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Abstract 

THREE ESSAYS ON ESTIMATION UNCERTAINTY 

By 

Rohit Allena 

 
The dissertation consists of three essays on estimation uncertainty, showing why and how considering 

estimation uncertainty is important in answering three fundamental asset pricing and market 

microstructure questions.  

 

The first essay (Confident Risk Premia: Economics and Econometrics of Machine Learning 

Uncertainties) quantifies ex-ante parameter uncertainty of expected stock return predictions from 

neural networks by deriving their standard errors or confidence intervals. Considering ex-ante standard 

errors, the paper provides: 1) improved trading strategies known as Confident-high-low portfolios (in 

contrast to traditional high-low strategies), and 2) ex-post out-of-sample (OOS) inferences by 

generalizing Diebold-Mariano t-tests to statistically compare OOS returns and Sharpe ratios of any two 

trading strategies.   

 

The second essay (Comparing Asset Pricing Models with Non-traded Factors and Principal Components) 

develops a Bayesian methodology to compare asset pricing models containing non-traded factors and 

principal components.  Existing comparison procedures are inadequate when models include such 

factors due to estimation uncertainties in mimicking portfolios and return covariances. 

Furthermore, regressions of test assets on such factors are interdependent, rendering comparisons 

with recently proposed priors sensitive to subsets of the test assets. Thus, the paper derives novel, 

non-informative priors that deliver invariant inferences. The paper finds that macroeconomic 

factor models dominate several recent benchmark models with traded factors and principal 

components. 

 

The third essay (True Liquidity and Fundamental Prices: US Tick Size Pilot) is joint work with Tarun 

Chordia. This paper develops a big-data methodology to estimate fundamental prices and true 

liquidity measures, explicitly considering the rounding specification (estimation uncertainty) 

due to the minimum tick size. Evaluation of the tick size pilot (TSP), which increased the tick 

size for some randomly chosen stocks, requires estimating the impact of rounding. True liquidity 

measures capture the TSP-driven decreased inventory costs of market-makers, whereas traditional 

measures without the rounding adjustment cannot. We find that the TSP increases market -maker 

profits, but does not improve liquidity and price efficiency. This result contrast s with existing 

empirical studies but is consistent with recent theoretical studies that account for rounding.  
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Abstract

This paper derives ex-ante standard errors of risk premium predictions from neural networks

(NNs). Considering standard errors, I provide improved investment strategies and ex-post out-

of-sample (OOS) statistical inferences relative to existing literature. The equal-weighted (value-

weighted) confident high-low strategy that takes long-short positions exclusively on stocks that

have precise risk premia earns an OOS average monthly return of 3.61% (2.21%). In contrast, the

conventional high-low portfolio yields 2.52% (1.48%). Existing OOS inferences do not account

for ex-ante estimation uncertainty and thus are not adequate to statistically compare the OOS

returns, Sharpe ratios and mean squared errors of competing trading strategies and return

prediction models (e.g., linear, NN and random forest). I develop a bootstrap procedure that

delivers robust OOS inferences. The bootstrap tests reveal that large OOS return and Sharpe

ratio differences between NN and benchmark linear models’ traditional high-low portfolios are

statistically insignificant. However, the NN-based confident high-low portfolios significantly

outperform all competing strategies. Economically, standard errors reflect time-varying market

uncertainty and spike after financial shocks. In the cross-section, the level and precision of risk

premia are correlated, thus NN-based investments deliver more gains in the long positions.

Keywords: Machine Learning, Neural Networks, Standard Errors, Risk Premium, Novel

Investment Strategies, Robust Out-of-Sample Inferences, Average Return Comparisons, Sharpe

Ratio Comparisons, Machine Learning Uncertainties
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1. Introduction

Modern empirical asset pricing literature applies machine learning (ML) models to estimate

asset risk premia (i.e., expected returns in excess of the risk free rate), as these models can accom-

modate non-linear relations amongst a high-dimensional set of predictors. In an influential work,

Gu, Kelly, and Xiu (2020) (GKX) examine various ML models, such as neural networks (NNs) and

random forests, to predict individual stock’s monthly risk premia. They argue that NNs statisti-

cally outperform the benchmark linear models examined by Lewellen (2015) (henceforth Lewellen)

in predicting stock risk premia.1

However, the burgeoning ML literature has not ascertained the ex-ante precision (i.e., standard

errors and confidence intervals) of risk premium predictions from NNs. Fama and French (1997) and

Pástor and Stambaugh (1999) show that expected return estimates from traditional factor-based

models are unavoidably imprecise due to uncertainty about unknown parameters, including asset

exposures to factors (betas) and factor premia (gammas). Consequently, they argue that factor-

based risk premium measurements are not suitable for making cost-of-equity capital decisions.

Given that NNs entail a massive number of parameters, determining the precision of NN-based risk

premia is important.

This paper develops a novel and easy-to-implement procedure to estimate predictive standard

errors of NN-based risk premium predictions at both the stock-level and portfolio-level (e.g., in-

dustry portfolios). These ex-ante measures capture estimation uncertainty related to risk premium

predictions. Whereas standard errors of traditional, linear, factor-based and characteristics-based

risk premium estimates are available in the literature, those of highly complex, NN-based risk

premia are not. I tackle this challenge by adapting the NNs of GKX to simultaneously deliver

risk premium predictions and their standard errors every period. The predictive standard errors

resemble classical bootstrap-based estimators but are available in real-time with no additional

computation costs. The obtained standard errors are then theoretically justified, and empirically

1Bianchi, Büchner, and Tamoni (2020) and Bali, Goyal, Huang, Jiang, and Wen (2020) employ NNs to estimate
bond and corporate bond risk premia, respectively.
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validated using Monte-Carlo simulations.

Importantly, I present novel insights demonstrating why and how ex-ante standard errors must

be explicitly considered to address two core asset pricing problems that appear in virtually every

study in the burgeoning ML literature: (i) forming long-short trading portfolios using NN-based or

any ML-based risk premium predictions and (ii) statistically evaluating the ex-post out-of-sample

(OOS) performance of any model-based risk premia and corresponding trading strategies.2 Con-

sidering ex-ante standard errors in answering both of these questions is of fundamental importance

and has not been established in the literature.

Ex-ante standard errors provide investment gains. Many researchers (e.g. GKX and Avramov,

Cheng, and Metzker (2020)) sort stocks into deciles based solely on their return predictions, and

they take long-short positions on the extreme predicted-return deciles. This paper provides sub-

stantial enhancements to these conventional high-low (HL) investment strategies by exploiting the

cross-sectional variation in the ex-ante precision of risk premia. I introduce novel “Confident-HL”

trading portfolios that exclusively take long-short positions on a subset of stocks in the extreme

predicted-return deciles that have more confident risk premia (i.e., high absolute ratios of risk pre-

mium predictions and their standard errors, or absolute t-ratios).3 These strategies deliberately

exclude stocks with relatively imprecise risk premium estimates and thus deliver large OOS average

return and Sharpe ratio improvements.

Ex-ante standard errors impact ex-post OOS statistical inferences. To compare the ex-post

OOS performance of these HL trading strategies or, any competing return prediction models or

associated investment portfolios, researchers use two approaches: (i) reporting point estimates of

models’ OOS R2s (OOS-R2s) and investment portfolios’ OOS average returns and Sharpe ratios

(e.g., Chen, Pelger, and Zhu (2020)) or (ii) conducting simple t-tests motivated by Diebold and

Mariano (2002) (henceforth DM) (e.g., GKX, Bianchi et al. (2020), Avramov et al. (2020), and

2The standard errors also impact the cost of capital decision-making with NN-based risk premia. In the spirit of
Fama and French (1997) and Pástor and Stambaugh (1999), Allena (2020b) separately addresses this question.

3I measure the precision of risk premium predictions using their confidence-levels (i.e., absolute t-stats). See
section C.C3 for an analytical motivation. Alternatively, I also present results using the inverse standard errors as
proxies for the precision, and my conclusions are the same.

3



Bali et al. (2020)).4 I show that these ex-post OOS inferences are inadequate because they do not

account for ex-ante standard errors (i.e., estimation uncertainty).5

This paper presents a bootstrap procedure, robust to ex-ante estimation uncertainty, for valid

statistical comparisons of any two portfolios’ ex-post OOS returns and Sharpe ratios. Likewise, the

method also compares the predictive performance of any two competing return prediction models

(e.g., linear, random forests and NNs). Simulations suggest that whereas the 5%-level bootstrap

tests yield accurate sizes close to 5%, the DM tests deliver distorted sizes between 13% and 42%,

depending on the degree of estimation uncertainty.

Importantly, the bootstrap tests reveal that existing inferences with the DM tests over-reject

the benchmark Lewellen model in favor of NNs. I find that the difference between both models’

conventional HL portfolios’ OOS returns and Sharpe ratios are either moderately significant or

statistically insignificant. However, NNs exceptionally outperform on subsamples of stocks that

have confident NN-based risk premia. Likewise, NN-based Confident-HL portfolios, which exclude

stocks with relatively imprecise risk premia, statistically outperform all other competing strategies.

Thus, considering ex-ante standard errors of NN-based risk premia is necessary for both real-time

trading strategies and ex-post OOS inferences. Although this paper focuses primarily on NNs

because of their predominance, I emphasize that the arguments hold for all ML-based risk premia.

I begin by showing that ex-ante standard errors of NN-based, or any ML-based, risk premium

predictions predict their (future) squared forecast errors and thus yield large economic gains.6 For

example, when the standard errors of specific stock risk premium predictions are large, so are their

squared forecast errors. This result is due to the “bias-variance” tradeoff. Expected squared forecast

errors equal the sum of ex-ante “variances” and squared “biases”. Whereas bias represents model

misspecification, variance quantifies estimation uncertainty. Because predictions from ML models

entail flexible functions involving many parameters, variances rather than biases predominantly

determine their squared forecast errors. As a consequence, I establish that the Confident-HL

4Using simulations, Allena (2020a) shows that inferences based only on OOS point estimates are highly misleading.
5Diebold (2015) and GKX emphasize that the DM tests are not suitable for comparing model-based forecasts

with estimation uncertainty. GKX acknowledge this limitation and conduct the DM tests. I illustrate why and how
to account for parameter uncertainty to obtain accurately sized tests.

6Forecast errors equal the differences between true and predicted risk premia.
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portfolios that deliberately drop stocks with imprecise risk premia earn superior expected returns.

A simple example provides the central intuition. Consider two stocks A and B with risk premia

µA and µB, respectively. Let µ̂A and µ̂B be their risk premium predictions, which are normal,

uncorrelated and unbiased, with the measurement error variance σ2. The unbiased assumption

suits ML-based predictions. Then the expected OOS return of the HL strategy that takes a long

(short) position on the stock with the highest (lowest) risk premium prediction equals

E(HL) = (µA−µB)P (µ̂A > µ̂B)+(µB−µA)P (µ̂B > µ̂A) = (µA−µB)

[
2Φ

(
µA − µB√

2σ

)
− 1

]
, (1)

where P (.), Φ(.) denote the probability and standard normal distribution measures, respectively.

(1) indicates that the expected HL return monotonically decreases with the variance of risk premium

predictions. In other words, between any two sets of stocks with the same levels of risk premia, the

HL strategy formed from more precise predictions yields higher OOS expected returns. Intuitively,

besides the level of risk premium predictions, the precision helps better determine the cross-sectional

ranking among stocks and thus generates higher HL expected returns.7

Consistent with this intuition, the empirical section documents enormous economic gains from

the Confident-HL portfolios. In particular, I consider a 3-layer NN (NN-3) examined by GKX

to predict a large sample of U.S stock returns between 1987 and 2016. The conventional equal-

weighted (EW) and value-weighted (VW) HL portfolios formed using NN-3-based risk premia earn

ex-post OOS average monthly returns of 2.52% and 1.48%, with annualized Sharpe ratios of 1.5

and 0.9, respectively. However, the EW (VW) Confident-HL portfolio formed from a small subset

of stocks confidently predicted by NN-3 delivers corresponding measures of 3.61% (2.21%) and

1.75 (1.09), respectively. Thus, dropping imprecise predictions enhances the OOS average returns

by 43% (49%) and Sharpe ratio by 16% (21%). In contrast, measures of the EW (VW) “Low-

Confident” portfolio that instead takes long-short positions on the subset of stocks with the most

imprecise risk premia are relatively much lower, 2.35% (1.31%) and 1.18 (0.55), respectively.

The Confident-HL portfolio’s impressive performance hinges on the theoretical result showing

7Mathematically, the prediction uncertainty induces downward bias to the maximum possible expected HL return
that can be obtained when true risk premia are known. This result follows from Jensen’s inequality (see section 2).
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that NN-based predictions’ ex-ante standard errors predict their ex-post squared forecast errors.

Consistent with this result, I find that the ex-ante confidence and ex-post OOS-R2 of NN-based

predictions are monotonically related. The bottom decile containing the stocks with the most

imprecise ex-ante return predictions attain an OOS-R2 of 0.81%. In contrast, the top decile of

stocks confidently predicted by NN-3 delivers a dramatic 2.21% OOS-R2, an increase of 170%.

Notably, Confident-HL portfolios based on simple models involving a few parameters (e.g.,

Lewellen) are less likely to deliver impressive gains. Biases rather than variances predominantly

determine expected forecast errors of simple models. Consistent with this result, I find that the

Confident-HL portfolios formed using the Lewellen model’s risk premium predictions and standard

errors do not yield economic gains. Unfortunately, it is not possible to construct “Low-Bias-HL”

portfolios (analogous to “Confident-HL” portfolios) for simple models using ex-ante biases (rather

than standard errors) because true risk premia are unknown.

To assess whether the documented NN-3-based Confident HL portfolios’ OOS gains statistically

outperform other strategies, I first show that the existing DM tests are inadequate because they do

account for ex-ante standard errors. Although ex-ante estimation uncertainty impacting ex-post

OOS inferences seems instinctively puzzling, a simple example demonstrates the main intuition.

Consider comparing OOS returns of any two model-based HL portfolios. These portfolios could

be expressed as different weighted sums of excess returns, depending on which stocks comprise the

portfolios’ long and short legs. Every period, the weights are estimated using all past data. The DM

t-test thus equals the ratio of the HL return differentials’ time-series average to its standard error

estimate. DM show that this test yields valid asymptotic inferences only under the assumption

that the return differential series is covariance stationary. However, the precision of the portfolios’

estimated weights increases over time as more data are available. Thus, the HL return differentials

exhibit time-varying second moments, breaking down the DM assumption.

Consistent with this intuition, I empirically establish that all model-based HL returns violate

the DM assumption. The covariance-stationarity tests of Pagan and Schwert (1990) lends support

to non-stationarities in the HL returns, suggesting that the DM tests are inadequate. To conduct

valid OOS inferences, I develop a bootstrap procedure that is robust to non-stationarities induced
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by estimation uncertainty. The method builds on the block bootstrap procedure of Kunsch (1989),

which provides asymptotically valid inferences in the presence of non-stationarities (Gonçalves and

White (2002, 2005)).

The bootstrap tests suggest that the differences between NN-3 and Lewellen-based conventional

HL strategies’ OOS returns and Sharpe ratios are either statistically insignificant or moderately

significant. For example, a seemingly large 0.72% (0.37%) difference between the EW (VW) NN-3-

based and Lewellen-based HL portfolios’ average monthly OOS returns are statistically insignificant

at the 1% (10%) level.8

However, the NN-3-based Confident-HL strategy statistically outperforms all other compet-

ing strategies, including NN-3-based conventional HL portfolios, as well as Lewellen-based HL and

Confident-HL portfolios. Moreover, the relative performance of NN-3 over Lewellen increases mono-

tonically with the precision of NN-3-based risk premia. For example, the average monthly return

difference between NN-3 and Lewellen VW HL portfolios formed using the stocks most confidently

predicted by NN-3 is a highly significant 0.82%. In contrast, the difference is a significantly nega-

tive -1.2% on the subset of stocks most imprecisely predicted by NN-3. These results demonstrate

that besides risk premium predictions, ex-ante standard errors are crucial for constructing desirable

NN-based investment portfolios.

Avramov et al. (2020) argue that investments based on NN-3 predictions primarily extract

gains from microcaps (i.e., stocks with market capital smaller than the 20th NYSE size percentile)

and deliver insignificant OOS returns on non-microcaps. However, I find that the Confident-HL

portfolios yield significant economic gains even on non-microcaps. For example, the EW (VW)

Confident-HL portfolio yields an average OOS monthly return of 2.25% (2.07%), whereas the HL

strategy delivers 1.66% (1.42%). The Confident-HL portfolios’ performance is robust to transaction

costs, traditional factor model risk exposures and higher-moment risks that penalize losses more

than rewarding gains.

8My results do not directly compare with GKX for one main reason, among others. Lewellen (2015) advocates
three benchmark linear models with either three, seven, or fifteen characteristics. Whereas GKX use the model with
three predictors, I examine the model with fifteen that Lewellen showed to exhibit superior return forecasting ability.
Nevertheless, the conclusion that the DM tests over-reject any of Lewellen’s models in favor of NNs remains valid.
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To ensure that the Confident-HL strategies’ superior performance is not driven by inadvertently

taking long (short) positions on the stocks that have higher (lower) risk premium predictions, I

construct several matching strategies. These portfolios resemble the conventional HL strategies but

are matched to have the same “predicted-return” averages as those of the Confident-HL portfolios.

Whereas the EW-Confident HL portfolio yields a 3.61% monthly OOS return, the matching HL

strategy makes 3.07%. This result, consistent with the previously described example, reiterates

that for the same levels of risk premia, trading strategies formed from stocks with more confident

risk premia earn higher expected returns. The significant 0.55% monthly return difference between

the two portfolios precisely captures the economic value of incorporating standard error information

into trading strategies.

In the final exploration, I document interesting time-series and cross-sectional variations in

the ex-ante standard errors that have important economic relevance. In the time-series, aggregate

monthly standard errors (i.e., cross-sectional averages of ex-ante standard errors) reflect time-

varying financial market uncertainty. Bloom (2009) and Baker, Bloom, and Davis (2016) docu-

ment that market uncertainty jumps up after major shocks (e.g., Black Monday, Lehman Brothers

bankruptcy). Consistent with these studies, the aggregate standard errors spike an average of at

least twice the value of other periods. Because many individual predictors (e.g., size, price trends,

and stock market volatility) in the NN-3 model substantially deviate from their usual distributions

when markets are uncertain, risk premium predictions based on these unusual predictors would be

hugely imprecise. Thus, the aggregate standard errors capture market uncertainty.

In the cross-section, the NN-3 model (ex-ante) confidently predicts risk premia of stocks as-

sociated with small market capital, high book-to-market ratios, high 1-year momentum returns,

and high risk premium predictions. Thus, the NN-3-based investment strategies deliver more gains

in the long-leg rather than the short-leg. This result contrasts with the “arbitrage asymmetry”

studies, which argue that anomaly-based investment portfolios yield relatively more profits in the

short-leg (e.g., Stambaugh, Yu, and Yuan (2012) and Avramov, Chordia, Jostova, and Philipov

(2013)). Thus, possible mechanisms that lead to the association between the level and precision of

(NN-based) risk premium predictions still need to be explored.
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To summarize, this paper quantifies the ex-ante precision of the NN-based risk premium pre-

dictions and exploits this information to construct desirable Confident-HL investment portfolios.

To statistically assess these portfolios’ OOS performance, the paper shows that the existing DM

tests are inadequate because they do not take into account ex-ante estimation uncertainty. I pro-

pose a bootstrap test that permits valid OOS inferences. The tests suggest that the NN-3-based

Confident-HL portfolios significantly outperform the traditional NN3-HL and Lewellen-HL port-

folios in terms of their OOS returns and Sharpe ratios, whereas the reported dominance of the

conventional NN3-HL over the Lewellen-HL portfolio is statistically insignificant.

A. Contribution

The paper makes three crucial methodological and investment-related contributions.

Ex-ante standard errors. This paper generalizes the “dropout” procedure developed by Gal

and Ghahramani (2016) to obtain standard errors of NN-based risk premium predictions. They

show that an NN that employs dropout regularization is a Bayesian NN with a similar structure,

and they estimate standard errors of NN-based predictions using the comparable Bayesian models’

instantly available posterior variances. However, these are standard errors of individual “raw”

predictions (equivalent to excess return predictions), not of “prediction means” (comparable to risk

premium predictions). Moreover, they do not discuss how to obtain “joint densities” of different

predictions from Bayesian NNs, which are necessary to compute portfolio-level standard errors.

Nor do they show whether these Bayesian standard errors satisfy frequentist properties.

To my knowledge, this is the first paper to compute stock-level and portfolio-level standard

errors of NN-based risk premium estimates by explicitly deriving the marginal and joint densities of

expected return predictions from Bayesian NNs. I draw an equivalence between the frequentist and

Bayesian standard errors and use simulations to show that the computed standard errors satisfy

frequentist properties with accurate coverage probabilities. For example, simulations indicate that

95% (or any x% with 0 < x < 100) confidence intervals constructed from risk premium predictions

and their standard errors cover the true simulated risk premia with nearly 95% (x%) probability.
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Out-of-Sample Comparisons. The paper relates to studies that compare competing return

forecast models, including Goyal and Welch (2003, 2008), GKX, Bianchi et al. (2020), Bali et al.

(2020), and Chen et al. (2020). These studies use either the OOS DM tests or assess the point

estimates of OOS Sharpe ratios and OOS-R2s, without accounting for estimation uncertainty. In

contrast, this paper’s block bootstrap method generalizes the DM tests by automatically accounting

for non-stationarities induced by estimation uncertainty. This method can be employed to assess

OOS performance of any model-based return predictions.

Investment Portfolios. The paper relates to studies, including GKX, Chinco, Clark-Joseph,

and Ye (2019), and Avramov et al. (2020), that construct traditional HL portfolios based on var-

ious model-based return predictions. Alternatively, this paper shows how Confident-HL strategies

could deliver superior expected returns. These strategies generally apply to all model-based return

predictions, as long as their predictive standard errors are informative about their squared forecast

errors.

B. Paper Overview

I organize the rest of the paper as follows. Section 2 provides the basics of model-based risk

premium predictions and shows why the Confident-HL portfolios yield superior expected returns.

Section 3 presents the statistical framework of NN-based risk premia and derives their standard

errors. Section 4 shows how to conduct valid OOS inferences. Section 5 presents the empirical

results. Section 6 concludes. Appendix includes proofs of propositions and simulations. Internet

Appendix contains additional robustness checks and simulations.

2. Risk Premium Predictions and Predictive Standard Errors

This section presents the fundamental premise of measuring risk premia based on general

econometric models, including the traditional linear and more advanced ML models (e.g., NN).

It builds on the bias-variance tradeoff to explain why ML models’ predictive standard errors are

informative about their squared forecast errors, thus yielding large economic gains in terms of
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appropriate investment portfolios.

A. Basics of model-based risk premium predictions

In the spirit of GKX, consider a general additive prediction error model for realized stock

returns in excess of the risk-free rate, given by

ri,t+1 = Et(ri.t+1) + εi,t+1, Et(εi,t+1) = 0, Vt(εi,t+1) = σ2 (2)

where ri,t+1 is the excess return of stock i at period t + 1; Et(ri,t+1) is the stock i’s unobserved

conditional risk premium at period t; and εi,t+1 is the unexpected component of returns due to new

information at t+1, which is unpredictable at t. Et(.) and Vt(.) denote the conditional expectation

and variance operations, respectively. εi,t+1 are iid over time and across stocks.

Let a flexible model f(zit;β), involving stock-level predictors {zit}(it) and parameters β, esti-

mates unobserved risk premia. The set of predictors could be potentially large, containing many

characteristics (e.g., size and book-to-market) and macroeconomic variables (e.g., earnings-to-price,

stock market volatility). Like GKX, the parametric form of the model, f(.), remains the same across

different stocks and over time, thereby exploiting information from the entire panel of data to yield

stable risk premium measurements. Because the true parameters, β, are unknown, the risk premia

are estimated by

Et(ri,t+1) ≈ f(zit; β̂), ∀ stocks i, (3)

where β̂ are estimated parameters from the past data. The expected squared forecast errors of the

model-based risk premium predictions are given by

Et

[(
Et(ri,t+1)− f(zi,t; β̂)

)2
]

= Et

[(
ri,t+1 − f(zi,t; β̂)

)2
]
− Vt(εi,t+1), ∀i. (4)

Because εi,t+1 and {zit}(i,t) are independent, minimizing the risk-premium squared forecast errors

is equivalent to minimizing the realized return squared forecast errors. Thus, the best risk premium

measurements are those that accurately predict subsequent returns. Consequently, the literature
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uses the following specification to estimate the true risk premia:

ri,t+1 = f(zit;β) + ηi,t+1, Et(ηi,t+1) = 0, (5)

where risk premium and next period return (r̂i,t+1) predictions are given by

Et(ri,t+1) ≈ r̂i,t+1 = f(zit; β̂) (6)

Importantly, the expected squared forecast errors of return predictions based on (5) could be

decomposed as the sum of three terms, given by

Et

[
(ri,t+1 − f(zi,t; β̂))2

]
=
(
Et(ri,t+1)− Et(f(zi,t; β̂))

)2

︸ ︷︷ ︸
Bias2

+Et

(
f(zi,t; β̂)− Et(f(zi,t; β̂))

)2

︸ ︷︷ ︸
V ariance

+Vt(εi,t+1).

(7)

The first term in the right hand side of (7), popularly known as “squared-bias”, measures

the model misspecification of f(.) in estimating the true risk premia. The second, known as

“variance”, quantifies parameter uncertainty. The ex-ante predictive standard errors, which are

the main focus of this paper, exactly equal the square root of the variance component. The final

term, known as “irreducible-variance”, captures the realized return variation due to unpredictable

new information. Under the assumption that Vt(εi,t+1) is constant across the stocks, the squared-

bias and variance components wholly determine the cross-sectional variation in squared forecast

errors. These components also explain the squared forecast errors’ time-series variation.

Remark-1: Ex-post squared forecast errors of risk premium predictions based on simple linear

models are challenging to predict ex-ante. Such models comprise few parameters and thus yield

small predictive standard errors. However, they are grossly misspecified when the true risk pre-

mia are non-linear functions of many predictors. Hence, squared-bias rather than variance largely

governs their forecast-squared errors. Because true risk premia are unobserved, ex-ante measure-

ment of squared-bias is not possible, rendering simple models’ forecast-squared errors unpredictable

ex-ante.
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Remark-2: In contrast, ex-post forecast errors of ML-based predictions are ex-ante pre-

dictable. These predictions use many predictors and parameters and thus are less likely to be mis-

specified. However, their massive predictive standard errors, which reflect parameter uncertainty,

predominantly determine their forecast-squared errors. These standard errors, unlike biases, are

readily obtainable, rendering ML models’ forecast-squared errors predictable ex-ante. For instance,

in the cross-section, stocks whose ML-based risk premium predictions have large ex-ante standard

errors also have large ex-post squared forecast errors.

Consistent with these remarks, the empirical section documents that the ex-ante predictive

standard errors of the NN-based risk premium predictions strikingly predict their ex-post squared

forecast errors, whereas those of the Lewellen-based predictions do not. The following subsection

illustrates how these ex-ante standard errors could be used in real-time to form desirable investment

portfolios that yield large economic gains.

B. Risk Premium Predictions, Standard Errors and Investment Portfolios

This subsection introduces the Confident-HL portfolios that deliberately exclude or downweight

stocks with large predictive standard errors from the extreme predicted-return decile stocks. I

restate the example provided in the introduction to illustrate why these portfolios yield superior

expected returns relative to the conventional HL strategies.

Example-1. Consider two stocks A and B with true risk premia µA and µB (< µA), respec-

tively. Let µ̂A and µ̂B be the predicted risk premia based on an econometric model, satisfying

µ̂A = µA + εA, µ̂B = µB + εB, εA, εB ∼ N(0, σ2), εA ⊥ εB. (8)

Recall that the assumption of unbiased predictions (E(εA), E(εB) = 0) is more likely to hold for ML-

based rather than traditional linear models. For simplicity, (8) assumes uncorrelated predictions

with the same predictive standard error, σ. Proposition-1 relaxes this assumption and generalizes

for heteroskedastic standard errors.

The expected return of the traditional HL portfolio that goes long (short) on the stock with
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the highest predicted risk premium is then given by

E(HL) = (µA−µB)P (µ̂A > µ̂B)+(µB−µA)P (µ̂B > µ̂A) = (µA−µB)

[
2Φ

(
µA − µB√

2σ

)
− 1

]
, (9)

where P (.), Φ(.) denote the probability and standard normal distribution measures, respectively.

Thus, (9) indicates that the expected HL return monotonically increases (decreases) with the

precision of risk premium predictions (σ). Mathematically, the prediction uncertainty induces bias

to the maximum possible expected HL return that can be obtained when true risk premia are

known. For example, the HL strategy formed from the zero standard error predictions delivers

the maximum possible expected return of (µA − µB), as the strategy always takes the long (short)

position on A (B) by perfectly ranking the stocks. In contrast, the HL portfolio formed from grossly

imprecise predictions (σ = ∞) earns zero expected returns, with a bias of (µA − µB). This result

follows from Jensen’s inequality: “ The expectations of the maximum (minimum) of a given set of

risk premium predictions are lower (higher) than the maximum (minimum) of the expectations of

predicted risk predicted risk premia”. The lower the variance of risk premium predictions, lower

will be the difference between both.

The following proposition builds on this intuition and formally establishes the Confident-HL

strategies’ superiority over the conventional HL portfolios.

Consider four stocks A1, A2, B1, and B2 with true risk premia µA, µA, µB (< µA), and µB,

respectively. Predictions are unbiased, independent, and normal, but could have different predictive

standard errors. To form trading strategies, stocks are sorted into two quantiles, denoted by QS

and QL. QL (QS) comprises the two stocks with the highest (lowest) risk premium predictions.

Now, consider the following three long-short investment strategies:

1. HL: The traditional HL strategy takes the EW long (short) positions on the 2 QL (QS)

stocks.

2. PW-HL: The “precision-weighted” (PW) HL portfolio also takes the long (short) positions

on the two QL (QS) stocks, but overweights (> 50%) the precisely predicted stock in each

quantile.
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3. Confident-HL: This strategy takes the long (short) position only on the stock with the lowest

predictive standard error in each quantile, deliberately excluding the stock with imprecise risk

premium.

Then, the expected returns of these portfolios are in the order of

Proposition 1:

E(HL) ≤ E(PW-HL) ≤ E(Confident-HL). (10)

Proof. See Appendix (A.1).

The proof is similar to the previous example. Thus, proposition-1 indicates that the Confident-

HL portfolios dominate the traditional HL portfolios in terms of earning higher expected returns.

Proposition-1 makes the stylized assumption of uncorrelated predictions for mathematical tractabil-

ity, as it is not possible to generalize this result with correlated predictions. However, Internet Ap-

pendix C.C1 (table A) presents an extensive simulation study to validate proposition-1 for general

cases with many stocks, correlated return predictions and Confident-HL portfolios formed from

various other quantile portfolios (e.g., decile).

Consistent with these results, the empirical section documents large economic gains emanating

from the Confident-HL portfolios based on the NN-3 risk premium predictions and their standard

errors. Such large gains would not be realized from the Lewellen-based Confident-HL portfolios, as

their predictive standard errors do not predict their squared forecast errors.

Before deriving NN-based risk premia’s predictive standard errors to form the Confident-

HL portfolios, it is worth emphasizing a couple of important points. First, dropping stocks with

imprecise risk premia improves the expected returns of HL strategies, not necessarily their variance,

as it may reduce the diversification benefit. Determining the trade-off between expected HL returns

and their variances is ultimately an empirical question. The empirical section shows that the

Confident-HL portfolios formed using the standard decile-sorted rules deliver superior Sharpe ratios,

suggesting that the expected return improvements are relatively larger. Second, the Confident-HL
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strategies exploit information only from the variance of risk premium predictions and not predicted

return variances nor covariances. Forming optimal portfolios using all stock returns’ joint predictive

density requires a Bayesian framework, thus left for a future study.

3. NN-based Risk Premia and Standard Errors

This section presents the statistical framework to predict individual stock- and portfolio-level

risk premia using NN. It then theoretically derives their standard errors, shown to be easily ob-

tainable with no additional computation cost. In particular, an NN that employs a specific reg-

ularization known as “dropout” is identical to a Bayesian NN with a similar structure (Gal and

Ghahramani (2016)). A simple analogy to this identity is the equivalence between linear regressions

with L2 regularization (i.e., Ridge regressions) and Bayesian linear regressions. Thus, NN-based

predictive standard errors are estimated using the comparable Bayesian models’ instantly available

posterior variances.

Although Bayesian posterior variances and frequentist standard errors philosophically repre-

sent different entities, the section justifies why and how the obtained standard errors satisfy critical

frequentist properties with accurate coverage probabilities. This is important, because no frequen-

tist alternative currently exists (to my knowledge) to provide standard errors.
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A. Neural Networks

Figure 1. Example of a 1-layer Neural Network
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Note: An example of a 1-layer, feed-forward neural network.

Like GKX, this paper considers conventional “feed-forward” NNs, which consist of an “input

layer” of raw predictors, one or more “hidden layers” and an “output layer” of a final prediction,

in that order. Each layer is composed of neurons that aggregate information from the neurons of

(immediately) preceding layer. Thus, information hierarchically flows from the raw predictors of

the input layer to the neurons in the hidden layers and finally to the final prediction in the output

layer. To understand how NNs systematically conduct this prediction exercise, figure (1) shows

a simple example of a 1-layer NN (NN-1) with 3 and 4 neurons in the input and hidden layers,

respectively.

In figure (1), {x1, x2, x3}, {hk,1}4k=1, and y are the sets of neurons in the input, hidden, and

output layers, respectively. Furthermore, {xi}3i=1 are raw individual predictors, and y is the final

output prediction. Each neuron in the hidden layer applies a nonlinear function (φ) to an aggregate

signal received from the preceding (input) layer. The aggregate signal is a weighted sum of the
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preceding layer’s neurons plus an intercept, known as “bias”. Thus,

hk,1 = φ

b1k +

3∑
j=1

w1jkxj

 , for k = 1, 2, 3, 4, (11)

where b1k is the intercept associated with the input (first) layer and kth neuron in the (next) hidden

layer, and w1jk is the weight associated with the jth predictor (neuron) in the input layer and the

kth neuron in the hidden layer. The linear sum, (b1k +
∑3

j=1w1jkxj), is the aggregated signal

received by the hidden layer’s hj,1 neuron from the input layer. In the spirit of GKX, the nonlinear

function φ takes the rectified linear unit functional form (ReLU). However, the theory developed

in this section holds for any general function. The ReLU is given by

φ(x) = ReLU(x) =


0 if x < 0

x otherwise.

(12)

Likewise, the final output is given by

youtput = b2 +

4∑
j=1

w2jhj,1, (13)

where w2j is the weight associated with the jth neuron in the hidden layer and the output. Thus,

given an input of Q individual predictors, x, the final prediction, youtput, based on a general NN-1

model with K hidden neurons can be expressed in the parametric form

youtput = b2 + φ(b1 + xW1)W2, (14)

where {W1,W2, b1, b2} are the unknown parameters. W1 and W2 are the weight matrices connecting

the imput layer to the hidden layer and hidden layer to the output layer, respectively. Intercepts

b1 and b2 are added to the hidden and output layers, respectively. W1 is a Q×K matrix, W2 is a

K × 1 vector, b1 is a K × 1 vector, and b2 is a scalar.
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B. Parameter Estimation, Regularization, and Dropout

For simplicity, the rest of the section focuses on NN-1 models. However, the theory that follows

holds in general for any feed-forward NN with an arbitrary number of hidden layers and neurons.

Consider the return prediction specification in (5),

rit+1 = f(zit;β) + ηi,t+1, (15)

where ri,t+1 is stock i’s excess return at period t + 1, and zit is the set of stock i’s raw predictors

at time t. When f is an NN-1, it takes the parametric form in (14), with β = {W1,W2, b1, b2}.

Because the parameters are unknown, risk premia are measured as Et(ri,t+1) ≈ f(zit; β̂), where

β̂ are estimated parameters of β. Given a panel of “training data”, the literature typically minimizes

the mean of squared forecast errors to estimate the parameters, i.e

β̂ = arg min
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zitW1)W2))2 , (16)

where Tr is the training sample over NTr periods, and S is the total set of NS stocks. The estimated

parameters from (16) often overfit the data by taking extreme values. To alleviate this concern,

the literature adds various penalties such as L2 regularization to the usual squared forecast error

loss function. Under L2 regularization, the estimated parameters are given by

β̂λ = arg min
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zitW1)W2))2

+ λ
[
||W1||2 + ||W2||2 + ||b1||2 + ||b2||2

]
, (17)

where ||.|| represents the L2 norm operator, and λ is known as the “hyperparameter”. Note that

the estimated parameters depend on the hyperparameter λ. From a given set of hyperparameters,

the standard practice chooses the λ that minimizes the forecast-squared error mean in a panel of
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“validation data” that do not overlap with the training data. In particular,

λ = arg min
λ∈Λ

1

NVNS

∑
t∈V

∑
i∈S

(
ri,t+1 − f(zit, β̂λ)

)2
, (18)

where V is the validation sample over NV periods, and Λ is a given set of hyperparameters.

Thus, (17) and (18) together determine the estimated parameters and hyperparameters. Be-

cause the optimal parameters that minimize (17) are not available in closed-forms, numerical algo-

rithms start with an initial estimate (guess), and then iteratively update the parameters by feeding

each observation into the training data one-by-one. This procedure could be computationally in-

tensive. Thus, a popular algorithm known as stochastic gradient descent (SGD) considers random

samples (rather than the full sample) from the training data to iteratively update the parameters

until they converge.9

Besides L2, GKX use several other regularizations, such as L1, to minimize overfitting. This

subsection introduces another popular regularization known as dropout that can be employed either

exclusively or simultaneously with other penalties. Dropout stands out among others because it

boosts the performance of NN models and helps determine predictive standard errors. GKX do

not discuss the dropout procedure. In a recent working paper, Chen et al. (2020) use dropout to fit

various NNs for predicting stock returns. However, they do not address how such a regularization

could be exploited to obtain predictive standard errors.

Dropout. Dropout is a simple but powerful regularizations proposed by Srivastava, Hinton,

Krizhevsky, Sutskever, and Salakhutdinov (2014).10

9See GKX for a detailed review of parameter estimation using SGD.
10See Géron (2019) for an excellent non-technical summary on dropout regularization.
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Figure 2. NN-1 with Dropout Regularization

Note: The figure shows an NN-1 with dropout regularization. At each training iteration, a random

subset of all neurons in one or more layers, including the input layer, but always excluding the

output layer, is dropped. Each iteration’s dropped out neurons temporarily output 0 (during that

iteration), but might become active in the next iteration.

At each training iteration during parameter estimation, every neuron, including the input

neurons, but always excluding the output neurons, has a probability (1 − p) of being temporarily

dropped. These dropped out neurons are deliberately set to output 0 (equivalently, discarded)

during that iteration but are allowed to become active in the next iteration. Like λ for L2, (1− p)

(p) is a hyperparameter known as “dropout rate” (“retention rate”), and thus chosen (typically

between 10% and 50%) to minimize the validation forecast-squared error. After training and

obtaining estimated parameters, neurons are no longer dropped (i.e., to make a new prediction).

Figure (2) shows an example of an NN-1 with dropout regularization.

To summarize, during parameter estimation, dropout randomly disconnects a few neurons

at each iteration to avoid overfitting and improves performance. Consider a random sample of

1000 observations from training data for parameter estimation. The SGD algorithm takes 1000

iterations to estimate the parameters. Employing dropout would imply 1000 different NNs are
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trained, yielding 1000 distinct estimated weights. These weights are not independent but are

nevertheless all different. The final estimated weights could be interpreted as an average of these

distinct weights, thereby alleviating parameter uncertainty.

Estimated parameters of an NN-1 that employ dropout and L2 regularizations satisfy

β̂λ,p = arg min
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zit(p1itW1))(p2itW2)))2

+ λ
[
||W1||2 + ||W2||2 + ||b1||2 + ||b2||2

]
, (19)

where each element in p1it and p2it is an independent draw from a Bernoulli distribution with

parameter (p) ((1-dropout rate)). p1it and p2it are (Q × Q) and (K × K) diagonal matrices,

respectively. Thus, unknown parameters could be estimated by solving (19).11 Hereafter, an NN

that employs L2 and dropout regularizations will be called a “dropout NN”.

Stock-level risk premia. Given newly observed “test data” (Te) of raw predictors that

do not overlap with the training and validation data sets, a dropout NN-1-based risk premium

prediction is given by

Et(r
∗
i,t+1) ≈ E∗it,Dropout = (b2,{λ,p} + φ(b1,{λ,p} + z∗itW1,{λ,p})W2,{λ,p}), r

∗
i,t+1, z

∗
it ∈ Te, (20)

where the parameters, {b2,{λ,p}, b1,{λ,p},W1,{λ,p},W2,{λ,p}}, are given in (19). E∗it,Dropout represents

the dropout NN-1-based risk premium prediction of stock i at period t. Note that no neurons

are dropped out while making predictions on the test data. However, these predictions rely on

estimated parameters that employ dropout regularization. In fact, Srivastava et al. (2014) establish

that the predictions given in (20) are approximately equal to the sample averages of corresponding

predictions that employ dropout at the test time as well. In particular,

E∗it,Dropout ≈
1

D

D∑
d=1

(b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1idW1,{λ,p}))(p2idW2,{λ,p})), r
∗
i,t+1, z

∗
it ∈ Te, (21)

11The most commonly used software programs, including Python and Matlab, readily solve (19).
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where each element in {p1i,d, p2i,d}Di=1 is an independent draw from ∼ Bernoulli(p), and D is the

total number of distinct predictions drawn at the test time with dropout applied.

Portfolio-level risk premia. The risk premium prediction, E∗Pt,Dropout, of portfolio P formed

using a set of stock-level weights {ωP,i,t}Si=1 at the beginning of period t+ 1 is given by

Et(r
∗
P,t+1) =

S∑
i=1

ωP,i,tr
∗
i,t+1 ≈ E∗Pt,Dropout ≈

S∑
i=1

ωP,i,tE
∗
it,Dropout, r

∗
i,t+1 ∈ Te, (22)

where E∗it,Dropout is given in (21).

Importantly, it turns out that the risk premium estimates in (20) (or (21)) and (22) are

approximately equal to the respective risk premia’s posterior density means under an equivalent

Bayesian NN with a similar structure. Using this approximation but before formally discussing

Bayesian NNs, the following subsection illustrates how to instantly obtain standard errors of general

dropout NN-based risk premium predictions.

C. Standard Errors of Risk Premium Predictions based on Neural Networks

Stock-level standard errors. Given a new observation of a stock’s raw predictors z∗it in the

test data, consider its risk premium prediction based on a dropout NN-1

Et(r
∗
i,t+1) ≈ E∗it,Dropout = (b2,{λ,p} + φ(b1,{λ,p} + z∗itW1,{λ,p})W2,{λ,p}), ri,t+1, z

∗
it ∈ Te. (23)

Then the predictive standard error of E∗it,Dropout is estimated by the sample standard deviation of

distinct predictions that are obtained by randomly dropping out neurons (with probability (1− p))

at the test (prediction) time. In particular,

SEt(E
∗
it,Dropout) =

√√√√ 1

D

D∑
d=1

(
Êi,d,t+1 −

1

D

D∑
d=1

Êi,d,t+1

)2

, (24)

23



where D is the total number of distinct predictions (Êi,d,t) drawn, with each Êi,d,t given by

Êi,d,t = (b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1dW1,{λ,p}))(p2dW2,{λ,p})), z
∗
it ∈ Te. (25)

Every element in p1,d, p2,d is an iid draw from the Bernoulli(p) distribution. The empirical section

considers D = 100 to estimate the standard errors, as simulations confirm that it yields well-

calibrated estimates.12

To summarize, after estimating an NN-1 model’s weights using the training and validation

data sets, standard errors of risk premium predictions on the test data are quickly available by

collecting predictions that deliberately assign 0 to randomly selected weights. Intuitively, as the

following subsection shows, this procedure is equivalent to drawing samples from the risk premium’s

predictive distribution based on a comparable Bayesian NN having the same number of neurons

and hidden layers as the considered NN-1.

Portfolio-level standard errors. Likewise, the predictive standard error of a portfolio-level

prediction is given by

SEt(E
∗
Pt,Dropout) =

√√√√ 1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

, (26)

where

ÊP,d,t =

S∑
i=1

ωP,i,t
(
b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1dW1,{λ,p}))(p2dW2,{λ,p})

)
, z∗it ∈ Te, (27)

and p1,d, p2,d are iid draws from Bernoulli(p).

The procedure for computing portfolio-level standard errors deserves emphasis. Note that the

dropped weights (i.e., p1d, p2d draws) are the same across the stocks that composite P , thereby

preserving correlations among stock-level risk premium predictions to yield unbiased standard error

estimates, as shown in the following subsection.

12The higher D is, the more accurate uncertainty estimates will be. However, inference time also increases with
D. Thus, an ideal D trades-off between latency and accuracy.
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The outlined procedure for obtaining standard errors in (24) and (26) generally applies to all

predictions based on NNs with an arbitrary number of layers and neurons as long as their weights

are estimated using dropout and L2 regularizations (Gal and Ghahramani (2016)). The procedure

is also robust to adding more regularizations, such as implementing the SGD algorithm with an

arbitrary learning rate.

It is worth emphasizing that (24) and (26) yield standard errors of risk premium predictions

and not excess return predictions. Fama and French (1997) and Pástor and Stambaugh (1999)

also compute risk premium estimates’ standard errors. Recall that realized excess returns equal

the sum of risk premia and unexpected returns due to unpredictable new information. Thus,

their predictive variances equal the sum of predictive variances of risk premium predictions and

“irreducible-variance” due to unexpected returns (see (7)). The validation data’s mean squared

error is an asymptotically unbiased estimate of irreducible-variance (Zhu and Laptev (2017)). Thus,

predictive variances of return predictions are easily obtainable as well.

D. Dropout Neural Networks and Bayesian Interpretation

This subsection illustrates a profound connection between dropout NNs and Bayesian NNs to

formally validate the previously presented standard errors under a Bayesian framework.

In an influential work, Gal and Ghahramani (2016) first prove that dropout NNs have a

Bayesian interpretation. In doing so, they draw upon the probability theory of Gaussian processes,

thereby limiting the potential audience for their work. Moreover, they show how to estimate

standard errors of individual NN-based “raw” predictions (analogous to return predictions) but

not those of “prediction means” (equivalent to risk premium predictions). They also do not discuss

how to obtain “joint densities” of different NN-based predictions, which are necessary to compute

portfolio-level standard errors.

I use a simple Bayesian model to provide a straightforward but rigorous discussion of their

central conclusions. In a significant contribution, I (Bayesian) theoretically derive the standard

errors (24, 26) of stock and portfolio-level risk premia.
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Bayesian Neural Network. Consider the Bayesian NN analogous to the previously consid-

ered NN-1, with the parametric form given by

ri,t+1 = b2 + φ(b1 + zitW1)W2 + ηi,t+1, Et(η
2
i,t+1) = σ2

η (28)

where the parameters {W1,W2} are random. σ2
η and b = ({b1, b2}) are assumed to be known for

simplicity.13 Denote the risk premia by µit, where

µi,t = Et(rit+1) = b2 + φ(b1 + zitW1)W2. (29)

Specify the unknown weight matrices with the standard Gaussian priors,

[W1,W2] = N (0, l−2I),

where I is the (NK + K) × (NK + K) identity matrix, and l is a hyperparameter. Then the

predictive density of stock i’s risk premium given a set of its raw predictors, z∗it, from the test data,

and the past training and validation data sets, denoted by {R,Z}, is given by

P (µ∗i,t|z∗it, R, Z) =

∫
P (µ∗i,t|z∗it, R, Z,W1,W2, b, σ

2
η)P (W1,W2|R,Z, b, σ2

η)dW1dW2, (30)

where P (W1,W2|R,Z, b, σ2
η) is the posterior density of the weight matrices given past data. Because

this density is not available in a closed-form, the literature often uses one of the powerful methods

known as variational inference (VI) to directly approximate the intractable posterior.

The following discussion introduces VI and shows that approximating the posterior of the

weight matrices using VI and frequentist estimation the weights with dropout and L2 regulariza-

tions, as in (17), are equivalent. Thus, dropout NNs are approximations to Bayesian NNs.

Variational Inference (VI). To approximate a given posterior density P (W |data), VI first

considers a family of some known densities, {qθ(W )}, parameterized by θ, and then finds the optimal

13The theory generalizes when {b1, b2} are allowed to be random as well, in which case these parameters could be
specified with Gaussian priors.
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parameter, θ∗, such that the Kullback-Leibler divergence between qθ∗(W ) and the true posterior

density is minimized. Thus, VI approximates the true posterior with qθ∗(W ), where the optimal

parameter θ∗ would be a function of data. The key is to consider a “good” family of densities that

guarantee the (almost surely) convergence of qθ∗(W ) to the true posterior.14 As a reference, in

the finance literature, Allena and Chordia (2020) develop the first VI method to approximate the

intractable posterior density of true stock liquidity and equilibrium prices.

Variational Inference for Bayesian Neural Networks. Gal and Ghahramani (2016) con-

sider the following family of independent Gaussian mixture densities to approximate the posterior

of the NN weight matrices

q{M1,M2}(W1,W2) = qM1(W1)qM2(W2), with qMi(Wi) =

Ki∏
k=1

qmiq(wiq), for i = 1, 2, where

qmiq(wiq) = pN (miq, σ
2I) + (1− p)N (0, σ2I) for i = 1, 2, (31)

with M1 = [(m1q)] and M2 = [(m2q)]. These are the “variational” parameters to be optimized.

Also, W1 = [(w1q)] and W2 = [(w2q)]. σ
2 and p are known scalars. Ki is the number of neurons in

the ith layer. Thus, K1 = Q and K2 = K. M1 and M2 are matrices with the same dimensions as

W1 and W2, respectively.

The optimal set of parameters {M∗1 ,M∗2 } that best approximate the true posterior is given by

{M∗1 ,M∗2 } = arg min
{M1,M2}

KL
(
qM1(W1)qM2(W2)||P (W1,W2|R,Zb, σ2

η)
)
, (32)

where KL(x||y) represents the Kullback-Leibler divergence between the two random variables, x

and y.

Bayesian and Dropout Neural Network Equivalence. Interestingly, given the sample

of training data, it turns out that the optimal parameters in (32) minimize the loss function that

14See Blei, Kucukelbir, and McAuliffe (2017) for an excellent review of VI. They address two fundamental questions:
i) what family of densities to consider? ii) how to obtain the optimal density in the family that best approximates
the true posterior?
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resembles a dropout NN’s loss function, as in (19). In particular,

{M∗1 ,M∗2 } = arg min
{M1,M2}

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zit(p1itM1))(p2itM2)))2

+ µ1||M1||2 + µ2||M2||2 + µ3||b1||2 + µ4||b2||2, (33)

where each element in p1it and p2it is an independent draw from a Bernoulli distribution with

parameter (p). {µ1, . . . µ4} are different scalars that are distinct functions of {l1, σ2
η, σ

2}.

Thus, for an appropriate choice of l1, the variational parameters, {M∗1 ,M∗2 }, that best ap-

proximate the (Bayesian) NN weight matrices’ posterior density are identical to the comparable

(frequentist) dropout NN’s estimated weights. This implies

M∗1 = W1,{λ,p}, and M∗2 = W2,{λ,p}. (34)

The predictive density of a risk premium given in (29) can be approximated by

P (µ∗i,t|z∗it, R, Z) ≈ Q(µ∗i,t|z∗it, R, Z) =

∫
P (µ∗i,t|z∗it, R, Z,W1,W2, b, σ

2
η)qM∗1 ,M∗2 (W1,W2)dW1dW2,

(35)

where {M∗1 ,M∗2 } are given in (34), and q(.) in (31).

As an immediate corollary, (35) implies that the mean of a risk premium’s (approximated)

Bayesian predictive density is

E
[
Q(µ∗i,t|z∗it, R, Z)

]
≈ E∗it,Dropout

≈ 1

D

D∑
d=1

(b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1idW1,{λ,p}))(p2idW2,{λ,p})), z
∗
it,∈ Te, (36)

where each element in p1id, p2id ∼ Bernoulli(p).

Thus, the mean of a risk premium’s Bayesian predictive density (36) precisely matches with

the comparable dropout NN-based risk premium prediction, as in (21). In simpler words, predicting

risk premia using dropout NNs and Bayesian NNs are equivalent.

28



Bayesian Justification for Stock-level Standard Errors. Due to (36), under usual reg-

ularity conditions (e.g., prior mass is not concentrated at a single point), and for large data, the

standard deviation of a risk premium’s Bayesian predictive density should proxy for the standard

error of its frequentist counterpart (E∗it,Dropout).
15 This implies

SEt(E
∗
it,Dropout) = SD

[
Q(µ∗i,t|z∗it, R, Z)

]
, (37)

where SD
[
Q(µ∗i,t|z∗it, R, Z)

]
represents the standard deviation of µ∗i,t’s Bayesian predictive density.

This is given by the following proposition.

Proposition 2:

SD
[
Q(µ∗i,t|z∗it, R, Z)

]
≈

√√√√ 1

D

D∑
d=1

(
Êi,d,t −

1

D

D∑
d=1

Êi,d,t

)2

, (38)

where Êi,d,t is given in (25).

Proof. See Appendix (A.2).

Thus, the standard errors of dropout NN-based stock-level risk premium predictions, as in

(24), are justified from a Bayesian standpoint.

Bayesian Justification for Portfolio-level Standard Errors. Likewise, the standard

error of a portfolio P ’s risk premium prediction should satisfy

SEt(E
∗
Pt,Dropout) = SD

[
Q(µ∗P,t|{z∗it}Si=1, R, Z)

]
, (39)

where µ∗P,t =
∑S

i=1 ωP,i,tµ
∗
i,t+1, and Q(µ∗P,t|{z∗it}Si=1, R, Z) is the Bayesian predictive density of P ′s

risk premium, given a set of stock-level characteristics.

Obtaining this density is not straightforward, as it involves computing the joint predictive

15This property, known as “frequentist consistency” of posteriors, is due to the Bernstein-von Mises theorem.
Whereas literature often demonstrates this result for true posteriors, Wang and Blei (2019) establish that, under
standard regularity conditions, approximated posteriors using VI are consistent as well. In any case, the following
subsection empirically validates this result.

29



density of risk premia of all stocks that compose P , Q
(
µ∗1,t, µ

∗
2,t, . . . , µ

∗
S,t|{z∗it}Si=1, R, Z

)
. The

following proposition formally derives the joint density to compute the standard deviation of P ’s

posterior risk premium density.

Proposition 3:

SD
[
Q(µ∗P,t|{z∗it}Si=1, R, Z)

]
≈

√√√√ 1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

, (40)

where ÊP,d,t are given in (27).

Proof. See Appendix (A.3).

Thus, the standard errors of dropout NN-based portfolio-level risk premium predictions, as in

(26), are theoretically justified as well.

E. Frequentist Justification for Standard Errors

Recall that the paper trades the Bayesian standard errors for the frequentist standard errors, as

the former are instantly available but no valid method exists to compute the latter directly (to my

knowledge). This subsection justifies the obtained standard errors from a frequentist standpoint,

by drawing the equivalence between both standard errors and conducting extensive Monte-Carlo

simulations.

Under a large sample, observed data dominates prior, rendering Bayesian and frequentist

standard errors nearly identical (see result 8 in section 4.7 of Berger (1985)). However, NN-based

predictions generally employ substantial regularization, which is equivalent to starting with proper

priors. In such cases, data may not always dominate prior, resulting in differences between the

Bayesian and frequentist approaches under specific parameters. However, such issues typically

occur at the atypical values of the parameters, such as when they approach infinity (Kyung, Gill,

Ghosh, and Casella (2010)).16 Thus, for a wide range of parameters, Bayesian and frequentist

16In fact, Kyung et al. (2010) motivate the same to compute the otherwise intractable standard errors of LASSO
based predictions using their Bayesian counterparts.
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standard errors should be equivalent.

Consistent with this result, an extensive simulation study in appendix B.1 (table (1)) con-

firms that the proposed standard errors are well-calibrated in the frequentist sense. Using a high

dimensional predictor set, risk premia are simulated from four different data generating processes.

Whereas the first two model returns as a linear function of predictors with homoscedastic and

correlated residuals, respectively, the last two entertain non-linear functions. Across all models,

95% (or any x% with 0 < x < 100) confidence intervals constructed from risk premium predictions

and their standard errors cover the true simulated risk premia with nearly 95% (x%) probability.

4. Ex-ante Estimation Uncertainty and Ex-post OOS Inferences

Recall that sections 2 and 3 showed how to estimate valid standard errors of NN-based risk

premium predictions and exploit them to construct desirable Confident-HL portfolios. This section

derives a formal method to assess the Confident-HL or any model-based investment portfolios’

ex-post OOS performance.

In doing so, the section first documents that existing tests violate the central assumption

required for the DM tests’ asymptotic validity. The section then presents a bootstrap methodology

to deliver valid OOS comparisons in the presence of estimation uncertainty. The section concludes

by showing that the method yields well-sized tests, whereas the DM tests lead to significant size

distortions using simulated data.

A. Out-of-Sample Comparisons with the Diebold and Mariano (2002) Tests

OOS returns of HL strategies and DM tests. Consider any two competing model-based

HL strategies, HL1 and HL2. These portfolio returns could be expressed as different weighted

sums of excess returns, depending on which stocks comprise their long and short legs. Thus,

HL1t =
∑
i∈S

ŵ1,i,t−1ri,t, HL2t =
∑
i∈S

ŵ2,i,t−1ri,t, (41)
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where ri,t denotes the excess return of stock i at period t, and {ŵ1,i,t−1}i∈S and {ŵ2,i,t−1}i∈S repre-

sent the weights with which individual stocks compose the HL1 and HL2 portfolios, respectively.

The weights are estimated using all data until t − 1. This specification is consistent with the

“recursive estimation scheme” typically employed by researchers (e.g., GKX, Bianchi et al. (2020)).

Consider the return differentials over the OOS period,

d12,t = HL1t −HL2t, t ∈ Te, (42)

where Te denotes the OOS test period. Then the DM statistic to test the null of equal return

means, H0 : E(d12,t = 0) ∀t, is a simple t-ratio given by

DMHL =
d̄12

σ̂d12
∼ N (0, 1), (43)

where d̄12 = 1
NTe

∑
t∈Te d12,t is the sample average of return differentials over NTe OOS periods

and σ̂d12 is a heteroskedastic and autocorrelation robust standard error estimate for d̄12. Whereas

Avramov et al. (2020) use Newey-West standard errors of return differentials as a proxy for σ̂d12 ,

most studies use the standard OLS standard errors.

OOS MSEs and DM tests. Likewise, existing studies employ the DM tests to compare

OOS mean squared errors (MSEs) of any two competing models as well. Given two models M1 and

M2, let f1(Zi,t−1; β̂1,t−1), f2(Zi,t−1; β̂2,t−1) be the return predictions for period t based on M1 and

M2, respectively. Then the forecast-squared error differentials over the OOS period are given by

D12,t = e2
1,t − e2

2,t, where e2
k,t =

1

Ns

∑
i∈S

(
ri,t − fk(Zi,t−1; β̂k)

)2
, k = 1, 2, t ∈ Te, (44)

with each e2
k,t representing the cross-sectional average of forecast-squared errors at period t under

Mk, k = 1, 2. Like in the previous case, the model parameters β̂k,t−1 are estimated using all data

until t− 1. Then the DM statistic to test the null of equal predictive ability is given by

DM =
D̄12

σ̂D12

∼ N (0, 1), (45)
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where D̄12 = 1
NTe

∑
t∈TeD12,t is the sample mean of squared forecast error differentials and σ̂D12 is

a heteroskedastic and autocorrelation robust standard error estimate of D̄12. GKX use Newey-West

standard errors of squared forecast error differentials as a proxy for D̄12.17

Asymptotic validity of DM tests. DM emphasize that their tests (43, 45) yield asymp-

totically valid inferences only under the assumption that the loss differentials, {d12,t}{D12,t}, are

covariance stationary. Equivalently,

E(d12,t) = µ1, cov(d12,t, d12,t−τ ) = γ1(τ), ∀t, τ ≥ 0, and (46)

E(D12,t) = µ2, cov(D12,t, D12,t−τ ) = γ2(τ), ∀t, τ ≥ 0. (47)

However, this assumption is violated when the parameters, such as {ŵk,i,t−1}i∈S and β̂k,t−1, are

estimated from econometric models. Their estimation uncertainties introduce time-varying tempo-

ral dependencies between the loss differentials, thereby breaking down the covariance stationarity

assumption. A simple intuition demonstrates the central idea.

Recall that {ŵ1,k,t−1}i∈S are estimated using all data until t−1. Thus, their precision (variance)

increases (decreases) as time proceeds and more data are available. Consequently, the HL return

differentials exhibit time-varying moments and temporal dependencies, rendering the covariance

stationarity assumption infeasible.

B. Violation of Covariance Stationarity: Empirical Evidence

Consistent with the previous intuition, appendix B.2 (table 2) empirically documents that

the loss differentials computed using NN-3 and Lewellen-based return predictions significantly vi-

olate the covariance stationarity assumption. This result reaffirms that the existing DM-based

conclusions are misleading.

In particular, B.2 conducts covariance stationarity tests proposed by Pagan and Schwert (1990)

17To be precise, the DM tests were original designed for time-series data. GKX adapted these tests on panel
data by cross-sectionally averaging the forecast-squared errors at each period, as in (44). In a recent working paper,
Timmermann and Zhu (2019) show that this adapted statistic yields asymptotically valid inferences, of course, only
under the assumption that there is no parameter uncertainty.
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on three different loss differentials over the 360 OOS months. The first comprises the forecast-

squared error differences between the NN-3 and Lewellen-based return predictions. The second

(third) contains the return differences between the EW (VW) HL portfolios based on the NN-3 and

Lewellen models.

If these loss differentials were covariance stationary, then each of their sample standard devi-

ations over the first 180 periods should be close to those over the last 180 periods. However, the

initial period standard deviations are significantly (5, 1.85, and 1.75 times) higher than those of the

final period. Thus, the null of covariance stationarity is rejected across the loss differentials. Also,

relatively large beginning period standard deviations may reflect a “recursive estimation scheme”,

in which case parameter uncertainty decreases as time progresses, when true model parameters are

time-invariant.

C. Bootstrap Tests for Out-of-Sample Comparisons

This subsection presents a bootstrap test that accommodates non-stationary loss differentials.

The method builds on the moving block bootstrap procedure of Kunsch (1989). Although it

was initially designed for stationary processes, Gonçalves and White (2002, 2004) establish their

asymptotic validity for non-stationary processes under certain assumptions that govern the degree

of non-stationarity.

First, they assume that the mean heterogeneity of the given series is not too strong. The return

differentials in (42) satisfy this condition, as their unconditional means are the same.18 Second,

they assume that the series is a near epoch dependent on an underlying mixing process (Billingsley

(1999)). This condition is less stringent than “mixing conditions” that researchers, including DM,

typically assume to derive limiting distributions. Importantly, near epoch dependent processes allow

for considerable heterogeneity (of (co)variances) and also for dependence. Thus, their assumptions

suit this paper’s framework.

Why bootstrap works. Recall that the DM tests make two parametric approximations.

18It is less clear whether forecast-squared-error differentials theoretically have the same unconditional means.
However, empirical tests suggest that the null of equal means over different periods do not get rejected. This result
supports the assumption laid out by Gonçalves and White (2002).
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The tests use heteroskedastic and autocorrelation standard errors and draw critical values from the

standard normal. Such approximations likely fail under complex scenarios (e.g., when the series

is not stationary). However, bootstrap-based tests do not make such parametric simplifications

and thus likely yield valid asymptotic inferences even in challenging situations. Of course, even

bootstrap could fail under certain circumstances (see section 4.5 from Horowitz (2001)). Thus, the

literature recommends complementary simulation checks, as described in the next subsection.

I now explicitly discuss how to conduct bootstrap-based OOS inferences.

C.1. Tests of equal return means or forecast-squared errors.

Consider a series of loss differentials {∆t}Tt=1. These could be either HL return (d12,t) or

squared forecast error differentials (D12,t). Then the procedure for obtaining critical values, or

p-values, under the null hypothesis H0 : E( 1
T

∑T
t=1 ∆t) = 0 is as follows.

1. Choose a block-size l. For each iteration i,

(a) draw n = (T/l) random numbers, {bi}ni=1, from the set {1, 2, . . . , T−l} with replacement,

(b) draw a block bootstrap sample Di={∆b1 ,∆b1+1, . . .∆b1+l−1; ∆b2 ,∆b2+1, . . .∆b2+l−1;

. . . ; ∆bn ,∆bn+1, . . .∆bn+l−1}, where Di contains a total number of T differentials, and

(c) impose the null and compute the bootstrap-based t-ratio, ti =
(
D̄i − ∆̄

)
/std(Di), where

D̄i and std(Di) are the sample mean and standard deviation of Di, respectively. ∆̄ is

the sample mean of the original loss differentials.

2. Repeat step (1) many times. The generalized p-value equals the proportion of times the

absolute value of ti is greater than the original sample’s realized absolute t-ratio, which

equals t =
(
∆̄
)
/std(∆), where std(∆) is the sample standard deviation of the loss differentials

{∆j}Tj=1.

The optimal block-size l, shown in the literature to be O(T 1/2), is close to 2 years of data on

a sample over 30 years. Thus, the empirical section uses a block size of 24. However, the results

are qualitatively similar across other block lengths of 6, 12, 18, and 36.
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C.2. Tests of equal Sharpe ratios.

I further generalize the procedure to compare OOS Sharpe ratios of any two model-based

investment strategies. Let {HL1t} and {HL2t} be two such series, with squared Sharpe ratios

Sh2
i =

( 1
T

∑T
t=1HLit)

2

1
T

∑T
t=1(HLit − 1

T

∑T
t=1HLit)

2
, for i = 1, 2. (48)

The p-value for testing the null of equal squared Sharpe ratios, H0 : E(Sh2
1) = E(Sh2

2), can be

computed as follows.

1. Choose a block-size l. For each iteration i.

(a) draw n = (T/l) random numbers, {bi}ni=1, from the set {1, 2, . . . , T−l} with replacement,

(b) normalize the returns to impose the null,

HL∗it =
√
T (HLit −

1

T

T∑
t=1

HLit)/

√√√√ T∑
t=1

(HLit −
1

T

T∑
t=1

HLit)2, (49)

(c) draw a block bootstrap sample {Hki} from the normalized returns;

Hki ={HL∗k,b1 , HL
∗
k,b1+1, . . . HL

∗
k,b1+l−1;HL∗k,b2 , HL

∗
k,b2+1, . . . HL

∗
k,b2+l−1;

. . . ;HL∗k,bn , HL
∗
k,bn+1, . . . HL

∗
k,bn+l−1} for k = 1, 2, and

(d) compute the bootstrap-based squared Sharpe ratio difference, Sh2
1i − Sh2

2i.

Sh2
ki =

( 1
T

∑T
t=1Hkit)

2

1
T

∑T
t=1(Hkit − 1

T

∑T
t=1Hkit)2

, for k = 1, 2, where Hkit = tthelement of Hki.

2. Repeat step (1) many times. The p-value equals the proportion of times the absolute value

of (Sh2
1i − Sh2

2i) is greater than the absolute value of Sh2
1 − Sh2

2.
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D. Performance of the Methodology: Monte Carlo Evidence

Extensive simulations in Appendix B.3 reveal that this paper’s bootstrap-based tests are well-

sized. In contrast, DM-based tests lead to massive size distortions.

In particular, (B.3) (figure (3)) simulates return time series with zero means under three

distinct models, each allowing for a different degree of time-varying temporal dependency. It then

conducts the zero return mean tests on the simulated data using three methods that include the

DM-test with OLS standard errors, the DM-test with Newey-West standard errors, and this paper’s

bootstrap method with a block size of 24. Across all simulations, bootstrap-based 5% level tests

yield accurate sizes close to 5%. However, DM-based 5% level tests deliver hugely distorted sizes

between 13% and 42%, depending on how strong the temporal dependencies are.

Figure (4) shows the power curves for the three methods and confirms that bootstrap-based

test “size” refinements come at the expense of only small power losses.

5. Empirical Results

This section presents the main empirical results of the paper. Recall that the theoretical

sections imply two central predictions. (1) Ex-ante precision of NN-based risk premium predictions

proxy for their ex-post forecast-squared errors, and thus (2) the Confident-HL investment portfolios

that deliberately exclude stocks with imprecise risk premium estimates should yield huge OOS

economic gains. I empirically demonstrate both of these predictions.

A. Data, Definitions, and Replication Study

A.1. Data

The sample contains monthly excess stock returns of all individual firms listed in the NYSE,

AMEX, and NASDAQ exchanges between March of 1957 and December of 2016. The data include

26667 total stocks, with an average of more than 6000 stocks per month. The data also comprise a

high-dimensional set of 176 raw predictors examined by GKX and Avramov et al. (2020), including
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94 individual stock characteristics analyzed by Green, Hand, and Zhang (2017) (e.g., size, book-

to-market, 1-year momentum returns). Another 74 are industry-sector dummy variables based on

the first two digits of the Standard Industrial Classification codes. The final eight are aggregate

macroeconomic variables used by Goyal and Welch (2008).19 The Treasury-bill rate proxies for the

risk-free rate.

A.2. Models

Neural Network. The paper primarily focuses on a feed-forward NN with three hidden layers

(NN-3) and 32, 16, and 18 neurons per layer. This model was examined by GKX and Avramov et al.

(2020). I precisely mimic their “recursive scheme” to estimate the model parameters. The scheme

first divides the data into 18 years of training (1957-1974), 12 years of validation (1975-1986), and

30 years (1987-2016) of OOS test samples. It then estimates the parameters and hyperparameters

using objective functions to minimize the training sample’s regularized MSE (17) and the validation

sample’s MSE (18), respectively. At the end of each year, it re-estimates the model parameters,

increasing the training sample by one year. The validation sample rolls forward every year to

include the most recent year’s data, maintaining the same size (12 years).

I implement this estimation framework to obtain risk premium predictions, as well as their

standard errors, over the OOS test sample. Whereas GKX and Avramov et al. (2020) mainly apply

L1 regularization to estimate the parameters, I use dropout and L2. As discussed in section 3, this

approach enhances the model’s predictive performance and delivers standard errors of predictions.

I retain the other hyperparameters (e.g., SGD learning rate, Adam optimization, early-stopping)

used by GKX. The Internet appendix tabulates all regularizations with their values.20

Lewellen. To compare the economic gains from NN-3-based risk premium predictions and

their standard errors with those of simple benchmark models, I also examine one of Lewellen

(2015)’s linear models. This Lewellen model predicts stock returns using a pooled regression on

19Besides these 176 predictors, GKX and Avramov et al. (2020) also consider (94 × 8) interactions between
the stock characteristics and macroeconomic variables. They do so as they examine several linear models (e.g.,
Lasso, Instrumented Principal Components) that do not explicitly account for variable interactions. Because NNs
automatically capture such interactions, this paper excludes those additional variables.

20See GKX for a detailed review of these regularizations.
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15 firm-level characteristics (e.g., size, book-to-market, accruals, asset growth ratio). The Internet

appendix describes the exact model. This model, unlike NN-3, does not entail regularization. Thus,

to make a fair assessment, I estimate the regression parameters using both training and validation

data-sets. The OOS test data remain the same.

A.3. Definitions of Performance Metrics

I lay out the definitions of ex-ante and ex-post precision measures that I use repeatedly through-

out the rest of the paper.

Ex-ante Confidence. I compute ex-ante confidence of stock-level risk premium predictions

using their absolute t-ratios

ECit =
|r̂i,t+1|

set(r̂i,t+1)
, (50)

where EC is ex-ante confidence, r̂i,t+1 is the risk premium prediction of stock i at period t (for

t+1) and set(r̂i,t+1) is its ex-ante predictive standard error. |.| denotes the absolute value. Ex-ante

confidence proxying for a prediction’s precision is consistent with the notion that an estimate’s

standard error must always be understood in the context of the estimate’s mean. See section

(C.C3) in the internet appendix for a formal discussion using a simple linear model in the spirit of

the capital asset pricing model.21 However, my central conclusions are the same when I use inverse

standard errors as proxies for precision. Table B in Appendix C.C1 presents the results.

Whereas I calculate the ex-ante confidence of NN-3-based risk premium predictions using the

theory derived in section 3, those of Lewellen-based predictions are available in the closed-form

expressions. For example, consider a linear regression model R = Zβ + ε, ε ∼ N(0, σ2), where

R and Z are panels of stock-level returns and characteristics, respectively. Given a stock i’s risk

premium prediction ziβ̂, its standard error equals z
′
i(Z

′
Z)−1ziσ̂

2, where {β̂, σ̂2} are the ordinary

least squares (OLS) estimates of β and σ2, respectively. The OLS standard errors are consistent

21Recall that proposition-1 makes a highly stylized assumption of invariant risk premia across the stocks in the
top (bottom) decile. In more realistic scenarios, this assumption does not hold, in which case I argue that considering
the absolute t-ratios as proxies for the precision leads to superior performance relative to the inverse standard errors.
See section (C.C3).
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with the model specification of GKX, given in (2).22

Ex-post Out-of-Sample-R2. Given a set of risk premium predictions S, I compute their

ex-post OOS R2 using the following measure motivated by GKX

OOS-R2 = 1−
∑

(i,t)∈S(ri,+1 − r̂i,t+1)2∑
(i,t)∈S r

2
i,t+1

, (51)

where ri,t+1 is the realized excess return of stock i at period t+ 1.

A.4. Replication of Gu, Kelly, and Xiu (2020)

To ensure that this paper’s NN-3-based risk premium measurements are comparable with GKX

and Avramov et al. (2020), I replicate their studies. For every period in the OOS test sample, I sort

stocks into deciles, decile-1 to decile-10, according to their NN-3-based return predictions for the

next month. Decile-1 (decile-10) comprises the bottom (top) 10% of stocks with the lowest (highest)

return predictions. Figure 5 (6) presents the EW (VW) average OOS returns and Sharpe ratios of

the decile portfolios. All of these monotonically increase from decile-1 through decile-10, thereby

confirming that the realized OOS returns align with their predictions. Furthermore, the EW (VW)

HL portfolio that takes long-short positions on the extreme decile portfolios (i.e., decile-10 minus

decile-1) earns an enormous OOS return of 2.51% (1.47%) and an annualized Sharpe ratio of 1.56

(0.96). These results reflect the success of NN-3 in terms of impressive economic gains. They also

qualitatively and quantitatively match with GKX and Avramov et al. (2020), respectively.

Having outlined the data and showing that this paper’s NN-3-based return predictions match

those of the previous studies, I move on to test the theoretical predictions.

B. Ex-ante Confidence and Ex-post Out-of-Sample-R2

I first validate remarks 1 and 2 of section 2 asserting that the ex-ante precision of NN-based risk

premium predictions significantly predict their ex-post precision, whereas those of Lewellen-based

22Alternatively, I also consider Fama-Macbeth standard errors for Lewellen-based risk premia to account for cross-
sectional correlations of residuals. The conclusions are the same.
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predictions do not.

Figure 7 confirms this result for NN-3. For every month, I sort stocks into deciles according

to their NN-3-based ex-ante confidence. I then calculate the OOS-R2 attained by these decile

subsamples over the 30-year OOS period. Figure 7 reveals that the ex-post OOS-R2 monotonically

increases with the level of ex-ante confidence. For example, the bottom decile, containing stocks

most imprecisely predicted by NN-3, attains an OOS-R2 of 0.81%. In contrast, the top decile with

the most confident predictions delivers a much improved OOS-R2 of 2.21%. This result reinforces

that the ex-post precision of NN-based predictions is ex-ante predictable.

Table 3 further shows that these OOS-R2 refinements translate into large economic gains.

In particular, I construct EW (VW) HL portfolios on each of these confident-decile subsamples,

further sorting stocks into deciles according to their next period’s (NN-3-based) return predictions.

Table 3 demonstrates that the EW (VW) HL portfolios formed on precise deciles earn remarkably

higher OOS returns and Sharpe ratios than those formed on imprecise deciles. For example, the

extremely imprecise decile’s HL portfolio yields a modest 0.88% (0.34) and 0.71 (0.23) average

monthly return and annualized Sharpe ratios, respectively. However, those of the most confident

decile’s HL portfolio are 3.10% (1.59%) and 1.44 (0.80), respectively, nearly 250% (300%) and 100%

(300%) larger than the imprecise decile’s counterparts.

Interestingly, the HL portfolios constructed on deciles 9 and 1 have nearly the same average

return predictions. However, the average realized OOS return of the relatively more precise decile’s

EW (VW) HL portfolio, 2.03% (1.16%), is at least twice (thrice) more than that of the imprecise

decile, 0.88% (1.16). This result is in the spirit of example-1 in section 2, which shows that between

any two sets of stocks with the same risk premium levels, the HL strategy formed on the relatively

precisely predicted set has higher expected returns.

Figure 8 repeats the analysis for Lewellen-based predictions and supports the theory as well.

Their ex-post OOS-R2s, unlike NN-based OOS-R2s, do not monotonically increase with the ex-

ante precision. For example, decile 10, containing the stocks with the highest ex-ante precision,

has a markedly lower ex-post OOS-R2 (0.41%) than the OOS-R2 (0.93%) of decile 7 with relatively

lower ex-ante precision. This result is consistent with remark 1, which posits that “bias” rather
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than “variance” predominantly determines the ex-post precision of a “simple” model-based predic-

tion, rendering it unpredictable ex-ante. Interestingly, though, predictions from the lowest ex-ante

precision decile (1) also registers awful ex-post OOS-R2. The result perhaps reflects the decile’s

drastically large ex-ante “variances”, which dominate average “biases” across other predictions to

yield cross-sectionally higher ex-post squared forecast errors.

Overall, ex-post OOS-R2s of Lewellen-based predictions are not as conspicuously predictable as

NN-3-based OOS-R2s. Consequently, table 3 indicates that Lewellen-based HL portfolios formed

on (Lewellen-based) precise deciles do not earn significantly higher OOS returns than those on

imprecise deciles. This result contrasts with the massive economic gains realized by the NN-3 HL

portfolios formed on precise rather than imprecise deciles.

To summarize, this subsection demonstrated that the ex-post squared forecast errors of NN-

3-based predictions are ex-ante predictable. Before moving on to show how the Confident-HL

portfolios exploit this result to yield spectacular economic gains, I first describe the procedure for

forming various HL portfolios.

C. Portfolio Construction

1. EW(VW)-HL. These are the conventional HL portfolios. For every month, I sort stocks

into deciles according to their next month’s return predictions. Let L and H represent the lowest

and highest prediction deciles, respectively. Then the EW(VW)-HL portfolios take EW (VW) long

and short positions on H and L, respectively.

2. EW(VW)-Confident-HL. These portfolios deliberately drop stocks with imprecise risk

premium predictions from the conventional HL portfolios. In particular, both L and H are further

partitioned into deciles, {L1, L2, . . . , L10}, and {H1, H2, . . . ,H10}, based on their ex-ante confi-

dence. Let L10 (L1) and H10 (H1) denote the subsets with the highest (lowest) ex-ante confidence

from L and H, respectively. Then the EW(VW)-Confident-HL portfolios take EW (VW) long and

short positions only on the highest ex-ante confident subsets, H10 and L10, respectively.

3. EW(VW)-Low-Confident-HL. In contrast, these portfolios take EW (VW) long and
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short positions on the lowest ex-ante confident subsets, L1 and H1, respectively.

4. PW-HL. Rather than completely ignoring low ex-ante confident subsets, the “precision-

weighted” strategies disproportionately downweight them while forming portfolios. In particular,

the portfolios take long (short) positions on each subset Hj (Lj) with the weights proportional to

1/(11− j), for j = 1, 2, . . . , 10. Thus, the higher a subset’s precision, the more weight it has.

5. LPW-HL. In contrast, the “low-precision-weighted” portfolios take long (short) positions

on each subset Hj (Lj) with the weights proportional to 1/j.

6. Matching portfolios. To fairly assess the Confident-HL portfolios’ performance, I also

construct several matching strategies. These portfolios, represented by “HLCM”, resemble conven-

tional HL portfolios but are matched to have the same “predicted-return” averages as those of the

Confident-HL portfolios. For example, based on NN-3, the EW-Confident-HL portfolio’s monthly

return predictions average 1.97%. It turns out that a traditional HL strategy that takes EW long

(short) positions on the top (bottom) 5% of stocks with the highest (lowest) return forecasts also

has an average predicted-return of 1.97%. Thus, this strategy serves as an apt benchmark for

EW-Confident-HL. The difference between the two portfolios’ ex-post OOS performance precisely

captures the economic value of dropping stocks with low ex-ante precision.

In general, I construct the matching portfolios as follows. Every month, EW(VW)-HLCM takes

long (short) positions on the top (bottom) x% of the stocks with the highest (lowest) predicted

returns for the next month. I choose x so that the time-series average of EW(VW)-HLCM portfolio’s

predicted return precisely matches that of the EW(VW)-Confident-HL portfolio.23 Likewise, I

construct the “EW(VW)-HLLCM”, “LPW-HLM”, and “PW-HLM” portfolios to match the average

predicted-returns of the EW(VW)-Low-Confident-HL, LPW-HL, and PW-HL, respectively.

7. Double-Sorted portfolios. As an additional robustness check, I consider various double-

sorted predicted-return strategies matched to contain the same number of stocks as the Confident-

HL portfolios. In particular, I partition the extreme predicted return deciles, L and H, into deciles,

{L1,d, L2,d, . . . , L10,d}, and {H1,d, H2,d, . . . ,H10,d}, based on their predicted-returns, respectively.

Let H10,d (L10,d) and H1,d (L1,d) denote the subsets with the highest and lowest predicted returns

23Because x is determined ex-post, the matching portfolios could be interpreted as counterfactual strategies.
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from H (L), respectively. Then the EW(VW)-double-sorted-HL portfolios take EW (VW) long and

short positions on the highest and lowest predicted return subsets, H10,d and L1,d, respectively.24

Despite containing the same number of stocks as the Confident-HL portfolios, these strategies (un-

like matching portfolios) do not serve as apt benchmarks for assessing the Confident-HL portfolios’

performance because they have higher predicted-returns by construction. Nevertheless, table C

in Internet Appendix C.C1 reports that the Confident-HL portfolios significantly dominate these

double-sorted portfolios in terms of Sharpe ratios and information ratios.

D. Economic Gains from Confident-HL Portfolios

I now establish the dominance of the Confident-HL over the conventional HL portfolios.

D.1. OOS Average Returns and Sharpe ratios of Confident-HL Portfolios

Table 4 presents the main results. The Confident-HL and precision-weighted (PW-HL) portfo-

lios remarkably outperform the conventional HL portfolios in terms of extensive economic measures.

These measures include the OOS average realized returns, Sharpe ratios, as well as abnormal re-

turns (α) and information ratios relative to Fama and French (2015) augmented to the momentum

factor (FF-5+UMD) and Stambaugh and Yuan (2017) (SY) models. For example, the traditional

EW(VW)-HL portfolio earns an impressive OOS average monthly return of 2.52% (1.48%) and an

annualized Sharpe ratio of 1.5 (0.9). However, the EW(VW)-Confident-HL portfolio outperforms

this strategy with the same measures of 3.61%(2.21%) and 1.75 (1.09). These are massive 43%

(49%) and 17% (21%) increases, respectively. Likewise, the PW-HL also outperforms the EW-HL

with an average return and Sharpe ratio of 2.87% and 1.67, respectively.

Note that the matching EW(VW)-HLCM and the EW(VW)-Confident-HL portfolios have the

same average NN-3-based predicted-returns. However, the former yields a considerably lower aver-

age return and Sharpe ratio than the latter. The 0.54% (0.48%) monthly return difference between

the two signifies the economic value of incorporating the ex-ante precision information into forming

24Simply, the double-sorted portfolios take long (short) positions on stocks that have predicted risk premia higher
(lower) than the top (bottom) 1% of all stocks.
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NN-3-based HL portfolios. In contrast, the Low-Confident-HL and low-precision-weighted (LPW-

HL) portfolios containing stocks with imprecise risk premium predictions underperform the tradi-

tional HL and Confident-HL portfolios. For example, although the EW(VW)-Low-Confident-HL

portfolio has higher average predicted-returns than that of the EW(VW)-HL, it earns a drastically

lower average-return and Sharpe ratio. Particularly, the VW-Low-Confident-HL strategy’s annu-

alized Sharpe ratio and the FF-6-adjusted and SY-adjusted information ratios are almost or even

less than half the corresponding measures of the VW-HL portfolio. This result demonstrates the

enormous imprecision of Low-Confident-HL portfolios.

Table 4 reveals that the expected returns of the EW-HL, PW-HL, and EW-Confident-HL

portfolios are in increasing order, thus validating proposition-1 of section 2. Of course, all inferences

drawn so far are based on the OOS point-estimates of various economic measures. To establish

their statistical significance, I conduct pairwise comparisons using the moving block bootstrap tests

developed in section 4.

Table 5 presents the bootstrap results, and the central conclusions are the same. The OOS

annualized squared-Sharpe and squared-information ratio differences between the Confident-HL

and conventional HL portfolios and between the Confident-HL portfolios and their matching HL

strategies are significant at the 1% level. Likewise, the corresponding differences between the

PW-HL and conventional EW-HL portfolios and between the precision-weighted HL portfolio and

its matching HL strategy are also significant at 1%. Even the OOS average return and alpha

differences between the Confident-HL and conventional-HL are significant at 1%. Thus, these

results statistically validate the superiority of the Confident-HL portfolios.

Similarly, squared Sharpe and squared information ratios of the low-Confident-HL and low-

precision-weighted-HL (LPW-HL) portfolios are significantly lower than those of their matching

portfolios and the conventional HL portfolios at the 1% level. Interestingly, though, a seemingly

large 0.17% monthly average return difference between the EW(VW)-HL and EW(VW)-Low-

Confident-HL is statistically insignificant. Because the Low-Confident-HL portfolio returns are

excessively imprecise (volatile), zero-mean comparison tests with them perhaps have less “power”

to reject the null. However, Sharpe ratio tests vividly indicate the underwhelming performance of
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the Low-Confident-HL portfolios.

To summarize, the statistical tests distinctly reject the conventional HL portfolios in favor of

the Confident-HL portfolios. As mentioned in section 4, the bootstrap tests use a block-size of 24.

However, the conclusions are the same for block-lengths of 6, 12, 18, and 36.

D.2. Robustness of Confident-HL Portfolios on Non-Microcaps

In a recent working paper, Avramov et al. (2020) document that NN-3-based HL strategies

primarily extract economic gains from microcap stocks. Thus, to investigate the extent to which

these stocks drive the Confident-HL portfolio results, I retrain NN-3 on non-microcaps by excluding

microcaps.

Table 6 presents the portfolios’ OOS performance. Table 7 shows their statistical significance.

Even on the non-microcap subsample, the EW Confident-HL portfolio significantly outperforms

comparable alternative HL strategies. For example, the VW-Confident-HL and its matching VW-

HLCM have the same average predicted-returns. However, the difference between the former and

latter portfolio’s average monthly return is a large 0.48% (5.76% at the annual level), which is

statistically significant at 5%. Likewise, the former portfolio yields a 15% higher annualized Sharpe

ratio (1.00) compared with the latter (0.87), statistically distinct at the 1% level.

D.3. Robustness to Higher-Moment Risks and Transaction-Costs

Higher-Moment Risks. Because NN-3-based HL portfolios are known to display positive

skewness and excess kurtosis (Avramov et al. (2020)), I also examine several higher-moment-

adjusted performance measures that reflect the portfolios’ downside risk. I consider Omega, Sortio,

and upside-potential ratio measures that asymmetrically penalize portfolio losses more than re-

warding gains, typically examined by practitioner-researchers as alternatives for Sharpe ratios.25

Table 8 presents the results. The Confident-HL and PW-HL handily outperform the conven-

tional HL and equivalent matching portfolios across the higher-order measures. Thus, dropping or

25See the following Wikipedia pages for the definitions of these measures: Omega, Sortino, and up-side potential.
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downweighing stocks with lower ex-ante precision from an investment portfolio also mitigates its

downside risk.

Transaction-Costs. To evaluate whether the economic gains from the Confident-HL portfo-

lios come at the expense of high transaction-costs, I calculate their portfolio turnovers. I find

that the Confident HL-portfolios deliver impressive transaction-adjusted returns as well. The

“Turnover” column of table 8 shows the portfolio turnovers, representing their average monthly

percentage change in holdings. The higher the turnover, the larger the transaction costs. In fact,

Avramov et al. (2020) extrapolate that a deduction of (0.005× turnover) from a portfolio’s realized

return roughly approximates the portfolio’s transaction-cost adjusted returns.

The Confident-HL portfolio turnovers, thereby transaction costs, are significantly higher rela-

tive to the conventional HL portfolios. This result is expected, as they predominantly take long-

short positions on a much smaller subset of stocks, thereby requiring more rebalancing. However,

the Confident-HL portfolios’ trading-cost adjusted returns are substantially larger than the con-

ventional HL and corresponding matching portfolios. For example, the adjusted returns of the

EW(VW)-Confident-HL are 2.68% (1.89%), whereas those of the EW(VW)-HL are much lower,

1.26% (0.79%), respectively.

In summary, I demonstrate that the NN-3-based Confident-HL portfolios statistically outper-

form the traditional HL counterparts across various economic measures. Plus, these results are

robust on non-microcaps and to transaction-costs and higher-moment risks. Now, I compare these

portfolios with the benchmark Lewellen-based HL portfolios.

E. Reassessing NN-3 and Lewellen Model Comparisons Using Bootstrap Tests

Recall from section 4 that the OOS model comparisons conducted by the existing studies

(GKX) using the DM tests are inadequate, as they do not account for estimation uncertainty. This

section reevaluates the predictive performance of NN-3 relative to the benchmark Lewellen model

using the bootstrap tests. I assess the models’ performance in terms of their OOS MSEs and the

HL portfolios’ average returns and Sharpe ratios.
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E.1. NN-3 versus Lewellen: Out-of-Sample Mean Squared Error Comparisons

First, I test the null hypothesis that the MSEs of the NN-3 and Lewellen models are equal.

Figure 9 presents the p-values computed using the bootstrap tests and the DM tests on various

subsamples. In particular, every month, I sort stocks into deciles according to their NN-3-based

risk premium predictions’ ex-ante confidence, NN-3-EC. The blue line (yellow dotted-line) displays

the bootstrap (DM) p-values on the subsamples that dropout 10%, 20%, . . . , and 90% of the

stocks with the lowest NN-3-EC, respectively. These subsamples contain the forecasts that NN-

3 confidently predicts. In contrast, the red line (purple dotted-line) represents the p-values on

subsamples comprising the forecasts that NN-3 imprecisely predicts.

Figure 9 reveals that the DM-based p-value is less than 0.01 on the entire OOS data comprising

all stocks. Thus, consistent with GKX, the DM test rejects the Lewellen model in favor of NN-3

at the 1% level. However, with a p-value of 3.03%, the bootstrap test does not reject the null at

1% significance. Although the null of equal predictive abilitiy is rejected at the 5% significance in

favor of NN-3, the difference between both p-values suggest that the DM-based tests over reject

the null.

Interestingly, figure 9 illustrates that the predictive dominance of NN-3 monotonically increases

with the level of ex-ante confidence. For example, dropping out 10%, 50%, and 90% of stocks with

the lowest NN-3-EC significantly decreases the p-value to 2.86%, 2.24%, and 1.01%, respectively.

Thus, the likelihood in favour of NN-3 increases considerably on the subsamples containing forecasts

confidently predicted by NN-3. In contrast, excluding 10%, 50%, and 90% of the stocks with the

highest NN-3-EC substantially increases the p-values to 4.11%, 5.72%, and 7.91%.

Of course, p-value comparisons may not provide adequate information about the models’ per-

formance on different subsamples. For example, consider the effect of changing the sample size,

holding the model MSEs constant. The smaller samples would yield larger standard errors and

larger p-values, although the true MSEs remain the same. Thus, to draw more informative in-

ferences, the following subsection compares the two models in terms of their HL portfolios’ OOS

returns and Sharpe ratios
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E.2. NN-3 versus Lewellen: High-Low Portfolio Comparisons

Fig 10 plots the OOS return and Sharpe ratio differences between both models’ VW HL

portfolios on various subsamples. Like in the previous figure, the economic gains from the NN-3

monotonically increase with the NN-3-EC. For example, on the entire sample containing all stocks,

the difference between NN-3 and Lewellen HL portfolios’ average returns (squared Sharpe ratios)

is 0.38% (0.02), and statistically insignificant (at 10%). However, the difference soars to a highly

significant 0.82% (0.52) on the subsample comprising the top 10% stocks with the highest NN-3-

EC. In contrast, for the bottom 10% of stocks with the lowest NN-3-EC, Lewellen statistically

outperforms NN-3. The average return (square-Sharpe ratio) difference between NN-3 and Lewellen

HL portfolios is significantly negative -1.2% (-0.58).

Finally, I compare the conventional and Confident-HL portfolios formed from the NN-3 and

Lewellen models. The portfolio definitions and notations remain the same as in section 5.C. In

addition, I denote all Lewellen-based HL portfolios by attaching the subscript “L” to HL. For

example, the conventional EW-HL portfolio based on the Lewellen model is represented by EW-

HLL.

Table 9 presents the results. It reveals that the difference between the conventional EW

(VW) NN-3-HL and Lewellen-HL portfolios’ squared-Sharpe ratios is statistically insignificant at

1% (10%). Moreover, the analogous difference between the NN-3-Low-Confident-HL and Lewellen-

HL is significantly negative, suggesting the Lewellen model’s dominance on the subsample of fore-

casts imprecisely predicted by NN-3. In contrast, the corresponding difference between the NN-3-

Confident-HL and Lewellen-HL portfolios is highly positive and significant at 1%. These results

confirm the superiority of NN-3-based Confident-HL portfolios.

To make a fair assessment, I also compare the NN-3-Confident-HL portfolios with Lewellen-

Confident-HL portfolios. The conclusions are the same. The NN-3-Confident-HL portfolios re-

markably outperform in terms of squared-Sharpe ratios. This result is expected, as Confident-HL

portfolios’ performance hinges on ex-ante precision predicting ex-post squared forecast errors. Be-

cause it is less likely to hold for the benchmark Lewellen model (as shown in 2 and 5.B), the
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Lewellen-Confident-HL portfolios do not deliver superior performance.

In sum, this section shows that existing studies significantly overestimate the overall predictive

performance of NN-3 relative to the Lewellen model. The difference between the performance of

both models’ conventional HL portfolios’ is moderately significant or insignificant. However, NN-3

exceptionally outperforms on subsamples of forecasts that it confidently predicts. Likewise, the NN-

3-based Confident-HL portfolios statistically dominate the comparable Lewellen model’s portfolios.

In the following two sections, I explore the time-series and cross-sectional properties of NN-3-

based ex-ante precision.

F. Time-Series Variation in Ex-ante Standard Errors

To understand the time-series variation in the estimation uncertainty of NN-3-based risk pre-

mia, I compute the cross-sectional average of their ex-ante standard errors and call these “aggre-

gate standard errors”. Figure 11 plots the time-series of the aggregate standard errors. The series

clearly reflects time-varying financial market uncertainty. For example, Bloom (2009) and Baker

et al. (2016) document that market uncertainty appears to jump up after major shocks, such as

Black Monday, the Dotcom Bubble, the Russian default, the failure of Lehman Brothers, and the

2011 debt ceiling dispute. Consistent with these studies, the aggregate standard errors spike after

such shocks.

Table 10 presents the time-series average of aggregate standard errors over the OOS period

and periods of shocks. Whereas the average monthly standard error across all periods is 1.06%, it is

2.31% during crisis periods. Because many individual predictors (e.g., size, price trends, and stock

market volatility) in the NN-3 model substantially deviate from their usual distributions during

these crisis periods, resulting risk premium predictions would also be hugely imprecise. Thus, the

aggregate standard errors proxy for market uncertainty. For example, the standard errors are 38%

correlated with the widely-used uncertainty proxy, the monthly market return standard deviation

computed using daily data.

50



G. Cross-sectional Variation in Ex-ante Confidence

Table 11 presents the cross-sectional properties of various ex-ante confidence sorted deciles. It

reveals that NN-3 confidently predicts stocks with small market capital, high book-to-market ratios

and high 1-year momentum returns. Because these characteristics associate with higher expected

returns, NN-3-based HL portfolios deliver more gains in the long-leg rather than the short-leg.

This result contrasts with the “arbitrage asymmetry” studies that argue, under trading frictions,

anomaly-based investment portfolios yield relatively more profits in the short-leg (e.g., Stambaugh

et al. (2012)). Avramov et al. (2020) note similar observations, albeit examining ex-post OOS long-

leg and short-leg returns of investment portfolios based on various ML models, including NN-3.

Possible reasons for understanding the association between the level and precision of NN-based risk

premium predictions warrant a future study.

Moreover, NN-3 confidently predicting risk premia of small-sized stocks lends support to

Avramov et al. (2020), who argue that NN-3-based HL portfolios derive more economic gains from

microcaps. Table 11 shows why. Because such stock risk premia are more confidently predicted,

HL portfolios containing microcaps yield relatively larger economic gains.

Interestingly, I find that a significant proportion of non-microcaps have confidently risk pre-

mium predictions. Table 12 presents the results. It shows that 34% of the stocks with the most

precise risk premium predictions have market caps greater than the median size across all individ-

ual stocks. Thus, NN-3-based Confident-HL portfolios yield impressive gains even on sub-samples

containing large-sized stocks.
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6. Conclusions

I develop an easy-to-implement method to estimate ex-ante standard errors of risk premium

predictions from neural networks. To my knowledge, this is the first paper to explicitly derive

the precision of NN-based risk premia at the stock-level and portfolio-level. I show that consider-

ing ex-ante standard errors leads to enhanced investment portfolios and out-of-sample statistical

inferences.

The neural-network-based confident high low trading strategies that take long-short positions

on stocks that have more risk premium estimates yield at least 40% higher returns and 15%

higher Sharpe ratios than the neural-network-based conventional high-low portfolios. In evalu-

ating whether these improvements are statistically significant, this paper shows that existing out-

of-sample inferences that do not account for ex-ante standard errors are inadequate. I develop a

bootstrap method, robust to estimation uncertainty, to compare OOS returns and Sharpe ratios of

any two model-based investment strategies. The method also can be employed to compare mean

squared errors of any two competing return predictions.

The bootstrap tests suggest that the neural-network-based confident high-low portfolios sig-

nificantly outperform the neural-network-based conventional high-low portfolios, as well as the tra-

ditional high-low and confident high-low portfolios formed using the benchmark Lewellen model.

However, the difference between the conventional neural-network-based and Lewellen-based high-

low portfolios’ out-of-sample returns and Sharpe ratios are either statistically insignificant or mod-

erately significant. Thus, considering ex-ante standard errors is necessary for both real-time trading

strategies and ex-post out-of-sample inferences.
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A. Appendix: Proofs

1. Proof of Proposition-1:

Let the risk premium predictions of A1, A2, A3, and A4 be â1, â1, b̂1, and b̂2, respectively. Let

psea1, psea2, pseb1, and pseb2 be the predictive standard errors of A1, A2, A3, and A4, respectively.

The expected HL return equals the sum of the following measures

E(HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+ (µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ 0× p3, (52)

where p3 = 1− P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
− P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
.

Case1: When psea1 ≥ {pseb1, pseb2} and psea2 ≥ {pseb1, pseb2}, the expected Confident-HL

return equals

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+ (µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ 0× p3

= E(HL). (53)

Case2: Similarly, when pseb1 ≥ {psea1, psea2} and pseb2 ≥ {psea1, psea2}

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+ (µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ 0× p3

= E(HL). (54)
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Case3: When predictive standard errors do not align with either case1 or case2, without loss

of generality, let psea1 ≤ pseb1 ≤ psea2 ≤ pseb2. Then,

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+(µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ (µa − µb)× p4 + (µb − µa)× p5,

(55)

where p4 = P
(
{â1, b̂2} ∈ QL

)
, p5 = P

(
{â2, b̂1} ∈ QL

)
, and P (.) is the probability measure.

Because â1 and b̂1 are (relatively) precisely measured, â1 and b̂2 are more likely to be in QL and

QS , respectively. Consistent with this intuition, it turns out that p4 > p5. Thus,

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+(µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ (µa − µb)× (p4 − p5)

> E(HL) (56)

Similarly, the expected return of PW-HL is given by

E(PW-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+(µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ (2w − 1)× (µa − µb)× (p4 − p5),

(57)

where w (> 0.5) is the weight assigned to the precise stock in each quantile. When w = 1, PW-HL

reduces to Confident-HL, as it takes long (short) position only on the stock with the precise risk

premium prediction. Thus,

E(HL) ≤ E(PW-HL) ≤ E(Confident-HL) (58)

54



2. Proof of Proposition-2

Proof. Using Gal and Ghahramani (2016), the following expressions are directly obtained for the

(approximated) Bayesian marginal predictive distribution of returns and their variances, respec-

tively.

Q(r∗i,t+1|z∗it, R, Z) = P (ri,t+1|z∗it, R, Z,Ω)q(Ω)

q(Ω) =
K∏
k=1

pi,k, where each pi,k ∼ Bern(p),

P (ri,t+1|z∗it, R, Z,Ω) = N (Êi,Ω,t, σ
2
ηI), (59)

where Bern() represents Bernoulli distribution. Êi,Ω,t is given by (25), with d replaced by Ω. And

V ar
[
Q(r∗i,t+1|z∗it, R, Z)

]
≈ 1

D

D∑
d=1

(
Êi,d,t −

1

D

D∑
d=1

Êi,d,t

)2

+ σ2
η (60)

Denote V ar
[
Q(r∗i,t+1|z∗it, R, Z)

]
by VQ(r∗i,t+1), where VQ represents the variance operation

under the probability distribution Q(r∗i,t+1|z∗it, R, Z). Note that by the law of total variance

VQ(r∗i,t+1) = VQ(E(r∗i,t+1|W1,W2)) + EQ(V (r∗i,t+1|W1,W2)), (61)

where W1,W2 are the unknown weight matrices of the NN-1, and EQ represents the expectation

operation under the probability distribution Q(r∗i,t+1|z∗it, R, Z).

(61) further implies that

VQ(r∗i,t+1) = VQ(µ∗i,t) + σ2
η, (62)

because E(r∗i,t+1|W1,W2) = µ∗i,t, and V (r∗i,t+1|W1,W2) = σ2
η, which is assumed to be known.

Thus, (60) and (61) implies

VQ(µ∗i,t) =
1

D

D∑
d=1

(
Êi,d,t −

1

D

D∑
d=1

Êi,d,t

)2

. (63)
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3. Proof of Proposition-3

Proof. To compute portfolio-level standard errors, joint (approximated) density of return predic-

tions are required. Straightforward algebra implies that it is given by

Q(r∗1,t+1, r
∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z) = P (r∗1,t+1, r

∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z,Ω)q(Ω)

q(Ω) =

K∏
k=1

pi,k, where each pi,k ∼ Bern(p),

P (r∗1,t+1, r
∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z,Ω) = N (ÊS,Ω,t, σ

2
ηI), where ÊS,Ω,t =



Ê1,Ω,t

Ê2,Ω,t

...

ÊS,Ω,t


, (64)

with each Êi,Ω,t given by (25). The key is to use the same Ω across the stocks, as discussed in the

main section of the paper. Then, the predictive variance of the portfolio P is given by

VQ(r∗P,t+1) = EQ
(
V (r∗P,t+1|Ω)

)
+ VQ

(
E(r∗P,t+1|Ω)

)
, (65)

where r∗P,t+1 =
∑

i∈S ωP,i,tr
∗
i,t+1. Moreover, V (r∗P,t+1|Ω) =

∑
i∈S ω

2
P,i,tσ

2
η. And due to (64),

VQ

(
E(r∗P,t+1|Ω)

)
can be approximated by

VQ
(
E(r∗P,t+1|Ω)

)
≈ 1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

, (66)

with ÊP,d,t, and p1,d, p2,d given in (27).

Thus, (65) further implies that

VQ(r∗P,t+1) =
∑
i∈S

ω2
P,i,tσ

2
η +

1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

. (67)
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Now, to compute the predictive variance of P ’s risk premium, note that

VQ(r∗P,t+1) = EQ
(
V (r∗P,t+1|W1,W2)

)
+ VQ

(
E(r∗P,t+1|W1,W2)

)
=
∑
i∈S

ω2
P,i,tσ

2
η + VQ(µ∗P,t). (68)

Thus, from (67) and (68),

VQ(µ∗P,t) =
1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

(69)
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B. Appendix: Simulations and Testing the Diebold and Mariano

(2002) Assumption

1. Validity of Standard Errors: Monte Carlo Evidence

Table 1
Calibration of the Confidence Intervals: Monte Carlo Evidence
This table validates the proposed standard errors using Monte Carlo simulations. The data comprise monthly stock

risk premia and their raw predictors simulated under four different models 1-4. On the simulated data, confidence

intervals (CIs) of various levels are constructed using NN-based risk premium predictions and their standard errors.

Each row presents the confidence level and probabilities with which the corresponding level’s confidence intervals

cover the true simulated risk premia under the four models.

Probability that CI contains true risk premium

Confidence level Model 1 Model 2 Model 3 Model 4

1% 1.26% 1.49% 1.08% 0.91%

5% 6.23% 6.65% 4.64% 3.63%

10% 11.81% 13.16% 8.98% 7.57%

20% 23.83% 26.26% 17.78% 16.17%

50% 48.72% 61.62% 46.85% 43.64%

60% 57.73% 73.10% 59.38% 55.52%

80% 78.94% 90.73% 83.60% 79.66%

90% 90.24% 96.48% 93.72% 90.36%

95% 96.03% 98.56% 97.39% 95.20%

99% 99.33% 99.74% 99.36% 98.75%
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2. Tests of Covariance Stationarity

Table 2
Violation of Diebold and Mariano (2002) conditions : Non-Stationarities due to Estimation
Uncertainty
This table shows that the model-based loss differentials violate the covariance stationarity assumption required for

the Diebold and Mariano (2002) tests’ asymptotic validity. The table presents three loss differential series over the

360 out-of-sample periods. The first comprises the forecast-squared error differences between the NN-3 and Lewellen-

based return predictions. The second contains the return differences between the equal-weighted high-low portfolios

based on the NN-3 and Lewellen-based models. The third includes the return differences between the value-weighted

high-low portfolios based on the NN-3 and Lewellen-based models. The First 180 Months column presents the loss

differentials’ sample standard deviations over the first 180 OOS periods, whereas the Last 180 Months column shows

those over the last 180 periods. The Ratio column presents the ratio of the first and last 180 month standard

deviations. The p-value column presents the p-value under the hypothesis that the ratio equals one, with critical

values based on Pagan and Schwert (1990).

(NN-3 − Lewellen) Differentials Standard Deviation of Loss Function

Loss Function First 180 Months Last 180 Months Ratio p-value

Mean Squared Forecast Errors 0.12% 0.02% 5.03 < 0.001

Equal-weighted High-low Returns 0.35% 0.19% 1.85 < 0.001

Value-weighted High-low Returns 0.47% 0.27% 1.75 < 0.001
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3. Performance of this paper’s OOS Comparison Method: Monte Carlo Evidence

Figure 3. Test Sizes of OOS Comparison Methodologies

Note: This figure presents the “test sizes” of various methodologies at the 5% level. Test size

represents the probability of incorrectly rejecting the null when it is true. Return time series

with zero means are simulated under three distinct models, each imposing a different degree

of time-varying temporal dependency. On the simulated data, tests of zero return means are

conducted using three methods. The first (in blue) performs DM tests with the OLS standard

errors. The second (in red) executes DM tests with Newey-West standard errors. The third (in

orange) implements this paper’s bootstrap method.
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Figure 4. Power Curves of OOS Comparison Methodologies

Note: This figure presents the “power curves” of various methodologies at the 5% level. Power

represents the probability of correctly rejecting the null when it is not true. Return time series

are simulated under nine models, denoted by k, allowing for time-varying temporal dependencies.

The mean return under model k equals k×σ, where σ is a known scalar calibrated to match the

standard deviation of the market risk premium. On the simulated data, tests of zero return means

are conducted using three methods. The first (in blue) performs DM tests with the OLS standard

errors. The second (in red) executes DM tests with Newey-West standard errors. The third (in

orange) implements this paper’s bootstrap method.
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Figure 5. Out-of-Sample (OOS) Performance of Equal-weighted Deciles Based on NN-3 Predictions.

Figure 6. Out-of-Sample (OOS) Performance of Value-weighted Deciles Based on NN-3 Predictions.

Note: Figure 5 (6) presents the performance of equal-weighted (value-weighted) prediction-

sorted portfolios over the 30-year out-of-sample. At each period, stocks are sorted into deciles

according to their NN-3-based risk premium predictions. Decile-10 (decile-1) comprises the top

(bottom) 10% stocks with the lowest (highest) return predictions. The top figure shows the average
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monthly returns of each decile, whereas the bottom represents their annualized Sharpe ratios.
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Figure 7. Ex-ante Confidence and Ex-post OOS-R2: NN-3-based Predictions and Standard Errors

Note: This figure presents the out-of-sample (OOS) R2s of various ex-ante confidence-sorted sub-

samples over the 30-year test sample. At each period, stocks are sorted into deciles according to

their NN-3-based risk premium predictions’ ex-ante confidence (EC). Decile-10 (decile-1) com-

prises the top (bottom) 10% stocks with the lowest (highest) precision. The y-axis represents the

ex-post OOS R2s attained by the decile subsamples.
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Figure 8. Ex-ante Confidence and Ex-post OOS-R2: Lewellen-based Predictions and Standard Errors

Note: This figure presents the out-of-sample (OOS) R2s of various ex-ante confidence-sorted sub-

samples over the 30-year test sample. At each period, stocks are sorted into deciles according to

their Lewellen-based risk premium predictions’ ex-ante confidence. Decile-10 (decile-1) comprises

the top (bottom) 10% of stocks with the lowest (highest) precision. The y-axis represents the

ex-post OOS R2s attained by the decile subsamples.

69



Table 3
Long-short Portfolios’ Performance on Subsamples with Different Levels of Ex-ante Confidence
This table reports the performance of model-based high-low (HL) portfolios over the 30-year out-of-sample (OOS)

period on various subsamples. Each period, stocks are first sorted into deciles according to their ex-ante confidence

levels of model-based risk premium predictions. On each decile, equal-weighted (value-weighted) HL portfolios are

formed by further sorting stocks into deciles according to their next month’s model-based return predictions and

taking long-short positions on the extreme deciles. The NN-3-HL and Lewellen-HL columns present each precision-

decile’s HL portfolio’s performance under the NN-3 and Lewellen models, respectively. The Pred Ret column reports

the HL portfolio’s average return predictions. The Avg Ret, Std, Sharpe columns respectively represent the average,

standard deviation, and Sharpe ratio of the HL portfolio’s realized returns. Panels A and B present the equal-weighted

and value-weighted strategies, respectively.

Panel A: Performance of equal-weighted-HL on various precision-sorted subsamples

NN-3-HL Lewellen-HL

Precision decile Pred Ret Avg Ret Std Sharpe Pred Ret Avg Ret Std Sharpe

1 (Low-Confident) 0.72% 0.88% 4.29% 0.71 1.83% 0.81% 6.85% 0.41

2 0.52% 1.14% 4.80% 0.83 2.97% 1.89% 6.53% 1.00

3 0.54% 0.75% 4.62% 0.56 2.30% 1.53% 6.88% 0.77

4 0.58% 1.31% 4.74% 0.96 1.83% 1.80% 7.60% 0.82

5 0.62% 1.31% 5.15% 0.88 1.62% 1.70% 7.02% 0.84

6 0.64% 1.77% 5.42% 1.13 1.49% 1.44% 5.99% 0.83

7 0.66% 1.40% 5.44% 0.89 1.49% 1.93% 6.12% 1.09

8 0.68% 1.78% 5.59% 1.10 1.50% 1.53% 5.27% 1.01

9 0.71% 2.03% 7.43% 0.95 1.43% 2.01% 4.99% 1.40

10 (High-Confident) 0.88% 3.10% 7.48% 1.44 1.07% 1.42% 4.90% 1.00

Panel B: Performance of value-weighted-HL on various precision-sorted subsamples

NN-3-HL Lewellen-HL

Precision decile Pred Ret Avg Ret Std Sharpe Pred Ret Avg Ret Std Sharpe

1 (Low-Confident) 0.70% 0.34% 5.12% 0.23 1.79% 1.00% 5.46% 0.64

2 0.49% 0.65% 5.82% 0.39 2.89% 1.27% 8.64% 0.51

3 0.52% 0.86% 5.60% 0.53 2.16% 1.57% 7.39% 0.74

4 0.56% 0.65% 5.21% 0.43 1.76% 1.07% 6.39% 0.58

5 0.60% 0.80% 5.55% 0.50 1.45% 1.06% 6.30% 0.58

6 0.62% 0.68% 5.59% 0.42 1.32% 1.01% 5.43% 0.64

7 0.62% 0.43% 6.02% 0.25 1.29% 1.27% 5.40% 0.82

8 0.67% 0.67% 6.52% 0.36 1.35% 1.13% 5.11% 0.77

9 0.70% 1.16% 7.68% 0.52 1.33% 1.33% 5.98% 0.77

10 (High-Confident) 0.89% 1.59% 6.86% 0.80 0.99% 0.66% 5.93% 0.39
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Table 4
Performance of Confident and Low-Confident Long-Short Portfolios: All Stocks
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. EW(VW)-HL represents the traditional equal(value)-weighted long-short portfolio. EW(VW)-Confident-HL

and EW(VW)-Low-Confident-HL denote the equal(value)-weighted Confident and Low-Confident long-short portfo-

lios that only include stocks with the most confident and imprecise risk premium predictions, respectively. LPW-HL

and PW-HL are the “imprecision” and “precision” weighted portfolios that overweight stocks with imprecise and

precise return predictions, respectively. EW(VW, LPW)-HLLCM is the conventional EW(VW, LPW) HL portfolio

matched to have the same average predicted returns as that of the EW-Low-Confident-HL (EW-Low-Confident-HL,

LPW-HL) portfolio. EW(VW)-HLCM is a traditional EW(VW)-HL portfolio matched to have the same average

predicted returns as that of the EW-Confident-HL (VW-Confident-HL) portfolio. Likewise, LPW(PW)-HLM is

a traditional EW-HL portfolio matched with LPW(PW)-HL. See section 5.C for a detailed description of the

portfolios. All portfolio returns are also adjusted for Fama-French 5-factors plus momentum (FF-5+UMD) and

Stambaugh-Yuan 4-factor (SY) models. The “pred ret” column represents the average predicted returns. The “avg

ret” column shows the average realized returns. The “α” columns indicate abnormal returns. The “t” columns

denote the t-stats of “average returns” and “α”. The “SR” and “IR” columns represent the annualized Sharpe and

Information ratios, respectively.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A: Equal-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 1.69% 2.52% 8.21 1.50 2.20% 7.63 1.39 2.18% 7.15 1.31

EW-HLLCM 1.77% 2.64% 8.20 1.50 2.34% 7.7 1.41 2.33% 7.25 1.32

EW-Low-Confident-HL 1.79% 2.35% 6.46 1.18 1.97% 5.65 1.03 1.96% 5.28 0.96

EW-HLCM 1.97% 3.07% 8.65 1.58 2.77% 8.26 1.51 2.75% 7.8 1.42

EW-Confident-HL 1.97% 3.61% 9.58 1.75 3.29% 9.02 1.65 3.27% 8.6 1.57

Panel B: Value-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

VW-HL 1.62% 1.48% 4.95 0.90 0.90% 3.26 0.59 0.77% 2.68 0.49

VW-HLLCM 1.77% 1.50% 4.61 0.84 0.87% 2.87 0.52 0.76% 2.38 0.44

VW-Low-Confident-HL 1.78% 1.31% 3.02 0.55 0.48% 1.15 0.21 0.39% 0.88 0.16

VW-HLCM 1.90% 1.73% 4.92 0.90 1.12% 3.39 0.62 1.02% 2.95 0.54

VW-Confident-HL 1.90% 2.21% 5.95 1.09 1.79% 4.77 0.87 1.43% 3.82 0.70

Panel C: Precision-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 1.69% 2.52% 8.21 1.50 2.20% 7.63 1.39 2.18% 7.15 1.31

LPW-HLM 1.69% 2.52% 8.21 1.50 2.20% 7.63 1.39 2.18% 7.15 1.31

LPW-HL 1.70% 2.36% 7.63 1.39 2.02% 6.95 1.27 2.00% 6.48 1.18

PW-HLM 1.77% 2.64% 8.20 1.50 2.34% 7.7 1.41 2.33% 7.25 1.32

PW-HL 1.77% 2.87% 9.14 1.67 2.57% 8.68 1.59 2.55% 8.16 1.49



Table 5
Statistical Comparison of Long-Short Portfolios: All Stocks
This table conducts pairwise statistical comparisons of the out-of-sample (OOS) performance of various NN-3-based

long-short portfolios. The tests are based on the moving block bootstrap procedure developed in section 4, with

a block-length of 24. The Investment Strategy column shows the comparing pair of portfolios. The avg ret

column presents the average return differences between the pair of investment strategies. The α column shows

the average abnormal return differences. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and

squared-information ratio differences between the investment portfolios, respectively. The numbers in parenthesis

are p-values. *, ** and *** denote significance at the 1%, 5% and 10% levels, respectively. See table 4 and section

5.C for a description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A : OOS Performance Differences of Equal-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-Low-Confident-HL 0.17%
(0.373)

0.859∗∗∗
(0)

0.23%
(0.207)

1.008∗∗∗
(0)

0.22%
(0.267)

0.941∗∗∗
(0)

EW-HLLCM − EW-Low-Confident-HL 0.30%
(0.142)

0.853∗∗∗
(0)

0.36%∗
(0.06)

1.049∗∗∗
(0)

0.36%∗
(0.083)

0.998∗∗∗
(0)

EW-Confident-HL − EW-HL 1.10%∗∗∗
(0)

0.808∗∗∗
(0)

1.09%∗∗∗
(0)

0.884∗∗∗
(0)

1.09%∗∗∗
(0)

0.92∗∗∗
(0)

EW-Confident-HL − EW-Low-Confident-HL 1.27%∗∗∗
(0.001)

1.666∗∗∗
(0)

1.32%∗∗∗
(0)

1.892∗∗∗
(0)

1.31%∗∗∗
(0.001)

1.861∗∗∗
(0)

EW-Confident-HL − EW-HLCM 0.55%∗∗
(0.03)

0.563∗∗∗
(0)

0.52%∗∗
(0.039)

0.502∗∗∗
(0)

0.52%∗∗
(0.043)

0.527∗∗∗
(0)

Panel B : OOS Performance Differences of Value-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

VW-HL − VW-Low-Confident-HL 0.17%
(0.542)

0.511∗∗∗
(0.001)

0.42%∗
(0.094)

0.356∗∗∗
(0.001)

0.38%
(0.136)

0.258∗∗∗
(0.002)

VW-HLLCM − VW-Low-Confident-HL 0.19%
(0.503)

0.404∗∗∗
(0.002)

0.39%
(0.144)

0.266∗∗∗
(0.003)

0.37%
(0.173)

0.198∗∗∗
(0.008)

VW-Confident-HL − VW-HL 0.73%∗∗∗
(0.003)

0.364∗∗∗
(0.003)

0.89%∗∗∗
(0)

0.467∗∗∗
(0)

0.66%∗∗∗
(0.007)

0.3∗∗∗
(0.001)

VW-Confident-HL − VW-Low-Confident-HL 0.90%∗∗
(0.032)

0.875∗∗∗
(0)

1.31%∗∗∗
(0)

0.823∗∗∗
(0)

1.04%∗∗∗
(0.009)

0.558∗∗∗
(0)

VW-Confident-HL − VW-HLCM 0.48%∗
(0.086)

0.374∗∗∗
(0.004)

0.67%∗∗∗
(0.003)

0.433∗∗∗
(0.001)

0.41%
(0.128)

0.238∗∗∗
(0.008)

Panel C : OOS Performance Differences of Precision-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − LPW-HL 0.15%∗∗
(0.031)

0.307∗∗∗
(0)

0.18%∗∗∗
(0.007)

0.38∗∗∗
(0)

0.38%
(0.136)

0.258∗∗∗
(0.002)

LPW-HLM − LPW-HL 0.15%∗∗
(0.031)

0.307∗∗∗
(0)

0.18%∗∗∗
(0.007)

0.38∗∗∗
(0)

0.37%
(0.173)

0.198∗∗∗
(0.008)

PW-HL − EW-HL 0.36%∗∗∗
(0)

0.535∗∗∗
(0)

0.37%∗∗∗
(0)

0.658∗∗∗
(0)

0.66%∗∗∗
(0.007)

0.3∗∗∗
(0.001)

PW-HL − LPW-HL 0.51%∗∗∗
(0.001)

0.842∗∗∗
(0)

0.55%∗∗∗
(0)

1.038∗∗∗
(0)

1.04%∗∗∗
(0.009)

0.558∗∗∗
(0)

PW-HL − PW-HLM 0.23%∗∗
(0.014)

0.541∗∗∗
(0)

0.23%∗∗∗
(0.007)

0.617∗∗∗
(0)

0.41%
(0.128)

0.238∗∗∗
(0.008)
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Table 6
Performance of Confident and Low-Confident Long-Short Portfolios: Non-Microcap Stocks
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. Every period, the sample excludes microcap stocks with market capital smaller than the 20th NYSE size

percentile. See table 4 and section 5.C for a description of the portfolios. All portfolio returns are also adjusted

for Fama-French 5-factors plus momentum (FF-5+UMD) and Stambaugh-Yuan 4-factor (SY) models. The pred

ret column represents the average predicted returns. The avg ret column shows the average realized returns. The

α columns indicate abnormal returns. The t columns denote the t-stats of average returns and α. The SR and IR

columns represent the annualized Sharpe and Information ratios, respectively.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A: Equal-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

EW-HLLCM 0.74% 1.83% 5.57 1.02 1.51% 4.76 0.87 1.37% 4.13 0.75

EW-Low-Confident-HL 0.74% 1.50% 3.98 0.73 1.10% 2.96 0.54 0.89% 2.32 0.42

EW-HLCM 0.74% 1.83% 5.57 1.02 1.51% 4.76 0.87 1.37% 4.13 0.75

EW-Confident-HL 0.74% 2.25% 6.68 1.22 2.04% 6.03 1.10 1.93% 5.49 1.00

Panel B: Value-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

VW-HL 0.66% 1.42% 4.64 0.85 1.09% 3.58 0.65 0.98% 3.1 0.57

VW-HLLCM 0.73% 1.58% 4.76 0.87 1.25% 3.76 0.69 1.10% 3.2 0.59

VW-Low-Confident-HL 0.74% 1.25% 3.13 0.57 0.88% 2.26 0.41 0.74% 1.83 0.33

VW-HLCM 0.73% 1.58% 4.76 0.87 1.25% 3.76 0.69 1.10% 3.2 0.59

VW-Confident-HL 0.72% 2.07% 5.48 1.00 1.84% 4.78 0.87 1.64% 4.14 0.76

Panel C: Precision-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

LPW-HLM 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

LPW-HL 0.69% 1.60% 4.99 0.91 1.26% 4.06 0.74 1.13% 3.47 0.63

PW-HLM 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

PW-HL 0.69% 1.80% 5.93 1.08 1.52% 5.17 0.94 1.41% 4.57 0.83
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Table 7
Statistical Comparison of Long-Short Portfolios: Non-Microcap Stocks
This table conducts pairwise statistical comparisons of the OOS performance of various NN-3-based long-short

portfolios. Every period, the sample excludes microcap stocks with market capital smaller than the 20th NYSE size

percentile. The tests are based on the moving block bootstrap procedure developed in section 4, with a block-length

of 24. The Investment Strategy column shows the comparing pair of portfolios. The avg ret column presents the

average return differences between the pair of investment strategies. The α column shows the average abnormal

return differences. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and squared-information

ratio differences between the investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote

significance at the 1%, 5% and 10% levels, respectively. See table 4 and section 5.C for a description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A : Performance Differences of Equal-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-Low-Confident-HL 0.16%
(0.393)

0.454∗∗∗
(0.000)

0.25%
(0.183)

0.469
(0.000)

0.35%∗
(0.064)

0.427∗∗∗
(0.000)

EW-HLLCM − EW-Low-Confident-HL 0.33%∗
(0.076)

0.505∗∗∗
(0.000)

0.41%∗∗
(0.023)

0.535∗∗∗
(0.000)

0.48%∗∗∗
(0.008)

0.471∗∗
(0.000)

EW-Confident-HL − EW-HL 0.59%∗∗∗
(0.000)

0.505∗∗∗
(0.000)

0.69%∗∗∗
(0.000)

0.588∗∗∗
(0.000)

0.69%∗∗∗
(0.000)

0.572∗∗∗
(0.000)

EW-Confident-HL − EW-Low-Confident-HL 0.75%∗∗
(0.016)

0.959∗∗∗
(0.000)

0.94%∗∗∗
(0.002)

1.058∗∗∗
(0.001)

1.03%∗∗∗
(0.001)

0.999∗∗∗
(0.000)

EW-Confident-HL − EW-HLCM 0.42%∗∗
(0.015)

0.454∗∗∗
(0.000)

0.53%∗∗∗
(0.001)

0.523∗∗∗
(0.000)

0.56%∗∗∗
(0.001)

0.528∗∗∗
(0.000)

Panel B : Performance Differences of Value-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

VW-HL − VW-Low-Confident-HL 0.17%
(0.509)

0.391∗∗∗
(0.000)

0.20%
(0.438)

0.296∗∗∗
(0.000)

0.24%
(0.341)

0.253∗∗∗
(0.001)

VW-HLLCM − VW-Low-Confident-HL 0.33%
(0.214)

0.428∗∗∗
(0.000)

0.37%∗∗
(0.166)

0.348∗∗∗
(0.000)

0.36%∗
(0.168)

0.280∗∗
(0.001)

VW-Confident-HL − VW-HL 0.65%∗∗∗
(0.005)

0.285∗∗∗
(0.000)

0.75%∗∗∗
(0.001)

0.382∗∗∗
(0.000)

0.66%∗∗∗
(0.005)

0.304∗∗∗
(0.000)

VW-Confident-HL − VW-Low-Confident-HL 0.82%∗∗
(0.029)

0.676∗∗∗
(0.000)

0.95%∗∗∗
(0.009)

0.679∗∗∗
(0.000)

0.90%∗∗
(0.012)

0.557∗
(0.000)

VW-Confident-HL − VW-HLCM 0.48%∗∗
(0.041)

0.248∗∗∗
(0.001)

0.59%∗∗
(0.011)

0.331∗∗∗
(0.000)

0.54%∗∗
(0.024)

0.277∗∗∗
(0.000)

Panel C : Performance Differences of Precision-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − LPW-HL 0.06%
(0.348)

0.152∗∗∗
(0.000)

0.09%
(0.146)

0.172∗∗∗
(0.000)

0.11%∗
(0.082)

0.157∗∗∗
(0.000)

LPW-HLM − LPW-HL 0.06%
(0.348)

0.152∗∗∗
(0.000)

0.09%
(0.146)

0.172∗∗∗
(0.000)

0.11%∗
(0.082)

0.157∗∗∗
(0.000)

PW-HL − EW-HL 0.14%∗∗
(0.014)

0.192∗∗∗
(0.000)

0.17%∗∗∗
(0.002)

0.222∗∗∗
(0.000)

0.17%∗∗∗
(0.001)

0.198∗∗∗
(0.000)

PW-HL − LPW-HL 0.20%∗
(0.088)

0.343∗∗∗
(0.000)

0.27%∗∗
(0.015)

0.394∗∗∗
(0.000)

0.28%∗∗
(0.011)

0.355∗∗∗
(0.000)

PW-HL − PW-HLM 0.14%∗∗
(0.014)

0.192∗∗∗
(0.000)

0.17%∗∗∗
(0.002)

0.222∗∗∗
(0.000)

0.17%∗∗∗
(0.001)

0.198∗∗∗
(0.000)
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Table 8
Transaction Costs and Higher-Moment Adjusted Performance of Confident-HL Portfolios
This table reports the transaction costs and higher-moment-risk-adjusted performance of various NN-3-based long-

short portfolios over the 30-year out-of-sample period. The Turnover column presents a portfolio’s average monthly

percentage change in holdings (i.e., turnover). A deduction of (0.005×Turnover) from a portfolio’s realized return

roughly approximates its transaction-cost-adjusted returns. The Omega, Sortino and Upside columns respectively

represent the Omega, Sortino and Upside potential ratios. These ratios measure the higher-moment-risk-adjusted

performance of portfolios, explicitly penalizing losses more than realizing gains. See table 4 and section 5.C for a

description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Equal-Weighted Portfolios: Higher-Moment Adjusted Performance

All Stocks Non-Microcaps

Investment Strategy Turnover Omega Sortino Upside Turnover Omega Sortino Upside

EW-HL 1.27 4.22 0.98 1.28 1.12 2.46 0.51 0.86

EW-HLLCM 1.37 4.18 0.96 1.27 1.23 2.49 0.54 0.89

EW-Low-Confident-HL 1.88 2.83 0.71 1.10 1.89 1.89 0.37 0.80

EW-HLCM 1.53 4.44 1.05 1.36 1.45 2.49 0.54 0.89

EW-Confident-HL 1.85 4.70 1.28 1.62 1.84 2.84 0.66 1.01

Value-Weighted Portfolios: Higher-Moment Adjusted Performance

All Stocks Non-Microcaps

Investment Strategy Turnover Omega Sortino Upside Turnover Omega Sortino Upside

VW-HL 1.37 2.24 0.53 0.96 1.2 2.12 0.43 0.82

VW-HLLCM 1.51 2.12 0.49 0.93 1.37 2.14 0.46 0.86

VW-Low-Confident-HL 1.90 1.58 0.26 0.71 1.86 1.59 0.26 0.71

VW-HLCM 1.62 2.23 0.54 0.98 1.5 2.14 0.46 0.86

VW-Confident-HL 1.89 2.43 0.63 1.07 1.88 2.43 0.56 0.96

Precision-Weighted Portfolios: Higher-Moment Adjusted Performance

All Stocks Non-Microcaps

Investment Strategy Turnover Omega Sortino Upside Turnover Omega Sortino Upside

PW-HL 1.27 4.22 0.98 1.28 1.12 2.46 0.51 0.86

PW-HLM 1.27 4.22 0.98 1.28 1.12 2.46 0.51 0.86

PW-Low-Confident-HL 1.54 3.74 0.91 1.24 1.43 2.26 0.47 0.85

PW-HLM 1.37 4.18 0.96 1.12 1.38 2.46 0.51 0.86

PW-Confident-HL 1.51 4.80 1.13 1.42 1.43 2.66 0.56 0.90
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Figure 9. Comparing predictive performance of NN-3 with the benchmark Lewellen (2015) model

Note: This figure presents the p-values under the null hypothesis that the mean squared error of the

NN-3 and Lewellen models are equal on various subsamples over the 30-year out-of-sample period.

Every month, stocks are sorted into deciles according to their NN-3-based risk premium predictions’

ex-ante confidence, NN-3-EC. The blue line (yellow dotted-line) displays the bootstrap (DM) p-

values on the subsamples that dropout 10%, 20%, . . . and 90% of the stocks with the lowest NN-

3-EC, respectively. Thus, these subsamples contain the forecasts that NN-3 confidently predicts.

In contrast, the red line (purple dotted-line) represents the p-values on the subsamples comprising

the forecasts that NN-3 imprecisely predicts, excluding the 10%, 20%, . . . and 90% stocks with the

highest NN-3-EC, respectively.
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Figure 10. Comparing predictive performance of NN-3 with the benchmark Lewellen (2015) model

Note: This figure presents the out-of-sample average return and squared-Sharpe-ratio differences

between the value-weighted high-low (HL) portfolios formed using the NN-3 and Lewellen models on

various subsamples. Every month, stocks are sorted into deciles according to their NN-3-based risk

premium predictions’ ex-ante confidence, NN-3-EC. The blue line in the top (bottom) of the figure

displays the HL portfolios’ average return (squared-Sharpe-ratio) differences on the subsamples

that dropout 10%, 20%, . . . , and 90% of the stocks with the lowest NN-3-EC, respectively. Thus,

these subsamples contain the forecasts that NN-3 confidently predicts. In contrast, the red line at

the top (bottom) of the figure corresponds to the subsamples comprising the forecasts that NN-3

imprecisely predicts, excluding the 10%, 20%, . . . and 90% highest NN-3-EC stocks, respectively.
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Table 9
Statistical Comparison of Long-Short Portfolios: NN-3 versus Lewellen (2015)
This table conducts pairwise statistical comparisons of the OOS performance of various long-short portfolios based

on the NN-3 and Lewellen models. The tests are based on the moving block bootstrap procedure developed in

section 4, with a block-length of 24. The Investment Strategy column shows the comparing pair of portfolios. The

avg ret column presents the average return differences between the pair of investment strategies, the α column shows

the average abnormal return differences. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and

squared-information ratio differences between the investment portfolios. The “HL” and “HLL” portfolios are based

on the NN-3 and Lewellen models, respectively. The numbers in parenthesis are p-values. *, **, and *** denote

significance at the 1%, 5% and 10% levels, respectively. See table 4 and section 5.C for a description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low portfolio based on NN-3; HLL=high-low portfolio based on Lewellen

Panel A : Performance Differences of Equal-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-HLL 0.72%∗∗
(0.016)

0.247∗∗
(0.036)

0.66%∗∗
(0.036)

0.255∗∗
(0.025)

0.70%∗∗
(0.033)

0.446∗∗∗
(0.002)

EW-Low-Confident-HL − EW-HLL 0.55%∗∗
(0.089)

−0.611∗∗∗
(0.002)

0.44%
(0.23)

−0.753
(0)

0.49%
(0.21)

−0.495∗∗∗
(0)

EW-Confident-HL − EW-HLL 1.82%∗∗∗
(0)

1.055∗∗∗
(0)

1.75%∗∗∗
(0)

3.071∗∗∗
(0)

1.80%∗∗∗
(0)

1.366∗∗∗
(0)

EW-Low-Confident-HL − EW-Low-Confident-HLL 1.94%∗∗∗
(0)

1.33∗∗∗
(0)

1.64%∗∗∗
(0)

1.225∗∗∗
(0)

1.61%∗∗∗
(0)

1.08∗∗∗
(0)

EW-Confident-HL − EW-Confident-HLL 0.99%∗
(0.059)

1.034∗∗∗
(0.001)

1.25%∗∗
(0.02)

2.511∗∗∗
(0)

1.42%∗∗∗
(0.009)

1.253∗∗∗
(0)

Panel B : Performance Differences of Value-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

VW-HL − VW-HLL 0.39%
(0.249)

0.002
(0.925)

0.33%
(0.256)

−0.004
(0.869)

0.27%
(0.36)

0.036
(0.423)

VW-Low-Confident-HL − VW-HLL 0.22%
(0.659)

−0.509∗∗∗
(0.004)

−0.09%
(0.847)

−0.36∗∗∗
(0.005)

−0.12%
(0.793)

−0.221∗∗
(0.023)

VW-Confident-HL − VW-HLL 1.12%∗∗∗
(0.003)

0.366∗∗
(0.013)

1.22%∗∗∗
(0.001)

0.873∗∗∗
(0)

0.93%∗∗
(0.015)

0.337∗∗∗
(0.004)

VW-Low-Confident-HL − VW-Low-Confident-HLL 0.98%
(0.109)

0.281∗∗
(0.036)

0.20%
(0.715)

0.051
(0.293)

0.12%
(0.818)

0.013
(0.672)

VW-Confident-HL − VW-Confident-HLL 0.44%
(0.344)

0.377∗∗
(0.014)

0.86%∗∗
(0.03)

0.855∗∗∗
(0)

0.81%∗
(0.072)

0.419∗∗∗
(0.001)

Panel C : Performance Differences of Precision-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-HLL 0.72%∗∗
(0.016)

0.247∗∗
(0.04)

0.66%∗∗
(0.033)

0.255∗∗
(0.023)

0.70%∗∗
(0.035)

0.446∗∗∗
(0.002)

LPW-HL − EW-HLL 0.57%∗∗
(0.049)

−0.06
(0.319)

0.49%
(0.127)

−0.125
(0.11)

0.52%
(0.127)

0.076
(0.225)

PW-HL − EW-HLL 1.08%∗∗∗
(0.002)

0.782∗∗∗
(0.002)

1.03%∗∗∗
(0.002)

2.796∗∗∗
(0)

1.07%∗∗∗
(0.002)

1.071∗∗∗
(0)

LPW-HL − LPW-HLL 1.06%∗∗∗
(0.001)

0.798∗∗∗
(0.001)

1.05%∗∗∗
(0.001)

1.787∗∗∗
(0)

1.05%∗∗∗
(0.003)

0.978∗∗∗
(0)

PW-HL − PW-HLL 0.60%∗
(0.099)

0.273∗∗
(0.046)

0.82%∗∗∗
(0.03)

1.977∗∗∗
(0)

0.90%∗∗∗
(0.023)

0.529∗∗∗
(0.002)
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Figure 11. Time-Series Variation in Standard Errors of NN-based Risk Premia

Note: This figure plots the time-series of aggregate standard errors, which are the cross-sectional

averages of NN-3-based risk premium predictions’ ex-ante standard errors . The labels, such as

“Black Monday”, “Russian Default”, represent periods of major shocks.
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Table 10
Aggregate Standard Errors of NN-3-based Risk Premia
This table reports time-series averages of aggregate standard errors over different periods. The aggregate standard

errors equal the cross-sectional averages of NN-based risk premium predictions’ standard errors.

Panel A: Overall Period

Event Standard Error Time Period

Overall Data 1.06% Jan 1987 to Dec 2016

Panel B: Periods of major Shocks

Event Standard Error Time Period

Black Monday 2.05% Oct 1987 to Nov 1987

Russian LTCM Defualt 3.08% Sep 1998 to Sep 1998

Dotcom Bubble 2.24% Apr 2000 to Apr 2000

Worldcom and Enron 2.33% Jul 2002 to Sep 2002

Gulf War 2.75% Mar 2003 to Mar 2003

Quant Crisis 1.97% Aug 2007 to Aug 2007

Lehman Bankruptcy 2.00% Oct 2008 to Oct 2008

The 2011 Debt-Ceiling 2.32% Aug 2011 to Aug 2011

Crisis Period Average 2.31%

Non-Crisis Period Average 1.02%
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Table 11
Cross-sectional Characteristics of Confidence-sorted Deciles
This table reports average characteristics of various confidence-sorted deciles. Every month, stocks are sorted

into deciles according to their ex-ante confidence of NN-3-based risk premium predictions. Each row under All

Stocks Columns represents the equal-weighted average of various characteristics across all stocks in the corresponding

precision-sorted decile. The table also presents the characteristics of confidence-sorted portfolios from the long and

short legs, separately. Every period stocks are first sorted into deciles according to their NN-based risk premia, with

H and L representing the deciles containing the highest and lowest predicted returns. Both H and L are further parti-

tioned into deciles according to their ex-ante confidence. The Long-Leg columns represent the average characteristics

of confidence-sorted deciles of H, whereas Short-Leg columns show those of L.

Ex-ante Precision

Decile

All Stocks Long-Leg Short-Leg

Size BM mom12m Size BM mom12m Size BM mom12m

1 1811 1.62 0.01 816 3.45 0.23 1939 0.76 -0.11

2 1836 1.76 0.05 810 3.37 0.23 2003 0.88 -0.08

3 1838 1.97 0.07 793 3.33 0.24 2084 0.92 -0.06

4 1788 2.12 0.08 877 3.20 0.25 2043 0.99 -0.06

5 1750 2.29 0.10 846 3.58 0.26 2102 1.04 -0.06

6 1627 2.39 0.11 805 3.58 0.26 2049 1.03 -0.05

7 1521 2.54 0.12 829 3.50 0.29 2188 0.97 -0.05

8 1394 2.62 0.13 798 3.56 0.31 2206 0.99 -0.05

9 1233 2.72 0.16 706 3.74 0.34 2283 0.89 -0.05

10 988 3.16 0.22 628 4.53 0.42 2347 1.02 -0.07
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Table 12
Characteristics Distributions of Stocks in the Decile Containing the Most Confident Risk
Premium Predictions
This table reports various characteristic distributions of stocks in the top decile with the most confident risk premium
predictions. Every month, stocks are sorted into deciles according to their ex-ante confidence. The first row of the
Size column presents the proportion of stocks in the top-most confident decile that have market capital lower than
the 10th percentile of sizes across all stocks. Similarly, the second (third, . . . , tenth) row of the Size column shows
the proportion of stocks in the top-most confident decile that have market capital between the 10th and 20th (20th

and 30th, . . . , 90th and 100th) percentile of sizes across all stocks. The BM, mom12m, and illiq columns represent
equivalent proportions for book-to-market, 1-year momentum and illiquidity characteristics.

Decile Size BM mom12m illiq

1 (Low-Characteristic) 18.50% 10.02% 9.58% 7.23%

2 15.05% 8.21% 8.33% 6.94%

3 12.61% 8.34% 7.98% 7.03%

4 10.38% 11.39% 8.25% 7.53%

5 8.96% 14.09% 7.89% 8.14%

6 7.92% 11.61% 7.96% 9.21%

7 7.17% 7.64% 9.47% 10.61%

8 6.62% 10.55% 10.88% 12.36%

9 6.56% 13.43% 13.07% 14.54%

10 (High-Characteristic) 6.51% 15.10% 17.04% 16.50%
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C. Internet Appendix

C1. Internet Appendix: Simulation Results and Robustness Checks

Table A
Performance of High-Low and Confident High-Low Portfolios: Simulation Evidence
This table compares the performance of the confident high-low portfolios with the conventional high-low portfolios

on simulated data. The data contains 200 stock-level simulated true risk premia, NN-3-based estimated risk premia

and their standard errors over 60 out-of-sample periods. Every period, the “True High-Low” portfolios take long

(short) positions on the stocks with the simulated true risk premia greater (lower) than the x% (100−x%) percentile

of the true risk premia across 200 stocks. x equals 80, 70 and 90 under rule 1, 2 and 3, respectively. The “High-Low”

portfolios take long (short) positions on the stocks with NN-3-based risk premium estimates greater (lower) than

the x% (100− x%) percentile of the predicted risk premia in the cross-section. Extreme predicted-return deciles are

further partitioned into quantiles according to their precision measures. Panel A (Panel B) presents the results using

the absolute t-ratios (inverse standard errors) as proxies for the precision. The “Confident High-Low” portfolios take

long-short positions on the top y% subset of stocks in the extreme predicted return deciles that have the highest

precision. y equals 80, 80 and 50 under rule 1, 2 and 3, respectively. The “Matching High-Low” portfolios take (short)

positions on the stocks with NN-3-based risk premium predictions greater (lower) than the z% (100− z%) percentile

of the predicted risk premia in the cross-section. See section (C.C2) and equation (75) for a detailed description of

the simulated data.

Panel A: Confident-HL Portfolios Constructed Using Absolute t-ratios

Rule 1 Rule 2 Rule 3

Portfolio pred ret avg ret pred ret avg ret pred ret avg ret

True High-Low 2.45% 2.45% 2.16% 2.16% 2.74% 2.74%

High-Low 3.04% 1.69% 2.60% 1.45% 3.57% 1.88%

Matching High-Low 3.64% 1.90% 3.45% 1.84% 3.72% 1.92%

Confident High-Low 3.65% 2.31% 3.47% 2.23% 3.74% 2.23%

Panel B: Confident-HL Portfolios Constructed Using Standard Errors

Rule 1 Rule 2 Rule 3

Portfolio pred ret avg ret pred ret avg ret pred ret avg ret

True High-Low 2.45% 2.45% 2.16% 2.16% 2.74% 2.74%

High-Low 3.04% 1.69% 2.60% 1.45% 3.57% 1.88%

Confident High-Low 2.72% 2.18% 2.34% 1.99% 3.41% 2.18%
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Table B
Performance of Various Long-Short Portfolios: Inverse Standard Errors as Precision Measures
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. This table uses inverse standard errors (rather than the absolute t-ratios) of risk premium predictions as

proxies for ex-ante precision (i.e., ex-ante confidence). See table 4 and section 5.C for a description of the portfolios.

The pred ret column represents the average predicted returns. The avg ret column shows the average realized returns.

The t, SR and SR2 columns denote the t-stats of the average returns, annualized Sharpe ratios and squared Sharpe

ratios, respectively. Notes: EW = equal-weighted; VW = value-weighted

All Stocks: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2

EW-HL 1.69% 2.52% 8.21 1.50 2.25

EW-Low-Confident-HL 1.92% 3.02% 7.62 1.39 1.93

EW-Confident-HL 1.69% 3.07% 8.46 1.54 2.39

EW-Confident-HL − EW-HL 0.55%∗∗
(0.013)

0.14∗∗∗
(0.046)

EW-Confident-HL − EW-Low-Confident-HL 0.05%
(0.916)

0.45∗∗∗
(0.001)

All Stocks: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2

VW-HL 1.62% 1.48% 4.95 0.90 0.82

VW-Low-Confident-HL 1.88% 1.13% 2.47 0.45 0.20

VW-Confident-HL 1.64% 1.83% 5.68 1.04 1.08

VW-Confident-HL − VW-HL 0.35%∗
(0.067)

0.26∗∗∗
(0.022)

VW-Confident-HL − VW-Low-Confident-HL 0.70%∗
(0.071)

0.87∗∗∗
(0.000)

Non-Microcaps: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2

EW-HL 0.68% 1.66% 5.43 0.99 0.980

EW-Low-Confident-HL 0.72% 1.30% 3.53 0.64 0.35

EW-Confident-HL 0.66% 1.87% 5.95 1.08 1.17

EW-Confident-HL − EW-HL 0.23%∗∗
(0.041)

0.19∗∗
(0.02)

EW-Confident-HL − EW-Low-Confident-HL 0.57%∗∗∗
(0.000)

0.82∗∗∗
(0.000)

Non-Microcaps: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2

VW-HL 0.66% 1.42% 4.64 0.85 0.72

VW-Low-Confident-HL 0.71% 1.25% 2.90 0.53 0.27

VW-Confident-HL 0.65% 1.91% 5.68 1.04 1.08

VW-Confident-HL − VW-HL 0.49%∗∗
(0.041)

0.36∗∗
(0.001)

VW-Confident-HL − VW-Low-Confident-HL 0.66%∗
(0.0723)

0.81∗∗∗
(0.000)
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Table C
Comparing Confident-HL Portfolios with Double-sorted HL Portfolios
This table compares the out-of-sample performance of the Confident-HL portfolios with the HL portfolios that are

double sorted on predicted-returns. EW(VW)-Confident-HL represents the equal(value)-weighted Confident long-

short portfolio that only include stocks with the most confident risk premium predictions. See section 5.C for a

detailed description of the portfolios. Each period, stocks are sorted into quantiles according to their NN-based risk

premia. EW-double-sorted-HL and VW-double-sorted-HL denote the HL portfolios that take equal-weighted and

value-weighted long (short) positions on stocks that have greater (lower) predicted-returns than the predicted-return

of the 99th (1st) quantile, respectively. The avg ret column presents the average return differences between the pair of

investment strategies. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and squared-information

ratio differences between the investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote

significance at the 1%, 5% and 10% levels, respectively.

All Stocks: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

EW-Confident-HL 1.97% 3.61% 9.58 1.75 3.06 3.12 2.99

EW-double-sorted-HL 2.54% 3.99% 8.58 1.57 2.46 2.49 1.87

Difference −0.37%
(0.168)

0.60∗∗∗
(0.000)

0.96∗∗∗
(0.000)

1.12∗∗
(0.000)

All Stocks: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

VW-Confident-HL 1.90% 2.21% 5.95 1.09 1.18 0.87 0.59

VW-double-sorted-HL 2.51% 2.39% 5.28 0.96 0.93 0.5 0.42

Difference −0.18%
(0.61)

0.25∗∗
(0.02)

0.37∗∗
(0.016)

0.17∗∗
(0.03)

Non-Microcaps: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

EW-Confident-HL 0.66% 2.25% 6.68 1.22 1.49 1.39 1.22

EW-double-sorted-HL 1.02% 2.39% 5.56 1.01 1.02 0.87 0.66

Difference −0.13%
(0.62)

0.47∗∗
(0.000)

0.52∗∗
(0.000)

0.56∗∗
(0.000)

Non-Microcaps: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

VW-Confident-HL 0.72% 2.07% 5.48 1.00 1.00 0.97 0.69

VW-double-sorted-HL 1.01% 2.20% 4.71 0.86 0.74 0.69 0.44

Difference −0.13%
(0.73)

0.26∗∗
(0.000)

0.28∗∗
(0.000)

0.25∗∗
(0.000)
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C2. Internet Appendix: Simulation Details

To assess the finite sample performance of this paper’s standard errors and Confident-HL

portfolios, I replicate the simulation exercise of GKX.26 I simulate a 3-factor model for excess

returns, for t = 1, 2, . . . , T :

ri,t+1 = g(zi,t) + ei,t+1, ei,t+1 = βi,tvt+1 + εi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, βi,t = (ci1,t, ci2,t, ci3,t), (70)

where ct is a 200×180 matrix of characteristics, vt+1 is a 3×1 vector of factors, xt is a univariate time

series, and εt+1 is a 200×1 vector of idiosyncratic errors. I choose vt+1 = 0, ∀t under models 1 and 3

and vt+1 ∼ N (0, 0.052×I) under models 2 and 4, respectively. I specify εi,t+1 ∼ εi,t+1 ∼ N (0, 0.052).

These parameters are calibrated so that the average time series R2 is 50% (40%) and annualized

volatility is 24% (30%) under models 1 and 3 (2 and 4). The OOS-R2 of NN-3-based risk premium

predictions on the simulated data is 3.8% (3.2%) under models 1 and 3 (2 and 4).

I simulate the panel of characteristics by

cij,t =
2

N + 1
CSrank(c̄ij,t)− 1, c̄ij,t = ρj c̄ij,t−1 + εij,t, for 1 ≤ i ≤ 200, 1 ≤ j ≤ 180, (71)

where CSrank denotes the cross-sectional rank.

And the time-series xt is given by

xt = ρxt−1 + ut, (72)

where ut ∼ N (0, 1− ρ2), and ρ = 0.95 so that xt is highly persistent.

Under models 1 and 2, the parametric form of g(.) is linear and given by

g(zi,t) = (ci1,t, ci2,t, ci3,t)θ0, where θ0 = (0.02, 0.02, 0.02)
′
. (73)

26I thank GKX for making their code publicly available.
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In contrast, under models 3 and 4, g(.) takes the following non-linear functional form

g(zi,t) = (c2
i1,t, ci1,t × ci2,t, sgn(ci3,t × xt))θ0, where θ0 = (0.04, 0.03, 0.012)

′
. (74)

To summarize, the simulated true risk premia are linear in characteristics under models 1 and 2,

whereas they are non-linear under models 3 and 4. Models 1 and 3 do not entertain cross-sectional

temporal residual correlations, whereas models 2 and 4 do.

Lastly, I divide the whole time-series into three consecutive subsamples of equal length (60)

for training, validation, and testing, respectively. Although this paper’s standard errors are derived

under the assumption that the residual errors are uncorrelated in the time-series and cross-section,

table (1) of the main section indicates that the standard errors are well-calibrated even under

models 2 and 4.

Simulations for table (A) of the Internet Appendix use the non-linear specification of model 3,

given by

ri,t+1 = g(zi,t) + ei,t+1, ei,t+1 = εi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, (75)

where εi,t+1 ∼ εi,t+1 ∼ N (0, 0.052), g(zi,t) is given by (74) and ci,t is given by (71).
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C3. Why Confidence-levels are Better Measures of Precision Relative to Inverse

Standard Errors

In this section, I present a simple example showing why the absolute t-stat is a better measure

relative to the inverse standard error for constructing Confident-HL portfolios. Consider regressing

a given cross-section of excess stock returns on one of stock characteristics (e.g., betas)

ri = λβi + εi, εi ∼MVN(0, σ2I), i = 1, 2, . . . N (76)

where ri, βi are assumed to be given. λ, which can be interpreted as the market premium, is an

unknown parameter. Assume λ > 0 without loss of generality. Let λ̂ be the OLS estimate of λ

obtained from the cross-sectional regression in (76).

Now, consider four stocks in the out-of-sample that have betas β∗1 , β∗2 , β∗3 and β∗4 , respectively.

Let 0 < β∗1 < β∗2 < β∗3 < β∗4 . Their predicted excess returns are then given by β∗1 λ̂, β∗2 λ̂, β∗3 λ̂ and

β∗4 λ̂, respectively. Straightforward algebra implies that these predictions’ standard errors equal

β∗1 σ̂∑
β2
i
,
β∗2 σ̂∑
β2
i
,
β∗3 σ̂∑
β2
i

and
β∗4 σ̂∑
β2
i
, respectively. σ̂ is the OLS estimate of σ in (76).

Thus, the standard errors are proportional to the stock betas. In contrast, the absolute t-ratios

are invariant across stocks. In other words, the “confidence-level” of predicting returns is the same

across all stocks. In the following paragraph, I show that Confident-HL-se portfolios formed using

the standard errors yield sub-optimal returns relative to the traditional HL portfolios. In contrast,

Confident-HL-t portfolios formed using the absolute “t-ratios” do not.

Consider the following trading strategies using these four stocks’ predicted returns and their

precision measures.

1. Conventional-HL: Takes equal-weighted long (short) positions on the top (bottom) stocks

with the highest (lowest) predicted returns.

2. Confident-HL-t: Sort stocks into two quantiles based on their predicted returns. Take

the long (short) position on the stock in the top (bottom) quantile that has the highest absolute

t-ratio. If two stocks have the same absolute t-ratios, take the equal-weighted average.
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3. Confident-HL-se: Sort stocks into two quantiles based on their predicted returns. Take

the long (short) position on the stock in the top (bottom) quantile that has the lowest standard

error. If two stocks have the same absolute standard errors, take the equal-weighted average.

Then the expected return of these three strategies are given by

E(Conventional-HL) = E(Conventional-HL-t) =

[
(β∗3 + β∗4)

2
− (β∗1 + β∗2)

2

](
P (λ̂ > 0)− P (λ̂ < 0)

)
(77)

E(Confident-HL-se) = (β∗3 − β∗1)
(
P (λ̂ > 0)− P (λ̂ < 0)

)
(78)

For sufficiently large β∗4 , E(Conventional-HL) > E(Confident-HL-se). Thus, standard errors

must always be evaluated relative to the “level” of predictions to obtain better measures of precision.
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7. Introduction

Research has examined a plethora of factor-based asset pricing models to explain the cross-

section of expected returns. These factors are either tradable portfolios (e.g., market returns);

non-tradable macroeconomic factors (e.g., consumption growth); or statistically estimated latent

factors (e.g., principal components). Comparing models with these factors and identifying a rela-

tively superior model is important, not only for adequately summarizing the cross-section of stock

returns (Fama and French (2016)) but also for evaluating the performance of managed-fund port-

folios (Fama and French (2010)). In recent studies, Barillas and Shanken (2018), Barillas and

Shanken (2020) (BS henceforth), and Chib, Zeng, and Zhao (2020b) (CZZ henceforth) propose

Bayesian procedures to compare models that exclusively comprise traded factors. This paper com-

plements studies in this literature by developing a Bayesian methodology that permits simultaneous

comparison of models containing traded, non-traded factors, and principal components (PCs).

Non-traded factors are popular in the literature, as they directly relate to the aggregate macroe-

conomic activities or business cycles and thus appear to explain the expected returns. More recently,

He, Kelly, and Manela (2017) document that a single non-traded factor, the intermediary capital

ratio, significantly explains cross-sectional variation in the expected returns of a wide range of

assets, including equities, bonds and commodities. Koijen, Lustig, and Van Nieuwerburgh (2017)

argue that two macroeconomic bond factors jointly determine the expected returns of equities and

bonds, whereas Campbell, Giglio, Polk, and Turley (2018) argue that an intertemporal capital as-

set pricing model (ICAPM), which includes a stochastic volatility factor, explains a wide range of

anomalies. In practical applications, investment managers that rely on factor investing argue that

macroeconomic factors substantially explain the expected returns across various asset classes.1

Despite their popularity, evaluating models with non-traded (rather than traded) factors, is

extremely challenging. When all factors of an asset pricing model are tradable portfolios, Jensen,

Black, and Scholes (1972) have shown that the model holds iff the time series intercepts in the

regression of excess returns on the factors, the alphas, equal zero. BS build on this insight and

1In the official BlackRock factor investing commentary, Andrew Ang and Ked Hogan argued that six macroeco-
nomic factors explain more than 90% of the expected returns across asset classes.
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evaluate asset pricing models with traded factors based on their posterior densities of alphas. Such a

simple condition on alphas does not hold when the factors are non-traded. Breeden (1979) notes that

the zero-alpha condition holds when the non-traded factors are substituted with their mimicking

portfolios. However, these portfolios are unknown and thereby can only be estimated. Thus,

zero-alpha tests with non-traded factors require an additional uncertainty adjustment. I address

this challenge by using a Bayesian framework to provide an exact methodology for evaluating an

individual asset pricing model, as well as for simultaneously comparing multiple models containing

non-traded factors.

Another burgeoning literature in asset pricing advocates the use of latent factors, which are

estimated from PCs of the covariance matrices of returns and other advanced machine-learning

methods. In the absence of near-arbitrage conditions, Kozak, Nagel, and Santosh (2018) theoreti-

cally argue that a sparse model with the first few PCs characterizes the cross-section of expected

stock returns. Kozak et al. (2019) further show that a stochastic discount factor (SDF) formed

from a small number of leading PCs can adequately explain the cross-section of various anomalies,

whereas a sparse SDF formed from the traditional factor models cannot. Both the theoretical as

well as empirical arguments rely on an assumption that the covariance matrix of returns is known.

Studies of Kan and Zhou (2007) and Britten-Jones (1999) document large sampling errors in the

estimation of the return covariances. Thus, recognizing the significance of this estimation uncer-

tainty, I develop a formal zero-alpha based model comparison methodology with the PCs, which

accounts for the estimation error in the covariance of returns.

Simulations suggest that sampling errors of various parameters (e.g., alphas, betas and residual

covariances) and weights of mimicking portfolios and PCs, significantly impact model comparison

inferences. Existing procedures, including comparing models based on their out-of-sample ordinary

and the generalized least squared R2s (OOS-R2, GLS-R2), that rely on these estimated parameters,

often fail to measure true performance of models and yield misleading inferences. By shrinking

the parameters toward economically motivated priors, the Bayesian procedures of BS and CZZ

perform better in comparing models that exclusively comprise traded factors. However, applying

their methods to compare models containing non-traded factors and PCs would be misleading, as
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the sample estimates of mimicking portfolios and PCs are significantly imprecise. For instance,

Chib, Huang, Zhao, and Zhou (2020a) use the CZZ method to compare models containing PCs

without adjusting for their estimation uncertainty. Similarly, BS note that their method could

be employed to compare models containing non-traded factors by substituting them with their

mimicking portfolios. Although they indicate that additional estimation issues might arise, they

do not discuss how to address such estimation issues.

This paper provides the first Bayesian methodology to compare models with traded, non-traded

factors, and PCs in a unified framework. The methodology reduces the influence of sampling errors

of the estimated weights of mimicking portfolios and PCs by shrinking the posterior Sharpe ratios

of unknown mimicking portfolios and PCs toward economically motivated priors. The methodology

is equivalent to comparing models based on their out-of-sample prediction records, after adjusting

for the associated estimation uncertainties. Simulations indicate that the methodology enhances

selection rates of simulated null models that comprise non-traded factors by more than 200% and

100%, compared with the existing OOS-R2 and Bayesian procedures, respectively. Likewise, the

methodology increases the average of null models’ posterior probabilities by more than 40%, and

decreases the standard deviation of a given null model’s probabilities across simulation-iterations

by an impressive 15%, compared with the existing Bayesian procedures.

I begin by showing that Bayesian zero-alpha tests with non-traded factors and PCs are funda-

mentally challenging because of the following interdependence related to test assets: Consider a set

of 25 test assets and an asset pricing model with 5 non-traded factors. The zero-alpha tests involve

regression of the test assets on the 5 mimicking portfolios, which themselves are various linear com-

binations of the test-asset returns. Thus, it is sufficient to regress any 20 (25-5) linearly independent

test assets on the mimicking portfolios. This is because the regression parameters, which include

the alphas, and the nuisance parameters (betas and residual covariances), completely determine

the regression parameters of the remaining 5 assets. The traditional Jeffreys (1998) priors for the

test assets’ regression parameters used in BS and in CZZ would be inadequate in this framework.

These priors do not impose the interdependence apriori, thereby rendering the posterior densities

of alphas and Bayesian inferences sensitive to the initial choice of the 20 test assets.
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I tackle this challenge by constructing novel, non-informative priors for the nuisance parameters

to preserve the parameter interdependence and yield inferences that are invariant to the initial

choice of the subset of the test assets. Interestingly, these priors also deliver inferences that are

invariant to the scale of traded and non-traded factors and PCs. As researchers often use a variety

of scaling procedures, such a scale-invariant measure would be particularly necessary. For example,

a recent study by Kozak et al. (2019) scale various models’ mean-variance efficient portfolio returns

and factor returns to have the same standard deviation as that of the market returns.

Using the novel priors for the nuisance parameters and economically motivated priors for the

alphas, which reflect the extent of models’ mispricing, I first derive a Bayesisan statistic to test an

individual asset pricing model containing non-traded factors or PCs. This statistic is analytically

shown to be a modified function of the marginal likelihoods of BS and CZZ. The modification entails

two fundamental adjustments. The first adjusts for the estimation uncertainty of the mimicking

portfolios or the PCs, and the second adjusts for the parameter interdependence to ensure invariance

to the subsets of the basis test assets.

I next develop a procedure that permits simultaneous comparison of various asset pricing

models with traded and non-traded factors and PCs. The posterior model probabilities are readily

obtained from the modified marginal likelihoods. This follows from a fundamental result showing

that model comparison with non-traded factors and PCs only requires examination of each model’s

ability to price the mimicking portfolios and the PCs in the other models, after adjusting for their

estimation uncertainties. As a consequence, I show that conditional on the posterior densities of

the mimicking portfolios and PCs, test assets would be irrelevant for model comparisons. Barillas

and Shanken (2017) have drawn similar conclusions for several likelihood-based model comparison

procedures, which include the differences in likelihoods and Sharpe ratios. I formally prove the

conditional test assets irrelevance in a Bayesian framework. This key result entails the novel prior

specification and would not be achievable with the existing priors.

Interestingly, a straightforward decomposition of the marginal likelihoods reveals that model

comparison with my methodology is equivalent to ranking models based on their out-of-sample

predictive performance, after adjusting for the estimation uncertainties. Given the prevalence
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of recent studies that emphasize out-of-sample model comparisons to avoid models that overfit,

this result is particularly relevant. Although existing studies often compare models based on their

estimated out-of-sample R2s and Sharpe ratios, it is unclear whether such measures are statistically

significant. For example, Kan, Robotti, and Shanken (2013) have provided many examples of large

R2 differences among models that are statistically insignificant. Deriving asymptotic distributions

of the out-of-sample R2s that entail estimation uncertainties would be arduous. An advantage

with my methodology is that it has a natural out-of-sample interpretation that reflects estimation

uncertainty.

In an empirical application, I implement my methodology on monthly data and compare

prominent asset pricing models with traded, non-traded factors and PCs2. These models include

the Capital Asset Pricing Model (CAPM); the three and five factors models of Fama and French

(1992, 2015) (FF-3, FF-5); the investment-based model of Hou, Xue, and Zhang (2015) (HXZ);

the mispricing model of Stambaugh and Yuan (2017) (SY); the six-factor model of BS (BS-6); the

ICAPMs of Petkova (2006), Campbell and Vuolteenaho (2004) (CV), Campbell, Giglio, and Polk

(2013) (CGP), and Campbell et al. (2018) (CGPT); and two models with the first five and six PCs

(PC1-5, PC1-6), respectively. PC1-5 was earlier examined by Kozak et al. (2018). I use two sets

of test assets. The first one consists of excess returns of 52 anomalies (52-anom) that have been

examined by Kozak et al. (2019). Because inferences from such characteristics sorted portfolios

could be misleading (Lewellen, Nagel, and Shanken (2010)), I also consider a second set that adds

excess returns of 10 industry portfolios to the 52 anomalies (52-anom+10-ind). The monthly data

are from January 1974 to December 2016.

The empirical study begins by comparing traditional models with traded and non-traded fac-

tors, excluding PCs. I find that SY and BS-6 have the highest posterior probabilities, which

are followed by the ICAPMs of CGPT, CGP, and CV. Importantly, these ICAPMs dominate the

benchmark models of Fama and French (2015) and Hou et al. (2015). Given that the benchmark

2My methodology also can be applied for comparing set of all possible models formed from a given set of factors.
Such comparisons, as Harvey, Liu, and Zhu (2016) and more recently Fama and French (2018) emphasize, create an
overwhelming multiple comparisons problem that preempts statistical inference. Thus, to alleviate this data mining
concern, I restrict myself to comparing prominent models that are either theoretically or empirically well-established
in the literature.
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models’ factors are directly constructed from sorted portfolios of various anomalies, the superior

performance of the economically motivated ICAPMs makes them even more impressive. Whereas

Campbell et al. (2018) document that each anomaly individually attains lower alphas with respect

to their ICAPM, this paper formally recognizes the dominance of the ICAPMs by jointly examining

the alphas of all the anomalies, after adjusting for the associated estimation uncertainties.

The results are qualitatively similar for different prior expectations on the mispricing and

across the test assets. I also report the posterior probabilities based on the Bayesian procedure of

BS and CZZ, where the estimated mimicking portfolios are substituted for the non-traded factors,

without adjusting for their uncertainties. I find that the biases from failing to adjust for estima-

tion uncertainty are significant across the models. For example, ignoring estimation uncertainty

suggests that HXZ and CGP are equally likely to summarize the expected returns. In contrast,

my methodology suggests that CGP is 1.23 times more likely to summarize the cross-section of

expected returns. Thus, the uncertainty adjustment could substantially affect model comparison

inferences.3

The differences in results between BS and CZZ and my methodology are consistent with the

simulation results and intuition that the sample estimated mimicking portfolios often underesti-

mate the explanatory “power” of true non-traded factor models because of significant sampling

errors. By shrinking the weights of mimicking portfolios toward economically motivated priors, my

methodology reduces the influence of sampling errors and thus better captures the true performance

of non-traded factor models.

I then move on to a more comprehensive comparison by adding the models with the PCs

to the traditional models. I find that SY and BS-6 have the highest posterior model probabilities

across the test assets. Interestingly, the ICAPMs of CGPT, CGP, and CV dominate the benchmark

PC1-5 model, which was earlier examined by Kozak et al. (2018), across both sets of test assets.

3Interestingly, the difference between BS and CZZ and my methodology could be important from an investment
perspective. In particular, Pástor and Stambaugh (2000) have shown that the optimal portfolio of an investor facing
model uncertainty is a function of posterior probabilities of the models. Because the investor is uncertain about the
true mimicking portfolios, the optimal portfolio will be a function of this paper’s probabilities that account for their
estimation uncertainty. Thus, the investor deems the portfolio based on BS probabilities sub-optimal, as it could lead
to a significant utility loss.
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The uncertainty adjustment turns out to be essential for the models with PCs as well. Ignoring

estimation uncertainty suggests that odds in favor of PC1-5 are 1.18 times more than the CGPT

model. In contrast, my methodology suggests that CGPT is 1.64 times more likely than PC1-5 to

summarize the cross-section of expected returns. I find that PC1-6 performs almost on par with

the BS-6 and CGPT models on the 52-anom test assets. However, its performance significantly

deteriorates on the 52-anom+10-ind test assets.

The empirical results relate to and partially contrast with Kozak et al. (2019), who com-

pare models based on their out-of-sample R2s. They argue that traditional models with sparse

characteristic-based factors would not summarize the cross-section of expected returns, whereas

the first few principal components would. Inferences from such point estimates of OOS-R2s could

be misleading because these measures rely on various estimated parameters that have significant

sampling errors. In contrast, this paper statistically establishes dominance or comparable per-

formances of various sparse-factor models, including SY, BS-6, and CGPT, over models with the

leading PCs.4 Of course, the majority of these traditional factor models, including SY and BS-6,

consist of factors that are empirically motivated and directly constructed from various sorted or

anomaly portfolios. Thus, the influence of data mining in the construction of these empirically

motivated factors still needs to be explored. I also find that theoretically motivated ICAPMs out-

perform the benchmark FF-5 and HXZ models. Studies in this literature have not statistically

established this result before.

My results are not directly comparable with Kozak et al. (2019) for two main reasons, among

others. First, Kozak et al. (2019) construct a sparse SDF involving a few PCs using an elastic-

net procedure, and compare it with the SDFs implied by the other models. Mathematically,

their SDF comprises a few PCs with the highest return means, which differ from the conventional

leading PCs that instead explain the highest return covariances.5 For example, with the daily

anomaly return data, their SDF comprises the PCs-{1, 2, 3, 5, 10}. Because the true return means

of PCs are unknown, comparing models with these sophisticated factors requires an additional

uncertainty adjustment. Second, Kozak et al. (2019) use data at a daily level. My methodology

4BS-6 is a sparse characteristic-based factor model.
5Lettau and Pelger (2020) analytically establish this result.
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relies on an assumption that returns are uncorrelated in the time series. Kozak et al. (2019) made

the same assumption. However, daily returns are known to be non-synchronous, and thus it is

unclear whether this assumption suits the dynamics of daily data (Shanken (1987)). A formal

methodology that accommodates potential temporal dependence of the daily returns and adjusts

for the uncertainty of PCs’ return means is left for a future exercise.

The paper contributes to the literature that evaluates and compares various asset pricing

models. In the classical setting, Kan et al. (2013) and Maio (2019), and more recently Barillas, Kan,

Robotti, and Shanken (2019) derive asymptotic distributions of cross-sectional R2 and Sharpe ratio

differences among competing models, respectively. These studies do not accommodate models with

principal components. Moreover, these methodologies compare models based on their in-sample

measures, which do not reflect the models’ true predictive ability. For example, Kan, Wang, and

Zheng (2019) argue that in-sample Sharpe ratios rely on ex-post tangency portfolios, which are not

attainable by investors. Although they derive distributions for out-of-sample Sharpe ratios that

investors achieve using individual asset pricing models, they do not provide a method for comparing

multiple models. My methodology addresses this challenge by simultaneously comparing models

containing non-traded factors and PCs based on their out-of-sample predictions.

In a contemporaneous working paper, Bryzgalova, Huang, and Julliard (2020) conduct Bayesian

comparisons for models containing traded and non-traded factors using the cross-sectional Fama-

Macbeth approach. Their framework fundamentally differs from mine in several ways. First, I

examine time-series (rather than cross-sectional) regressions using mimicking portfolios. This ap-

proach naturally restricts the risk premium (γ) of a traded factor to be equal to its expected excess

return (E(F )), as advocated by theory. Bryzgalova et al. (2020) do not impose this key restriction,

which can lead to unduly favoring models containing traded factors, by relying on implausible es-

timates of the risk premia for those traded factors (Maio (2019), Lewellen et al. (2010)).6 Second,

Bryzgalova et al. (2020) use the traditional Jeffreys priors (rather than the novel priors) for the

6The restriction, γ = E(F ), should hold when the zero-beta rate equals risk-free rate and models are not misspec-
ified. In the majority of Bayesian papers, including BS, Kozak et al. (2019), and Bryzgalova et al. (2020), models
are either i) assumed to be not missspecified, in which case γ = E(F ) must be imposed apriori; ii) or priors for the
misspecification are specified to be centered around zero, in which case priors for γ should be centered around E(F ).
Bryzgalova et al. (2020) impose neither of these restrictions on γ apriori.
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test assets’ regression parameters, and thus their method is not suitable for comparing models

containing PCs.

I organize the rest of the paper as follows. Section 2 provides the premise of linear asset pricing

models and challenges associated with non-traded factors. Section 3 develops a Bayesian framework

for testing the validity of an individual asset pricing model with non-traded factors. Section 4

extends the framework for simultaneous model comparisons. Section 5 extends the framework for

PCs. Section 6 shows the equivalence of the methodology to comparing models based on their

out-of-sample prediction records. Section 7 provides a simulation study on the performance of

the methodology. Section 8 describes the data and provides empirical results. Section 9 concludes.

Appendix includes proofs of propositions. Internet Appendix-I includes a critical discussion of what

priors to use, when, and why, to compare asset pricing models in general. Internet Appendix-II

provides additional details about the simulations and lists the definitions of the non-traded factors

that I examine in the empirical section.

8. Asset Pricing Models with Non-Traded Factors

This section briefly discusses challenges associated with testing asset pricing models that com-

prise non-traded factors and gives a heuristic explanation of how these can be addressed in a

Bayesian framework. First, under the assumption that the zero-beta rate equals the risk-free rate,

an asset pricing model with K factors, {f1t, f2t, . . . , fKt}, summarizes the cross-section of expected

stock returns if there exist risk premia, {γ1, γ2, . . . , γk}, such that

E(Ri) = γ1βi1 + γ2βi2 + · · ·+ γkβik,∀ assets i, (1)

where E(Ri) denotes the expected excess return of the asset i and {βi1, βi2, . . . , βiK} are coefficients

in the time-series regression of excess returns, Rit, on the factors.

Rit = αi + βi1f1t + βi2f2t + · · ·+ βiKfKt + εit (2)
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When models exclusively comprise traded factors, Jensen (1968) and Jensen et al. (1972) have

shown that γk = E(fkt), and thus the cross-sectional condition in (1) holds iff the time-series

intercepts, αi, equal zero, for all assets, i. Thus, evaluating an asset pricing model with traded

factors requires examination of only time series alphas7. BS used this insight and conducted model

comparisons based on the posterior densities of time-series alphas.

For non-traded factors, there is no such relation between γ and E(f), and thus the zero alpha

condition will not necessarily hold. Thus, evaluating models containing non-traded factors is not

straightforward. However, Breeden (1979) and Huberman, Kandel, and Stambaugh (1987) have

shown that there exist mimicking portfolios, {fm1 , fm2 , . . . , fmk }, such that the zero alpha restriction

holds when the excess returns are instead regressed on these mimicking portfolios. Equivalently,

this implies, αmi = 0, in the regression below, for all assets i:

Rit = αmi + βmi1f
m
1t + βmi2f

m
2t + · · ·+ βmiKf

m
Kt + εmit , (3)

where the mimicking portfolio, fmkt , of the non-traded factor fkt is a weighted sum of excess returns

across all the assets. The weights are proportional to the coefficients in the time-series regression

of the non-traded factor on all the assets’ excess returns. In particular, the mimicking portfolio of

the non-traded factor fkt is obtained by

fkt = ck + wTk Rt + ηkt, f
m
kt = wTk Rt/1

Twk ∀ k, (4)

where fmkt is the mimicking portfolio of the factor, fkt, Rt denotes the set of excess returns of given

test assets at period t, 1 is the vector of ones with the same dimension as wk, wk/1
Twk is the vector

of unobserved true weights of the mimicking portfolio, fmkt .

Thus, an asset pricing model with non-traded factors is equivalent to implementing two time-

series regressions − i) ft on Rt (4); and ii) Rt on wTRt (3), where αmi = 0, ∀ i. Although the

true weights (w) of the mimicking portfolios are unobserved, both the regressions, as well as the

7Gibbons, Ross, and Shanken (1989) (GRS) developed a formal procedure to evaluate an individual asset pricing
model with traded factors. GRS jointly tests αi = 0, ∀ assets, i.
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zero-alpha restriction can be easily implemented in a Bayesian framework because of the following

product identity

ML = P (f,R) =

∫
P (f |R, par, w)︸ ︷︷ ︸
Implements eq (4)

P (R|par, w)︸ ︷︷ ︸
Implements eq (3)

P (par, w)dw d(par). (5)

Note that the first term on the right-hand side of (5) implements the regression of the non-traded

factors on the excess returns (equation (4)) given w and other regression parameters (par). The

second term implements the regression of the excess returns on the mimicking portfolios (equation

(3)). In this regression, the zero-alpha restriction can be additionally imposed.

Thus, the marginal likelihood of returns and non-traded factors, ML, can be easily obtained

by first taking the product of (3) and (4), and then integrating the product over the prior densities

of w and other parameters (par). In the following sections, I build on this insight and formally

derive Bayesian tests for evaluating an individual asset pricing model as well as comparing multiple

models simultaneously.

9. General Test of a K-Factor Model

In this section, I develop a Bayesian framework to test the validity of a K factor asset pricing

model (APM) against a general hypothesis that it is not true. For simplicity, I start with a K-factor

model, where all of its factors are non-traded. The case of a general factor model that includes

traded and non-traded factors can be easily extended, which I will discuss in the model comparison

framework (next section). I use the following notations to represent the variables and parameters

of the model throughout this section.

rt denotes the N × 1 vector of excess returns of N test assets at time t, fNt is the K × 1

vector of K non-traded factors at time t, fmt is the K × 1 vector of mimicking portfolios for the K

non-traded factors, R(T×N) is the (T ×N) matrix form of excess returns for the N test assets over

T periods, where each tth row equals r
′
t, F

N
(T×K) is the (T ×K) matrix form of K non-traded factors

over T periods, where each tth row equals fN
′

t , and Fm(T×K) is the (T × K) matrix of mimicking
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portfolios for the K non-traded factors over T periods, where each tth row equals fm
′

1 .

An asset pricing model with non-traded factors can be expressed as two multivariate linear

regressions. The first one is the regression of the non-traded factors, FNT×K , on the excess returns

of the test assets, RT×N ,

FNT×K = 1T×1C
T +RT×NWN×K + ηT×K , vec(ηt) ∼MVN(0,Ση ⊗ I), (6)

where MVN(µ,Σ) denotes the multivariate normal density with mean µ, and covariance Σ. The

variance specification is consistent with the standard assumption that errors are cross-sectionally

correlated but uncorrelated in the time-series.8 Recall that the mimicking portfolios, Fm, are

weighted sums of the excess returns that are maximally correlated with their corresponding non-

traded factors. In particular, FmT×K = RW .9

The second one is the regression of N excess returns, RT×N , on the mimicking portfolios,

FmT×K ,

RT×N = 1αT + FmT×KBK×N + εT×K , (7)

which is equivalent to,

RT×N = 1αT +RWBK×N + εT×K . (8)

Regressing the set of N excess returns (R) on its own sub-space (RW ), which has a smaller di-

mension (K), is equivalent to regressing only, and any, N −K linearly independent excess returns

on RW . This is because coefficients in this regression will uniquely determine the regression coef-

ficients of the remaining K returns, given the mimicking portfolios RW .10 Thus, the remaining K

8Because non-traded factors are usually the first-order innovations of various macroeconomic variables, it is rea-
sonable to assume that the factors are uncorrelated in the time-series.

9To be precise, FmT×K = RWm, where Wm is the scaled matrix of W , where the each column sums to one. Thus,
if W consists of columns Wj so that W =

[
W1 W2 . . .WK

]
, then Wm =

[
Wm1 Wm2 . . .WmK

]
, where each

column Wmj = Wj/1
TWj and 1 is the vector of ones having the same dimension as any column Wj . However, I show

that the final test statistic is invariant to such scaling of the weights. Thus, I obtain the same results whether I use
RWm or RW .

10This can be easily proved as below. Let R̄ denote the considered N −K returns and R∗ denote the remaining K
returns. Let R̄ = ᾱ + RWB + ε, ε ∼ MVN(0,Σ). Because {R̄, RW} span the entire cross-section of returns, there
exist matrices C1, C2 such that R∗ = R̄C1 +RWC2. This implies, R∗ = ᾱC1 +RWBC1 +RWC2 + εC1 =⇒ R∗ =
ᾱC1 +RW (BC1 +C2) + εC1. Thus, the regression coefficients of R∗ are uniquely determined by the coefficients of R̄.
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returns can be ignored from the regression. Now, consider the regression of any N − K returns,

denoted by R̄, on the mimicking portfolios :

R̄T×(N−K) = 1ᾱT +RWB̄K×(N−K) + ε̄T×(N−K), ε̄ ∼MVN(0, Σ̄ε ⊗ I), (9)

where R̄T×(N−K) can be expressed as RĪ, for some N × (N − K) matrix Ī. For example, if R̄

denotes the returns of the last N − K test assets, then Ī equals the last N − K columns of the

N ×N identity matrix.

Finally, consider the following specification for the mimicking portfolios, given their true

weights, W

RW |W = 1αTmim + εmim, εmim ∼MVN(0,Σmim ⊗ I). (10)

Because [R̄, RW ]=(R[Ī ,W ]), where [Ī ,W ] is a full-rank N × N square matrix, (9) and (10)

together determine the joint density of the excess returns given the corresponding parameters. I

denote [Ī ,W ] by ĪW . Given the regressions in (6), (9), and (10), the null hypothesis (that the

model is true) holds if and only if

H0 : ᾱ = 0, whereas, under the alternative H1 : ᾱ 6= 0 (11)

Now, I lay out the priors for all the required parameters to test the hypothesis in (11).

9a. Prior specification

The total set of parameters from the three regressions in (6), (9) and (10) are

Parameters = {C,W,Ση, ᾱ, B̄, Σ̄ε, αmim,Σmim}. (12)

ᾱ is the only restricted parameter, which equals zero when the null is true. All the other

parameters are unrestricted and can take any values under both the hypothesis. However, the

parameters {B̄, Σ̄} vary with the choice of N −K returns, R̄. For example, when a different set
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of returns R∗ are regressed on the mimicking portfolios, different coefficients {B∗,Σ∗} will arise.

Thus, Bayesian tests might depend on the choice of returns that are regressed on the mimicking

portfolios. However, given the existence of one-one mapping between both the set of parameters

{B̄, Σ̄} and {B∗,Σ∗} (see footnote 10 for a formal proof), in what follows, I construct novel, non-

informative priors by imposing this mapping apriori. This yields a unified Bayesian test that is

invariant to any choice of (N −K) linearly independent subset of returns.

The traditional Jeffreys (1998) priors for the test assets’ regression parameters do not impose

this mapping apriori. Thus, applying these priors directly in the non-traded framework would yield

undesirable Bayesian tests that violate the invariant property. Such tests may favor the null or

alternative in unanticipated ways, depending on the choice of R̄.

The novel priors also deliver another desirable property. Bayesian tests that entail the novel

priors are invariant to the scale of factors. This property is particularly important to evaluate

models containing either non-traded factors or PCs. Whereas the standard theories advocate that

weights of mimicking portfolios and PCs should sum to one, researchers often use a variety of

scaling procedures. For example, Kozak et al. (2019) scale the weights of various models’ mean-

variance efficient portfolio returns to have the same standard deviation as that of the market returns.

Bayesian inferences that rely on the existing priors would be sensitive to the scale of factors.

I begin by specifying the unrestricted parameters {C,W,Ση} with the traditional Jeffreys

(1998) priors

P (C,W,Ση) ∝ |Ση|−(K+1)/2 , under both H0, H1. (13)

These improper priors are defined only up to constants. But these parameters, and thereby

constants, commonly appear under both the null and alternative and subsequently drop out. Thus,

the traditional Jeffreys priors are justifiable for this set of parameters.

Rather than directly specifying the sets of other unconstrained parameters, {B̄, Σ̄} and {Σmim},

with two traditional Jeffreys, I construct the novel priors that yield invariance as follows: i) I

first specify the mean and covariance (ΣR) of the test assets, R, with the traditional Jeffreys; ii)
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then, I establish a one-one correspondence between the sets of nuisance parameters, (ΣR), and

{B̄, Σ̄,Σmim}; iii) lastly, I use this one-one map to induce the priors for {B̄, Σ̄,Σmim}. By the

usual property of Jeffreys, the induced priors would yield marginal likelihoods that are invariant

to any reparametrization. Thus, the marginal likelihoods remain the same even when a different

subset of test assets R∗ (yielding different parameters {B∗,Σ∗,Σmim}) is used, as long as the priors

for the parameters are induced as outlined above. The exact details of the prior construction and

proof follow.

Consider the regression of test assets on a constant

R = µR + εR, ∼MVN(0,ΣR ⊗ I). (14)

The priors in the spirit of BS for the mean and nuisance parameters of this regression are given by

P (µR,ΣR) = P (µR|ΣR)× P (ΣR) ∝ P (µR|ΣR)× |ΣR|−(N+1)/2. (15)

Given W , [R̄, RW ] (= RĪW ) is a (full rank) linear transformation of R. Thus, by the usual Jeffreys

rule, the induced priors for the variance parameters of RĪW would also be traditional diffuse. In

particular, if

RĪW = 1µ̄TRW + εRW , εRW ∼MVN(0, Σ̄RW ), (16)

then the induced prior for the parameters {µ̄RW , Σ̄RW } equals:

p(µ̄RW , Σ̄RW ) = P (µ̄RW |Σ̄RW )× P (Σ̄RW ) ∝ P (µ̄RW |Σ̄RW )× |Σ̄RW |−(N+1)/2 (17)

Now, note that there is a one-one transformation between the nuisance parameters in (17), {Σ̄RW },

and the nuisance parameters in (9) and (10), {B̄, Σ̄ε,Σmim}. This is because the joint multivariate

normal density of any two random vectors is equivalent to i) the linear regression of the first

vector on the second, and ii) the linear regression of the second on a constant. Thus, I use this

transformation and induce the priors for the parameters {B̄, Σ̄,Σmim}.
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Proposition 1: The induced priors for the parameters {B̄, Σ̄ε,Σmim} based on the traditional Jef-

freys prior for the parameters µR,ΣR in (15) are then given by

P (B̄, Σ̄ε,Σmim) ∝ |Σ̄ε|−(N+1)/2 × |Σmim|−(2K−N+1)/2. (18)

Proof. The proof follows because of the one-one correspondence between the parameters under

various reparametrizations. An analogous correspondence was first recognized by BS, which was

later used by CZZ, in an entirely different context of comparing multiple traded factor models.

Thus, the computations would be straightforward from the propositions 3 and 4 of CZZ.

The final priors for the set of all nuisance parameters could be specified as

P (C,W,Ση) = |Ση|−(K+1)/2,

P (B̄, Σ̄ε,Σmim|W ) = |Σ̄ε|−(N+1)/2|Σmim|−(2K−N+1)/2. (19)

Note that the novel priors differ from the traditional Jeffreys (1998). The novel priors modify

the exponent of Σ̄ε to the total number of test assets, (N + 1), whereas the exponent based on the

traditional Jeffreys (1998) equals the number of regressands, (N −KN ). Similarly, the novel priors

modify the exponent of Σmim to (2K − N + 1)/2, whereas the traditional Jeffreys (1998) has an

exponent of (K + 1). Because the nuisance parameters commonly appear under both the null and

the alternative, I use the same priors as in (19) under both hypothesis.

It is worth pointing out important differences between the novel priors and the more recent

priors advocated by BS and CZZ (BS-CZZ priors).11 These priors serve fundamentally different

purposes. The BS-CZZ priors facilitate simultaneous comparisons of multiple models with traded

factors when the models have different sets of nuisance parameters. These priors are not needed

in the context of testing an individual asset pricing model with traded factors, because in such a

framework, the same set of nuisance parameters (e.g., betas and residual covariances) appear under

both the null and alternative hypothesis.

11See the next section for a formal definition of the BS-CZZ priors.
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In contrast, this paper’s priors are designed to test individual models with non-traded fac-

tors, because the traditional Jeffreys (1998) do not yield invariant inferences. Unlike traded-factor

models, testing a non-traded model involves regression of returns on mimicking portfolios, which

themselves belong to the return subspace. As a consequence, Bayesian tests with the conventional

Jeffreys (1998) priors would be sensitive to the subsets of test assets that are chosen to regress on

the mimicking portfolios.

Lastly, recall that ᾱ = 0 under the null. Under the alternative, I specify the following infor-

mative prior for ᾱ, which was used by BS

ᾱ|Σ̄ε,W = MVN(0, kΣ̄ε), (20)

where the parameter k > 0. Economically, this informative prior was motivated in studies by

MacKinlay (1995) and Pástor and Stambaugh (2000).12 These studies stress the desirability of

a positive relation between the absolute value of α and Σ, which makes extremely large Sharpe

ratios and arbitrage opportunities less likely. Furthermore, note that E(α
′
Σ−1α) = k ×N . Thus,

k reflects the prior belief about the expected increase in the Sharpe ratio (E(α
′
Σ−1α)) when K

factors are added to the N test assets.

Because various studies such as Cochrane and Saa-Requejo (2000) argue that extreme Sharpe

ratios as high as twice or a few multiples of the market portfolio’s Sharpe ratio are usually ar-

bitraged away and unlikely to survive, similar to BS I choose k such that the prior expecta-

tion of the maximum Sharpe ratio of the test assets (Sh2
max) equals various multiples (pm) of

the Sharpe ratio of the S&P 500 returns (Sh2
mkt). For example, pm of 1.5 implies a value of

k = (1.52)Sh2
mkt/N . I consider different prior specifications yielding maximum (prior) Sharpe

ratios of {1.252 × Sh2
mkt, 1.5

2 × Sh2
mkt, 1.752 × Sh2

mkt}.

In the similar spirit, I specify the following priors for the mean of the mimicking portfolios

12Kozak et al. (2019) use a slightly different prior. In my framework, their prior translates to P (ᾱ|Σ̄ε,W ) =
MVN(0, kΣ̄2

ε).

107



under both the null and alternative

αmim|Σmim,W = MVN(0, kΣmim). (21)

This economically motivated prior also offers an additional advantage. It shields against potential

spurious non-traded factors, which are uncorrelated with the cross-section of stock returns. The

sample Sharpe ratio estimates of spurious factors’ mimicking portfolios are not well-behaved and

tend to overestimate their true values more often than it should. The prior in (21) alleviates

this concern by shrinking the Sharpe ratios toward the Sharpe ratio of the market portfolio.13

Large and economically implausible values of k overweight the evidence from sample estimates of

mimicking portfolios’ Sharpe ratios, which could unduly favor models containing spurious factors.

In the empirical section, I provide results from an extensive simulation analysis to show that my

methodology is robust to spurious factors.

Finally, I use the prior specifications in (19), (20), and (21) to derive marginal likelihoods

under both the null and alternative.

9b. Bayes Factor

In a Bayesian framework, the Bayes Factor (BF ) quantifies the null hypothesis’s relative

likelihood against the alternative. It is the ratio of marginal likelihoods (ML) under the null and

alternative, ML(H0/ML(H1), where each ML is the likelihood of data obtained by integrating

over the prior density of the parameters under the corresponding hypothesis. MLs are usually

not well-defined under improper priors, as their marginalization constants could be arbitrarily

specified. However, recall that the nuisance parameters that are specified with the improper priors

commonly appear under both the hypothesis. Thus, these marginalization constants drop out in

the computation of BF .

13In the cross-sectional framework, Kan and Zhang (1999) have shown that conventional procedures tend to overes-
timate the true risk-premia of spurious factors, which technically should be zero. Note that risk-premia of non-traded
factors are functions of their mimicking portfolios’ true means and Sharpe ratios (see Lewellen et al. (2010)). By
shrinking both of them, the prior in (21) shrinks the risk-premia towards zero, thereby alleviating the problem of
spurious factors.
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Because the observed data are set of excess returns, (R), and non-traded factors, FN ,

ML(Hi) = P (FN , R|Hi) =

∫
P (FN , R|par,Hi)P (par|Hi), (22)

where par = {W, c,Ση, α, B̄, Σ̄ε} and P (par|Hi) is the prior density of the parameters under Hi.

Furthermore,

P (FN , R|par,Hi) = P (FN |R,W, c,Ση, Hi)× P (R|W,α,B,Σε, Hi). (23)

Because both the conditional likelihoods, the non-traded factors given the excess returns, and

the excess returns given the mimicking portfolios are known from the equations (6), (9), & (10),

MLs and BF can be easily derived. In particular, proposition-2 shows that these can be readily

obtained by modifying the MLs of BS and CZZ. Denoting the ML under the null that imposes

the zero alpha restriction by MLR, and under the alternative that does not impose the restriction

by MLU , I restate the following result by BS for notational convenience.

Result: The unrestricted marginal likelihood, MLU (R,F ;T − K), the restricted marginal

likelihood, MLR(R,F ;T − K), and the Bayes Factor, BF T , for an asset pricing model with K

traded factors, F , and N test assets, R are given by

MLR(R,F ;T −K) ∝ |F ′F |−N/2|SR|−(T−K)/2, (24)

MLU (R,F ;T −K) ∝ |F ′F |−N/2|S|−(T−K)/2Q, (25)

BF T =
MLR(R,F ;T −K)

MLU (R,F ;T −K)
, (26)

where S and SR are the N×N cross-product matrices of the estimated ordinary least squares (OLS)

residuals in the multivariate regression of R on F , with and without the intercepts, respectively.

(T −K) is the degrees of freedom. Furthermore, the scalar Q is a function of the GRS-statistic.

BF T can be used to test the validity of an asset pricing model with traded factors.

For models containing non-traded factors, the marginal likelihoods require two additional ad-

justments. The first adjusts for the estimation uncertainty in the mimicking portfolios and the
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second to ensure invariance across N −K linearly independent subsets of the test assets. I formally

state the proposition below:

Proposition 2: The unrestricted marginal likelihood, MLNU (R,FN ), and the restricted marginal

likelihood, MLNR (R,FN ), for a model with K non-traded factors, FN , and excess returns, R, are

proportional to

MLNU (R,FN ) = E
[
CI ×MLU (R̄, RW, T )×MLU (RW, 1;T − (N −K))

]
, (27)

MLNR (R,FN ) = E
[
CI ×MLR(R̄, RW, T )×MLU (RW, 1;T − (N −K))

]
, (28)

where RW are the unknown mimicking portfolios of the non-traded factors FN , R̄ is any subset of

N −K linearly independent returns from R. The invariant-constant, CI , which ensures invariance,

is a function of the mimicking portfolio weights. In particular, CI = |ĪW |T , where ĪW satisfies

[R̄, RW ] = RĪW . E(.) denotes the expectation, which is taken over the random variable W , which

has the following density

g(vec(W )) ∼MVN
(
vec(Ŵ ),Ση

)
, Ση ∼ IW (SFN , T −N − 1) , (29)

where vec denotes the vectorized form of a matrix (stacking up all columns under one column). Ŵ

and SFN are the OLS estimates of the true mimicking portfolio weights (regression coefficients) and

K ×K cross-product of residuals in the regression of non-traded factors FN on the excess returns

R, respectively. MVN and IW are notations for the multivariate normal and Inverse-Wishart

densities respectively.

Proof. See Appendix Xa.

The expectation, E(.), adjusts for the estimation uncertainty in the mimicking portfolios by

averaging (integrating) the MLs of BS and CZZ over the density of the true mimicking portfolio

weights (W ) given in (29). Conditional on W , MLR, and MLU could be interpreted as “explained

return variances” by the restricted and unrestricted hypothesis. The explained-variance of a hy-

pothesis is sensitive to the scale of data. One could make it arbitrarily big by multiplying the
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data with an appropriate constant. Thus, inferences solely based on the expected MLs could be

misleading.

However, the “proportion of explained-variance”, which equals the ratio of the explained-

variance to the total variance of the data, would be invariant to such a scaling. My methodology

favors the hypothesis with the best proportion of explained-variance. I show in the appendix, as

well as in the next section, that the invariant-constant, CI , is proportional to the inverse of the

total variance of the data, and thereby yielding the invariant result.

Finally, BF for testing the validity of a model with non-traded factors is given by

BFN =
MLNR (R,FN )

MLNU (R,FN )
=
E
[
CI ×MLR(R̄, RW, T )×MLU (RW, 1, T − (N −K))

]
E
[
CI ×MLU (R̄, RW, T )×MLU (RW, 1, T − (N −K))

] . (30)

Arguably, one may consider testing a non-traded model using the traded BF (BF T ) of BS by

directly treating the sample-estimated mimicking portfolios as traded factors without adjusting for

their uncertainty. BFN in (30) suggests that such tests could be misleading. In fact, BFN reduces

to BF T only when the test assets and traded factors perfectly span the non-traded factors, or

equivalently Ση = 0. Because the portfolio returns poorly span the majority of non-traded factors,

studies that do not account for this estimation uncertainty could lead to misleading inferences.

Examples of such studies include Adrian, Etula, and Muir (2014), and Ang, Hodrick, Xing, and

Zhang (2006), and Vassalou (2003), among many others.

Although the expectations in (30) are not analytically solvable, these can be easily estimated

from the Monte Carlo Integration approach of Geweke (1988, 1989). A similar approximation has

also been employed by Harvey and Zhou (1990). They accurately estimate high (90) dimensional

integrals to test the mean-variance efficiency of a given portfolio. In particular, BFN can be

approximated by

BFN ≈
∑L

l=1 |ĪWl
|TMLR(R̄, RWl, T )MLU (RWl, 1, T − (N −K))∑P

p=1 |ĪWp |TMLU (R̄, RWp, T )MLU (RWp, 1, T − (N −K))
, (31)

where {Wl}Ll=1 and {Wp}Pp=1 are independent draws from the density of the mimicking portfolio
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weights given in (29). This procedure can be computationally intensive, as it requires a large

number of draws from independent and separate samples to first estimate the numerator, and then

the denominator. To minimize the computational burden, I use the separate-ratio estimator, which

directly estimates the ratio of the expectations from a large stratified sample.14 In particular, given

a large number of draws {W}Gg=1 from the given in (29), the ratio estimator first splits the sample

draws into several strata Sg, estimates the ratio of the means in each strata, and then takes the

average of such ratio estimates across all the strata. The estimator can be expressed as

BFN ≈
S∑

Sg=1

∑
l∈Sg |ĪWl

|TMLR(R̄, RWl, T )MLU (RWl, 1, T − (N −K))∑
l∈Sg |ĪWl

|TMLU (R̄, RWl, T )MLU (RWl, 1, T − (N −K))
, (32)

where each sample draw Wmg, belongs to the stratum Sg. Note that the ratio estimate under

each Sg,

∑
l∈Sg |ĪWl |

TMLR(R̄,RWl,T )MLU (RWl,1,T−(N−K))∑
l∈Sg |ĪWp |

TMLU (R̄,RWl,T )MLU (RWl,1,T−(N−K))
, is a biased estimate of BFN due to Jensen’s

inequality. Although such a bias could be insignificant for a large number of sample draws, the

separate ratio estimator, which takes the mean of these estimates, reduces the bias at an even

quicker rate and thus makes the estimator more efficient.

I conduct estimation with 100,000 draws by splitting the sample into 100 equal strata with each

strata comprising 1000 samples. I find that the estimates are quite precise, where the maximum

standard error of BFN is in the order of 10−4. This result is in the spirit of Harvey and Zhou

(1990), who also find that for a large number of sample draws (100,000), Monte-Carlo integration

delivers five digits of precision.

10. Comparing Asset Pricing Models with Non-Traded Factors

Given a set of models {M1,M2, . . . ,Mn}, this section develops a general framework to measure

each model’s relative likelihood in summarizing the cross-section of expected returns compared with

the other models. The framework involves computing posterior probabilities of the models, which

14Chapter 6 from “The Elementary Survey Sampling” textbook summarizes the properties of the separate-ratio
estimator (Scheaffer, III, Ott, and Gerow (2011)). The bias of this estimator diminishes at a higher rate than the
conventional Monte-Carlo estimator. The variance of the estimator is available in a closed-form expression and thus
can be used to evaluate the precision of the estimation procedure.
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are defined by

P (Mi|Data) =
P (Data|Mi)P (Mi)∑n
j=1 P (Data|Mj)P (Mj)

=
ML(i)P (Mi)∑N
j=1ML(j)P (Mn)

, (33)

where P (Mi) is the prior probability that Mi is the true model, and ML(i) is the marginal likelihood

under Mi. Thus, under the prior that the models are equally likely to be true, model comparison

is equivalent to ranking models based on their marginal likelihoods.

Comparing multiple models with MLs is not straightforward. As discussed in the previous

section, MLs computed using the conventional improper priors are not properly defined when

the underlying parameters are not common across the models. In addition, two fundamental

issues arise for models containing non-traded factors. First, mimicking portfolios have estimation

uncertainty. Second, evaluating a non-traded factor model involves regression of returns on the

mimicking portfolios, which themselves belong to the returns subspace.

In what follows, I derive an essential set of results and propose novel, non-informative priors

that permit model comparisons with non-traded factors. Importantly, these priors yield a condi-

tional test assets irrelevance result for models containing non-traded factors. This result implies

that test assets are required only for identifying mimicking portfolios. Conditional on the mimicking

portfolios, test assets would be irrelevant for model comparisons. Barillas and Shanken (2017) have

drawn similar conclusions for several frequentist-based model comparison methodologies, including

the differences in likelihoods and Sharpe ratios. Using the novel, non-informative priors, I formally

prove the conditional test assets irrelevance in a Bayesian framework.

Let {M1,M2, . . . ,Mn} be the set of models to be compared. Each model Mj in the set can

include both traded and non-traded factors. Also, in the spirit of CZZ, I allow for the possibility

that the market factor can be excluded from the models. This specification, which differs from the

BS framework, is important because models might not always include the market portfolio as one

of their factors (e.g., He et al. (2017)). Fj denotes the set of traded factors included in Mj , and F ∗j

denotes the set of traded factors excluded from Mj but included in any other model from the set.

Let F = [Fj , F
∗
j ]. FNj denotes the set of non-traded factors included in Mj , and FN∗j denotes the
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set of non-traded factors excluded from Mj but included in any other model from the set. Let W be

the weights of the true mimicking portfolios Fm of all the non-traded factors (FN = {FNj , FN∗j })

across the models. Fmj denotes the set of mimicking portfolios of the included non-traded factors,

FNj , and Fm∗j denotes the mimicking portfolios of the excluded non-traded factors, FN∗j . Finally,

let R be the excess returns of N test assets, KT and KN be the total number of traded factors and

non-traded factors across all the models, respectively.

When Mj is the true asset pricing model, Fj and Fmj will price R, F ∗j , and Fm∗j . This implies,

α∗rj = 0 in the regression, {R,Fm∗j , F ∗j } = 1(α∗rj)
T + [Fj , F

m
j ]β∗rj + ε∗j , ε

∗
j ∼MVN(0,Σ∗j ⊗ I),

αj 6= 0 in the regression, {Fmj , Fj} = 1αTj + εj , εj ∼ N(0,Σj ⊗ I), (34)

where the set of mimicking portfolios, Fm = {Fmj , Fm∗j }, are a linear combination of the test

assets and traded factors. In particular, Fm = [R,F ]W . The weights, W , are proportional to the

coefficients in the regression of the non-traded factors on the test assets and traded factors

FN = c+ [R,F ]W + η, η ∼MVN(0,Ση). (35)

Note that the test-asset returns and traded factors together constitute a return space of di-

mension N + KT . Given a set of KT traded factors and KN mimicking portfolios, there are only

N −KN linearly independent test assets. Thus, Mj holds whenever the condition in (34) holds for

any N −KN linearly independent set of test-asset returns, R̄. This is equivalent to the conditions,

ᾱ∗rj = 0, where {R̄, Fm∗j , F ∗j } = 1(ᾱ∗rj)
T + [Fj , F

m
j ]β̄∗rj + ε∗j , ε

∗
j ∼MVN(0,Σ∗rj ⊗ I), (36)

αj 6= 0, where {Fmj , Fj} = 1αTj + εj , εj ∼ N(0,Σj ⊗ I). (37)

In the spirit of previous section, I construct priors in such a way that the marginal likelihoods of

the models are invariant to the choice of N −KN returns R̄, which are used in the regression (37).

Moreover, the restriction ᾱ∗rj = 0 implies that the intercepts, ᾱr, and α∗j , in the following
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regressions equal zero.

ᾱr = 0 in the regression of R̄ = 1ᾱTr + [Fj , F
m
j , F

∗
j , F

m∗
j ]β̄r + ε̄r, ε̄r ∼MVN(0, Σ̄r ⊗ I) (38)

α∗j = 0 in the regression of {Fm∗j , F ∗j } = 1(α∗j )
T + [Fj , F

m
j ]β∗j + ε∗j , , ε

∗
j ∼MVN(0,Σ∗j ⊗ I), (39)

αj 6= 0 in the regression of {Fmj , Fj} = 1αTj + εj , εj ∼MVN(0,Σj ⊗ I). (40)

The marginal likelihoods or posterior probabilities that I derive in this section quantify how

likely the models satisfy the conditions in (38), (39) and (40). Because the first regression (ᾱr = 0)

commonly appears across the models, it drops out in the computation of posterior model prob-

abilities when the true mimicking portfolios are known. Thus, test assets will be irrelevant for

comparing models that comprise only traded factors. When the true mimicking portfolios are un-

known, test assets do not automatically drop out because the MLs involve integrating over the

prior density of unknown mimicking portfolios. Thus, my framework fundamentally differs from

BS, where they use the test assets irrelevance to derive the marginal likelihoods.

10a. Priors for Comparing Asset Pricing Models

The total set of parameters under Mj from the regressions (38), (39) and (40) are

Parametersj = {c,W,Ση, β̄r, Σ̄r, β
∗
j ,Σ

∗
j , αj , βj ,Σj}. (41)

Note that the parameters {c,W,Ση} commonly appear across the models. Thus, I first specify

these parameters with the traditional Jeffreys (1998) priors,

P (c,W,Ση) ∝ |Ση|−(KN+1)/2. (42)

Even the parameters {β̄r, Σ̄r} commonly appear across the models. So, one may wonder whether

these parameters could be specified with the traditional Jeffreys (1998) priors. However, recall that

these parameters vary with the choice of subset of test assets, R̄. Thus, the traditional Jeffreys

(1998) priors require modification to ensure that the resultant Bayesian tests are invariant across
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the subsets of test assets. In particular, the traditional Jeffreys (1998) priors for {β̄r, Σ̄r}, given

F, Fm are

PJeffreys(β̄r, Σ̄r)|F, Fm = det
(
[F, Fm]T [F, Fm]

)(N−KN )/2 |Σ̄r|−(N−KN+1)/2. (43)

As in the previous section (19), I modify the exponent of Σ̄r from the number of regressands in

(38), (N − KN + 1), to the total number of test assets and traded factors, (N + KT + 1). The

modified priors take the following form

P (β̄r, Σ̄r)|F, Fm = det
(
[F, Fm]T [F, Fm]

)(N−KN )/2 |Σ̄r|−(N+KT+1)/2. (44)

The premise of these priors is to first start with the Jeffreys (1998) priors for the covariance matrix

of the test assets and traded factors. And then obtain the induced priors for the coefficients in the

regression of R̄ on [F, Fm], given [F, Fm]. I call the set of all nuisance parameters that commonly

appear across the models as “global-nuisance” parameters. These are {c,W,Ση, β̄r, Σ̄r}.

From the “model-specific” parameters, {β∗j ,Σ∗j , αj , βj ,Σj}, I specify the alphas with the pre-

viously used informative priors, as models impose restrictions on them,

αj |{W,βj ,Σj} ∝MVN(0, kΣj). (45)

The remaining model-specific nuisance priors are unrestricted and can take any values. So, one

might again wonder whether the traditional Jeffreys (1998) priors are natural candidates. Unlike

the global-nuisance parameters, the model-specific priors are not common across the models. For

example, consider a set of factors {Mkt, SMB, HML, svarm}, where svarm is the mimicking

portfolio for the non-traded factor stock market variance (svar). The ML computation for the

model, M1 = {Mkt, SMB}, first requires regression of the excluded factors, {HML, svarm}, on

the included factors, {Mkt, SMB}, and then the regression of the included factors, {Mkt, SMB},

on a constant. Thus, the dimensions of the corresponding parameters are : β∗1 ∼ 2× 2; Σ∗1 ∼ 2× 2;

and Σ1 ∼ 2×2. However, for a different model M2 = {Mkt,HML, svarm}, β∗2 ∼ 1×3; Σ∗2 ∼ 1×1;
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and Σ2 ∼ 3× 3. Recall that MLs are defined only up to arbitrary constants with improper priors.

Because the parameters between the models are different, these constants do not drop out while

comparing multiple models. Thus, model comparisons with the traditional Jeffreys (1998) yield

misleading inferences.

However, BS show that there is a one-to-one mapping from the nuisance parameters of a model

to the nuisance parameters of any other. They note that the marginalization constants are preserved

under the corresponding change-of-variables. CZZ build on this insight and propose modified

improper priors that permit ML-based model comparisons. I use their frameworks to derive the

priors for the model-specific nuisance parameters. Recognizing their respective contributions, I call

these modified improper priors as “BS-CZZ” priors.

The premise of the BS-CZZ priors is to first specify the parameters of any particular model

with the conventional improper priors and then derive the priors for the other models’ parameters

by applying the corresponding one-to-one mapping formula. The exact computations follow.

First, conditional on the true mimicking portfolio weights, W , I specify the covariance matrix

of all the traded factors and mimicking portfolios with the traditional Jeffreys (1998),

[F, Fm] = 1αTF,Fm + εF,Fm , εF,Fm ∼MVN(0,ΣF,Fm ⊗ I),

P (ΣF,Fm |W ) = |ΣF,Fm |−(KN+KT+1)/2. (46)

By applying the appropriate one-one-mapping formula to (46), the priors for the parameters in

various models could be obtained. In the spirit of CZZ, the model-specific priors are given by

{β∗j ,Σ∗j , βj ,Σj}|W = |Σ∗j |−(KT+KN+1)/2

∣∣∣∣Σj

∣∣∣∣−
2Kj−K

T−KN+1

2

. (47)

Thus, (42), (44), (45), and (47) summarize the priors for all the required parameters.

Before obtaining the marginal likelihoods, it is worth emphasizing a critical discussion of what

priors to use, when, and why, to compare asset pricing models in general. Recall that I induce the

priors for the parameters under all the models using 3 traditional Jeffreys (1998) that correspond
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to the following hierarchical regressions (in that order): i) FN on {R,F}; ii) R on {F, Fm}; iii)

{F, Fm} on a constant.

Alternatively, one may consider inducing the priors using various other specifications. For

example, one could induce using a single, joint Jeffreys (1998) that corresponds to the regression

of the entire data, {FN , R, F}, on a constant. Or one could induce using two traditional Jeffreys

(1998) that correspond to the regressions - FN on {R,F}, and {R,F} on a constant. I prove

that such specifications yield intuitively puzzling and misleading inferences. Due to the inherent

hierarchy in the regressions, and the fact that the non-traded factors FN , test assets R, and traded

factors F play distinct roles in model comparisons, it is necessary to induce the priors from the

three independent, hierarchical regressions, as in this paper.

For example, the mimicking portfolios should always be obtained by regressing FN on {R,F},

but not, say, {R,F} on FN . Similarly, the set of all traded factors and mimicking portfolios,

{F, Fm}, should always price the test assets R, whereas the test assets need not price the set of

all factors. The alternative prior specifications entertain these economically implausible scenarios,

thereby yielding paradoxical inferences. To conserve space and not overwhelm readers with technical

details, I present these paradoxes in the Internet Appendix-I.15

Finally, using the priors in (42), (44), (45), (46), and (47), I obtain the following marginal like-

lihoods for models containing non-traded factors.

Proposition 3: The marginal likelihood for the model Mj comprising the traded factors Fj and

non-traded factors Fnj is given by, EMLj =

E

[
CI ×MLR

(
[F ∗j , F

m∗
j ], [Fj , F

m
j ];T

)
×MLU

(
[Fj , F

m
j ],1;T − (KT +KN −Kj)

)]
, (48)

where Fm∗j , and Fmj are the unknown mimicking portfolios for the non-traded factors Fj

and F ∗j , respectively. In particular, Fm∗j = [R,F ]W ∗j and Fmj = [R,F ]Wj . F , Fm are total set

of traded factors and mimicking portfolios across all the models, respectively. MLR(Y,X; v) and

15My extensive conversations with Jay Shanken and a more recent paper by Barillas and Shanken (2020) have been
a significant influence on the development of this section. Special thanks to Jay Shanken for his insightful comments.
All errors are mine.
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MLU (Y,X; v) denote the restricted and the unrestricted MLs of BS and CZZ, expressions of which

are given in (24). Expectation is taken with respect to the following density of the true mimicking

portfolio weights W

g(vec(W )) ∼MVN
(
vec(Ŵ ),Ση

)
, Ση ∼ IW

(
SFN , T −N −KT − 1

)
, (49)

where vec denotes the vectorized form of a matrix (stacking up all columns under one column). Ŵ

and SFN are the OLS estimates of the true mimicking portfolio weights (regression coefficients) and

K ×K cross-product of residuals in the regression of non-traded factors FN on the excess returns

R and traded factors F , respectively. MVN and IW are notations for the multivariate normal and

Inverse-Wishart densities, respectively. The invariant-constant is given by

CI = det
(

[F, Fm]
′
[F, Fm]

)T/2
, (50)

where det(.) denotes the determinant of a square-matrix. Moreover, the product of terms inside

the expectation (E(.)) is independent of W for models exclusively comprising traded factors. This

result is consistent with the intuition that traded factor models would not require uncertainty

adjustment, as their mimicking portfolios are completely known.

Proof. See Appendix Xb.

Thus, the posterior model probability of Mj is given by

P (Mj |Data) =
EMLj∑N
j=1EMLj

. (51)

Because the marginal likelihoods for models containing non-traded factors can be expressed as

constant-adjusted expectations of the BS and CZZ MLs, I denote these by “EML”s. EML refers

to Expected Marginal Likelihood. Henceforth, I denote the marginal likelihoods based on BS and

CZZ by ML. Here, the estimated mimicking portfolios are substituted for the non-traded factors
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without adjusting for their estimation uncertainty by MLs. To be precise, these MLs are given by

MLj = MLR
(
[F ∗j , F

m∗
j ], [Fj , F

m
j ];T

)
×MLU

(
[Fj , F

m
j ],1;T − (KT +KN −Kj)

)
.16 (52)

In the simulation and empirical sections of the paper, I compare the contrasting results delivered

by the ML and EML measures.

As in the previous section, the expectation adjusts for the estimation uncertainty of the mim-

icking portfolios. The invariant-constant, CI , ensures invariance with respect to chosen subsets

of the test assets, R̄. It is evident from (50) that CI relates to the total variance of the factors

and mimicking portfolios. Thus, the EMLs capture the proportion of explained-variance, which

is invariant to the scale of data and choice of the subset of test assets. Whereas test assets are

required to obtain the posterior densities of the weights of the mimicking portfolios, conditional

on the mimicking portfolios, EMLs are independent of the test assets. Thus, the conditional test

assets irrelevance result is accomplished.

Both the “invariance” and “irrelevance” results follow from the novel prior specification de-

veloped in this paper and would not be achievable with the existing priors. Rather than using

the novel priors, one may consider applying the BS-CZZ framework as it is to compare models

containing non-traded factors. Inferences from such a framework could be misleading.

In particular, the BS-CZZ framework specifies the model-specific nuisance parameters with

the similar priors used in this paper (47). However, their framework specifies the global-nuisance

parameters with the traditional Jeffreys (1998) priors, as in (43). When the models exclusively

comprise traded factors, these priors achieve test-assets irrelevance and yield valid model compar-

isons. However, when the true mimicking portfolios are unknown, such priors yield the following

marginal likelihood for Mj containing non-traded factors

EMLBS-CZZ
j = E

[
|ĪW |TMLR

(
R̄, [F, Fm];T − (KT +KN )

)
MLR

(
[F ∗j , F

m∗
j ], [Fj , F

m
j ]; 1;T

)
×MLU

(
[Fj , F

m
j ]
)

;T − (KT +KN −Kj)
]
. (53)

16These MLs differ, albeit slightly, from the original expressions derived by BS, because my framework entertains
the possibility that the market portfolio need not always be included across all the models.
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Given the subset of test assets R̄, consistent with CZZ, these marginal likelihoods share the

same marginalization constant across the models and thus seem to deliver valid model comparisons.

However, the marginal likelihoods would be sensitive to the choice of subset of the test assets R̄.

As a consequence, these marginal likelihoods favor one model or another in unanticipated ways,

depending on the choice of R̄. In fact, simulations suggest that the model comparisons with these

measures are more misleading than the comparisons with the MLs of BS and CZZ that do not

explicitly account for the mimicking portfolios’ estimation uncertainty.17

11. Comparing Models with Principal Components

This section further generalizes the methodology developed in the previous sections to compare

models containing PCs. PCs of a given set of test assets are various weighted sums of excess returns

of the test assets. The weights are determined by the true return covariances, which are unknown.

Thus, the framework for comparing models with PCs precisely matches the non-traded framework,

where the unknown weights of PCs take the role of unknown mimicking portfolio weights. As in

the previous section, I show that marginal likelihoods for models with PCs can be expressed as

modified marginal likelihoods of BS and CZZ. The modification explicitly adjusts for the estimation

error of returns’ covariance, as well as ensures invariance.

Let {M1,M2, . . . ,Mn} be the set of models to be compared. The models could comprise traded,

non-traded factors and up to the first P PCs of a given set of test assets, R. I borrow the standard

notations from the previous section. Fj (F ∗j ) are the set of included (excluded) factors in (from) Mj .

FNj (FN∗j ) are the set of included (excluded) non-traded factors, whose mimicking portfolios are

Fmj (Fm∗j ). Let FPj (FPj ) denote the set of PCs included in Mj . The PCs and mimicking portfolios

can be expressed as linear combinations of the test assets, R, and traded factors, F (=[Fj , F
∗
j ]).

Thus, FP = RWP ,18 and Fm = [R,F ]W , where WP and W are the unknown, true weights of

the PCs and mimicking portfolios. Denote the included (excluded) mimicking portfolio weights by

17To conserve space, I do not report these results in the paper. However, the results are available upon request.
18This specification is consistent with the standard practice of extracting the PCs exclusively from the test-asset

returns, excluding the traded factors. One could easily entertain PCs to use information from the traded factors as
well, in which case FP = [R,F ]WP . The generalization is straightforward.
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Wj (W ∗j ) and PCs by WP
j (WP∗

j ). And let KT (KN ) be the total number of traded (non-traded)

factors F .

When Mj is the true model, alphas in the regression of the test assets on the set of all factors

and the regression of the excluded factors on the included factors must equal zero. This implies,

α∗rj = 0 where {R,F ∗j , Fm∗j , FP∗j } = α∗rj + β∗rj [Fj , F
m
j , F

P
j ] + ε∗rj , , ε

∗
rj ∼ N(0,Σ∗rj), (54)

αj 6= 0, where {FPj , Fj} = 1αTj + εj , εj ∼ N(0,Σj). (55)

Because the returns are regressed on their own sub-space, as in the previous section, the following

conditions should hold for any (N −KN − P ) linearly independent test assets, R̄.

ᾱr = 0, where R̄ = 1ᾱTr + [Fj , F
m
j , F

P
j , F

∗
j , F

m∗
j , FP∗j ]β̄r + ε̄r, ε̄r ∼MVN(0, Σ̄r ⊗ I), / (56)

α∗j = 0 , where {F ∗j , Fm∗j FP∗j } = 1(α∗j )
T + [Fj , F

m
j , F

P
j ]β∗j + ε∗j , ε

∗
j ∼MVN(0,Σ∗j ⊗ I), (57)

αj 6= 0, where {Fj , Fmj , FPj } = 1αTj + εj , εj ∼MVN(0,Σj ⊗ I). (58)

Given the exact resemblance of these equations with the excluded and included regressions examined

in (38), (39) and (40) to compare models with non-traded factors, priors for the parameters in (56),

(57) and (58) can be easily obtained, as in the previous specification. Before laying out the priors,

a special case of comparing multiple models that exclusively comprise PCs as factors deserves

emphasis.

Consider a simple example of comparing the model comprising the first three PCs (PC1-3)

with the model containing the first five PCs (PC1-5). Because the PCs 4-5 are orthogonal to the

PCs 1-3 by definition, betas in the regression of the PCs 4-5 on the PCs 1-3 are identically equal

zero. Thus, testing for the zero-alphas in this regression is equivalent to merely testing that the PCs

4-5 have zero means. While this could instinctively appear a little puzzling, I provide a simple and

economically meaningful explanation to demonstrate the result. When PC1-3 is the true model,

the risk-premia of the PCs 4-5 should be proportional to their corresponding exposures to the

PCs 1-3. Because these exposures are zero by definition, the risk-premia would be zero. PCs are
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tradable portfolios, and thus zero risk-premia would imply that the PCs 4-5 have zero means. My

methodology holds even under this particular sub-category of comparing models that exclusively

comprise PCs.

11a. Priors for Comparing Asset Pricing Models with Principal Components

Given the true weights of the mimicking portfolios (W ) and PCs (WP ), I specify the parameters

in (56), (57) and (58) with the following priors to ensure invariant model comparisons.

P (β̄r, Σ̄r)|F, Fm, F p,W,WP = det
(
[F, Fm, F p]T [F, Fm, F p]

)(N−KN−P )/2 |Σ̄r|−(N+KT+1)/2, (59)

{β∗j ,Σ∗j , βj ,Σj}|W,WP = |Σ∗j |−(KT+KN+P+1)/2

∣∣∣∣Σj

∣∣∣∣−
2Kj−K

T−KN−P+1

2

, (60)

αj |{W,WP , βj ,Σj} = MVN(0, kΣj), (61)

where Kj is the total number of included traded, non-traded factors and PCs in Mj .

The mimicking portfolios weights (W ) are specified with the traditional Jeffreys (1998) priors,

as in (42). To obtain the weights of the PCs, I consider the following specification for the return

covariance

R−Ravg = MVN(0,Σ), (62)

where Ravg denotes the matrix of time-series sample averages of the assets’ excess returns. Because

Σ commonly appears across the models, I specify it with the conventional Inverse-Wishart improper

prior,

Σ ∝ |Σ|−
N+1

2 . (63)

This prior automatically governs the priors for the unknown weights of PCs (WP ), as the weights

could be expressed as various functions of Σ.

Under the priors in (42), (59), (60), (61) and (63), I obtain the following proposition.

Proposition 4: The marginal likelihood forMj comprising the traded factors Fj, non-traded factors
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Fnj and PCs FPj is given by, EMLj =

E

[
CI ×MLR

(
[F ∗j , F

m∗
j , FP∗j ], [Fj , F

m
j , F

P
j ];T

)
×MLU

(
[Fj , F

m
j , F

P
j ],1;T − (KT +KN + P −Kj)

)]
,

(64)

where Fm∗j (FP∗j ), and Fmj (FPj ) are the unknown mimicking portfolios of the non-traded

factors (PCs) Fj (FPj ) and F ∗j (FP∗j ), respectively. In particular, Fm∗j = [R,F ]W ∗j and Fmj =

[R,F ]Wj , F
P∗
j = RWP∗

j and Fmj = RWP
j . F , Fm, FP are the total set of traded factors, mimicking

portfolios and PCs across all the models, respectively. MLR(Y,X; v) and MLU (Y,X; v) denote the

restricted and unrestricted MLs of BS and CZZ, expressions of which are given in (24). Expectation

is taken with respect to the of the true mimicking portfolio weights W given in (49), and the

following density of the covariance matrix of test assets

Σ ∼ IW (SR, T ), where, SR = (R− R̄)
′
(R− R̄), (65)

where IW (SR, T ) is the Inverse-Wishart distribution with the scale-matrix SR, and degrees of

freedom T . The invariant constant is given by

CI = det
(

[F, Fm, FP ]
′
[F, Fm, FP ]

)T/2
, (66)

where det refers to the determinant of a matrix.

Proof. See Appendix Xc.

12. Marginal Likelihoods and Out-of-Sample Predictions

Before analyzing the empirical data, it is worth highlighting the equivalence between my

methodology and ranking models based on their predictive performances. Inferences based on

out-of-sample predictive performances of models have recently gained attention because in-sample

comparisons favor overfit models. Recent studies, including Kozak et al. (2019) and Lettau and Pel-
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ger (2020), among many others, compare competing models based on their estimated out-of-sample

R2s and Sharpe ratios. Such measures often rely on in-sample estimates of various parameters, in-

cluding alphas, betas, return covariance and means and variances of traded factors that are known

to be imprecise measurements of their corresponding true parameters. As a consequence, the point

out-of-sample R2 estimates would be imprecise and may not provide informative inferences.19 Ob-

taining exact (asymptotic) distributions that entail parameter estimation uncertainty to conduct

valid inferences using these point estimates is a highly complex problem.

An advantage with a Bayesian framework is that it naturally inherits an out-of-sample interpre-

tation. In particular, this paper’s procedure provides exact out-of sample predictive distributions

of returns under each model, after adjusting for the estimation uncertainties of both the param-

eters, as well as the mimicking portfolios and principal components. Of course, these predictive

distributions entail priors that impose bounds on the maximum Sharpe ratios implied by each

model. Importantly, I show that the top-model with the highest marginal likelihood also has the

best prediction record in predicting the out-of-sample returns. Thus, model selection based on this

paper’s marginal likelihoods and out-of-sample prediction records is equivalent.

This fundamental result has not been well-illustrated in prominent Bayesian model comparison

studies, including Avramov and Chao (2006) and Barillas and Shanken (2018), among many others.

In fact, I have explored this result after the following question raised by several readers of the paper

− “Does the Bayesian methodology simply favors a model with a good in-sample but poor out-of-

sample performance?” I argue that the methodology rather favors the model with the (relatively)

best out-of-sample prediction record. The details follow.

Consider a cross-section of returns R1, R2, . . . RT , over T time-periods. Given a set of models

{Mj}, the predictive density of subsequent returns under Mj is given by

P (rT+1|R1, R2, . . . , RT ,Mj) =

∫
Θ
P (rT+1|R1, R2, . . . , RT ,Θ,Mj)P (Θ|R1, R2, . . . , RT ,Mj), (67)

where Θ denotes the parameters under Mj . When RT+1 are the true realized returns at period T+1,

19See Kan et al. (2013) for many examples of modes with large in-sample R2s that are statistically insignificant.
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the model with the highest predictive density evaluated at Rt+1, P (RT+1|R1, R2, . . . , RT ,Mj)),

predicts Rt+1 better than the other models. Thus, (Bayesian) out-of-sample comparisons involve

evaluating predictive densities of models.

Note that the predictive densities are obtained by integrating the parameters over their pos-

terior density given the past data, P (Θ|R1, R2, . . . , RT ,Mj). In contrast, recall that marginal

likelihoods are obtained by integrating the parameters over their prior density. Interestingly, there

is a formal link between predictive densities and the marginal likelihoods. In particular, marginal

likelihood of Mj can be decomposed as below

ML(R1, R2, . . . , RT |Mj) = P (R1, R2, . . . , RT |Mj) = ΠT
t=2P (Rt|R1, . . . , Rt−1,Mj). (68)

Thus, marginal likelihood can be summarized as the product of predictive densities, each of

which is obtained by updating the prior based on the past data and predicting subsequent returns,

at the end of each time-period. As a consequence, model with the highest marginal likelihood

also has the best prediction record, which is an aggregate measure of the predictive performance

of the model over the entire period. This result was first recognized by Geisel (1973). It was

later documented by Geweke (2005), who called marginal likelihoods as “out-of-sample prediction

records”. He interprets this result to Milton Friedman’s (Friedman (1953)) recommendation on

evaluating a model (theory) − “Theory is to be judged by its predictive power . . . . The only

relevant test of the validity of a hypothesis is comparison of predictions with experience”.

Thus, model comparisons with marginal likelihoods are naturally related to evaluating models

based on their predictive performances.

13. Simulation Evidence

In this section, I use Monte-Carlo simulations to show that this paper’s methodology dominates

existing methodologies in terms of identifying the true simulated null model with a significant

selection-rate and posterior probability. The existing procedures include model comparisons based
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on their OOS-R2s, GLS-R2s, and the MLs of BS and CZZ by treating sample estimated mimicking

portfolios as traded factors without adjusting for their estimation uncertainty. To obtain the OOS-

R2 and GLS-R2 measures, I first estimate underlying parameters of models, including alphas,

betas, and residual covariance from the first half of the simulated sample. Then, I compute the

out-of-sample measures by comparing the return predictions based on the estimated parameters

with the true ex-post realized returns, over the last half of the simulated sample.

Because the estimated parameters are known to be highly imprecise, the point estimates of

the OOS-R2 and GLS-R2 would be imprecise as well, thus rendering model comparisons with these

measures misleading. The ML procedure of BS and CZZ alleviates this concern by shrinking the

parameters toward economically motivated priors and thus expected to deliver better inferences.

Applying the ML procedure to compare models containing non-traded factors could be misleading,

as the sample estimates of mimicking portfolios are known to be imprecise. By shrinking the sample

mimicking portfolios toward economically meaningful priors, my methodology, EML, adjusts for

their estimation error and outperforms the ML. Consistent with the intuition, the simulation study

illustrates that the methodologies’ performance can be ranked as below

OOS-R2 ∼ GLS-R2 < ML < EML (69)

I simulate returns and factors under 8 null models. I calibrate the models’ parameters to cap-

ture the empirical properties of prominent traded and non-traded factor models. The traded models

are BS-6, FF-5, HXZ, and SY. The non-traded models are Petkova (2006), CV, CGP, and CGPT.

Test assets are calibrated to match the traditional 25 book-to-market and investment portfolios.

With the simulated data, I perform comparisons across the 8 models using each methodology. An

ideal methodology should select the true null as the best model more number of times (selection-

rate), assign the null with an average rank close to one, and yield large average probabilities of the

null (with small standard deviations), across the simulations. I show that the EML dominates the

other methodologies across all these metrics. To conserve space, I detail the exact procedure of

simulating returns and factors under various versions of the null models in the Internet Appendix-II.
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To examine the impact of estimation uncertainty on the model comparison methodologies, I

calibrate parameters so that the true Sharpe ratios of the simulated returns and traded factors

under the null models equal various multiples of the sample Sharpe ratio of the market portfolio.

Higher the Sharpe multiple, lower the volatility of returns, and thus lower would be the (parameter)

estimation uncertainty. In the “benchmark scenario”, the Sharpe multiple equals 4.5, whereas,

in the “high-uncertainty” scenario, it is 3.5. These scenarios are more likely to be realistic. For

example, sample Sharpe ratios of prominent models, including FF-5, FF-6, BS-6, HXZ, and SY, are

between 3 to 5 times the Sharpe ratio of the market. In the “low-uncertainty” scenario, the multiple

equals 6. Due to the market-efficiency forces, the low-uncertainty scenario is highly implausible. As

a frame of reference, the sample Sharpe ratio of the entire 25 book-to-market/investment portfolios

and set of all traded factors that I use in the study is nearly 6 times the Sharpe ratio of the market.

Nevertheless, I examine whether the performances of the existing methodologies improve in this

unrealistic scenario.

I conduct 100 iterations of Monte-Carlo simulations under each null model. Each iteration

comprises data over 600 time periods, typically the size of standard monthly data sets. Table (13)

presents the results when the null models include non-traded factors. Aggregating across the null

models in the benchmark scenario, I find that my methodology, EML, on an average, selects the

true null as the best model 37.2% times. This selection rate is at least 100% higher than those of

the OOS-R2 and GLS-R2 and ML procedures. Note that the selection-rate is a binary measure,

which only measures whether or not the null emerges as the best model. Thus, inferences from

such a measure may not provide adequate information about the performance of the methodologies.

For example, consider a simple Bayesian procedure that unconditionally assigns an equal posterior

probability to all the models. By construction, this procedure has a selection-rate of 100% because

the null (along with the other models) always emerges as the best model.

To draw more informative inferences, I examine the average ranks assigned by the method-

ologies to each null. For the Bayesian procedures, I additionally report an average and standard

deviation of each null model’s posterior probabilities over the simulation iterations. On average,

I find that the OOS-R2, GLS-R2, ML, and EML procedures assign ranks of 5.7, 6.18, 3.98, and
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2.41 to the null, respectively. In addition, on average, EML increases the average of each null’s

posterior probabilities by at least 40%, and decreases the standard deviation of the null probabil-

ities by an impressive 15% over the simulation iterations, compared with those of the ML. Thus,

these results confirm that my methodology outperforms the existing methodologies in identifying

the mull models with non-traded factors.

The results are qualitatively similar in the high-uncertainty scenario as well. The average

selection-rate of the EML procedure is at least 100% higher than those of the existing method-

ologies. The average and standard deviation of a null model’s probabilities are 50% higher and

12% lower than those of the ML, respectively. Consistent with the intuition, the ML and EML

methodologies perform significantly better in the low-uncertainty scenario. Nevertheless, the EML

procedure dominates the ML by increasing the average null probability by 28% and simultaneously

decreasing its standard deviation by 11%. Note that the performance of the procedures that rely

on the point estimates of OLS-R2 and GLS-R2 do not improve significantly even in this unrealistic,

low-uncertainty scenario, thereby highlighting how imprecise such point estimate measures are.

Table (14) presents the results when the null models exclusively comprise traded factors. I find

that the ML and EML procedures significantly dominate the OOS-R2 and GLS-R2 procedures.

Note that the performances of the ML and EML are identical in terms of all the metrics. Recall

that the marginal likelihoods based on the ML and EML would be equal for models exclusively

comprising traded factors. Of course, the ML and EML procedures yield different marginal

likelihoods for models involving non-traded factors. The EML, in a way, uses the economically

shrunk mimicking portfolio weights rather than the sample estimated weights. Thus, the relative

odds and posterior probabilities of the ML and EML procedures could differ even when the null

exclusively comprises traded factors. However, table (14) confirms that shrinking the mimicking

portfolio weights do not necessarily increase the non-traded models’ probabilities when the null is

a traded-factor model.

The average probabilities in tables (13) and (14) could be loosely interpreted as “power” and

“size” in frequentist-based hypothesis testing under the null that a traded factor model is true. The

probabilities in table (14) suggest that the ML and EML are “well-sized” by consistently assigning
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lower probabilities to the non-traded models when the null is a traded factor model. However, table

(13) suggests that, by increasing the null probability by at least 40%, the EML procedure is more

“powerful” than the ML procedure in identifying a non-traded factor model when it is indeed the

true model.

Overall, the simulations confirm that the EML dominates the existing methodologies in iden-

tifying the true null models.

14. Empirical Comparison of Prominent Asset Pricing Models

This section examines the relative performances of 16 prominent asset pricing models that in-

clude traded and non-traded factors and principal components. The traded factor models comprise

the traditional CAPM; FF-3, FF-5; the investment-based model, HXZ; the six-factor model, BS-6;

and the more recent mispricing model, SY. Among the models with non-traded factors, I consider

the liquidity risk model of Pastor and Stambaugh (2003); the ICAPMs of Hahn and Lee (2006),

Petkova (2006), the good-beta and bad-beta ICAPM, CV; the more recent ICAPMs, CGP and

CGPT; and the intermediary capital factor model of He et al. (2017). Lastly, I consider two models

that include the first five and six principal components of the excess returns of various test assets

and traded factors, respectively.

I mainly use two sets of test assets for comparing models with monthly data. The first one is

a comprehensive set of 52 portfolios containing anomalies (52-anom), which also were examined by

Kozak et al. (2019)20. These portfolios, obtained by sorting the stocks on various characteristics,

possess a strong factor structure. Because asset pricing tests based on such test assets could be

misleading (Lewellen et al. (2010)), I also consider a second set of test assets that adds excess

returns of 10 industry portfolios to the 52-anom set (52-anom+10-ind). The industry portfolios

are available from Kenneth French’s website21. The monthly data of returns and factors span from

20I thank Serhiy Kozak for making the anomaly return data publicly available. Although Kozak et al. (2019)
examine 50 anomalies, in the most updated version of Kozak’s website, monthly data are available for 52 anomalies
during the time-span January, 1974 to December, 2016. So, I use all the available 52 anomalies.

21I thank Kenneth French, Yu Yuan, and Lu Zhang for making the factors and portfolio return data publicly
available.
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January, 1974 to December, 2016. The internet appendix lists the construction of all the factors

and details the cross-sectional restriction induced by each asset pricing model.

14a. Models with Traded vs Non-Traded Factors

I begin by comparing the 14 prominent asset pricing models that include traded and non-traded

factors but exclude the principal components. Tables (15) and (16) present the posterior model

probabilities when the test assets include the 52-anom and the 52-anom+10-ind set, respectively.

Between both the test asset sets, SY and BS-6 have the highest posterior model probabilities, which

are succeeded by the ICAPMs CGPT and CGP and CV.

CV constitutes first-order innovations to the aggregate excess market returns, term-structure,

price-earnings ratio and value spread. CGP adds first-order innovations to the default spread to the

CV. CGPT adds first-order innovations to the aggregate stock market variance to CGP and replaces

the innovations in the default-spread with the innovations in the risk-free rate. The premise of these

ICAPMs is to explain expected returns using a long-term investor’s equilibrium portfolio choice

in the presence of time-varying investment opportunities. Factors in ICAPMs represent various

state variables that reflect time-varying investment opportunities. For example, in the more recent

CGPT ICAPM, (innovations to) the stock market variance proxies for the time-varying volatility

of the stock returns, which could deteriorate investment opportunities.

Under the prior expectation that the portfolio comprising traded factors and test assets has a

maximum Sharpe ratio of 1.5 times the market portfolio’s sample Sharpe ratio (pm = 1.5×Shmkt),

the posterior SY model probabilities are 30.17% and 34.35% for the 52-anom and 52-anom+10-ind

test assets, respectively. The BS-6 model probabilities are 24.7% and 28.85%, CGPT are 14.48%

and 10.65%, CGP are 12.75% and 10.65% for the 52-anom and 52-anom+10-ind sets, respectively.

When the test assets are 52-anom, the odds in favor of the more recent CGPT ICAPM is at

least thrice more likely than the investment-based HXZ model, and 28 times more likely than the

traditional five factor of FF-5. The same holds true for the 52-anom+10-ind set, in which case the

probability of CGPT is at least 1.5 and 12 times larger than HXZ and FF-5, respectively. These
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findings are consistent with Campbell et al. (2018), who document that their ICAPM, which in-

cludes the stock return volatility risk factor, explains the cross-section of expected returns better

than the FF-5. Their inference is based on relatively lower alphas achieved by each anomaly indi-

vidually. Nevertheless, this paper suggests that CGPT jointly explains all anomalies significantly

better than traditional models with traded factors, after adjusting for the uncertainties related to

the macroeconomic factors.

I find that even the former ICAPMs, CGP and CV, outperform FF-5 and HXZ. These findings

are robust across other prior multiples of pm = 1.25 and pm = 1.75 that allow for relatively

lower and higher prior expectations of mispricing. Given that the factors of HXZ and FF-5 are

directly constructed from the sorted portfolios of various anomalies, the superior performance of

theoretically motivated ICAPMs makes them even more impressive.

I also report the posterior model probabilities based on the Bayesian procedure of BS and

CZZ, which is denoted by ML. In this approach, estimated mimicking portfolios are substituted

for the non-traded factors without adjusting for their uncertainty. I find that the ML procedure

significantly underestimates the probabilities of the ICAPMs. For example, when the test assets

are 52-anom and pm = 1.5, the ML yields posterior model probabilities of 9.1% and 9.48% for

the CGP and CGPT models. These are 28% and 35% lower than those implied by this paper’s

methodology (EML), which adjusts for the estimation uncertainty in the mimicking portfolios.

Similarly, the ML overestimates the probabilities of the BS-6 and SY by 17%.

When the test assets are 52-anom+10-ind, the ML underestimates the probabilities of the

CGP and CGPT models by 14% and 27%, respectively, and overestimates the BS-6 and SY by

6%, respectively. Moreover, the ML suggests that the HXZ and CGP models are equally likely to

summarize the expected returns. In contrast, this paper’s EML methodology suggests that the

CGP model is 1.23 times more likely to generate the cross-section of expected returns compared

with the HXZ model. Thus, adjusting for the estimation uncertainty of mimicking portfolios could

substantially affect the model comparison inferences.

The differences in results between the ML and EML procedures are consistent with the simu-

lation results and intuition that the sample-estimated mimicking portfolios often underestimate the
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explanatory “power” of true non-traded factor models because of large sampling errors. By shrink-

ing the weights of mimicking portfolios toward the economically motivated priors, which impose

prior restrictions on the maximum Sharpe ratio attainable by such mimicking portfolios, EML

reduces the influence of sampling errors. Thus, the EML methodology captures the explanatory

power of true non-traded models better than the existing procedures.

Interestingly, the difference between the ML and EML posterior model probabilities also has

an important investment application. For example, consider a risk-averse investor who seeks an

optimal portfolio of stocks that maximizes his mean-variance utility. The true means, variances and

covariances of the stocks are unknown. Thus, the investor faces uncertainty in determining both

the true factor model that might have generated the returns, as well as the underlying parameters

(betas and residual covariances) of the models. In addition, the investor is uncertain about the

true mimicking portfolios of non-traded factors. In such a scenario, the optimal portfolio would be

a function of the EML posterior model probabilities (Pástor and Stambaugh (2000)). Thus, the

investor deems the portfolio based on the ML probabilities sub-optimal, which leads to a loss in

mean-variance utility. This loss measures the potential economic gains of the investor for using the

EML over ML probabilities, which can be easily quantified from the predictive distributions of

returns under the EML and ML probabilities, respectively, in the spirit of Kandel and Stambaugh

(1996).

Examining this investment application is beyond the scope of this paper, as it requires com-

putation of predictive distributions of returns under each model in addition to the posterior model

probabilities. I leave that extension for future research.

Lastly, consistent with the theory developed in the previous sections, the ML and EML

procedures yield identical relative-odds among the traded factor models. For example, with the

52-anom test assets and prior multiple equaling 1.5, the ratio of posterior SY and BS-6 model

probabilities equals 1.22, based on both the ML and EML procedures. Because the uncertainty

adjustment is not required for models with traded factors, their relative odds based on the ML

and EML marginal likelihoods would be identical.
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14b. Are these Non-Traded Factors Spurious?

Recall from the previous section that the economically motivated ICAPMs of CV, CGP and

CGPT outperform the traditionally traded factor models of Fama and French (2015) and Hou

et al. (2015). This section examines whether that result is driven by non-traded factors, which are

possibly spurious and not correlated with the cross-section of stock returns. Table (17) presents

the R2s and the adjusted R2s in the regression of non-traded factors on the test assets and traded

factors. I find that both measures are significantly high. In particular, the non-traded factors from

the CGP and CGPT models, which are innovations in the term spread, default spread, risk-free

rate, aggregate price-to-earnings ratio, aggregate stock-return variance and value spreads have R2s

of 22%, 18%, 19%, 36%, 35% and 49%, respectively. The adjusted R2s are 11%, 6%, 7%, 27%, 25%

and 42%, which suggest that the factors are less likely to be spurious.

I also check whether this paper’s methodology is susceptible to the spurious factors using

Monte-Carlo simulations and find that it is not. In particular, I artificially simulate non-traded

factors such that they have the same means and variances as the original non-traded factors but are

completely uncorrelated with the returns of test assets and traded factors. Then, I repeat the model

comparison exercise substituting the original non-traded factors with the artificially simulated ones.

The data for traded factors remain the same.

Tables (18) and (19) present the average model probabilities from 100 such simulations. The

test assets are 52-anom and 52-anom+10-ind, respectively. Between the test assets, I find that the

models with artificially simulated non-traded factors have low posterior model probabilities, which

are dominated by the BS-6, SY and HXZ models. These three models constitute more than 90%

posterior probability across all the priors.

Thus, the results confirm that the methodology is not sensitive to spurious factors. As argued

previously, the informative priors on the models’ mispricing, α and αmim, shrink the posterior

mean and Sharpe ratios of mimicking portfolios of spurious non-traded factors toward zero and

the sample Sharpe ratio of the market portfolio, respectively. The shrinkage shields against not

well-behaved sample Sharpe ratio estimates of spurious non-traded factors’ mimicking portfolios.
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14c. Traded versus Non-Traded versus Principal Components

This section compares the performance of asset pricing models that include all traded, non-

traded factors and principal components. To the 14 prominent asset pricing models studied in the

previous section, I add two models that include the first five (PC1-5) and six (PC1-6) principal

components of the test assets and traded factors, respectively. PC1-5 was earlier examined by

Kozak et al. (2018). Because various models, including BS-6 and CGPT, constitute six factors, I

also examine the six factor model, PC1-6, to make a fair assessment.

Table (20) first presents the results for the 52-anom test assets. I find that SY and BS dominate

other asset pricing models. These models are succeeded by PC1-6, the macroeconomic CGPT, CGP

and CV models and PC1-5. In particular, when the prior multiple pm equals 1.5, SY and BS-6

have posterior model probabilities of 21.75% and 17.76%, respectively. The probabilities of PC1-6,

CGPT, CGP, CV and PC1-5 are 16.16%, 12.79%, 10.32%, 8.12% and 7.78%, respectively.

When the PCs and mimicking portfolios are directly used as traded factors without adjusting

for their uncertainty, the ML marginal likelihoods suggest that the previously examined model by

Kozak et al. (2018), PC1-5, dominates the economically motivated CV, CGP and CGPT ICAPMs.

For example, the ML procedure suggests that odds in favor of PC1-5 are 1.18 times more than the

CGPT model. In contrast, the EML marginal likelihoods indicate that the CV, CGP and CGPT

ICAPMs dominate PC1-5. In particular, CGPT is 1.64 times more likely than PC1-5 to summarize

the cross-section of expected returns. As in the previous section, this result is consistent with the

intuition that, the EML, by shrinking the weights toward economically motivated priors, reduces

the influence of sampling errors and better captures the explanatory power of true non-traded

models.

Note that the EML reports an improvement in the relative-odds in favor of PC1-5 and PC1-6

against the traded factor models, compared with those of the ML. For example, when pm = 1.5,

the ML suggests that BS-6 is 1.19 times more likely to summarize the expected anomaly returns

than PC1-6, whereas the EML indicates that it is only 1.09. Again, this result is consistent with

the previous intuition that, the EML reduces influence of sampling errors of the PCs as well, and
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thus better captures the explanatory power of true models that comprise PCs. However, unlike

the substantial improvements in the relative odds for the CV, CGP, and CGPT ICAPMs, these

improvements are modest for PC1-5 and PC1-6. Thus, the sampling errors in the weights of the

mimicking portfolios influence model comparisons more than the PCs’ weights. This result is

expected, given that the non-traded factors are not well-spanned by the test assets, and thus their

estimated mimicking portfolios have relatively more significant sampling errors.

To alleviate any misleading inferences that might arise from using the characteristic-sorted

52-anom test assets, which possess a strong factor structure (Lewellen et al. (2010)), I also consider

the 52-anom+10-ind test assets. Table (21) presents the results using these test assets. I find that

SY and BS-6 significantly dominate the other prominent models. Their posterior probabilities are

34.49% and 28.16%, respectively. Interestingly, I find that the CGPT, CGP, and CV ICAPMs

significantly dominate PC1-5 and PC1-6. For example, CGPT, with a posterior probability of

10.58%, is almost thrice more likely than PC1-6 to summarize the expected returns of the 52-

anom+10-ind test assets and traded factors.

As a frame of reference, PC1-6 (PC1-5) explains 76.63% (73%) and 75.47% (71.91%) of the

total time-series variation in the 52-anom and 52-anom+10-ind test assets, respectively. Thus, the

performances of models with the leading PCs do not significantly change between the 52-anom

and 52-anom+10-ind test assets, in terms of explaining the time-series variation. However, their

performances relative to the other prominent models vary enormously between the test assets when

explaining the cross-sectional variation in the expected returns. This result is in the spirit of

Lewellen et al. (2010), who noted similar sensitivities in the individual performances of various

models when the industry portfolios are added to characteristic-sorted portfolios, albeit in a cross-

sectional framework.

Overall, the results from tables (20) and (20) suggest that sparse factor models, including SY,

BS-6, and CGPT explain the cross-section of the expected anomaly returns as adequately as models

with the first few PCs, if not better. These results partially contrast with Kozak et al. (2019),

who compare models based on their OOS-R2s. They argue that traditional models with sparse

characteristic-based factors would not summarize the cross-section of expected anomaly returns
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as adequately as the first few PCs. However, the previous section’s simulation results indicate

that inferences based on the point estimates of out-of-sample R2s would be highly misleading.

In this paper, I statistically establish dominance or comparable performances of various sparse-

factor models, including SY, BS-6, and CGPT over models with the first few PCs. Note that

BS-6 is a sparse characteristics-based factor model. I also document the supremacy of theoretically

motivated ICAPMs over the benchmark HXZ and FF-6 models. These results have not been

formally established in the literature before.

Of course, the majority of these traditional factor models, including SY and BS-6, consists

of factors that are empirically motivated and directly constructed from various sorted portfolios.

Thus, the influence of data mining in the construction of these empirically motivated factors still

needs to be explored.

In addition, the test assets used in this paper suffer from an ex-post bias. Recall that these

test assets represent various portfolio returns that are anomalous to the standard models. Thus,

by construction, it is likely that a random linear combination of these test assets outperforms the

benchmark models. However, the spurious-factor simulation results in the previous section show

that such random combinations yield lower probabilities than the BS-6, HXZ, and SY models,

thereby confirming that my results are robust to inherent data-mining in the test assets. Also, recall

that the mimicking portfolios and PCs are various linear combinations of the test-asset returns.

Other than the theory that relates non-traded factors to mimicking portfolios, there is no economic

reason to expect why the combinations of test-asset returns that correspond to the mimicking

portfolios should dominate the other linear combinations, including the ones that correspond to

the PCs.

As mentioned in the introduction, my results are not directly comparable with Kozak et al.

(2019). Whereas this paper considers models with the first few PCs, they use a different SDF

(model) involving higher-order PCs.22 Mathematically, their SDF comprises a few PCs with the

highest mean returns, which differ from the conventional leading PCs that instead have the highest

22The SDF of Kozak et al. (2019) is motivated by a prior specification that differs from mine. Footnote 12 describes
how both the priors differ.
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returns’ variance. Because the true cross-sectional means of PCs are unknown, comparing models

with these sophisticated factors requires an additional uncertainty adjustment. Also, Kozak et al.

(2019) use data at a daily level. Recall that I derive marginal likelihoods for models with PCs

under the Inverse-Wishart prior specification and the assumption that returns are uncorrelated in

the time series. Kozak et al. (2019) made the same assumptions. However, daily returns are known

to be non-synchronous, and thus it is unclear whether these assumptions suit the dynamics of daily

data (Shanken (1987)). A methodology that accommodates potential temporal dependence of the

daily returns and adjusts for the uncertainty of PCs’ mean returns could be developed in a future

work.

In summary, my results suggest that SY and BS-6 dominate the other prominent asset pric-

ing models in adequately summarizing the cross-section of various anomalies’ expected monthly

returns. The macroeconomic models such as CGPT, CGP and CV dominate the benchmark PC1-5

model. Although the six-factor PC1-6 performs considerably well on the monthly 52-anom test as-

sets, its performance considerably deteriorates on the expanded 52-anom+10-ind test assets. The

macroeconomic models, including CGPT, CGP, and CV dominate the models with the leading PCs

on these expanded test assets.

15. Conclusion

Comparing models with non-traded factors and principal components introduces two funda-

mental challenges. First, regressions of test assets on such factors are not linearly independent,

rendering model comparisons with the recent Bayesian procedures sensitive to subsets of the test

assets. Second, true mimicking portfolios of non-traded factors and return covariances for principal

components are unknown and thereby can only be estimated. I address both of these challenges

in a Bayesian framework and develop novel, non-informative priors for invariant comparisons of

models containing non-traded factors and PCs.

This is the first Bayesian paper that permits model comparison with traded, non-traded factors

and principal components under one framework. My methodology is equivalent to ranking models

138



based on their out-of-sample prediction records, after adjusting for the associated estimation un-

certainties. After extensive simulations, I find that the methodology enhances the selection rate

of a true non-traded model by more than 100%, compared with the existing model comparison

procedures, and increases the posterior probability of a true non-traded model by more than 40%

compared with the other Bayesian procedures.

I find that the models of Stambaugh and Yuan (2017) and Barillas and Shanken (2018) domi-

nate the other prominent models in summarizing the cross-section of various anomalies’ expected

monthly returns. Additionally, the economically motivated ICAPMs of Campbell et al. (2018),

Campbell et al. (2013), and Campbell and Vuolteenaho (2004) outperform several benchmark

models including, Fama and French (2015) and Hou et al. (2015) and the model with the first five

principal components. Given that the factors of these benchmark models are directly constructed

from sorted portfolios of various anomalies, the superior performance of ICAPMs makes them even

more impressive.
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16. Appendix

16a. Bayes Factors for Absolute Tests

Proposition 2:

Proof. Marginal Likelihood under the null hypothesis H0 is defined as below :

MLN (R,FN |H0) =

∫
P (FN , R|parameters,H0)P (parameter|H0)d(parameters), (70)

where P (parameters|H0) is the prior density of parameters under H0 and P (FN , R|parameters)

is the density of data under the hypothesis H0, given the parameters. The above equation further

reduces to :

∫
P (FN |parameters,Hi)P (R|parameters,H0)P (parameter|H0)d(parameters), (71)

Note that P (FN |parameters,H0) can be directly obtained from equation (6). In particular,

P (FN |R, c,W,H0) = |2πΣη|−T/2 exp

(
−1

2
tr
[
(FN − 1cT −RW )T (FN − 1cT −RW )Σ−1

η

])
(72)

However, it is not straightforward to compute P (R|parameters,H0). I first obtain the joint

density of the considered N −K test assets R̄ and the mimicking portfolios, P (R̄, RW ), and then

use the transformation matrix ĪW , to obtain the required likelihood, P (R|parameters,H0). In

particular,

P (R|parameters,H0) ∝ |ĪW |TP (R̄, RW |parameters) (73)

This is because, [R̄, RW ] = RĪW . Thus, the likelihood of P (R|parameters) equals

P (R|parameters,H0) = P (R̄, RW |parameters)|det(∂vec(R
¯IW )

∂vec(R)
)|

= P (R̄, RW |parameters)|ĪW |T
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Thus, from equations (9) and (10), I obtain that P (R|parameters,H0) is proportional to :

P (R|W,par,H0) =|ĪW |T ||2πΣ̄ε|−T/2exp
(
−1

2
tr
[
(R̄− 1αT −RWB̄)T (R̄− 1αT −RWmB̄)Σ̄−1

ε

])
×|2πΣmim|−T/2exp

(
−1

2
tr
[
(RW − 1αmim)T (RW − 1αTmim)Σ−1

mim

])
(74)

Thus, using the likelihood functions from the equations (72) and (74), and the prior specifica-

tions from (6), (7) and (8), I derive the marginal likelihoods.

I then use derivations of Barillas and Shanken (2018, 2020) marginal likelihoods to obtain the

following results. First, integrating the former expression of (74) with respect to the prior P (B̄, Σ̄ε),

I get :

∫
|2πΣ̄ε|−T/2exp

(
−1

2
tr
[
(R̄− 1αT −RWB̄)T (R̄− 1αT −RWmB̄)Σ̄−1

ε

])
× P (B̄, Σ̄ε)dB̄dΣ̄ε

= |ĪW |T
∫
|2πΣ̄ε|−T/2exp

(
−1

2
tr
[
(R̄− 1αT −RWB̄)T (R̄− 1αT −RWmB̄)Σ̄−1

ε

])
× |Σ̄ε|−(N+1)/2dB̄Σ̄ε

= |ĪW |T
(

1

2π

)(N−K)(T )/2

2(N−K)(T )/2ΓN−K (T/2) |SRR̄,RW |
−(T )/2|(RW )T (RW )|−(N−K)/2

= |ĪW |TMLR(R̄, RW ;T )

where |SR
R̄,RW

| is the determinant of the residual sum of square matrix in the restricted (no intercept)

regression of R̄ on the mimicking portfolios. Similarly, integrating the second expression of (74),

with respect to the prior density P (αmim,Σmim), I get :

∫
|2πΣmim|−T/2exp

(
−1

2
tr
[
(RW − 1αmim)T (RW − 1αTmim)Σ−1

mim

])
× P (αmim,Σmim)dαdΣmim

=

(
1

2π

)KT/2
2K(T−(N−K))/2ΓK ((T − (N −K))/2) |SURW |−(T−(N−K))/2QRW

= MLU (RW, 1;T − (N −K)),

where |SURW | is the determinant of the residual sum of squares matrix in the regression of mimicking
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portfolios on the unit vector, QRW is analogous to the scalar derived by Barillas and Shanken (2018).

QRW = (1 +
1

1 + k
V/T )−(T−(N−K))/2(1 + k)−N/2, (75)

where V = T α̂TmimΣ̂−1
mimα̂mim, the expressions under hat, ˆ are the OLS estimates of correspond-

ing parameters in the regression of mimicking portfolios on the unit vector. Thus, the marginal

likelihood of data under the null reduces to

MLN (R,FN |H0) =

∫
P (FN , R|c,W,Ση, H0)MLR(R̄, RW )MLU (RW )P (c,W,Ση|H0)d(c,W,Ση)

(76)

Note that P (FN , R|c,W,Ση, H0)P (c,W,Ση|H0)d(c,W,Ση) is proportional to the posterior density

P (c,W,Ση|FN , R), where

P (c,W,Ση|FN , R) = P (c,W |Ση, F
N , R)× P (Ση|FN , R),

P (vec([c,W ])|Ση, F
N , R) = MVN

(
vec(ĉ, Ŵ ),Ση

)
P (Ση|FN , R) = IW (SFN , T ) , (77)

where vec denotes the vectorized form of a matrix (stacking up all columns under one column),

ĉ, Ŵ are the OLS estimates of the regression coefficients c,W , and SFN is the K×K cross-product

of OLS residuals, in the regression of non-traded factors FN on the excess returns R. MVN and

IW are notations for the Multivariate normal and Inverse-Wishart densities respectively. Thus,

MLN (R,FN |H0) = E
[
|ĪW |TMLR(R̄, RW ;T )MLU (RW, 1;T − (N −K))

]
, (78)

where the expectation is taken with respect to the posterior density given in equation (77).

Similarly, marginal likelihood under the alternative hypothesis reduces to

MLN (R,FN |H1) = E
[
|ĪW |TMLU (R̄, RW ;T )MLU (RW, 1;T − (N −K))

]
, (79)
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where

MLU (R̄, RW ;T ) =

(
1

2π

)(N−K)(T )/2

2(N−K)(T )/2ΓN−K ((T )/2)

|SUR̄,RW |
−(T )/2|(RW )T (RW )|−(N−K)/2QR̄,RW ,

|SU
R̄,RW

| is the determinant of the residual sum of square matrix in the unrestricted (intercept

included) regression of R̄ on the mimicking portfolios, QR̄,RW is analogous to the scalar derived by

Barillas and Shanken (2018).

QR̄,RW = (1 +
a

a+ k
V̄ /T )−(T )/2(1 +

k

a
)−(N−K)/2, (80)

where a = (1 + Sh(RW )2)/T , Sh(RW )2 is the squared Sharpe-Ratio of the mimicking portfolio,

V̄ = T
ˆ̄αT Σ̄−1

ε
ˆ̄α

1 + Sh(RW )2
(81)

16b. Invariance to the Choice of Test Assets and Scaling of Mimicking Portfolio Weights

In this section, I show that the above marginal likelihood is invariant to the choice of subset of

test assets, R̄, and also to the scale of mimicking portfolio weights. To show that MLN (R,FN |H0)

is invariant to R̄, it is enough to show that MLR(R̄, RW ) is invariant to R̄. This is because, all the

other terms do not depend on R̄. Further, collecting the terms of MLR(R̄, RW ), it is enough to

show that |ĪW |T |SRR̄,RW |
−(T )/2 is invariant to R̄ . This can be easily showed using the determinant

lemma for the partitioned matrices. In particular, note that

|
[
R̄ RW

]T [
R̄ RW

]
| = |SRR̄,RW | × |(RW )T (RW )|

=⇒ |RTR||ĪW |2 = |SRR̄,RW | × |(RW )T (RW )|

=⇒ |SRR̄,RW |
−(T )/2|ĪW |(T ) = |(RW )T (RW )|(T )/2(RTR)−(T )/2 (82)
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Thus, |ĪW |T |SRR̄,RW |
−(T )/2 is invariant to the subset of test assets R̄, where it depends only on the

mimicking portfolios (RW ). Consequently, MLN (R,FN |H0) is invariant to R̄.

Similarly, it follows that MLU (R̄, RW ) is also invariant to the choice of test assets R̄. Also,

the GRS-test statistic in equation (81) is also invariant to the choice of R̄. Thus, MLN (R,FN |H1)

is also invariant to the choice of R̄.

To show that MLN (FN , R|H0) is independent to the scale of the mimicking portfolio weights,

note that using equation (82), I can express it as

MLN (FN , R|H0) = E
(
MLR(R̄, RW )MLU (RW )|H0

)
= constant× E

(
|(RW )T (RW )|(T )/2(RTR)−(T )/2|(RW )T (RW )|−(N−K)/2|SURW |−(T−(N−K))/2QRW |H0

)
= constant1E

(
|(RW )T (RW )|(T )/2|(RW )T (RW )|−(N−K)/2|(RW 1)T (RW 1)|−(T−(N−K))/2QRW |H0

)

Note that QRW is invariant to the scale of W . Moreover, all the exponents sum to zero in the above

expression. Thus, MLN (FN , R|H0) is invariant to the scale of W . Similarly, it can be shown that

MLN (FN , R|H1) is also invariant to the scale of W .

16c. Bayes Factors for Model Comparisons

Proposition 3:

Proof. Marginal Likelihood of model Mj equals

MLNj (FN , R, F ) =

∫
par

P (FN , F,R|par,Mj)P (par|Mj)

=

∫
par

P (FN |F,R, par,Mj)P (F,R|par,Mj)P (par|Mj) (83)

Note that the conditional density of non-traded factor given the traded factors and the mimicking

portfolios can be obtained from (35). Similar to the previous section obtaining P (R,F |par) is not

straight forward. However, the conditional densities P (R̄|F, Fm, par), P (F ∗j , F
m∗
j |Fj , Fmj , par) and
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P (Fj , F
m
j |par) can be obtained from the equations (38) and (40). Moreover,

P (R,F |par) ∝ |ĪW |TP (R̄, F ∗j , F
m∗
j , Fj , F

m
j |par), (84)

where [R̄, F ∗j , F
m∗
j , Fj , F

m
j ] = [R̄, F, Fm] = RĪW . Thus, I have

MLNj (FN , R, F ) =

∫
par
|ĪW |TP (FN |F,R, par,Mj)P (R̄|F, Fm, par)

P (F ∗j , F
m∗
j |Fj , Fmj , par)P (Fj , F

m
j |par)P (par|Mj) (85)

Under the prior specifications in (42), (44), (45), (46), (47), I have,

P (c,W,Ση) ∝ |Ση|−(KN+1)/2 (86)

P (β̄r, Σ̄r)|F, Fm = det
(
[F, Fm]T [F, Fm]

)(N−KN )/2 |Σ̄r|−(N+KT+1)/2 (87)

αj |{W,βj ,Σj} ∝MVN(0, kΣj) (88)

{β∗j ,Σ∗j , βj ,Σj}|W = |Σ∗j |−(KT+KN+1)/2

∣∣∣∣Σj

∣∣∣∣−
2Kj−K

T−KN+1

2

, (89)

First, conditional on W, integrating out the parameters β̄r, Σ̄r, I get the below term

T1 =

∣∣∣∣SRR̄,[F,Fm]

∣∣∣∣(−T/2)

, (90)

where SR
R̄,[F,Fm]

is the restricted residual sum of squares in the regression of test assets R̄ on the

mimicking portfolios and traded factors, [F, Fm].

Next conditional on W , I integrate out the {β∗j ,Σ∗j}, {αj , βj ,Σj} parameters sequentially,

which yields

T2 = MLR
(
[F ∗j , F

m∗
j ], [Fj , F

m
j ];T

)
T3 = MLU

(
[Fj , F

m
j ],1;T − (KT +KN −Kj)

)
(91)
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Thus, the marginal likelihood of model Mj can be expressed as

MLNj (FN , R, F ) =

∫
par
|ĪW |TP (FN |F,R, c,W,Ση,Mj)

T1 × T2 × T3 × P (c,W,Ση|Mj) (92)

Moreover, notice that

∣∣∣∣[[R,F ]ĪW
]T [

[R,F ]ĪW
]∣∣∣∣ =

∣∣∣∣[R,F ]T [R,F ]

∣∣∣∣ |ĪW ||2 (93)

Moreover, by the determinant lemma for the partitioned matrices, also notice that,

∣∣∣∣[[R,F ]ĪW
]T [

[R,F ]ĪW
]∣∣∣∣ =

∣∣∣∣[F, Fm]T [F, Fm]

∣∣∣∣ ∣∣∣∣SRR̄,[F,Fm]

∣∣∣∣ (94)

Therefore, from (93) and (94), I have

T1 × |ĪW |T =

∣∣∣∣[F, Fm]T [F, Fm]

∣∣∣∣T/2 (95)

Thus, the marginal likelihood reduces to :

MLNj (FN , R, F ) =

∫
par

∣∣∣∣[F, Fm]T [F, Fm]

∣∣∣∣T/2 T2T3P (FN |F,R, c,W,Ση,Mj)P (c,W,Ση|Mj)

= E

[∣∣∣∣[F, Fm]T [F, Fm]

∣∣∣∣T/2MLR

(
[F ∗j , F

m∗
j ], [Fj , F

m
j ];T

)
MLU

(
[Fj , F

m
j ],1;T − (KT +KN −Kj)

)]
,

(96)

where the expectation is taken with respect to the posterior density (29).

Corollary 2 : The derived marginal likelihoods are invariant to the scale of the factors.

Proof. This is straightforward by noting that the exponents of each factor, whether included or

excluded from the model, sums to zero. For example, excluded factors has an exponent of T/2 from
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the first term of (96), and −T/2 from the second term of (96). Thus, the sum of exponents is zero.

Similarly, included factors has an exponent of T/2 from the first term of,
(
−(KT +KN −Kj)

)
/2

from the second term, whereas −
(
T − (KT +KN −Kj)

)
/2 from the last term of (96). Thus, the

exponents again sum to zero.

16d. Model Comparisons with Principal Components

Proposition 4 :

Proof. The proof is similar to the proof of proposition 3.
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Table 15
Traded vs Non-Traded: Model Probabilities with 52 Test Assets of Kozak et al. (2019)
This table compares the posterior model probabilities of 14 prominent asset pricing models that include both
traded and non-traded factors. The prior multiple, pm, denotes the prior expectation of the relative increase
in the Sharpe ratio when the factors are added to the market portfolio. The “ML” columns report the
posterior model probabilities based on the marginal likelihood procedure of BS and CZZ, where estimated
mimicking portfolios are substituted for the non-traded factors. These probabilities do not account for the
estimation error in the mimicking portfolios. The “EML” columns report the posterior model probabilities
using this paper’s methodology, which adjusts for the estimation uncertainty in mimicking portfolios. Test
assets are monthly returns of 52 characteristic-sorted anomaly portfolios, which are used in Kozak et al.

(2019). k =
p2
m×0.1152

N , where N equals the total number of test assets and traded factors.

Test Assets : 52-anom Prior (pm) =1.25 Prior (pm) =1.5 Prior (pm) =1.75

Model ML EML ML EML ML EML

CAPM 0.03% 0.05% 0.01% 0.01% 0.00% 0.00%

Fama and French (1992) 0.09% 0.12% 0.02% 0.02% 0.00% 0.00%

Barillas and Shanken (2018) 26.13% 23.49% 28.83% 24.70% 31.60% 21.07%

Fama and French (2015) 1.05% 1.23% 0.52% 0.45% 0.19% 0.12%

FF-6 1.83% 2.06% 1.04% 0.89% 0.45% 0.30%

Hou et al. (2015) 7.00% 7.02% 5.57% 4.78% 3.87% 2.58%

Stambaugh and Yuan (2017) 30.58% 27.10% 35.21% 30.17% 41.12% 27.42%

Pastor and Stambaugh (2003) 0.59% 0.83% 0.26% 0.31% 0.08% 0.14%

He et al. (2017) 0.03% 0.09% 0.01% 0.01% 0.00% 0.00%

Petkova (2006) 0.69% 1.42% 0.31% 0.86% 0.09% 0.52%

Campbell and Vuolteenaho (2004) 10.84% 10.67% 9.63% 10.58% 7.80% 12.16%

Campbell et al. (2013) 10.38% 12.13% 9.10% 12.75% 7.22% 15.81%

Campbell et al. (2018) 10.74% 13.74% 9.48% 14.48% 7.58% 19.87%

He et al. (2017) 0.03% 0.04% 0.01% 0.00% 0.00% 0.00%
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Table 16
Traded vs Non-Traded: Model Probabilities with 52 Anomalies + 10 Industry portfolios
This table compares the posterior model probabilities of 14 prominent asset pricing models that include both
traded and non-traded factors. The prior multiple, pm, denotes the prior expectation of the relative increase
in the Sharpe ratio when the factors are added to the market portfolio. The “ML” columns report the
posterior model probabilities based on the marginal likelihood procedure of BS and CZZ, where estimated
mimicking portfolios are substituted for the non-traded factors. These probabilities do not account for the
estimation error in the mimicking portfolios. The “EML” columns report the posterior model probabilities
using this paper’s methodology, which adjusts for the estimation uncertainty in mimicking portfolios. Test
assets are monthly returns of 52 characteristic-sorted anomaly portfolios, which are used in Kozak et al.

(2019), plus the excess returns of 10 industry portfolios. k =
p2
m×0.1152

N , where N equals the total number of
test assets and traded factors.

Test assets : 52-anom+10-ind prior (pm) =1.25 prior (pm) =1.5 prior (pm) =1.75

Model ML EML ML EML ML EML

CAPM 0.12% 0.11% 0.02% 0.02% 0.00% 0.00%

Fama and French (1992) 0.26% 0.26% 0.06% 0.05% 0.01% 0.01%

Barillas and Shanken (2018) 25.98% 25.56% 30.61% 28.85% 34.02% 28.69%

Fama and French (2015) 1.96% 1.93% 0.89% 0.83% 0.35% 0.30%

FF-6 3.08% 3.03% 1.64% 1.54% 0.78% 0.65%

Hou et al. (2015) 9.01% 8.87% 7.17% 6.76% 5.25% 4.43%

Stambaugh and Yuan (2017) 29.42% 28.94% 36.44% 34.35% 42.84% 36.13%

Pastor and Stambaugh (2003) 1.72% 1.56% 0.74% 0.98% 0.28% 0.41%

Hahn and Lee (2006) 0.11% 0.17% 0.02% 0.03% 0.00% 0.01%

Petkova (2006) 0.49% 0.76% 0.13% 0.31% 0.03% 0.13%

Campbell and Vuolteenaho (2004) 9.14% 8.45% 7.32% 7.23% 5.39% 7.32%

Campbell et al. (2013) 9.06% 9.49% 7.21% 8.38% 5.28% 9.45%

Campbell et al. (2018) 9.56% 10.80% 7.75% 10.65% 5.77% 12.47%

He et al. (2017) 0.09% 0.09% 0.01% 0.01% 0.00% 0.00%
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Table 17
Correlations of Macroeconomic Factors with the Cross-Section of Stock Returns
This table presents the correlations of non-traded factors with the cross section of stock returns. The first
column presents the set of all non-traded factors from the 14 asset pricing models considered in the paper.
The second and third columns present the R2 and adjusted R2 in the time series regression of each non-traded
factor on the test assets. The last six columns present the correlations of each non-traded factor’s mimicking
portfolio with the five factors of Fama and French (2015) and the momentum factor UMD, respectively.
Panel A presents the results when the test assets are 52 anomaly portfolios of Kozak et al. (2019). Panel B
presents the results when the test assets are 52 anomaly portfolios of Kozak et al. (2019), plus excess returns
of 10 industry portfolios.

Panel A: Test Assets are 52-Anomalies

Non-Traded Regression R2 Correlation of Mimicking Portfolios with FF-5

Non-Traded Factor R2 Adj R2 Mkt SMB HML RMW CMA UMD

liq 0.30 0.20 0.56 0.15 -0.12 -0.07 -0.22 -0.08

ts 0.22 0.11 -0.29 -0.13 -0.14 0.27 -0.11 0.31

ds 0.18 0.06 0.17 0.22 0.00 -0.10 -0.08 0.02

rf 0.19 0.07 -0.33 -0.21 0.00 0.05 0.02 0.09

dy 0.59 0.53 0.82 0.34 -0.16 -0.08 -0.27 -0.19

pe 0.36 0.27 0.11 -0.04 -0.05 0.02 -0.04 0.00

svar 0.35 0.25 0.54 0.35 -0.02 -0.21 -0.12 0.06

vs 0.49 0.42 -0.31 -0.25 0.87 0.26 0.62 -0.25

interm 0.78 0.75 0.85 0.11 0.02 -0.20 -0.22 -0.29

Panel B: Test Assets are 52-Anomalies + 10 Industry Portfolios

Non-Traded Regression R2 Correlation of Mimicking Portfolios with FF-5

Non-Traded Factor R2 Adj R2 Mkt SMB HML RMW CMA UMD

liq 0.32 0.21 0.54 0.14 -0.11 -0.07 -0.21 -0.08

ts 0.24 0.11 -0.28 -0.12 -0.13 0.26 -0.10 0.30

ds 0.20 0.07 0.16 0.20 0.00 -0.09 -0.08 0.02

rf 0.20 0.07 -0.32 -0.20 0.00 0.05 0.02 0.08

dy 0.62 0.55 0.80 0.33 -0.16 -0.08 -0.26 -0.19

pe 0.39 0.29 0.10 -0.04 -0.05 0.01 -0.04 0.00

svar 0.36 0.25 0.53 0.35 -0.02 -0.20 -0.12 0.06

vs 0.50 0.41 -0.31 -0.25 0.86 0.26 0.62 -0.25

interm 0.80 0.77 0.84 0.11 0.02 -0.19 -0.22 -0.29
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Table 18
Traded vs Non-Traded : Model Probabilities with Spurious Factors
This table compares the posterior model probabilities of traded factor asset pricing models with non-traded
models. The monthly factors data span from January 1974 to December 2016. The non-traded factors
are substituted with artificially simulated spurious factors, which are uncorrelated with the test assets and
traded factors. The data for traded factors remain the same. The “ML” columns report the posterior
model probabilities based on the marginal likelihood procedure of BS and CZZ, where estimated mimicking
portfolios are substituted for the non-traded factors. These probabilities do not account for the estimation
error in the mimicking portfolios. The “EML” columns report the average posterior model probabilities using
this paper’s methodology, which adjusts for the estimation uncertainty in mimicking portfolios. Posterior
model probabilities are averaged across 100 independent simulations of spurious non-traded factors. Test
assets are monthly returns of 52 characteristic-sorted anomaly portfolios, which are used in Kozak et al.

(2019). k =
p2
m×0.1152

N , where N equals the total number of test assets and traded factors.

Test assets : 52-anom Prior (pm) =1.25 Prior (pm) =1.5 Prior (pm) =1.75

Model ML EML ML EML ML EML

CAPM 0.11% 0.10% 0.01% 0.01% 0.00% 0.00%

Fama and French (1992) 0.25% 0.25% 0.03% 0.03% 0.00% 0.00%

Barillas and Shanken (2018) 34.80% 33.95% 39.77% 37.75% 40.58% 37.94%

Fama and French (2015) 2.19% 2.14% 0.68% 0.65% 0.22% 0.21%

FF-6 3.55% 3.46% 1.37% 1.30% 0.55% 0.51%

Hou et al. (2015) 11.21% 10.93% 7.52% 7.14% 4.84% 4.52%

Stambaugh and Yuan (2017) 39.77% 38.80% 48.72% 46.24% 53.01% 49.55%

Pastor and Stambaugh (2003) 1.62% 1.16% 0.06% 0.12% 0.04% 0.12%

Hahn and Lee (2006) 0.39% 0.52% 0.10% 0.25% 0.03% 0.18%

Petkova (2006) 1.19% 1.93% 0.38% 1.45% 0.21% 1.80%

Campbell and Vuolteenaho (2004) 1.05% 1.20% 0.23% 0.57% 0.05% 0.57%

Campbell et al. (2013) 1.43% 1.98% 0.37% 1.27% 0.16% 1.27%

Campbell et al. (2018) 2.33% 3.44% 0.75% 3.18% 0.31% 3.30%

He et al (2018) 0.11% 0.14% 0.02% 0.05% 0.01% 0.01%
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Table 19
Traded vs Non-Traded : Model Probabilities with Spurious Factors
This table compares the posterior model probabilities of traded factor asset pricing models with non-traded
models. The monthly factors data span from January 1974 to December 2016. The non-traded factors
are substituted with artificially simulated spurious factors, which are uncorrelated with the test assets and
traded factors. The data for traded factors remain the same. The “ML” columns report the posterior
model probabilities based on the marginal likelihood procedure of BS and CZZ, where estimated mimicking
portfolios are substituted for the non-traded factors. These probabilities do not account for the estimation
error in the mimicking portfolios. The “EML” columns report the average posterior model probabilities using
this paper’s methodology, which adjusts for the estimation uncertainty in mimicking portfolios. Posterior
model probabilities are averaged across 100 independent simulations of spurious non-traded factors. Test
assets are monthly returns of 52 characteristic-sorted anomaly portfolios, which are used in Kozak et al.

(2019), plus excess returns of 10 industry portfolios. k =
p2
m×0.1152

N , where N equals the total number of test
assets and traded factors.

Test assets : 52-anom+10-ind Prior (pm) =1.25 Prior (pm) =1.5 Prior (pm) =1.75

Model ML EML ML EML ML EML

CAPM 0.07% 0.07% 0.01% 0.01% 0.00% 0.00%

Fama and French (1992) 0.18% 0.18% 0.03% 0.03% 0.00% 0.00%

Barillas and Shanken (2018) 37.19% 36.40% 38.59% 37.97% 40.39% 39.30%

Fama and French (2015) 1.87% 1.84% 0.66% 0.65% 0.22% 0.22%

Carhart (1997) 3.15% 3.08% 1.33% 1.31% 0.54% 0.53%

Hou et al. (2015) 10.93% 10.70% 7.30% 7.18% 4.81% 4.68%

Stambaugh and Yuan (2017) 43.00% 42.09% 47.27% 46.51% 52.76% 51.34%

Pastor and Stambaugh (2003) 0.32% 0.39% 0.14% 0.20% 0.04% 0.17%

Hahn and Lee (2006) 0.22% 0.32% 0.27% 0.33% 0.02% 0.15%

Petkova (2006) 0.84% 1.26% 0.78% 1.45% 0.86% 1.43%

Campbell and Vuolteenaho (2004) 0.40% 0.64% 0.40% 0.54% 0.02% 0.16%

Campbell et al. (2013) 0.66% 1.08% 1.52% 1.49% 0.11% 0.63%

Campbell et al. (2018) 1.09% 1.85% 1.69% 2.31% 0.22% 1.39%

He et al. (2017) 0.07% 0.10% 0.01% 0.02% 0.00% 0.00%
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Table 20
Traded versus Non-Traded versus Principal Components: Posterior Probabilities with 52
Anomalies
This table compares the posterior model probabilities of 16 prominent asset pricing models that include all
traded and non-traded factors and principal components. The “ML” columns report the posterior model
probabilities based on the marginal likelihood procedure of BS and CZZ, where estimated mimicking portfo-
lios are substituted for the non-traded factors. These probabilities do not account for the estimation error in
the mimicking portfolios and PCs. The “EML” columns report the posterior model probabilities using this
paper’s methodology, which adjusts for the estimation uncertainty in mimicking portfolios. Test assets are
monthly returns of 52 characteristic-sorted anomaly portfolios, which are used in Kozak et al. (2019). The
last two rows “PC 1-5” and “PC 1-6” present the probabilities of the models, whose factors are the first five

and six principal components, respectively. k =
p2
m×0.1152

N , where N equals the total number of test assets
and traded factors.

Test assets : 52-anom prior (pm) =1.25 prior (pm) =1.5 prior (pm) =1.75

Model ML EML ML EML ML EML

CAPM 0.04% 0.04% 0.00% 0.00% 0.00% 0.00%

Fama and French (1992) 0.10% 0.09% 0.02% 0.01% 0.00% 0.00%

Barillas and Shanken (2018) 18.62% 17.54% 21.27% 17.76% 23.42% 16.72%

Fama and French (2015) 0.97% 0.92% 0.38% 0.32% 0.14% 0.10%

FF-6 1.62% 1.53% 0.76% 0.64% 0.33% 0.24%

Hou et al. (2015) 5.56% 5.24% 4.11% 3.43% 2.87% 2.05%

Stambaugh and Yuan (2017) 21.53% 20.28% 26.05% 21.75% 30.58% 21.84%

Pastor and Stambaugh (2003) 0.58% 0.62% 0.19% 0.22% 0.06% 0.12%

Hahn and Lee (2006) 0.04% 0.06% 0.00% 0.01% 0.00% 0.00%

Petkova (2006) 0.66% 1.14% 0.23% 0.68% 0.07% 0.48%

Campbell and Vuolteenaho (2004) 8.32% 8.14% 7.11% 8.12% 5.79% 8.58%

Campbell et al. (2013) 7.98% 9.39% 6.71% 10.32% 5.36% 12.42%

Campbell et al. (2018) 8.23% 10.43% 6.98% 12.79% 5.61% 15.53%

He et al. (2017) 0.03% 0.03% 0.00% 0.00% 0.00% 0.00%

PC 1-5 9.28% 8.87% 8.24% 7.78% 6.97% 6.37%

PC 1-6 16.43% 15.70% 17.93% 16.16% 18.80% 15.55%
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Table 21
Traded vs Non-Traded vs Principal Components: Posterior Probabilities with 52 Anomalies
+ 10 Industry portfolios
This table compares the posterior model probabilities of 16 prominent asset pricing models that include
all traded and non-traded factors and principal components. The “ML” columns report the posterior
model probabilities based on the marginal likelihood procedure of BS and CZZ, where estimated mimicking
portfolios are substituted for the non-traded factors. These probabilities do not account for the estimation
error in the mimicking portfolios and PCs. The “EML” columns report the posterior model probabilities
using this paper’s methodology, which adjusts for the estimation uncertainty in mimicking portfolios. Test
assets are monthly returns of 52 characteristic-sorted anomaly portfolios, which are used in Kozak et al.
(2019), plus excess returns of 10 industry portfolios. The last two rows “PC 1-5” and “PC 1-6” present
the probabilities of the models, whose factors are the first five and six principal components, respectively.

k =
p2
m×0.1152

N , where N equals the total number of test assets and traded factors.

Test assets : 52-anom+10-ind Prior (pm) =1.25 Prior (pm) =1.5 Prior (pm) =1.75

Model ML EML ML EML ML EML

CAPM 0.12% 0.11% 0.01% 0.01% 0.00% 0.00%

Fama and French (1992) 0.26% 0.25% 0.03% 0.02% 0.01% 0.01%

Barillas and Shanken (2018) 24.63% 23.97% 31.76% 28.16% 33.38% 28.01%

Fama and French (2015) 1.92% 1.87% 0.57% 0.51% 0.37% 0.31%

FF-6 2.99% 2.91% 1.14% 1.01% 0.80% 0.67%

Hou et al. (2015) 8.67% 8.44% 6.14% 5.45% 5.28% 4.43%

Stambaugh and Yuan (2017) 27.88% 27.14% 38.90% 34.49% 42.03% 35.27%

Pastor and Stambaugh (2003) 1.69% 1.50% 0.47% 0.52% 0.29% 0.44%

Hahn and Lee (2006) 0.11% 0.17% 0.01% 0.01% 0.00% 0.01%

Petkova (2006) 0.48% 0.76% 0.07% 0.22% 0.03% 0.13%

Campbell and Vuolteenaho (2004) 8.79% 7.77% 6.28% 7.09% 5.42% 7.13%

Campbell et al. (2013) 8.71% 8.94% 6.17% 8.28% 5.30% 9.20%

Campbell et al. (2018) 9.17% 9.92% 6.67% 10.58% 5.78% 11.43%

He et al. (2017) 0.09% 0.09% 0.00% 0.00% 0.00% 0.00%

PC 1-5 0.66% 0.73% 0.11% 0.11% 0.06% 0.06%

PC 1-6 3.83% 5.41% 1.69% 3.53% 1.23% 2.88%
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We develop a big-data methodology to estimate fundamental prices and true liquidity mea-
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17. Introduction

The efficient incorporation of information into prices or price discovery is of primary concern

to market participants and regulators. Chordia, Roll, and Subrahmanyam (2008) have shown

that price discovery and efficiency is aided by market liquidity, which is also important for (i)

understanding the variation in cross-sectional expected returns (Amihud and Mendelson (1986)),

(ii) the investigation of the impact of high frequency trading (HFT, O’Hara (2015)), and (iii)

evaluating policies such as the recent tick size pilot (TSP, Rindi and Werner (2017), Albuquerque,

Song, and Yao (2020), FINRA Report (2018)), among other fundamental questions. Because stocks

trade at prices rounded to the grid determined by the minimum tick size, observed prices and quoted

bid-ask spreads do not represent their corresponding true values, the fundamental prices and the

true spreads, that would exist in a market with no minimum tick size. Thus, the traditional liquidity

and price efficiency measures that are not adjusted for rounding and are computed using quoted

spreads and observed prices or the mid-point of the quoted spreads could be biased. Rounding-

adjusted liquidity and price efficiency measures are extremely challenging to estimate, given the

massive millisecond-level Trade and Quote (TAQ) data, and the discretization-induced non-gaussian

observed prices and quotes.

Using recent advances in machine learning, we develop a novel methodology that explicitly in-

corporates the rounding feature to measure each stock’s true liquidity and fundamental prices at the

millisecond-level. The method scales to big TAQ data and structurally estimates the fundamental

prices, true bid-ask spreads and its components, true effective spreads, and price discovery mea-

sures. Simulations show that our methodology recovers the fundamental simulated prices and true

spreads with statistically insignificant biases, whereas the traditional measures without the round-

ing adjustment are grossly biased. For instance, the mean square error when naively estimating

the spread can be 16 times larger.

Importantly, we demonstrate that the true liquidity and price efficiency measures resolve the

seemingly contrasting conclusions drawn by the recent theoretical and empirical studies on the TSP.

The Securities and Exchange Commission (SEC) conducted the TSP over the period October 2016
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through September 2018, increasing the tick size from 1 cent to 5 cents for a randomly selected stock

sample. The TSP was primarily designed to test whether an increased tick size i) would enhance

market-makers’ profits (mmp), thus encouraging their participation, and thereby ii) improve price

discovery and liquidity in the treated stocks.1 Existing empirical studies of the TSP (e.g., Rindi and

Werner (2017), Chung, Lee, and Rösch (2019), Comerton-Forde, Grégoire, and Zhong (2019)) that

have evaluated these two hypothesis use quoted spreads as a proxy for the market-makers’ profits;

effective spreads calculated using the mid-point of bid-ask quotes as a proxy for the transactions

costs borne by the liquidity takers; and price efficiency measures computed using transaction prices

or the mid-point of the quoted bid and ask prices. These measures ignore the rounding specification

induced by the tick size. Thus, we argue that the existing empirical inferences lead to results that

contrast with theoretical studies of TSP that explicitly incorporate the rounding specification (e.g.,

Li, Wang, and Ye (2020)).

In particular, market-makers charge a bid-ask spread for facilitating trades. In a world without

a minimum tick, theoretical bid-ask spread models, including Demsetz (1968), Stoll (1978), Glosten

and Milgrom (1985), Kyle (1985) and Roll (1984), argue that these true spreads precisely compen-

sate for the inventory holding, order processing and adverse selection costs faced by competitive

market-makers, resulting in a zero net profit in equilibrium. However, the true bid (ask) prices

are rounded down (up) to the nearest tick grid. Thus, market makers earn a net profit of quoted

spreads minus true spreads for each share traded. As a result, quoted spreads would not proxy for

market-maker profits (mmp), whereas quoted minus true spreads would.2 Thus, measuring mmp

using quoted spreads without subtracting true spreads could lead to biased inferences.

Analogously, the traditional effective spread measures would be biased proxies for investors’

transaction costs. Fundamentally, the effective spread equals twice the absolute difference between

1Congress passed the Jumpstart Our Business Startups Act (“Jobs Act”) in 2012 with the goal of increasing the
number of initial public offerings (IPOs) in the US markets with the idea that increased access to capital would lead
to job creation by the smaller companies. The Jobs Act directed the SEC to conduct a study on how decimalization
impacted the number of IPOs as well as the liquidity and trading of small-capitalization company stocks. The SEC
decided to conduct a randomized trial to assess the impact of higher tick sizes on small firm stock liquidity, which can
be particularly important for small firms as a number of papers including Amihud and Mendelson (1986), Brennan,
Chordia, and Subrahmanyam (1998), and Brennan, Chordia, Subrahmanyam, and Tong (2012) have shown that
higher liquidity leads to a lower cost of capital.

2More specifically, this is the rent earned by liquidity suppliers due to rounding.
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the transaction price and the true fundamental price that would arise in a world without a minimum

tick (Bessembinder (2003)). Since fundamental prices are unknown, existing studies use the quote

mid-points and this biases the traditional effective spread measures. Hagstromer (2020) documents

that this bias can be as high as 96% for low priced stocks. Similarly, measures of price efficiency

and price impact computed using the mid-point of the quote also suffer from discretization driven

biases.

To extract the rounding-adjusted liquidity and price measures, we adapt the models of Ball and

Chordia (2001) and Huang and Stoll (1997) to the current HFT environment. Observed transaction

prices are modeled as the discretized (rounded) sum of i) the unobserved fundamental price that

evolves as a random walk, subject to information shocks and to price discovery through the market

and limit orders, and ii) the impact of trading frictions due to inventory and order processing

costs. Thus, over short horizons, the observed price is a discrete version of the sum of a permanent

informational component and the transient components arising out of the trading mechanism. The

true spread, which equals the continuous spread that would exist in the absence of the tick, is

modeled as a transform of a Gaussian autoregressive process associated with the fundamental price

and other structural variables such as the time of day, time between trades, and the size and depth

of the prior trade. Consistent with previous work (Hasbrouck (1999a,b)), the quoted ask equals the

true ask rounded up to the nearest grid point and the quoted bid is the true bid rounded down.

Estimating the unknown fundamental price and true spread values from this model is not

straightforward due to two highly complex challenges. First, although the resultant model takes

a bivariate state space form, the rounding destroys the Gaussian structure and the time series

independence of errors, rendering standard frequentist methods such as Kalman Filter inapplicable.

To address this concern, Ball and Chordia (2001) set up the problem in a Bayesian framework, and

they use the Gibbs sampling procedure to estimate the posterior densities of the hidden state

variables. However, this method is computationally infeasible on the millisecond TAQ data, as

it requires repeated sampling of a large number of hidden state variables. Although, the method

could be employed by aggregating the millisecond data to the second level, Holden and Jacobsen

(2014) demonstrate that such an aggregation yields distorted liquidity measures.
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Our methodology tackles both, (i) the problem of non-gaussian errors and (ii) scalability to

big data. We set up the problem in a Bayesian state-space framework and instead of drawing

a massive number of repeated samples, we directly approximate the posterior densities of the

fundamental prices and true spreads using a known distribution function. This procedure is known

as “Variational Inference.” In particular, to approximate the posterior density of the latent state

variables, i.e., fundamental prices and true spreads, we consider a family of densities Q over the

hidden state variables. Each density q (∈ Q) in the family is a candidate approximation for the true

posterior. The basic idea is to find the best density in the family, q∗ (∈ Q), that is statistically closest

(Kullback-Leibler (KL) divergence) to the true posterior density. We then use the obtained optimal

density, q∗, as an approximation for the true posterior density of prices and spreads. Variational

Inference, thus, turns the sampling problem into an optimization problem and the optimal density

q∗ is obtained by iteratively solving the first order conditions.

Hoffman, Blei, Wang, Paisley, and Edu (2013), and Blei, Kucukelbir, and McAuliffe (2017)

have proposed algorithms for obtaining the first order conditions of Variational Inference problems.

These algorithms are widely used in the applications of topic modeling, especially for identifying

and classifying millions of words in documents into different topics. However, such algorithms do

not directly apply in our framework because of the rounding specification of the errors. Noting

that the conditional posterior density of hidden variables given the observed variables and other

parameters could be expressed as a truncated multivariate distribution, we explicitly derive the first

order conditions to approximate the posteriors. All first order conditions are obtained as closed

form expressions, allowing for quick estimation.

We use the millisecond TAQ data over the two months of the non-pilot (September 2016 and

November 2018) and pilot periods (November 2016 and September 2018), across nearly 2400 treated

and control stocks that were part of the TSP to extract the true mmp, liquidity, and price efficiency

measures. The pilot securities have been divided into one control group, C, of nearly 1200 stocks

and three test groups of 400 stocks each - G1, G2 and G3. G1 stocks continue to trade at a one

cent tick but are allowed to quote only in five cent increments, G2 stocks are allowed to both trade
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and quote only in five cent increments with a few exception,3 G3 stocks are quoted and traded in

five cent increments and are subject to a Trade-at-Prohibition rule, which generally prevents price

matching by a trading center that is not displaying the best price unless an exception applies. Our

methodology incorporates appropriate rounding rules for each group. The observed prices of G1

stocks are rounded to one cent but quoted asks and bids are rounded to five cents. For G2 and G3

stocks both transaction prices and quotes are rounded to five cents, except that for G2 stocks when

we see transaction prices that are not on the five cent grid we round prices to one cent. For the C

stocks all trades and quotes are rounded to one cent.

We first note that rounding has a large impact on the quoted spreads, which are orders of

magnitude larger than the true spreads for the constrained (as compared to the unconstrained)

stocks, especially during the pilot period.4 The difference-in-differences analysis shows that the

TSP leads to an increase in the quoted spreads for the constrained stocks due to the binding tick

size driven discretization. Interestingly, true spreads decrease and this decrease is larger for the

unconstrained stocks. The increase in the quoted spreads for the constrained stocks combined with

a decline in the true spreads for constrained as well as unconstrained stocks leads to an increase

in mmp across all the treated stocks. The profits per trade are ordered as G1 < G2 < G3 and are

consistent with appropriate quoting and trading restrictions imposed on each group.

Our results differ from Rindi and Werner (2017) and Chung et al. (2019), who use quoted

spreads (rather than quoted minus true spreads) as proxies for mmp to argue that the TSP does

not increase and may even decrease market maker profits / revenues for the unconstrained stocks.

In contrast, we find that the TSP significantly increases mmp for both, the constrained and un-

constrained stocks. For the unconstrained stocks, even though the quoted spreads do not increase

during the pilot regime, the costs incurred by the market-makers to facilitate trades, the true

spreads, decrease and this results in an increase in mmp.

We document that TSP causes a decrease in both, the adverse selection as well as the inventory

3Exceptions that permit executions in one cent increments are the (1) midpoint between the national or protected
best bid and the national or best protected offer, (2) retail investor orders with price improvement of at least $0.005
per share, and (3) negotiated trades.

4Constrained (unconstrained) stocks are those whose quoted bid-ask spreads were lower (higher) than 5 cents prior
to the TSP.
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(plus order processing) cost components of the true spreads, with a larger decline in the inventory

costs. This result is consistent with the significant decrease in end-of-day inventory held by aggre-

gate market-makers during the tick size pilot (as reported by the SEC website), which is indicative

of lower inventory costs borne by the market-makers (Comerton-Forde, Hendershott, Jones, Moul-

ton, and Seasholes (2010), Chordia and Subrahmanyam (2004), Muravyev (2016)). In contrast,

the inventory cost components of the spread that are estimated using the non-rounded Huang

and Stoll (1997) methodology from quoted spreads do not capture the TSP-induced decreased in-

ventory costs reported by the SEC. In fact, the non-rounded inventory cost component increase

significantly for the constrained stocks even though there is a decline in aggregate market-makers’

inventory holdings.

The decline in true spreads during the TSP is consistent with the theoretical model of Li et al.

(2020). They argue that, under discrete pricing and depending on mmp per trade, high-frequency

traders (HFTs) and informed algorithmic traders, who are not HFTs, endogenously choose to

provide liquidity. In constrained stocks, due to higher mmp per trade, HFTs compete on speed

to provide liquidity. As a result, non-HFT informed traders, who are slower than HFTs and are

likely to be crowded out, submit more market orders than limit orders. Yao and Ye (2018) call

this “queueing equilibrium (competition).” However, informed traders are relatively more likely

to submit price improving limit orders (or their limit orders are more likely to be successfully

consummated) in unconstrained stocks. As a result, TSP results in lower adverse selection costs,

particularly for trading unconstrained stocks. In addition, inventory costs are also lowered, as

non-HFT informed traders do not holding inventory that has to be laid off. This leads to relatively

lower true spreads in the unconstrained stocks during the TSP.

We also compute the realized profits per share traded, which equals the transaction price less

the true ask if the trade is a customer buy, and the true bid minus the transaction price if the trade

is a customer sell. The realized profits are less than half the mmp suggesting that, on average,

liquidity demanders trade more at the quoted ask when the difference between the quoted and the

true ask is lower than the difference between the true and the quoted bid and vice versa. Thus,

(some) liquidity demanders are able to trade at prices where the impact of rounding is the lowest
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suggesting that they employ sophisticated algorithms that allow them to ascertain the rounding

cost. We also provide evidence that (some) liquidity-supplying traders understand the true price

and quote process. Thus, in order to back out the impact of the sophisticated trading strategies,

we, as econometricians, should also use sophisticated big-data methods to estimate the true spreads

and fundamental prices. This motivates our use of sophisticated big-data methods to estimate true

spreads and fundamental prices.

We proxy investors’ transaction costs by the effective spread, which equals twice the absolute

difference between the transaction price and the true fundamental. TSP increases transaction

costs for the constrained stocks. Further, our transaction cost estimates align with the appropriate

restrictions imposed on stocks in each treated group. For example, traders incur lower transaction

costs per trade for demanding liquidity in G1 constrained stocks as compared to the G2 constrained

stocks because investors are allowed to trade these stocks at one cent levels. Similarly, investors

incur relatively lower transaction cost per trade for stocks in G2 compared to that of G3 because

G2 stocks can trade at quotes that are within the five cent tick presumably when trading against

quotes from other venues (including dark venues), whereas G3 stocks cannot. When the transaction

costs are estimated using the quote mid-point or a depth weighted quote mid-point as suggested

by Hagstromer (2020), the effective spreads do not align with the restrictions.

Our model also allows us to estimate the proportion of price discovery directly through the

new information, and indirectly through the limit and market orders. We find that the TSP does

not improve, and in fact decreases the proportion of price discovery through new information, for a

majority of treated stocks. This indicates that prices are proportionally more responsive to previous

trades and quotes rather than to the new information, and thus are less efficient (Hendershott,

Jones, and Menkveld (2011), Chordia, Green, and Kottimukkalur (2018)). Further, we follow the

methodology of Chordia and Swaminathan (2000) and Hou and Moskowitz (2005) to conduct tests

to ascertain the impact of TSP on the speed of incorporation of information into prices. Based on

the estimated fundamental prices we find that, in general, the TSP decreases (increases) the speed

of price discovery for the constrained (unconstrained) stocks. This result contrasts with Comerton-

Forde et al. (2019), who document an increased speed of adjustment for the treated stocks. Since
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this analysis is conducted at a lower frequency of one minute, it relates more to the speed of price

discovery of fundamental information, suggesting that, for the constrained stocks, TSP decreases

the speed of incorporation of fundamental information into prices.

In summary, despite the TSP achieving its first objective of increasing mmp across the treated

stocks, it does not increase liquidity or reduce trading costs across all the treated stocks. Price

efficiency declines. The speed of incorporation of information into prices generally improves for the

unconstrained stocks but it deteriorates for the constrained stocks. These findings are consistent

with the theoretical predictions of Li et al. (2020) as well as the insights of practitioners.5 Li

et al. (2020) have argued that large TSP-induced discretization rents (i.e., mmp), especially on

constrained stocks, promotes queue competition rather than price competition, thereby decreasing

the proportion of price discovery through new information, and also delaying price discovery.

Our paper relates to the literature on estimating various liquidity measures including the

components of bid-ask spreads. Whereas Hagstromer (2020) focuses only on effective spreads, and

estimates it using a depth weighted quote mid-point or the micro-price (see Stoikov (2018)), our

methodology provides a general framework to estimate all the fundamental market-microstructure

measures including mmp, fundamental prices, true spreads, and price discovery. Muravyev (2016)

generalizes the Huang and Stoll (1997) approach to estimate the inventory cost component of bid-

ask spreads, and finds that it has a first-order effect on option prices. Bharath, Pasquariello, and

Wu (2009) aggregate various measures of the adverse selection component including Roll (1984)

and Huang and Stoll (1997) to construct an information asymmetry index for each firm, and find

that this index impacts a firm’s capital structure decisions. Our results suggest that such adverse

selection and inventory cost measures could be biased in the presence of rounding.

This paper also relates to the growing literature on the applications of machine learning meth-

5A recent report from Mesirow Financial Equity Management argues that - “Some observations might indicate that
the winners appear to be high-frequency traders, who are able to take advantage of the mandated larger spreads by
capturing the difference as profit, similar to the market-makers of the pre-decimalization era, albeit on a smaller scale
of volume and price. If this is the case, the pilot program is probably meeting its original objective of incentivizing
market making in small stocks. The caveat is that today’s market makers are no longer the research-producing
institutional brokers who were compensated with hefty commissions and spreads for the risks of making markets.
Instead, they are electronic traders who sometimes fight for fractions of a cent on order sizes of a much smaller
magnitude.” See also Chordia and Subrahmanyam (1995).
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ods in finance. Our Variational Inference methodology is general and could be applied to address

other non-trivial problems with big datasets in economics and finance. Whereas studies such as

Gu, Kelly, and Xiu (2018), Chinco, Clark-Joseph, and Ye (2019) and Chen, Pelger, and Zhu (2019)

apply machine learning techniques to empirically identify the best models or predictors, we con-

duct a structural estimation of a well established model. Thus, our inferences are economically

interpretable, which is usually difficult with machine learning algorithms. Note also that unlike

machine learning applications to predict returns at a daily, weekly, or monthly frequency, we are

operating at the transaction level where predictability may not be completely arbitraged away.

18. Model

The model is a generalization of the Ball and Chordia (2001) and Huang and Stoll (1997) models

and is designed to accomodate the current high frequency trading environment. It accommodates

different rounding rules imposed by the tick-size pilot across the stocks in the different test groups

(G1, G2, G3) and the control group (C).

The observed transaction price Pt is modeled as

Pt ≡ [pNRt ]Round = [mt + (1− λ)stQt/2]Round, (1)

where pNRt is the nonrounded price at time t; mt is the fundamental price of the security at time t,

immediately after a trade; Qt is a trade indicator for buyer/seller classification of trades and is +1 if

the trade is buyer initiated, -1 if the trade is seller initiated, and 0 if we are unable to sign the traded;

λ is the adverse selection component of the spread; and st is the true spread that would obtain

in a market with continuous prices i.e., a zero tick size. The notation [.]Round indicates rounding

onto the tick grid. Thus, the observed transaction price is a result of rounding or discretization

of the sum of the fundamental price and the inventory and order processing component of the

spread. Note that in the presence of rounding, the disturbances in observed price changes are

not Gaussian. Most market microstructure models ignore rounding, and, thus are unlikely to be

correctly specified, especially if the rounding is severe.
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The fundamental price (mt) updates the past price (mt−1) by incorporating any new informa-

tion contained in the market orders, limit orders and other sources of publicly available information.

We assume that mt evolves as follows:

mt = mt−1 +

price discovery through market orders︷ ︸︸ ︷
λ
stQt

2
+

price discovery through public info︷︸︸︷
εt +

λ1(∆At) DA
t + λ2(∆Bt) DB

t + λ3 (∆DA
t ) I∆A=0Qt + λ4(∆DB

t ) I∆B=0Qt︸ ︷︷ ︸
price discovery through limit orders

, (2)

where {εt, t = 1, 2, . . . , T} are i.i.d N(0, σ2
ε ) and represent information shocks. The second

term in equation (2) is the half fraction of spread attributable to adverse selection and represents

price discovery through the market orders. The final term is the contribution of limit orders to the

price discovery, where At (Bt) are the NBBO ask (bid) quotes and DA
t (DB

t ) are the corresponding

depths at time t. ∆(Xt) denotes the first order difference Xt −Xt−1 and I is an indicator variable

for when ∆A = 0 or ∆B = 0.

A key distinction of our model is that we allow for price discovery through limit orders. Ball

and Chordia (2001) and Huang and Stoll (1997) allow for price discovery only through the adverse

selection component of the market orders and through information shocks. Our specification is

consistent with the recent empirical evidence of Brogaard, Hendershott, and Riordan (2019) who,

due to the presence of HFTs, attribute a majority of the price discovery to limit orders. We use

publicly available information including the best ask and bid quotes, corresponding depths, and

their first order differences to capture price discovery through limit orders.

In a world without ticks, let at (bt) be the true ask (bid) price and so st = at − bt is the

true spread that market-makers charge for facilitating a trade at time t. Theoretical models on

bid-ask spreads argue that these spreads compensate market makers for the inventory holding,

order processing and adverse selection costs faced by competitive market makers, resulting a zero

net profit in equilibrium. However, in the presence of a positive tick size, market makers round up

(down) the true ask (bid) price, at (bt), to the nearest grid and quote a higher (lower) ask (bid)
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price, At, (Bt). Since the quoted spreads (At −Bt) are greater than the true spreads (st) incurred

by the market markets, they earn a net profit of At −Bt − st for facilitating a trade.6

Under this rationale, SEC anticipates that the tick size pilot program (TSP) would increase

market maker profits and encourage them to provide more liquidity. Studies that evaluate TSP

including Rindi and Werner (2017) and Chung et al. (2019) use the quoted spread (At − Bt) as

a proxy for profits per trade without deducting the true spreads (st). This could lead to biased

inferences as the true spreads (st) are known to vary with the tick-size. For example, Goettler,

Parlour, and Rajan (2009) and more recently Werner, Wen, Rindi, and Buti (2019), and Riccó,

Rindi, and Seppi (2018) show that an increase in tick-size could lead to informed traders switching

their orders from market to limit orders, resulting in lower adverse selection costs and, thus, lower

true spreads.

Given a tick-size regime, we model the dynamics of true spreads as a first order logarithmic

auto-regression with additional structural variables as in Ball and Chordia (2001) :

ln(st) = α+ βln(st−1) + δln
Vt−1

Dt−1
+ τT imet−1 + d1BEGt + d2ENDt + et, (3)

where {et, t = 1, 2, . . . , T} are i.i.d N(0, σ2
e), Vt−1 is the volume of stock transacted at the previous

trade, Dt−1 is the corresponding bid or ask depth, Timet−1 is the time, in seconds between the

last trade and the one before it and BEGt (ENDt) is an indicator variable denoting the first (last)

hour of the trading day.

The regression specification is consistent with the empirical evidence in Chordia, Roll, and

Subrahmanyam (2001) that shows how the relative size of trade to depth on the previous transaction

possibly impacts the ensuing spread at the current transaction. The dummy variables capture

the intraday seasonalities and the use of lagged time between trades is motivated by Easley and

O’Hara (1992), who suggest that absence of trades may provide information about the occurence

of information events. Note that, due to rounding, the quoted spread cannot be modeled as an

6To be precise, the realized profit from each trade is the transaction price less the true ask if the trade is a customer
buy (market-maker sell) and the true bid minus the transaction price if the trade is a customer sell (market-maker
buy). In the empirical section, we also estimate these realized profits for a given trade.
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auto-regressive process with Gaussian errors. However, the (log) true spread lies on the real line

and is modeled as in equation (3).

We denote xt = mt−λstQt/2 and γt = log(st) for algebraic convenience. Combining the above

equations we have the following econometric model:

Pt ≡ [pNRt ]Round = [xt + stQt/2]Round, (4)

xt = xt−1 + λ
st−1Qt−1

2
+ +l1L1t + l2L2t + l3L3t + l4L4t + εt, (5)

γt = α+ βγt−1 + d1D1t + d2D2t + d3D3t + d4D4t + et, (6)

where the regression dependent variables, L1t = (∆At) DA
t , L2t = (∆Bt) DB

t , L3t = (∆DA)

I∆At=0Qt, L4t = (∆DB) I∆Bt=0Qt , D1t = ln Vt−1

Dt−1
, D2t = Timet−1, D3t = BEGt and D4t =

ENDt. Denoting zt = {xt, γt}, the system is expressed as the following first order vector autore-

gression (VAR(1)) model:7

zt = µt +Atzt−1 + εt. (7)

The true spreads and fundamental prices (zt) are not observable but the transaction prices and

quoted spreads that are discretized to the nearest grid are available. We adhere to the following

discretization process for the observed transaction prices and quoted spreads:

1. If the observed price, Pt, is at the ask (bid) then we assume that the nonrounded price, pNRt ,

has been rounded up (down) to the nearest tick. Furthermore, the bid (ask) price is assumed

to have been rounded down (up). Thus, for a trade at the ask, xt + st/2 ∈ [Pt − tick, Pt] and

xt − st/2 ∈ [Bt, Bt + tick]. Similarly, for a trade at the bid, xt − st/2 ∈ [Pt, Pt + tick] and

xt + st/2 ∈ [At − tick,At].
7Note that our VAR model uses only lagged information.
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2. If the trade is a customer buy, Qt = +1, and the price is not the same as the ask, Pt 6= At,

then xt + st/2 ∈ [Pt − tick, Pt] and xt − st/2 ∈ [Bt, Bt + tick].

3. If the trade is a customer sell, Qt = −1, and the price is not the same as the bid, Pt 6= Bt,

then xt − st/2 ∈ [Pt, Pt + tick] and xt + st/2 ∈ [At − tick,At].

Thus, at each time point t, we have the following information

xt + st/2 ∈ I1t,

xt − st/2 ∈ I2t, (8)

where, I1t and I2t indicate the intervals of length the tick size, that each linear functional of

the state variable must lie within. In other words, the observed information places the adjusted

fundamental price plus the half-spread in one interval of length tick size and places the adjusted

fundamental price minus the half-spread in another length of tick size. We use the above speci-

fication with a uniform tick of 1 cent across all the treated stocks in groups G1, G2, G3 and the

control group C during the non-pilot regime.

For the periods considered during the TSP, we adapt the following tick rule:

1. Considering that the SEC restricts stocks in group G1 to quote only in 5 cents but are allowed

to trade in 1 cent, we use a tick of 5 cents for rounding the quoted bid-ask spreads, and a

tick of 1 cent for the transaction prices. This is also equivalent to rounding all the trades

at the ask or the bid to 5 cents, and rounding the remaining trades with transaction prices

between the bid-ask quotes to 1 cent.

2. We use a tick of 5 cents for stocks in the groups G2, G3 since these are restricted to quote

and trade only in 5 cents. However, for G2 stocks when we observe transaction prices that

are not on the five cent tick grid, we round to one cent.

3. Lastly, we use a tick of 1 cent for stocks in the control group (C) because they continue to

both trade and quote in 1 cent.
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Summarizing the set of observed values at time period t as Yt = {Pt, At, Bt, tick}, our interest

lies in estimating the hidden state variables (zt) that includes true spreads and fundamental prices,

and the set of parameters Θ = {λ, β, l1, l2, l3, l4, d1, d2, d3, d4, σ
2
ε , σ

2
η}. We cast our econometric

model in equations (7) and (8) into the state space framework with equation (7) as the transition

equation and (8) as the measurement equation. The rounding mechanism embedded in the mea-

surement equation destroys the Gaussian structure and the time series independence of the errors,

rendering standard estimation methods (Kalman Filtering, Kalman (1960)) invalid.

Ball and Chordia (2001) employ a Bayesian procedure that accommodates discreteness of

measurement errors, and involves estimating the hidden state variables by drawing a large number

of simulated samples (Gibbs Sampling). Subsequently, they extract fundamental prices and true

spreads of seven large and mid-cap stocks using second level data restricted to a maximum of 14,000

transactions in the sample period. This methodology is computationally infeasible on a large cross-

section of stocks with the millisecond level TAQ data since it requires repeated simulations of a

large number of latent variables. In particular, Ball and Chordia (2001) extract fundamental prices

and true spreads for only seven large and mid-cap stocks using second-level transactions data,

restricted to a maximum of 14,000 transactions in the sample period. Given that an average stock

with four months of millisecond level TAQ data has over 6×105 transactions, conducting a tick size

pilot study across 2400 stocks requires drawing simulations of about 29×108 (∼ 2×2400×6×105)

latent variables. Furthermore, these simulations would have to be repeated a large number of times

(10,000 times in Ball and Chordia (2001)) until all the latent variables and parameters converge.

Recognizing the above challenges in existing approaches, we develop a computationally scalable

Variational Inference methodology that incorporates rounding when estimating these large number

of latent variables and parameters. We describe the methodology in the following section.

19. Methodology: Variational Bayesian Inference

The goal is to estimate the state variables zt = {xt, γt} and the parameters Θ, having observed

{Yt} and other explanatory variables such as {Qt} and {Lit, Dit}4i=1. We set up the estimation
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problem in a Bayesian framework due to the discreteness and rounding structure of the observed

variables. The premise of a Bayesian framework is to place priors on the latent variables and

parameters, and estimate the posterior density of latent variables and parameters given the priors

and the observed data,

P (zTt=1,Θ|Y T
t=1) ∝ P (Y T

t=1|zTt=1,Θ)P (zTt=1|Θ)P (Θ), (9)

where P (Θ) is the prior density of the parameters, P (Y T
t=1|zTt=1, θ) is the conditional likelihood of

Y T
t=1 given zTt=1 and Θ, and P (zTt=1|Θ) is the conditional likelihood of zTt=1 given Θ.

The calculation of joint posterior is generally intractable. Considering the Markovian structure

of latent variables and the rounding specification of our model, the conditional posterior densities of

each variable or parameter given the other parameters, variables and the data can be easily derived

and expressed as known density functions. Building on this insight, Ball and Chordia (2001) ob-

tain samples from the conditional densities P (Θ|zTt=1, Y
T
t=1) and P (zt|z∼t,Θ, Y T

t=1), for t = 1, 2, . . . T ,

where z∼t is the set of all latent variables excluding zt. For a large number of draws, statistical

theories (Geman and Geman (1993)) show that such samples from the conditional densities repre-

sent samples from the joint posterior density P (zTt=1,Θ|Y T
t=1). Subsequently, parameters and latent

variables are then estimated by computing averages and standard deviations of the samples drawn

from the joint posterior density. This procedure is computationally infeasible on large data sets

that include the millisecond level TAQ data, since it requires drawing samples of large number of

latent variables and repeating the simulation exercise many times until all the parameters converge.

Our Variational Inference based methodology directly approximates the posterior density by

solving a simple optimization problem and bypasses the challenge of drawing large number of

repeated samples. In particular, to approximate the posterior density P (zTt=1,Θ|Y T
t=1), we consider

a family of known densities Q over the latent variables (zTt=1) and the parameters Θ. Each density

q (∈ Q) in the family is a candidate approximation for the true posterior. The premise of our

methodology is to find the best density in the family, q∗ (∈ Q), that is (statistically) closest to the
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true posterior density in terms of Kullback-Leibler (KL) divergence,

q∗({zt}Tt=1,Θ) = arg min
q({zt}Tt=1,Θ)∈Q

KL
[
q({zt}Tt=1,Θ)||P

(
{zt}Tt=1,Θ|Y T

t=1

)]
= arg min

q({zt}Tt=1,Θ)∈Q
E
[
log
(
q({zt}Tt=1,Θ)

)]
− E

[
log
(
P
(
{zt}Tt=1,Θ|Y T

t=1

))]
, (10)

where Kullback-Leibler (KL) distance between two densities quantifies how much the second density

is different from the first, and all expectations are taken with respect to the considered density

over the latent variables and parameters, q(.). Finally, we approximate the posterior with the

optimized member of the family q∗(.). Variational inference thus turns the sampling problem into

an optimization problem. The key is to consider a generous family of densities Q such that a

member of the family closely approximates the true posterior, but simple enough for solving the

optimization problem.

Several studies in the asset pricing literature (e.g.,Backus, Chernov, and Zin (2014)) use the

KL metric to evaluate and compare prominent theoretical models such as the consumption capital

asset pricing and habit models that explain the time series and cross-section of stock returns. We

use this metric to find a good approximation q∗ for the true posterior density of true spreads,

fundamental prices and the parameters (Θ), P (zTt=1,Θ|Y T
t=1).

Minimizing the KL objective appears to be not possible since the true posterior density,

P ({zTt=1,Θ|Y T
t=1}) is not known. However, a useful decomposition of the second term in equation

(10) shows that this minimization objective is solvable despite the absence of true posterior density.

The decomposition is as below:

log
(
P (zTt=1,Θ|Y T

t=1)
)

= log
(
P (zTt=1,Θ, Y

T
t=1)

)
− log

(
P (Y T

t=1)
)
, (11)

where the first term of equation (11) is the joint density of the latent variables, parameters and the

observed data that can be computed using the priors on the parameters and the latent variables;

and the likelihood of the data given the parameters and the latent variables. The second term is

the marginal likelihood of the observed data that involves integrating the likelihood function with
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respect to the priors on parameters and the latent variables. Although not computable, this term

is free of parameters and the latent variables, and thus is a constant with respect to any density

q(.), over the latent variables and parameters. Therefore, the minimization objective involves

only the known priors and likelihood functions, which are solvable. In particular it is equivalent

to maximizing the popularly known objective, Evidence Lower Bound (ELBO), which is defined

below:

ELBO(q) = E
[
log
(
P
(
{zt}Tt=1,Θ, Y

T
t=1

))]
− E

[
log
(
q({zt}Tt=1,Θ)

)]
. (12)

Blei et al. (2017) outline a procedure that addresses two key questions for a set of specialized

models that belong to the exponential family such as topic modeling : i) what family of densities

to consider for the approximation of the latent variables? ii) how to obtain the optimal density

in the family that best approximates the true posterior? We generalize their theory and derive a

procedure for approximating the posterior in the context of discreteness and rounding specification

using two vital results:

1. The likelihood function of observed prices and spreads given true spreads, prices and param-

eters is a truncated bivariate normal density.

2. Truncated bivariate normal densities belong to exponential set of family.

In what follows, we lay out the procedure for choosing a family of densities, Q to approximate

the joint posterior of the latent variables and parameters, and obtaining the optimal density q∗ ∈ Q

that best approximates the true posterior.

19a. Family of Densities for Approximation

Our idea is to approximate the posterior density of latent variables given observed variables by

solving an optimization problem. We use a family of densities over the latent variables, parametrized

by “variational parameters”. The optimization finds the member of this family, that is, the setting

of “variational parameters”, which is closest to the true posterior density of latent variables.

We consider a specific family of densities, where the latent variables and parameters are inde-
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pendent. These are popularly known as mean-field densities and each of its candidate density is of

the form:

q(zTt=1,Θ|Φ) = ΠT
t=1q(zt; Φzt)Π

4
i=1q(li; Φli)q(di; Φdi)q(λ; Φλ)q(β; Φβ)q(α; Φα), (13)

where Φ = {{Φzt , }Tt=1, {Φli ,Φdi}4i=1,Φλ,Φβ,Φα} are the “variational parameters” governing ap-

proximate densities q(.|Φ). Our goal is then to find the optimal density q∗(.|Φ∗), or the variational

parameters Φ∗, such that the density q∗(.|Φ∗) is closest to the true posterior P (zTt=1,Θ|yTt=1). Equiv-

alently, q∗ is the solution to the below optimization problem:

q∗(zTt=1,Θ|Φ∗) = ΠT
t=1q

∗(zt; Φ∗zt)Π
4
i=1q

∗(li; Φ∗li)q
∗(di; Φ∗di)q

∗(λ; Φ∗λ)q∗(β; Φ∗β)q∗(α; Φ∗α)

= arg minKL(q(zTt=1,Θ)||P (zTt=1,Θ|yTt=1))

Before describing the procedure for obtaining the optimal density q∗, it is worth highlighting

few properties of the mean-field family of densities. Note that the candidate densities q ∈ Q, as-

sumes that all the parameters and hidden-states are time-independent. However, the state variables

and the parameters in the true posterior are not time- independent. Given that we are minimizing

the Kullback-Leibler distance, this simple approximation, however works well in approximating the

true marginal posteriors, and thus means and variances of the individual state variables. However,

it may not be appropriate to consider the mean-field family to estimate the covariance between

the hidden-state variables and parameters. Since we estimate fundamental prices, true spreads and

parameters (Θ) using means and standard deviations of marginal posterior densities of respective

variables and parameters, mean-field approximations aptly serves our purpose.

We demonstrate the success of the mean-field approximations in our context using Monte-

Carlo simulations. We find that the approximation is quite precise, and recovers the true simulated

values. More recently, Wang and Blei (2018) conclude that Variational Inference with mean-field

families is a theoretically sound approximate inference procedure for the marginal densities even
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though it is not appropriate for the true joint posterior as it does not account for the covariance

structure of the state variables and the parameters.

19b. Estimating the Optimal Density Function

Estimating the optimal mean-field density, q∗(.|Φ∗) that is closest to the true posterior is not

straight forward and does not have a closed form solution. However, Blei et al. (2017) derive a

useful result, which shows that the optimal density of an individual latent variable given the optimal

densities of all other latent variables are easily obtained. Therefore, q∗(.|Φ∗) can be estimated by

starting with some initial guesses on the optimal densities and recursively updating the optimal

density of each variable given the optimal densities of other variables. We state the fundamental

result on mean-field approximations due to Blei et al. (2017):

Proposition 1. Given observations {Y T
t=1}, the optimal mean-field density of a hidden variable

zt, q
∗ (zt|Φ∗zt) given the optimal densities of other hidden variables z∼t, q

∗ (z∼t|Φ∗z∼t) and the pa-

rameters Θ, q∗ (Θ|Φ∗) is proportional to

q∗
(
zt|Φ∗zt

)
∝ exp

(
Eq∗(z∼t|Φ∗z∼t)q

∗(Θ|Φ∗) log
[
f
(
Y T
t=1|zTt=1,Θ

)
f(zTt=1|Θ)f(Θ)

])
, (14)

where f
(
Y T
t=1|zTt=1,Θ

)
is the conditional density of the observed variables Y T

t=1 given the hidden

state variables zTt=1 and the parameters Θ; f(zTt=1|Θ) is the conditional density of hidden state-

variables given the parameters Θ; and f(Θ) is the prior density of the parameters. Note that the

expectation in the above equation is taken with respect to the optimal densities of excluded hidden

variables q∗(z∼t|Φ∗z∼t) and the parameters q∗(Θ|Φ∗). Similarly, the optimal density of parameters

Θ, q∗(Θ|Φ∗) is given by

q∗ (Θ|Φ∗) ∝ exp

E
q∗
(
zTt=1;Φ∗

zTt=1

) log
[
f
(
Y T
t=1|zTt=1,Θ

)
f(zTt=1|Θ)f(Θ)

] . (15)

Here, the expectation is taken with respect to the optimal densities of state variables, q∗
(
zTt=1; Φ∗

zTt=1

)
.

Starting with some initial values for the “variational parameters” {{Φ∗zt}
T
t=1,Φ

∗}, we can re-
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cursively update the “variational parameters” or the optimal densities given the other variational

parameters using both the above equations (14), (15) until convergence. Before deriving the update

equations, it is worth pointing out the similarities of this methodology with the Gibbs Sampling

approach of Ball and Chordia (2001). While a large number of samples are recursively drawn in

Gibbs Sampling from the conditional posteriors of a variable given other variables and parame-

ters, Variational Inference directly updates the moments of marginal posteriors, and bypasses the

challenge of drawing a large number of samples.

19c. Derivations of Updates

We derive the equations for updating the optimal density of a parameter or a hidden variable

given other variables and parameters in the appendix. The final updates are given in equations

equations (27), (29), (31), (32), (33). Then, we estimate true posteriors of the fundamental prices,

true spreads and other parameters including the adverse selection component (λ), by recursively

updating variational densities of these equations, until all the densities converge. Overall, the

algorithm for approximating the true posterior is given below :

1. Set initial values of variational parameters Φ, Φzt for approximating densities of parameters,

Θ and state-variables, zTt=1 respectively.

2. Update variational density of parameters (q∗(Θ)) using equations (27), (29), (31), (32).

3. Update variational density of state variables (q∗(zt)) using equation (33).

4. Compute Evidence Lower Bound (ELBO) using equation (12), and steps 2 and 3.

5. Repeat steps 2 to 4 until ELBO convergence.

6. Approximate the true posterior with q∗(zTt=1,Θ).
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20. Performance of the Proposed Methodology

In this section, we compare our methodology to the existing procedures and show that it

performs well in terms of both accurately estimating the true parameters and scaling to the Big

Data of millisecond level trades and quotes (TAQ).

20a. Accuracy of the methodology: Monte-Carlo Evidence

Using Monte-Carlo simulations, we first evaluate the performance of our methodology by ex-

amining whether the estimated parameters and variables that include true spreads, effective spreads

and market-makers profits are close to the respective true simulated values. We then compare our

methodology with the existing procedures that naively estimate these variables with the observed

transaction prices and quoted spreads, without adjusting for rounding.

In particular, given a set of regression coefficients {λ, α, β, l1, l2, l3, l4, d1, d2, d3, d4} and other

explanatory variables {Qt, L1t, L2t, L3t, L4t, D1t, D2t, D3t, D4t}, we first simulate fundamental prices

(xt) and true spreads (st) using the VAR(1) specification in equations (5) and (6). The regression co-

efficients {λ, α, β, . . . , d4}, and the explanatory variables {Qt, L1t, . . . , D4t} are calibrated to match

their empirical counterparts for a given stock. For example, to simulate fundamental prices and

true spreads for the stock of Florida Community Bank (FCB), we sign the trades during the sample

period as buys and sells to obtain Qt; we use the product of change in its best ask quote and its

depth at the ask (∆At ×DA
t ) as L1t, and similarly for other variables {L2t, L3t, . . . , D4t}. For the

parameters {λ, α, β, . . . , d4}, we use respective sample estimates (OLS) of coefficients in the VAR(1)

specification of (5) and (6), with mid-quotes as xt, and half spreads ((Askt −Bidt)/2) as st.

After simulating the fundamental prices and true spreads, we use the rounding rule (8) to obtain

the observed ask quotes of At = [xt+st/2]up, and the bid quotes of Bt = [xt−st/2]down. Without loss

of generality, for a grid size of 5 cents, we specify that the rounded prices and quotes are exact mul-

tiples of 5 cents. For example, if the true simulated ask quote of a stock (xt+st/2) is $32.3245 cents,

the observed ask quote (At) is rounded up to 32.35. Similarly, if the true bid quote (xt − st/2) is

$31.3212, then Bt is rounded down to $31.30. Using these simulated rounded values of {At, Bt, Pt},
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and the explanatory variables {qt, L1t, L2t, L3t, L4t, D1t, D2t, D3t, D4t}, we implement our method-

ology to estimate the latent variables {xt, γt} and the parameters {λ, α, β, l1, l2, l3, l4, d1, d2, d3, d4},

and check whether the methodology recovers the true simulated variables and parameters.

Table 31 shows the performance of our methodology, where we perform independent Monte-

Carlo simulations calibrated to three randomly selected stocks, Florida Community Bank (FCB),

Boston Beer Company (SAM) and AMC Entertainment Holdings (AMC). The first column rep-

resents the true simulated values, while the second and third are the estimated values using our

methodology and existing procedures, respectively. We find that our methodology performs well by

noting that the difference between average simulated fundamental prices and estimated fundamen-

tal prices is 0.07, 0.11 and 0.12 cents and the difference between the average simulated true effective

spreads and estimated true effective spreads is 0.02, 0.05, and 0.01 cents for FCB, SAM, and AMC,

respectively. We further establish the success of our methodology by showing that other variables

such as price impact (λ), market maker profits (mmp) and the posterior variance estimates also

closely match the corresponding true simulated values.

Rindi and Werner (2017), Chung et al. (2019) and the official report submitted by FINRA to

NMS (FINRA Report (2018)) use quoted spreads as a proxy for mmp and the effective spreads

measured using mid-quotes as a proxy for the transaction costs borne by the traders. Simulation

evidence shows that such estimation procedures are biased. For example, when the fundamental

prices and true spreads are simulated under parameters calibrated to match those of SAM, the

effective spread is biased by 20% and the mmp by 363%. Also, relative to our estimation, the

squared estimation error
[∑

t(Truet − Estimatedt)2
]

when estimating the true spread increases

11- and 16-fold for FCB and AMC respectively, when the true spreads are naively set equal to

the quoted spreads. Overall, the simulation evidence not only validates our methodology but also

underlines the biases in existing procedures in estimating fundamental microstructure variables.

We also assess the scalability of our methodology by examining the number of iterations re-

quired for the algorithm to converge. Figure 1 shows that for AMC, with nearly 4×105 transactions,

the algorithm requires only 6 iterations (epochs - in machine learning parlance) for all the param-

eters to converge. For each stock, the algorithm with 6 iterations takes less than two minutes on a
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standard personal computer with I7− (4790 CPU, 3.6GHz) processor and 16 GB RAM.

21. Data

Our sample consists of daily millisecond level trade and quote data (TAQ) across all stocks

included in the TSP. The data spans over two different time periods: one month before and after

the TSP conclusion date (October 1, 2018), and another month before and after the beginning date

of TSP (October 1, 2016). We conduct independent analysis across both the above sub-samples.

The non-pilot period for the first sub-sample is November 1- November 30, 2018, whereas the pilot

period is September 1- September 30, 2018. Similarly, the non-pilot period for the second sub-

sample is September 1- September 30, 2016, and the pilot period is November 1- November 30,

2016. We follow Holden and Jacobsen (2014) in cleaning and matching the TAQ data. We drop

all stocks without daily TAQ data, and transactions with negative or zero quoted spreads from the

sample. We also filter out the stocks that are removed by the SEC from the test or control groups

due to various reasons such as price decline below $1. Our final sample has 1007 (899), 391 (331),

383 (311) and 388 (317) stocks in the control, G1, G2, and G3 groups, respectively over the time

period September 1-30 and November 1-30, 2016 (2018) .

In the subsequent sections, we use the proposed methodology to empirically study the impact of

the TSP. In particular, we test i) whether the TSP increases market-makers profits from providing

liquidity and ii) whether these profits result in improved price discovery, higher liquidity, and lower

transaction costs for the liquidity demanding investors.

22. Quoted Spreads, True Spreads and Market-Makers’ Profits

Panel A (B) of Table 32 presents the average estimates of the quoted spreads, true spreads and

market maker profits, mmp, during the non-pilot and pilot periods in 2018 (2016). Columns 2-3

present average quoted spreads across all stocks under each group in the non-pilot regime, Novem-

ber 1- November 30, 2018 (September 1- September 30, 2016), and the pilot regime, September 1-
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September 30, 2018 (November 1- November 30, 2016) respectively. Column 4 presents the differ-

ence between the average quoted spreads under the pilot and the non-pilot regime, whereas column

5 presents the difference in differences, DD, estimator of quoted spreads under pilot and non-pilot

regime with respect to the control group. Analogously, columns 6-9 (10-13) present the average

true spreads (mmp) under the non-pilot and the pilot regime, difference, and DD for true spreads

(mmp). All the tables will follow the same pattern in terms of reporting the average values for

the non-pilot period, then the pilot period, then the difference between the pilot and the non-pilot

period and finally the DD estimate.

The DD estimator is equivalent to estimating the parameter β3 in the following regression:

yit = β0 + β1I
treated
i + β2I

Pilot
t + β3I

treated
i × Ipilott + εit, (16)

where yit denotes the dependent variables - quoted spreads, true spreads or mmp of stock i at time

t; the indicator variable Itreatedi = 1 if stock i is in a treated group and 0 otherwise; IPilott = 1 if

the t is in a pilot period regime and 0 otherwise. We do not include any control variables such

as the trade volume in the above regression specification because we have already incorporated

these at a high frequency in the dynamics of fundamental prices and true spreads (equations (5)

and (6)). Our specification is consistent with the rationale that the rounding or discretization

component of the spread depends only on the tick size and does not depend on other control

variables, whereas the true spreads and fundamental prices are affected by other control variables.

The numbers in parenthesis in Table 32 denote the standard errors of estimators. Since we extract

fundamental prices and true spreads independently for each stock and under each pilot/ non-pilot

regime, we cluster the standard errors with respect to stock and pilot/non-pilot regime. Unlike

quoted spreads that are observed, true spreads and mmp are estimated using our methodology.

So, we additionally adjust the standard errors of these variables for the estimation error by adding

corresponding posterior variances of the estimates.8

8This is obtained as follows: V ar(X) = E(V ar(X|Y )) + V ar(E(X|Y )), where E(V ar(X|Y )) denotes the tradi-
tional standard estimators as if the true spreads and prices are known and V ar(E(X|Y )) is the posterior variance of
estimator that corrects for the estimation error. Also, we use the same adjusted variance in our simulation analysis
which shows that this variance estimator is close to the true simulated variance.
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The TSP increases average quoted spreads (in DD terms) for the constrained stocks but does

not significantly change quoted spreads for the unconstrained stocks. It is not surprising that the

quoted spreads have increased for the constrained stocks due to the increase in the tick size. The

increase in quoted spreads is so large that during the pilot period in September 2018 (November

2016) the quoted spreads are 29 (12) times larger than the true spreads for the G3 constrained

stocks while during the non-pilot period in September 2016 and November 2018 the quoted spreads

are only three times larger. Thus, rounding has a large impact on the observed quotes and prices

and it is important to account for rounding when evaluating the impact of TSP.

Rindi and Werner (2017) have argued that the TSP has failed to achieve the intended objective

of increasing mmp (so as to facilitate the provision of liquidity) in unconstrained stocks. However,

after deducting the costs incurred by market makers to facilitate trades - the true spreads (which

decrease for all treated stocks) from the quoted spreads, we find that the TSP significantly increases

mmp across all the treated groups, for both constrained and unconstrained stocks. More specifically,

around the tick-size conclusion period, we find that the TSP increases (in DD terms) the average

mmp by 3.67 cents, 3.75 cents and 4.1 cents per share for providing liquidity to stocks in groups G1,

G2, and G3, respectively. Profits in the constrained (unconstrained) stocks also increase by 3.91

(2.94) cents, 3.99 (3.42) cents and 4.18 (3.84) cents for the groups G1, G2 and G3, respectively. The

monotonic increase in mmp from the G1 to G3 stocks is consistent with the restrictions imposed

on each group. For instance, market makers earn comparatively lower profits on G1 stocks since

traders are allowed to trade these stocks at a one cent tick, possibly against limit orders on other

authorized trading venues.

The mmp are higher for the constrained stocks because with a higher tick size a larger fraction

of the quoted spread is attributable to rounding as evidenced by the fact that the difference between

the quoted and true spreads during the pilot for the constrained stocks is far larger than for the

unconstrained stocks. Moreover, with a larger tick size that constrains the quoted spreads, market

makers face less adverse selection and inventory risk (as we document in the next section). Since

price improvements are constrained, liquidity providers (who in current trading environment are

mainly HFTs as suggested by Menkveld, 2013) compete to obtain time priority in the limit order
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book. Yao and Ye (2018) call this “queue competition” since HFTs compete on speed to reduce

latency so as to be the first in the queue as per the time priority rules when orders are executed.

In the case of unconstrained stocks, market makers earn positive profits for providing liquidity

despite no change in quoted spreads because of the decrease in the true spreads of these stocks.

In the next section, we show that true spreads decrease because both the adverse selection and

inventory (plus the order processing) costs decrease for the unconstrained stocks as well. The

general decline in true spreads during both pilot periods is consistent with the theoretical model of

Li et al. (2020). With an increase in the quoted spread, informed traders submit more limit orders,

in the constrained as well as the unconstrained stocks, as they attempt to control trading costs; this

is referred to as the “undercutting equilibrium” by Li et al. (2020). However, in the constrained

stocks, due to relatively more speed competition amongst the liquidity suppliers during the pilot

period, non-HFT informed traders are likely to be crowded out and are less likely to successfully

consummate trades by submitting limit orders, since, with a binding tick size, the limit orders

cannot be price improving. Thus, informed traders are relatively more likely to submit price

improving limit orders, or their limit orders are more likely to be successfully consummated in

unconstrained stocks. As a consequence, market orders are exposed to less information asymmetry,

leading to lower adverse selection costs in the unconstrained stocks. Also, inventory costs are

lowered, as these non-HFT informed traders are not holding inventory that has to be laid off. This

leads to lower true spreads in the unconstrained stocks.

Note that an increase in market makers profits per share may not translate into an increase

in total profits if the number of shares traded decrease during the TSP. Panel A (B) of Table 33

presents the average dollar value (in ’000s) of costs and revenues for providing liquidity to a stock

in each group around the conclusion (start) of the TSP. This is obtained by first multiplying quoted

spreads, true spreads and market-maker profits by the number of shares traded for a given stock

and then averaging across all stocks in a given group.

We find that the TSP increases total aggregate profits for providing liquidity to each stock

across all the treated groups. In particular, during the sample period in 2018, TSP increases average

profits for market-makers (in DD terms) by $177.61, $141.32, and $157.03 (in ’000s) for each stock
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in groups G1, G2 and G3 respectively. Aggregate profits in constrained (unconstrained) stocks also

increase by $412.06 ($55.69), $303.38 ($66.71) and $296.38 ($62.93) (in ’000s) over the same period.

As compared to mmp per share traded, the aggregate dollar profits for the unconstrained firms

are far lower than for the constrained firms suggesting lower trading volumes in the unconstrained

firms, possibly due to the higher trading costs as proxied by quoted and true spreads and, as

we will show later, by effective spreads. Quoted and true spreads are significantly higher for the

unconstrained stocks. For instance, the G1 stocks constrained stocks have average quoted spreads

of 1.81 (5.57) cents while the G1 unconstrained stocks have quoted spreads of 14.63 (12.41) cents

during the non-pilot (pilot) period in November (September) 2018.

Panel B of Tables 32 and 33 repeats the same analysis for the sample period in September

(non-pilot) and November (pilot) 2016. We find similar results even in this sub-sample with the

TSP leading to a significant increase in the quoted spreads across the constrained stocks. However,

the true spreads decrease during the tick pilot, thus resulting in an increase in mmp across all the

treated stocks, both constrained and unconstrained.

Recall that mmp, which equal the quoted spreads minus the true spreads, would not precisely

represent market-makers’ realized profits per trade. In particular, the realized profit for each share

traded equals the transaction price less the true ask if the trade is a customer buy (market-maker

sell), and the true bid minus the transaction price if the trade is a customer sell (market-maker

buy). Unlike mmp, which measure profits from both sides of a trade, realized profits capture gains

only from a single side of the trade, depending on whether the transaction is a buy or a sell. Panel

A (B) of Table 34 presents market-makers’ realized profits per share and average dollar value (in

’000s) of realized profits for providing liquidity to a stock in each group around the conclusion

(start) of the TSP. As before, we find that the TSP leads to a significant increase in the realized

gains per share and aggregate realized profits in dollar value for providing liquidity to each stock

across all the treated groups.

As with mmp, while the realized profits also increase monotonically from G1 to G3 stocks, they

are much smaller relative to mmp from Tables 32 and 33. In fact, the realized profits are less than

half the mmp suggesting that, on average, liquidity demanders trade more at the quoted ask when
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the difference between the quoted and the true ask is lower than the difference between the true and

the quoted bid. Similarly, liquidity demanders trade more at the quoted bid when the difference

between the quoted and the true ask is higher than the difference between the true and the quoted

bid. Thus, supplying liquidity is not as profitable as expected by naively comparing quoted and true

spreads because the liquidity demanders are able to trade at prices where the impact of rounding

is the lowest. Given that a large fraction of trades (including liquidity demanding trades) involve

HFTs, our results are consistent with Hagstromer (2020) (see also Muravyev and Pearson, 2020)

who argues that HFTs have sophisticated algorithms that allow them to ascertain the true cost of

trading. This also motivates our use of sophisticated big-data methods to estimate true spreads

and fundamental prices.

While the realized profits of Table 34 suggest that (some) liquidity demanding traders un-

derstand the underlying true prices and spreads, we now provide evidence that even the liquidity

suppliers (likely the HFTs) understand the true price and spread process. In the internet appendix

Table 40, we show that liquidity suppliers are willing to supply more depth when their profits

are higher, possibly due to queue competition, as suggested by Li et al. (2020). More specifically,

we divide each day for each stock into two types of transactions, those that have high mmp and

those that have low mmp. We find that transactions with high mmp have higher depth (as mea-

sured by the average of the bid and ask depth) than transactions with low mmp. We do not see

the same pattern, except for the G3 stocks, when we classify transactions based on high and low

quoted spreads because, as we have argued, quoted spreads do not readily translate to mmp. Thus,

(some) liquidity-supplying and liquidity-demanding traders understand the true price process and

this, once again, motivates our use of sophisticated big-data methods to estimate true spreads and

fundamental prices.

Overall, our results indicate that the TSP has achieved its first objective of increasing market-

maker profits.
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22a. True Spreads and Its Components

In this section, we examine the components of the bid-ask spread. The literature classifies

true bid-ask spreads into three main components: order processing costs, inventory and adverse

selection costs. Our framework allows us to separately identify adverse selection costs, and sum of

order processing and inventory costs. Since order-processing costs such as computer costs, labor

costs and informational service costs are largely fixed, we can assume that TSP does not impact

these costs. As a result, we attribute the impact of TSP on true spreads to changes in the adverse

selection and inventory components of the spread. The adverse selection and inventory component

given the true spread st, are λst and (1− λ)st, respectively.

Panel A (B) of Table 35 shows the adverse selection and inventory cost components of the true

(quoted) spread. The DD estimator of the adverse selection component from Panel A of Table 35

shows that TSP leads to a decrease in adverse selection costs across all treated stocks, more so for

the unconstrained stocks. As we argued earlier, the larger decline for the unconstrained stocks is

consistent with informed traders becoming more likely to relatively switch their orders from market

to limit orders or their price improved limit orders are more likely to be executed. We also provide

additional support to the above argument in Table 38, where we document a significant increase

in the relative contribution of limit orders to the price discovery.

Panel A of Table 35 also shows that the TSP significantly decreases the inventory component of

the spread across all unconstrained stocks. Recall that the inventory cost component of the spread

represents the costs or risks borne by the market-makers for holding inventory to facilitate trades.

We use aggregate market-maker participation data, which is publicly made available by SEC and

FINRA, and show that the significant decrease in our measure of the inventory cost component

of the spread is consistent with the decreased inventory risk borne by the market makers, during

the TSP.9 Appendix B (ii) of SEC data contains the daily cumulative number of share buys and

sells by all registered market-makers. Based on this daily trading activity of market-makers, we

use two measures that reflect the daily inventory costs/risks borne by them. The first measure is

9The data are available at https://www.finra.org/rules-guidance/key-topics/tick-size-pilot-program/appendix-b-
data-publication.
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the absolute order imbalance, which is given by

Inv1it = |Number of Shares Boughtit - Number of Shares Soldit|, for stock i, on day t. (17)

Higher value of Inv1it implies higher trade imbalance, and thus higher inventory costs/risk borne

by the market-makers for stock i at the end of day t (Comerton-Forde et al. (2010)). Further,

Chordia and Subrahmanyam (2004) argue that higher order imbalance may also reflect higher

adverse selection risk when informed traders optimally choose to split their orders. However, they

also assert that the order imbalances are significantly predicted by the lagged order imbalances, and

this predictable component captures only inventory holding risk but not adverse selection risk. The

intuition is that if today’s high order imbalance predicts high order imbalance even for the next day,

then it indicates high inventory holidng costs or risks borne by the market-makers. Recognizing

this insight, Muravyev (2016) uses the order imbalance component that is predicted by the lagged

order imbalance as measure of inventory holding risk. We use the same metric as another measure

of inventory holding costs, as below,

Inv2it = |α̂i + β̂1iOIBi,t−1 + β̂2iOIBi,t−2, | where,

OIBit = αi + β1iOIBi,t−1 + β2iOIBi,t−2 + εit, and (18)

OIBit = Number of Shares Boughtit - Number of Shares Soldit.

Table 36 shows that the DD estimator of the above measures are significantly negative across

all but the G1-constrained stocks, thus indicating that the TSP decreases inventory costs borne by

the market makers. Recall from Panel A of Table 35 that the DD estimates of the derived inventory

component of the spread for the unconstrained stocks, using our methodology are negative as well,

and therefore consistent with the registered decrease in inventory holding costs during the TSP.

In contrast to the results in Panel A of 35, Panel B computes the adverse selection and the

inventory cost component using quoted spreads and without accounting for rounding as in Huang

and Stoll (1997). Both the adverse selection and the inventory cost component increase for the
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constrained stocks and remain unchanged for the unconstrained stocks. Ignoring discretization

seems to lead to biased inferences. At least in the case of inventory costs, aggregate market maker

participation data strongly indicate a decrease in inventory costs borne by the market makers.

Overall, we find that the TSP decreases true spreads, and increases market maker profits across

all the treated stocks. Both, the adverse selection and inventory component of the spreads decrease.

In the following sections, we ask whether these increased profits come at the expense of increased

trading costs for liquidity demanders and whether price discovery improves.

23. Effective Spreads

In this section we study the impact of TSP on investor transaction costs as measured by

effective spreads, which are defined as twice the absolute value of the transaction price less a

reference price,

Effective Spreadt = 2|Pt − PRt |, (19)

where Pt is the transaction price at time t and PRt is the reference price. We use three different

reference prices: (i) the mid-point of the bid-ask quote, PRt = (At +Bt)/2, (ii) the depth weighted

mid-point as in Hagstromer (2020), PRt = (BtD
A
t +AtD

B
t )/(DA

t +DB
t ), and (iii) the fundamental

price, PRt = mt. Panel A (B) of Table 37 documents the impact of TSP on effective spreads using

the three reference prices for the non-pilot and pilot sample periods in 2018 (2016).

Across both panels and for all three measures, the DD results show that the effective spreads

have increased for the constrained stocks but have not changed significantly for the unconstrained

stocks. However, note that only in the scenario where the reference price is the fundamental price

do we see a monotonic increase (2.67, 2.88, and 3.16 cents per share on average during the sample

period in 2018 and 2.57, 2.74, and 3.08 cents in 2016) in the effective spreads for the G1, G2, and

G3 stocks. This monotonic increase is consistent with the restrictions imposed on each of the three

groups of treated stocks. When the reference price is the quote mid-point or the weighted quote

mid-point, there is monotonic decrease in the effective spreads across the G1, G2, and G3 stocks.
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Hagstromer (2020) has argued that the effective spread using the quote mid-point overstates

the true effective spread. On the contrary, we find that, during the non-pilot and the pilot periods,

the point estimate of the effective spread with the fundamental price as the reference is generally

higher than that using the quote mid-point as the reference price. In fact, even with the weighted

quote mid-point as the reference, the point estimate of the effective spread, during the non-pilot

period, is higher than the estimate of the effective spread with the quote mid-point as the reference

price. This difference in results could be driven by an assumption in Hagstromer (2020) that

informed liquidity demanders submit market orders or marketable limit orders. However, if the

informed traders submit limit orders that are successfully executed then it is not necessarily the

case that the effective spread using the quote mid-point would overstate the true effective spread.

In sum, the increased mmp due to TSP have not led to a unilateral decrease in transaction

costs as envisioned by the Jobs ACT. In fact, due to the impact of rounding, transaction costs

faced by liquidity demanders in the constrained stocks have increased.

24. Price Discovery

We now check whether large mmp and market-makers participation induced by the TSP en-

hances price discovery directly through new information, rather than indirectly through trading.

We also check whether it increases the speed of price discovery.

24a. Proportion of Price Discovery through Trading and New Information

Our framework allows us to estimate the contribution of market, limit orders and new infor-

mation to the price discovery. From equation (2), for each stock, we estimate the proportion of

price discovery through market orders (R2
M ) as R-squared in the regression of fundamental price

changes on the signed half spread,

mt −mt−1 = λ(qtst)/2 + ut. (20)
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Similarly, we estimate the proportion of price discovery through limit orders (R2
L) as R-squared in

the regression of fundamental price changes on the changes in limit order book,

mt −mt−1 = λ1(∆At) DA
t + λ2(∆Bt) DB

t

+λ3 (∆DA
t ) I∆A=0Qt + λ4(∆DB

t ) I∆B=0Qt + vt. (21)

Lastly, we estimate the proportion of price discovery through new information (R2
I) as one minus

R-squared in the regression of fundamental price changes on the signed half spread and changes in

the limit order book,

mt −mt−1 = λ(qtst)/2 + λ1(∆At) DA
t + λ2(∆Bt) DB

t

+λ3 (∆DA
t ) I∆A=0Qt + λ4(∆DB

t ) I∆B=0Qt + εt. (22)

The components of price discovery from market and limit orders could be correlated and thus

it could be the case that R2
M + R2

L + R2
I 6= 100%. To interpret the relative importance of the

contributions price discovery through each channel and make uniform comparisons across various

stocks and over different periods, we normalize the obtained R2s so that R2
M +R2

L +R2
I = 100%.

Table 38 presents the proportion of price discovery through market orders, limit orders and

new information in the same format as the earlier tables. In general, the DD results show that the

proportion of price discovery through market orders decreases but the proportion of price discovery

through limit orders increases even more such that the proportion of price discovery through new

information decreases. This does not mean that the amount of new information in the economy

had declined during the pilot period. What it means is that, relative to the control stocks, the

TSP has led to a decrease in the proportion of price discovery through new information for the

treated stocks. In fact, TSP increases the proportion of price discovery from new information for

the control stocks. Table 38 also shows that proportion of price discovery from new information is

about three times larger than from limit orders, which in turn is about four time larger than from

market orders. For instance, in the case of the control stocks, the proportion of price discovery from
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new information is 72.2% (75.6%); from limit orders it is 22.7% (19.5%); and from market orders

it is 5.6% (5.2%) during the non-pilot (pilot) sample period in 2018. Given that a lower proportion

of price discovery is through new information, this indicates that prices are more responsive to

previous trades and quotes rather than to new information, and thus are less efficient as suggested

by Hendershott et al. (2011) and Chordia et al. (2018).

In the case of the unconstrained stocks it is not surprising to find that the TSP leads to

increased price discovery through limit orders because, as we argued earlier, the non-HFT informed

traders are relatively more likely to submit price improved limit orders that are successfully executed

and this is likely to lead to more information being incorporated into price through limit orders.

This will lead to a lower proportion of price discovery through market orders and more through

limit orders.

Even in the case of the constrained stocks, with the artificially high spreads, the non-HFT

informed traders will prefer to submit fewer market orders and more limit orders that are sometimes

successfully executed. This is confirmed by the TSP driven decline in the proportion of price

discovery from market orders for the constrained stocks that is larger in absolute terms than the

decline for the unconstrained stocks. For instance, during the sample period in 2018, the DD

estimate of the proportion of price discovery from market orders is -2.4% (-1.7%), -3.1% (-1.4%),

and -3.0% (-1.0%) for the G1, G2, and G3 constrained (unconstrained) stocks, respectively. In

addition, the queue competition leads to faster updating of the HFT limit orders and this may also

lead to increased proportion of price discovery through limit orders as more information about the

order flow is incorporated into prices.

Overall, TSP leads to a lower proportion of price discovery through market orders and more

through limit orders for both the constrained and the unconstrained stocks. However, in the case

of the constrained stocks, the caveat is that the queue competition crowds out the non-informed

traders thereby reducing their incentive to collect fundamental information as suggested by O’Hara

(2015) and Li et al. (2020).
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24b. Speed of Price Discovery

To evaluate whether the TSP increases the speed of price of discovery, we construct price delay

measures of Chordia and Swaminathan (2000) and Hou and Moskowitz (2005) (that are also used

in Chung et al. (2019) and Albuquerque et al. (2020)), but measured using the true fundamental

prices obtained from our methodology instead of traditional mid-quote prices. In particular, we

construct three delay measures D1, D2 and D3 using the following regression specifications:

rit = αic + βicrmkt,t + ηcit, (23)

rit = αi +

5∑
k=0

βikrmkt,t−k + ηit, (24)

where rit denotes returns of stock i at time t computed with fundamental prices and rmkt,t is

the return of the SPY index at time t. Consistent with earlier work, we aggregate returns over

one minute time intervals. Equation (23) is the constrained regression of stock returns on the

contemporaneous market returns, whereas equation (24) represents the unconstrained regression

of stock returns on the contemporaneous and several lagged market returns. By construction, R2

in the constrained regression, (R2
c), is always less than or equal to the R2 in the unconstrained

regression, (R2
u). If the stock i responds immediately to market returns, then βic significantly

differs from zero but none of βik, k > 0 significantly differ from zero, and additionally R2
c = R2

u.

If, however, stock i responds with a lag then βik differ from zero and R2
c < R2

u. Using the above

insight, we have the following three metrics that quantify delays in price discovery:

D1 = 1− R2
c

R2
u

D2 =

∑5
k=1 k|βik|

βic +
∑5

k=1 k|βik|
,

D3 =

∑5
k=1 k|zik|

zic +
∑5

k=1 k|zik|
, (25)
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where zik is the standard z-statistic for the coefficient estimate βik. A larger Di implies that a

stock’s return responds with a delay to market returns. For each stock on a given day, we conduct

independent regressions of equations (23) and (24) and obtain a panel data of all the above delay

measures that span across all stocks and days in the sample.

The DD results in Table 39 show that the TSP causes significant delays in price discovery for

constrained stocks during the sample period in 2016 and 2018, regardless of the delay measure.

Recall that trading costs as proxied by the effective spreads are higher for the constrained stocks

due to the binding tick size. This possibly causes delays in the speed of incorporation of information

into prices because it takes the impact of information to become larger than transaction costs before

it is acted upon. On the other hand, except for the delay measures D2 and D3 over the sample

period in 2016, TSP generally speeds up price discovery for the unconstrained stocks. Recall that

there is essentially no change in the effective spreads in unconstrained stocks and thus, transaction

costs do not hinder the incorporation of information into prices. Also, with informed traders placing

relatively more price improving limit orders that are successfully executed, there is more and quicker

price discovery through the limit orders.

Overall, the increase in market maker profits does not translate into an increase in the speed

of price discovery but promotes market making by HFTs in the constrained stocks. The results are

consistent with Li et al. (2020), where increased mmp promotes queue competition rather than price

competition, thereby decreasing the proportion of price discovery through new information, and

also delaying price discovery. In the case of unconstrained stocks, with no increase in transaction

costs, informed traders compete to place limit orders, thereby increasing the speed of price discovery

through limit orders.

In this section, we are measuring the speed of incorporation of information into prices at the one

minute frequency (equation (24) is estimated over five minutes) as opposed to our earlier estimations

at the transaction-level frequency. This probably is related more to fundamental information than to

order flow information. The TSP driven decline in the speed of price discovery for the constrained

stocks is consistent with queue competition crowding out the non-HFT informed traders with

fundamental information.
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25. Conclusion

Observed prices and quoted spreads do not correspond to fundamental prices and true spreads

when stocks are traded at prices rounded to the grid determined by the minimum tick size. Estimat-

ing these unobserved true liquidity and price measures are extremely challenging, not only because

traditional methods cannot accommodate non-gaussian rounding errors but also computationally

infeasible with the recently available millisecond-level TAQ data. We develop a novel method-

ology using Variational Inference that scales to high-frequency data to estimate the unobserved

fundamental prices and true liquidity, explicitly accounting for the rounding specification.

We apply our method to evaluate the recently conducted tick-size pilot program (TSP). We

find that the TSP increases (decreases) price discovery through limit (market) orders. The TSP

increases market-maker profits but deteriorates liquidity and speed of price discovery, especially

for stocks whose spreads are constrained by the tick size. These results contrast existing empirical

studies but are consistent with recent theoretical studies that account for rounding.
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A. Appendix

This section derives the equations for updating the optimal density of a parameter or a hidden

variable given other variables and parameters. First, the joint likelihood of the observed data

{Y1, Y2, . . . YT } and the hidden variables {z1, z2, . . . , zT }, given the parameters Θ is :

f
(
Y T
t=1, z

T
t=1|Θ

)
= f

(
Y T
t=1|zTt=1,Θ

)
f(zTt=1|Θ)

∝ ΠT
t=1 exp

(
−1

2
(zt+1 − µt+1 −At+1zt)

T Σ−1 (zt+1 − µt+1 −At+1zt)

)
I (I1t ≤ Bzt ≤ I2t) , (26)

where zt =

xt
γt

, µt =

 ∑4
i=1 liLit

α+
∑4

i=1 diDit

, At =

1 λqt/2

0 β

, B =

1 1/2

1 −1/2

, Σ =

σ2
ε 0

0 σ2
η

,

and I(.) is the indicator function that takes the value 1 if the condition in (.)holds, takes zero

otherwise, I1t, I2t are the bounds described in equation (8).

Under the diffuse prior specification for the parameters with P (Θ) = P
(
Σ, λ, α, β, {li, di}4i=1

)
∝

Σ−
2+1
2 , update equations for each parameter and hidden state variable are derived as below:

Proposition 2. The optimal density of λ, q∗(λ) given the optimal densities of all other parameters

and hidden variables is given by:

q∗(λ) ∼ N

(
E(
∑

tA
λ
tB

λ
t )

E(
∑
Aλ

2

t )
,

E(σ2
ε )

E(
∑

tA
λ2
t )

)
, (27)

where At = γt−1, Bt = xt − xt−1 −
∑4

i=1 liLit, and the expectations are taken with respect to the

optimal variational densities of parameters and state variables other than λ.
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Proof.

q∗(λ) ∝ exp

− T∑
t=1

E
(
xt − xt−1 − λγt−1 −

∑4
i=1 liLit

)2

2E(σ2
ε )



∝ exp

[
−

T∑
t=1

(
Bλ
t − λAλt

)2
2E(σ2

ε )

]
= exp

−
(
λ− E(

∑
t A

λ
t B

λ
t )∑

t A
λ2
t

)2

2E(σ2
ε )/E(

∑
tA

λ2
t )


=⇒ q∗(λ) ∼ N

(
E(
∑

tA
λ
tB

λ
t )

E(
∑
Aλ

2

t )
,

E(σ2
ε )

E(
∑

tA
λ2
t )

)
(28)

Proposition 3. The optimal density of li, q
∗(li) given the optimal densities of all other parameters

and hidden variables is given by:

q∗(li) ∼ N

E
(∑T

t=1A
li
t Lit

)
∑T

t=1 L
2
it

,
E(σ2

ε )∑T
t=1 L

2
it

 , (29)

where Alit = xt − xt−1 −
∑

j 6=i ljLjt, and the expectation is taken with respect to optimal

variational densities of parameters and state variables other than li.

Proof.

q∗(li) ∝ exp

[
−

T∑
t=1

E
(
liLit −Alit

)2
/2E(σ2

ε )

]
∝ exp

−
(
li −

E(
∑T
t=1 A

li
t Lit)∑T

t=1 Lit

)2

2E(σ2
ε )/(

∑T
t=1 Lit)

2


=⇒ q∗(β) ∼ N

E(
∑T

t=1 γt−1A
γ
t )

E
(∑T

t=1 γ
2
t−1

) ,
E(σ2

η)

E(
∑T

t=1 γ
2
t−1)

 (30)
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Proposition 4. The optimal density of β, q∗(β) given the optimal densities of all other parameters

and hidden variables is given by:

q∗(β) ∼ N

E(
∑T

t=1 γt−1A
γ
t )

E
(∑T

t=1 γ
2
t−1

) ,
E(σ2

η)

E(
∑T

t=1 γ
2
t−1)

 , (31)

where Aγt = γt − α − (
∑4

i=1 diDit), and the expectations are taken with respect to the variational

densities of all the parameters and variables, but β.

Proposition 5. The optimal density of each di, q
∗(di) given the optimal densities of all other

parameters and hidden variables is given by:

q∗(di) ∼ N

(∑
E(DitA

Di
t )∑T

t=1D
2
it

,
E(σ2

ε )∑T
t=1D

2
it

)
, (32)

where ADit = γt −
(
α+ βγt−1 +

∑
k 6=iDktdk

)
Proposition 6. The optimal density of each state variable zt, q

∗(zt) given the optimal densities of

all other parameters and hidden variables is given by:

zt ∼ N
(

Σ∗
−1 (

Σ−1µ1t +ATt+1Σ−1µ2t

)
,Σ∗

−1
)
, I1t ≤ Bzt ≤ I2t, (33)

where µ1t = AtE(Zt−1)+E(µt) and µ2t = E(zt+1); Σ∗ = Σ−1 +ATt+1Σ−1At+1; B, I1t, I2t are given

in equation (26).

Proof.

q∗(zt) ∝ exp

(
−1

2
E
[
(zt+1 − µt+1 −At+1zt)

T Σ−1 (zt+1 − µt+1 −At+1zt)
])
×

exp

(
−1

2
E
[
(zt − µt −Atzt−1)T Σ−1 (zt − µt −Atzt−1)

])
× I(I1t ≤ Bzt ≤ I2t)
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Letting µ1t = AtE(Zt−1) + E(µt) and µ2t = E(zt+1), and Σ∗ = Σ−1 +ATt+1Σ−1At+1, we have

q∗(zt) ∝ I(I1t ≤ Azt ≤ I2t)×

exp

(
−1

2

(
zt − Σ∗

−1 (
Σ−1µ1t +ATt+1Σ−1µt

))T
Σ∗
(
zt − Σ∗

−1 (
Σ−1µ1t +ATt+1Σ−1µt

)))

Therefore,

zt ∼ N
(

Σ∗
−1 (

Σ−1µ1t +ATt+1Σ−1µt
)
,Σ∗

−1
)
, I1t ≤ Bzt ≤ I2t (34)

Thus, the optimal density of zt follows a linearly constrained (truncated) version of a normally

distributed random variable, given the moments of all other parameters and the hidden variables,

zt−1 and zt+1. The first two moments of a linearly constrained normal random variable can be

computed using the procedure outlined by Kan and Robotti (2017).
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Chung, Kee H., Albert Lee, and Dominik Rösch, 2019, Tick Size, Liquidity for Small and Large

Orders, and Price Informativeness: Evidence from the Tick Size Pilot Program, Journal of

Financial Economics (JFE), Forthcoming .
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Figure 12. ELBO (y-axis) vs Number of Epochs (x-axis)
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Table 31
Performance of the Methodology: Monte Carlo Evidence
This table reports the performance of our methodology in estimating the true simulated parameters. We conduct

monte-carlo simulations calibrated to three randomly selected stocks, FCB, SAM and AMC. The first column repre-

sents the true simulated values, the second reports the estimated values using our methodology and the final column

depicts the naively estimated parameters with the observed transaction prices and quotes, without adjusting for

rounding. The parameters include means and standard deviations of true spreads (tspr), fundamental prices (price),

effective spreads (espr) and market-maker profits (mmp) per share traded. All of the above values are reported in

dollars. It also includes squared sum of error in estimating fundamental prices and true spreads.

Stock Variable True Simulated Values Estimated Values Näıve Values

FCB mean tspr 0.0441 0.0445 0.0941

std tspr 0.0275 0.0215 0.0338

mean price 58.3545 58.3538 58.3489

std price 14.3335 14.3349 14.3326

mean espr 0.0861 0.0859 0.0941

std espr 0.0367 0.0365 0.0340

mean mmp 0.0501 0.0497 0.0941

std mmp 0.0199 0.0221 0.0338

Price Impact (λ) 0.1923 0.1927 0.0917

Estimation Error - tspr 15.8693 170.6501

Estimation Error - price 9.3137 45.9682

SAM mean tspr 0.1817 0.1821 0.2318

std tspr 0.1221 0.1146 0.1237

mean price 222.2710 222.2699 222.2585

std price 38.1229 38.1425 38.1226

mean espr 0.1931 0.1936 0.2318

std espr 0.1006 0.1021 0.1237

mean mmp 0.0501 0.0497 0.2318

std mmp 0.0197 0.0269 0.1237

Price Impact (λ) 0.1858 0.1888 0.1530

Estimation Error - tspr 27.5806 126.3707

Estimation Error - price 11.6936 536.0978

AMC mean tspr 0.0459 0.0460 0.0960

std tspr 0.0247 0.0278 0.0318

mean price 37.1058 37.1046 37.1022

std price 2.5691 2.5748 2.5687

mean espr 0.0925 0.0926 0.0960

std espr 0.0368 0.0368 0.0318

mean mmp 0.0501 0.0500 0.0960

std mmp 0.0201 0.0188 0.0318

Price Impact (λ) 0.0709 0.0695 0.0353

Estimation Error - tspr 9.6458 157.3844

Estimation Error - price 8.1756 42.2229
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.3
∗∗

(4
.2
4
)

5
9
6
.6

6
∗∗

(4
.5
9
)

G
2

1
4
7
.5

4
3
1
9
.8

9
1
7
2
.3

6
∗∗

(1
2
.1
5
)

1
1
2
.7

2
∗∗

(1
4
.9
2
)

8
5
.4

5
7
0
.4

3
−

1
5
.0

3
(9
.1
4
)

−
5
5
.3

2
∗∗

(1
1
.6
2
)

6
2
.0

8
2
4
9
.4

7
1
8
7
.3

8
∗∗

(7
.5
1
)

7
2
9
.7

4
∗∗

(7
.7
2
)

G
3

C
o
n
st

ra
in

ed
1
6
7
.4

1
4
7
4
.8

9
3
0
7
.4

8
∗∗

(1
9
.1
8
)

2
4
7
.8

4
∗∗

(2
1
.0
4
)

6
3
.5

5
3
6
.8

2
−

2
6
.7

3
∗∗

(7
.4
4
)

−
6
7
.0

2
∗∗

(1
0
.3
4
)

1
0
3
.8

6
4
3
8
.0

7
3
3
4
.2
∗∗

(1
8
.9
3
)

8
7
6
.5

7
∗∗

(1
9
.0
1
)

G
3

U
n
co

n
st

ra
in

ed
2
1
7
.9

7
1
7
3
.5

9
−

4
4
.3

9
(2

7
.3
2
)

−
1
0
4
.0

2
∗∗

(2
8
.6
6
)

1
6
4
.9

4
9
0
.1

8
−

7
4
.7

5
∗∗

(2
3
.4
3
)

−
1
1
5
.0

4
∗∗

(2
4
.5
)

5
3
.0

4
8
3
.4

0
3
0
.3

7
∗∗

(7
.3
1
)

5
7
2
.7

3
∗∗

(7
.5
2
)

G
3

1
6
7
.3

8
3
0
9
.1

1
1
4
1
.7

3
∗∗

(1
3
.9
)

8
2
.1
∗∗

(1
6
.3
8
)

9
5
.6

8
5
0
.5

3
−

4
5
.1

5
∗∗

(1
0
.5
1
)

−
8
5
.4

4
∗∗

(1
2
.7
3
)

7
1
.7

0
2
5
8
.5

9
1
8
6
.8

9
∗∗

(7
.2
4
)

7
2
9
.2

5
∗∗

(7
.4
6
)

C
o
n
tr

o
l

1
5
5
.6

8
2
1
5
.3

1
5
9
.6

3
∗∗

(8
.6
5
)

9
3
.2

7
1
3
3
.5

5
4
0
.2

9
∗∗

(7
.1
8
)

6
2
.4

1
8
1
.7

6
1
9
.3

4
∗∗

(1
.7
7
)
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Table 34
Realized Market-Maker Profits
This table reports the average estimated realized market-maker profits per share traded, and the average dollar value
(in 000’s) of the realized profits per stock, aggregated across all the trades for all the treated groups G1, G2, G3, and
the Control group. The realized market-maker profit per trade is equal to the actual transaction price of the trade
minus the true ask for the customer buy (market maker sell) transactions and the true bid minus the transaction
price for the customer sell (market maker buy) transactions. Constrained (unconstrained) stocks are those whose
quoted bid-ask spreads were lower (higher) than 5 cents prior to the TSP. The column “Non-Pilot” (“Pilot”) presents
the estimated mean values of variables of each group during the non-pilot (pilot) regime. The column “Diff” is
the difference estimate of variables of each group, prior and post the pilot program. “DD” is the difference-in-
differences estimate of variables in treated groups with respect to the variables in control group. Standard errors are
in parenthesis and ** denotes significance at the 5% level.

Panel A: Non-Pilot Period = November 1-30, 2018 ; Pilot Period = September 1-30, 2018

Realized Profits Aggregate Dollar Realized Profits

Group Non-Pilot Pilot Diff DD Non-Pilot Pilot Diff DD

G1 Constrained 0.0051 0.0183 0.0132∗∗
(0.00045)

0.0128∗∗
(0.00108)

61.36 184.73 123.37∗∗
(17.44058)

127.62∗∗
(17.44)

G1 Unconstrained 0.0051 0.0191 0.014∗∗
(0.00112)

0.0136∗∗
(0.00149)

9.64 27.00 17.36∗∗
(0.83074)

21.61∗∗
(0.83)

G1 0.0051 0.0189 0.0138∗∗
(0.00051)

0.0134∗∗
(0.00111)

28.66 82.05 53.38∗∗
(6.22149)

57.63∗∗
(6.22)

G2 Constrained 0.0051 0.0203 0.0152∗∗
(0.00069)

0.0147∗∗
(0.0012)

48.18 149.99 101.82∗∗
(8.52915)

106.06∗∗
(8.53)

G2 Unconstrained 0.0051 0.0235 0.0184∗∗
(0.00055)

0.018∗∗
(0.00112)

13.46 43.38 29.92∗∗
(1.26057)

34.16∗∗
(1.26)

G2 0.0052 0.0220 0.0168∗∗
(0.00037)

0.0164∗∗
(0.00105)

23.27 75.48 52.2∗∗
(3.1418)

56.45∗∗
(3.14)

G3 Constrained 0.0050 0.0224 0.0174∗∗
(0.00032)

0.0169∗∗
(0.00103)

41.44 155.63 114.19∗∗
(7.69157)

118.44∗∗
(7.69)

G3 Unconstrained 0.0051 0.0286 0.0235∗∗
(0.00648)

0.0231∗∗
(0.00656)

10.09 39.77 29.68∗∗
(2.30997)

33.93∗∗
(2.31)

G3 0.0050 0.0249 0.0199∗∗
(0.00259)

0.0195∗∗
(0.00277)

22.53 87.05 64.52∗∗
(2.95481)

68.77∗∗
(2.95)

Control 0.0050 0.0054 0.0004∗∗
(0.00054)

28.12 23.87 −4.25∗∗
(0.86475)

Panel B: Non-Pilot Period = September 1-30, 2016 ; Pilot Period = November 1-30, 2016

Realized Profits Aggregate Dollar Realized Profits

Group Non-Pilot Pilot Diff DD Non-Pilot Pilot Diff DD

G1 Constrained 0.0054 0.0198 0.0144∗∗
(0.00031)

0.0147∗∗
(0.00103)

36.69 154.63 117.9407∗∗
(6.40375)

113.98∗∗
(6.4)

G1 Unconstrained 0.0052 0.0171 0.0118∗∗
(0.00261)

0.0121∗∗
(0.00279)

5.59 22.02 16.4279∗∗
(1.56207)

12.47∗∗
(1.56)

G1 0.0054 0.0194 0.014∗∗
(0.00085)

0.0143∗∗
(0.0013)

19.51 81.26 61.7585∗∗
(2.83585)

57.8∗∗
(2.84)

G2 Constrained 0.0054 0.0211 0.0157∗∗
(0.00841)

0.016∗∗
(0.00846)

37.35 174.26 136.9043∗∗
(8.43943)

132.95∗∗
(8.44)

G2 Unconstrained 0.0054 0.0224 0.017∗∗
(0.00231)

0.0173∗∗
(0.00251)

6.14 28.43 22.2898∗∗
(1.1284)

18.33∗∗
(1.13)

G2 0.0054 0.0214 0.016∗∗
(0.00288)

0.0163∗∗
(0.00304)

19.23 91.98 72.7542∗∗
(3.15926)

68.8∗∗
(3.16)

G3 Constrained 0.0056 0.0239 0.0183∗∗
(0.00177)

0.0186∗∗
(0.00202)

40.17 177.57 137.4054∗∗
(9.21486)

133.45∗∗
(9.21)

G3 Unconstrained 0.0051 0.0258 0.0208∗∗
(0.00975)

0.0211∗∗
(0.0098)

8.26 27.76 19.5053∗∗
(2.66529)

15.55∗∗
(2.67)

G3 0.0054 0.0242 0.0187∗∗
(0.00287)

0.019∗∗
(0.00303)

22.62 102.66 80.0478∗∗
(3.28981)

76.09∗∗
(3.29)

Control 0.0054 0.0051 −0.0003∗∗
(0.00098)

18.87 22.82 3.9557∗∗
(0.57055)
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Table 35
Components of Bid-Ask Spread
This table presents the average estimated values of the adverse selection and inventory cost component per share
traded of the true (Panel A) and quoted spread (Panel B) using our methodology and that using the Huang and
Stoll (1997) methodology, respectively, across all the treated groups G1, G2, G3, and the Control group. Constrained
(unconstrained) stocks are those whose quoted bid-ask spreads were lower (higher) than 5 cents prior to the TSP.
The column “Non-Pilot” (“Pilot”) presents the estimated mean values of variables of each group during the non-pilot
(pilot) regime. The column “Diff” is the difference estimate of variables of each group, prior and post the pilot
program. “DD” is the difference-in-differences estimate of variables in treated groups with respect to the variables
in control group. Standard errors are in parenthesis and ** denotes significance at the 5% level.

Non-Pilot = Sep 1-30, 2016 & Nov 1-30, 2018 ; Pilot = Nov 1-30, 2016 & Sep 1-30, 2018

Panel A Adverse Selection using True Spreads Inventory Costs using True Spreads

Group Non-Pilot Pilot Diff DD Non-Pilot Pilot Diff DD

G1 Constrained 0.0010 0.0005 −0.0004∗∗
(0.0001)

−0.0002
(0.0003)

0.0050 0.0058 0.0008
(0.0006)

0.0004
(0.0023)

G1 Unconstrained 0.0119 0.0067 −0.0052∗∗
(0.0007)

−0.0049∗∗
(0.0008)

0.1031 0.0636 −0.0394∗∗
(0.0089)

−0.0398∗∗
(0.0091)

G1 0.0035 0.0020 −0.0015∗∗
(0.0003)

−0.0013∗∗
(0.0004)

0.0258 0.0189 −0.007∗∗
(0.0027)

−0.0073∗∗
(0.0035)

G2 Constrained 0.0011 0.0007 −0.0004∗∗
(0.0001)

−0.0001
(0.0003)

0.0050 0.0047 −0.0004
(0.0006)

−0.0007
(0.0023)

G2 Unconstrained 0.0113 0.0077 −0.0036∗∗
(0.0008)

−0.0033∗∗
(0.0008)

0.0937 0.0534 −0.0403∗∗
(0.0076)

−0.0407∗∗
(0.0079)

G2 0.0046 0.0030 −0.0016∗∗
(0.0005)

−0.0013∗∗
(0.0005)

0.0330 0.0200 −0.013∗∗
(0.0034)

−0.0133∗∗
(0.0041)

G3 Constrained 0.0012 0.0006 −0.0005∗∗
(0.0001)

−0.0003
(0.0003)

0.0054 0.0026 −0.0028∗∗
(0.0005)

−0.0032
(0.0023)

G3 Unconstrained 0.0124 0.0085 −0.0039∗∗
(0.0014)

−0.0037∗∗
(0.0014)

0.1089 0.0573 −0.0516∗∗
(0.0147)

−0.052∗∗
(0.0149)

G3 0.0040 0.0026 −0.0014∗∗
(0.0004)

−0.0011∗∗
(0.0005)

0.0293 0.0144 −0.0149∗∗
(0.0035)

−0.0153∗∗
(0.0041)

Control 0.0044 0.0041 −0.0003
(0.0002)

0.0310 0.0313 0.0004
(0.0022)

Panel B Adverse Selection using Quoted Spreads Inventory Costs using Quoted Spreads

Group Non-Pilot Pilot Diff DD Non-Pilot Pilot Diff DD

G1 Constrained 0.0054 0.0125 0.0071∗∗
(0.0005)

0.0079∗∗
(0.001)

0.0129 0.0447 0.0318∗∗
(0.0006)

0.0309∗∗
(0.0021)

G1 Unconstrained 0.0459 0.0415 −0.0044
(0.0038)

−0.0036
(0.0039)

0.1014 0.0912 −0.0102
(0.0068)

−0.0111
(0.0071)

G1 0.0140 0.0194 0.0054∗∗
(0.0013)

0.0062∗∗
(0.0015)

0.0324 0.0553 0.0229∗∗
(0.0024)

0.022∗∗
(0.0032)

G2 Constrained 0.0055 0.0130 0.0074∗∗
(0.0004)

0.0082∗∗
(0.0009)

0.0129 0.0444 0.0315∗∗
(0.0007)

0.0307∗∗
(0.0021)

G2 Unconstrained 0.0418 0.0392 −0.0027
(0.0034)

−0.0019
(0.0035)

0.0951 0.0887 −0.0064
(0.0061)

−0.0073
(0.0064)

G2 0.0171 0.0215 0.0044∗∗
(0.0015)

0.0052∗∗
(0.0018)

0.0393 0.0585 0.0193∗∗
(0.0032)

0.0184∗∗
(0.0038)

G3 Constrained 0.0055 0.0111 0.0056∗∗
(0.0005)

0.0064∗∗
(0.001)

0.0135 0.0463 0.0328∗∗
(0.0006)

0.0319∗∗
(0.0021)

G3 Unconstrained 0.0483 0.0415 −0.0068
(0.0065)

−0.006
(0.0065)

0.1050 0.0950 −0.0099
(0.011)

−0.0108
(0.0111)

G3 0.0154 0.0185 0.0031∗∗
(0.0016)

0.0039∗∗
(0.0018)

0.0353 0.0572 0.0219∗∗
(0.0029)

0.021∗∗
(0.0036)

Control 0.0157 0.0150 −0.0008
(0.0009)

0.0381 0.0389 0.0009
(0.002)
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Table 36
Inventory Risks of Aggregate Market-Makers
This table reports the averages of two measures of inventory costs estimated directly from the SEC market-makers’
participation data, across all the treated groups G1, G2, G3, and the Control group. The inventory costs are estimated
using order imbalances, measured as the difference in the number of shares bought less the number of shares sold.
Constrained (unconstrained) stocks are those whose quoted bid-ask spreads were lower (higher) than 5 cents prior
to the TSP. The column “Non-Pilot” (“Pilot”) presents the estimated mean values of variables of each group during
the non-pilot (pilot) regime. The column “Diff” is the difference estimate of variables of each group, prior and post
the pilot program. “DD” is the difference-in-differences estimate of variables in treated groups with respect to the
variables in control group. Standard errors are in parenthesis and ** denotes significance at the 5% level.

Inventory Costs of Aggregate Market-Makers

Non-Pilot = Sep 1-30, 2016 & Nov 1-30, 2018 ; Pilot = Nov 1-30, 2016 & Sep 1-30, 2018

Order Imbalance (Inv1it) Expected Order Imbalance (Inv2it)

Group Non-Pilot Pilot Diff DD Non-Pilot Pilot Diff DD

G1 Constrained 13375 17597 4221∗∗
(493)

1897∗∗
(378)

6587 8402 1815∗∗
(200)

713∗∗
(148)

G1 Unconstrained 2595 2732 137
(89)

−2187∗∗
(391)

1614 1337 −278∗∗
(98)

−1380∗∗
(156)

G1 7321 9333 2012∗∗
(203)

−312
(234)

3765 4536 772∗∗
(84)

−1180∗∗
(82)

G2 Constrained 11711 13796 2085∗∗
(322)

−239
(382)

6266 6683 417∗∗
(155)

−685∗∗
(151)

G2 Unconstrained 2362 2149 −212∗∗
(54)

−2536∗∗
(389)

1202 1054 −149∗∗
(29)

−1251∗∗
(153)

G2 6640 8109 1468∗∗
(146)

−855∗∗
(224)

3501 3971 471∗∗
(62)

−631∗∗
(88)

G3 Constrained 11847 11257 −590∗∗
(290)

−2914∗∗
(359)

5806 5656 −150
(119)

−1252∗∗
(140)

G3 Unconstrained 2615 2503 −112
(120)

−2436∗∗
(401)

1503 1832 329
(329)

−773∗∗
(184)

G3 6701 6432 −269∗∗
(132)

−2593∗∗
(222)

3417 3597 180
(126)

−923∗∗
(108)

Control 7179 9502 2324∗∗
(118)

3653 4755 1102∗∗
(46)
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B. Internet Appendix

Table 40
Market-maker Profits and Depths
This table reports the average estimated total bid-ask depth at the best bid and best ask quotes conditional on
market maker profits. For every stock on each day, we split the transactions into two depending on their profitability.
“Highmmp” (“Lowmmp”) represents the subsample of transactions that have above (below) the median-market maker
profits. “Average depth” column in Panel A represents the average of the total depth (sum of the best bid and best
ask depths) on the “Highmmp” and “Lowmmp” subsamples across all stocks in various groups, such as G1, G2, and
G3. “Highqspr” (“Lowqspr”) represents the subsample of transactions that have above (below) the quoted spreads for
each stock, each trading day. “Average depth” column in Panel B is the average of the total depth on the “Highqspr”
and “Lowqspr” subsamples. Constrained (unconstrained) stocks are those whose quoted bid-ask spreads were lower
(higher) than 5 cents prior to the TSP. The sample period is from September 1, 2018 to September 30, 2018.

Panel A Panel B

Group High/Low mmp Average Depth High/Low Quoted Spread Average Depth

G1 Constrained
Highmmp 7638.53 Highqspr 6580.05
Lowmmp 6232.22 Lowqspr 7100.35

G1 Unconstrained
Highmmp 815.40 Highqspr 736.97
Lowmmp 837.44 Lowqspr 875.59

G1
Highmmp 3287.70 Highqspr 2860.56
Lowmmp 2876.58 Lowqspr 3199.60

G2 Constrained
Highmmp 5697.19 Highqspr 5344.65
Lowmmp 5401.25 Lowqspr 5659.71

G2 Unconstrained
Highmmp 799.08 Highqspr 740.87
Lowmmp 915.07 Lowqspr 912.98

G2
Highmmp 3153.31 Highqspr 3026.46
Lowmmp 4035.52 Lowqspr 4113.92

G3 Constrained
Highmmp 8819.17 Highqspr 8755.27
Lowmmp 7653.87 Lowqspr 7656.41

G3 Unconstrained
Highmmp 1205.78 Highqspr 1226.55
Lowmmp 1253.87 Lowqspr 1214.73

G3
Highmmp 3736.35 Highqspr 3724.87
Lowmmp 3426.48 Lowqspr 3417.88
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