang Meng

B.S., Emory University, 2016

Advisor: James G. Nagy, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2022



Abstract

Large Scale Inverse Problems: Low-Rank Approximations and Optimization

By Chang Meng

Inverse problems can be found in a variety of scientific applications, and the

development of efficient and reliable methods remain an essential and challenging

task. In this thesis, we introduce novel low-rank solvers for linear systems that arise

from large scale inverse problems, which are usually ill-posed and require the use

of regularization to obtain meaningful solutions. The new methods are developed

around the concept of regularization: i) the low-rank, Kronecker product based

forward model approximation method involves the approximation of a truncated

singular value decomposition; and ii) the low-rank Krylov subspace methods are

based on nuclear norm regularization. We explore the performance of these novel low-

rank methods in various imaging applications such as image deblurring, inpainting

and computer tomography. Besides applications where the forward model is known

and fixed, we also consider an extended application, where the forward model is not

exactly known and requires calibration. In this context, we are able to not only

apply our new low-rank methods, but also propose a new hybrid machine learning

and block coordinate descent algorithm that effectively improves solution accuracy.
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Chapter 1

Introduction

Inverse problems are ubiquitous in the areas of engineering, science and medical

applications, and accurate solutions often require computationally costly or time

consuming methods. This thesis focuses on a class of imaging inverse problems that

can be modeled as

Ax “ b, (1.1)

where A P RMˆN models the forward process, x P RN is the image of interest,

b P RM is the observation that is usually contaminated with unknown noise η P R,

and b “ bex ` η. In particular, the desired solution xex is the exact solution to

Ax “ bex, where bex is the noise-free observation. The vectors x and b are obtained

by vectorizing the true image X P Rnˆn, n “
?
N and the observed or measured
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data B, i.e.,

x “ vecpXq , X “ vec´1pxq,

b “ vecpBq , B “ vec´1pbq.

In the image deblurring application, the forward model A is constructed using

a point spread function (PSF), which can be formulated based on knowledge of the

physical process, and can be obtained using a precise mathematical expression or

through experimentation [33]. For example, a two dimensional Gaussian function

[39, 62] can be applied to construct the PSF for blurring caused by atmospheric tur-

bulence. In this case, the observed data B “ vec´1pbq is a blurred image; see Figure

1.1(a) for an example. In imaging applications arising from computed tomography

(CT), the matrix A models the Radon Transform [56] that outputs the projection

data obtained from a tomographic scan. For CT, the observed data is a so-called

“sinogram”, which stores the projection data; see Figure 1.1(b) for an example.

(a) Blurred image. (b) CT sinogram.

Figure 1.1: Observed data.
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Equivalently, we can rewrite (1.1) as the following least squares problem:

min
x
}Ax´ b}22. (1.2)

Large scale linear systems arising from inverse problems are usually very ill-conditioned,

meaning that there might not be a unique solution, and a slight change in the data b

can lead to a large change in the solution x. Hence, regularization is often needed in

order to obtain a meaningful solution. Direct regularization methods add a penalty

term Rpxq to the fit-to-data term }Ax´ b}22. The regularized optimization problem

has the form

min
x
}Ax´ b}22 `Rpxq, (1.3)

where the regularization termRpxq is defined as a function of x (e.g. a vector norm).

By doing so, we would be able to prevent extreme values in x. Popular choices for

Rpxq include the `2 norm (Tikhonov regularization) and the `1 norm of x. Various

types of regularization approaches will be discussed in detail in Chapter 2.

When A is not too large, i.e., if its dimensions M and N are a few thousands

or smaller, direct factorization methods such as the SVD factorization (short for

Singular Value Decomposition, introduced in Chapter 2) can be efficiently used to

solve the least squares problem (1.2), or (1.3) with Tikhonov regularization. However,

as the dimension of A increases, the factorizations become increasingly difficult to

compute (the complexity for computing the SVD of A P RNˆN is OpN3q), but it

is still possible to obtain their approximations. For example, while it is difficult
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to compute the full SVD of large matrices, we may try to approximate the leading

singular vectors and values to form a Truncated SVD (TSVD) factorization. The

TSVD can be thought of as a low-rank approximation to matrixA, and by discarding

the smallest singular values and corresponding singular vectors, we are basically

performing regularization by reducing the noise contribution of η in the solution x.

An alternative approach for solving the least squares problem (1.2) when A is

large is through iterative methods. The simplest example of iterative methods would

be the Landweber iteration [46], which is essentially gradient descent applied to the

function fpxq “ }Ax´ b}22. Another class of iterative methods is called Krylov sub-

space methods, which look for solutions that belong to a Krylov subspace generated

by A and b. Examples of Krylov methods include Conjugate Gradient, LSQR and

GMRES (see [64] and the references therein). What has been observed when solving

linear systems with iterative methods is that they exhibit a semi-convergence prop-

erty (will be illustrated in figures in Section 5.2), that is, the relative errors in the

solutions decrease in the first iterations, but will increase in the further iterations

when noise starts to corrupt the solutions. Hence, iterations need to be stopped at a

suitable iteration index. In literature, hybrid methods (see [8, 12, 21]) have been pro-

posed to combine iterative methods with regularization when needed. These hybrid

methods can be particularly useful when combined with a non-traditional regulariza-

tion term such as TV (total variation) regularization [19], or the low-rank enforcing

nuclear norm regularization [18].
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1.1 Contributions of Work

The main contribution of this thesis is the development of novel low-rank solvers for

large scale linear systems. The meaning of “low rank” here is two-fold:

(1) low-rank approximation of forward model A, or

(2) low-rank regularization for solution x.

With respect to low-rank approximation of A, we introduce the newly proposed Kro-

necker product summation based TSVD approximation method [15, 16]. This new

method can be used to efficiently approximate a large number of leading singular val-

ues and vectors for large, structured square matrices from ill-posed inverse problems

in the application of image deblurring. This novel TSVD approximation method is

based on a reordering technique that incorporates information from more terms in

the Kronecker summation compared to similar methods (see [41, 52]). Furthermore,

theoretical bounds for the approximate TSVD operator and the approximate TSVD

filtered solution are also developed.

Regarding low-rank regularization for x, we describe new solvers for the computa-

tion of low-rank approximate solutions to large-scale linear problems. We are mainly

concerned with algorithms that solve the so-called nuclear norm regularized problem,

where a suitable nuclear norm penalization on the solution is imposed alongside a

fit-to-data term expressed in the 2-norm (i.e., setting Rpxq to be equal to the nu-

clear norm in (1.3)): this has the effect of implicitly enforcing low-rank solutions.

By adopting an iteratively reweighted norm approach, the nuclear norm regularized

problem is reformulated as a sequence of quadratic problems, which can then be effi-
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ciently solved using Krylov methods, giving rise to an inner-outer iteration scheme.

This approach differs from the other solvers available in the literature in that:

(a) Kronecker product properties are exploited to define the reweighted 2-norm

penalization terms;

(b) efficient preconditioned Krylov methods replace gradient (projection) methods;

(c) the regularization parameter can be efficiently and adaptively set during the

iterations.

Furthermore, we reformulate within the framework of flexible Krylov methods both

the new inner-outer methods for nuclear norm regularization and some of the existing

Krylov methods incorporating low-rank projections. This results in an even more

computationally efficient (but heuristic) strategy, that does not rely on an inner-

outer iteration scheme. This is the first time Krylov methods have been used to

solve a low-rank, nuclear norm regularized problem.

The new low rank Krylov methods are competitive with other state-of-the-art

solvers for low-rank problems including image deblurring, computed tomography

and inpainting, and deliver reconstructions of increased quality with respect to other

classical Krylov methods. In addition to applying the newly developed methods to

(1.3), we also consider another least squares problem

min
x,p

}Appqx´ b}22 `Rpxq, (1.4)

where p is a set of parameters that A depends on. An example application in

which this problem arises is computed tomography that requires geometry parameter
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calibration. To solve (1.4), we could consider the framework of block coordinate

descent (BCD), in which (1.4) is alternatively minimized with respect to x and p in

each step. Since the minimization with respect to x requires a linear solver, our new

low rank solvers can be readily used, and they show better convergence properties

than hybrid Krylov solvers applied with traditional regularization terms such as `2.

We also propose a hybrid BCD method for solving (1.4) by incorporating machine

learning. That is, we train a machine learning model pΦ that maps b to p, and when

given an observation b, we first use the ML model to make a prediction for p, which

is then fed into the BCD algorithm as an initial guess. Through this approach, we

are able to obtain reconstructions that are of higher quality compared to using BCD

or ML alone.

1.2 Outline of Thesis

This thesis is organized as follows. In Chapter 2, we provide an overview of regu-

larization methods, including TSVD, Tikhonov and iterative regularization, as they

are the foundation to the development of low-rank based methods, which is the main

contribution of this thesis. In Chapter 3, we describe the new Kronecker product

summation based approach for approximating the TSVD of A. In addition to pre-

senting how the approximation is derived, we also provide theoretical results that

demonstrate the efficacy of the TSVD, both for the operator A and for the ap-

proximate solution to (1.1) filtered by the TSVD approximation. In Chapter 4, we

introduce how to solve the nuclear norm regularized (NNR) using Krylov methods.
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To be specific, we derive the iteratively reweighted norm (IRN) approach that solves

a sequence of reformulated quadratic problems using Krylov methods, resulting in

an inner-outer iteration algorithm. The IRN method is later reformulated within the

flexible Krylov method framework that is considered more efficient (but heuristic). In

Chapter 5, results of numerical experiments on several image processing problems are

presented. In addition to comparing the newly developed low-rank Krylov methods

to standard Krylov subspace methods, we also show comparisons with state-of-the-

art solvers for low-rank problems, as well as existing Krylov methods incorporating

low-rank projections reformulated as flexible Krylov subspace methods. In Chap-

ter 6, we investigate the imaging application of computed tomography that requires

parameter calibration, i.e., the forward model A depends on unknown parameters

p, which need to be calibrated alongside the image reconstruction process. We not

only explore the application of the newly proposed low-rank methods in this context,

but also investigate a new hybrid machine learning - BCD approach that solves the

problem more accurately. We wrap up the thesis in Chapter 7, in which we conclude

the findings of this thesis, as well as identify interesting research directions that can

be extended from this work.
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Chapter 2

Overview of Regularization

Methods

Problems (1.1) and (1.2) are ill-conditioned because for large scale linear systems

arising from imaging inverse problems, singular values of A usually decay slowly

to 0, making the solution x very sensitive to noise in the observation b. In this

chapter, we show how the singular value decomposition (SVD) of A is related to the

conditioning of the problem, discuss different types of regularization methods, and

present techniques of choosing the regularization parameter. We start with a brief

introduction of the SVD. Consider the SVD of A P RMˆN , which takes the form

A “ UΣV T ,

where U “ ru1 u2 ¨ ¨ ¨ uM s P RMˆM and V “ rv1 v2 ¨ ¨ ¨ vN s P RNˆN are orthogonal

matrices, and Σ P RMˆN is a diagonal matrix so that Σ “ diag pσ1, σ2, ¨ ¨ ¨ , σNq,
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where its diagonal entries are monotonically non-increasing: σ1 ě σ2 ě ¨ ¨ ¨ ě σN ě 0.

Without loss of generality, we assume that M ě N , and the solution to (1.1) can

be written as

x “ V Σ:UTb “
N
ÿ

i“1

uTi b

σi
vi “

N
ÿ

i“1

uTi b
ex

σi
vi `

N
ÿ

i“1

uTi η

σi
vi,

where Σ: P RNˆM is a diagonal matrix with diagonal entries p1{σ1, 1{σ2, ¨ ¨ ¨ , 1{σNq.

We immediately observe that if σi is very small (i.e., for large indices i) compared to

η, then with σi on the denominator and η on the numerator, the noise contribution

is going to be amplified by small σi’s, and may even dominate over the true solution.

Regularization can be thought of as a way to “filter out” the noise contribution

in the solution. Let φ1, φ2, ¨ ¨ ¨ , φN be the “filter factors” and define the regularized

solution to be

xreg “

N
ÿ

i“1

φi
uTi b

σi
vi. (2.1)

The filter factors φi should be chosen such that 0 ď φi ď 1 and φi tend to 0 as

i increases so that for large i’s, φi’s can cancel out the noise contribution caused

by small σi’s. Two common regularization methods – Tikhonov regularization and

Truncated SVD can both be conveniently expressed using filter factors.

2.1 Tikhonov Regularization and TSVD

Tikhonov Regularization In standard Tikhonov regularization, we have that

Rpxq “ λ}x}22, λ ą 0 in (1.3). Because of its definition, Tikhonov regularization is
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also called `2 regularization. The regularized solution is the unique solution to

min
x
}Ax´ b}22 ` λ}x}

2
2, (2.2)

which is equivalent to solving the following least squares problem

xλ “ arg min
x

∥∥∥∥∥∥∥
»

—

–

Ax
?
λI

fi

ffi

fl

´

»

—

–

b

0

fi

ffi

fl

∥∥∥∥∥∥∥
2

2

, (2.3)

or its corresponding normal equations

pATA` λIqx “ ATb.

Note that Tikhonov regularization does not require us to compute or approxi-

mate the SVD of A. However, the regularization parameter λ needs to be chosen

beforehand, and ideally, we should take σN ď λ ď σ1. It can be shown that the filter

factors for Tikhonov regularization are φi “
σ2
i

σ2
i`λ

. By introducing the filter factors,

we can express xλ as

xλ “ V Σ:

λU
Tb, (2.4)

where Σ:

λ “ diagpφ1{σ1, ¨ ¨ ¨ , φN{σNq “ diagp σ1
σ2
1`λ

, ¨ ¨ ¨ , σN
σ2
N`λ

q.

Tikhonov regularization may be generalized to define Rpxq “ λ}Lx}22. Some-

times, we introduce the additional regularization matrix L because certain properties

are desired for the solution xλ. For example, we can take L to be a discretization of

the derivative operator, and in this way, we are implicitly applying a “smoothness”
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constraint to the solution. By applying the regularization matrix L, the least squares

problem is

xλ “ }Ax´ b}
2
2 ` λ}Lx}

2
2, (2.5)

and equivalently,

xλ “ arg min
x

∥∥∥∥∥∥∥
»

—

–

Ax
?
λL

fi

ffi

fl

´

»

—

–

b

0

fi

ffi

fl

∥∥∥∥∥∥∥
2

2

. (2.6)

The associated normal equations are

pATA` λLTLqx “ ATb.

Note that (2.5) can be solved by substitution of variable px “ Lx and x “ L´1px

under the assumption that L is invertible. By doing so, the regularized problem

becomes

xλ “ }AL
´1
px´ b}22 ` λ}px}

2
2, (2.7)

and the generalized Tikhonov regularized problem can be reduced to a standard

Tikhonov problem.

Both standard and general Tikhonov regularized solutions can be obtained rather

easily by using standard linear system solvers. IfA is small (which is rarely the case),

we can use direct solvers – a good example would be MATLAB’s backslash operator

applied to (2.3) and (2.6), which uses QR factorization to solve the rectangular

system. This is feasible when A is small, but in most cases that arise in image

processing, the matrix A is very large, requiring us to use an iterative solver such as
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Krylov subspace methods.

Truncated SVD. TSVD is implemented by setting small singular values of A to

0 directly. Hence, the TSVD solution is given by

xTSVD “

k
ÿ

i“1

uTi b

σi
vi, (2.8)

where k ď N is the truncation rank that needs to be chosen. This solution is

equivalent to applying the following filter factors to (2.1):

φi “

$

’

’

&

’

’

%

1 for i ď k,

0 for i ą k.

By defining the filter factors, we can rewrite (2.8) as

xTSVD “

N
ÿ

i“1

φi
uTi b

σi
vi and xTSVD “ V Σ:

TSVDU
Tb,

where Σ:

TSVD “ diagpφ1{σ1, ¨ ¨ ¨ , φN{σNq “ diagp1{σ1, ¨ ¨ ¨ , 1{σk, 0, ¨ ¨ ¨ , 0q.

An important question associated with using TSVD is: how should we choose

the truncation rank k? Unfortunately, there is no perfect answer to this question.

The truncation rank k depends on the individual problem and there is no best way

to choose it for all problems. But there are guides that can be used to estimate k.

In Section 2.2, we introduce techniques for selecting λ for Tikhonov regularization,

and these techniques can be easily extended to TSVD. In practice, it is extremely
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hard to compute the full SVD of large matrices A. But we can still apply TSVD

regularization by approximating the leading (largest) singular values and vectors,

which will be further discussed in Chapter 3.

2.2 Choosing the Regularization Parameter for

Tikhonov Regularization

Techniques for choosing the regularization parameter for Tikhonov regularization

include the L-curve method [34], generalized cross validation and the discrepancy

principle [30]. These techniques require evaluating the residual

}Axλ ´ b}2 “ }UΣΣ:

λU
Tb´ b}2 “ }ΣΣ:

λb´U
Tb}2 “

N
ÿ

i“1

λpbi
σ2
i ` λ

,

where pb “ UTb. In addition to going over these three methods, we also explain how

to find the optimal regularization parameter, which requires us to know xex and can

be used for analysis purposes, but it is not so realistic in real imaging applications.

The L-curve method. This method is first proposed in [34], and requires solving

the Tikhonov regularized problem (2.2) repeatedly, each time with a different regu-

larization parameter λk. The range of λk should depend on the singular spectrum of

A, and an example would be taking equally spaced points between 10´8 and 10´3.

For each solution xλ obtained by solving the Tikhonov regularized problem with

λk, we plot the residual rk “ }Axλ ´ b}2 against the norm of the solution }xλ}2,
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which should result in an L-shaped curve. The λk corresponding to the “corner” of

the L-curve renders a solution that has a small residual and whose norm is small,

corresponding to the fit-to-data term and norm penalty term in the least squares

problem (2.2) or (2.7). The lcornor.m function from Regularization Tools [29] can

be used to locate the corner of the L-curve.

Generalized Cross Validation (GCV). As described in [30], the GCV method

looks for the regularization parameter λ that minimizes the GCV function

Gpλq “
N}Axλ ´ b}

2
2

´

TrpI ´AA:λq
¯2 “

N}ΣΣ:

λb´U
Tb}22

´

TrpI ´ΣΣ:

λq

¯2 “

N
´

řN
i“1

pbi
σ2
i`λ

¯2

´

řN
i“1

1
σ2
i`λ

¯2 ,

where A:λ “ V
TΣ:

λU
T as in (2.4), and the trace of I ´ΣΣ:

λ can be easily computed

since it is a diagonal matrix. The minimizer λ of Gpλq can be found using MATLAB’s

fminbnd function, by inputting an approximate bound for λ, for example, λmin “ 0

and λmax “ an approximation of σ1.

The Discrepancy Principle. To solve the original linear system (1.1) of interest

using Tikhonov regularization, we would like our solution xλ to satisfyAxλ “ b
ex`η,

so naturally, we have the relation Axλ ´ b “ η, which is called the discrepancy.

The discrepancy principle [30] assigns the regularization parameter λ such that the

following equation is satisfied

}Axλ ´ b}2 “ }η}2 i.e.,
N
ÿ

i“1

λpbi
σ2
i ` λ

´ }η}2 “ 0. (2.9)
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This approach requires that the norm, }η}2, of the Gaussian white noise η is available

to us. Since }η}2 cannot be exactly known, in practice the discrepancy principle is

implemented as }Axλ ´ b}2 “ µ}η}2, where µ Ç 1 is a user chosen parameter, e.g.,

µ “ 1.01. MATLAB’s fzero function may be used to solve this equation for the

unknown λ.

The Optimal Parameter. Choosing the optimal regularization parameter re-

quires the true solution xex, which differentiates this last method from the previous

three. We introduce this method in order to provide a basis for comparison with

other parameter setting techniques in numerical experiments. To find the best reg-

ularization parameter, we try to minimize the difference between xex and xλ:

}xex
´ xλ}

2
2 “ }xex

´ V Σ:

λU
Tb}22

“ }V Txex
´Σ:

λU
Tb}22

“ }pxex
´Σ:

λ
pb}22

“

N
ÿ

i“1

´ σipbi
σ2
i ` λ

´ pxi

¯2

, (2.10)

where pb “ UTb and pxex “ V xex. We need to look for the λ that minimizes (2.10),

and similar to GCV, we can use MATLAB’s fminbnd function for this purpose.

2.3 Other Regularization Terms

There are many other ways to define the regularization term Rpxq. Depending on

the desired properties in the solution x, we can choose Rpxq accordingly. All regu-
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larization methods serve the purpose of reducing the ill-conditioning in the problem.

Popular choices include:

• `1 regularization: Rpxq “ }x}1 is used to enforce sparsity in the solution;

• `p regularization: Rpxq “ }x}pp is a generalization of `1 and `2 regularization;

• Nuclear norm regularization: Rpxq “ }vec´1pxq}˚ “ }X}˚ is defined as the

sum of singular values of X “ vec´1pxq, which enforces a low rank constraint

implicitly;

• Total variation (TV) regularization: Rpxq “ TV pxq “
N
ÿ

i“1

b

rDhxs2i ` rDvxs2i ,

where Dh and Dv denote the finite difference approximations of the horizontal

and vertical first derivative operators; it is widely used in image restoration

applications, and is very useful in denoising.

While many methods exist for computing the solution to different types of reg-

ularized problem, we comment briefly here on one kind of method called “Itera-

tively Reweighted Norm” (IRN) [25, 61]. The idea is to express different regu-

larization terms Rpxq in terms of }Lpxqx}22. For example, for `1 regularization

Lpxq “ diag p1{
?
xq, where square root and division are done componentwise.

We immediately notice that the difficulty of this approach lies with the com-

putation of the regularization matrix Lpxq defined with respect to the solution x,

which is not available to us. A natural remedy is to use an approximation of x to

compute Lpxq, which leads us to Algorithm 1. This algorithm is often referred to as

iterative reweighted norm (IRN), which utilizes an inner-outer iteration approach: in

the ith outer iteration, the approximation Li (to be used in place of the true Lpxq)
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is computed using the solution xi´1 from the previous outer iteration; we then solve

the general Tikhonov regularized problem with regularization matrix Li to obtain

the updated solution xi by using an iterative method (i.e., inner iterations). Note

that some elements of xi may be zero, in which case we may have a division by zero

problem depending on the definition of Lpxq (e.g., Lpxq “ diag p1{
?
xq). This can

be avoided by adding a small constant to xi.

Algorithm 1 Iteratively Reweighted Norm

Inputs: A, b, L0 “ Lpx0q, λ
for i “ 1, 2, ¨ ¨ ¨ until a stopping criterion is satisfied do

Solve for xi “ arg minx }Ax´ b}
2
2 ` λ}Lix}

2
2

Update Li “ Lpxi´1q
end for
Output: xi’s

Many types of regularization terms can be expressed in a similar way, including

`p regularization for a general p value, TV regularization [19] and nuclear norm

regularization [18]. Therefore, the IRN approach can be applied to a wide range of

regularized least squares problems in a similar way. In Chapter 4, we elaborate on

how to apply IRN to the nuclear norm regularized (NNR) least squares problem which

enforces a low rank constraint. In particular, we use Krylov subspace methods (i.e.,

GMRES and LSQR) as inner solvers for IRN. One disadvantage of the IRN approach

is that the inner-outer iteration scheme is not very computationally efficient, since

we need to solve many least squares problems in a sequence. So a more efficient

alternative – flexible Krylov subspace methods [11, 63] will also be discussed.
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2.4 Iterative Regularization

Iterative regularization is different from direct regularization that adds a penalization

term Rpxq directly. Instead, it exploits the semi-convergence property of iterative

methods, and early stopping is performed when semi-convergence is achieved. That

is, we apply an iterative method to the linear system Ax “ b, and terminate it-

erations when a good solution is obtained, before noise starts to contaminate the

solution. Early stopping computes a solution that resembles TSVD regularization

[31, 69].

A number of iterative methods can be used for this purpose. In this section, we

address Krylov subspace methods, namely, GMRES and LSQR (discussed in Section

2.4.1). Implementations of these two methods can be found in MATLAB’s library

(functions gmres.m and lsqr.m). Their hybrid counterparts (discussed in Section

2.4.2), i.e., hybrid GMRES and hybrid LSQR [8, 12, 21] can be considered if we want

to combine Krylov subspace methods with Tikhonov regularization. Implementations

of the hybrid methods can be found in the MATLAB package IR Tools [17]. Note

that in this section, U and V no longer represent the singular vector matrices as in

the previous sections of this chapter.

2.4.1 GMRES and LSQR

The Generalized Minimum Residual (GMRES) method is proposed by Saad and

Schultz in 1986 [65]. It is an iterative method that aims at solving large scale linear

systems with square matrices A P RNˆN . At the mth iteration of GMRES, the
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approximate solution is xk P KkpA, bq under the assumption that the initial guess

x0 “ 0, where KkpA, bq is the Krylov subspace

KkpA, bq “ spantb,Ab,A2b, ¨ ¨ ¨ ,Akbu.

Let Vk “ rv1, ¨ ¨ ¨ ,vks P RNˆk be the orthonormal basis for the Krylov subspace

KkpA, bq. Specifically, v1 “ b{}b}. Since the solution xk is in KkpA, bq, it can be

written as Vky for some coefficients y. GMRES first uses the Arnoldi algorithm to

generate Vk P RNˆpk`1q whose columns are orthonormal, and an upper Hessenberg

matrix Hk P Rpk`1qˆk such that

AVk “ Vk`1Hk.

Then,

}Ax´ b}22 “ }AVky ´ b}
2
2

“ }Vk`1Hky ´ }b}v1}
2
2

“ }Vk`1pHky ´ }b}e1q}
2
2

“ }Hky ´ }b}e1}
2
2, (2.11)

where e1 “ p1, 0, ¨ ¨ ¨ , 0q P Rk`1. Hence the GMRES solution xk P KkpA, bq can

be easily obtained by solving the projected minimization problem (2.11) for the

minimizer yk, which is usually inexpensive to compute. That is, the solution xk “

V yk, where yk “ arg miny }Hky ´ }b}e1}2, which leads to the GMRES algorithm
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(Algorithm 2).

Algorithm 2 GMRES

1: Inputs: A, b
2: Take v1 “ b{}b}2
3: for i “ 1, 2, . . . until a stopping criterion is satisfied do
4: Compute w “ Avi
5: Compute hji “ w

Tvj for j “ 1, . . . , i and set w “ w ´
ři
j“1 hjivj

6: Set hi`1,i “ }w}2, and if hj`1,j ‰ 0, take vi`1 “ w{hi`1,i
7: end for
8: Compute yk “ arg miny }Hky ´ }b}2e1}

2
2 and take xk “ Vkyk

Another example of Krylov subspace methods is LSQR, which is proposed by

Paige and Sanders [54] to solve large and sparse linear systems. Different from

GMRES that can only be applied to square matrices A P RNˆN , LSQR can be

used on general rectangular shaped matrices A P RMˆN , where M is not necessarily

equal to N . It is based on Golub-Kahan Bidiagonalization (GKB) [24] and the

computed solution xk belongs to the Krylov subspace KkpATA,ATbq spanned by

columns of Vk. The kth iteration of GKB generates Vk “ rv1, ¨ ¨ ¨ ,vks P RNˆk and

Uk`1 “ ru1, ¨ ¨ ¨ ,uk`1s P RMˆpk`1q with orthonormal columns, and lower bidiagonal

matrix Bk`1 P Rpk`1qˆk such that

AVk “ Uk`1Bk.

Since the solution x P RpVkq, by letting x “ Vky, it follows that

}Ax´ b}22 “ }Bky ´ }b}e1}
2
2. (2.12)
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Steps to achieve (2.12) are omitted because they resemble those for deriving (2.11).

Therefore, LSQR computes the solution xk “ Vkyk for yk that solves miny }Bky ´

}b}e1}2. The LSQR algorithm is presented in Algorithm 3.

Algorithm 3 LSQR

1: Inputs: A, b
2: Take u1 “ b{}b}2
3: for i “ 1, 2, . . . , until a stopping criterion is satisfied do
4: Compute w “ ATui and w “ w ´ βi´1vi´1 if i ą 1
5: Set αi “ }w}2 and vi “ w{αi
6: Compute w “ ATvi, w “ w ´ αiui
7: Set βi “ }w}2 and ui`1 “ w{βi
8: Let bii “ αi and bi`1,i “ βi and if αi “ 0 or βi “ 0, break
9: end for

10:

11: Compute yk “ arg miny }Bky ´ }b}2e1}
2
2 and take xk “ Vkyk

2.4.2 Hybrid Krylov Methods

Krylov subspace methods such as GMRES are applied to the fit-to-data term }Ax´

b}22 alone, and iterative regularization is done by early stopping. If we want to apply

additional regularization such as Tikhonov, we can adopt hybrid Krylov methods.

Hybrid GMRES employs the Arnoldi-Tikhonov scheme [19], and rather than adding

the regularization term directly to }Ax´ b}22, it solves a regularized projected prob-

lem, i.e., the regularization term is applied to the projected problem }Hky´}b}e1}
2
2.

This is legitimate because we have shown that }Ax´ b}22 “ }Hky ´ }b}e1}
2
2, hence

min
y
}AVky ´ b}

2
2 ` λ}x}

2
2
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is equivalent to

min
y
}Hky ´ }b}e1}

2
2 ` λ}x}

2
2, (2.13)

where we have substituted x “ Vky. Therefore, we obtain the hybrid GMRES

algorithm, which simply replaces the minimization problem in step 8 of Algorithm 2

by (2.13).

Similar to hybrid GMRES, hybrid LSQR can be considered if additional regu-

larization is needed on top of iterative regularization. In the case of hybrid LSQR,

direct regularization is applied to the projected problem (2.12) so that in step 10

of Algorithm 3, the following regularized projected minimization problem is solved

instead

yk “ arg min
y

}Bky ´ }b}2e1}
2
2 ` λ}y}

2
2. (2.14)

Choosing λ for hybrid Krylov methods To choose a regularization parameter λ

for (2.13), one obvious choice would be to use parameter setting techniques described

in Section 2.2. However, in the case of discrepancy principle, Gazzola and Novati [20]

have proposed a secant approach that can be applied readily to Arnoldi-Tikhonov

based methods. The approach exploits the discrepancy principle to look for the λ

such that

}Axλ ´ b}2 “ }Hkyλ ´ }b}e1}2 “ }η}2

holds. While we can still solve for λ by running MATLAB’s fzero function on (2.9),

an alternative approach has been proposed in [20], which can efficiently compute a

regularization parameter λi for each GMRES iteration, and can be employed as a

stopping criteria. This discrepancy principle based approach starts with defining the
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discrepancy function

ψipλq “ }Axλ ´ b}2 “ }Hiyi,λ ´ }b}e1}2, (2.15)

where yi,λ is the solution to (2.13) using regularization parameter λ with i “ k.

Assuming that a good estimate ε « }η}2 is available, we say that the discrepancy

principle is satisfied as soon as

ψpλq ď µε, for µ Ç 1.

At each iteration i, consider the linear approximation of ψpλq

ψipλq « ψip0q ` βiλ, where βi “
ψipλi´1q ´ ψip0q

λi´1
.

The expression for βi is obtained from the equation ψipλi´1q “ ψip0q`βiλi´1, where

ψipλi´1q is available from the previous iteration, and ψip0q is the norm of the GMRES

residual at iteration i and can be easily computed with the SVD of Hi. To select λi,

we then force ψipλiq “ ψip0q ` βiλi, and by substituting βi, we get

λi “

∣∣∣∣ µε´ ψip0q

ψipλi´1q ´ ψip0q

∣∣∣∣λi´1. (2.16)

The absolute value is taken to avoid selecting a negative λi. Note that the SVD

of Hi, which was previously used to compute ψip0q, can again be used here to

solve for yi,λi . Using the discrepancy principle, iterations can be terminated as

soon as ψipλq ď µε. The updated hybrid GMRES using discrepancy principle as a
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regularization technique and stopping criteria is summarized in Algorithm 4.

Algorithm 4 Hybrid GMRES with discrepancy principle

1: Inputs: A, b
2: Take v1 “ b{}b}2
3: for i “ 1, 2, . . . until the discrepancy principle is satisfied do
4: Compute w “ Avi
5: Compute hji “ w

Tvj for j “ 1, . . . , i and set w “ w ´
ři
j“1 hjivj

6: Set hi`1,i “ }w}2, and if hj`1,j ‰ 0, take vi`1 “ w{hi`1,i
7: Select λi using (2.16)
8: Compute yi,λi “ arg miny }Hiy ´ }b}2e1}

2
2 ` λi}x}

2
2 and take xi,λ “ Viyi,λi

9: end for
10:

The discrepancy based approach for automatically selecting a regularization pa-

rameter for each iteration of hybrid-GMRES can also be generalized to hybrid LSQR,

for which the discrepancy function is now defined as

ψipλq “ }Biyi,λ ´ }b}2e1}2,

where yi,λ is the solution to (2.14) with i “ k by using regularization parameter λ.

In each iteration i, λi is updated using the same formula

λi “

∣∣∣∣ µε´ ψip0q

ψipλi´1q ´ ψip0q

∣∣∣∣λi´1. (2.17)

The hybrid LSQR method using the discrepancy principle for automatically setting

λ and early stopping is shown in Algorithm 5.
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Algorithm 5 Hybrid LSQR with discrepancy principle

1: Inputs: A, b
2: Take u1 “ b{}b}2
3: for i “ 1, 2, . . . , until a stopping criterion is satisfied do
4: Compute w “ ATui and w “ w ´ βi´1vi´1 if i ą 1
5: Set αi “ }w}2 and vi “ w{αi
6: Compute w “ ATvi, w “ w ´ αiui
7: Set βi “ }w}2 and ui`1 “ w{βi
8: Let bii “ αi and bi`1,i “ βi and if αi “ 0 or βi “ 0, break
9: Select λi using (2.17)

10: Compute yi,λi “ arg miny }Biy ´ }b}2e1}
2
2 ` λi}x}

2
2 and take xi,λ “ Viyi,λi

11: end for

2.4.3 Flexible Krylov Methods

Flexible Krylov methods are a class of linear solvers that can handle iteration-

dependent preconditioners: they were originally introduced in [63] for FGMRES,

where a preconditioner for GMRES was allowed to change from one iteration to the

next, either because at each iteration the preconditioner is implicitly defined by ap-

plying an iterative linear solver, or because the preconditioner can be updated with

newly-computed information (see [66] for an overview).

In the framework of regularizing linear solvers, flexible Krylov methods were pro-

posed in [11, 19, 22], where the iteration-dependent “preconditioner” was associated

to an iteratively reweighted norm approach to Tikhonov-like regularized problems

involving penalization terms expressed in some p-norm, 0 ă p ď 1. These “pre-

conditioners” have the effect of enforcing specific regularity into the approximation

subspace for the solution, rather than accelerating the convergence of the iterative

solvers. Leveraging flexible Krylov subspaces in this setting comes with the upside of

avoiding restarts of the iterative solver, which is the approach commonly used when
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adopting an iteratively reweighted norm method.

Consider first the case of a square A P RNˆN . In general, starting with x0 “ 0,

at the kth iteration, FGMRES updates a partial flexible Arnoldi factorization and

computes the kth approximate solution as follows:

AZk “ Vk`1Hk , xk “ Zkyk , where yk “ arg min
yPRk

}Hky ´ }b}2e1}2 , (2.18)

where Vk`1 “ rv1, . . . ,vk`1s P RNˆpk`1q has orthonormal columns, Hk P Rpk`1qˆk

is upper Hessenberg, and Zk “ rP1v1, . . . ,Pkvks P RNˆk has columns that span the

approximation subspace for the solution (Pi is an iteration-dependent preconditioner

that is applied to vi). The flexible GMRES method (FGMRES) uses the flexible

Arnoldi process [19] to generate iterates of the form xk “ Zkyk, where the vector yk

is computed as yk “ arg miny

›

›

›
Hky ´ }b}2e1

›

›

›

2

2
.

The extension to more general matrices A P RMˆN , with M not necessarily equal

to N , can be naturally devised considering the flexible Golub-Kahan (FGK) process

[11]. Taking x0 “ 0 as the initial guess, the kth FGK iteration updates partial

factorizations of the form

AZk “ Uk`1Mk and ATUk`1 “ Vk`1Tk`1, (2.19)

where the columns of Uk`1 P RMˆpk`1q, Vk`1 P RNˆpk`1q are orthonormal, Mk P

Rpk`1qˆk is upper Hessenberg, Tk`1 P Rpk`1qˆpk`1q is upper triangular, and Zk “

rP1v1, . . . ,Pkvks P RNˆk has columns that span the approximation subspace for the

solution (Pi is an iteration-dependent preconditioner that is applied to vi). The
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flexible LSQR method (FLSQR) uses the FGK process (2.19) to generate iterates

of the form xk “ Zkyk, where the vector yk is computed as yk “ arg miny

›

›

›
Mky ´

}b}2e1

›

›

›

2

2
.
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Chapter 3

TSVD approximations

In this Chapter, we introduce methods based on Kronecker product summations

for approximating the truncated SVD (TSVD) of A. Such approximations can be

thought of as a low-rank approximation to the matrix being decomposed, and can be

used to approximate the solution to the linear system 1.1. The new approximation

approach discussed in this chapter is based on the paper jointly published by Garvey,

Nagy and the author of this thesis [16]; see also Garvey’s Ph.D. dissertation [15]. As

described in Chapter 2, the solution to (1.1) can be computed directly if the full SVD

of A is available. However, computing the full SVD is very expensive both time-wise

and storage-wise, and is in general infeasible for large matrices. For example, on a

personal computer, MATLAB’s svd function can compute the full SVD of matrices

of sizes up to 4096 by 4096 without much difficulty, but as matrices grow larger, a

typical personal computer will run out of memory. That is, it is generally infeasible

for image restoration problems larger than 64 by 64 pixels. For larger matrices,
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if only a few (e.g., 10) leading singular values and vectors are needed, MATLAB’s

svds function, which uses iterative Golub-Kahan Bidiagonalization [24, 47] for the

estimation, can be used. However, svds is not attractive in our applications since we

may need to compute a few thousand singular values and vectors. Therefore, other

efficient approximation methods need to be exploited. The focus of this Chapter

is computing TSVD approximations for structured square matrices A P RNˆN that

can be found in the image deblurring application.

3.1 The Kronecker Product

Let G P Rnˆn and H P Rnˆn be square matrices with entries gij and hij. Then the

Kronecker product of G and H is defined as

GbH “

»

—

—

—

—

–

g11H ¨ ¨ ¨ g1nH

...
...

gn1H ¨ ¨ ¨ gnnH

fi

ffi

ffi

ffi

ffi

fl

P RNˆN ,

where N “ n2. Useful properties of the Kronecker product include:

• pAbBqT “ AT bBT ,

• pAbBqpC bDq “ AC bBD,

• pBT bAqvecpXq “ vecpAXBq,

given that the matrices are of appropriate sizes such that the matrix products AC,

BD and AXB can be formed.
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Let the SVDs of G and H be G “ UGΣGV
T
G and H “ UHΣHV

T
H respectively.

Suppose that A is the Kronecker product of G and H , then we have that

A “ GbH “ pUGΣGV
T
G q b pUHΣHV

T
H q

“ pUG bUHqpΣG bΣHqpVG b VHq
T ,

where we have applied properties of the Kronecker product. Note that pUG bUHq

is an orthogonal matrix since

pUG bUHq
T
pUG bUHq “ pUT

G bU
T
HqpUG bUHq

“ pUT
GUGq b pU

T
HUHq “ I b I “ I,

and pUG b UHqpUG b UHq
T “ I can be obtained in the same way. We can also

show that VG b VH is an orthogonal matrix. Note that ΣG and ΣH are diagonal

matrices with monotonically non-increasing diagonal entries. Therefore, ΣGbΣH is

also a diagonal matrix with nonnegative diagonal entries, but they are not necessarily

monotonically decreasing. We can apply a permutation matrix P P RNˆN to pΣGb

ΣHq to reorder the diagonal so that P T pΣGbΣHqP has a decreasing diagonal. As

a result, we obtain a proper SVD of A:

A “
`

pUG bUHqP
˘

loooooooomoooooooon

U

`

P T
pΣG bΣHqP

˘

looooooooooomooooooooooon

Σ

`

pVG b VHqP
˘T

looooooooomooooooooon

V T

. (3.1)

This analysis suggests that if A P RNˆN can be written as a Kronecker product

of two small matrices G, H P Rnˆn, then we can simply compute the SVDs of
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G and H to easily obtain the SVD of A. In this way, complexity is reduced to

Opn3q “ OpN3{2q from OpN3q (if we directly compute the SVD of A).

3.2 Kronecker Product Summation

For a general matrix A, it is hardly the case that it can be decomposed as GbH .

However, we may decompose A as a sum of Kronecker products Gi bHi for i “

1, 2, ¨ ¨ ¨ , R, i.e.,

A “

R
ÿ

i“1

Gi bHi,

where the number of terms R is called the Kronecker rank of A. The computational

approach to obtain the Kronecker product summation is proposed by Van Loan and

Pitsianis [68], and requires taking the SVD of a rearrangement rA P RNˆN of matrix

A. By doing so, the first term of the sum G1 bH1 is computed such that

G1 bH1 “ arg min
G,H

}A´GbH}2F .

So intuitively, the first term G1 bH1 is the best Kronecker product approximation

of A. It is the most “significant” term in the summation and contains the most

information of A compared to the remaining terms. Therefore, a natural SVD ap-

proximation of A is to take the SVD of G1 bH1, i.e., if G1 “ UG1ΣG1V
T
G1

and
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H1 “ UH1ΣH1V
T
H1

, and

G1 bH1 “ pUG1ΣG1V
T
G1
q b pUH1ΣH1V

T
H1
q

“ pUG1 bUH1qpΣG1 bΣH1qpVG1 b VH1q
T

“ UA1ΣA1V
T
A1
,

so the SVD approximation to A is

A « UA1ΣA1V
T
A1
. (3.2)

Note that the singular values in ΣA1 are not yet ordered. This approximation uses

only the first term in the Kronecker product summation and discards the information

in the remaining terms, so naturally, the accuracy of UA1ΣA1V
T
A1

depends greatly

on how closely G1bH1 approximates A, which depends greatly on the structure of

A.

To use more Kronecker product terms for the SVD approximation, Nagy and

Kamm [41, 52] proposed the following

A « UA1Σ̀V
T
A1
, (3.3)

where UA1 and VA1 are the same as in (3.2), and Σ̀ “ diag pUT
A1
AVA1q. This

approach is better than (3.2) in the sense that it uses more information than just

G1 and H1. However, the disadvantage is also very clear – the diagonal entries of Σ̀

can be negative, which violates the definition of singular values. Therefore, although
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both (3.2) and (3.3) are very computationally efficient, we still want to keep looking

for better approximation approaches.

3.3 A New TSVD Approximation Method

via Kronecker Product Summations

The disadvantages of existing approaches lead to the question of how to use more

terms in the Kronecker product summations in order to obtain a more accurate SVD

approximation, while strictly adhering to the requirements of the SVD. We now

propose an alternative approximation method described in [15, 16]. Starting with

the Kronecker sum decomposition A “

R
ÿ

i“1

Gi bHi, and the SVD of the first term

G1 bH1 “ UA1ΣA1V
T
A1

, we have that

A “

R
ÿ

i“1

Gi bHi

“ UA1ΣA1V
T
A1
`

R
ÿ

i“2

Gi bHi

“ UA1

ˆ

ΣA1 `U
T
A1

´

R
ÿ

i“2

Gi bHi

¯

VA1

looooooooooooomooooooooooooon

W

˙

V T
A1

“ UA1

´

ΣA1 `W
¯

V T
A1
.

In this new method we propose, we focus on computing the k largest singular

values and corresponding left and right singular vectors (i.e., to obtain a TSVD
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approximation). Hence, we need to apply a reordering matrix P P RNˆN to sort the

singular values of ΣA1 in descending order in the same way as for (3.1). We obtain

A “ UA1P
´

P T
pΣA1 `W qP

¯

pVA1P q
T

“ sUA1

´

sΣA1 `
ĎW

¯

sV T
A1
,

where sUA1 “ UA1P , sVA1 “ VA1P , sΣA1 “ P
TΣA1P and ĎW “ P TWP . Since we

are interested in the k largest singular values, we further partition

sΣA1 “

»

—

–

sΣA1,1:k 0

0 sΣA1,k`1:N

fi

ffi

fl

, (3.4)

where sΣA1,1:k P Rkˆk and sΣA1,k`1:N P RN´kˆN´k. We also partition ĎW “

»

—

–

ĎW11
ĎW12

ĎW21
ĎW22

fi

ffi

fl

,

where the blocks are of the same dimension as the blocks of sΣA1 in (3.4). Using this

notation,
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A “ sUA1

¨

˚

˝

»

—

–

sΣA1,1:k 0

0 sΣA1,k`1:N

fi

ffi

fl

`

»

—

–

ĎW11
ĎW12

ĎW21
ĎW22

fi

ffi

fl

˛

‹

‚

sV T
A1

“ sUA1

¨

˚

˝

»

—

–

sΣA1,1:k `
ĎW11 0

0 sΣA1,k`1:N

fi

ffi

fl

`

»

—

–

0 ĎW12

ĎW21
ĎW22

fi

ffi

fl

˛

‹

‚

sV T
A1

“ sUA1

¨

˚

˝

»

—

–

UTΣTV
T
T 0

0 sΣA1,k`1:N

fi

ffi

fl

`

»

—

–

0 ĎW12

ĎW21
ĎW22

fi

ffi

fl

˛

‹

‚

sV T
A1

“ sUA1

»

—

–

UT 0

0 I

fi

ffi

fl

¨

˚

˝

»

—

–

ΣT 0

0 sΣA1,k`1:N

fi

ffi

fl

`

»

—

–

0 UT
T
ĎW12

ĎW21VT ĎW22

fi

ffi

fl

˛

‹

‚

»

—

–

V T
T 0

0 I

fi

ffi

fl

sV T
A1

“ qU

¨

˚

˝

»

—

–

ΣT 0

0 sΣA1,k`1:N

fi

ffi

fl

`

»

—

–

0 xW12

xW21
ĎW22

fi

ffi

fl

˛

‹

‚

qV T , (3.5)

where we have defined xW12 “ U
T
T
ĎW12, xW21 “ ĎW21VT , qU “ sUA1

»

—

–

UT 0

0 I

fi

ffi

fl

and

qV “ sVA1

»

—

–

VT 0

0 I

fi

ffi

fl

. Moreover, we have used the full SVD of T “ sΣA1,1:k`
ĎW11 “

UTΣTV
T
T in the third step of the derivation. Although computing the full SVD of

A is impractical when N is large, it is feasible to compute the full SVD of T if k is

moderate. From (3.5), we are able to form a TSVD approximation, qATSVD of A

qATSVD « qU1:k
qΣ1:k

qV T
1:k, (3.6)



37

where qU1:k P RNˆk and qV1:k P RNˆk are the submatrices of qU and qV containing

their first k columns respectively, and qΣ1:k “ ΣT for consistency of notation.

3.3.1 Approximation Quality

In this subsection, we summarize theoretical results that provide bounds for different

types of approximation errors, which is the author’s main contribution to this joint

work. Before we get started, a few more notations need to be introduced. Since we

are bounding errors, true quantities need to be referred to. Let the true SVD of A

be

A “ UΣV T
“

„

U1:k Uk`1:N



»

—

–

Σ1:k 0

0 Σk`1:N

fi

ffi

fl

„

V1:k Vk`1:N

T

,

and the true rank-k TSVD approximation of A (i.e., the best rank-k approximation

of A) is therefore defined as

ATSVD “ U1:kΣ1:kV
T
1:k. (3.7)

Sequentially, the true TSVD filtered solution xTSVD and the approximate TSVD

solution qxTSVD are

xTSVD “ V1:kΣ
´1
1:kU

T
1:kb and qxTSVD “ qV1:k

qΣ´1
1:k

qUT
1:kb (3.8)

We start the error analysis with the bound for the singular vector subspaces,
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similar to the results presented by Fierro and Bunch [13] for the case of URV and

ULV factorizations. The “signal” subspace of A is spanned by U1:k and the “noise”

subspace is spanned by Vk`1:N . The distance between the approximated and true

signal and noise subspaces are measured by

}UT
1:k

qUk`1:N}2 and }V T
1:k

qVk`1:N}2,

which represent one measure for the quality of the TSVD approximation.

Theorem 3.3.1. Consider the factorizations of A given in equations (3.7) and (3.6),

where σi denotes a true singular value and qσi denotes an approximate singular value.

Then

}UT
1:k

qUk`1:N} ď
σk}xW21} ` }xW12}}ΣK1,k`1:N `

ĎW22}

σ2
k ´ }ΣK1,k`1:N `

ĎW22}
2

and

}V T
1:k

qVk`1:N} ď
σk}xW12} ` }xW21} }ΣK1,k`1:N `

ĎW22}

σ2
k ´ }ΣK1,k`1:N `

ĎW22}
2

We refer reders to [16] for the full proof of Theorem 3.3.1. This Theorem is the

foundation for proving error bounds for the pseudoinverse ATSVD and approximate

solution xTSVD shown below.

Theorem 3.3.2. Consider the true TSVD operator ATSVD defined in (3.7) and its

approximation qATSVD given by (3.6). Let qσi be the ith diagonal entry of qΣ1:k, and

define ϕ “
`

1`
?

5
˘

{2. Then

›

›

›
A:TSVD ´

qA:TSVD

›

›

›

›

›

›
A:TSVD

›

›

›

ď
ϕ

qσk

´

σ1}V
T
1:k

qVk`1:N} ` }xW21}

¯

.
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Proof. The proof starts with a perturbation result for pseudoinverses presented in

[70]: If C is an acute perturbation [49] of D, with D “ C ` δC, then

}C:
´D:

} ď ϕ}C:
}}D:

}}δC}. (3.9)

Since

}ATSVD ´ qATSVD} “ }AV1:kV
T
1:k ´ pA

qV1:k
qV T
1:k ´

qUk`1:N
xW21

qV T
1:kq}

ď }A}}V1:kV
T
1:k ´

qV1:k
qV T
1:k} ` }

xW21},

and it is proved in [24] that }V1:kV
T
1:k ´

qV1:k
qV T
1:k} “ }V

T
1:k

qVk`1:N}, we get

}ATSVD ´ qATSVD} ď }A}}V
T
1:k

qVk`1:N} ` }xW21}.

qATSVD is an acute perturbation of ATSVD, so by (3.9),

›

›

›
A:TSVD ´

qA:TSVD

›

›

›
ď ϕ}A:TSVD}}

qA:TSVD}

´

}A}}V T
1:k

qVk`1:N} ` }xW21}

¯

. (3.10)

Dividing both sides of the inequality by }A:TSVD}, we obtain

›

›

›
A:TSVD ´

qA:TSVD

›

›

›

›

›

›
A:TSVD

›

›

›

ď ϕ} qA:TSVD}

´

}A}}V T
1:k

qVk`1:N} ` }xW21}

¯

“
ϕ

qσk

´

σ1}V
T
1:k

qVk`1:N} ` }xW21}

¯

.
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Theorem 3.3.3. Consider the true and approximate TSVD filtered solutions xTSVD

and pxTSVD as in (3.8). Further, define the residual r “ b´AxTSVD. Then

}xTSVD ´ qxTSVD}

}xTSVD}
ď

ϕσ1

σkpσk

b

1´ }r}2

}b}2

´

σ1}V
T
1:k

qVk`1:N} ` }xW21}

¯

. (3.11)

Proof. From inequality (3.10), we obtain

}xTSVD ´ qxTSVD} ď

›

›

›
A:TSVD ´

qA:TSVD

›

›

›
}b}

ď ϕ}A:TSVD}}
qA:TSVD}

´

}A}}AT
1:k

qVk`1:N} ` }xW21}

¯

}d}.

By the triangle inequality and submultiplicativity of induced norms,

}xTSVD} ě
}b}

}A}

d

1´
}r}2

}b}2
,

it follows that

}xTSVD ´ qxTSVD}

}xTSVD}
ď

ϕ
b

1´ }r}2

}b}2

}A:TSVD}}
qA:TSVD}}A}

´

}A}}V T
1:k

qVk`1:N} ` }xW21}

¯

“
ϕσ1

σkpσk

b

1´ }r}2

}b}2

´

σ1}V
T
1:k

qVk`1:N} ` }xW21}

¯

.

These two theorems tell us that the quality of the approximate pseudoinverse and

the approximate TSVD solution is dependent on three conditions:

• The distance between the approximate and true noise subspaces;
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• The ratio of the largest singular value σ1 of A to the kth approximate singular

value qσk;

• The size of }xW21}, which depends on whetherG1bH1 is a good approximation

to A and whether k is a good truncation rank.

This newly proposed TSVD approximation method is supported by both the-

oretical and numerical results, in which the new method computes more accurate

solutions than (3.2) and (3.3). Our new method can also approximate singular val-

ues and vectors more efficiently than other well-known schemes such as randomized

methods [27] and Golub-Kahan bidiagonalization [24, 47]. In this thesis, we omit

details on method implementation and numerical experiments, and refer readers to

[15] and [16] for a thorough introduction of this new approach.
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Chapter 4

Low Rank Regularization:

Derivation of New Methods

In the Chapter 3, we discussed Kronecker product summations based methods for

approximating the TSVD of A. TSVD is a singular value filtering type of regu-

larization scheme that eliminates the noise contribution caused by small singular

values of A, but there is not an explicit regularization term Rpxq associated with

it. In this Chapter, we move on to a different type of regularization – nuclear norm

regularization (NNR), for which Rpxq “ }vec´1pxq}˚ “ }X}˚, and describe how

to solve the nuclear norm regularized problem using Krylov subspace methods and

novel preconditioners. We introduce methods that target on both square matrices

A P RNˆN and rectangular matrices A P RMˆN . These new methods are proposed

in [18], which is the author’s joint work with Gazzola and Nagy. We apply nuclear

norm regularization to imaging inverse problems that can be formulated as linear
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systems

Ax “ b, (4.1)

where A, x and b are defined in the exact same way as in (1.1), in order to implicitly

enforce a low rank constraint by penalizing the sum of singular values of the solu-

tion. Indeed, two-dimensional images are often assumed to have low-rank or to be

well-approximated by low-rank two-dimensional arrays (see [57] and the references

therein).

Numerical linear algebra solvers for the estimation of low-rank solutions to linear

systems have been developed in the literature, mainly targeting well-posed linear

discrete problems, such as those arising when considering the numerical solution of

stochastic PDEs (see [48] and the references therein). In particular, the authors

of [48] devise a restarted GMRES-like method (RS-LR-GMRES) that involves low-

rank projections of the basis vectors of the solution subspace, as well as a low-rank

projection of the current solution at the end of each cycle. Since, in general, the

basic operations involved in standard GMRES (such as matrix-vector products and

vector sums) increase the ranks of the computed quantities, low-rank projections are

needed to assure that the computed solution is low-rank.

In the framework of compressive sensing, the authors of [6] consider a modi-

fied version of the conjugate gradient method that incorporates appropriate rank-

truncation operations. All the methods mentioned so far employ, often in a heuristic

way, Krylov subspace methods together with rank-reduction operations (e.g., projec-

tions onto a chosen set of low-rank matrices). Since many Krylov subspace methods

are iterative regularization methods for (4.1), this brings us to the question of how
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incorporating rank-reduction operations would affect the solution of the discrete in-

verse problem (4.1), with a particular focus on imaging applications.

4.1 Nuclear Norm Regularization

Low-rank matrix estimation can be naturally formulated as a nonconvex optimization

problem having either:

(i) a least-squares data fitting term as objective function and a rank constraint;

or

(ii) the rank of X “ vec´1pxq as objective function and a constraint on the least-

squares data fitting term.

The last instance is commonly referred to as affine rank minimization problem, and

both formulations are in general NP-hard [57]. In this Chapter, we consider the

unconstrained and convex optimization problem

min
x
}Ax´ b}22 ` λ}vec´1pxq}˚ , (4.2)

where λ ą 0 is a regularization parameter and } ¨ }˚ denotes the nuclear norm of

vec´1pxq “X, defined as the sum of the singular values of X. If the singular value

decomposition (SVD) of X is given by X “ UXΣXV
T
X , where UX ,VX P Rnˆn are

orthogonal matrices, and ΣX P Rnˆn is the diagonal matrix whose diagonal entries
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are σ1pXq ě ¨ ¨ ¨ ě σnpXq ě 0, then

}X}˚ “
n
ÿ

i“1

σipXq .

Problem (4.2) is refered to as a nuclear norm regularized (NNR) problem. In par-

ticular, the nuclear norm is a convex function that has been proven to be the best

convex lower approximation of the rank function over the set of matrices X such

that }X}2 ď 1 (see [57] and the references therein). The nuclear norm has been used

in many applications, such as low-rank matrix completion and compressed sensing;

see, e.g., [7, 23, 43, 50, 57], where the constrained formulation of problem (4.2) has

also been considered (note that, for a proper choice of λ ą 0, constrained and uncon-

strained formulations are equivalent; see, e.g., [60]). In the framework of compressive

sensing, under the assumption that the matrix A satisfies a certain null-space prop-

erty, recovery guarantees for the affine rank minimization problem are proven in

[14, 51]. We also consider the following formulation

min
x
}Ax´b}22`λ}vec´1pxq}˚,p , where }X}˚,p “

n
ÿ

i“1

pσipXqq
p, 0 ă p ď 1 . (4.3)

Problem (4.3) is refereed to as NNRp problem, and it generalizes problem (4.2) (which

is obtained taking p “ 1 in (4.3)). The constrained version of (4.3) is already consid-

ered in [51], where the authors empirically show an improved recovery performance

of the constrained formulation of problem (4.3) with p ă 1 with respect to p “ 1.

Note, however, that the choice p ă 1 in (4.3) results in a nonconvex minimization

problem.
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4.2 Derivation of New Methods

In the following, we will quite often interchange x and X and, with a slight abuse

of notations, we will denote the action of a linear operator on x or X by ApXq “

AX “ Ax, and the action of the adjoint operator by A˚pY q “ A˚Y “ ATvecpY q.

Define the smooth Schatten-p function as

Sγp pXq “ TrppXTX ` γIqp{2q , with γ ą 0 .

Note that Sγp pXq is differentiable for p ą 0 and convex for p ě 1. In particular, for

p “ 1 and γ “ 0 (i.e., no smoothing),

S0
1 pXq “ TrppXTXq1{2q “ }X}˚ .

We start by considering the following smooth approximation to (4.3):

min
XPRnˆn

}ApXq ´B}2F ` λSγp pXq . (4.4)

The following derivations are valid for p ą 0 (and we keep them generic, being aware

that p “ 1 approximates (4.2)). The optimality conditions associated to (4.4) read

0 “ ∇X
`

}ApXq ´B}2F ` λSγp pXq
˘

“ 2A˚pApXq ´Bq ` λ ppXXT
` γIqp{2´1X , (4.5)
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where we have used that

∇X TrppXTX ` γIqp{2q “ pXpXTX ` γIqp{2´1 “ ppXXT
` γIqp{2´1X .

Equivalently, the nonlinear system of equations (4.5) with respect to X can be

expressed as

X “

´

A˚A` pλpXXT
` γIqp{2´1

¯´1

A˚B

“

´

A˚A` pλppXXT
` γIqp{4´1{2qT pXXT

` γIqp{4´1{2
¯´1

A˚B ,

with pλ “ λ p{2, which is naturally associated to the following fixed-point iteration

scheme

Xk`1 “

´

A˚A` pλppXkX
T
k ` γIq

p{4´1{2
q
T
pXkX

T
k ` γIq

p{4´1{2
¯´1

A˚B , (4.6)

which leads to the solution of (4.4). Equivalently,

Xk`1 “ arg min
X

›

›

›

›

›

›

›

»

—

–

A
a

pλpXkX
T
k ` γIq

p{4´1{2

fi

ffi

fl

X ´

»

—

–

B

0

fi

ffi

fl

›

›

›

›

›

›

›

2

F

,

i.e., (4.6) are the normal equations associated to the penalized least squares problem

written above or, equivalently,

Xk`1 “ arg min
X
}AX ´B}2F `

pλ
›

›pXkX
T
k ` γIq

p{4´1{2X
›

›

2

F
. (4.7)
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We now reformulate problem (4.7) in vectorial form.

Let UXk
ΣXk

V T
Xk

“ Xk be the SVD of Xk; thanks to the invariance of the

Frobenius norm under orthogonal transformations, the regularization term in the

above problem can be rewritten as

›

›pXkX
T
k ` γIq

p{4´1{2X
›

›

2

F
“

›

›UXk
pΣ2

Xk
` γIqp{4´1{2UT

Xk
X
›

›

2

F

“
›

›pΣ2
Xk
` γIqp{4´1{2UT

Xk
XVXk

›

›

2

F
.

Using well-known Kronecker product properties

›

›pΣ2
Xk
` γIqp{4´1{2UT

Xk
XVXk

›

›

2

F
“

›

›vec
`

pΣ2
Xk
` γIqp{4´1{2UT

Xk
XVXk

˘
›

›

2

2

“
›

›

`

V T
Xk
b
`

pΣ2
Xk
` γIqp{4´1{2UT

Xk

˘˘

x
›

›

2

2

“
›

›

`

I b pΣ2
Xk
` γIqp{4´1{2

˘ `

V T
Xk
bUT

Xk

˘

x
›

›

2

2
.

Problem (4.7) is therefore equivalent to

xk`1 “ arg min
x
}Ax´ b}22 `

pλ}
`

I b pΣ2
Xk
` γIqp{4´1{2

˘

loooooooooooooomoooooooooooooon

“:pW γ
p qk

“:Sk
hkkkkkkkikkkkkkkj

`

V T
Xk
bUT

Xk

˘

x}22 . (4.8)

In the above formulation, pW γ
p qk is a diagonal weighting matrix and Sk is an orthog-

onal matrix; both pW γ
p qk and Sk depend on the current approximation xk of the

solution x. Intuitively, the matrix Sk maps x into the “singular value domain” of

Xk (and acts as an iteration-dependent sparsity transform), and the matrix pW γ
p qk

assigns suitable weights that allow to approximate a p-norm of the singular values.
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Therefore, the penalization term in (4.8) can be interpreted as a reweighted vectorial

2-norm, with respect to a transformation of the solution x. For this reason, the

proposed approach is called “IRN-NNRp” and is summarized in Algorithm 6.

Algorithm 6 IRN-NNRp

1:

2: Inputs: A, b, pW γ
p q0 “ I, S0 “ I

3: for k “ 0, 1, . . . until a stopping criterion is satisfied do
4: Solve problem (4.8)
5: “Decrease” γ
6: Update pW γ

p qk`1 and Sk`1
7: end for

4.3 Solution of problem (4.8) via Krylov methods

In this section, we derive new strategies for the efficient solution of the sequence of

sub-problems (4.8) appearing in Algorithm 6. First, we rewrite problem (4.8) using

an appropriate change of variable as

pxk`1 “ arg min
px
}ASTk pW

γ
p q
´1
k px´ b}22 `

pλ}px}22, with px “ pW γ
p qkSkx . (4.9)

Note that

STk “ S
´1
k “ VXk

bUXk
and pW γ

p q
´1
k “ I b pΣ2

Xk
` γIq1{2´p{4 , (4.10)

so that the above transformations (inversion of an orthogonal and a diagonal ma-

trix) are numerically affordable by exploiting properties of Kronecker products. The

Tikhonov-regularized problem (4.9) in standard form is equivalent to the Tikhonov-
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regularized problem (4.8) in general form. Many Krylov subspace methods based on

the Golub-Kahan Bidiagonalization (GKB) or Arnoldi algorithms can be employed

to approximate the solution of (4.9), e.g., LSQR and GMRES, as explained in Section

2.4. Moreover, if the regularization parameter pλ is not known a priori, many efficient

strategies to set its value adaptively within the sequence of projected problems can

be used (i.e., in the framework of hybrid methods; see Section 2.4.2 and [21, 44]).

The matrices Sk and pW γ
p q
´1
k can be formally thought of as preconditioners for the

original problem (4.1), whose purpose is to enforce additional regularization into the

solution subspace, rather than speeding-up the convergence of linear solvers applied

to (4.1).

4.3.1 Methods Based on the GKB Algorithm

The mth step of the GKB algorithm applied to the matrixASTk pW
γ
p q
´1
k with starting

vector b (i.e., taking x0 “ 0) can be expressed by the following partial matrix

factorizations

pASTk pW
γ
p q
´1
k qVm “ Um`1Bm and ppW γ

p q
´1
k SkA

T
qUm`1 “ Vm`1B

T
m`1, (4.11)

where Uj P RMˆj and Vj P RNˆj (with j “ m,m ` 1 and Uje1 “ b{}b}2) have

orthonormal columns, and Bm`1 P Rpm`1qˆpm`1q is lower bidiagonal (with Bm ob-

tained by removing the last column of Bm`1). The orthonormal columns of Vm are
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such that

RpVmq “ Km
`

ppW γ
p q
´1
k SkA

T
qpASTk pW

γ
p q
´1
k q, ppW

γ
p q
´1
k SkA

T
qb
˘

.

We find an approximate solution of (4.9) by imposing px P RpVmq, i.e., pxm “ Vmym,

where, by exploiting the first decomposition in (4.11) and the properties of the ma-

trices appearing therein, ym P Rm is such that

ym “ arg min
yPRm

}Bmy ´ }b}2e1}
2
2 `

pλm}y}
2
2 . (4.12)

We used the notation pλm for the regularization parameter to highlight that its value

can be adaptively set within the iterations. The approximate solution to problem

(4.8) is such that

x “ STk pW
γ
p q
´1
k px P Km

`

pSTk pW
γ
p q
´2
k SkqA

TA, pSTk pW
γ
p q
´2
k SkqA

Tb
˘

. (4.13)

Looking at the above approximation subspace for the solution x, it is evident that

the “preconditioner” acts by first mapping into the “singular value domain” (by

applying Sk), enforcing sparsity in the singular values (by reweighting with pW γ
p q
´2
k ),

and eventually transforming back into the “solution domain” (by applying STk ).

4.3.2 Methods Based on the Arnoldi Algorithm

IfA is square, themth step of the Arnoldi algorithm applied to the matrixASTk pW
γ
p q
´1
k

with starting vector b (i.e., taking x0 “ 0) can be expressed by the following partial
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matrix factorization

pASTk pW
γ
p q
´1
k qVm “ Vm`1Hm , (4.14)

where Vj P RNˆj (with j “ m,m ` 1 and Vje1 “ b{}b}2) has orthonormal columns

such that

RpVmq “ Km
`

ASTk pW
γ
p q
´1
k , b

˘

,

and Hm P Rpm`1qˆm is upper Hessenberg. Similarly to the GKB case, we find an

approximate solution of (4.9) by imposing px P RpVmq and by solving a projected

Tikhonov problem of order m. The approximate solution to problem (4.8) is such

that

x “ STk pW
γ
p q
´1
k px P STk pW

γ
p q
´1
k Km

`

ASTk pW
γ
p q
´1
k , b

˘

,

where

STk pW
γ
p q
´1
k Km

`

ASTk pW
γ
p q
´1
k , b

˘

“ spantSTk pW
γ
p q
´1
k b, . . . ,

`

STk pW
γ
p q
´1
k A

˘m´1
STk pW

γ
p q
´1
k bu

“ Km
`

STk pW
γ
p q
´1
k A,S

T
k pW

γ
p q
´1
k b

˘

.

Contrarily to the GKB case, we immediately notice that, in this context, x does not

belong to a meaningful approximation subspace. Indeed, just by looking at the first

vector: b is in the image space and pW γ
p q
´1
k is supposed to act on the singular value

space of Xk, so pW γ
p q
´1
k b is hard to interpret; furthermore, STk is supposed to link

the singular value space of Xk to the image space, so STk pW
γ
p q
´1
k b is also hard for

us to interpret. Although the generated solution subspace is not meaningful for our
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applications, it may still have the potential to be a good subspace in other contexts.

Similarly to what is proposed in [4, 11], where the Arnoldi algorithm is applied to

a regularized problem that enforces sparsity in the wavelet domain, we propose to

fix this issue by incorporating Sk also as an orthogonal left “preconditioner” for the

original system (4.1) so that, by exploiting the invariance of the vector 2-norm under

orthogonal transformations, problem (4.9) can be equivalently reformulated as

pxk`1 “ arg min
px
}SkpAS

T
k pW

γ
p q
´1
k px´ bq}22 `

pλ}px}22, with px “ pW γ
p qkSkx . (4.15)

The (right and left) preconditioned Arnoldi algorithm applied to problem (4.15) can

now be expressed by the following partial matrix factorization

pSkAS
T
k pW

γ
p q
´1
k qVm “ Vm`1Hm . (4.16)

We find an approximate solution of (4.15) by imposing

px P RpVmq “ KmpSkASTkW´1,Skbq,

i.e., pxm “ Vmym, where, by exploiting (4.16) and the properties of the matrices

appearing therein, ym P Rm is such that

ym “ arg min
yPRm

}Hmy ´ }b}2e1}
2
2 `

pλm}y}
2
2 . (4.17)



54

Hence

x P STk pW
γ
p q
´1
k KmpSkAS

T
k pW

γ
p q
´1
k ,Skbq

“ KmpSTk pW γ
p q
´1
k SkA,S

T
k pW

γ
p q
´1
k Skbq , (4.18)

which is suitable for approximating the solution. The new methods based on the

GKB algorithm (for generic matrices) and Arnoldi algorithm (only if A P RNˆN) are

called “IRN-LSQR-NNRp” and “IRN-GMRES-NNRp”, respectively, and are sum-

marized in Algorithm 7.

Algorithm 7 IRN-LSQR-NNRp and IRN-GMRES-NNRp

1: Inputs: A, b, pW γ
p q0 “ I, S0 “ I

2: for k “ 0, 1, . . . until a stopping criterion is satisfied do
3: for m “ 1, 2, . . . until a stopping criterion is satisfied do
4: Update the factorizations (4.11) and (4.16), respectively

5: Solve the projected problem (4.12) and (4.17), respectively, tuning pλm if
necessary

6: end for
7: “Decrease” γ
8: Update the new pW γ

p qk`1 and Sk`1
9: end for

4.4 Solution through flexible Krylov subspaces

Problem (4.3) reformulated as (4.9) allows us to naturally apply the flexible Golub-

Kahan (FGK) and flexible Arnoldi algorithms. Indeed, instead of updating the

“preconditioners” Sk and pW γ
p qk at the kth outer iteration of the nested iteration

schemes of Algorithm 7, we propose to consider new “preconditioners” as soon as
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a new approximation of the solution is available, i.e., at each iteration of a Krylov

subspace solver. Therefore, at the pi ` 1qth iteration of the new solvers, the “pre-

conditioners” pW γ
p qi and Si are computed as in (4.10), but using the SVD of the ith

approximate solution

Xi “ vec´1pxiq “ UXi
ΣXi

V T
Xi
, for i “ 1, . . . , k ´ 1 ,

with pW γ
p q0 “ I and S0 “ I. In order to incorporate iteration-dependent precondi-

tioning, the flexible versions of the Golub-Kahan and Arnoldi factorizations have to

be used.

Namely, at the ith iteration, the new instance of the FGK algorithm updates par-

tial factorizations of the form (2.19), i.e., AZi “ Ui`1Mi and ATUi`1 “ Vi`1Ti`1,

where

Zi “ rS
T
0 pW

γ
p q
´2
0 S0v1, . . . ,S

T
i´1pW

γ
p q
´2
i´1Si´1vis , v1 “ A

Tb{}ATb}2 .

Taking x0 “ 0, the ith approximate solution is such that xi “ Ziyi, where

yi “ arg min
yPRi

}Miy ´ }b}2e1}
2
2 `

pλi}y}
2
2 . (4.19)

Note that the subspace for the solution RpZiq can be regarded as a generalization

of the subspace (4.13) computed when considering preconditioned GKB within the

IRN-LSQR-NNRp method. The new method is called “FLSQR-NNRp”, and is sum-

marized in Algorithm 8.
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For A P RNˆN and x0 “ 0, at the ith iteration, the new instance of the flexible

Arnoldi algorithm updates a partial factorization of the form (2.18), with k “ i, and

generates

Zi “ rS
T
0 pW

γ
p q
´1
0 S0v1, . . . ,S

T
i´1pW

γ
p q
´1
i´1Si´1vis , v1 “ b{}b}2 ,

where both right and left preconditioners are used analogously to IRN-GMRES-

NNRp. The ith approximate solution is such that xi “ Ziyi, where

yi “ arg min
yPRi

}Hiy ´ }b}2e1}
2
2 `

pλi}y}
2
2 . (4.20)

Note that the subspace for the solution RpZiq can be regarded as a generalization

of the subspace (4.18) computed when considering the preconditioned Arnoldi algo-

rithm within the IRN-GMRES-NNRpmethod. The new method is called “FGMRES-

NNRp”, and is summarized in Algorithm 8.

Algorithm 8 FLSQR-NNRp and FGMRES-NNRp

1: Inputs: A, b, pW γ
p q0 “ I, S0 “ I

2: for i “ 1, 2, . . . until a stopping criterion is satisfied do
3: Update a factorization of the form (2.19) and (2.18), respectively, to expand

the space RpZiq

4: Solve the projected problem (4.19) and (4.20), respectively, tuning pλi if neces-
sary

5: “Decrease” γ
6: Update the new pW γ

p qi and Si, using the SVD Xi “ vec´1pxiq “ UXi
ΣXi

V T
Xi

.
7: end for

Note that, although the approach of Algorithm 8 is quite heuristic, it avoids

nested iteration cycles and computes only one approximation subspace for the so-
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lution of (4.3), where low-rank penalization is adaptively incorporated. Because of

this, in many situations, Algorithm 8 computes solutions of quality comparable to

the ones computed by Algorithm 7, with a significant reduction in the number of it-

erations. We should also mention that, in the framework of affine rank minimization

problems, [51] outlines an algorithm that avoids inner projected gradient iterations

for the solution of each quadratic subproblem in the sequence generated within the

IRN strategy.

Finally, we underline that, within the framework of flexible Krylov subspaces,

the approximation subspaces RpZiq for the ith approximate solution can be further

modified, with some insight into the desired properties of the solution. Indeed, since

the ith basis vector for the solution is of the form

zi “ S
T
i´1pW

γ
p q
´2
i´1Si´1vi

for FLSQR-NNRp, and

zi “ S
T
i´1pW

γ
p q
´1
i´1Si´1vi

for FGMRES-NNRp, one can consider alternative “preconditioners” Si´1 and pW γ
p qi´1

that are still effective in delivering low-rank solutions. For instance, focusing on

FGMRES, and given vi “ Viei, where Vi is the matrix appearing on the right-hand

side of the factorization (2.19), and given the SVD of vec´1pviq “ UViΣViV
T
Vi

, one

can take

Si´1 “ V
T
Vi
bUT

Vi
and pW γ

p q
´1
i´1 “ I b pΣViq

1´p{2 , (4.21)
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and as a result,

Si´1vi “ vecpUT
Vi

vec´1pviqVViq “ vecpΣViq,

pW γ
p q
´1
i´1Si´1vi “ vecppΣViq

1´p{2ΣViq “ vecppΣViq
2´p{2

q,

STi´1pW
γ
p q
´1
i´1Si´1vi “ vecpUVippΣViq

2´p{2
qV T
Vi
q “ zi,

so that the singular values of vec´1pviq are rescaled: taking 0 ă p ď 1, the power

of ΣVi , 2 ´ p{2, is always larger than 1, which means that large singular values

get magnified and small singular values become even smaller. In this way, the gaps

between singular values are emphasized and to some extent contribute to the low

rank properties of the basis vectors. Similar derivations hold for FLSQR. Hence,

methods analogous to LR-FLSQR and LR-FGMRES are obtained, and are called

FGMRES-NNRp(v) and FLSQR-NNRp(v), respectively.

4.5 Implementation details

All the methods considered in Section 4.3 and 4.4 are iterative, and therefore at least

one suitable stopping criterion should be set for the iterations. When considering

hybrid formulations (like the ones in Algorithms 7 and 8), one could simultaneously

set a good value for the regularization parameter pλj at the jth iteration, as well as

properly stop the iterations. Strategies for achieving this are already available in the

literature (see [17, 21]).

Recall from Section 2.4.2 that, assuming that a good estimate for the norm of

the noise η affecting the right-hand-side of (1.1) is available, i.e., ε » }η}2, one can
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consider the discrepancy principle and stop the iterative scheme at the first iteration

j such that

}b´Axj}2 ď µε , where µ Ç 1 is a safety threshold. (4.22)

When running hybrid methods (see Algorithms 7 and 8), we employ the so-called

“secant method”, which updates the regularization parameter for the projected prob-

lem in such a way that stopping by the discrepancy principle is ensured. We high-

light again that the quantities needed to implement the “secant method” (namely,

the norm of the residual and the discrepancy associated to (4.9) at each iteration)

can be conveniently monitored using projected quantities: this is obvious for IRN-

LSQR-NNRp and FLSQR-NNRp, as only right-“preconditioning” is employed; it

is less obvious for IRN-GMRES-NNRp and FGMRES-NNRp, but since the left-

“preconditioner” is orthogonal, one can still write

}b´Axj}2 “ }Skb´ SkAS
T
k pW

γ
p q
´1
k pxj}2 “ }}b}2e1 ´Hjyj}2 .

Note that all the methods in Algorithm 7 and 8 can also run with pλ “ 0, and still

achieve low-rank approximate solutions: this is because the approximation subspace

for the solution incorporates regularizing “preconditioning” (see [28, 32] for details

on this approach in the case of smoothing “preconditioning” with finite-difference

approximations of derivatives operators). Finally, when dealing with the inner-outer

iteration scheme of Algorithm 7, in addition to a parameter choice strategy and

stopping criterion for the hybrid projected problems (4.12) and (4.17), one should
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also consider a stopping criterion for the outer iterations. We propose to do this

by monitoring the norm of the difference of the singular values (normalized by the

largest singular value so that σ1pΣXk`1
q “ σ1pΣXk

q “ 1) of two approximations of

the solution of (4.3) obtained at two consecutive outer iterations of Algorithm 7, i.e.,

we stop as soon as

}diagpΣXk`1
q ´ diagpΣXk

q}2 ă τσ, k “ 1, 2, . . . , (4.23)

where vec´1pxiq “ Xi “ UXi
ΣXi

V T
Xi

(i “ k, k ` 1), and τσ ą 0 is a user-specified

threshold. If no significant changes happen in the rank and singular values of two

consecutive approximations of the solution, then (4.23) is satisfied.

We conclude this section with a few remarks about the computational cost of

the proposed methods. Note that, if A P RNˆN , IRN-GMRES-NNRp is intrinsically

cheaper than IRN-LSQR-NNRp (since, at each iteration, the former requires only one

matrix-vector product with A, while the latter requires one matrix-vector product

with A and one with AT ). However, methods based on the Arnoldi algorithm are

typically less successful than methods based on the GKB algorithm for regularization;

see [40].

Other key operations for implementing our proposed methods are the compu-

tation of the SVDs of relevant quantities, and/or the application of the “precondi-

tioners” in (4.21). Namely, each iteration of FLSQR-NNRp, and FGMRES-NNRp

requires the computation of the SVD of an nˆn matrix, which amounts to Opn3q “

OpN3{2q floating point operations. When considering IRN-LSQR-NNRp and IRN-

GMRES-NNRp, only the SVD of the approximate solution should be computed once
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at each outer iteration. However, each inner iteration of IRN-LSQR-NNRp and IRN-

GMRES-NNRp, as well as each iteration of FLSQR-NNRp and FGMRES-NNRp, re-

quires the computation of matrix-vector products of the form STk pW
γ
p q
´1
k vi: this can

be achieved within a two-step process, where first the rescaling rvi “ pW
γ
p q
´1
k vi is ap-

plied with OpNq “ Opn2q floating-point operations, and then STk rvi “ pVXk
bUXk

qrvi

is computed. While a straightforward implementation of the latter would require

OpN2q “ Opn4q floating-point operations, exploiting Kronecker product proper-

ties can bring down the cost of this operation to Opn3q “ OpN3{2q, by computing

STk rvi “ vecpUT
Xk

vec´1pviqVXk
q.

We emphasize that the incorporation of the flexible “preconditioners” does not

increase the order of computational complexity and is very practical, since operations

are done on matrices of size n ˆ n (n is the dimension of the image). In particular,

the full SVD’s of n ˆ n matrices can be computed easily with MATLAB’s built-in

svd function (this is what we used in our numerical experiments); one can also use

Lanczos bidiagonalization [47] or randomized SVD [27] to compute the approximate

leading singular values and vectors.
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Chapter 5

Low Rank Regularization:

Numerical Experiments

In this Chapter, we present results of numerical experiments on several image process-

ing problems to demonstrate the performance of the new IRN-GMRES-NNRp, IRN-

LSQR-NNRp, FGMRES-NNRp, and FLSQR-NNRpmethods. Variants of FGMRES-

NNRp and FLSQR-NNRp (marked with “(v)”) are also tested. To shorten the

acronyms, we omit p when p “ 1, which means IRN-GMRES-NNR denotes IRN-

GMRES-NNRp when p “ 1, etc. Examples are generated using IR Tools [17].

In general, we compare the performances of the proposed methods to standard

Krylov subspace methods GMRES and LSQR, also used in a hybrid fashion. We also

test against the low-rank-projected GMRES (RS-LR-GMRES) method proposed in

[48], which leads us to the derivation of alternative low-rank projection solvers LR-

FGMRES and LR-FLSQR described in the upcoming section (see Section 5.1). These
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solvers can be (re)casted into the framework of flexible Krylov methods and can work

with both square and rectangular systems (4.1). The singular value thresholding

(SVT) algorithm [7] will also be addressed, which was originally proposed to minimize

matrix nuclear norm for low-rank matrix completion problems, and can be extended

to problems with linear constraints of the form

min
x
τ}vec´1pxq}˚ `

1

2
}vec´1pxq}2F subject to Ax “ b, where vec´1pxq “X.

(5.1)

The kth iteration of the SVT algorithm for (5.1) reads

$

’

’

&

’

’

%

Xk “ Dτ pATyk´1q

yk “ yk´1 ` δkpb´ Axkq

, (5.2)

where δk is a step size and Dτ is the singular value shrinkage operator, defined as

Dτ pXq “ UXDτ pΣXqV
T
X , Dτ pΣXq “ maxtΣX ´ τI,0u,

where X “ UXΣXV
T
X is the SVD of X, 0 is a matrix of zeros, and the maximum

is taken component-wise. Although (5.1) is not the same problem as (4.2), they

are similar in that both penalize the nuclear norm of vec´1pxq and they respect the

constraint Ax “ b.
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5.1 Low Rank Projection Methods: classical and

new approaches

When solving square well-posed linear systems coming from the discretization of

some instances of stochastic or time-dependent PDEs, a suitable rearrangement of

the solution is expected to be low-rank: for this reason, schemes that incorporate low-

rank projections within the basis vectors and the approximate solution obtained by a

Krylov method have been proposed in the literature. In the following we summarize

the working ideas underlying the so-called restarted low-rank-projected GMRES (RS-

LR-GMRES) method proposed in [48].

Recall from Section 2.4.1 that the kth iteration of GMRES updates the partial

Arnoldi factorization and computes the approximate solution as follows:

AVk “ Vk`1Hk , xk “ Vkyk , where yk “ arg min
yPRk

}Hky ´ }b}2e1}2 . (5.3)

Since matrix-vector products and vector sums of low-rank vectorized matrices in-

crease the rank of the latter, there is no guarantee that the new basis vectors vk for

the solution nor the new solution xk are low-rank. To force the basis vector for the

solution and the approximate solution to be low-rank, a truncation operator should

be incorporated into the GMRES algorithm. Given a vectorized matrix c “ vecpCq,

and given a desired low-rank κ for C, one can define a truncation operator τκpcq by
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the following standard operations:

»

—

—

—

—

—

—

—

–

1. Take C “ vec´1pcq;

2. Compute the SVD of C, C “ UCΣCV
T
C ;

3. Compute Cκ “ UCp:, 1 : κqΣCp1 : κ, 1 : κqVCp:, 1 : κqT ;

4. Take τκpcq “ vecpCκq.

(5.4)

RS-LR-GMRES is a restarted version of the standard GMRES method where the

basis vectors for the solution are truncated at each inner iteration, and the solution

itself is truncated at the beginning of each outer iteration. Note that truncating the

basis vectors does not guarantee that the solution has low rank (which is the reason

we still need to truncate the approximate solution). The reason for truncating the

basis vectors is to keep the original solution rank from increasing drastically, since it

is computed as a linear combination of basis vectors. More precisely, at the `th outer

iteration of RS-LR-GMRES, one takes v1 “ r`´1{}r`´1}2, where r`´1 “ b ´Ax`´1,

and, at the kth inner iteration, one computes

vk “ τκpvkq, (5.5)

and once m inner iterations are performed, the approximate solution at the `th outer

iteration is computed as

x` “ τκ px`´1 ` Vmymq . (5.6)

The operations in (5.5) and (5.6) heavily depend on the value κ of the truncated

rank, which eventually coincides with the rank of the approximate solution. In the
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framework of stochastic PDEs, a suitable estimate for κ can be obtained by first

performing coarse-grid computations (see [48] for details, and [45, 67] for similar

approaches). As in standard GMRES, RS-LR-GMRES computes a new basis vector

for the solution by applying the linear operator A to the previous basis vector vk´1

and orthogonalizing it against the previous basis vectors vi, i “ 1, . . . , k´1. However,

since the basis vectors are truncated to low rank, the matrix Vk does not have

orthonormal columns anymore, and RpVmq is not a Krylov subspace anymore. This

remark leads us to the derivation of alternative low-rank projection solvers, which

can be (re)casted into the framework of flexible Krylov methods and can work with

both square and rectangular systems (4.1).

5.1.1 Low-rank flexible GMRES (LR-FGMRES) and

low-rank flexible LSQR (LR-FLSQR)

Recall from Section 2.4.3 that starting with x0 “ 0, at the kth iteration, FGMRES

updates a partial flexible Arnoldi factorization and computes the kth approximate

solution as follows:

AZk “ Vk`1Hk , xk “ Zkyk , where yk “ arg min
yPRk

}Hky ´ }b}2e1}2 , (5.7)

where Vk`1 “ rv1, . . . ,vk`1s P RNˆpk`1q has orthonormal columns, Hk P Rpk`1qˆk

is upper Hessenberg, Zk “ rP1v1, . . . ,Pkvks P RNˆk has columns that span the

approximation subspace for the solution and Pi is an iteration-dependent precondi-

tioner. In the particular case of low-rank truncation, we set Pivi “ τκBpviq, i.e., the
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truncation operator defined in (5.4), so that rankpvec´1pZkeiqq “ κB, i “ 1, . . . , k).

The subscript B for the truncation rank κB suggests that the truncation is done

on the original basis vectors vi’s. The resulting algorithm is called “LR-FGMRES”,

and it is summarized in Algorithm 9. Note that the approximate solution computed

as in (2.18) is also truncated to guarantee rank κ (in general, we assume κB ‰ κ).

Also LR-FGMRES is started with x0 “ 0, to guarantee that the basis vectors for

the solution (rather than a correction thereof) are low-rank.

Algorithm 9 LR-FGMRES

1: Inputs: A, b, τκB , τκ
2: Take v1 “ b{}b}2
3: for i “ 1, 2, . . . until a stopping criterion is satisfied do
4: Compute zi “ τκBpviq and w “ Azi
5: Compute hji “ w

Tvj for j “ 1, . . . , i and set w “ w ´
ři
j“1 hjivj

6: Compute hi`1,i “ }w}2, and if hj`1,j ‰ 0, take vi`1 “ w{hi`1,i
7: end for
8: Compute yk “ arg miny }Hky ´ }b}2e1}

2
2 and take xk “ τκpZkykq

A few remarks are in order. Differently from the kth iteration in the inner cycle

of the RS-LR-GMRES method (5.5), the kth iteration of LR-FGMRES expands the

approximation subspace by modifying (i.e., truncating) the previous orthonormal

basis vector for the space Rprb,AZksq. Analogously to RS-LR-GMRES, the basis

vectors for the approximate LR-FGMRES solution are all of rank κB, are not orthog-

onal, and do not span a Krylov subspace. Differently from RS-LR-GMRES, the basis

vector for the space Rprb,AZksq are orthogonal. Also, the kth LR-FGMRES ap-

proximate solution is obtained by solving an order-k projected least squares problem

that is formally analogous to the GMRES one (see (5.3) and (5.7)).
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With LR-FGMRES in place, the extension to more general matrices A P RMˆN ,

with M not necessarily equal to N , can be naturally devised considering the flexible

Golub-Kahan (FGK) process [11]. Recall that taking x0 “ 0 as initial guess, the kth

FGK iteration updates partial factorizations of the form

AZk “ Uk`1Mk and ATUk`1 “ Vk`1Tk`1, (5.8)

where the columns of Uk`1 P RMˆpk`1q, Vk`1 P RNˆpk`1q are orthonormal, Mk P

Rpk`1qˆk is upper Hessenberg, Tk`1 P Rpk`1qˆpk`1q is upper triangular,

Zk “ rP1v1, . . . ,Pkvks P RNˆk has columns that span the approximation subspace

for the solution, and Pi is an iteration-dependent preconditioner that is applied to

vi. In the particular case of low-rank truncation, Pivi “ τκBpviq, as defined in (5.4),

so that rankpvec´1pZkeiqq “ κB, i “ 1, . . . , k. The flexible LSQR method (FLSQR)

uses the FGK process (5.8) to generate iterates of the form xk “ Zkyk, where the

vector yk is computed as yk “ arg miny

›

›

›
Mky ´ }b}2e1

›

›

›

2

2
. When rank-truncation of

the basis vectors takes place at each iteration, and the final approximate solution

is rank-truncated as well, the resulting algorithm is called “LR-FLSQR”, and it is

summarized in Algorithm 10.

Note that, similarly to RS-LR-GMRES, both LR-FGMRES and LR-FLSQR are

quite heuristic. Although the low-rank projection idea can be formulated in the

flexible framework, we lack a formal formulation of the problem that is being solved,

and also a justification of why they work. Strategies for selecting κB and κ are not so

clear either. To stabilize the behavior of LR-FGMRES as the iterations proceed, one

may consider imposing additional Tikhonov regularization on the projected least-
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Algorithm 10 LR-FLSQR

1: Inputs: A, b, τκB , τκ
2: Take u1 “ b{}b}2
3: for i “ 1, 2, . . . , until a stopping criterion is satisfied do
4: Compute w “ ATui, tji “ w

Tvj for j “ 1, . . . , i´ 1
5: Set w “ w ´

ři´1
j“1 tjivj, compute tii “ }w} and take vi “ w{tii

6: Compute zi “ τκBpviq and w “ Azi
7: Compute mji “ w

Tuj for j “ 1, . . . , i and set w “ w ´
ři
j“1 mjiuj

8: Compute mi`1,i “ }w} and take ui`1 “ w{mi`1,i

9: end for
10: Compute yk “ arg miny }Mky ´ }b}2e1}

2
2 and take xk “ τκpZkykq

squares problem in (2.18), in a hybrid fashion; the same holds for LR-FLSQR (see

Sections 4.4 and 5.2 for more details).

5.2 Numerical Examples

In this section, three types of imaging inverse problems are presented, and a variety

of solvers, including the newly developed low rank methods, are compared. Before

getting started, we briefly remark on some details for some of the parameters in these

methods.

The Schatten-p function is introduced in Section 4.2 as a smooth approxima-

tion for } ¨ }˚,p. The smooth approximation allows for further derivations including

computation of optimality conditions, where the “smoothing coefficient” γ is crucial.

However, γ is not so crucial numerically, and we can set it to 0 without affecting the

results (compared to using a very small γ). However, to be consistent with Algo-

rithms 7 and 8, in our experiments, we have set the initial value of γ to 10´10, and

every time we need to decrease γ, we divide the current γ value by 2.
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Regarding the comparisons with the low-rank projection methods presented in

Section 5.1.1, there are no universal and theoretically informed ways of choosing the

truncation ranks for the solutions and for the basis vectors of the solution subspace.

Hence, for all test problems, we experiment on a reasonable number of trials, each

with different truncation rank choices, and select the best performing rank out of all

ranks tested. For simplicity, we consider the same truncation rank for basis vectors

and solutions (τκB “ τκ). We follow the same process to choose the number of

restarts and the number of iterations for each restart for RS-LR-GMRES, as well

as the shrinkage threshold τ in SVT; strategies to select the step size for SVT are

described in [7].

Example 1: Binary Star. We consider an image deblurring problem involving a

simulated binary star test image of size 256 ˆ 256: this test image has rank 2. The

true image is displayed in the leftmost frame of Figure 5.2. A standard Gaussian blur

is applied to the test image, and Gaussian white noise of level }η}2{}b
ex}2 “ 10´3

is added. The blurred and noisy images are shown in Figure 5.2, second frame from

the left. Due to the presence of noise, the blurred image has full rank. For this

example, the blurring operator A is square of size 65536 ˆ 65536, hence GMRES-

related methods are used for comparison, namely: GMRES, IRN-GMRES-NNR,

FGMRES-NNR, LR-FGMRES and RS-LR-GMRES (i.e., we only consider the case

p “ 1 here). SVT is also taken into consideration. The truncation rank for LR-

FGMRES and RS-LR-GMRES is set to 30 for both basis vectors and approximate

solutions (i.e., τκB “ τκ “ 30). RS-LR-GMRES is restarted every 40 iterations. The

step size for SVT is set to be δk “ δ “ 2 and the singular value shrinkage threshold τ
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is 1. Note that, although the true solution has only rank 2, setting truncation rank

to 2 for low rank methods produces solutions of worse quality (compared to setting

the rank to 30). This might be because of the inherent ill-posedness of the problem,

which makes it harder to obtain solutions with desired properties (e.g., with rank 2):

indeed, if we do truncate to rank 2, a lot of information about the solution might be

lost.

Figure 5.1 displays the histories of relative errors }xex´xm}2{}x
ex}2 for the first

200 iterations (i.e., m “ 1, . . . , 200) of these methods. For IRN-GMRES-NNR, 4

outer cycles were run, each with a maximum of 50 iterations: a new outer cycle

is initiated as soon as the discrepancy principle is satisfied in the inner cycle. No

additional regularization is used (i.e., pλ “ 0 for all methods).

0 50 100 150 200
0.2

0.5

1

GMRES

IRN-GMRES-NNR

FGMRES-NNR

LR-FGMRES

RS-LR-GMRES

SVT

Figure 5.1: Example 1. Relative errors vs. number of iterations for GMRES-based
methods and SVT.

We can observe from Figure 5.1 that when the truncation ranks are chosen rea-

sonably, LR-FGMRES and RS-LR-GMRES both produce a less pronounced semi-

convergence behavior than GMRES, with LR-FGMRES attaining a smaller relative
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error than RS-LR-GMRES. FGMRES-NNR, on the other hand, shows slower semi-

convergence than GMRES, but it also converges to a slightly better relative error.

IRN-GMRES-NNR behaves especially well in this case, with significantly reduced

relative errors even at the end of the second outer cycle. The “jumps” at the be-

ginning of each outer IRN-GMRES-NNR iteration are due to the strategy used for

restarts (the older basis vectors are cleared at each restart).

Figure 5.2 displays the exact and the corrupted images, as well as the best recon-

structions computed by LR-FGMRES and IRN-GMRES-NNR: these are obtained

at the 47th and the 189th (total) iteration of LR-FGMRES and IRN-GMRES-NNR,

respectively. By looking at relative errors in Figure 5.1, we see that LR-FGMRES

is the second best out of all methods, and yet the quality of the solution is inferior

compared to IRN-GMRES-NNR. Compared to the LR-FGMRES solution, the IRN-

GMRES-NNR one is a more truthful reconstruction of the exact image: it not only

has less artifacts immediately around the stars, but also has less background noise,

in the sense that the pixel intensities in the background are closer to the true ones

(as it can be seen by looking at the background color).

exact blurred & noise LR-FGMRES IRN-GMRES-NNR

Figure 5.2: Example 1. Exact and corrupted test images, together with the best
reconstructions obtained by the LR-FGMRES and the IRN-GMRES-NNR methods.
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More details can be spotted if we zoom into the central part (51ˆ51 pixels) of the

computed images, as shown in Figure 5.3: here the best LR-FGMRES reconstruction,

as well as the IRN-GMRES-NNR reconstructions at the end of the 2nd, 3rd and 4th

inner cycles are displayed. It is clear that the IRN reconstructions are improving

over each outer cycle, and that even the solution at the end of the 2nd cycle is

significantly better than the LR-FGMRES solution, which means that not all four

outer iterations need to be run to achieve solutions of superior qualities (even if more

outer iterations allow further improvement in the solution).

LR-FGMRES 2nd IRN cycle 3rd IRN cycle 4th IRN cycle

Figure 5.3: Example 1. Zoom-ins of the LR-FGMRES best solution, and the IRN-
GMRES-NNR solutions at the end of each inner cycle.

Figure 5.4 displays surface plots of the central part (51 ˆ 51 pixels) of the test

problem data, as well as the best reconstructed images (for RS-LR-GMRES and

FGMRES-NNR these are obtained at the 165th and the 63th (total) iterations,

respectively). It can be seen that for all the solutions shown here, the reconstructed

central two stars approximately have the same intensity, although they are somewhat

less intense than in the exact image. These surface plots also confirm our earlier

observation that IRN-GMRES-NNR does an exceptional job removing background
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noise. In addition, FGMRES-NNR also gives a good background reconstruction.
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-0.1
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exact LR-FGMRES IRN-GMRES-NNR

-0.1

1

-0.1

1

-0.1

1

blurred & noise RS-LR-GMRES FGMRES-NNR

Figure 5.4: Example 1. Zoomed-in surfaces of the exact solution and the available
data, as well as the best reconstructions obtained by the new GMRES-based methods.

Finally, Figure 5.5 displays the singular values of the best solutions obtained

adopting different GMRES-based solvers, as well as the evolution of the singular

values of the solution at the end of each inner IRN-GMRES-NNR cycle (matching

the reconstructions displayed in Figure 5.3). The singular values are “normalized”

(i.e., divided by the largest one), and the graphs are cropped to focus on the relevant

values. Looking at the displayed values, we can conclude that the solutions computed

by all the low-rank solvers have indeed some low-rank properties, with very quickly-

decaying large singular values followed by slowly-decaying smaller singular values.

Compared to GMRES, the new FGMRES-NNR and IRN-GMRES-NNR methods

give solutions that have a more pronounced low rank, as shown by the large gaps
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Figure 5.5: Example 1. Left frame: normalized singular values of the best solutions
computed by each GMRES-based method. Right frame: evolution of the singu-
lar values of the solutions computed by IRN-GMRES-NNR at each outer iteration.
Singular values less than 10´3 are omitted.

between the smaller singular values of the solutions computed by these methods.

Regarding IRN-GMRES-NNR, the evolution of the singular values stabilizes as we

move toward later outer iterations, which validates the stopping criterion proposed

in Section 4.5.

Example 2: Limited Angle Parallel-Ray Tomography. We consider a com-

puted tomography (CT) test problem, modeling an undersampled X-ray scan with

parallel beam geometry. This is a so called “limited angle” CT reconstruction prob-

lem, where the viewing angles for the object span less than 180 degrees. A smooth

and rank-4 phantom is considered, as shown in the leftmost frame of Figure 5.7

(note that the yellow straight lines in the northwestern corner do not belong to the

phantom; they are shown for later purposes). Gaussian white noise of level 10´2 is
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added to the data. The coefficient matrix A has size 32942ˆ65536. Because of this,

among the new solvers, only LR-FLSQR, FLSQR-NNRp, FLSQR-NNRp(v), and

IRN-LSQR-NNRp will be tested, against their standard counterpart LSQR. Recall

that FLSQR-NNRp(v) is the FLSQR-NNRp variant that defines the preconditioners

using the basis vectors of the solution subspace. The hybrid strategy is not used

here, meaning that we set pλ “ 0 for all methods. For this test problem, we con-

sider both the values p “ 1 and p “ 0.75 (recall that, when p “ 1, we omit p from

the notation). The results obtained running the available low-rank solvers SVT and

RS-LR-GMRES are shown, too. Note that RS-LR-GMRES only works for square

matricesA, hence this solver is tested on the normal equationsATAx “ ATb, which

is not the problem solved by the other methods (therefore this comparison may not

be completely fair). Parameters for SVT are chosen to be: step size δk “ δ “ 8ˆ10´5

and threshold τ “ 100. RS-LR-GMRES is set to restart every 20 iterations. The

truncation rank is 10 for both basis vectors and solutions, and for both the LR-

FLSQR and the RS-LR-GMRES methods. The maximum number of iterations is

100 for all methods.

Figure 5.6 displays the history of the relative errors for LSQR, LR-LSQR, FLSQR-

NNRp, FLSQR-NNRp(v), and IRN-LSQR-NNRp, for p “ 1 and p “ 0.75. Figure

5.7 displays the exact phantom together with the best reconstructions obtained by

LSQR, FLSQR-NNRp(v), and IRN-LSQR-NNR. Figure 5.8 displays surface plots of

the northwestern corner of the exact and reconstructed phantoms (64ˆ 64 pixels, as

highlighted in the leftmost frame of Figure 5.7).

Looking at relative errors in Figure 5.6, it is obvious that the winners are the
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FLSQR-NNRp(v) methods, with both p “ 1 and p “ 0.75: they give the lowest

relative errors, and the fastest semi-convergences. For this test problem, using a

value of p ă 1 lowers the relative error of FLSQR-NNRp(v); however, the same does

not hold for IRN-LSQR-NNRp. Therefore we can conclude that the the choice of p

is problem and solver dependent, and using p ă 1 does not necessarily improve the

quality of the solution. We regard p “ 1 as a safe choice for this parameter. Although

both the FLSQR-NNRp(v) methods with p “ 1 and p “ 0.75 perform well, the latter

is able to further reduce the noise in the reconstructed solution, especially on the

boundary.
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Figure 5.6: Example 2. Relative errors vs. number of iterations for different solvers.
Upper frame: some of the new solvers are compared to the already available solvers.
Lower frame: comparisons of different instances of the new solvers (here p “ 0.75).
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exact LSQR FLSQR-NNRp(v) IRN-LSQR-NNR

Figure 5.7: Example 2. Exact phantom and best reconstructions obtained by different
solvers.
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Figure 5.8: Example 2. Surface plots of the northwestern corner of the exact phan-
tom (highlighted in Figure 5.7) and the best reconstructed phantoms computed by
different solvers.

Looking at all the displayed results, the advantages of our new FLSQR-NNRp(v)

and IRN-LSQR-NNR methods are evident. Namely, they produce smooth solutions
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that preserve the original concave shape of the exact phantom, and they retain sim-

ilar intensities of pixels at the same locations of the exact phantom (although the

LR-FLSQR solution is smooth within the boundary, it fails to reconstruct inten-

sity at the high point). Differences between FLSQR-NNRp(v) and IRN-LSQR-NNR

reconstructions are clear, too: while both are smooth, the IRN-LSQR-NNR recon-

struction has a less concave shape compared to that of FLSQR-NNRp(v), but a

smoother boundary.

Example 3: Inpainting. We consider two different inpainting test problems. In-

painting is the process of restoring images that have missing or deteriorated parts.

These images are likely to have quite a few lost pixels, either in the form of salt and

pepper noise, or missing patches with regular or irregular shapes. The two examples

considered here are of different nature: the first one has less structured and more

randomly distributed missing patches, while the second one has more structured and

regularly shaped missing parts. The corrupted images (shown in top-middle frames

of Figures 5.11 and 5.13) are constructed by first applying a blur operator, and then

superimposing the undersampling pattern to the ideally exact images (shown in the

top-left frames of Figures 5.11 and 5.13). We follow this particular order of first

blurring and then taking out pixels to simulate the real process of photo-taking. For

both these test problems, white noise of level 10´2 is added to the data, and we

consider purely iterative methods (i.e., pλ “ 0). We always take p “ 1, and we run

100 iterations of all the methods.

Firstly, we consider a test problem where 58.2% of the pixels are missing (following

some random and not very regular patterns). The exact image is commonly known as
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the house test image, whose rank is 243 and has a total number of 65536 (256ˆ256)

pixels; the corrupted image has the same size and number of pixels, but out of which

only 27395 are non-zero. A plot of the singular values of the exact image is shown in

Figure 5.9(a). Correspondingly, the forward operator A is of size 27395ˆ 65536, so

we have an underdetermined linear system: A is obtained by first applying a shaking

blur, and by then undersampling the blurred image. This can be easily coded within

the IR Tools framework.
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Figure 5.9: Example 3. Singular values of exact test images house and peppers

scaled by the largest singular values respectively.

Figure 5.10 displays the history of the relative errors for LSQR, LR-FLSQR

(with truncation of the basis vectors for the solution, as well as the solution, to rank

20), FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR. Figure 5.11 displays the

exact and corrupted images, together with the best reconstructions obtained by the

methods listed above: these correspond to the 16th, 32nd, 67th, 30th and 62nd

iterations of LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-
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NNR, respectively (i.e., these are the iterations where the minimum relative error is

attained over the total 100 iterations).
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Figure 5.10: Example 3 (house). Relative errors vs. number of iterations for different
solvers.

exact corrupted LSQR

LR-FLSQR FLSQR-NNR(v) FLSQR-NNR IRN-LSQR-NNR

Figure 5.11: Example 3 (house). Exact and corrupted images; best reconstructions
obtained by standard and new solvers.
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Secondly, we consider a test problem similar to the previous one, i.e., we take an

exact image commonly known as the peppers test image, which has full rank (its

singular values are shown in Figure 5.9(b)), and we obtain the forward operator A

by first applying a shaking blur, and by then undersampling the blurred image. Here

the exact image has a total number of 65536 (256ˆ256) pixels, and only around 1.3%

of pixels are missing and should be inpainted: differently from the previous problem,

the missing pixels follow particular patterns (e.g., circles, squares, and rectangles),

and this makes the inpainting task somewhat more challenging. Figure 5.12 displays

the history of the relative errors for LSQR, LR-FLSQR (with truncation of the basis

vectors for the solution, as well as the solution, to rank 50), FLSQR-NNR, FLSQR-

NNR(v) and IRN-LSQR-NNR. Figure 5.13 displays the exact and corrupted images,

together with the best reconstructions obtained by the methods listed above: these

correspond to the 11th, 18th, 60th, 33rd and 34th iterations of LSQR, LR-FLSQR,

FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR, respectively (i.e., these are the

iterations where the minimum relative error is attained over the total 100 iterations).
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Figure 5.12: Example 3 (peppers). Relative errors vs. number of iterations for
different solvers.
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exact corrupted LSQR

LR-FLSQR FLSQR-NNR(v) FLSQR-NNR IRN-LSQR-NNR

Figure 5.13: Example 3 (peppers). Exact and corrupted images; best reconstructions
obtained by standard and new solvers.

It is evident that FLSQR-NNR(v) achieves reconstructions of superior quality,

including clarity, brightness, and smoothness. Its ability to fill-in missing spots with

pixels that are of similar intensity to their surroundings is the best among all meth-

ods. The best reconstructions are computed by IRN-LSQR-NNR for the house test

image, and by FLSQR-NNR for the pepper test image: in both cases, these methods

are also good at removing noise and restoring missing pixels. However, for both test

images, the reconstructions obtained by IRN-LSQR-NNR lack clarity compared to

ones obtained by both FLSQR-NNR and FLSQR-NNR(v) methods; compared to the

reconstructions obtained by LSQR and LR-FLSQR, they are anyway more desirable

in terms of recovered brightness and fill-in of the missing pixels. Moreover, we have

seen in these two examples that our newly proposed methods perform very well not
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only for low rank, but also for full or nearly full rank image reconstruction, thanks

to the regularizing properties of our newly derived “preconditioners” pW γ
p qk and Sk.

Our methods can also be extensively tested for higher noise levels (for example, 10´1)

and yield similar results. However, for space considerations we are not able to show

all of them here.

5.2.1 A Note on Regularization Parameters

In the previous examples we have seen that the IRN-NNR methods and the flexible

Krylov NNR methods perform exceptionally well on image deblurring, tomography,

and inpainting problems, producing superior reconstructions compared to existing

methods including SVT, RS-LR-GMRES and the low-rank flexible Krylov methods

inspired by RS-LR-GMRES, even without the use of additional regularization. In

this section, we explore the effect of additional regularization (i.e., we set pλ ‰ 0)

on the reconstructed images and the corresponding relative errors. In particular,

additional regularization allows the new methods to be used in a hybrid fashion. We

are going to observe that there is only little to negligible room for the methods to

improve when they are used in a hybrid fashion (as their performance is already very

good with pλ “ 0).

We consider three different ways of choosing the regularization parameter pλ. (i)

We take the “secant method” mentioned in Section 4.5, which updates the regular-

ization parameter at each iteration using the discrepancy. (ii) We select the optimal

regularization parameter which minimizes the 2-norm of the difference between the

exact solution and the regularized solution at each iteration. Namely, when using
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standard GMRES and LSQR, at the mth iteration we seek to minimize with respect

to pλ

}xex
´ xm,pλ} “ }V

T
mx

ex
´ V T

mxm,pλ} “ }V
T
mx

ex
´ ym,pλ} ;

when using the IRN methods we should incorporate the appropriate preconditioners

pW γ
p qk and Sk and, for all the iterations in the inner iteration cycle corresponding

to the kth outer iteration, we seek to minimize with respect to pλ

}pxex
´Vmym,pλ} “ }V

T
m pxex

´V T
mVmym,pλ} “ }V

T
m pxex

´ym,pλ}, where pxex
“ pW γ

p qkSkx
ex.

It is intrinsically difficult to implement this strategy for flexible Krylov subspace

methods, because of the complexity of changing preconditioners at each iteration.

(iii) We perform a manual exhaustive search. Namely, we first run the solvers multi-

ple times using various regularization parameters pλ, starting with a larger range and

narrowing down to a smaller range containing the best parameter; we then record

the minimum relative errors among all iterations for all values of pλ, and select the

corresponding pλ. This approach is the most expensive one, and differs from the pre-

vious one in that the (optimal) regularization parameter pλ is fixed for all iterations.

Of course, both the second and third approaches require the knowledge of the exact

solution and we test them only to investigate the best possible performance of the

hybrid approach.

Table 5.1 compares the performances (in terms of minimum relative error achieved

by each method) of standard Krylov methods (GMRES and LSQR) and their IRN-

NNR and flexible NNR (F-NNR) counterparts, with and without using a hybrid
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approach. In this way we can understand how the use of additional regularization

affects each solver differently. The three parameter choice methods described above

are called “Secant (i)”, “Optimal (ii)” and “Fixed (iii)”, respectively. All the previous

examples are considered here. GMRES and its counterparts IRN-GMRES-NNR,

FGMRES-NNR are used for Example 1, while LSQR and its counterparts IRN-

LSQR-NNR, FLSQR-NNR(v) are used for Examples 2 and 3.

pλ “ 0 pλ ‰ 0 pλ “ 0 pλ ‰ 0 pλ “ 0 pλ ‰ 0 pλ “ 0 pλ ‰ 0
Example 1 Example 2 Ex. 3 (house) Ex. 3 (peppers)

Standard
(i) 0.2995 0.2528 0.1201 0.1389 0.2712 0.2715 0.1141 0.1138
(ii) 0.2995 0.2268 0.1201 0.1201 0.2712 0.2710 0.1141 0.1138
(iii) 0.2995 0.2268 0.1201 0.1183 0.2712 0.2710 0.1141 0.1138

IRN-NNR
(i) 0.2081 0.2096 0.0685 0.0696 0.1249 0.1250 0.0964 0.0967
(ii) 0.2081 0.2292 0.0685 0.0685 0.1249 0.1249 0.0964 0.0964
(iii) 0.2081 X 0.0685 0.0660 0.1249 X 0.0964 0.0960

F-NNR
(i) 0.2829 0.2658 0.0577 0.0684 0.1035 0.1046 0.0625 0.0618
(iii) 0.2829 0.2640 0.0577 0.0568 0.1035 X 0.0625 0.0618

Table 5.1: Minimum relative errors without (pλ “ 0) and with (pλ ‰ 0) a hybrid
approach using various regularization parameter setting techniques: (i) secant; (ii)
optimal; (iii) fixed. The mark “X” means that the optimal regularization parameter
found by the “Fixed (iii)” method is 10´16, hence there is no need for additional
regularization.

It is easy to observe that the use of additional regularization is most effective for

the standard GMRES solver, where the minimum relative error is reduced signifi-

cantly. However, for the other solvers, the hybrid approach does not have a notable

advantage over not using regularization. At times the “Fixed (iii)” parameter choice

strategy delivers a regularization parameter of the order of 10´16, which is numeri-

cally equivalent to not having regularization. This indicates that our new IRN-NNR

and F-NNR methods are successful in computing good reconstructions and, even
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without additional regularization, they perform much better than standard Krylov

methods used in a hybrid fashion (comparing IRN-GMRES-NNR to GMRES in Ex-

ample 1, and FLSQR-NNR(v) to LSQR in the other examples). Figure 5.14 shows

a couple of such comparisons.

-0.1

1

-0.1

1

hybrid GMRES IRN-GMRES-NNR hybrid LSQR FLSQR-NNR(v)

Figure 5.14: Reconstructions obtained by standard hybrid Krylov methods and by
the new methods without using additional regularization. Left side: zoomed in
surface plots of the reconstructions of Example 1 ; right side: reconstructions of
Example 3 (peppers).
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Chapter 6

Extended Application: Model

Calibration for Computed

Tomography

In Chapter 5, we explored the effect of Krylov subspace methods, including the newly

developed low-rank, nuclear norm based methods (as described in Chapter 4) on a

variety of image reconstruction problems: image deblurring, computed tomography,

as well as inpainting. All these applications share the property that the forward

operator A is fixed, and that we are performing minimization with respect to one

unknown: x.

However, this is not the case for all imaging applications. For example, the

advancement of x-ray science and optics technologies has enabled improved spatial

resolution and increased sample clarity, but meanwhile, reconstructions of the im-
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aged object have become more susceptible to random errors and systematic errors

such as drifts in scanning probes, leading to distorted images with decreased resolu-

tion, or even misrepresentation of structure. As another example, in the diagnosis

and management of infectious diseases such as Covid-19, where portable tomosyn-

thesis machines are brought to the location of patients to help minimize the risk

of cross-infection [9, 38], more experimental errors such as inaccurate calibration of

geometry parameters (e.g., source to object distance, source orientation) are intro-

duced, making the image acquisition and reconstruction processes more challenging.

Due to these uncertainties, forward models that describe the forward process only

approximate the reality to some extent, and without proper model calibration, qual-

ity of the solutions will be degraded. Using mathematical language – when working

on the corresponding inverse problem, we need to take into account an additional set

of unknown parameters p that the forward operator A is dependent on. So instead

of (1.3), we need to solve the following problem:

min
x,p

}Appqx´ b}22 ` λRpxq. (6.1)

A lot of work has been done in various applications, such as scanning position

error correction for image reconstruction in the fields of electron tomography [10, 26]

and ptychography [3, 37], addressing the importance of accurate system modeling.

In the field of X-ray tomography, scientists at Argonne National Laboratory have

developed algorithms to calibrate the center of rotation errors [2] using numerical

optimization, and drifts in scanning positions [36] using targeted calibration models.

In the application where uncertain view angles need to be estimated for computed
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tomography in addition to image reconstruction, approaches such as uncertainty

quantification have been proposed, and they seek to quantify scanning angles via

a model-discrepancy formulation [58, 59]. Though very different from each other

in nature, many of these methods share a similar framework called the block coor-

dinate descent (BCD), which alternatively optimizes for the unknown parameters

and the image of interest. In this Chapter, we investigate two applications related

to computed tomography (CT) reconstruction: parallel and fan-beamed, where the

formulation (6.1) is appropriate since model calibration is required, and BCD type

methods will be investigated.

6.1 Parallel Tomography

We consider the identical parallel-beam x-ray tomography problem as put forward

in [36] by Huang, Di and Wild. Scanning positions that shoot parallel x-ray beams

through the object are assumed to be equally-spaced with a fixed step size ∆. These

theoretical scanning positions and theoretical beams are marked by green dots and

green dashed lines in Figure 6.1. Mechanical errors in the equipment can result in

errors (called drifts) in the scanning positions. As illustrated in Figure 6.1, the true,

drifted scanning positions are marked by purple dots, true beams by purple dashed

lines, and the amount of drift for the beam τ is marked ∆τ . A range r´∆max,∆maxs

exists for possible values of ∆τ . The existence of these unknown drifts in the scanning

positions can cause the image reconstruction quality to be deteriorated, and the

larger the amount of drift, the worse the quality. This is because these unknown
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drifts cause the true forward operator to be different from the theoretical forward

model that is constructed without considering drifts. Aside from drift in scanning

positions, additive white Gaussian noise is also present in the sinogram.

Figure 6.1: Parallel tomography illustration from [36].

The object is an image of size nˆn, which is vectorized and denoted by x P RN .

The true forward operator A maps the object to the true sinogram b (vectorized

from B). Note that A and b are “true” quantities meaning that they are obtained

from the experiments and are contaminated by both drift and noise. We denote the

theoretical forward operator by A0 (the one that we know). The object is rotated

Nθ times for scanning, each with Nτ parallel beams. Hence the sinogram is an image

of size Nτ ˆ Nθ, and it is then vectorized into b. Additive Gaussian noise in b is

denoted by η so that b “ bex`η. For simplicity, it is assumed in [36] that after each

rotation of the object, the drifts in the scanning positions remain the same, so the
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drifts in beams don’t depend on the rotation angle, and there are only Nτ unknown

drifts. We denote the vector of drifts ∆τ as δτ .

To obtain the reconstruction x, the following minimization problem is formulated:

min
x,δτ

1

2
}Apδτ qx´ b}2 ` λRpxq, (6.2)

where Rpxq is the regularization term and λ ą 0 is the regularization parameter.

Due to the presence of unknown drifts, the following algorithm (Algorithm 11) is

proposed in [36], which is essentially a block coordinate descent (BCD) algorithm

that alternatively optimizes with respect to x and δτ using drift information obtained

in each iteration.

Algorithm 11 Optimization Algorithm for Parallel CT Problem

1: Input: b, A0, δ
τ
0 “ 0 λ0, kmax

2: Solve for x0 “
1
2

arg minx }A0x´ b}
2 ` λ0Rpxq

3: for k “ 1, ¨ ¨ ¨ , kmax do
4: Estimate δτk , construct Pk “ P pδ

τ
kq, and updateAk “ PkAk´1

5: Choose λk
6: Solve for xk “

1
2

arg minx }Akx´ b}
2 ` λkRpxq

7: end for
8: Output: xk

To construct Pk in step 4 of Algorithm 11, firstly, drifts are estimated by match-

ing the true sinogram B (i.e., observed sinogram) to the “updated” sinogram B˚

obtained by reshaping Ak´1xk´1 to matrix form. That is, for the τth beam, the

estimated drift is computed by minimizing (among all possible drift values) the dif-

ference between the τth column of B and an interpolation of corresponding columns

of B˚. After the drift is estimated for every beam, the interpolation matrix Pk is
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then computed by a closed-form formula. For more details on constructing Pk from

δτk , we refer the readers to [36].

When it comes to choosing a regularization parameter λk in each iteration in Step

5, the paper [36] uses a heuristic approach based on the idea that as k (the number of

iterations) increases, xk becomes a better approximation, and the problem becomes

less ill-posed. Therefore, it is natural to decrease λk as we move forward. For this

approach, a first λ0 and last λkmax (λ0 ą λkmax) need to be picked beforehand,

and intermediate λk’s are chosen so that they are equally spaced. Using MATLAB

notation, the λk’s for k “ 1, ¨ ¨ ¨ , kmax take values in the vector

linspacepλ0, λkmax , 1` kmaxq. (6.3)

As we attempt to come up with a more systematic way of choosing λk’s, we are

immediately reminded of the discrepancy principle based adpative approach that is

used for hybrid Krylov subspace methods [21] described in Section 2.4. A similar

idea can be applied here. Firstly, let xk,λ be the solution to

min
x

1

2
}Akx´ b}

2
` λΦpxq, (6.4)

and define ψkpλq in the same way as (2.15):

ψkpλq “ }Akxk,λ ´ b}. (6.5)

Since derivation steps are pretty much the same as in Section 2.4, we omit the
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redundant steps here and present the final formula directly. Given noise level ε “ }η}2

and µ Ç 1, λk can be updated as follows:

λk “

∣∣∣∣ µε´ ψkp0q

ψkpλk´1q ´ ψkp0q

∣∣∣∣λk´1. (6.6)

For both Krylov subspace methods and Algorithm 11, ψkpλk´1q can be obtained

relatively easily. An advantage of Krylov subspace methods is that the residual

ψkp0q “ }Akxk,0´b} can be obtained directly without solving for xk,0. However, for

Algorithm 11, we need to solve for xk,0 in order to compute ψkp0q. The same solver

for step 6 can be used here. And to speed it up, there are a few things we can do.

For example, we could

• increase the tolerance for the solver’s stopping criterion (since we only need

the residual, the solution doesn’t need to be very accurate), and

• take xk´1,0 to be the starting guess for the solver (as observed with this

discrepancy-base parameter selecting approach, the value of ψkp0q would grad-

ually stabilize as k increases).

For step 6 in Algorithm 11, the Two-Step Iterative Shrinkage/Thresholding (TwIST)

solver [5] used with TV regularization is considered in [36]. However, other linear

solvers, such as Krylov subspace methods (e.g. LSQR) can also be applied in this

step. In the upcoming subsection, we will investigate the performance of Algorithm

11 on the parallel tomography reconstruction problem that requires parameter cali-

bration. We will first follow [36] to use TwIST as the linear solver, and explore the

effect of the adaptive λ choosing approach (6.6) against the old approach (6.3) when
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applied to the BCD algorithm. In addition, we will also observe how solutions differ

if we adopt Krylov methods in the linear step.

6.1.1 Numerical Examples

Using TwIST with TV Regularization. In this part, we demonstrate the

performance of Algorithm 11, in which TwIST [5] with TV regularization is used

in the linear step (step 6). We perform tests for different drift levels, namely,

∆max “ max ∆τ P t∆, 3∆, 5∆u. Recall that ∆τ is drift in beam τ , and ∆ is equal

to the theoretical step size between adjacent x-ray beams. For each case, to further

test the robustness of the proposed method, we superimpose two levels of Gaussian

noise to the sinogram b (simulated with the assigned drifts) with standard deviation

σ equal to 0.01 and 0.02 respectively. Note that b is first “normalized” by its largest

element before noise is added, after which b is scaled back to its original scale. Two

test images of size 256 by 256 are used: Brain and Phantom, and they are displayed

in Figure 6.2.

Figure 6.2: Test images Brain (left) and Phantom (right).

We adopt the test metric PSNR (peak signal to noise ratio) to be consistent with
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[36]. The larger PSNR is, the better the image reconstruction. The stopping criterion

for TwIST is when the number of iterations reaches 500 or when the relative change

in the objective function 6.2 is less than or equal to 10´4. And the stopping criterion

for the outer iterations (i.e., BCD iterations) is if the change in relative residual is

small, i.e.,
ˇ

ˇ

ˇ

ˇ

1

2
}Akxk ´ b}

2
2 ´

1

2
}Ak´1xk´1 ´ b}

2
2

ˇ

ˇ

ˇ

ˇ

ď 10´3. (6.7)

Note that in this experimental setting, in order to use the adaptive λ setting

approach (6.6), we need the noise level ε “ }η}2, but it is not readily available. We

are only given standard deviation of the noise, σ, and an estimate of the noise level

ε can be obtained using the following formula,

ε “ }η}2 « bmax

a

NτNθσ, (6.8)

where bmax is the maximum element in b. Since this is very likely an overestimate (be-

cause it is estimated with bmax), in practice, we can actually take µε « bmax

?
NτNθσ

without explicitly defining µ Ç 1 when updating λk using (6.6). It is also worth

mentioning how we set the initial regularization parameter λ0. In order to have the

initial λ0 reflect well the level of noise from two main sources, the white noise and ex-

perimental drifts, in our problem, we propose the following formula for constructing

λ0:

λ0 “ 0.001p1` σqp1`∆maxq. (6.9)

Table 6.1 displays the PSNR values (in dB) for a variety of test cases with different

objects, different maximum drift levels and different noise levels. We compare results
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of the baseline approach (i.e., solving the linear system directly without calibrating

drift) and the heuristic approach (i.e., Algorithm 11 using the heuristic λ choosing

method (6.3) against the adaptive regularization parameter setting approach (6.6).

The presented PSNR values for the adaptive approach are given by the convergent

iterations for each test case. For the heuristic approach, we take the 10th iteration,

at which λ0 is decreased to 0.01λ0.

We can observe in Table 6.1 that in general, the adaptive approach outperforms

both heuristic approach and baseline approach. However, for a few cases with noise

σ “ 0.02, the PSNR given by “adaptive” is slightly less than the “heuristic” ap-

proach’s PSNR value. This is probably because the estimate for ε is less accurate for

larger values of σ.

Max Drift ∆ 3∆ 5∆
Noise σ 0 0.01 0.02 0 0.01 0.02 0 0.01 0.02

Brain (adap.) 29.43 26.78 24.61 27.01 25.54 23.53 25.46 24.90 23.30
Brain (heur.) 26.99 26.34 25.50 24.44 24.38 23.87 23.57 23.51 23.34
Brain (base.) 26.27 24.34 19.90 20.73 20.22 18.53 18.06 17.80 17.08

Phan (adap.) 26.77 26.05 24.44 22.80 22.59 21.96 21.75 21.54 21.67
Phan (heur.) 24.94 24.98 24.82 21.19 20.90 20.89 19.75 19.86 19.66
Phan (base.) 21.90 21.51 20.53 16.58 16.53 16.23 14.26 14.22 14.04

Table 6.1: Performance comparison of new adaptive (adap.) method with the base-
line (base.) and heuristic (heur.) methods for three drift levels and three noise levels
on Brain and Phantom (Phan) test images. Test Metric: PSNR (dB).

We visualize the reconstructions of phantom in Figure 6.3. It is noticeable that

with drift calibration, we are able to recover the fine feature of the object, and in

particular, with the adaptive λk approach, the fine details can be recovered to an
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enhanced contrast comparing to the old approach in average.

∆max “ ∆, σ “ 0.02 ∆max “ 3∆, σ “ 0.02 ∆max “ 5∆, σ “ 0.02

Figure 6.3: Phantom reconstructions given by Algorithm 11 using TwIST. Top row:
baseline; middle row: heuristic λk’s; bottom row: adaptive λk’s.

We further investigate the iterative performance of the two approaches choosing

λk’s in Figure 6.4. Remarkably, our proposed adaptive way is able to gradually de-

crease λ until stabilized. Comparing to the heuristic approach, the proposed formula

promotes the convergence of the performance in a more automatic way. To perform

fair visual comparison, we allow the algorithm to continue until reaching the max-

imum allowed number of iterations. We indicate the convergence of our proposed

adaptive approach on λk by a red diamond according to stopping criteria 6.7.
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Figure 6.4: Convergence results for Algorithm 11 on Phantom test image. Top row:
PSNR; bottom row: λk’s

Using Krylov Subspace Methods. Since the main contribution of this thesis

is the newly developed low-rank Krylov methods, we also put the new methods to

test in this parallel tomography calibration problem. Note that we are applying

these Krylov methods in step 6 of Algorithm 11, replacing TwIST. Krylov subspace

methods are intrinsically different from the previous TwIST solver, so in this part, we

compare the performance of the new low-rank methods to other Krylov methods in

its family. Namely, we compare the following methods: LSQR (without any form of

regularization), LSQR tik (LSQR with Tikhonov regularization), LSQR htv (LSQR

with heuristic TV regularization), as well as the two low rank methods: FLSQR-
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NNR(v) (Section 4.4) and LR-FLSQR (Section 5.1.1). Implementations of LSQR tik

and LSQR htv can be found in IR Tools [17].

We test the Krylov solvers using the Phantom test image as seen in Figure 6.2.

We fix the noise standard deviation σ to be 0.02, and vary the maximum drift level

so that ∆max “ max ∆τ P t∆, 3∆, 5∆u. We set the number of outer iterations to be

20. In terms of inner iterations (i.e., Krylov iterations), we also use 20, but rather

than imposing a stopping criterion, we pick the iteration whose solution has the

lowest relative error compared against the true solution. We do so because we are

interested in comparing the performance of Krylov methods in the best case scenario

(i.e., stopping at lowest relative error). Also, the methods LSQR tik and LSQR htv

require regularization parameters, and we follow (6.6) to adaptively pick a fixed λk

for each outer iteration. This is different from the automatic update of regularization

parameters in the inner Krylov iterations.

5 10 15 20

Iteration k

20.5

21

21.5

22

22.5

P
S

N
R

(d
B

)

LSQR

LSQR_tik

LSQR_htv

FLSQR-NNR(v)

LR-FLSQR

5 10 15 20

Iteration k

18

18.5

19

19.5

20

20.5

P
S

N
R

(d
B

)

LSQR

LSQR_tik

LSQR_htv

FLSQR-NNR(v)

LR-FLSQR

5 10 15 20

Iteration k

16.5

17

17.5

18

18.5

P
S

N
R

(d
B

)

LSQR

LSQR_tik

LSQR_htv

FLSQR-NNR(v)

LR-FLSQR

∆max “ ∆, σ “ 0.02 ∆max “ 3∆, σ “ 0.02 ∆max “ 5∆, σ “ 0.02

Figure 6.5: PSNR convergence plots (Phantom) using Krylov methods. For LR-
FLSQR, truncation ranks κ “ κB “ 50, picked by trial and error.

Figure 6.5 displays the convergence of PSNR values of the various Krylov meth-

ods. We can easily observe that out of the 5 Krylov methods, LSQR, LSQR tik

and LSQR htv behave quite similarly for different drift levels, and all three of these
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∆max “ ∆, σ “ 0.02 ∆max “ 3∆, σ “ 0.02 ∆max “ 5∆, σ “ 0.02

Figure 6.6: Phantom reconstructions using Krylov methods. Upper row: LSQR
solutions (no regularization); middle row: LSQR htv solutions; bottom row: FLSQR-
NNR(v) solutions.

methods are outperformed by the new low-rank Krylov methods FLSQR-NNR(v)

and LR-FLSQR. It is also interesting that for the low drift level ∆max “ ∆, the best-

performing method is LR-FLSQR, while for the higher drift levels ∆max “ 3∆ and

5∆, FLSQR-NNR(v) is the best of all. Furthermore, the improvement in the new

low rank methods over traditional Krylov methods is more apparent for the larger

drift levels. In spite of the improvements, we should also recognize that even when

we are exploiting the Krylov methods to their fullest potential, all Krylov solutions
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are still of lower quality compared to TwIST. The best-performing Krylov methods

give PSNR values that are 1.5-3.5 lower than TwIST.

In Figure 6.6, we present solutions at the 20th outer iterations of Algorithm 11

using LSQR, LSQR htv, and FLSQR-NNR(v). It is easy to see that FLSQR-NNR(v)

renders solutions of the highest clarity compared to the other two – there is less

noise in the background, and the phantom shape is better preserved. However, when

compared to TwIST reconstructions in Figure 6.3, FLSQR-NNR(v) is still lacking

in details (e.g., the three small circles inside the phantom), and are more noisy.

6.2 Fan-Beam Tomography

In this section, we describe a different tomography setup – fan-beam tomography.

That is, instead of a panel that emits parallel x-ray beams, we now have a point

source that emits fan beams, as can be seen in Figure 6.7(a). Ideally, for each

scan, the source should be of equal distance to the object and rotates a fixed angle.

However, this may not be the case for portable CT machines that are subject to

more experimental errors caused by machine transportation. In Figure 6.7(b), the

theoretical location of the center scanning position is shown in light green, but during

the scanning process it may be shifted to the dark green location. Hence, when

reconstructing the imaged object, we also need to take into consideration geometry

parameter calibration.
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(a). (b).

Figure 6.7: Fan-beam Tomography illustration.

Consider the fan-beam CT image reconstruction problem

min
x,p

}Appqx´ b}22 ` λRpxq, (6.10)

where A P RMˆN is the forward model that depends on geometry parameters p, b P

RM is the observed data (sinogram) perturbed by random noise η (i.e., b “ bex`η),

x P RN is the quantity of interest (imaged object), and λRpxq is a regularization

term. In experimental settings, the geometry parameters p may not be exactly

known, but we have an estimate, i.e., their theoretical values. As a result, we need

to both solve for the solution image x and calibrate parameters p. Note also that

b and x are vectorized quantities of the sinogram B P RNτˆNθ (where Nτ is the

number of beams and Nθ is the number of scanning angles) and the solution image

X P Rnˆn, where N “ n2.
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For this problem, we consider two types of uncertainties in the geometry parame-

ters: source to object distances, and scanning angles. Hence the unknown geometry

parameters p P R2Np consist of two components r and d, i.e., p “ rr; ds, where

r P RNp “ rr1; ¨ ¨ ¨ ; rNps are source to object distances with theoretical value 2n, and

d P RNp “ rδθ1; ¨ ¨ ¨ ; δθNps are perturbation in scanning angles with theoretical value

0. We assume that ri P r1.5n, 2.5ns (n is dimension of image) and δθi P r´0.5, 0.5s.

Note that technically, Np could be equal to the total number of scanning angles

and can be as large as 180 or 360. For simplification purposes, we start by choosing

Np much smaller than total number of scanning angles (e.g., Np “ 3 or Np = 6).

For instance, if we use Nθ “ 180 scanning angles 0:2:359 and Np “ 3, then p P R6,

r, d P R3, and pri, δ
θ
i q would be constant for a set of 180{Np “ 60 angles.

Similar to what’s described in Section 6.1, a block coordinate descent (BCD)

optimization algorithm may be used to alternatively solve for x and p in Problem

(6.10). The idea is simple: for the unknowns x and p, we can fix one and solve for

the other, and repeat this process multiple times. Since we are given the theoretical

value of p, we can use it as an initial guess p0, and start from here to solve for x0,

then p1, x1, p2, x2, ¨ ¨ ¨ , etc. The BCD method is summarized in Algorithm 12.

Note that our version of BCD (Algorithm 12) is sometimes also called alternating

minimization.

The linear steps 2 and 6 of Algorithm 12 can be solved with a linear inverse

problem solver such as LSQR. But for the model update step (step 4), since A de-

pends nonlinearly on p, we need to use a nonlinear solver such as Gauss-Newton

based imfil [42], and this nonlinear step can be expensive for large values of Np.
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Algorithm 12 BCD for fan-beam CT problem

1: Input: b, p0, A0 “ App0q
2: Solve for x0 “ arg minx }A0x´ b}

2 ` λ0}x}
2
2

3: for k “ 1, ¨ ¨ ¨ do
4: Solve for pk “ arg minp }Appqxk ´ b}

2

5: Update Ak “ Appkq
6: Solve for xk “ arg minx }Akx´ b}

2 ` λk}x}
2
2

7: end for
8: return xk

Note that for this step, we can actually reduce problem size by exploiting separa-

bility of Appq. That is, the minimization problem in step 4 of Algorithm 12 can be

equivalently written as

min
p

∥∥∥∥∥∥∥∥∥∥∥∥∥

»

—

—

—

—

—

—

—

–

App1q

App2q

...

AppNpq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x´

»

—

—

—

—

—

—

—

–

b1

b2
...

bNp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

“

Np
ÿ

i“1

}Appiqx´ bi}
2. (6.11)

By doing so, we divide the big nonlinear problem into Np small problems, which can

be solved in parallel. The separability property works very well with our proposed

BCD framework, but other approaches such as variable projection [53, 55] would not

be able to utilize this nice property. On the other hand, the nonlinear solver can

depend heavily on the initial guess, and may converge to a local minimum rather than

the global minimum, which affects all subsequent xk’s and pk’s. Hence, although we

can conveniently define p0 as the theoretical value for p, it might be worthwhile to

look for other ways of defining p0 that allows for better convergence of the overall



106

BCD solver.

Since the nonlinear optimization step is very costly and takes a long time to run,

it would be even better if we can find a way to avoid running this step. Inspired

by [1], which trains neural networks to learn regularization parameters for inverse

problems, we are interested in building machine learning models to learn the unknown

CT geometry parameters. In other words, by training a machine learning model

pΦ : bÑ p that maps sinogram b to geometry parameters p, we may be able to avoid

running the alternating minimization scheme. And as a result, we only need to run

one linear step to solve for x. This framework is summarized in Algorithm 13.

Algorithm 13 Learning Geometry Parameters

1: offline phase
2: For j “ 1, ¨ ¨ ¨ , J , randomly generate geometry parameters pj, noise ηj, and

generate training data bj “ Appjqx
ex
j ` ηj

3: Train model pΦ which maps observation b onto geometry parameters p
4: online phase
5: For new data bj1 , predict parameters pj1 “ pΦpbj1q
6: Solve inverse problem minx }Appj1qx´ b}

2 ` λRpxq

To train the model pΦ : bÑ p, we need the following training data:

• pB P RJˆM is (feature) matrix with J rows. Each row is a vectorized sinogram bj

of length M , constructed using random rj and δθj , with superimposed Gaussian

noise, i.e., bj “ Aprj, δ
θ
j qx

ex
j ` ηj, with xex

j the true phantom and ηj the

random noise vector.

• R,D P RJˆNp are matrices of true geometry parameters, with rows rj and δθj

corresponding to sinogram bj.
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One important consideration during the training phase is choosing the phantom

images xex
j . If we fix xex

j to be a constant phantom image for all j, then we would

expect that the trained model only works well for the phantom that the model is

trained on. In other words, the model would be best at predicting CT geometry

parameters when the phantom being reconstructed is the same phantom that the

training data is built upon, and may not generalize well to other phantoms. Since

in a real-world CT reconstruction problem, we do not know what the phantom is,

using a model that is trained upon a fixed phantom may not render good solutions.

However, if we use different phantoms xex
j ’s when generating the training data,

the model may become confused due to the problem of non-uniqueness. It is possible

that there exist pp1,x1q, pp2,x2q with p1 ‰ p2 and x1 ‰ x2, such that App1qx1 “

App2qx2 “ b. This means that the mapping pΦ : b Ñ p may not be one-to-one.

Therefore, the model may predict parameters p that are very far from the true

value, thus rendering far-from-true solution x in Algorithm 13.

Disturbance-based strategies have been used in applications like Power Systems

[35, 71] to help with non-uniqueness. If we translate this strategy into our context,

we may apply “disturbances”, i.e., different phantoms and different noise levels to

generate many training samples that correspond to the same set of geometry pa-

rameters p. That is, for each p, we generate l training samples bi “ Appqxi ` ηi

for i “ 1, ¨ ¨ ¨ , l using l different phantoms and noise levels. We will see how the

disturbance-based strategy performs in Section 6.2.2.
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6.2.1 Hybrid ML-BCD Method

In this Section, we describe a hybrid method that combines machine learning with

block coordinate descent for solving (6.10). We will also explain technical details for

training the machine learning model.

We have mentioned previously that the machine learning problem of learning

geometry parameters when the phantom xex
j is not fixed in the training data may

suffer from non-uniqueness. Although in our experience, using Algorithm 13 with an

ML model trained using non-fixed xex
j ’s does not deliver solutions that are too far

from the true images, we do notice that relative errors in the predicted parameters

on the testing set have increased compared to the case with a fixed xex
j , but the

relative errors are still very low compared to the theoretical values (more on this in

Section 6.2.2).

One natural approach that comes to mind is using a hybrid method that combines

a machine learning model and BCD. That is, we may first use the trained ML model

to predict p, then feed the predicted p as a starting guess to the BCD algorithm to

run a few iterations to refine the solution. This hybrid framework is described in

Algorithm 14.

Algorithm 14 ML-BCD hybrid framework

1: offline phase
2: Use offline phase in Algorithm 13 to train ML model pΦ : bÑ p
3: online phase
4: (predict) For new data bj1 , predict parameters pj1 “ pΦpbj1q
5: (refine) Run Algorithm 12 with p0 “ pj1 and A0 “ Appj1q

While there are many machine learning models to choose from, we consider one
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of the simplest models – a multi-output linear regression model, which can also be

thought of as a one-layer neural network. This ML model assumes a linear relation-

ship between input and output, and for simplicity, we take a zero bias term. To build

this model, we learn weights W P RMˆ2Np by solving the least squares problem

min
W
} pBW ´ rR Ds}2F . (6.12)

Then, given new data bj1 , we simply need to compute pj1 “ rrj1 ; δ
θ
j1s “ bTj1W to

obtain the predicted geometry parameters, which can be fed as initial guess p0 into

the BCD algorithm. We have chosen the loss function to be } ¨ }2F , which makes

the minimization problem separable (similar to the nonlinear step of BCD). Since

R “ rR1 ¨ ¨ ¨RNps with column vectors Ri, and D “ rD1 ¨ ¨ ¨DNps with column

vectors Di, (6.12) is equivalent to

Np
ÿ

i“1

min
Wr,iPRM

} pBWr,i ´Ri}
2
2 `

Np
ÿ

i“1

min
Wd,iPRM

} pBWd,i ´Di}
2
2, (6.13)

whereWr,i andWd,i are column vectors ofWR andWD such thatWR “ rWr,1 ¨ ¨ ¨Wr,Nps,

WD “ rWd,1 ¨ ¨ ¨Wd,Nps, and W “ rWR WDs. The sub-problems minWr,i
} pBWr,i ´

Ri}
2
2 and minWd,i

} pBWd,i ´Di}
2
2 are large and non-square linear systems, and we

need to use an iterative solver such as LSQR to solve each of them. Algorithm 15

contains more detailed description of the hybrid method.
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Algorithm 15 ML-BCD hybrid algorithm

1: offline phase - training ML model
2: Generate training data pB, R and D
3: Compute ML model weights W that is the solution to minW } pBW ´rRDs}2F

4: online phase - prediction and BCD
5: For new data bj1 , predict geometry parameters pj1 “ rrj1 ; δ

θ
j1s “ b

T
j1W

6: Set p0 “ pj1 andA0 “ Appj1q, and solve for x0 “ arg minx }A0x´b}
2`λ0}x}

2
2

7: Alternatively optimize for pk and xk for k “ 1, 2, ¨ ¨ ¨ as in Algorithm 12.
8: Return xk

6.2.2 Numerical Examples

In this Section, we present several numerical experiments comparing performances

of Algorithms 12, 13 and 15. We have used the PRtomo function of IRTools [17] to

generate all training data in this section. The linear solver used is IRhybrid lsqr

from IRTools and the nonlinear solver is imfil [42]. While there are many linear

solvers to choose from, the purpose of the numerical experiments is to compare differ-

ent algorithms that simultaneously reconstructs the image and calibrates geometry

parameters, not comparing performances of different linear solvers, so we will have

a fair comparison as along as we fix the linear solver.

Test 1: 64 by 64 fixed phantom problem with Np “ 3. We first consider a

64ˆ64 fixed Shepp-Logan phantom as xex
j @j when generating the training data. We

use 180 scanning angles, i.e., 0:2:359 and Np “ 3, so there are 6 unknown geometry

parameters in total: 3 ri’s and 3 δθi ’s, with each pair of pri, δ
θ
i q corresponding to 60

adjacent scanning angles. As a result, each bj P R16380, so pB P RJˆ16380, R and
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D P R16380ˆ3. Random white noise with fixed noise level 0.01 is superimposed onto

each bj.

We have generated training data pB, R and D with J “ 20000 training samples,

and an additional testing set pBtest, Rtest, and Dtest of 2000 samples. We train ML

model weights using the method described in Section 6.2.1, i.e., computing weight

matrix W “ rWR WDs by solving every subproblem of (6.13). We train weights

W using training sets of different sizes: 2000, 4000, 6000, ¨ ¨ ¨ , 20000, compute the

predicted geometry parameters

Rpred “
pBtestWR and Dpred “

pBtestWD,

and evaluate testing errors

}Rpred ´Rtest}F

}Rtest}F
and

}Dpred ´Dtest}F

}Dtest}F

on the testing set of 2000 samples. We plot testing errors against training set size in

Figure 6.8.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Training Set Size 10
4

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

R
e

la
ti
v
e

 E
rr

o
rs

 i
n

 R
p
re

d

10
-4

0.5 1 1.5 2

Training Set Size 10
4

0.065

0.07

0.075

0.08

0.085

0.09

R
e

la
ti
v
e

 E
rr

o
rs

 i
n

 D
p

re
d

Figure 6.8: Relative errors in Rpred (left) and Dpred (right) on testing set.
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We can observe that as the training set size increases, relative error in the pre-

dicted geometry parameters decreases. This is because as the training set becomes

larger, it covers more variations in the different combinations of geometry parame-

ters, which makes predictions more accurate. Also, the relative errors in Rpred and

Dpred are very different in magnitude, meaning that it is much easier to predict r

parameters more accurately.

Uncalibrated. Perfect calibration. ML solution. BCD solution.

Figure 6.9: Phantom reconstructions of 3 testing samples that share the same under-
lying phantom with training set (1 testing sample per row). 1st column: solutions
using theoretical parameters (i.e., uncalibrated). 2nd column: solutions using true
parameters (i.e. perfect calibration). 3rd column: solutions using ML-predicted pa-
rameters (Algorithm 13). 4th column: solutions using 10 BCD iterations (Algorithm
12).
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Figure 6.9 shows solutions using theoretical parameters, true parameters, ML-

predicted parameters (Algorithm 13), and BCD (Algorithm 12). The ML model

weights are trained on a training set of size 20000. We can observe in Figure 6.9 that

if we leave the geometry parameters uncalibrated, the solution images will have very

poor quality. If we use the BCD scheme (Algorithm 12), the reconstruction quality

seems to have improved, but the solutions are still fuzzy and unclear. Using Algo-

rithm 13 to predict geometry parameters using learned ML model weights, we obtain

highly accurate solutions, resembling solutions computed using the true parameters

(which represents to the case of perfect calibration).

Uncalibrated. Perfect calibration. ML solution. BCD solution.

Figure 6.10: Phantom reconstructions of 2 testing samples that have different un-
derlying phantom than training set (1 testing sample per row). Column order same
as Figure 6.9.

The model weights trained in this test is based on training data generated with

the same phantom. Therefore, if the solution image we are looking for is different

from the phantom that the weights are trained on, then the ML model may not gen-
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eralize well. As we observe in Figure 6.10, the test samples have different underlying

phantoms (different from what’s in the training data). As a result, Algorithm 13 no

longer yields accurate solutions, and no longer has an advantage over BCD.

Test 2: Testing Disturbances. While we want to train models that generalize

well to different phantoms, the problem of non-uniqueness may affect the training

of machine learning models. In this test, we explore the effect of disturbances by

generating the training data using different phantoms xex
j ’s. Examples of such phan-

toms used are shown in Figure 6.11. It can be seen that each phantom is created

by altering the original phantom by randomly removing ellipses and slightly varying

ellipse sizes and angles. Random noise of noise level chosen randomly in the range

0.1% to 2% is superimposed to each sample.

Figure 6.11: Examples of different phantoms used.

Two training sets are created. We apply the disturbance strategy in the first

training set by generating 5 different phantoms and noise levels for each pj, with

7000 pj’s in total, i.e., there are 35000 samples in the data set. As a frame of

reference, we compare results given by another training set of the same size, but

without disturbances. That is, 35000 samples each with a different pj, phantom and

noise level.
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We use these two training sets and subsets of the data sets to train ML model

weights. We compare the relative errors of the ML-predicted p for the testing set

consisting of 1000 samples (generated with different samples in the same way as il-

lustrated in Figure 6.11). In Figure 6.12, we show convergence of relative errors in

the geometry parameters Rpred and Dpred predicted by ML models trained using

5000:5000:35000 samples of the two data sets. Note that, for example, with the train-

ing set size 15000, one training set consists of 3000 pj’s each having 5 disturbances

(i.e., phantoms and noise levels), the other training set has 15000 pj’s (each having

their own phantom and noise level). We also notice that when the model is trained

on training data generated using different phantoms, the relative errors in the geom-

etry parameters are around 10 times larger than the relative errors presented in Test

1 due to the variance of phantoms.
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Figure 6.12: Relative errors in Rpred and Dpred on testing set.

We see in Figure 6.12 that the relative errors decrease for both training sets as

training set size increases. If we compare the relative errors vertically, we can see that

the errors are not so different for the two training sets. The slight difference may be
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caused by randomness in generating the two sets. We believe it’s only fair to compare

results using training sets of the same size, since, for example, if we compare results

given by one training set of 5000 samples with results given by another training

set of 5000 samples each with 5 disturbances, the decrease in relative errors may

be caused by the increased training set size, not disturbance. Therefore, given the

results in this test, it is hard to conclude that disturbances help improve accuracy in

the predicted geometry parameters.

Test 3: 128 by 238 varying phantom problem with Np “ 6. We have ob-

served in Tests 1 and 2 that errors in the predicted geometry parameters would

increase if the ML model is not trained and tested on the same phantom images. We

have also seen that, in this case, although errors in δθ are quite large, relative errors

in r are still relatively low.

In this test, we focus on the case where phantoms vary across training and testing

samples. We increase phantom size to n “ 128 and number of geometry parameters

to Np “ 6. Hence, with 180 scanning angles 0:2:358, each pair of pri, δ
θ
i q will be

constant for 30 adjacent angles. and compare solutions of the BCD (Algorithm 12),

ML (Algorithm 13) and ML-BCD hybrid (Algorithm 15) methods. The ML weights

are trained using the 40000 training samples. We evaluate the ML-BCD hybrid

method and BCD method (each with 10 iterations) on a testing set of 100 samples,

calculate the relative errors in xk, rk and δθi for each BCD iteration k, and generate

the histograms in Figure 6.13.
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Figure 6.13: 1st row: BCD iteration number with the minimum relative error. 2nd
row: minimum relative error across all iterations. 3rd row: relative error at the 10th
BCD iteration.

In the first row of Figure 6.13, frequencies of the iteration at which the minimum

error occurs are plotted. Note that iteration 0 represents the initial guess, i.e., for

BCD, this would be the uncalibrated solution; and for ML-BCD hybrid, this would be

obtained directly from using ML-predicted parameters without further refining with

BCD. We can draw the conclusion that the hybrid method has better convergence

properties for x, where for nearly 40% percent of testing samples, BCD reaches the
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minimum relative error of x in the last iteration. While for BCD, in more than 50%

percent of testing samples, the minimum relative error in x is either reached at the

initial guess or the first iteration, which means that BCD is not very effective at

improving solution accuracy. This is further confirmed in the distribution of relative

errors in the second and third rows of Figure 6.13, in which we notice that in general,

the relative errors in both the solutions and the calibrated geometry parameters given

by the ML-BCD hybrid method are very low compared to BCD.

Uncalibrated. Perfect calibration. ML solution. Hybrid solution. BCD solution.

Figure 6.14: Phantom reconstructions of 3 testing samples (1 test sample per row).
1st column: solutions using theoretical parameters (i.e., uncalibrated). 2nd column:
solutions using true parameters (i.e. perfect calibration). 3rd column: solutions
using ML-predicted parameters (Algorithm 13). 4th column: solutions using ML-
BCD hybrid method with 10 BCD iterations (Algorithm 15). 5th column: solutions
using 10 BCD iterations (Algorithm 12).

In Figure 6.14, we display solutions of 3 test samples using different methods:



119

ML-only (Algorithm 13), ML-BCD hybrid (Algorithm 15) and BCD-only (Algorithm

12) (solutions at the last BCD iteration are shown). As a point of reference, we also

present the solutions obtained using the true parameters to showcase the best solution

possible. The 3 test samples are randomly picked from the 100 testing samples, and

we see that for 2 out of 3, the BCD refinement step of the hybrid method has improved

solution accuracy over using ML alone, and for these 2 samples, the hybrid solutions

have significantly higher accuracy compared to the BCD solutions. For the first test

sample, however, the BCD-refinement step of the hybrid method seems to not have

improved solution accuracy. This is also expected because we have observed in the

histograms of Figure 6.13 that in some cases, the hybrid method may not work so

well – but it is evident that ML-BCD hybrid is more advantageous over BCD on

average in the tasks of parameter calibration and image reconstruction.
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Chapter 7

Conclusions and Future Work

In this thesis, we have introduced novel low-rank solvers for large scale linear systems.

Firstly, we introduced a new Kronecker product summation based technique for

approximating the TSVD for a large matrix A. The TSVD can be thought of as a

low-rank approximation to the original operator A, and by filtering out the small

singular values, it has a regularizing effect on the solution x to the linear system

(1.1). By exploiting a reordering technique, we can effectively utilize more terms in

the Kronecker summation for A, and produce approximations of higher quality than

existing Kronecker product based approximation methods.

Next, we explored the nuclear norm regularized problem (4.2) and derived new

solvers, based on Krylov subspace methods, for the computation of approximate

low-rank solutions to large-scale linear systems of equations. The starting point of

our derivations was an IRN approach to the NNRp problem (4.3). In this way, the

original problem (4.3) is reduced to the solution of a sequence of quadratic problems,
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where an appropriate smoothed linear transformation is introduced to approximate

the nondifferentiable nuclear norm regularization term. Our new methods make

smart use of Kronecker product properties to reformulate each quadratic problem

in the IRN sequence as a Tikhonov-regularized problem in standard form. We de-

veloped both Krylov methods with fixed “preconditioners” within an inner-outer

iteration scheme, and Krylov methods with flexible iteration-dependent “precondi-

tioners” within a single iteration scheme. Some of these methods can be used in a

hybrid framework, so that the Tikhonov regularization parameter can be efficiently,

effectively, and adaptively chosen. These new solvers are shown to perform excep-

tionally well on the test problems such as image deblurring and inpainting, and they

give reconstructions of significantly improved quality over existing methods.

In the application of computed tomography, where the forward modelA is depen-

dent on unknown geometry parameters p, model calibration is required at the time

of image reconstruction. A block coordinate descent type algorithm can be applied,

where the image x and unknown parameters p are alternatively minimized in each

step. For the minimization with respect to x, our new low-rank Krylov methods also

show improved convergence result and reconstruction quality compared to standard

Krylov methods with classical regularization such as `2. Furthermore, we also pro-

posed an enhanced, hybrid BCD framework that incorporates machine learning for

solving the model calibration problem. By training a machine learning model (multi-

output linear regression model) that maps the observation b to p and feeding the

predicted parameters as initial guesses to BCD, we are able to improve the accuracy

of both the calibrated geometry parameters and the reconstructed image.
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Interesting future directions include, for example, extending present low-rank

Krylov methods to handle cases where the solution of (4.1) is low-rank but rectangu-

lar, i.e., vec´1pxq “X P Rmˆn with m ‰ n. Also, while a solid theoretical justifica-

tion is provided for IRN-LSQR-NNRp and IRN-GMRES-NNRp, the same is not true

for FGMRES-NNRp and FLSQR-NNRp: further analysis will be needed to deeply

understand the regularization properties of these flexible solvers. In the context of

model calibration, we also see great potential of flexible Krylov subspace methods,

since we may be able to design iteration-dependent “preconditioners” so that they

contain updated information about both the approximate solution x and model pa-

rameters p. State-of-the-art machine learning techniques could be accommodated to

to learn the necessary preconditioners that not only enforce regularization properties

on the solutions, but also improve model accuracy. Inverse problems can be found in

a wide range scientific fields, and is an active, broad and fast-evolving research area.

Although this thesis only scratched the surface of what can be done with inverse

problems, we hope the new methods proposed here will inspire and promote future

research in many other interesting topics.
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gewisser Mannigfaltigkeiten, Akad. Wiss., 69 (1917), pp. 262–277.



131

[57] B. Recht, M. Fazel, and P. Parrilo, Guaranteed Minimum-Rank Solu-

tions of Linear Matrix Equations via Nuclear Norm Minimization, SIAM Re-

view, 52 (2010), pp. 471–501.

[58] N. A. Riis, Y. Dong, and P. C. Hansen, Computed Tomography Recon-

struction with Uncertain View Angles by Iteratively Updated Model Discrepancy,

Journal of Mathematical Imaging and Vision, 63 (2021), pp. 133–143.

[59] N. A. B. Riis, Y. Dong, and P. C. Hansen, Computed Tomography with

View Angle Estimation Using Uncertainty Quantification, Inverse Problems, 37

(2021), p. 065007.

[60] R. T. Rockafellar, Convex Analysis, vol. 28, Princeton university press,

1970.
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