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Abstract 

The Associations between Ordinality and Mathematical Development 
 

By Chi Ngai Cheung 
 

In the modern world, mathematical competence is key to the competiveness of 
countries as well as individuals. Unfortunately, the mathematical abilities of American 
students lag significantly behind those of other industrialized nations (OECD, 2016). 
Thus, this dissertation was motivated by the broad goals of informing theoretical debates 
about the cognitive foundations of mathematics but also the practical importance of 
improving education in mathematics. Recent research suggests links between 
mathematical development and foundational abilities such as reasoning about ordinality. 
However, questions concerning the mechanisms underlying these links remain largely 
unresolved.  

To answer these questions, this dissertation tested how a specific component of 
ordinality, namely rank, was related to early mathematical competence. In Paper 1, I 
present a study that tested the developmental relation between rank and exact number 
representations in 3- and 4-year-olds. Results showed that children who were better at 
tracking the rank of an item within a sequence also acquired more number words. 
Moreover, children who could reliably name the next number word in the count list also 
had a better grasp of numerical equality and a greater repertoire of number words. These 
findings suggest the ability to extract rank information from the count list is critical for 
the acquisition of number words and exact number representations. In Paper 2, I present a 
study that tested the developmental relation between rank-based operations and symbolic 
arithmetic. Results showed that children who were more proficient in making inferences 
based on inter-item distance between letters were better at solving symbolic arithmetic 
problems. Moreover, children who understood how rank should be updated after item 
insertion or removal also showed better arithmetic performance. The findings of Paper 2 
suggest rank-based operations are recruited for the computation of addition and 
subtraction. Together, these two studies help to pinpoint the relations between specific 
ordinal abilities and early mathematical competence, which is critical for understanding 
the nature of the associations between ordinality and the development of mathematical 
competence.  
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Introduction 

Being able to both understand numbers and perform computations is of tremendous 

importance in modern society. To function normally, humans must process numerical 

values on a regular basis, including when we engage in monetary transactions, a variety 

of measurement activities, and when we take standardized math tests. Moreover, unique 

components of technological human culture such as science, engineering, and 

architecture all require precise numerical computations. The general public is concerned 

that US students’ mathematical abilities are lagging behind students from other 

industrialized countries (OECD, 2016). To improve math education, we will need to 

better understand what underlies mathematical development.   

Recent studies have shown that mathematical development may be related to the 

ability to memorize order information or judge the order of a sequence. For example, 

these studies found that deficits in memorizing order was related to developmental 

dyscalculia, a disorder that affects the ability to acquire knowledge about numbers and 

arithmetic skills (Attout & Majerus, 2015; Butterworth, 2010; Butterworth, Varm, & 

Laurillard, 2011; De Visscher, Szmalec, Van Der Linden, & Noël, 2015; M Piazza et al., 

2010). These studies have also found that on order judgment tasks, individuals with 

dyscalculia show differential brain activation and behavioral patterns in comparison to 

people without dyscalculia (Kaufmann, Vogel, Starke, Kremser, & Schocke, 2009; 

Rubinsten & Sury, 2011). In the healthy population, there is evidence that children’s 

ability to process order information is related to their arithmetic performance (Attout, 

Noël, & Majerus, 2014; Lyons & Ansari, 2015; Lyons, Price, Vaessen, Blomert, & 

Ansari, 2014). Moreover, performance in order judgment tasks is also a strong predictor 
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of adults’ symbolic arithmetic performance (Lyons & Beilock, 2011). In addition, some 

earlier works following Piaget’s paradigms had also demonstrated that children who 

showed better ordinal abilities also showed better arithmetic understanding (e.g., 

Lemoyne & Favreau, 1981). Although these studies are clearly suggestive of an 

association between ordinal abilities and arithmetic competence, there are many 

unresolved issues. For example, is ordinality associated with arithmetic only, or does it 

influence mathematical abilities more broadly? What do children know about ordinality? 

How does the understanding of ordinal concepts contribute to the learning of 

mathematics? In an effort to answer these questions, this dissertation was designed to 

investigate the development of ordinality and its relation with other symbolic number 

abilities, as described in more detail below. 

Different Aspects of Ordinality 

Ordinality is not a monolithic concept (Lyons, Vogel, & Ansari, 2016). In the current 

developmental literature, terms such as “ordinal relation” or “ordinal concepts” may refer 

to different aspects of ordinality (see Table 1 for examples and descriptions of these 

concepts). Researchers in the field often conflate these different aspects because of the 

confusing terminology. As discussed in the latter sections of the dissertation, some 

problems in the existing literature are caused by overlooking the differences between 

these related, but different, components of ordinality. Thus, I will first explain the 

different aspects of ordinality by suggesting a classification framework. The suggested 

framework is modelled after Uttal et al. (2013) who proposed a categorization system for 

spatial abilities that is based on two orthogonal dimensions. Here, I propose a similar 
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system that differentiates ordinality based on two independent dimensions. Crossing 

these two dimensions generates four categories of ordinal concepts (see Table 2).   

The first dimension is concerned with whether an ordinal concept is contingent on the 

magnitude. When contingent on magnitude, ordinality is used for comparing the 

magnitude between items (i.e., less/more relation) or describing how items are arranged 

based on their relative magnitude (i.e., ascending/descending order). When not contingent 

on magnitude, ordinality is used to pinpoint the position of items in a sequence (i.e., rank) 

or to describe the arrangement pattern of items in a sequence (i.e., forward or backward 

order). Crucially, this distinction is grounded in psychological reality. Empirical research 

demonstrates different patterns of neural activation for ordinal concepts that are based on 

magnitude versus those that are not (Cheng, Tang, Walsh, Butterworth, & Cappelletti, 

2013; Turconi et al., 2004).  

Concept Description Examples of Citations 
Less/more relation For comparing the relative magnitude 

of items 
Brannon and Van de Walle 
(2001); vanMarle (2013) 

Ascending/ 
descending order 

For describing whether all items of a 
sequence consistently increase or 
decrease across the sequence 

Lyons and Beilock (2011); 
Macchi Cassia, Picozzi, 
Girelli, and de Hevia (2012) 

Rank Position of an item in a sequence Colomé and Noël (2012); 
Lewkowicz (2013) 

Before/after 
relation 

Relation that is based on the position 
of items in a sequence 

Gevers, Reynvoet, and Fias 
(2003); Turconi, Jemel, 
Rossion, and Seron (2004) 

Forward/backward 
order 

For describing whether the overall 
arrangement of the items follows a 
particular pattern  

Berteletti, Lucangeli, and 
Zorzi (2012); Previtali, de 
Hevia, and Girelli (2010) 

Table 1. Different ordinal concepts mentioned in the developmental literature. 
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Another dimension pertains to the level of description, namely whether it can be 

considered global or local. Some ordinal concepts focus on the global level description 

that applies to the sequence as a whole. Concepts such as ascending/descending or 

forward/backward order belong to this category. To decide whether a numerical sequence 

is in ascending order or not, one needs to consider all the items in the sequence. 

Moreover, the description of “ascending order” applies to the sequence as a whole, not to 

any specific item. By contrast, some ordinal concepts focus on the local level of 

description. Concepts such as rank and less/more relations belong to this category. For 

example, the rank of the letter A is 1 because it is the first letter in the alphabet. The rank 

1 applies to the letter A specifically rather than the sequence as a whole. 

 Magnitude Non-magnitude 

Local  Less/More Before/After (i.e., rank) 

Global Ascending/Descending Order Forward/backward Order 

Table 2. A classification framework of ordinal concepts. 

In this dissertation, I will focus on the local component of ordinality that is not based 

on magnitude. The concept is specifically referred to as rank. Rank is concerned with the 

position of items within a sequence (refered to as "ordinal position" in Nieder, 2005; 

Wiese, 2003). Given that magnitude constitutes an important aspect of number, it may 

seem odd to expect a non-magnitude aspect of ordinality to be associated with 

mathematical development. However, a reason to expect such an association is that, in 

the natural number system, the cardinal values of numbers are systematically mapped to 

the ranks of numbers in the number word sequence (Sarnecka & Carey, 2008). Cardinal 

value is the quantity that is represented by a specific number, which pertains to the 

question of “how many?” (Nieder, 2005; Wiese, 2003). Cardinal value is also a kind of 
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numerical magnitude. The cardinality of a number and its rank in the number word 

sequence are mapped in the following way: 

1) The smaller/larger relations between numerical values correspond to the 

before/after relations among number words (Carey, 2004).  

2) Adjacent numbers always have a difference of one, so that moving one forward 

(i.e., moving from 2 to 3) or backward (i.e., 3 to 2) in the number list corresponds to 

addition or subtraction, respectively, of one (Carey, 2004).  

3) The cardinal value of a number word is determined by its ordinal position in the 

sequence of counting words (Sarnecka & Carey, 2008).   

This systematic mapping guarantees that when the counting procedure is executed 

correctly (i.e., following the principles outlined by Gallistel and Gelman [1978]), the last 

number word uttered by the speaker is the cardinal value of the set. This makes the 

counting word sequence a potential tool to exact enumeration. In addition, the systematic 

mapping makes the number word sequence useful for tracking change in numerical 

values when performing the computations of addition and subtraction (Frank, Fedorenko, 

Lai, Saxe, & Gibson, 2012).  

 Indeed, the importance of connecting the ordinal position of number words with 

their numerical values has been recognized by researchers as early as Piaget (1952; 

1951/1975). In one experiment, Piaget and colleagues studied whether children could 

make use of ordinal information to infer cardinal value. They presented children with a 

series of 10 cards (referred to as cards A through K by Piaget). The cards were designed 

such that card A represented one unit of area. Card B was twice the area of card A (i.e., B 
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= 2A); card C was three times the area of card A (i.e., C = 3A), and so on (i.e., D = 4A; E 

= 5A; … K = 10A). In other words, the size of the card was associated with its ordinal 

position in the sequence (Nth card had the area of N units). This was analogous to the 

number word sequence, as the cardinal value of a number word is determined by its 

ordinal position. Piaget believed that if children understood the relation between ordinal 

position and cardinal value, then they should be able to infer the area of the cards by 

using their ordinal positions. In this study, the participants that was used by Piaget as 

examples for showing this mature understanding were all 6-year-yolds. However, more 

recent studies typically found children acquire the cardinality principle around 4 years of 

age (Le Corre & Carey, 2007; Sarnecka & Carey, 2008; Wynn, 1990, 1992). 

Nevertheless, it should be noted that Piaget’s goal was not to pinpoint the age at which 

children attained this understanding, so he did not provide the age range of participants 

who had achieved this mature understanding about ordinal position and cardinal value. 

Moreover, Piaget’s task was not a typical counting task. The system of cards used in 

Piaget’s experiment was novel to children. In contrast, children have much more 

experience counting and reciting the sequence of number words. To summarize, even 

though Piaget’s paradigm may have underestimated children’s numerical understanding, 

his work illustrated the importance of integrating cardinal and ordinal concepts about 

numbers.  

In the next section, I will describe the state of the current literature on this issue of 

the role of ordinality in mathematical development, then I will explain how my work 

specifically is in a position to address important unresolved issues.  
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The role of ordinality in mathematical development: state of the current literature 

Even though the discussion on how ordinality is related to mathematical development 

can be traced back to Piaget (1952; 1951/1975), this issue has not been the focus of 

research until recent years. To the best of my knowledge, researchers have yet to 

formulate any official theory that explains the mechanism that underlies the association 

between ordinality and mathematical development. Nevertheless, there are two lines of 

research that attempt to reveal the mechanism underlying the connection between 

ordinality and mathematics. One line of research focuses on working memory. The other 

focuses on symbol-symbol associations. Both lines of research provide important insights 

for understanding the role of ordinality in mathematical development. In this section, I 

will provide a brief description for each line of research. 

Role of working memory. This line of research aims to explain how a specific type 

of working memory (WM), namely order-WM, is related to mathematics. Order-WM 

refers to the WM for storing items’ positions in a list. By contrast, item-WM refers to the 

WM for storing the identity of items in the memorized list (Attout, Van der Kaa, George, 

& Majerus, 2012; Majerus, Poncelet, Van der Linden, & Weekes, 2008; see also Burgess 

& Hitch, 1999; Henson, Hartley, Burgess, Hitch, & Flude, 2003; Nairne & Kelley, 2004). 

For example, to memorize the letters “A, E, D” in the presented order, order-WM allows 

for keeping track of the mapping between letters and positions, whereas item-WM keeps 

track of the letters that are part of the list (i.e., A, D, and E). In the context of 

mathematical development, the two types of WM show different associations with 

arithmetic abilities. In a longitudinal study that followed a group of students from 

kindergarten to Grade 3, Attout et al. (2014) found that kindergarteners’ order-WM 
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capacity, but not item-WM capacity, predicted future math achievement in grade 1 and 

grade 2. This association was replicated in a sample that contained both dyscalculic and 

typically-developing students (8- to 12-years-old; Attout & Majerus, 2015). Moreover, 

the researchers found that dyscalculic students had deficits in order-WM, as their 

performance memorizing serial order was significantly worse than that of typically-

developing children. This deficit in order-WM was also found in dyscalculic adults (De 

Visscher et al., 2015).  

Why is order-WM related to arithmetic performance? There are at least two 

possibilities. First, to perform arithmetic computation, one needs to keep track of the 

sequential steps in the computational process, such that order-WM supports this process 

(Attout et al., 2014). Second, arithmetic facts may be stored in sequential format (De 

Visscher et al., 2015). For example, one may remember the multiplication table by a 

sequence that modifies one operant at a time (e.g., 2 × 2 = 4; 2 × 3 = 6, etc.). Thus, 

deficits in order-WM may hinder the ability to retain and retrieve arithmetic facts.  

This line of research provides concrete evidence that order-WM is related to symbolic 

number abilities. The findings reveal how a domain general process, namely WM, is 

related to the processing of numerical information. The focus on WM also means that the 

mechanism mainly explains how information is stored or retrieved. While this approach 

is valuable for understanding the cognitive processes that underlie arithmetic, such an 

approach is less useful in understanding the conceptual changes that underlie 

mathematical development. For example, what does it take to understand numbers? What 

do children know about ordinality? These important questions are not currently addressed 

in the extant literature that it is set up to. Thus, to fully understand the developmental 
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relation between ordinality and mathematics, it is necessary to study the development of 

these concepts themselves.  

Symbol-symbol associations. This line of research focuses on the potential 

contribution of ordinality to the symbolic number system. Research in this area often 

emphasizes the difference between ordinality and an intuitive system for processing 

numerical magnitude information, namely the Approximate Number System (ANS). The 

ANS is functional from birth (de Hevia, Izard, Coubart, Spelke, & Streri, 2014; Xu, 

Spelke, & Goddard, 2005), but its representations for numerical magnitude are noisy and 

imprecise (Feigenson, Dehaene, & Spelke, 2004; Halberda, Ly, Wilmer, Naiman, & 

Germine, 2012). Researchers in this area of research believe that the ANS is crucial for 

supporting the learning of symbolic numbers. However, with more experience in 

symbolic number, it has been suggested that the meaning of number gradually shifts from 

numerical magnitude to associations between numerical symbols, which critically rests 

on ordinality (Lyons & Beilock, 2011; Reynvoet & Sasanguie, 2016). Lyons, Ansari, and 

Beilock (2012) illustrated this idea by asking readers to consider numbers that are 

extremely large, such as 1,000,000. They argued that it is difficult to get an intuitive 

sense of the magnitude for this extremely large number. However, it is possible to 

understand this number by drawing on its ordinal relation with other numbers. For 

example, we can understand the number in the sense that 1,000,000 is larger than 

999,999, but smaller than 1,000,001. Lyons et al. thus concluded that it is possible to 

understand a number without fully grasping its numerical magnitude. They use the 

following evidence to support this claim. 
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Order judgment predicts children’s and adults’ performance in symbolic arithmetic 

tests. In a large scale cross-sectional study, Lyons et al. (2014) showed that the 

association between order judgment ability and symbolic arithmetic increased across 

development. Even though order judgment was a poor predictor in grades 1 and 2, it 

became a significant predictor beginning in grade 3 and eventually becoming the 

strongest predictor in grade 6. In adults, researchers have also found significant 

associations between an order judgment ability and symbolic arithmetic performance 

(Goffin & Ansari, 2016; Lyons & Beilock, 2011). Together, these findings support the 

notion that ordinality is related to symbolic arithmetic.  

Order judgment fully mediates the relation between the ANS and symbolic arithmetic. 

Not only has ordinality been shown to relate to symbolic arithmetic, but there is also 

evidence that it mediates the relation between other known links to symbolic arithmetic. 

In an adult study, Lyons and Beilock (2011) showed that the ability to make ascending 

order judgments fully mediated the relation between ANS and symbolic arithmetic. This 

finding can be interpreted as the ANS having no direct involvement in the psychological 

process of symbolic arithmetic. Instead, the ANS contributes to the development of 

ordinal ability, which in turn contributes to the development of symbolic arithmetic.  

Critique. This above-mentioned research provides evidence for a role of ordinal 

ability in mathematics development. However, the suggestion that the ANS, a system that 

supports magnitude meaning, would gradually be overshadowed by ordinality is 

debatable. First, as described in the classification scheme above, some ordinal concepts 

such as less/more are contingent on magnitude. Thus, these magnitude-concepts may also 

be supported by the ANS, making it difficult to interpret how the ANS could be 
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completely replaced by ordinality. Second, there are good reasons to believe that 

magnitude and ordinality both constitute important aspects of symbolic number ability. 

Studies have shown that the cardinal value of symbolic numbers are mapped onto the 

ANS in both adults (Izard & Dehaene, 2008) and children (Le Corre & Carey, 2007; 

Lipton & Spelke, 2005). Moreover, neuroimaging studies have showed that processing of 

symbolic number implicate the intraparietal sulcus, an area that is typically associated 

with the processing of magnitude information (Eger et al., 2009; Notebaert, Nelis, & 

Reynvoet, 2010; Piazza, Pinel, Le Bihan, & Dehaene, 2007; for meta-analysis, see 

Arsalidou & Taylor, 2011; Dehaene, Piazza, Pinel, & Cohen, 2003). Thus, it is 

reasonable to expect that numerical magnitude, and the ANS that supports it, should be 

involved in the processing of symbolic number.        

If both magnitude and symbolic relations are important, then how to explain the 

finding that ordinal ability completely mediated the effect of ANS on symbolic arithmetic 

(Lyons & Beilock, 2011)? In the study that demonstrated this mediation effect, an 

ascending order judgment task was used to assess participants’ ordinal ability. However, 

to decide whether a sequence is in ascending order, one must consider both the 

magnitude and arrangement of numbers in the sequence. Thus, magnitude processes may 

support both the order judgment task and the task for assessing ANS acuity, making it 

difficult to determine whether ANS is directly involved in the psychological process of 

symbolic arithmetic based on the results of mediation analyses. In summary, there are 

good reasons to believe that magnitude and ordinality both constitute important aspects of 

symbolic number ability. The approach of establishing the importance of ordinality by 

denying the influence of ANS is debatable. 
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Another issue in this line of research concerns the vagueness of the claim about 

symbol-symbol relations. Indeed, ordinality can be used to describe the relations among 

numerical symbols, but how does the understanding of such relations contribute to other 

mathematical abilities? This question is particularly pertinent to the association between 

ascending order and arithmetic. Moreover, even though we can understand that 999,999 < 

1,000,000 < 1,000,001, how does this understanding relate to other mathematical 

abilities? The exact contributions of these ordinal relations have yet to be well articulated. 

These difficulties are partly due to the fact that this line of research only utilizes the 

order judgment task as the paradigm for measuring ordinal ability. As described above, 

ascending/descending order only constitutes one of the many aspects of ordinality. Given 

the way that cardinal value and rank are mapped within the natural numbers, a narrow 

focus on ascending/ descending order judgment may not be conducive to revealing the 

mechanisms that underlie the connection between ordinality and mathematics. 

Unresolved issues. The two lines of research discussed above provide important 

groundwork for understanding the role of ordinality in mathematical development. 

However, there are still a number of important issues that need to be addressed. 

Development of ordinality. The first issue is concerned with the development of 

ordinality. Both lines of research take it for granted that children understand ordinality. 

The development of ordinality itself is largely ignored. Even though infant studies have 

shown that preverbal infants have some rudimentary ordinal abilities (Brannon, 2002; 

Brannon & Van de Walle, 2001; Lewkowicz, 2013; Lewkowicz & Berent, 2009; Macchi 

Cassia et al., 2012; Suanda, Tompson, & Brannon, 2008), there is very limited 
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information on children’s explicit knowledge about ordinality in the current literature. 

One exception is the work by Colomé and Noël (2012), which demonstrated that children 

master cardinal counting (i.e., counting for set size) before they master ordinal counting 

(i.e., counting for the rank of a specific item). This study illustrates that it should not be 

taken for granted that children understand all concepts of ordinality. Thus, to fully 

understand the developmental relation between ordinality and mathematics, it is 

important to understand the developmental trajectory of ordinal understanding itself.  

Relation to symbolic numbers. The second issue is concerned with the specific 

contributions of ordinality to the understanding of symbolic numbers. Although the line 

of research on symbol-symbol relations has been somewhat promising on this issue, the 

precise contribution of ordinality to symbolic number understanding is largely unclear. 

Moreover, previous research has mainly focused on the association between symbolic 

arithmetic and the ability to judge or memorize order, leaving unexplored other potential 

associations between ordinality and symbolic numbers. As discussed above, there is a 

systematic mapping between numerical values and the rank of number words in the 

natural number system. Thus, exploring the role of rank in mathematical development 

may provide new insights to the question of how ordinality contributes to symbol-symbol 

relations among symbolic numbers.  

Researchers who have focused on the development of symbol-symbol relations also 

suggested that, with development, the meaning of numbers shifts from numerical 

magnitude to a relation among numerical symbols. Thus, the importance of the ANS 

would gradually be overshadowed by ordinality, which characterizes the relations among 

the numerical symbols. However, some ordinal concepts, such as less/more and 
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ascending/descending are actually based on relative magnitude, making the distinction 

between ordinal and magnitude processing difficult to interpret. Thus, the developmental 

relations between magnitude processes, ordinal processes, and mathematics is an 

important theoretical question that needs to be addressed.  

Overview of the dissertation 

In this dissertation, I provide a systematic account for understanding the 

developmental relations between ordinality and mathematics. Above, I have provided a 

conceptual framework for understanding different aspects of ordinality and have 

summarized the key issues that will need to be addressed. In the two papers that 

constitute the subsequent sections of this dissertation, I will explain how one aspect of 

ordinality, namely rank, may contribute to two important mathematical achievements, 

namely the acquisition of exact number representations and symbolic arithmetic, in 

young children. To support these claims, I studied children’s explicit knowledge of rank 

and the relations to their mathematical abilities.   

Paper 1 addresses how rank may contribute to the acquisition of exact number 

representations. Before children understand the meaning of number words, numerical 

values that are larger than four can only be represented as approximate numerical 

magnitude with poor precision (Feigenson et al., 2004). I propose that rank contributes to 

children’s acquisition of number words, which enables children to represent any 

numerical values with precision. Paper 1 of the dissertation put this proposal to the test. 

To anticipate the results, the findings suggest that 3- and 4-year-olds’ ability to represent 
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rank information in a sequence, as well as their knowledge about rank-based relation 

among number words, are both related to children’s ability to represent exact numbers.  

Paper 2 addresses the issue of how rank may contribute to the development of 

symbolic arithmetic, specifically addition and subtraction. I propose that rank-based 

operations may be recruited in the computational procedures of addition and subtraction 

because such procedures typically involve movement along the numerical sequence. 

Paper 2 of the dissertation tested whether this proposal was supported by empirical data. 

To anticipate the results, the findings suggested that certain types of rank-based 

operations are related to 5- and 6-year-olds’ performance in symbolic addition and 

subtraction tests. Moreover, a mediation analysis showed that the influence of ANS is not 

mediated by rank-based abilities.  

In the conclusion portion of this dissertation, I discuss the implications of the findings 

in Papers 1 and 2, as well as future directions for research.  
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Abstract 

Despite accumulating evidence for an association between ordinal concepts and 

numerical abilities, the mechanism that underlies this connection remains largely unclear. 

The current study examined the potential contributions of ordinality to the acquisition of 

children’s exact number representations. Exact number representations entail the ability 

to establish numerical equity between any numbers and an understanding of the 

cardinality principle (CP) that enables exact numeration of any number. The current 

study tested 3- to 4-year-olds to determine whether the ability to represent absolute rank 

(i.e., the ordinal position of an item in a sequence, e.g., first, second), as well as the 

understanding of rank-based relations among numbers (e.g., “two” comes after “one”) 

contribute to the acquisition of numerical equity and CP. Results suggested that children 

who were better at tracking absolute rank showed greater understanding of CP. 

Moreover, children who showed better understanding of rank-based relations among 

numbers also showed better understanding of CP and numerical equality. These findings 

suggest that the ability to extract rank information from the count list is an important step 

in the acquisition of exact number representations. I argue that the vital concepts for 

exact number representations are built on the rank information about the number words. 

But such rank information is not available to children when they first learn to recite the 

count list. Thus, an extra step of extracting the embedded rank information from the list is 

critical for rendering the rank information useable for building exact number concepts.  
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There has long been interest in the psychological foundations of mathematical 

development. Understanding the basis of early mathematical thinking has important 

implications for psychology as well as education. Previous studies have focused on the 

Approximate Number System (ANS) as a foundational ability. The ANS is an intuitive, 

nonverbal sense of numerical magnitude, and accumulating evidence suggests a link 

between the precision of the ANS and the development of formal mathematics (e.g., 

Halberda, Mazzocco, & Feigenson, 2008; Lourenco, Bonny, Fernandez, & Rao, 2012; M 

Piazza, Pica, Izard, Spelke, & Dehaene, 2013). Less attention has been paid to another 

potentially foundational ability, namely the representation of ordinality (Rubinsten & 

Sury, 2011). Ordinality concerns the position of items within a sequence (Nieder, 2005; 

Wiese, 2003) and, importantly, it applies to both numerical and non-numerical sequences. 

Within the natural number system, the properties of magnitude and ordinal position are 

deeply intertwined, yet behavioral and neural data suggest that they dissociate in the mind 

and brain (Cheng, Tang, Walsh, Butterworth, & Cappelletti, 2013; Franklin & Jonides, 

2008; Lyons & Beilock, 2013; Turconi, Campbell, & Seron, 2006). That these properties 

are dissociable is critical because it allows for testing their independent contributions to 

mathematical development. In the current research, I focus specifically on the potential 

contribution of ordinality to the acquisition of exact number representations.   

Ordinality as position 

Ordinality is not a single, monolithic construct but, rather, it incorporates 

multiple, inter-related concepts. The current study focuses on the positional aspect of 

ordinality, which can be defined specifically as the rank of items in a sequence (e.g., the 

5th letter in the alphabet is E; Nieder, 2005; Wiese, 2003). Rank can be further defined 
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according to the reference point used for defining position. In the current study, I focused 

on the development of two types of rank information, namely absolute rank and rank-

based relations, described further below.  

Absolute rank. Absolute rank refers to the absolute position occupied by each 

item within a sequence and with reference to the beginning of the sequence (e.g., first, 

second, etc.). One way to represent this type of information is to associate a nonverbal 

placeholder with an object or event (cf. Lewkowicz & Berent, 2009). Information such as 

“A is the first letter” can be represented by associating the letter “A” with the nonverbal 

placeholder that stands for “first”. Without language, though, the number of distinct 

ordinal positions that might be indexed are necessarily limited by one’s attentional 

resources (Nieder, 2009).  

 Rank-based relations. Rank-based relations refers to the before/after relations 

among items in a sequence. In contrast to absolute rank, which is defined with reference 

to the beginning of the sequence (e.g., B is the 2nd letter because it is the 2nd item from the 

beginning of the list), rank-based relations can be defined with reference to any item in a 

sequence (e.g., B comes before C but after A—both C and A are reference points to B).  

 Rank information in the number word sequence. In the context of learning 

number words, the ability to represent absolute rank pertains to the understanding that 

one is the first word in the counting list, two is the second word, and so on. The ability to 

represent rank-based relations pertains to the understanding that two comes after one, that 

three comes after two, and so on. However, children who can recite numbers do not 

necessary understand the rank information that is embedded in the routine. This is 
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analogous to the case that children do not always understand the cardinal meaning of the 

number words they can recite (Wynn, 1990, 1992). To adults, number words are discrete 

entities that can be easily discriminated from one another. Nevertheless, Fuson (1988) 

found that some children may go through an “unbreakable chain” stage, in which they 

treat the number word sequence as a single undifferentiated structure, rather than a list 

made up of fully separated words. Fuson suggested that children need to go through a 

protracted process, which can span from 4 to 8 years of age, to gain access to the rank-

based relations among the number words. With development, children eventually come to 

treat each number word as a discrete entity that takes up a fixed and unique position in 

the number word sequence (see also C. Xu & LeFevre, 2016).   

How might ordinality contribute to representations of exact number? 

Before humans acquire and understand symbolic numbers, representations of 

number are processed by two nonverbal systems. One of these systems is known as the 

object file system and it is characterized by its precision in tracking up to four objects 

(Feigenson & Carey, 2003; Trick & Pylyshyn, 1994; Uller, Carey, Huntley-Fenner, & 

Klatt, 1999). The other system is known as the Approximate Number System (ANS, 

Dehaene, 2011; Feigenson, Dehaene, & Spelke, 2004; M. Piazza, 2010; F. Xu & Spelke, 

2000), which does not have an upper limit for numerical value, but its precision decreases 

as the numerical value increases. The ANS represents numerical quantity as continuous 

magnitude. The system is constrained by Weber’s law such that the discriminability of 

two numbers is determined by their ratio, not the absolute distance. Since there are no 

discrete boundaries between adjacent values (e.g., 100 and 101 are highly overlapping), it 

can be impossible to differentiate between two numbers that are close in value. 
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Moreover, when representing large numbers of the same values (e.g., 100 and 100), the 

noise inherent in the ANS makes it impossible to ascertain whether the two values are 

identical or just highly similar (e.g., 100 ≈ 101). Thus the ANS is ill-equipped for 

representing exact numbers. 

In contrast to the two nonverbal number systems, number words are better suited 

to representing a full range of exact numbers. In contrast to the continuous nature of the 

ANS representations, number words are discrete entities. There is no overlap between the 

word “nine” and the word “ten.” In contrast to the crude representations of the ANS that 

fail to represent small changes (versus no change) in numerical value, number words can 

represent all changes in numerical values accurately. This is because each number word 

refers to a unique and exact numerical value in the natural number system (Condry & 

Spelke, 2008; Lipton & Spelke, 2006). A different number word should be used to 

describe a set even if its numerical value is changed (e.g., by addition or subtraction) by 

the minimal possible amount of one (Izard, Pica, Spelke, & Dehaene, 2008; Izard, Streri, 

& Spelke, 2014; Sarnecka & Wright, 2013), whereas the same number word still applies 

to a post-transformed set if such a transformation does not involve changes in numerical 

value, such as stretching out a line of objects. And when a sufficient set of number words 

is acquired, even numbers that are beyond the set size limitation of object file system can 

be represented with precision. Thus, comparing to the two intuitive, nonverbal number 

systems, number words provide a more advanced representational system that enable 

more complex numerical reasoning.  

Researchers suggest that the acquisition of number words is critical for 

developing exact number representations (Carey, 2009; Condry & Spelke, 2008; 
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Sarnecka, 2015; but see Butterworth et al., 2008; Leslie, Gelman, & Gallistel, 2008). In 

the process of learning number words, children gradually acquire two vital concepts that 

are required for fully-fledged exact number representations, namely numerical equality 

(refered as "exact equality" in Izard et al., 2008; Izard et al., 2014) and the cardinality 

principle (CP; Gallistel & Gelman, 1978; Sarnecka, 2015; Wynn, 1990, 1992). In the next 

section, I explain how rank information may contribute to the development of exact 

number by facilitating the understanding of number words in children.   

Numerical Equality. By definition, numerical equality refers to a dichotomous 

state of equivalence, namely equal or not equal. Among the two nonverbal numerical 

systems, the object file system supports numerical equality because it represents 

numerical values as discrete entities. By contrast, the ANS does not support numerical 

equality because it represents numerical values with continuous representations that are 

imprecise. Given that the object file system has a set size limit of four, what causes 

children to believe numerical equality applies to all numerical values?  Research has 

shown that a mature understanding of numerical equality depends on the acquisition of 

number words (Condry & Spelke, 2008; Lipton & Spelke, 2006). I propose that acquiring 

number words, depends on an understanding of rank information. 

Understanding absolute rank in the context of number words may contribute to 

the acquisition of numerical equality. As discussed above, when children first learn how 

to recite number words, they treat this sequence as an undifferentiated structure (Fusion, 

1988), not a list of discrete entities that occupy unique positions in the sequence. Thus, 

developing the ability to extract absolute rank from a sequence may critically aid in 
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differentiating the individual number words, which, in turn, may facilitate the 

understanding of numerical equality. 

The understanding of rank-based relations (i.e., before/after) among numbers may 

also contribute to the acquisition of numerical equality. Although the ANS fails to 

represent the qualitative difference between equality (e.g., 100 = 100) and similarity (e.g., 

100 ≈ 101), adults can easily tell that the value represented by the words “one hundred” 

does not equal that of “one hundred and one”, because they can draw on the knowledge 

that “one hundred” comes before “one hundred and one”  in the number word sequence. 

The rank-based relation among number words helps to highlight the clear boundaries 

between adjacent numerical values. It also provides an alternative system for representing 

the less/more relation, which can be buried by the imprecision of the ANS.    

Cardinality Principle (CP). Another vital concept for exact number representations 

is the cardinality principle (CP), which states that the last number referenced in counting 

represents the total number of items in a set (Gallistel & Gelman, 1978; Wynn, 1990, 

1992). This principle is important because it makes counting a functional tool for exact 

enumeration. Children who master this principle can associate an exact numerical value 

to the appropriate number word without the set-size constraint associated with the object 

file system. Sarnecka and Carey (2008) suggested that the acquisition of CP is related to 

the implicit understanding that the quantity represented by a number word corresponds to 

its absolute rank in the sequence (i.e., the first word in the number word list represents 

the quantity of one, the second word represents the quantity of two, and so on). However, 

this understanding is not possible if children represent the count sequence as an 

undifferentiated structure. As discussed above, information about absolute rank in the 
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count sequence may not be readily available to children when they first learn the number 

words. Thus, the ability to represent the absolute rank of number words within the count 

sequence may be crucial in establishing the correspondence between quantity and the 

rank of the numbers.   

Another reason to believe that the acquisition of CP is related to rank information 

comes from research showing a developmental association between CP and the successor 

function. The successor function indicates that the number immediately following N is N 

+ 1 (Gallistel & Gelman, 1978). Sarnecka and Carey (2008) showed that only children 

who were near acquisition of CP or had already acquired CP showed robust 

understanding that larger numbers come after smaller numbers in the count sequence. 

Moreover, it has been shown that only CP-knowers understand that if exactly one object 

is added to a set, then the new set size should be the next word in the number word 

sequence, as opposed to any other number word. These findings suggest that knowing CP 

implies an implicit understanding of the successor function. As described above, the 

conceptualization of successor function is rooted in rank-based relations. More 

specifically, it is built on the ability to understand the “after” relation among number 

words. Thus, the understanding of rank-based relations among the number word may 

contribute to the acquisition of the successor function, which, in turn, may support 

learning of CP.  

Current Study 

 The current study investigated whether children’s ordinal abilities were related to 

their acquisition of exact numbers, as characterized by the concepts of equality and the 
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cardinality principle (CP). To this end, I focused on the two ordinal abilities of absolute 

rank and rank-based relations, and I examined the links between individual differences 

associated with these abilities and children’s emerging understanding of equality and 

cardinality.  

 I designed two separate tasks to capture inter-individual variability in 3-to 5-year-

olds’ understanding of absolute rank and rank-based relations. The Ordinal Position task 

required that children identify a target character on the basis of its absolute rank—that is, 

its ordinal position in a sequence of other characters. Three different characters (all 

rabbits) showed up sequentially in a fixed order. Children were tasked with selecting the 

target character when it appeared. The only way in which to identify the target character 

was on the basis of its absolute rank. The Rank-based Relations task required that 

children name the number that came after a specific number (e.g., “3, 4, what’s next?”). 

This task allowed for testing whether children have explicit access to the rank-based 

relations among number words.  

 There were also two separate tasks to assess children’s understanding of exact 

numbers—one that captured their understanding of equality and the other of CP. The first 

task was the Transform-sets task, adapted from Sarnecka and Gelman (2004), in which 

children judged equality. In this task, children witnessed a transformation that either 

altered the number of items in a box or left number unaltered. Then, without counting or 

seeing the objects in the box, children were asked whether the same number word still 

applied to the unseen objects in the box after the transformation. The second task was a 

variant of the Give-a-Number (GAN) task, adapted from Patro and Haman (2012), in 

which I assessed the level of CP understanding in children. In this task, children are 
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asked to produce a set of objects that match the number requested by an experimenter. I 

also included a set of other tasks that assessed children’s abilities to recite number words, 

ANS acuity, visual-spatial working memory (WM) span, and expressive vocabulary. If 

children’s ordinal abilities are related to their exact number representations, then better 

performance in Ordinal Position and Rank-based Relations tasks should be accompanied 

by better performance in the Transform-sets and GAN tasks. Moreover, and crucially, 

these correlations should reflect specificity between the tested abilities such that the 

effects should hold when accounting for performance on other numerical measures (e.g., 

number word recitation, ANS acuity) and general cognitive functions such as WM and 

linguistic competence.  

Method 

Participants 

 Sixty-two preschoolers (33 male; age range: 3 years 3 months – 4 years 8 months, 

Mage = 3 years 11 months) participated in this study. Four additional children (range: 3 

years 6 months – 4 years 0 month) were tested but excluded from statistical analyses for 

failing to follow instructions. All children received a small gift for participating. 

Informed consent was obtained on behalf of each child by a parent or legal guardian. 

Experimental procedures were approved by the local ethics committee.  

Tasks and Procedure 

Participants were tested individually in a university laboratory. All ten tasks were 

administered in a single experimental session (see Table 1), lasting approximately 90 

minutes. Task order was randomized across participants with the constraint that the tasks 
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assessing the abilities of interest (i.e., ordinal and exact number concepts) were 

administrated before the control tasks (i.e., general intelligence and ANS acuity).  

Task Name Construct Assessed 

Ordinal Position task Ordinality: Absolute rank 
Rank-based Relations task Ordinality: Rank-based relations 
Transform-sets task Exact Number: Numerical Equality 
Give-A-Number task Exact Number: Cardinality principle 
Recitation task Recitation of number words 
Picture Recognition task Nonverbal working memory span 

ANS task Acuity of nonverbal number 
representations 

DVAP Expressive vocabulary 
Table 1. List of tasks administered to children in the current study 

While children participated in the study their parents filled out the Developmental 

Vocabulary Assessment for Parents (DVAP, Libertus et al., 2013), a parental measure of 

expressive vocabulary. Parents were instructed to select the words that they had heard 

their children utter. The score of DVAP is the total number of selected words.  

Ordinal Position Task. This computerized task was designed to tap children’s 

sensitivity to absolute rank. Specifically, this task assessed whether children could 

recognize the rank of an item in a temporal sequence. On each trial, children were told 

that three different cartoon rabbits would emerge from behind a rock in a fixed order (i.e., 

“It’s always the brown bunny, then the pink bunny, then the gray bunny”), and that their 

task was to “catch” the target rabbit when it appeared by tapping the touchscreen. The 

target rabbit was indicated to the child at the beginning of each trial with a “Wanted!” 

poster (see Figure 1). In addition, the background color of the computer program changed 

to that of the target rabbit to serve as a reminder throughout the trial. Children were given 
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6 training trials in which the rabbits always appeared in the following order: brown, then 

pink, then gray. On these trials, the color of the rabbits was always visible. Twelve test 

trials followed. These trials were identical to training except that the cartoon rabbits were 

now all the same color. Children were told that “the rabbits covered themselves with a 

rainbow	blanket.” This manipulation ensured that a successful response would be based 

on the rank of the rabbit in the temporal sequence (i.e., first, second, or third). After each 

rabbit emerged from behind the rock, children were asked “Is that the right bunny?”. If 

the children thought it was the target, then they tapped the rabbit. Each trial was followed 

by corrective feedback (see Figure 1). Accuracy was measured by the total number of 

correct answers.

 

Figure 1. Screen shots of a practice trial. The upper part of the figure is an example of a 
correct trial. In this example trial, the target is the pink rabbit, which is shown as part of 
the “Wanted” poster at the beginning of the trial. Then, the rabbits rose up from behind 
the rock one after another. In this example, the target bunny was tapped when it appeared, 
therefore a feedback screen for a correct answer is shown subsequently. The lower part of 
the figure is an example of an incorrect trial, in which the participant failed to poke the 
target bunny. The feedback for incorrect answer is shown.	 

Rank-based Relations task. This task was designed to evaluate children’s 

understanding of rank-based relations between number words. It was inspired by a 
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similar task by Fuson, Richards, and Briars (1982), which assessed preschoolers’ ability 

to name numbers that came either before or after a given number word.  

 In the practice trials, participants saw that a puppet experienced difficulty when 

reciting numbers (i.e., “1, 2, umm… What’s next?”) or letters (i.e., “A, B, umm… What’s 

next?”). The experimenter invited the participant to help the puppet by telling it what the 

next number or letter should be. Corrective feedback was given on practice trials. The test 

trials (15 trials) were the same as the practice trials, except that the questions were 

exclusively about numbers and no corrective feedback was provided. Two types of cues 

(one-word/ two-word cue) were used in the prompt. One-word cues contained only one 

number word (e.g., “two … what’s next?”; 8 trials), and two-word cues contained two 

number words (e.g., “two, three… what’s next?”; 7 trials). The number cues ranged from 

1 to 9, and the correct answers ranged from 2 to 10. The order of questions was 

randomized across participants. Accuracy was measured by the total number of correct 

answers. 

 Give-a-Number task. This task assessed children’s understanding of the 

cardinality principle (CP; Wynn, 1990, 1992). Following Patro and Haman (2012), 

children were prompted to place a designated number of coins into a plastic box (i.e., 

“Put N coins into the box.”). When participants completed the request, the experimenter 

asked for confirmation (“Is that N?”). If the child replied no, then the experimenter made 

the request again (i.e., “Please put N coins into the box.”). The first trial always began 

with a request for one coin. The subsequent values of N (ranging from 1 to 9) were 

contingent on the child’s performance. Following a correct trial, the value of N increased 

by two. Following an incorrect trial, the value of N decreased by one. The maximum 
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number of trials for each N was three. The task ended when participant met one of the 

following conditions: 1) succeeded in giving the highest number (i.e., 9) twice; 2) failed 

the lowest number (i.e., 1) twice; 3) succeeded in giving N twice and failed N+1 twice. 

Following previous research (e.g., Le Corre, Van de Walle, Brannon, & Carey, 2006; 

Sarnecka & Carey, 2008; Wynn, 1990, 1992), children were classified into six groups 

based on the highest number they answered correctly. A child whose highest number was 

greater than five was classified as a CP knower. A child whose highest number ranged 

from one to four was classified as a one-knower, two-knower, three-knower, or four-

knower, respectively. Children who failed to give the lowest number were classified as a 

pre-numeral-knower. 

 Transform-Sets task.  This task was used to evaluate children’s understanding of 

numerical equality and it was adapted from a study by Sarnecka and Gelman (2004). In 

this task, children were asked to decide whether the same number word still applied to the 

set of unseen objects after witnessing a transformation that either altered (set-size 

changed condition) or did not alter (set-size unchanged condition) the quantity of objects 

in a covered box. In the set-size changed condition (4 trials), an object was either added 

to or removed from the box, changing the number of objects in the box by one. In the set-

size unchanged condition (4 trials), the box was either shaken or rotated; there was no 

change to the number of objects in the box in this condition. To ensure that children 

possessed the required information for inference, the experimenter always confirmed that 

children knew the number. The number was repeated if children forgot the correct 

quantity.  
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The task began with four practice trials and was followed by eight test trials 

(random order). In the practice trials, only one object was put in the box and participants 

were asked to report the name of the object in the box after a transformation (either 

rotating the box, shaking the box, or swapping out the content of the box, e.g., replacing 

the bird in the box with a frog). In the test trials, the experimenter put either 2, 3, 5, or 6 

objects in a box, then the experimenter performed the condition-relevant transformation. 

The post-transformation set size ranged from two to six, and participants were provided 

with two choices to choose from (e.g., “Is that 3 or 4?”). The range of the choices was 

two to six. Performance was measured by the total number of correct answers. 

Recitation task. This task was adapted from Sarnecka and Carey (2008) for 

assessing children’s ability to recite number words from one to ten. The experimenter 

asked participants to recite the count list by saying “Let’s count. Can you count to ten?” 

If the child did not respond, then the experimenter suggested that they first count together 

and then by him- or herself1. The highest number recited in correct order was used as the 

performance measure of this task.  

Picture Recognition Task. Participants’ nonverbal working memory (WM) span 

was assessed by the Picture Recognition subtest in the Woodcock-Johnson III Test of 

Cognitive Abilities (Woodcock, Mather, et al., 2001). On each trial, children were tasked 

with memorizing a list of target pictures presented for five seconds (list length: 1 to 4). 

Then, children were asked  to identify the targets from an array that contained both target 

and non-target pictures. Performance was measured using standard scores for this task. 
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 ANS task. This was a computerized task designed to assess the precision of one’s 

ANS and it was adapted from similar studies in the literature (e.g., Bonny & Lourenco, 

2013; Libertus et al., 2011; Piazza et al., 2010). Each trial was initiated by the 

experimenter who pressed a virtual red star presented centrally onscreen. Two arrays of 

heterogeneous rectangles were shown horizontally onscreen in front of two characters 

(i.e., Big Bird and Grover). After a delay of two seconds, the arrays were replaced by the 

full body pictures of Big Bird and Grover, respectively. The experimenter then instructed 

the child to touch the character that had more “boxes.”  

There were two practice trials and 16 test trials. Both types of trials followed the 

same procedure except that there was no corrective feedback during the test trials. The 

positions of correct answers were counterbalanced across trials. The number of rectangles 

in each array varied from 4 to 21. Four ratio bins were used (2:1, 3:2, 4:3 and 7:6) with 

four trials in each bin. Following the protocol used in the study of Libertus et al. (2011), 

continuous properties of the arrays were varied in one of two ways. On half the trials, the 

cumulative area for the two arrays were equated within trial; in this case, average element 

size was inversely related to number. On the other half of the trials, the average element 

size was equated within trial; in this case, cumulative area was positively related to 

number. Performance of this task was measured by the total number of correct trials. 

Results 

 Internal consistencies for Ordinal Position, Rank-based Relations, Transform-sets, 

ANS, Picture Recognition and DVAP2 were assessed using split-half correlations 

(Spearman-Brown formula). Analyses revealed acceptable reliabilities for all tasks, with 

split-half correlations ranging from .56 to .98 (see Table 2).   
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Task Name Split-half correlations 

Ordinal Position task .57 
Rank-based Relations task .91 
Transform-sets task .56 
ANS task .60 
Picture Recognition task .98 
DVAP .98 

Table 2. Split-half correlations (Spearman-brown formula) for all measures used in the 
current study.  

Preliminary analyses: Performance by Task 

 Ordinal Position task. An analysis of accuracy for 3- and 4-year-olds revealed 

that 4-year-olds (M = 71.83%, SD = 26.58%) performed significantly better than 3-year-

olds (M = 50.00%, SD = 23.93%), t(60) = 3.40, p = .001, d = 0.87. Despite the age 

difference, both groups performed significantly above the chance level of 33.33% on this 

task3: 3-year-olds, t(32) = 4.00, p < .001, d = 0.70; 4-year-olds: t(28) = 7.80, p < .001, d = 

1.45. Thus, by 3 years of age, children order items in a temporal sequence by their 

absolute ranks with improvement in this ability between 3 and 4 years of age.  

 Rank-based Relations task. Accuracy4 on this task was analyzed using a mixed 

design ANOVA, with cue type (1- or 2-word cue) as the within-subjects factor and age 

(3- or 4-years-old) as the between-subjects factor. The main effect of age was significant, 

F(1, 59) = 5.06, p = .028, 𝜂!!= .08, as 4-year-olds (M = 77.01%, SD = 24.85%) performed 

significantly better than 3-year-olds (M = 59.38%, SD = 34.64%). The main effect of cue 

type was also significant, F(1, 59) = 11.85, p = .001, 𝜂! 
! = .17, as accuracy was 

significantly better on the 2-word cue condition (M = 72.83%, SD = 33.27%) than the 1-

word cue condition (M = 63.32%, SD = 33.06%), consistent with Fuson et al. (1982). The 

interaction between cue type and age was not significant, F(1, 59) = 0.28, p > .6, 
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suggesting that the effect of cue type was comparable for both age groups. In summary, 

children’s understanding of rank-based relations improves across 3 and 4 years of age, 

and both age groups showed better performance when prompted with a longer cue.  

Give-a-number (GAN) Task. There were 39 children (62.9%, rangeage= 3 years 

3 months to 4 years 8 months, Mage = 4 years 0 month) who were classified as CP-

knowers (see Table 3 for the number and age distribution of knower levels) on the GAN 

task. The age distribution was comparable to those reported in previous studies (e.g., 

Patro & Haman, 2012; Sarnecka & Carey, 2008).  

Knower Level N Mean Age Range 

1-knower 4 3; 9  3; 8 to 3; 10 
2-knower 13 3; 9 3; 6 to 4; 4 
3-knower 5 3; 8  3; 6 to 4; 0 
4-knower 1 3; 9  - 

CP-knower 39 4; 0  3; 3 to 4; 8 

Table 3. Age distribution of knower level on the GAN task. Children’s ages are reported 
in the format of “year; months”. The number before the semicolon(;) denotes the year, the 
number after the semicolon denotes the months 

 Transform-Sets Task. Four-year-olds’ (M = 86.21%, SD = 15.07%) performance 

on this task was marginally better than that of 3-year-olds (M = 78.41%, SD = 17.48%), 

t(60) = 1.87, p = .067, d = 0.48. When compared to the chance level of 50%, both 3-year-

olds, t(32) = 9.34, p < .001, d = 1.63, and 4-year-olds, t(28) = 12.94, p < .001, d = 2.4, 

performed significantly above chance. Thus, by age 3 years, children understand how 

number words represent numerical equality with improvement in this ability between 3 

and 4 years of age.  
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 Recitation Task. No significant age difference was observed in the ability to 

recite the numbers 1 to 10 (3-year-olds: M = 9.52, SD  = 1.48; 4-year-olds: M = 9.59, SD  

= 1.21), t(60) = 0.21, p = .838, which was likely the result of a ceiling effect. More 

specifically, the majority of children in this study (54 participants, 87.1%, rangeage =  3 

years 6 months to 4 years 8 months, Mage = 3 years 11 months) recited numbers from 1 to 

10 correctly (see Table 4 for information about age and performance of all children).  

Highest recited number N Mean Age Range 

10 54 3; 11 3; 6 to 4; 8 
8/9 3 3; 9 3; 3 to 4; 0 
5/6 4 3; 11 3; 6 to 4; 4 
4 1 3; 10 - 

Table 4. Age distribution based on recitation performance on the Recitation task. 
Children’s ages are reported in the format of “year; months”. The number before the 
semicolon(;) denotes the year, the number after the semicolon denotes the months 
 

 ANS Task. One typical finding in the ANS task is the ratio effect (e.g., Bonny & 

Lourenco, 2013; Libertus, Feigenson, & Halberda, 2011), which is that better 

performance is associated with larger ratios. As expected, a significant ratio effect, F(3, 

180) = 7.79, p < .001, 𝜂!!= .12 (linear trend: F[1, 60] = 24.27, p < .001, 𝜂!!= .29) was 

found using a mixed design ANOVA on accuracy, with ratio (2:1, 3:2, 4:3 and 7:6) as the 

within-subjects factor and age (3 or 4 years old) as the between-subjects factor. The 

effect of age, and the interaction between age and ratio were not significant (ps > .07). 

When compared to the chance level of 50%, children’s performance with the two easier 

ratios was significantly above chance (2:1 ratio: M = 69.35%, SD = 27.69%, t[61] = 5.50, 

p < .001, d = 0.70; 3:2 ratio: M = 64.11%, SD = 26.64%, t[61] = 4.17, p < .001, d = 0.53), 

whereas their performance with the two more difficult ratios did not differ significantly 
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from chance (4:3 ratio: M = 52.42%, SD = 25.49%, t[61] = .74, p > .4; 7:6 ratio: M = 

54.03%, SD = 26.08%, t[61] = .1.22, p > .2). In summary, our results confirmed 

involvement of the ANS on this task, as revealed by children’s general success and 

modulation by ratio.  

 Other control tasks. Children’s scores indicate that their performance was 

consistent with the typical level for both the Picture Recognition task and the DVAP. 

Children’s mean standardized score on the Picture Recognition task5 was 109.75 (SD = 

21.83), and children’s mean expressive vocabulary on the DVAP6 was 98.87 (SD = 

26.92).  

Relations between Ordinality and Exact Number Representations  

 2 3 4 5 6 7 8 9 
1. Age (month)  .499** .225 .268* .442** .061 .062 .343** .171 
2. Ordinal Position — .298* .420** .616** .323* .309* .180 .442** 
3. Rank-based Relations  — .492** .564** .505** .448** .079 .161 
4. Transform-set   — .599** .473** .337** .234 .223 
5. Give-A-Number    — .401** .347** .175 .295* 
6. Recitation     — .335* .032 .293* 
7. Pic Recognition      — .279* .237 
8. ANS        — .170 
9. DVAP        — 

Table 5. Zero order Spearman correlations between all experimental tasks in this study (N 
= 59).  
*p < .05, **p < .01 	

I next examined the links between children’s ordinal abilities and their 

understanding of exact numbers. Preliminary examination of the data suggested non-

linear relations among the variables of interest. I thus used Spearman correlations in the 

subsequent analyses as it can detect monotonic relations without the requirement of 

linearity (Siegel, 1988). I also used partial correlation analyses to ensure the specificity of 
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the links between children’s ordinal abilities and their understanding of exact numbers 

(i.e., numerical equality and CP). 

Ordinal abilities and Numerical Equality. I first focused on the concept of 

numerical equality, which was measured by the Transform-set task. If ordinal abilities 

support the acquisition of numerical equality, then performance on the Transform-sets 

task should be positively correlated with that of the Ordinal Position task (which assessed 

absolute rank) and Rank-based Relations task (which accessed rank-based relations). 

Analyses revealed a significant zero-order correlation between Transform-sets and 

Ordinal Position tasks, rs(57) = .42, p < .001, as well as between Transform-sets and 

Rank-based Relations tasks, rs(57) = .49, p < .001. To test whether these links were 

driven by other numerical abilities, I partialled out performance on the Recitation task, 

ANS acuity, and children’s chronological age. The partial correlation between the 

Transform-sets and Rank-based Relations tasks remained statistically significant, rs(54) = 

.30, p = .027 (the partial correlation between Transform-sets and Ordinal Position tasks 

was no longer statistically significant, rs[54] = .22, p = .100). To test whether the 

correlation between the Transform-sets and Rank-based Relations tasks was due to 

general cognitive abilities, I also partialled out the effect of nonverbal working memory 

span (Picture Recognition task), size of expressive vocabulary (DVAP), and 

chronological age. Again, the correlation remained significant, rs(54) = 0.37, p = .005. 

These findings suggest that children who have a better understanding of the rank-based 

relations among number words are also better with the concept of equality and this is not 

likely explained by individual differences in general cognitive abilities. Moreover, these 
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findings also suggest that the effect of rank-based relations among number words cannot 

be reduced to children’s the ability to recite the number words.   

 

Figure 2. Children’s accuracy on the Transform-sets task as a function of their accuracy 
on the Rank-based Relations tasks. Size and color of each point represent the frequency 
of participants. 

Ordinal abilities and Cardinality Principle. The understanding of cardinality 

principle (CP) was measured by the GAN task. If ordinal abilities support the acquisition 

of CP, then participants who are better in the two ordinal tasks should also be better in the 

GAN task. Consistent with this suggestion, correlational analyses revealed significant 

zero-order correlations between GAN and Ordinal Position tasks, rs(57) = .62, p < .001, 

and between GAN and Rank-based Relations tasks, rs(57) = .56, p < .001. To test 

whether these relations were driven by other number-related abilities, I partialled out the 

performance in Recitation task, ANS acuity, and chronological age. The results remained 

statistically significant for the partial correlation between GAN and Ordinal Position 

tasks, rs(54) = .43, p = .001, as well as the partial correlation between GAN and Rank-

based Relations tasks, rs(54) = .41, p = .002, suggesting that the relation between the 
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understanding of cardinality was not driven by other numerical abilities. I also tested 

whether these associations could be explained by general cognitive abilities by partialling 

out nonverbal WM span (Picture Recognition task), size of expressive vocabulary 

(DVAP), and chronological age. Children’s performance on the GAN task remained 

significantly correlated with their performance on the Ordinal Position task, rs(54) = .41, 

p = .002, and with their performance on the Rank-based Relations task, rs(54) = .45, p = 

.001, confirming a relation between CP and ordinal abilities that cannot be accounted for 

by general cognitive functioning.  

  

Figure 3. Children’s scores on the GAN task as a function of their accuracy on the (a) 
Ordinal Position and (b) Rank-based Relations tasks. Size and color of each point 
represent the frequency of participants. 

Given that both ordinal tasks were significantly correlated with the GAN task, one 

may ask whether these correlations were driven by shared ordinal processes. Indeed, the 

zero-order correlation between the two ordinal tasks was statistically significant, rs(57) = 

.30, p = .022. Thus, to answer this question, I tested whether the two ordinal tasks 

explained unique variance in the GAN task by partialling out the effect of the other 
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ordinal task and chronological age. If there are some common abilities that drive the 

correlations between GAN and both ordinal tasks, then these partial correlations should 

fail to reach significance when the other ordinal task was partialled out. Nevertheless, all 

correlations with GAN task remained statistically significant: Ordinal Position task: 

rs(55) = .47, p < .001; Rank-based Relations task: rs(55) = .50, p < .001. Taken together, 

these findings suggest that the ability to represent absolute rank and rank-based relations 

may each contribute uniquely to the individual differences in children’s understanding of 

CP. 

Discussion 

Previous studies have suggested the possibility that ordinality may aid in the 

acquisition of exact numbers (e.g., Attout, Noël, & Majerus, 2014; Lyons & Beilock, 

2011; Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow, 2011). The current study 

pinpoints the specific ordinal abilities that are associated with this important 

mathematical achievement. Specifically, I found that children who were better at 

recognizing the absolute rank in a temporal sequence also showed more advanced 

understanding of the cardinality principle (CP), even when accounting for children’s 

ability to recite the number word sequence, as well as their ANS acuity and general 

cognitive abilities. Moreover, I found that children who had a better understanding of 

rank-based relations among number words also showed more advanced exact number 

representations. In particular, 3- and 4-year-olds who were better at naming the next 

number in the count list showed better understanding of both numerical equality and CP. 

Taken together, these findings support the hypothesized claims about the role of ordinal 

abilities in the acquisition of exact number representations. 
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The findings also suggest the extraction of rank information from the count list is 

a critical step in the acquisition of number words. When children first learn how to recite 

number words, the rank information associated with these words was embedded in the 

recitation routine, which is not immediately available to direct access. In the current 

study, most of the participants were perfect in reciting numbers 1 to 10, but their 

performance in naming the next number in the count list was far from perfect, suggesting 

that their ability to recite the numbers is not equivalent to having access to rank 

information. The need to extract rank information from the count list may be one of the 

reasons why there is a delay for young children to understand the meaning of number 

words after they first learn how to recite the numbers. The delay may be caused by the 

need to develop new abilities for extracting ordinal information embedded in the word 

list, which enables young children to access the pertinent ordinal information for 

developing numerical concepts such as CP. Moreover, the need to extract rank 

information from the count list also explains a limitation in children’s number knowledge 

before they acquire CP. Condry and Spelke (2008) investigated whether sub-set knowers 

understood that larger numbers come after smaller numbers in the count list. These 

subset-knowers could recite numbers correctly up to ten, but they had not acquire CP and 

did not know the meaning of the number words “five” and above. The task required 

children to identify the larger number word in a pair. When presented with numbers that 

they knew (e.g., three and one), subset-knowers performed consistently above chance. 

When presented with number words that were beyond their knower level (e.g., five and 

ten), these subset-knowers performed at chance, suggesting they had not mapped the 

rank-based relations (i.e., before/after) among number words onto the magnitude-based 
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relation (i.e., less/ more) among numerical values. The finding of Condry and Spelke is 

consistent with the findings from the current study. The subset-knowers in the current 

study also had less knowledge about the rank-based relations among the number words. 

This association may explain why Condry and Spelke found subset-knowers in general 

experienced more difficulty in mapping the rank-based relations onto the magnitude-

based relations.  

In the current study, the finding of the association between absolute rank and CP 

is particularly intriguing. The task that assessed absolute rank (i.e., Ordinal Position task) 

did not involve any number words, yet the ability to track the rank of rabbit was related to 

the understanding about counting (CP). It is unlikely that this association was due to the 

use of counting in the tracking of rabbits. At this age, children have yet to acquire ordinal 

number words (Miller, Major, Shu, & Zhang, 2000). Moreover, they had difficulty in 

using counting to find the rank of an item within a sequence (Colomé & Noël, 2012). It is 

possible that children may process the rabbit sequence as a word sequence (“brown 

bunny, pink bunny and grey bunny”) or picture sequence (i.e.,  picture of brown, pink and 

grey bunnies). Either way, this finding suggests that the process that supports absolute 

rank of number words is not specific to the count list--such a process also supports a 

similar function in other types of sequences.  

The association between absolute rank and CP observed in the current study also 

converges with a suggestion made by Sarnecka and Carey (2008). They argued that the 

acquisition of CP requires an implicit understanding that “a numeral’s cardinal meaning 

is determined by its ordinal position in the list” (p. 665, Sarnecka & Carey, 2008). 

However, in their study, Sarnecka and Carey tested this claim by examining CP- and non-
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CP-knowers’ knowledge of rank-based relations, not the absolute rank of number words 

(referred to as ordinal position in the quote above). In the current study, the 

understanding of absolute rank and rank-based relations was not related, prompting the 

question of whether it is appropriate to use knowledge about rank-based relations to 

support their claim. Though the current study confirms the claim by the significant 

correlation between the understanding of absolute rank and CP, this did not change the 

fact that Sarnecka and Carey’s interpretation of their own results was inaccurate. 

Researchers should be mindful about the difference between absolute rank and rank-

based relation in future studies. 

The findings from the current study also provide support for Spaepen et al.’s 

(2011) suggestion that the ordinal structure of the number word list may be critical for 

exact number representations. In their study, Spaepen et al. examined hearing impaired 

adults who used homesigns (i.e., nonconventional gestures) for communication. Since 

they did not know any spoken language or conventional sign language, they had no 

access to the conventional number system and had to use their own homesigns for 

labelling and communicating numerical values. The homesigns scaled with the presented 

set size when homesigners provided estimation for the number of items in a set. 

Nevertheless, these homesigners failed to associate consistent homesigns to the same set 

size if the number was outside the subitizing range (i.e., 1 to 4), suggesting that labels per 

se were not sufficient for exact number representations. These homesigners also failed to 

perform exact addition or subtraction on large numbers. Crucially, Spaepen et al. (2011) 

noted that homesigns lack the ordinal structure that is typically found in the conventional 

number system, which is the stable order of number words that embed the principle of the 
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successor function. Our data are consistent with this claim. I showed that children’s 

ability to represent exact numbers is related to their abilities to extract and use rank 

information, suggesting the ordinal structure of number words is indeed important for the 

acquisition of exact numbers. Our results suggest that even when children are exposed to 

a conventional number system, if they lack the ability to extract the rank information that 

is embedded in the sequence, then they benefit less from the ordinal structure of the 

number word sequence, and they were less capable of representing exact numbers. In the 

case of homesign, there is no ordinal structure for homesigners to draw on. Without this 

ordinal structure, homesigners could not perform exact enumeration, nor could they carry 

out computation by moving up or down the number word list. Therefore, they failed to 

develop fully-fledged exact number representations. 
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Footnote 

1 In the cases in which the experimenter recited with the children, the extra step of 

reciting together helped children to overcome their shyness in speaking and was effective 

in eliciting responses. Since the sequence to be recited is long (1 to 10), it is highly 

unlikely that children could memorize such a long sequence without drawing on prior 

knowledge.  

 

2 Split-half correlations could not be computed on GAN and Recitation tasks. 

 

3 Chance was set at 33.33% because there were three characters to choose from (1/3 = 

.3333). It can be argued that the chance level should be 25% because there were actually 

four possible choices (i.e., picking 1st, 2nd, 3rd or picking no bunny). I set the chance level 

at 33.33% instead of 25% for two reasons: 1) This was more consistent with the task 

instructions, which implied three choices; 2) This criterion was more stringent.  

 

4 One participant (3 years 6 months) did not complete the task so her data were excluded 

from the analyses of this task and subsequent correlational analyses.  

  

5 One participant (4 years 1 months) refused to attempt this task so she did not contribute 

data to the analyses of this task or to subsequent correlational analyses.  
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6 Two participants’ (3 year 11 months and 3 years 6 months) guardians did not fill out the 

DVAP questionnaires, so these participants were not included in the analyses of DVAP 

and subsequent correlation analyses.  
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Abstract 

 Accumulating evidence suggests a relation between ordinal ability and 

competence with symbolic arithmetic. Yet the nature of this association remains 

unresolved. The current study addressed this issue in two directions. First, I studied 

children’s ability to manipulate rank information. I assessed 5- to 6-year-olds’ knowledge 

about three different types of rank-based operations. This provided important background 

information for understanding the role of rank knowledge in arithmetic. Second, I tested 

the proposal that the computation procedure of arithmetic is rooted in the manipulation of 

rank information—because addition or subtraction can be solved by reciting numbers 

forward or backward in a specific number of steps. Importantly, this way of solving 

arithmetic problem can be conceptualize as manipulation of rank information about 

number words in the count list. To test the proposal, the current study tested the 

associations between different rank-based operations and symbolic arithmetic in 5- to 6-

year-olds. I found that children who were better at making inferences based on inter-item 

distance between letters were better at solving arithmetic problems. The study also found 

that children who showed better understanding of how insertion or removal affects the 

rank of items in a sequence also showed higher arithmetic competence. Together, these 

findings suggest rank-based operations are recruited in the computation of arithmetic. By 

pinpointing the specific aspects of ordinality that are related to arithmetic, the current 

study provided important groundwork for understanding the nature of the association 

between ordinal ability and arithmetic competence .  	
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A recent large scale study found that the mathematical abilities of American 

students lag behind those of other industrialized countries (OECD, 2016). Thus, 

understanding the psychological processes that underlie mathematical thinking will be 

crucial in helping to improve the quality of mathematics education. A new and promising 

direction pertains to the role of ordinal abilities in arithmetic. Studies have found that 

deficits in ordinal abilities may be related to developmental dyscalculia (Attout & 

Majerus, 2015; Kaufmann, Vogel, Starke, Kremser, & Schocke, 2009; Rubinsten & Sury, 

2011). Moreover, in a typically-developing population, performance on order judgment 

tasks has proven predictive of arithmetic performance in both adults (Lyons & Beilock, 

2011) and children (Lyons & Ansari, 2015; Lyons, Price, Vaessen, Blomert, & Ansari, 

2014). Nevertheless, it remains largely unclear why such associations exist. In the current 

study, I investigated the contributions of ordinality to the development of arithmetic 

understanding among children beginning to learn formal arithmetic.  

Connections between Ordinality and Arithmetic 

The procedure for arithmetic computations such as addition and subtraction can be 

conceived as movement along the sequence of number words (i.e., counting up or down 

the sequence). Consider the so-called min procedure, an algorithm that is commonly used 

by children (Groen & Parkman, 1972; Siegler, 1987; Siegler & Jenkins, 1989). This 

algorithm handles addition by counting from the larger addend in the number of steps 

specified by the smaller addend. For example, to solve “3 + 2”, one counts from three and 

then moves forward by two steps (i.e., “three”, then “four and five”). An analogous 

procedure can be used for subtraction such that the starting point would always be the 

minuend, and the directional movement would be backward instead of forward. 
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Conceptually, the operations of moving along a sequence can be viewed as ordinal 

operations because these operations can be performed on any ordered sequence, including 

those without numerical magnitude such as the letters of the alphabet or months in a year. 

For instance, to find the month that is two ahead from March, one could recite the month 

list from March and move two steps forward, producing the answer May. Even though 

there are parallels between arithmetic computations and ordinal operations, addition and 

subtraction are typically viewed as operations on numerical magnitude. Addition of 

natural numbers results in an increase in numerical magnitude, whereas subtraction 

results in a decrease in magnitude. Yet it is an open question whether ordinal processes 

are recruited when computing addition and subtraction problems.  

The distinction between magnitude and ordinality in mathematical processing is 

an important and complex issue. One source of the complexity is the diversity of meaning 

associated with the concept of ordinality (or “ordinal relations”). The ordinal terminology 

can be used for describing relative numerical magnitude, such as the less/more relation 

(e.g., 3 is more than 2; e.g., Brannon & Van de Walle, 2001; vanMarle, 2013). However, 

the same ordinal terminology could also be used to describe the position of items within a 

sequence. One such example is the before/after relation (e.g., 3 comes after 2; e.g., 

Gevers, Reynvoet, & Fias, 2003; Turconi, Jemel, Rossion, & Seron, 2004), though unlike 

the less/more relation, before/after is not specific to magnitude and applies more 

generally to all kinds of sequences. In the context of natural numbers, the less/more and 

before/after relations are largely synonymous. Less/more and before/after perfectly 

mapped to each other such that smaller numbers always come before larger numbers in 

the natural number list. Nevertheless, research has shown that these analogue relations 
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are at least partially dissociated from each other neurally and behaviorally (Cheng, Tang, 

Walsh, Butterworth, & Cappelletti, 2013; Turconi et al., 2004). Thus, it is important to 

test whether magnitude-based and non-magnitude-based ordinal concepts make different 

contributions to mathematical development.  

This conceptual distinction brings a new perspective to the discussion on the 

origins of formal mathematical ability. There is an ongoing debate about whether, and 

how, the Approximate Number System (ANS), an intuitive representational system for 

numerical magnitude, contributes to the development of mathematical ability such as the 

understanding of symbolic arithmetic (for meta-analyses, see Chen & Li, 2014; Fazio, 

Bailey, Thompson, & Siegler, 2014; Schneider et al., 2016). One account suggests a 

direct association between ANS acuity and math ability, such that the ANS should be 

directly involved in mathematic operations on symbolic numbers. This account is 

supported by findings that show symbolic numbers are mapped onto ANS representations 

so that these symbols can acquire their meaning in numerical value (Halberda, Mazzocco, 

& Feigenson, 2008; Lourenco, Ayzenberg, & Lyu, 2016; Piazza, Pinel, Le Bihan, & 

Dehaene, 2007). On another account, the ANS only helps to jump start the learning of 

formal mathematics. Once this learning begins, the magnitude component (supported by 

the ANS) gradually loses its importance. The meaning of number shifts to the relation 

between symbols in the formal number system (Lyons, Ansari, & Beilock, 2012; 

Reynvoet & Sasanguie, 2016). On this account, ordinality plays an intermediary role in 

the causal relation between the ANS and symbolic number competence because ordinal 

concepts are critical for organizing the abstract relations between symbols in the number 

system. The mediating role of ordinality is supported by research showing that ordinal 
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ability completely mediates the relation between ANS acuity and performance in 

symbolic arithmetic among adults (Lyons & Beilock, 2011). This finding is consistent 

with the view that the ANS does not directly support symbolic arithmetic (Reynvoet & 

Sasanguie, 2016). Since the finding on the mediating role of ordinality is important for 

understanding the relation between the ANS and math competence in adults, I wanted to 

test whether ordinality also mediates the relation between ANS and symbolic arithmetic 

in school-aged children. Moreover, I also wanted to address the distinction between 

magnitude and ordinality in Lyons and Beilock’s mediation study. In their study, ordinal 

ability was assessed by an order judgment task, in which participants judged whether the 

presented number triads were in ascending order (e.g., 3, 1, 7). Such a judgment requires 

one to consider both numerical magnitude and the arrangement of items, raising the 

question of whether magnitude processing in ascending order judgments is responsible 

for the mediation (see also Franklin & Jonides, 2009; Kaufmann et al., 2009). 

In the current paper, I specifically focus on the non-magnitude component of 

ordinality and its role in children’s developing arithmetic competence. In particular, in 

this work, I attempted to isolate non-magnitude ordinality by examining the 

understanding of rank, which concerns the position occupied by an item in a sequence 

(Nieder, 2005; Wiese, 2003). Following the approach in the studies described above, I 

examined whether the understanding of rank was predictive of children’s performance on 

addition and subtraction problems. I chose to focus on rank in this work because of its 

relevance to the computational procedure in addition and subtraction described above. 

Reciting numbers forward or backward is essentially moving from one position to 

another position in the number-word list. I refer to manipulations of positional 
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information as rank-based operations. These manipulations can take different forms and 

below I describe the rank-based operations examined in the current study:  

1) Rank Deduction: This type of operation involves movement from one position to 

another position within an ordered sequence. To correctly execute such 

operations, it is necessary to keep track of the number of steps involved in the 

movement, the movement’s direction, and the updated position after each step. As 

described above, solving addition and subtraction problems by reciting the 

number list from one of the addends involves the same operation. 

2) Sequence Reversal: This type of operation involves a systematic transformation of 

rank to create a reversal of the sequence (e.g., the first item in a list becomes the 

last item when the sequence is reversed). If the original order of the sequence is 

“A, B, C”, then the reversed sequence is “C, B, A”. Subtraction can be solved by 

reciting the number sequence backwards, analogous to the operation of sequence 

reversal.  

3) Sequence Modification: This type of operation involves the updating of rank 

information to accommodate specifically the insertion or removal of an item(s) in 

a sequence. By inserting an item into a sequence, the rank of all items following 

the inserted item is moved backward by one step. Item ranks before the inserted 

items are unaffected. Analogous effects occur when an item is removed from the 

sequence. Importantly, sequence modification is not a procedural analogue of 

addition and subtraction. Specifically, numerical magnitude is not affected by the 

location of insertion/removal. Insertion of an item always results in an increase in 
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numerical magnitude, whereas removal of an item always results in a decrease in 

magnitude.   

Current study 

Despite much interest in the cognitive foundations of formal mathematics, we 

know very little about the individual differences that contribute to mathematical 

development. Here I focus on children’s ordinal abilities and their potential role in early 

arithmetic competence. The existing developmental literature has very little information 

about children’s understanding of rank (except Colomé & Noël, 2012; Miller, Major, 

Shu, & Zhang, 2000). It is unclear whether children understand the above-mentioned 

rank-based operations when they learn arithmetic, making it difficult to determine the 

developmental relation between the two. The current study aimed to examine children’s 

understanding of rank-based operations and to directly test whether these abilities are 

related to arithmetic performance. To this end, the work I conducted in this study begins 

with an investigation of the development of specific rank-based abilities, namely rank 

deduction, sequence reversal, and sequence modification. I then turned to whether rank-

based operations might mediate the relation between the ANS and arithmetic 

competence. If these operations indeed mediate the relation between the ANS and 

arithmetic, then one can rule out the role of common magnitude processing because these 

rank-based operations do not implicate numerical magnitude. Such results would support 

the idea that ordinality mediates the causal pathway by its role in organizing relations 

between numerical symbols. 
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To achieve these goals, the current study includes assessments of arithmetic 

ability and the understanding of rank-based operations at 5 and 6 years of age. In 

addition, I also included an ANS task so that I could directly test the possible role of 

rank-based operations in the causal relation between ANS acuity and arithmetic 

competence. Moreover, I also measured a collection of general cognitive abilities to 

control for effects not specific to rank-based operations.  

Method 

Participants 

 Seventy-seven preschoolers (38 male; age range: 5 years 0 months – 6 years 11 

months, Mage = 5 years 11 months) participated in this study. One additional participant 

(6 years 2 months) was tested but excluded from statistical analyses for failing to follow 

instructions. All children received a small gift for participating in the study. Informed 

consent was obtained on behalf of each child by a parent or legal guardian. Experimental 

procedures were approved by the local ethics committee.  

Tasks and Procedure 

Participants were tested individually in a university laboratory. All ten tasks were 

administered in a single experimental session (see Table 1), lasting approximately 90 

minutes. Task order was randomized across participants with the constraint that the tasks 

assessing the abilities of interest (i.e., rank-based operations and symbolic arithmetic) 

were administrated before the control tasks (i.e., general intelligence and ANS acuity).  
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Task Name Construct Specific Ability 
Rank Deduction Rank-based operations Movement along a sequence, e.g., 

reciting the letters forward/ backward in 
specific number of steps 

Sequence Reversal Rank-based operations Systematic conversion of rank for 
reversing the order of a sequence 

Sequence Modification Rank-based operations Updating rank information after an item 
is added or removed from a sequence 

Arithmetic Symbolic arithmetic Arithmetic operations of addition and 
subtraction 

ANS Nonverbal numerical 
magnitude 

Acuity of the Approximate Number 
System (ANS) 

Inhibition General intelligence Inhibition ability 

Picture Recognition General intelligence Nonverbal working memory span 

Memory for Words General intelligence Verbal working memory span 

Picture Vocabulary  General intelligence Vocabulary 

Decision Speed General intelligence Processing speed 

Table 1. List of constructs and the corresponding tasks in the study. 

Rank Deduction Task.  This tasked was designed to test children’s ability to 

transform rank information, specifically in relation to an exact number of steps (e.g., start 

at the 2nd position of the sequence, then move two steps forward to reach the 4th position). 

It is particularly important to use non-numerical stimuli in this task because this type of 

rank-based operation is analogous to the computation of addition and subtraction. Using 

numerical stimuli would essentially turn the task into an arithmetic task. Thus, letter 

stimuli were used in the current task. Children were required to perform such operations 

on a subset of the alphabet sequence (i.e., start at B, then move two steps forward to reach 

D). Only children who successfully recognized printed letters and could successfully 

recite the alphabet were included in this task. All children were screened for these 

abilities by requiring that they identify the letters A to K when printed on individual cards 
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(order randomized) and that they recite these letters in correct order. Four children (1 

male; range: 5 years 1 month — 6 years 2 months) failed to pass the screening and thus 

did not contribute data related to this task in subsequent analyses. 

This task began with two practice trials. In the first practice trial, the experimenter 

placed the letter cards A to K on a table and explained that the letters were arranged in 

“the way we say our letters” (i.e., alphabetical order). Then, the experimenter covered all 

the cards except one, which acted as the anchor. Children were then asked to name one of 

the covered cards, which the experimenter pointed to. To answer correctly, children had 

to use not only the letter on the anchor card but also the inter-item distance between the 

anchor and covered target cards. Corrective feedback was provided by uncovering the 

letters on the covered cards. The same procedure was used in the second practice trial and 

the six test trials, except that these trials were computerized. The eight test trials were 

generated by completely crossing four levels of inter-item distance (i.e., 1 to 4, e.g., the 

inter-item distance of A and B is 1) and two levels of operation direction (i.e., forward vs. 

backward direction). Operation direction was specific to the relative position between the 

anchor and the target card. For example, if the anchor card was E, and the target card 

came after the anchor card, then the answer could be determined by reciting the letter 

sequence forward from the letter E. However, if the target card came before the anchor 

card, then one could recite the letters backwards to find the answer. Performance was 

measured as children’s accuracy across the test trials. 

Sequence Reversal Task. This task was designed to test children’s understanding 

of reversal in the context of an ordered sequence. Specifically, children had to perform a 

systematic conversion of rank to reverse the order of a sequence of items. On each trial, 
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children were presented with two identical rows of cards (see Figure 1). Paper cards were 

used in the first practice trial to familiarize children with the task procedure. Subsequent 

trials were computerized. The content of the top row of cards remained visible throughout 

the trial to serve as a memory aid for the original order. The bottom row was used to 

demonstrate the reversal operation and to elicit a response. After explaining to children 

that the top and bottom rows were identical, the experimenter reversed the order of the 

bottom row and covered all but the rightmost (last) card of the row. The rightmost card 

was left uncovered to emphasize the reversal. Children were asked to name the content 

on the covered cards one by one.  

There were two test trials followed by six test trials. Test and practice trials were 

identical, except that in the test trials, the cards were covered before the reversal action. 

On the test trials, the first half of trials involved sets of three cards and the last half 

involved sets of five cards. Trials included letter and picture sequences. I had also 

included numbers to examine whether the type of rank-based operations differed across 

different types of sequences. Despite the difference in sequence type (i.e., letters, shapes, 

numbers), all trials required that children respond on the basis item position after a 

sequence was reversed. The six test trials were generated by completely crossing three 

levels of sequence length (i.e., 3 cards vs 5 cards) and three levels of sequence type (i.e., 

letters, shapes, numbers). Performance was measured as children’s accuracy across the 

test trials. 

 



	 	 66 

 

Figure 1. Procedure of the Rank Deduction task 
 

Sequence Modification Task.  This task was designed to test whether children 

understand how to update rank information to accommodate the insertion or removal of 

an item(s) in a sequence. Specifically, this computerized task required an understanding 

that inserting an item into a sequence changes the rank of all items following it, but not 

the items preceding it. On each test trial, children were shown a line of nine animals 

waiting in front of a cashier (see Figure 2). The experimenter then indicated to children 

the rank of the target animal by counting from the first animal (next to the cashier) to the 

target animal. Following this demonstration, two occluders appeared and covered all 

animals before and after the target animal, leaving only the target animal visible. A 

memory check of the target animal’s rank was immediately performed by requiring 

children to report its rank. If children failed the memory check, then the experimenter 

removed the occluders and performed the counting demonstration again. This step was 

repeated until participants correctly reported the rank of the target animal. Children were 

then shown an animation, in which an animal either joined or left the line before or after 

the target animal, so that the rank of the target animal was either altered or remained the 
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same. Children were then asked to report the rank of the target animal. Since all animals 

that came before or after the target were covered by occluders, children could not use 

counting to determine the answer. Instead, they had to infer the answer based on the 

change shown in the animation.  

Figure 2. Screenshot of the beginning of a trial from the Sequence Modification task. In 
this task, children were shown a line of nine animals waiting in front of a cashier, and the 
experimenter indicated to children the rank of the target animal (yellow arrow included). 
Then, the animals before and after the target were covered by an occluder and an animal 
was either added or removed from behind the occluder (either before or after the target 
animal). Children were asked to report the rank of the target after witnessing this event.  

 

 The task began with two practice trials and was followed by eight test trials. 

Practice and test trials were identical except that there was corrective feedback during 

practice but none during test. Test trials were generated by fully crossing the type of 

operation (insertion or removal of animal) and location (before or after the target animal). 

The rank of the target animals (start of the trial) ranged from three to seven. Performance 

was measured as children’s accuracy across the test trials. 

Arithmetic Task.  This task assessed participants’ symbolic arithmetic ability. 

The task began with two practices questions, in which the experimenter worked with the 

children to solve the problems using real objects. For example, to illustrate the practice 

problem of 2 + 1, the experimenter showed children that there were two coins in a box, 

then the box was covered and one more coin was added to the box; children were then 
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asked to indicate the number of coins in the box. After the practice questions, children 

completed 18 test trials presented in paper-and-pencil format, all as Arabic numerals. All 

test trials were arithmetic problems that involved single-digit operands (half addition and 

half subtraction). No feedback was given on the test trials. Performance was measured as 

children’s accuracy across the test trials. 

ANS task.  This task assessed children’s ANS acuity, which is the precision of 

their nonsymbolic representations of numerical magnitude. This computerized task was 

adapted from similar studies in the literature (e.g., Bonny & Lourenco, 2013; Libertus et 

al., 2011; Piazza et al., 2010). On each trial, two arrays of rectangles were shown side-by-

side on the screen in front of two characters (i.e., Big Bird and Grover). Both arrays were 

made up of rectangles of different sizes. After 2 s, the arrays were replaced by full body 

pictures of Big Bird and Grover. Children were asked to indicate which array was larger 

in numerosity (i.e., “Who had more boxes?) by touching the corresponding characters 

onscreen (side of correct answer counterbalanced across trials). Each trial was initiated 

by the experimenter who touched a virtual red star on the computer touchscreen.  

Five different ratios were used in the 20 test trials (2:1, 4:3, 6:5, 11.5:10 and 

11:10), with the stimulus number ranging from 10 to 39. Easier ratios (2:1 and 4:3) and 

smaller numbers (2 to 4) were used in the two practice trials to help children understand 

the task. Corrective feedback was provided during the practice trials, but not during the 

test trials. The non-numerical properties of these arrays were controlled using the 

procedure of Libertus et al. (2011). In particular, on half the trials, cumulative area was 

matched across the two arrays and, on the other half, average element size was matched 



	 	 69 

across the two arrays. Performance was measured as children’s accuracy across the test 

trials. 

Decision Speed Task. Individual differences in processing speed were assessed 

with the Decision Speed Task of the Woodcock-Johnson III Tests of Cognitive Abilities 

(Woodcock, Mather, McGrew, & Schrank, 2001). Children were given a worksheet that 

contained 40 test items. Each item consisted of seven different pictures, two of which 

belonged to the same category (e.g., sun and moon). Children were instructed to circle the 

pictures that belonged to the same category. Children completed as many trials as 

possible in three minutes. Performance was measured using standard scores for this task 

(scaled based on M = 100 and SD = 15). 

Inhibition Task. As a measure of inhibitory control I used the Inhibition subtest 

from the Developmental Neuropsychological Assessment-2nd Edition (Korkman, Kirk, & 

Kemp, 2007). On this task, children labeled shapes (circle vs. square) or the direction of 

arrows (up vs. down) as quickly as possible such that responses were either congruent 

(e.g., say “circle” if the stimulus was a circle; Naming condition) or incongruent (e.g., say 

“circle” if the stimulus was a square; Inhibition condition) with the presented stimulus. 

Performance for this task was measured by a contrast score, which is a scale score that is 

based on both Naming and Inhibition scores. 

Picture Recognition Task. Participants’ nonverbal working memory (WM) span 

was assessed by the Picture Recognition subtest in the Woodcock-Johnson III Test of 

Cognitive Abilities (Woodcock, Mather, et al., 2001). On each trial, children were tasked 

with memorizing a list of target pictures presented for five seconds (list length: 1 to 4). 
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Then, children were asked  to identify the targets from an array that contained both target 

and non-target pictures. Performance was measured using standard scores for this task 

(scaled based on M = 100 and SD = 15). 

Picture Vocabulary Task. Children’s vocabulary was assessed by the Picture 

Vocabulary subtest of the Woodcock-Johnson III Test of Achievement (Woodcock, 

McGrew, & Mather, 2001). Children were required to name pictures of objects in a test 

booklet with multiple pictures on each page. On each trial, the experimenter pointed to a 

picture on the page and children were required to provide the name of the referenced 

object. This task used an adaptive procedure, such that trials were presented in order of 

increasing difficulty, and termination of the task depended on the participant’s 

performance. Performance was measured using standard scores (scaled based on M = 100 

and SD = 15). 

Memory for Words Task. Verbal WM capacity was assessed by the Memory for 

Words subtest of the Woodcock-Johnson III Tests of Cognitive Abilities (Woodcock, 

Mather, et al., 2001). On each trial, children were presented with an audio recording of a 

word list that they were asked to remember. They then were asked to repeat the words in 

the order in which they were presented. The length of word lists varied from 1 to 7 words 

(3 lists each per length of word). This task used an adaptive procedure, such that trials 

were presented in increasing difficulty and termination depended on the participant’s 

performance. Performance was measured using standard scores (scaled based on M = 100 

and SD = 15). 
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Results 

 Internal consistencies of experimental tasks were assessed using split-half 

correlations (Spearman-Brown formula). Analyses revealed acceptable reliability for all 

tasks, with split-half correlations ranging from .55 to 87 (see Table 2).  

 In this section, I first analyzed children’s performance on each of the tasks 

administered to them. These tasks included all measures designed to assess rank-based 

operations, arithmetic, ANS acuity and general cognitive abilities. Second, I analyzed the 

relation between children’s performance on each of the ordinal tasks and their ability to 

solve arithmetic problems. Third, I specifically tested the potential mediating role of 

rank-based operations in the relation between ANS and symbolic arithmetic.  

Task Name Split-half correlations 
Rank Deduction .55 
Sequence Modification .80 
Sequence Reversal .57 
Arithmetic .87 
ANS .57 
Inhibition .82 
Picture Recognition .72 
Memory for Words .78 
Decision Speed .87 
Table 2. Split-half correlations (Spearman-brown formula) of tasks in the current study. 
For standardized tasks, the correlations are reported values in the manuals.  

Performance on Individual Measures 

Rank Deduction Task. Accuracy (Moverall = 65.41%, SD = 19.15%) on this task 

was analyzed using a mixed factor analysis of variance (ANOVA), with direction 

(forward or backward) and inter-item distance (1 to 4) as the within-subjects factors and 

age (5- or 6-year- olds) as the between-subjects factor. There was a significant main 

effect of age, F(1, 71) = 6.77, p = .011, 𝜂!! = .09, such that 6-year-olds (M = 70.95%, SD 
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= 15.61%) performed better than 5-year-olds (M = 59.72%, SD = 20.94%). There were 

also significant main effects of direction, F(1, 71) = 84.65, p < .001, 𝜂!! = .54, and inter-

item distance, F(2.61, 185.6) = 47.06 (Greenhouse-Geisser corrected), p < .001, 𝜂!! = .40, 

as well as a significant interaction between these two factors, F(2.61, 185.16) = 13.25 

(Greenhouse-Geisser corrected), p < .001, 𝜂!! = .157. Pairwise comparisons revealed that 

performance on the forward trials was better than on the backward trials at all distances 

(ps < .001, Bonferroni adjusted α = .05/4 = .0125), except inter-item distance one (p = 

.714, MForward = 93.1%, SDForward = 2.99%; MBackrward = 94.5%, SDBackward = 2.68%). No 

other interactions reached statistical significance (ps > .05). Taken together, these results 

suggest that children of this age are highly accurate in deducing rank with letters that are 

adjacent each other. Moreover, children experience greater difficulty in moving backward 

in a sequence, which is consistent with Fuson’s (1988) findings that reciting numbers in a 

backwards direction is more difficult than reciting numbers in a forward direction.  

Previous studies have shown reverse distance effects in ordinal judgment tasks; 

that is, better performance for sequences with smaller inter-item distance as compared to 

those with larger inter-item distance (Lyons & Ansari, 2015; Lyons & Beilock, 2013; 

Turconi, Campbell, & Seron, 2006). To investigate whether the current task showed 

similar effects, I analyzed children’s accuracy on forward and backward trials using 

separate mixed-design ANOVAs, with inter-item distance (1 to 4) as the within-subjects 

factor and age (5 or 6-year-olds) as the between-subject factor. The effect of inter-item 

distance was significant in both analyses: forward trials, F(2.49, 176.76) = 13.36 

(Greenhouse-Geisser corrected), p < .001, 𝜂!! = .16; backward trials, F(2.52, 178.72) = 

44.03 (Greenhouse-Geisser corrected), p < .001, 𝜂!! = .38. The effect of age was also 
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significant in both analyses: forward trials, F(1, 71) = 4.47, p = .038, 𝜂!! = .06; backward 

trials, F(1, 71) = 3.99, p = .050, 𝜂!! = .053. The interaction of the two factors was not 

significant in either analysis (ps > .3). Trend analyses revealed significant linear trends in 

both analyses: forward trials, F(1, 71) = 29.51, p < .001, 𝜂!! = .29; backward trials, F(1, 

71) = 192.24, p < .001, 𝜂!! = .73 (see Figure 3). However, a quadratic trend was also 

significant in backward, F(1, 71) = 11.18, p = .001, 𝜂!! = .14, but not forward (p > .07), 

trials. These findings suggest that although reverse distance effects exist in both 

directions of operations, the pattern of performance differed based on the operation 

direction. For the forward direction, performance decreased gradually at the same rate 

across inter-item distance from one to four. For the backward direction, there was a sharp 

drop in performance from inter-item distance one and two, which was followed by a 

gradual decrease across inter-time distance two to four.  

 

Figure 3. Accuracy of Rank Deduction task in forward and backward trials as a function 
of distance from anchor card. The downward lines were consistent with a reverse distance 
effect, as the accuracy decreased as the inter-time distance increased. Error bar represents 
standard error of the mean.  
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In subsequent analyses, I examined children’s response patterns in an effort to 

shed light on the processes underlying rank deduction. In particular, I analyzed how well 

children’s answers corresponded to the actual operations required by the task. To this 

end, I compared the relation between two variables. I refer to one variable as the target 

vector – the relative distance and direction between target and anchor letters. For 

example, if the letter on the anchor card was C (rank = 3) and the letter on the target card 

was A (rank = 1), then the value of the target vector for this trial was -2 (i.e., 1 - 3 = -2). 

A negative value indicates that the target letter came before the anchor letter, whereas a 

positive value indicates that the target letter came after the anchor letter. I refer to the 

other variable in this analysis as the response vector – the relative distance and direction 

between response and anchor letters. Following from the previous example, if the child 

responded with E (rank = 5) instead of A (rank = 1), then the value of the response vector 

was 2 (i.e., 5 - 3 = 2). A positive value indicates that the response letter came after the 

anchor letter, whereas a negative value indicates that the response letter came before the 

anchor letter. In the case of perfect performance, target and response vector variables are 

perfectly correlated. By contrast, in the case of random responding, the correlation would 

be close to zero.  

Separate analyses for the 5- and 6-year-olds revealed that both age groups showed 

significant correlations between target and response vectors on the forward trials (5-year-

olds: Mr = .90, t[35] = 24.51, p < .001; 6-year-olds: Mr = .95, t[36] = 45.34, p < .001). 

This result suggests that children in both age groups understood the rule for rank 

deduction in the forward direction. Errors tended to be in the correct direction and were 

not far off from the correct answers. Analyses of the backward trials revealed a similar 
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pattern. In particular, separate analyses for the 5- and 6-year-olds, again, revealed that 

both age groups showed correlations on the backward trials that were significantly 

different from zero (5-year-olds: Mr = .33, t[35] = 3.29, p = .002; 6-year-olds: Mr = .58, 

t[36] = 6.40, p < .001), suggesting that even though 5- and 6-year-olds’ understanding of 

rank deduction in the backward direction was far from perfect, they were not performing 

randomly. In summary, children have some rudimentary understanding of forward and 

backward operations such that their responses scale in both direction and magnitude with 

the correct answers. Nevertheless, these correlations were lower for backwarck than 

forward trials (5-year-olds: t[35] = 5.41, p <.001; 6-year-olds: t[36] = 4.56, p < .001), 

which was consistent with the accuracy analyses above.  

Sequence Reversal Task. Accuracy (MOverall = 67.75%, SDOverall = 27.33%) on 

this task was analyzed using a mixed factor ANOVA, with sequence type (letter, shape, 

or number sequences) and sequence length (three or five) as the within-subjects factors 

and age (5- or 6- year-olds) as the between-subjects factor. There was a significant main 

effect of sequence length, F(1, 75) = 23.03, p < .001, 𝜂!! = .24, such that children’s 

performance for shorter sequences (M = 77.16%, SD = 28.94%) was better than for 

longer sequences (M = 57.92%, SD = 36.36%). There were also significant main effects 

of sequence type, F(2, 150) = 3.67, p = .028, 𝜂!! = .05, and age, F(1, 75) = 6.36, p = .014, 

𝜂!! = .08, as well as a significant interaction between these two factors, F(2, 150) = 3.09, 

p = .049, 𝜂!! = .04. To further investigate this interaction, I analyzed the performance of 

5- and 6-year-olds using separate within-subjects ANOVAs, with sequence type (letter, 

shape or number sequences) and sequence length (three or five) as factors. The effect of 

sequence length was significant in both age groups: 5-year-olds, F(1, 38) = 17.83, p < 
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.001, 𝜂!! = .32; 6-year-olds, F(1, 37) = 6.29, p = .017, 𝜂!! = .15. However, the effect of 

sequence type was only significant in 5-year-olds, F(2, 76) = 5.85, p = .004, 𝜂!! = .13 (6-

year-olds: F[2, 74] = 0.53, p = .592). The effect of sequence type among 5-year-olds was 

further investigated using pairwise comparisons. Performance for the number sequence 

(M = 69.23%, SD = 4.70%) was significantly better than for the letter sequence (M = 

52.24%, SD = 5.47%; p = .001, Bonferroni adjusted α = .05/4 = .0125) and marginally 

better than for the shape sequence (M = 59.29%, SD = 5.52%, p = .035). No other 

comparison reached significance (ps >.2). These results suggest that sequence reversal 

may be first acquired for numerical sequences, which is later generalized to other types of 

sequences.  

Sequence Modification Task. Accuracy on this task (Moverall = 57.78%, SD = 

22.12%) was analyzed using a mixed-factor ANOVA, with operation (insertion or 

removal) and location (before or after the target) as the within-subjects factors, and age 

(5- or 6-year-olds) as the between-subjects factor. There was a significant main effect of 

location, F(1, 75) = 5.61, p = .020, 𝜂!! = .07, such that children performed worse when 

the operations occurred after (M = 48.38%, SD = 44.11%) than before (M = 67.21%, SD 

= 40.00%) the target. There was also a significant main effect of age, F(1, 75) = 7.42, p = 

.008, 𝜂!! = .09, such that 6-year-olds (M = 64.47%, SD = 22.80%) performed better than 

5-year-olds (M = 51.28%, SD = 19.62%). No other main effect or interactions reached 

statistical significance (ps > .06). 

Following the analyses performed above on the Rank Deduction task, I examined 

how children’s answers corresponded to the actual operations required by the task using 
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regression analysis. For each participant, I regressed their responses on two predictors, 

one was the original rank of the target animal and the other was the actual operation2. The 

value of the actual operation ranged from -1 to +1, with -1 indicating the rank of the 

target animal moving closer to the beginning of the sequence by one step, and +1 

indicating the target’s rank moving away from the beginning of the sequence by one step. 

If children provided perfect responses on all trials, then the coefficient of the actual 

operation should be significantly greater than zero. However, if children provided 

random responses, then the actual operation would not be a significant predictor of 

children’s responses. Given that there was a significant effect of location (i.e., operation 

occurred before vs. after the target) in the ANOVA above, separate analyses should be 

conducted on trials in which changes occurred before versus after the target. However, 

when changes occurred after the target, the actual operation was always is zero, making it 

impossible to calculation the effect of this predictor. I thus only performed the regression 

analysis on trials in which changes occurred before the target.  

Actual operation was a significant predictor of children’s responses for both age 

groups (5-year-olds: M = 0.54, SD = 0.53, t(38) = 6.47, p < .001; 6-year-olds: M = 0.82, 

SD = 0.36, t[37] = 13.85, p < .001). In addition, the coefficient of the actual operation for 

6-year-olds was significantly higher than for 5-year-olds, t(67.48) = 2.61 (degrees of 

freedom corrected for unequal variance), p = .01, which is consistent with the age 

difference found in the ANOVA conducted above. In summary, although 5- and 6-year-

olds had difficulty estimating rank when changes occurred before the target, they did not 

respond randomly. Their responses scaled in both direction and magnitude with the 

correct answers. 
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Arithmetic Task. Accuracy on this task (MOverall = 69.70%, SDOverall = 29.21%) 

was analyzed using a mixed-factor ANOVA, with question type (addition or subtraction) 

as the within-subjects factor and age (5- or 6-year-olds) as the between-subjects factor. 

The only significant effect was the main effect of age, F(1,75) = 21.71, p < .001, 𝜂!! = 

.23, such that 6-year-olds (M = 83.63%, SD = 21.34%) performed better than 5-year-olds 

(M = 56.13%, SD = 29.67%), as would be expected given the known developmental 

improvement in arithmetic competence over this age range. I found no difference with 

respect to question type, F(1,75) = 0.40, p > .5. In other words, children were equally 

good at addition and subtraction problems, perhaps because the harder addition problems 

involved double digit answers, whereas subtraction always resulted in single digit 

answers, which may have made the two types of problems more comparable in difficulty.  

ANS Task. Accuracy on this task (MOverall = 75.79%, SDOverall = 11.62%) was 

analyzed using a mixed-factor ANOVA, with ratio (2:1, 4:3, 6:5, 11.5:10, and 11:10) as 

the within-subjects factor and age (5- or 6-year-olds) as the between-subjects factor. As 

expected, I found a significant ratio effect, F(3.287, 246.49) = 39.91 (Greenhouse-

Geisser corrected), p < .001, 𝜂!!= .35 (linear trend analysis: F(1, 75) = 162.34, p < .001, 

𝜂!!= .68), consistent with much extant findings showing that magnitude precision follows 

Weber’s law (Dehaene, 2003; Halberda & Feigenson, 2008; Lourenco, Bonny, 

Fernandez, & Rao, 2012). The effect of age and the interaction between age and ratio was 

not significant (ps > .1). Performance was significantly above the chance level of 50% at 

all ratios (ps < .001) except for the most difficult one (11:10, ps > .07). This pattern of 

performance was found for both age groups.  
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Other Control tasks. The standardized scores of the remaining control tasks 

(Decision Speed, Inhibition, Picture Recognition, Picture Vocabulary and Memory for 

Words) are presented in Table 4. 	

Tasks 5-year-olds (SD) 6-year-olds (SD) 
Decision Speed 106.67 (14.71) 107.55 (14.07) 
Inhibition 10.69 (2.68) 10.16 (2.69) 
Picture Recognition 113.23 (10.35) 111.55 (11.68) 
Picture Vocabulary 106.15 (11.14) 108.79 (10.54) 
Memory for Word 110.69 (14.94) 111.71 (16.80) 
Table 4. Age-related performance on control tasks.  

Relations between arithmetic and ordinal abilities 

 2 3 4 5 6 7 8 9 10 11 
1. Age (month)  .265* .276* .331* .624* .097 -.058 -.005 -.008 .066 -.049 

2. Rank Deduction — .108 .162 .455* .261* .137 .111 .197 .100 .243* 

3. Seq Reversal  — .301* .311* .074 .349* -.040 .050 .207 .199 

4. Seq Mod   — .517* .264* .100 .161 .116 .351* .206 

5. Arithmetic task    — .391* .141 -.044 .250* .346* .192 

6. ANS     — .212 .260* .233 .211 .251* 

7. Inhibition      — .019 .157 .134 .219 
8. Pic Recognition       — .146 .147 .082 

9. Word Memory        — .260* .084 

10. Pic Vocab         — .234 

11. Decision 
Speed          — 

Table 5. Zero order correlations among experimental tasks and age (N = 69).  
*p < .05 	
 

 To answer the question of whether the ability to understand rank-based operations 

is related to arithmetic performance, I used Pearson correlational analyses. Participants 

who failed to complete all tasks were excluded from these analyses1. To ensure these 

correlations were not unduly driven by outliers, cases in which any score deviated from 

the task mean by 3 SDs were also excluded from the analyses (final N = 69). Performance 
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on all tasks, except the Arithmetic, Sequence Reversal, Picture Recognition, and ANS 

tasks, had acceptable skewness or kurtosis (i.e., did not deviate from the skewness and 

kurtosis of normal distribution by 2 SEs, Tabachnick & Fidell, 1996). Tasks in which 

performance did not yield acceptable skewness or kurtosis were transformed using a 

Rank-based Inverse Normal (RIN) transformation (Bishara & Hittner, 2012); skewness 

and kurtosis were within an acceptable range post-transformation for the transformed 

tasks.  

All three tasks that assessed rank-based abilities (Sequence Modification, Rank 

Deduction, and Sequence Reversal) were significantly correlated with the Arithmetic task 

(see Table 5). When partialling out age (in months) and general cognitive abilities (i.e., 

Inhibition, Picture Recognition, Memory for Words, Decision Speed, and Picture 

Vocabulary), arithmetic performance remained significantly correlated with performance 

on Sequence Modification, r(61) = .33, p = .008, and Rank Deduction, r(61) = .33, p = 

.009, suggesting the relations were not driven by general cognitive abilities. However, the 

correlation between arithmetic and the Sequence Reversal task was no longer significant, 

r(61) = .03, p = .801.  

I also tested whether ANS acuity could account for the relation between the 

ordinal tasks and arithmetic performance by partialling out the effect of ANS acuity and 

age. The partial correlations of arithmetic with Sequence Modification, r(65) = .36, p = 

.003, and Rank Deduction, r(65) = .32, p = .009, remained statistically significant 

(Sequence Reversal, r(65) = .18, p = .143). In summary, these results suggest that the 

understanding of how rank is affected by the location of insertion or removal (Sequence 

Modification task), as well as the ability to move forward and backward along an ordinal 
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sequence (Rank Deduction task) are related to solving arithmetic problems, and these 

associations cannot be explained by age, general cognitive abilities, or ANS acuity.  

 Sequence Modification and Rank Deduction tasks were designed to assess 

specific types of rank-based abilities. Thus, one might ask whether the two tasks were 

actually measuring the same cognitive process, accounting for correlations with 

arithmetic. Though this claim is not consistent with the non-significant zero-order 

correlation between Sequence Modification and Rank Deduction, r(69) = .16, p = .184, 

direct evidence is needed to ensure that each is uniquely related to arithmetic 

competence. Partialling out the effect of Rank Deduction and age did not change the 

significance of the correlation between children’s performance on the arithmetic task and 

Sequence Modification, r(65) = .42, p < .001. Similarly, partialling out the effect of 

Sequence Modification and age did not change the correlation between children’s 

performance on the arithmetic task and Rank Deduction, r(65) = .39, p = .001. These 

results suggest that the two types of rank-based abilities are uniquely related to children’s 

understanding of symbolic arithmetic. 

 I also examined whether the three types of rank-based abilities were related to 

each other. Of the zero-order correlations among the three rank-based operation tasks, 

none except the correlation between Sequence Reversal and Sequence Modification was 

significant, r(67) = .30, p = .012. However, if general cognitive abilities (i.e., inhibition, 

decision speed, vocabulary and working memory) and age are taken into account, no 

correlation remained statistically significant, rs < .15, ps > .2, confirming the uniqueness 

of the rank-based abilities assessed in the current study.  
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The relation between ANS acuity, ordinal abilities and arithmetic ability 

 

Figure 4. Conceptual representation of the mediation model tested. Control variables 
were included in the model but are not depicted (see main text). The analysis found a 
significant direct effect of ANS acuity on arithmetic ability but there was no evidence of 
indirect effects, suggesting no mediation by any of the tested variables. 

 

Consistent with extant findings (Attout, Noël, & Majerus, 2014; Lyons & 

Beilock, 2011; Rubinsten & Sury, 2011), I found that ANS acuity was significantly 

correlated with arithmetic performance, r(67) = .39, p < .001 (see Table 5). However, 

Lyons and Beilock (2011) showed that the association between ANS acuity and 

arithmetic performance was mediated by performance on an order judgment task. 

However, as I discussed in the Introduction, magnitude is inherent to such a judgment, 

making it unclear whether ordinality per se or magnitude processing mediated the relation 

between ANS acuity and arithmetic. I tested whether rank-based abilities (i.e., Sequence 

Modification, Rank Deduction and Sequence Reversal) mediated the influence of ANS 

ANS 
Acuity 

Sequence 
Modification 

Rank 
Deduction 

Sequence 
Reversal 

Arithmetic 
ability 

a1	

b1	

a2	
b2	

a3	 b3	

c' = 0.202, CI: .04 to .37	

a1b1 = 0.027, CI: -0.01 to 0.11 

a2b2 = 0.029, CI: -0.01 to 0.11 

a3b3 = -0.001, CI: -0.04 to 0.18 
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acuity on arithmetic abilities (see Figure 4 for the conceptual model). Although the zero-

order correlation between Sequence Reversal and ANS tasks was not significant, r(67) = 

.07, p  = .57 (see Table 5), I included Sequence Reversal as a mediator because it is 

theoretically possible for this ability to have a significant indirect effect despite the non-

significant zero-order correlation (Hayes, 2013). Control variables including age (in 

months) and general cognitive measures (i.e., Inhibition, Memory of Word, Picture 

Recognition, Decision Speed and Picture Vocabulary tasks) were included in the model. 

The analysis found no evidence of significant indirect effects2, since zero was included in 

the 95% confidence interval of all three indirect effects: Sequence Modification (a1b1 = 

0.027, 95% CI: -0.01 to 0.11), Rank Deduction (a2b2 = 0.029, 95% CI: <-0.01 to 0.11) 

and Sequence Reversal (a3b3 = -0.001, 95% CI: -0.04 to 0.02). In contrast, the direct 

effect of ANS acuity on arithmetic ability was significant, c' = 0.20, p = .017, 95% CI: 

0.04 to 0.37. Thus, this analysis does not support the notion that rank-based abilities 

mediated the relation between ANS acuity and arithmetic performance. Together with the 

finding in the previous section, showing a relation between rank deduction and sequence 

modification, these results suggest that ANS acuity and an understanding of rank-based 

operations each exert a unique influence on symbolic arithmetic.  

Discussion 

The current study examined the role of ordinal abilities in early arithmetic 

competence. I focused on one aspect of ordinality, namely rank, in an effort to isolate the 

non-magnitude component of ordinality, and to test whether symbolic arithmetic draws 

on non-magnitude ordinal processes. I found that 5- and 6-year-olds’ performance in two 

tasks designed to assess rank-based operations, namely rank deduction (moving forward/ 
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backward along a sequence) and sequence modification (insertion/ removal of item in a 

sequence), was related to competence with symbolic arithmetic, even when controlling 

for general cognitive abilities or ANS acuity. I also tested whether ANS exerted its 

influence on symbolic arithmetic via rank-based operations and only found a direct effect 

of the ANS in children aged 5 and 6 years. Our results suggest that ANS and rank-based 

operations may each have unique contributions to early symbolic arithmetic competence. 

The implications of these findings are discussed below.   

The development of rank-based abilities 

 The current study examined 5- to 6-year-olds’ abilities to perform three types of 

rank-based operations, namely rank deduction, sequence reversal, and sequence 

modification. Novel tasks were designed to test each of these abilities. I tested whether 

children’s understanding of forward and backward movements along a sequence (letters 

of the alphabet) in our Rank Deduction task. The findings suggested 5- and 6-year-olds 

do have some, albeit not perfect, understanding of these operations. They were better at 

determining the letter that comes after a given letter as compared to finding a letter that 

comes before a given letter. Analyses revealed that 5- to 6-year-olds were highly accurate 

in deducing rank that involved adjacent letters, but their performance decreased as the 

number of steps involved increased, suggesting a reverse distance effect. This is 

consistent with findings on a numerical order judgment, in which performance is 

typically better for sequences with smaller inter-item distance as compared to those with 

larger inter-item distance (Lyons & Ansari, 2015; Lyons & Beilock, 2013; Turconi et al., 

2006). Lyons and Beilock (2013) suggested the count list may be an important factor 

driving the reverse distance effect. However, no number words were used in the Rank 
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Deduction task. Thus, I suggest that this effect is driven by ordered sequence more 

generally rather than the number word list specifically.  

Children’s ability to systematically engage in reversals of rank information was 

examined in the Sequence Reversal task. Analyses revealed that the type of sequence 

(i.e., number, letter or shape sequence) affected 5-year-olds’, but not 6-year-olds’, 

performance, which suggests increasing generalization with development. In addition, 5-

year-olds performed better with number than letter and shape sequences, suggesting 

children may first acquire sequence reversal ability in number sequence, and then 

generalize this ability to other types of sequence. This developmental pattern mirrors the 

findings of the linearization of the mental number line (MNL). When young children are 

asked to map numbers with locations on a physical line, they have a tendency to 

overestimate the distance between small numbers and to underestimate the distance 

between large numbers, which suggests compressive representations (Siegler & Booth, 

2004; Siegler & Opfer, 2003). Such representations become increasingly linear across 

development. Researchers found that this shift from compressive to linear representations 

also occurs in letter sequences (Berteletti et al., 2012; Hurst et al., 2014). Moreover, the 

linearization of the MNL occurred before the linearization of letter sequences, suggesting 

generalization from numerical sequences.  Together, the developmental pattern of 

sequence reversal and MNL linearization suggests that children’s experience with 

numerical sequences may aid in their understanding of ordinal properties within other, 

non-numerical sequences.  

Sequence modification concerns the rule that the action of insertion or removal 

only affects the rank of items that comes after the changed item(s). Children’s knowledge 
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of this rule was assessed by the Sequence Modification task. Both 5- and 6-year-olds 

showed some, albeit not perfect, understanding of how rank should be updated when 

changes occurred before the target item because their responses were not random but 

systematically corresponded to the correct operation. Nevertheless, both age groups 

performed significantly worse when the change occurred after, as compared to before, the 

item of interest. The result suggests children first acquire the rule for updating ranks that 

are supposed to change; the knowledge about when the rank of item should stay 

unchanged emerges later in development.  

Relation between rank-based relations and symbolic arithmetic 

In the current study, I found that children’s arithmetic performance was related to 

their abilities to deduce rank and modify sequences, specifically, these operations involve 

moving along a sequence and updating the rank of an item after insertion or removal of 

items, respectively. Moreover, these relations cannot be explained by general cognitive 

abilities or ANS acuity, suggesting that rank deduction and sequence modification each 

have unique relations with the development of symbolic arithmetic, though I 

acknowledge that the casual role in these relations remain to be established.  

Rank deduction and the computational procedures of addition and subtraction 

both involve movements along a sequence. In the current study, letters were used in the 

rank deduction task to isolate rank-based operations, which may have been intermixed 

with magnitude processes in addition and subtraction. The significant correlation between 

Rank Deduction and Arithmetic tasks provides some support for the claim that rank-

based processes are recruited when solving symbolic addition and subtraction problems.  
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In contrast to rank deduction, sequence modification is not a procedural analogue 

of addition and subtraction. A key difference between the two is that the location of 

insertion or removal determines whether the rank an item is affected by the change. 

Location, however, is irrelevant in the case of numerical magnitude. Insertion always 

results in an increase in numerical magnitude while removal always results in a decrease 

in numerical magnitude. Despite this difference, sequence modification was significantly 

correlated with symbolic arithmetic. This relation is consistent with the development of 

counting. Colomé and Noël (2012) found that children’s knowledge about cardinal 

counting (i.e., counting for set size) was correlated with their knowledge about ordinal 

counting (i.e., counting for the rank of a specific item). Together with the findings of the 

existing studies, the current study suggests that the connection between rank-based 

abilities and symbolic arithmetic goes beyond procedural similarity. The ability to 

understand rank may be intrinsically important for the symbolic number system (Cheung 

& Lourenco, in prep). This is because magnitude and rank information of numbers are 

intertwined in the natural number system. For example, the rank and value (magnitude) 

of a number are systematically mapped to one another such that the first number 

represents the value one, the second number represents the value of two, and so on 

(Sarnecka & Carey, 2008). Also, the successor function guarantees that moving forward 

one step in the number words sequence is equivalent to adding one in terms of numerical 

value (Gallistel & Gelman, 1978; Sarnecka & Carey, 2008). Moreover, the rank-based 

relation of before/after is mapped onto the less/more relation of numerical magnitude, 

such that smaller numbers always comes before larger numbers in the numerical 

sequence (Carey, 2009). Thus, even though rank-based processes could be used 
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independently for processing non-numerical sequences (e.g., Rank Deduction task in the 

current study), they may also constitute an indispensable part of mathematical thinking.  

The current study shows that rank-based operations are related to symbolic 

arithmetic. However, since magnitude and rank information of numbers are intertwined 

in the natural number system, it is possible that the developmental relation between the 

two is reciprocal in nature. This argument actually does not go against my hypothesis. 

What I have argued is that rank-based processes are recruited in symbolic arithmetic, 

such that both magnitude and rank-based processes constitute the ability to perform 

addition and subtraction. One of the major goals of the current study is to single out the 

rank-based processes that may have been conflated with magnitude process in the past, so 

that I can achieve a more accurate picture of the mechanisms that underlie symbolic 

number abilities. If rank-based operations constituted the cognitive mechanism for 

arithmetic computation, then deficits in rank-based operations would lead to deficits in 

arithmetic. Indeed, existing research has already shown that dyscalculic adults and 

children have deficits in ordinal ability (Attout & Majerus, 2015; Kaufmann, Vogel, 

Starke, Kremser, & Schocke, 2009; Rubinsten & Sury, 2011). Nevertheless, future 

research is needed to specify the details of the causal mechanism underlying ordinal and 

mathematical development. 

The role of ordinality in the causal pathway between ANS and symbolic arithmetic 

The current study also examined whether the three rank-based abilities mediated 

the relation between ANS and arithmetic. I found ANS had a significant direct effect on 

symbolic arithmetic, but no indirect effect via the rank-based abilities. This finding is 
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different from that of Lyons and Beilock (2011), in which they found that ordinality 

completely mediated the influence of ANS on symbolic arithmetic. What might account 

for the discrepancy between the two studies? One possibility concerns with difference in 

participants’ age. Lyons and Beilock tested adult participants while I tested 5- and 6-year-

olds. However, this is not likely the only reason for the difference because Lyons et al. 

(2014) examined children and found that ordinality was not a significant predictor for 

arithmetic performance in grades 1 and 2. Another possibility is that the purported ordinal 

tasks across the two studies actually measured different ordinal abilities. As discussed in 

the Introduction, Lyons and Beilock (2011) measured ordinal ability using an order 

judgment task, which required that participants consider both the arrangement (order) and 

magnitude of the numbers. In contrast, the current study focused on rank-based 

operations, which are not contingent on the numerical magnitude of the stimuli. This 

difference may be responsible for the absence of a mediation effect in the current study. 

These findings illustrate the importance of the conceptual distinction between magnitude 

(e.g., ascending order, less/more) and non-magnitude- (e.g., forward order, before/ after) 

based ordinal concepts. Although the distinction between these two types of ordinal 

concepts is often overlooked, both behavioral and neural evidence suggests that they are 

dissociable (Cheng et al., 2013; Turconi et al., 2004).  

In summary, the current study contributes to the developmental literature by 

identifying different types of rank-based abilities, by proposing how specific rank-based 

abilities may be related to symbolic arithmetic in children, and by providing empirical 

evidence to support the specific associations between rank-based abilities and 

understanding of early symbolic arithmetic.   
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Footnotes 

 
1Four participants were not tested on the Rank Deduction task because they failed the 

screening. One participant refused to finish the Decision Speed task. 

 

2I used the bootstrapping procedure implemented by Hayes (2013) in SPSS to test the 

hypothesis. A confidence interval was calculated for each indirect effect using 

bootstrapping, a significant indirect effect is indicated by a confidence interval that does 

not include zero. 
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Conclusions 

 The major goal of this dissertation was to investigate the developmental relation 

between ordinality and mathematics. The two papers in this dissertation add to the 

existing literature by addressing unresolved questions about why ordinality is related to 

mathematical competence. In the current dissertation, I tackled this question by 

addressing two unresolved issues. The first issue concerns with the development of 

ordinality. This issue is largely ignored by the studies that investigate the associations 

between ordinality and mathematics. This seriously limits our ability to understand the 

nature of the associations between the two kinds of abilities. To address this issue, I 

designed novel tasks to assess 3- to 6-year-olds’ knowledge of rank. The second issue 

concerns how ordinality contributes to mathematical development by characterizing the 

relations among numerical symbols. Ordinality can be used to describe the relations 

among numerical symbols, but it remains largely unclear how these relations contribute 

to other mathematical abilities. To address this issue, I outlined two ways in which 

ordinality might be related to mathematical development. The first proposal pertains to 

the role of rank in the acquisition of exact number representations. The second proposal 

concerns with the specific associations between rank-based operations and children’s 

understanding of symbolic arithmetic. In the following sections, I will discuss how the 

findings of this dissertation help address these unresolved issues.  

Issue 1: Development of ordinality 

Knowledge of rank information (e.g., January is the first month of a year) is 

critical for resolving everyday problems. For example, when waiting in line, it is 
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important to know that someone cutting the line before you will increase your wait time, 

but someone joining the line after you will not affect you at all. Knowledge of rank is 

also pertinent to mathematical thinking. As discussed elsewhere in this dissertation, rank 

knowledge is important for the acquisition of exact number representations, as well as 

symbolic arithmetic. Nevertheless, the literature is limited in its understanding of the 

origins and development of rank knowledge. The nuances and complexity of this concept 

is often overlooked by researchers in the field. The current study highlighted three 

important aspects of rank—namely, absolute rank (e.g., first, second), rank-based 

relations (i.e., before/after) and rank-based operations (e.g., rank deduction, sequence 

reversal and sequence modification)—and provide empirical data on young children’s 

knowledge of these aspects. 

In Paper 1, I examined preschoolers’ understanding of absolute rank. The findings 

suggested that 3-year-olds can identify the absolute rank of items in a temporal sequence 

and this ability improves between 3 and 4 years of age. It should be noted that most 

children of this age have yet to acquire ordinal number words (e.g., first, second, Miller, 

Major, Shu, & Zhang, 2000), and they have difficulty using counting to identify the 

verbal label for rank (Colomé & Noël, 2012). Thus, it is unlikely that they used number 

words to keep track of the absolute rank in the task. Previous studies suggest a 

rudimentary ability for representing absolute rank information in infants (e.g., 

Lewkowicz, 2013; Lewkowicz & Berent, 2009). The current study provided evidence 

that explicit understanding of absolute rank has emerged by 3 years of age.   

 Paper 1 also examined preschoolers’ knowledge of rank-based relations. 

Specifically, I studied children’s ability to name the next number when prompted with 
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number cues. I found age-related improvement among 3- and 4-year-olds. Moreover, 

both age groups performed better when they were prompted with longer number cues 

(e.g., “2, 3, what’s next?” elicit better results than “3, what’s next?”), which is consistent 

with earlier findings by Fuson and colleagues (Fuson, 1988; Fuson, Richards, & Briars, 

1982), suggesting that children may still rely on the recitation routine to make sense of 

the “after” relation. To illustrate how a routine may assist understanding, consider this 

everyday example. There is a password that I use to log onto my computer. Sometimes I 

forget the exact combination of numbers and letters in the password, but I can type it out 

when I place my hand on a keyboard. Thus, I can use my own typing action to figure out 

the actual password. This example illustrates that information can be embedded in a 

routine such that it is not available to conscious awareness (c.f. Karmiloff-Smith, 1992). 

In this situation, reenacting the routine may help to make such information explicit. 

Children may go through a similar process when they encounter the task of naming the 

next number. The rank-based relations among the numbers are embedded in the recitation 

routine, which is not immediately available to children. They may need to reenact part of 

the recitation routine to discover the answer, just like I need to use my typing action to 

figure out the actual password. Fuson (1988) suggested that a longer cue may be helpful 

to children because it serves as a “running start” of the recitation routine, this is helpful to 

children because they have yet acquired the flexibility to recite the numbers from any 

point of the sequence. In the current study, both age groups of children benefitted from a 

longer cue when prompted to name the next number, suggesting continued reliance on the 

recitation routine to process the rank-based information among numbers throughout 3 and 

4 years of age.  
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 In Paper 2, I examined 5- and 6-year-olds’ understanding of three types of rank-

based operations—namely, rank deduction, sequence modification and sequence 

reversal—by testing their performance on tasks designed to tap each of these operations. 

Rank deduction refers to the ability to move forward or backward along a sequence in a 

specific number of steps. For example, to find the weekday two days from Tuesday, I can 

start reciting the weekdays from Tuesday and move forward in two steps. Sequence 

modification is concerned with how the rank of items should be updated after other items 

are inserted or removed form a sequence. The impact of the change is contingent on 

location. Insertion or removal does not affect the rank of the items that come before the 

changed location, but rather, affect all the items that follow the change. Paper 2 found 

that even though 5- and 6-year-olds were far from perfect in the operations of rank 

deduction and sequence modification, their responses were systematic in that they 

corresponded to the direction of the correct answers. Paper 2 also studied children’s 

ability to perform sequence reversal, which is the systematic conversion of rank to 

reverse the order of the sequence. Whereas 6-year-olds performed comparably regardless 

of sequence type, 5-year-olds showed better performance for number then letter and 

shape sequences, suggesting that children may acquire the ability of sequence reversal 

from numerical sequence, then generalizing to other sequences.  

 Papers 1 and 2 also provided important information about how these different 

aspects of rank are related to one another. Interestingly, even though these aspects are 

conceptually related, I found no behavioral evidence of associations across the respective 

tasks. Among 3- and 4-year-olds, the ability to identify absolute rank in a sequence 

(Ordinal Position task) was not related to the understanding of rank-based related among 
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number words (Number Words Relations task). Among 5- and 6-year-olds, none of the 

rank-based operations were related to one another, suggesting different psychological 

processes may be recruited for different types of rank-based operations.  

 In summary, the current dissertation adds to the literature by highlighting the 

importance of rank in cognitive development, pointing out the different aspects involved 

in this concept, and providing empirical data vital to understanding how this general, 

though multifaceted, phenomenon develops in children aged 3 to 6 years. The study on 

rank-based operations is particularly novel because it is not typical to treat rank as an 

object to be operated on. The current dissertation examined three different types of rank-

based operations and described the rules for these operations. This new way of 

conceptualizing rank opens doors for understanding more complex aspects of ordinality. 

 Issue 2: The specific contributions of ordinality to the understanding of symbolic 

numbers 

 Paper 1 focused on the potential contributions of rank knowledge to the 

acquisition of exact number representations. Before acquiring number words, children 

can only represent exact numbers for values under four using the object file system 

(Feigenson & Carey, 2003; Trick & Pylyshyn, 1994; Uller, Carey, Huntley-Fenner, & 

Klatt, 1999). The preverbal numerical system for larger numbers, namely the ANS, is 

inherently noisy and thus unable to represent numbers as discrete and unique values 

(Dehaene, 2011; Feigenson et al., 2004; Piazza, 2010; Xu & Spelke, 2000). To acquire 

exact number representations, children must learn two vital concepts: one is numerical 

equality (Izard, Pica, Spelke, & Dehaene, 2008; Izard, Streri, & Spelke, 2014) and the 
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other is cardinality principle (CP; Gallistel & Gelman, 1978; Sarnecka, 2015; Wynn, 

1990, 1992). Previous research showed that the acquisition of number words is critical 

for the development of these two concepts (Izard et al., 2008; Sarnecka, 2015). In Paper 

1, I hypothesized that two aspects of ordinality, namely absolute rank and rank-based 

relations, support the acquisition of number words and, thus, representations of exact 

numbers, with findings from this study supporting this hypothesis. Absolute rank was 

shown to be related to the understanding of CP. In addition, rank-based relations among 

numbers were shown to be related to both the understanding of numerical equality and 

CP. Together, these findings confirmed Piaget’s (1952; 1951/1975) insight that the 

integration of cardinal and ordinal properties of numbers is an important step in the 

development of numerical concept. More importantly, my dissertation goes beyond 

Piaget’s work in the following way. Piaget did not address how the concept of exact, 

discrete numerical values emerges from the mapping between cardinal and ordinal 

properties of numbers. In his work, it is unclear why this kind of mapping would result in 

the mature understanding that each number word represents a unique and discrete 

numerical value. In the years after Piaget’s work, research has demonstrated the 

importance of number word acquisition in exact number representations (Carey, 2009; 

Condry & Spelke, 2008; Sarnecka, 2015), as well as children’s limitation in extracting 

rank information about the number words (Fuson, 1988). The current dissertation 

demonstrates specifically how the ordinal information about number words may 

contribute to the acquisition of vital exact number concepts.  

 Paper 2 focused on the associations between rank-based operations and symbolic 

arithmetic. The computational procedure associates with both addition and subtraction 
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can be viewed as a rank-based operation because it involves reciting numbers forward or 

backward in a specific number of steps (Attout et al., 2014). Yet, whether ordinal 

processes are recruited in the process of computation is an open question. Paper 2 

demonstrated the association between symbolic arithmetic and two types of rank-based 

operations, namely rank deduction and sequence modification, supporting the idea that 

arithmetic problem-solving also recruits rank-based operations. 

 In a previous study, Lyons and Beilock (2011) found that order judgment ability 

mediated the influence of ANS on symbolic arithmetic. This finding can be used as 

evidence to support the proposal that the meaning of number would gradually shift from 

magnitude (supported by ANS) to symbol-symbol relations (based on ordinality). One 

concern with this interpretation is that magnitude processes may be recruited in the order 

judgment task and the ANS task. If this is the case, then it is not appropriate to conclude 

magnitude processes have no direct effect on arithmetic. Paper 2 tested whether rank-

based operations mediated the influence of the ANS on symbolic arithmetic. The 

rationale is that since rank-based operations are not contingent on magnitude, if the 

mediation were significant, then the finding would provide support to the proposal of a 

developmental shift in numerical meaning. Nevertheless, none of the rank-based 

operations was a significant mediator, so the results do not provide such support. But this 

nonsignificant result cannot be taken as counter evidence to the proposal either, because I 

only included one aspect of ordinality, namely rank-based operations, in the mediation 

analysis. As discussed in the Introduction, rank is just one of the many aspects of 

ordinality, thus my mediation analysis did not rule out the possibility that other non-

magnitude ordinal concepts might mediate the effect between ANS and arithmetic. Thus, 



	 	 105 

the question of whether symbol-symbol relations completely mediate the effect of ANS 

on arithmetic should be further investigated in future research.  

Limitations and future research directions 

 Both Paper 1 and 2 used an individual differences approach to establish 

associations between specific types of rank knowledge with specific types of 

mathematical competence. This method is suitable for the exploratory nature of the 

current studies. However, to further understand the causal relation between rank and 

mathematics, experimental designs such as those that involve a training component 

would be useful. For example, in future training study, children should be randomly 

assigned to a rank training group or non-rank training group. If the group that received 

rank training showed greater improvement in mathematics, then the finding would 

provide strong support to the contribution of rank knowledge in mathematical 

development.  

 The current dissertation focused on how ordinality was related to mathematical 

development. Nevertheless, math is not the only academic discipline that draws on 

ordinality. Another important STEM subject, namely computer programming, is also 

built on ordinal concepts. A large part of programming involves arranging actions in a 

correct order so that a program can perform its function. Data structure is another 

important aspect of programming that draws heavily on ordinal understanding. Data 

structure concerns with how information should be organized so that it can be accessed 

efficiently and takes up least amount of memory. What is referred to as  “array” in 

programming is a way of organizing data as an ordered list. To understand how an array 
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works, one needs to understand ordinal concepts such as absolute rank. Programing skills 

have become increasingly important for the development of science and technology. 

Some countries, such as Finland, have already integrated computer programming into 

elementary school curricula (Deruy, 2017). Thus, studying how ordinality contributes to 

the learning of computer programming is one promising direction for future research. 
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