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Abstract

This work is focused on Monte Carlo simulation and theoretical analysis of

self-assembled semiflexible equilibrium polymers using F-actin as a model system.

Grand canonical Monte Carlo simulations of a simple model semiflexible equi-

librium polymer system, consisting of hard sphere monomers reversibly self-assembling

into chains of arbitrary length, have been performed using a novel sampling method to

add or remove multiple monomers during a single MC move. Systems with two differ-

ent persistence lengths and a range of bond association constants have been studied.

We find first-order lyotropic phase transitions between isotropic and nematic phases

near the concentrations predicted by a statistical thermodynamic theory, but with sig-

nificantly narrower coexistence regions. A possible contribution to the discrepancy

between theory and simulation is that the length distribution of chains in the nematic

phase is bi-exponential, differing from the simple exponential distribution found in

the isotropic phase and predicted from a mean-field treatment of the nematic. The

additional short length-scale characterizing the distribution appears to arise from the

lower orientational order of short chains. The dependence of this length-scale on chem-

ical potential, bond association constant, and total monomer concentration has been

examined.

Using grand canonical Monte Carlo simulations we study the equilibrium prop-

erties of actin self-assembly. The statistics of actin polymerization are described by



a mechanism involving monomer activation and chain propagation with bond associ-

ation constants derived from experimental free energy parameters. For efficiency in

representing systems of extremely long, stiff chains we use a coarse-graining based on

spherocylinders. We present results pertaining to the isotropic-nematic transition in

this equilibrium biopolymer system.

We have also used Monte Carlo simulations to study the bundle formation in

self-assembled semiflexible chain polymers with inter-chain attractions. Approximate

phase diagrams are obtained for varied physical parameters, such as the chain flexibility,

bonded and non-bonded interactions. The attraction induced microphase separation

results in an equilibrium between a bundle and isotropic short chains. The chain

length distributions of the phase separated system, as well as the bundle’s shape and

aspect ratio, etc. are presented and discussed. Our simulation results are analyzed and

compared with related experimental and theoretical work. We also observed toroids

and branched bundles during the course of our simulations.
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Chapter 1

Introduction

Computer simulation plays an important role in modern scientific research.

With a carefully constructed model, we can carry out rigorous experiments on comput-

ers, thus greatly enhance our understanding in various research areas such as materials

and biological molecules. There are two main classes of classical computer simulation

techniques: molecular dynamics (MD) and Monte Carlo (MC) [1].

In molecular dynamics simulations, we study how molecules move around with

real time. The assumption here is that molecules obey Newtonian laws with quantum

effects neglected. Starting from an initial configuration, the simulation system gives

rich dynamics information of our interest. For an equilibrium system, the average over

a long period of time is equal to the ensemble average.

The Monte Carlo method has a different approach, where we directly sample
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the configuration space and obtain the integration using pseudo random numbers.

Depending on the form of the integrand f(x) in the integral

∫ x2

x1

dxf(x), (1.1)

various techniques have been invented to speed up the sampling efficiency. In the

context of physics and chemistry, the integrand contains an exponential term because

the system satisfies the Boltzmann distribution. The Metropolis algorithm was devised

to efficiently sample such a distribution, which has been incorporated in most modern

Monte Carlo algorithms [1, 2].

In this dissertation, we use Monte Carlo methods to study the self-assembly of

semiflexible equilibrium polymers, i.e. chains formed from equilibrium association of

monomers. Properties of our interest include, but not limited to, the isotropic-nematic

phase transition, the polymer chain length distribution, the cross-linked network, and

inter-chain attractions induced bundling.

1.1 Monte Carlo methods and ensembles

While we practice Monte Carlo simulations, we have one essential assumption

that our pseudo random number generator (RNG) gives enough random numbers.

Practically, if the period of the RNG is far greater than the number of Monte Carlo

steps, we are confident about the randomness of our simulation. Therefore, in the



1.1. MONTE CARLO METHODS AND ENSEMBLES 3

following we focus on the Monte Carlo algorithms and related simulation techniques,

which determines the efficiency of the simulation given our limited computational ca-

pacity.

To numerically integrate a definite integral [1, 3], we can evaluate the integrand

f(x) with x randomly sampled from the integration interval [x1, x2]. The integral then

can be approximated by

I = (x2 − x2)

∑
f(xi)

N
, (1.2)

where the second term is the arithmetic average with N is sample size. If N is large

enough, this formula is a very good approximation of the integral. The drawback of

this brute sampling is its inefficiency for a complex f(x) because this method may

waste a lot of time in sampling insignificant points, that is, relatively small f(xi)′s.

It will be much more advantageous if the sampling algorithm favors big f(x) values

rather than small f(x)′s. One method is to utilize the inverted cumulative distribution

x = g−1(y), (1.3)

if we know g(x) =
∫ x

x1
dxf(x). Through this formula, we map a uniform probability

distribution on [0, 1] onto a nonuniform probability distribution of x′s based on f(x).

The resulting integral is

I =
1

N

∑
f(x′). (1.4)

Because it is usually difficult to obtain the inverted function, a generalized form of this
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method is to devise a weight function w(x) to bias the sampling process,

I =

∫ x2

x1

dx w(x)
f(x)

w(x)
. (1.5)

The conventional rejection method chooses fmax(x) as w(x) and is not efficient when

f(x) is very “spiky”. To work around the disadvantages, the more advanced hybrid

method factors f(x) into two parts: one invertible ”spiky” function and the other

relatively smooth one [3].

1.1.1 Metropolis algorithm

In classical statistical mechanics, we are mostly interested in the ensemble av-

erage of an observable A [1, 4]:

〈A〉 =

∫
drN A(rN) exp[−βU(rN)]∫

drN exp[−βU(rN)]
, (1.6)

where β = 1/(KBT ), the momentum part of the phase space has been integrated out,

and the observable is integrated over the configuration space of 3N dimensions. If the

denominator, i.e., the configuration integral in Eq. (1.6) is denoted by ZN , then the

ensemble average can be rewritten as

〈A〉 =

∫
drN P (rN)A(rN), (1.7)

where the probability density function P (rN) = exp[−βU(rN)]/ZN . Since the con-

figuration integral of a many body system is not solvable analytically, we usually use
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computational methods, such as Monte Carlo sampling, to sample P (rN) and evaluate

variable properties instead of ZN itself.

The general approach is that we sample the phase space by constructing a

sequence of random configurations from the distribution, each of which is only depen-

dent on the previous one. Such a sequence is known as a Markov chain. A proposed

Monte Carlo scheme should not change the equilibrium distribution: in our case, the

Boltzmann distribution. The equilibrium (or “balance”) condition requires that the

probability of leaving a configuration be equal to the probability of entering a config-

uration (or equal flux). We can apply a stricter detailed balance condition: equal flow

between two configurations as follows

P (i)× α(i → j)× acc(i → j) = P (j)× α(j → i)× acc(j → i), (1.8)

where i and j are two adjacent configurations in a Markov chain, α is the transi-

tion attempt probability between the two configurations, and acc is the probability of

accepting such a transition.

1.1.2 Biased sampling methods

In the classical Metropolis algorithm, we have α(i → j) = α(j → i), that is, we

do not bias either transition direction. Then we have

acc(i → j)

acc(j → i)
=

P (j)

P (i)
= exp[−β(Uj(r

N)− Ui(r
N))]. (1.9)
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To improve its efficiency, later proposed Monte Carlo algorithms usually have asym-

metric α. These biased sampling techniques are especially useful in simulations of

polymers. For example, in the orientational bias sampling, a new bond angle is chosen

not randomly but to favor the one lowering the total energy, then the acceptance prob-

ability is modified accordingly to satisfy the detailed balance. In the more advanced

configurational bias method [5], the Rosenbluth factors [6] are computed for both the

old and new configurations in a Monte Carlo step as follows:

W (n) =
l∏

i=1

wi(n), (1.10)

where l is the polymer chain length and wi(n) is

wi(n) =
k∑

j=1

exp[−βui(j)]. (1.11)

Note that w1(n) for the first monomer is different from the rest ones of the polymer

chain of length l. The number k is the total number of allowed growth sites for each

step i and depends on the choice of lattice in simulation as well as the author’s choice.

ui(j) is the energy of each allowed growth site j in each step i. The weight for the

old configuration, W (o), is calculated in a similar way except that the configuration

is already known, while for the new configuration the choice of each new monomer is

determined by exp[−βui(j)]/wi(n). Based on the condition of detailed balance (1.8),

the acceptance probability is

acc(o → n) = min[1, W (n)/W (o)], (1.12)
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because the old and new energy terms: exp[−βU(n)] and exp[−βU(o)] are cancelled

through both sides, respectively, where U is the energy of the configuration. This

method can also be generalized to off-lattice models, where the discrete number of

trial moves for each monomer becomes a continuum space.

1.1.3 Ensembles

The design of practical Monte Carlo moves in large part depends on the choice of

simulation ensemble. According to the equation of state, we need three state variables

to determine the state of a system. Some common ensembles in simulation are isobaric-

isothermal ensemble (constant-NPT ), canonical ensemble (constant-NV T ) and grand

canonical ensemble (constant-µV T ) [1]. From different ensembles we should be able

to obtain the same macroscopic properties provided that the Monte Carlo simulation

is ergodic and reaches the equilibrium∗. The choice then largely depends on whether

it is convenient to study properties of our interest. For example, the NPT ensemble

is an ideal choice since many experiments are carried out this way. Note that in this

ensemble the volume V can change in accordance with the system change, which makes

possible the complete phase transition in the simulation. Similarly, the µV T allows

for the density (or number of particles N) change in the simulation while the chemical

potential µ remains constant. The grand canonical ensemble is usually a natural choice

∗This is the case in the limit of long simulations. The differences can be as small as possible with
increasing computational capacity and efficient algorithms
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for the adsorption/desorption simulation. However, in some cases we are not interested

in the complete phase transition, then we can choose other more convenient ensembles.

In the conventional canonical ensemble, we have fixed the density (constant N and V ),

therefore during a phase transition the system will phase separate into two physically

different parts, though this is not the true phase separation in the experimental sense.

Using the periodic boundary condition, we replicate the system around the simulation

box to reduce the finite size effect. This method works fine with a homogeneous system.

With a fixed density, the finite simulation size prevents the system from undergoing

a true phase separation. In this work, we focus on the application of NV T and µV T

ensembles, which serve our purposes depending on our research interests.

In the past decades, numerous Monte Carlo moves were designed specifically for

simulation of polymers. Mostly, we are interested in the phase transition phenomena,

such as the glass transition or the melting process. In these cases, the density is so high

that simple translational or rotational motions of a whole polymer are rarely successful.

To improve the efficiency, we can design canonical ensemble MC moves to target the

relaxation of local polymer structures such as microrelaxation moves: L-flips, U-flips,

and end-group rotations [7]. These moves were original devised for lattice models, and

later were extended into off-lattice models. For example, L-flips can be modified to be

crankshaft moves at arbitrary angles. To move a whole polymer chain, the reptation

is a snake-slithering-like motion, which can still be very effective for highly entangled

polymers [8]. For self-assembling polymers, single monomer move is customarily carried
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out, though this move is not very efficient. To achieve equilibrium polymers, we can

also have chain cleavage or fusion moves, which are very useful especially in lattice

model simulation [9].

1.2 Actin protein: a model system for polymers

Actin protein is the key component of cytoskeleton and plays important roles in

various cellular functions, such as cell shape and cell motility [10, 11]. The monomer

form of actin protein, called G-actin (Globular-actin), is essentially a polypeptide chain

consisting of approximately 275 amino acid residues. The sequence is highly conserved

across species [12].

Under certain conditions, such as salt, ATP/ADP and pH, G-actin monomers

reversibly assemble into long polymer chains, F-actin (filamentous-actin), which results

in a polydisperse chain polymer system [11]. The actin filament, a double stranded he-

lical polymer chain with a pitch of ∼ 72 nm, has a diameter of 7 ∼ 8 nm and can be as

long as several microns [10]. With the regulation of cross-linking proteins, polycations

and inert polymers, actin filaments can further form bundles (including rings) or cross-

linked networks [13–15]. The mechanism of the polymerization itself remains unclear,

though varied models have been proposed to explain the kinetics and thermodynamics.

Generally actin polymerization is believed to involve three basic steps: monomer acti-

vation, nucleation (a possible trimer nucleus) and propagation. For exmaple, Niranjan
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et al. [16, 17] measured the equilibrium extent of polymerization and fit the data to

the formula obtained from a proposed polymerization mechanism, where the authors

extracted free energy parameters for the three polymerization steps. G-actin monomer-

monomer association involves structural changes [12], and the bonding is noncovalent

and a complex combining result of hydrophobic/hydrophilic interactions, electrostatic

interactions, and hydrogen bonding [18, 19]. Computer simulations combined with

in vitro experiments have been applied to study the polymerization, specifically the

nucleation pathway problem [20, 21].

In this work we focus on the equilibrium problems of actin polymerization. Both

experiments and theories show that the length distribution obeys the exponential law.

Here we assume the association constants for all steps are indentical, i.e., the so-called

isodesmic model. Some discrepancies regarding the distribution in in vitro actin ex-

periments have been attributed to facts such as nonequilibrium and low measurement

resolution. With a concentration above ∼ 2 mg/ml, the actin filaments transition disor-

dered to ordered, namely isotropic-nematic phase transition [22, 23]. This phenomenon

has been successfully explained in the seminal work by Onsager [24] and other further

work [25, 26] on rigid monodisperse rods. Later efforts were focused on incorporating

the unique semiflexibility feature of F-actin-like biopolymers [27, 28], which is different

from organic polymers such as polyethylene (which is very flexible). The polydisper-

sity of the length distribution also has a strong influence on the phase behavior. Early

simulations of semiflexible equilibrium polymers were carried out on a cubic lattice
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model [29], later more realistic continuum (or off-lattice) models were used to simulate

the self-assembly and phase behavior of such a system [30, 31]. The length distribution

was generally found to follow an exponential probability distribution. However, there

has been no further examination of the distribution’s dependence on different macro-

scopic phases, where most studies are focused on the relationship between the mean

chain length (or aggregate size) and the adjustable physical parameters.

However, under real biological conditions, a myriad of third party proteins reg-

ulate the growth of actin filaments [32], therefore the length distribution can be signif-

icantly different from equilibrium polymers. For example, the phalloidin can be added

into the actin solution to bind acitn and prevent its depolymerization. Gelsolin has a

function of severing actin filaments and is widely used to regulate the filament length

in actin experiments [22]. Also the cell is an confined environment rather than an

infinite macroscopic space, the effect of which has been studied in vitro in a cell-sized

water droplet coated with a phospholipid membrane as a simple model of a living cell

membrane. [33]

1.3 Thesis outline

The rest of this thesis is organized as follows.

In Chapter Two, we apply a novel sampling method to grand canonical Monte
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Carlo simulations of semiflexible equilibrium polymers. We show that the first-order

isotropic-nematic phase transitions have significantly narrower coexistence regions com-

pared with theoretical predictions based on a mean field statistical thermodynamic

theory, which is partially due to the unique “bi-exponential” distribution in the ne-

matic phase arising from the lower orientational order of short chains. We further show

that a theory representing the nematic phase as an equilibrium mixture of randomly

oriented chains below a critical length Lc and chains obeying a Gaussian orientational

distribution above Lc reproduces this distribution qualitatively, whereby the agree-

ment between predicted and simulated phase boundaries is improved, with a narrower

isotropic-nematic coexistence region, compared with a monoexponential chain distri-

bution.

In Chapter Three, we study the phase transition of actin filaments with asso-

ciation constants indirectly obtained from experiments based on a model where the

actin polymerization involves three steps: monomer activation, nucleation, and prop-

agation. The limit case of large association constants in the isodesmic model is also

examined. In this work, a long chain is modeled as a chain of jointed spherocylinders

to reduce the computational expense while maintaining the chain length dependence

on the association constants as in the hard sphere chain model.

In Chapter Four, we use Monte Carlo simulations to study the phase behavior

and structures of self-assembled semiflexible chain polymers with inter-chain attrac-
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tions. Approximate phase diagrams are obtained for varied physical parameters, such

as the chain flexibility, bonded and non-bonded interactions. The attraction induced

microphase separation results in an equilibrium between a bundle and isotropic short

chains. The chain length distribution of the phase separated system, as well as the bun-

dle’s shape and aspect ratio, etc. are presented and discussed. Our simulation results

are analyzed and compared with related experimental and theoretical work. Other

structures formed during the course of our simulations, such as toroids and branched

bundles, are also presented.
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Chapter 2

Monte Carlo simulation of the

self-assembly and phase behavior of

semiflexible equilibrium polymers

Grand canonical Monte Carlo (MC) simulations of a simple model semiflexi-

ble equilibrium polymer system, consisting of hard sphere monomers reversibly self-

assembling into chains of arbitrary length, have been performed using a novel sampling

method to add or remove multiple monomers during a single MC move. Systems with

two different persistence lengths and a range of bond association constants have been

studied. We find first-order lyotropic phase transitions between isotropic and nematic

phases near the concentrations predicted by a statistical thermodynamic theory, but
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with significantly narrower coexistence regions. A possible contribution to the dis-

crepancy between theory and experiment is that the length distribution of chains in

the nematic phase is bi-exponential, differing from the simple exponential distribution

found in the isotropic phase and predicted from a mean-field treatment of the nematic.

The additional short length-scale characterizing the distribution appears to arise from

the lower orientational order of short chains. The dependence of this length-scale on

chemical potential, bond association constant, and total monomer concentration has

been examined. To better elucidate this phenomenon, we show that a theory represent-

ing the nematic phase as an equilibrium mixture of randomly oriented chains below

a critical length Lc and chains obeying a Gaussian orientational distribution above

Lc reproduces this distribution qualitatively. The agreement between predicted and

simulated phase boundaries is improved, with a narrower isotropic-nematic coexistence

region, compared with a monoexponential chain distribution. We find, furthermore,

that the critical length Lc scales as the inverse of monomer concentration, irrespective

of the bond strength of the chains, but that at the phase boundary, the fraction of

monomers found in disordered chains peaks at a certain bond strength.

2.1 Introduction

A recently developed Monte Carlo simulation algorithm for treating equilibrium

self-assembled structures within the grand canonical ensemble has been applied to the
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reversible self-assembly of particles into chains, i.e., equilibrium polymerization. Using

this “polydisperse insertion, removal, and resizing” (PDIRR) algorithm, the isotropic-

nematic transition of semiflexible equilibrium polymers has been studied over a range

of parameter space and compared to predictions of analytic theory. Experimental

examples of equilibrium polymer systems that exhibit an isotropic-nematic transition

include wormlike micelles [34] and self-assembled protein fibers like F-actin [22, 35].

The goal of the present study is not to model a particular system, but to test the

predictions of analytical theory and explore the general nature of the phenomenon.

The spontaneous phase transition of anisotropic hard-wall particles to an orien-

tationally ordered nematic liquid crystalline phase due to excluded-volume interactions

was first given a theoretical underpinning by Onsager citeonsager49. Flory [36] used a

lattice model to predict the effects of internal degrees of freedom on this transition for

semiflexible polymers; later work by Grosberg, Khokhlov, and Semenov [37, 38] and by

Odijk [25] developed approaches based on a second virial approximation. Simulation

studies of ordering in semiflexible polymer models have been performed to test these

theories [39, 40]. Following early work by McMullen et al. [41], the coupling of equi-

librium polymerization to nematic ordering has been studied analytically by a number

of authors [27, 42–45]. Many of the complicating details– internal flexibility, end ef-

fects, treatment of excluded volume beyond the second virial approximation, functional

optimization of orientational distributions have been treated separately, but simula-

tion is still the only practical way to address the overall problem of a polydisperse,
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equilibrium system of chains with internal flexibility at moderate packing fractions.

Lattice simulations of the I-N transition have shown strong artifacts relating to the

discreteness of positions and orientations [29, 46]. Recent off-lattice simulation stud-

ies by Fodi and Hentschke [30] and by Chatterji and Pandit [31] have confirmed the

qualitative features predicted by mean-field theory, including the first-order nature of

the transition in 3-dimensional systems, as well as the significant increase in average

chain length that accompanies nematic ordering. The present study uses biased, mul-

tistep grand canonical MC moves with the goal of rapidly equilibrating large systems

(5000− 25000 monomers) and determining phase coexistences as precisely as possible

over a range of physical parameters. The model for monomer association was chosen

to allow independent selection of chain flexibility and the association strength of the

chaining interaction, facilitating comparison with theoretical predictions.

2.2 Methods

2.2.1 Model description

We begin with an association constant for the bonding of a hard-sphere monomer

to another monomer or to the end of a chain of bound monomers, Kassoc = exp(βEbond),

with β = (kBT )−1 and Ebond the bond free energy. The association constant is defined

with respect to a reference system of ideal monomers and chains lacking hard-sphere
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excluded volume interactions, with the standard reference state of an n-mer defined

at a concentration of one n-mer per volume σ3.∗ In the present work, an “isodesmic”

model is used in which Kassoc is independent of the length of the chain. At equilibrium,

the chemical potential of an n-mer in the reference system is:

µn = nµ− (n− 1)Abond = nµ− (n− 1)kBT ln Kassoc, (2.1)

where µ = µ1, the chemical potential of a free monomer.† In the present model, ring

structures are not permitted.

Bonds between neighboring monomers in a chain are constrained to a length

equal to the hard sphere diameter σ. The bending potential for the angle between

any three consecutive bound monomers is an infinite square well: U(θ) = ∞ for θ <

θmin, U(θ) = 0 for θ ≥ θmin. The same potential was used in a previous study of

equilibrium network formation [49]; the present case differs only in that no junctions

or branchpoints are permitted.

∗Depending on context, one may consider Kassoc as a dimensionless value or as an inverse concen-
tration with units σ3.

†In systems with fixed polydispersity, relationships between chemical potentials of different sized
chains are not known a priori; an iterative or adaptive extension [47, 48], of the present method would
be necessary to treat such cases to result in a predetermined composition.
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2.2.2 Polydisperse insertion, removal, and resizing (PDIRR)

moves

Because part of the motivation for this study was to demonstrate the consistency

and utility of the PDIRR algorithm, Monte Carlo sampling was performed primarily

through biased chain addition, removal, and resizing moves. A general description of

the PDIRR algorithm has been reported recently [50]. Here, specifics of implementation

and justification of the method for a semiflexible equilibrium polymer model will be

described.

The basis of the PDIRR method is that insertion of an aggregate containing an

arbitrary number of monomers, or the change in an aggregate’s size by an arbitrary

number of monomers, can be attempted within a single move. Chain addition or chain

removal/resizing moves are selected with equal probability. The first step within a trial

addition move is the insertion of a hard-sphere monomer at a random position within

the simulation box. If the distance between the trial monomer and any existing particle

in the system is less than the hard-sphere diameter σ, the move fails. Otherwise, in

subsequent steps a chain is grown unidirectionally from this monomer until a hard-

sphere overlap is obtained or the maximum number of particles allowed in the system

is reached. For the next step within the chain addition move, a trial particle (index

n = 2) is added to a randomly selected position on the sphere of radius σ centered at

the first particle (index n = 1). For steps to add particles n = 3 and above, the next
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trial particle is added to a randomly chosen position on the truncated section of the

sphere of radius σ centered on trial particle n-1 that satisfies a minimum bond angle

condition, (rn − rn−1) · (rn−1 − rn−2) > − cos θmin. If the jth step results in a hard-

sphere overlap, the polydisperse insertion algorithm dictates that the addition of one

of the intermediates in the growth of the chain, from a monomer to an (j − 1)-mer, be

attempted.‡ The acceptance probability for this chain addition is given by min[1, W ]

where:

W =
j−1∑

n=1

ωn (2.2)

and ωn represents a grand canonical weight for the n-mer, having the form used in

standard GCMC:

ωn =
1

Nch + 1
V exp(βµn) =

V

Nch + 1

1

Kassoc
[Kassoc exp(βµ)]n (2.3)

where Nch represents the number of chains of all sizes already present in the system,

including “chains” of length 1, and µn is defined in Eq. (2.1). If the move is to be

accepted, then one of the chain growth stages is selected for insertion; the aggregation

number n of the chain to be inserted is selected at random with a probability ωn/W .

To satisfy detailed balance, the factor W must be calculated in a similar manner

for the removal/resizing step. First, a chain of arbitrary length is selected at random

with equal probability from among the aggregates in the system, whose number we

will call Nch + 1 for consistency with the addition step. To calculate W for this n-

‡A neighbor list of particles within a distance 9 σ of the trial particle is generated at the first
monomer’s insertion, to be updated every eight steps thereafter.
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mer, a series of “dummy” extension steps to a randomly selected end of the chain are

performed, until a hard-sphere overlap is encountered when the attempt is made to

extend the chain to an (n′ + 1)-mer. The weight W is the sum of weights from ω1 to

ωn′ as given by Eq. (2.3), and the acceptance probability for removal of the n-mer is

given by min[1, W − 1].

In case of an unsuccessful removal, a resizing attempt is made. A new size n′′ *= n

for the chain between 1 and n′ (inclusive) is selected with a probability ωn′′/(W −ωn),

and the resizing move is accepted with a probability accresize = min[1, (W − ωn)/(W −

ωn′′)]. If the move is successful, monomers are removed from the previously selected

end if n′′ < n, and monomers are added to the chain end at the “dummy” positions

already generated when n′′ > n.

2.2.3 Justification of PDIRR algorithm

To demonstrate the validity of this approach, we need only to show that it should

give an equivalent probability distribution to a simple GCMC approach for a mixture

of n-mers whose chemical potentials are given by Eq. (2.1). The ratio of probabilities

of inserting and removing any chain of a given size in a conventional GCMC simulation

would in such a case be:

P (Nn → Nn + 1)

P (Nn + 1 → Nn)
=

min[1, V (Nn + 1)−1 exp(βµn − βUext)]

min[1, V −1(Nn + 1) exp(−βµn + βUext)]

=
V

Nn + 1
exp(βµn − βUext). (2.4)
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Under the current PDIRR method, the chance that an n-mer is chosen for insertion

in an addition move is ωn/W , while the probability that any n-mer will be chosen for

removal is equal to the number of n-mers (Nn + 1) divided by the number of chains in

the system (Nch + 1):

P (Nch → Nch + 1, Nn → Nn + 1)

P (Nch + 1 → Nch, Nn + 1 → Nn)
=

ωnW−1 min[1, W ]

(Nn + 1)(Nch + 1)−1 min[1, W−1]

= ωn(Nch + 1)(Nn + 1)−1. (2.5)

Substitution of Eq. (2.3) (the definition of ωn) into Eq. (2.5) yields the same result as

Eq. (2.4), given that Uext = 0 for this hard-sphere system for any allowed conformation.

One detail that remains is that W in general may depend on the random process of

chain growth beyond n monomers, and so may have a distribution of values. As

in the off-lattice configuration bias algorithm that provided the idea for the present

method, the required detailed balance condition is saved by the condition of “super-

detailed balance” [5] : for any given n-mer in a given system configuration, the use of

dummy re-growth moves ensures that the probability distribution of values for W will

be identical for the insertion and removal processes.

The ratio of the probability of resizing a chain from n to n′′ to the probability
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of the reverse move is:

P (Nn + 1, Nn′′ → Nn, Nn′′ + 1)

P (Nn, Nn′′ + 1 → Nn + 1, Nn′′)

=
(Nn + 1)N−1

ch (1−min[1, W−1]) ωn′′(W − ωn)−1 min[1, (W − ωn)/(W − ωn′′)]

(Nn′′ + 1)N−1
ch (1−min[1, W−1]) ωn(W − ωn′′)−1 min[1, (W − ωn′′)/(W − ωn)]

=
(Nn + 1)ωn′′

(Nn′′ + 1)ωn
. (2.6)

In both numerator and denominator, the probability is a product of the chance of

choosing a given size aggregate from the Nch chains in the system; the probability

that the removal move will fail; the probability that a given size will be selected; and

the acceptance probability for the move. To justify the resizing algorithm, we show

that this ratio is consistent with the addition/removal ratios. The resizing move is

equivalent to removing the n-mer and adding an n′′-mer in a single compound move,

so the ratio of the forward and reverse resizing probabilities should equal the ratio of

the product of these addition and removal probabilities to the product of the reverse

move probabilities:

P (Nn + 1, Nn′′ → Nn, Nn′′ + 1)

P (Nn, Nn′′ + 1 → Nn + 1, Nn′′)

=
P (Nch + 1 → Nch, Nn + 1 → Nn)P (Nch → Nch + 1, Nn′′ → Nn′′ + 1)

P (Nch + 1 → Nch, Nn′′ + 1 → Nn′′)P (Nch → Nch + 1, Nn → Nn + 1)

= [ωn(Nch + 1)(Nn + 1)−1]−1ωn′′(Nch + 1)(Nn′′ + 1)−1 =
(Nn + 1)ωn′′

(Nn′′ + 1)ωn
, (2.7)

where the substitution in the third line comes from Eq. (2.5), and the final result

matches Eq. (2.6) to demonstrate consistency. Again, the reliance on super-detailed

balance is implicit: resizing from a given n-mer to a given n′′-mer will yield the same
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distribution of W as the reverse move, as both cases will sample the same subset of

“dummy” aggregates containing the larger chain.

2.2.4 Data analysis

The pressure of the self-assembled system at equilibrium with a chainlength

distribution f(L) can be formally written in terms of the grand partition function Ξ

as:

p =

[
d ln Ξ(µ, V, T ; f(L))

dV

]

µ,T

=

[
∂ ln Ξ

∂V

]

µ,T,f(L)

+

[
∂ ln Ξ

∂f(L)

]

µ,T

[
∂f(L)

∂V

]

µ,T

. (2.8)

At equilibrium, however, the distribution f(L) is optimized, so the derivative of ln Ξ

with respect to the distribution is zero; the pressure of the system is equal to the

pressure of a fixed-composition system with the same length distribution. The virial

contribution to the pressure from a system of polymers interacting through hard-sphere

sites can be calculated from a weighted site-site distribution function [51]:

p = ρkBT

[
1

M
+

2πσ3ρ

3
lim

r→σ+
(τ ∗(r)g(r))

]
, (2.9)

where ρ is the total concentration of monomers, M is the mean chain length (i.e.,

the average total number of bound and unbound monomers in the system divided by

the number of aggregates in the system – including free monomers), g(r) is the radial

distribution function for the monomers, and τ ∗(r) is defined as:

τ ∗(r) = σ−1 〈(rab · rij)/rab〉rab=r , (2.10)
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in which rab represents the displacement vector between two monomers and rij repre-

sents the center-of-mass displacement vector between two chains, where the center-of-

mass of each chain is evaluated without respect to periodic boundary conditions; the

magnitude of rij can be much greater than the box size for chains that wrap around

the periodic boundaries multiple times. It is important to note that contributions to

g(r) from pairs of particles on the same chain, bonded or non-bonded, do not enter

the pressure calculation of Eqs. (2.9) and (2.10) (as rij = 0 for i = j) except for non-

bonded pairs of monomers on different periodic images of the same chain. To obtain

the second term in Eq. (2.9), a histogram of the weighted site-site distribution function

was recorded (with bin size 0.005 σ) every 1000 MC moves during the simulation, and a

non-linear least squares fit to a cubic polynomial was used to estimate the value of the

function at r = σ. Every 1000 MC moves, the bond vector order parameter S was also

determined, using the method of Eppenga and Frenkel [52]. A length-dependent order

parameter Si was also determined, where Si = (3 〈cos2 θ〉 − 1)/2 where θ is the angle

between a bond vector and the director of the system as a whole, while the average

runs over all bonds in chains of length i. Chain length dependent order parameters

were similarly recorded for the bond vectors at positions 1 and i− 1 (chain ends), and

i/2 (chain midpoints).
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2.2.5 Other simulation details

For local conformational relaxation, each PDIRR move of either type (success-

ful or not) is followed by a series of “crankshaft” moves in which an interior monomer

is rotated about the line connecting its two bonded neighbors by a randomly selected

angle up to 2π. The move is accepted with 100% probability if the new angle satis-

fies both hard-sphere excluded volume requirements and the bond angle constraints

described above. The first move in the series is performed on a randomly selected

interior monomer. A local neighbor list generated for the first move is then employed

for crankshaft moves on the five nearest bonded neighbors (or until a chain end was

reached) in both directions along the chain. All (up to 11) moves are attempted whether

or not the previous moves are successful.

The radial distribution function and length distribution function were calculated

every 1000 move attempts. In general, between 3× 106 and 2× 107 PDIRR steps were

performed for each data point after an initial equilibration period of between 105 and

107 PDIRR steps. A typical production run of 2×107 PDIRR moves required between

12 and 48 hours of AMD Athlon 1600 MP processor time. For certain sets of conditions,

in order to improve the precision of pressure calculations, up to 108 PDIRR moves were

used.

A (40 σ)3 box with periodic boundary conditions was used for most simulations,

except at the highest value of Kassoc and lp, for which a (60 σ)3 box was used to ensure
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a sufficient number of monomers for good statistics near the I-N transition. The time

required for an isotropic phase to make the transition to the nematic phase depended on

the conditions and choice of parameters, and was naturally very long near coexistence

conditions; in most cases, therefore, nematic phase calculations were initiated using

a nematic configuration obtained from a prior simulation using the same persistence

length but different chemical potential or Kassoc. As noted a recent study [53], chain

length distributions in equilibrium polymer systems relaxing towards a new equilibrium

are qualitatively different from equilibrium distributions; the achievement of a stable

chain length distribution, similar to those shown in Fig. 2.2, was used as the primary

criterion to establish that equilibration had occurred.

2.3 Performance of the PDIIR method

The advantage of the PDIRR method in the present context over single-particle

biased addition/removal algorithms is its faster sampling of chain length distributions,

achieved through an increased mean step size during the random walk of chain growth

and shrinkage. This advantage can be approximately quantified. At equilibrium, the

mean step size of shortening a chain must equal the mean step size for lengthening a

chain; the former is easier to estimate, as removal moves are not subject to excluded

volume constraints. The probability of shortening a chain of length n0 by n monomers

in a resizing move is proportional to (ωn0−n/ωn0) = [Kassoc exp(βµ)]−n. If the value
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of G ≡ Kassoc exp(βµ) ≤ 1, then the degree of resizing will be comparable to the

average chainlength. Otherwise, the average number of monomers to be resized is

determined by which evaluates to (G − 1)−1 when n0 is large. There is no advantage

to the PDIRR method when G , 1, as under such circumstances it is unlikely that

more than one monomer would be added or removed in a single PDIRR move under

equilibrium conditions. The optimal performance regime for the method, where (G−1)

is positive but small, corresponds to semidilute conditions where considerable volume

is available in the solution but chains do begin to crowd each other. Fortunately for

the present problem, this is the regime in which the I-N transition is observed, as the

density of the system first becomes great enough that excluded volume effects drive

orientational ordering. Average resizing step sizes 〈n〉 between 3 and 11 are observed in

our simulations, in accordance with these predictions, for systems near the transition.

The computational cost per step will be a factor of ∼ 〈n〉 for the PDIRR method

compared to the single-monomer addition (or less, as the PDIRR method can employ

neighbor lists more effectively, given that the moves are all made in a localized area),

while the change in rate of growing or shrinking a long chain will scale as 〈n〉2, so the

expected benefit will be ∼ 〈n〉. Mean step sizes on the approach to equilibrium, either

during the initial polymerization or during an I-N transition, may be yet larger.

No unique criterion is convenient to test the relative efficiencies of MC algo-

rithms. For one test, we used as a starting point a system configuration generated

with lp = 10 σ, Kassoc = 5000, exp(βµ) = 3× 10−4 and observed the rate of relaxation
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of average chain length M from 36 to 24 when the equilibrium constant was lowered

to 2000 σ3 and exp(βµ) increased to 7.5 × 10−4 (which does not significantly change

the average total monomer concentration of the system). The real-time rate of change

of the PDIRR code was 3.5 times faster than the monomer addition/removal code.

With (G − 1)−1 = 2, this is not a particularly favorable case for the PDIRR method

in equilibrium sampling. For the growth of a new isotropic phase (Kassoc = 5000,

exp(βµ) = 2.2 × 10−4 , lp = 100 σ ) from an initially empty box of edge length 60 σ,

the results are more dramatic; the known equilibrium density of 0.079 σ−3 (17000 par-

ticles) and mean chain length of 21.5 σ were reached 15 times more quickly by the

PDIRR code than by the single monomer addition code.

2.4 Results on semiflexible equilibrium polymers

2.4.1 Simulation results for Kassoc = 5000

We first present detailed results at a single value of the monomer association

constant, Kassoc = 5000 to illustrate general structural and thermodynamic features of

the isotropic and nematic phase of equilibrium polymers. Fig. 2.1(a) shows isotherms of

chemical potential versus total monomer concentration, which show little dependence

on persistence length at low densities. Effects of bond entropy that will lead to a

stiffness-dependent association behavior when bond energy is fixed [54] are not seen
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here because the model allows the direct selection of association free energy, through

Kassoc, for chains of any stiffness.

Growth law, isotropic phase

An ideal monomer association model predicts that the mean chain length M

will scale with the square root of the total monomer concentration ρ, or more precisely

M = 0.5 + 0.5(1 + 4Kassocρ)1/2, in the isotropic phase. As shown in Fig. 2.1(b), the

ideal model accurately describes the simulation results in the limit of low monomer

concentration. Upward deviations from the ideal model predictions at higher concen-

trations, previously observed in simulations of flexible [55–57] and semiflexible [30]

equilibrium polymer, appear to be nearly independent of persistence length for the

isotropic phase in the regime depicted in Fig. 2.1. This deviation was predicted by

Gelbart et al. [58] to arise from excluded volume considerations (i.e., a monomer at the

end of the chain occupies a greater excluded volume than does an interior monomer)

which increase in importance as the concentration increases. In the more rigid poly-

mer systems (lp = 100 σ and lp = 1000 σ), the isotropic phase is observed to become

unstable above a certain chemical potential with respect to a nematic phase, with ne-

matic order parameter greater than 0.5 [see Fig. 2.1(c)]. The discontinuous change in

concentration that goes along with ordering indicates a first-order lyotropic transition

between two phases of different concentrations, separated by a two-phase region.
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Figure 2.1: Dimensionless monomer chemical potential µ/kBT [Panel (a)], mean number

of monomers per chain, M [Panel (b)], and orientational order parameter S [Panel (c)] as

a function of total monomer concentration ρ for equilibrium polymer systems of various

persistence lengths, lp. Open circles: lp = 1000 σ; open squares, lp = 100 σ; closed diamonds,

lp = 10 σ; closed triangles, lp = 4 σ. The solid curve in Panel (b) gives the ideal chain growth

law, M = 0.5 + 0.5(1 + 4Kassocρ)1/2. Monomer association constant Kassoc = 5000 for all

systems.
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Chain length distributions and length-dependent order parameter

Distributions of chain lengths in isotropic and nematic phases near coexistence

are shown in Fig. 2.2. The isotropic phases of the semiflexible polymers always yielded

a simple exponential distribution, ρL ∝ A exp(−L/M), where M coincides with the

mean chain length. The nematic phases, on the other hand, gave an approximate sum

of two exponentials, ρL = A exp(−L/Mshort) + B exp(−L/Mlong) indicating that differ-

ent considerations govern the growth of short and long chains. This difference is related

to the difference in the degree of ordering; as previous authors have noted [30, 42, 48],

short chains have lower orientational order than long chains in a polydisperse mix-

ture. The inset to Fig. 2.2 shows that the range of short chainlengths where deviation

from the single exponential distribution is observed matches the range over which the

chainlength-dependent orientational order parameter Si rises rapidly. Figure 2.3, a

snapshot from the lp = 1000 σ simulation with the short (L ≤ 10 σ) chains highlighted

in black, gives a visual impression of the orientational disorder of the short chains.

An exponential distribution is expected when the free energy of a chain changes

linearly with each monomer, as is the case in long chain limit of the nematic phase,

where the orientational distribution is unaffected by increasing chain length, or in

the isotropic phase. In the short chain limit of the nematic phase, the orientational

entropy changes rapidly with chain length, so the total orientational entropy does not

change linearly with chain length. Compared to the long-chain limiting distribution,
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Figure 2.2: Chain length distribution. Average number density of chains of L monomers

versus chain length L for Kassoc = 5000. Data sets I1000 and N1000 correspond to isotropic

and nematic phases at lp = 1000 σ, µ/kBT = −8.414; I100 and N100, isotropic and nematic

phases at lp = 100 σ, µ/kBT = −8.278. Inset: expanded view of chain length distribution

(solid curves) and chain length-dependent order parameter SL (dot-dash curves) for nematic

phases. Filled circles represent data obtained with a simulation box of volume (60 σ)3 ; for

all other data, box size is (40 σ)3. Kassoc = 5000 for all data.
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Figure 2.3: Snapshot from MC simulation of nematic phase. Short chains (10-mers and

smaller) are highlighted as black spheres; longer chains shown as grey sticks. Kassoc = 5000,

lp = 1000 σ, G = 1.11, box size = (40 σ)3.
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an enhancement in the concentration of short chains is consistent with the higher

orientational entropy of these chains.

Finite size effects and deflection length

Figure 2.2 also demonstrates that these simulation results are quantitatively

unchanged when the box edge length is increased from 40 σ to 60 σ, in a test of box

size effects under a single set of conditions [lp = 1000 σ, Kassoc = 5000, exp(βµ) =

2.22 × 10−4]. This apparent insensitivity to finite-size effects is rather unexpected, as

several length-scales in the system (persistence length = 1000 σ, mean chain length

= 56 σ, longest observed chain length ≈ 800 σ) are significantly greater than the

original box size of 40 σ. A likely explanation is that a shorter lengthscale, the deflection

length [25] λ ≈ 〈θ2〉 lp/2 ≈ (1 − S)lp/3, governs the structure of the nematic phase.

This formula predicts λ = 20 σ or 34 σ depending on whether the order parameter S

averaged over all chains or for long chains only is used.

The deflection length represents the characteristic chain contour length over

which the chain orientation is free to fluctuate without being deflected towards the

director by collisions with other chains. We have independently determined a related

quantity from the simulation by calculating the bond angle correlation function, f(j) =

〈ri · ri+j〉, with ri the bond vector of the ith bond in a chain. For a free ideal chain

the result is a simple exponential with decay length equal to persistence length, as we
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indeed observe for the isotropic phase. In the nematic phase, as shown in Fig. 2.4, we

find that the bond orientational correlation function 〈ri · ri+j〉 decays not to zero (as

it does for an isotropic phase, given long enough chain lengths) but to approximately

〈cos2 θ〉 = 2/3(S +1/2) as j increases. The apparent rise in this correlation function at

high L is probably the result of poor statistics (as the number of long chains is small).

The deflection lengths estimated from the roughly exponential decay is 41 σ for the

system with lp = 1000 σ, and 23 σ for the system with lp = 100 σ . Like the chain length

distribution and order parameter shown in Fig. 2.2, the bond correlation function is

not affected by the change in box size. All of these results suggest that the present

simulations are not strongly influenced by finite size effects, in spite of the common-

sense notion that the aggregate size should never be larger than the box dimension.

We cannot, however, rule out the possibility that fluctuations on much larger scales

than our box size may influence to the large-scale order or thermodynamic stability of

the nematic phase in macroscopic systems.

Figure 2.4 also shows the effects of bond placement within a chain on the order-

ing of bonds. For long chains, bonds at chain ends have less orientational order than

chain interiors. As predicted by Khokhlov and Semenov [59], we find that the end

segments are roughly twice as disordered as the interior segments (i.e., 〈cos2 θ〉end ≈

〈cos2 θ〉2middle).
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Figure 2.4: Bond angle correlation function 〈cos θi,i+L〉 (nematic phase: solid curve; isotropic

phase: dotted curve), chain length dependent order parameter SL (dot-dash curves), and

order parameters of chain end (squares) and chain midpoint (×’s) bond vectors as a function

of length L, for nematic phases. (See Fig. 2.2 for simulation parameters.) Filled circles

(lp = 1000 σ only) represent box size of (60 σ)3; other data obtained with (40 σ)3 box.
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2.4.2 General comparison between simulation and theory

Simulations of isotropic and nematic systems in the vicinity of the I-N transition

were performed for lp = 100 σ and lp = 1000 σ at five values of Kassoc between 320

and 12500. The same qualitative features (e.g., first-order isotropic-nematic phases

transitions, functional forms of single- and bi-exponential chain length distributions in

the isotropic and nematic phases, respectively) were observed in all of these systems.

A benefit of the simplicity of the present model, which facilitates the precise and

independent choice of Kassoc and lp, is the opportunity for direct comparison with

analytical theory. We compare our results with predictions based on the analytic free

energy expressions of van der Schoot and Cates for isotropic and nematic phases of

semiflexible spherocylinders [27].

Isotropic phase properties

The isotropic phase free energy per unit volume fiso of Ref. [27] can be written

(in units of kBT ) :

fiso = −ρE(1−M−1) +
(
B +

κI

M

)
ρ2 +

ρ

M

(
ln

ρ

M
− 1

)
+ ρ

M − 1

M
ln(M − 1)− ρ ln M.

(2.11)

The first term gives the cohesive energy in terms of the chain scission energy E, cor-

responding to ln Kassoc in the present model. The second term approximates steric

interactions among chains within the second virial approximation, including end ef-
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fects through the parameter κI . The third term is the translational free energy of a

system in which the total number density of chains is ρ/M , and the remaining terms

account for the mixing entropy of the polydisperse system for a single exponential dis-

tribution of chain concentration versus chain length. The mean chain length M that

minimizes this free energy is

Miso(ρ) =
1

2
+

1

2

√
1 + 4ρ exp(E + κIρ). (2.12)

The free energy of the nematic phase contains additional terms to account for the

effects of orientational order on the rotational, conformational, and steric entropies of

the chains.

fnem = −ρE(1−M−1) +

(
4√
πα

B +
κN

M

)
ρ2 + ρ

(
1

M
ln

(α

4

)
+

α

4lp

)

+
ρ

M

(
ln

ρ

M
− 1

)
+ ρ

M − 1

M
ln(M − 1)− ρ ln M. (2.13)

Orientational order is included as α = 2 〈θ2〉 − 1 ≈ 3/(1 − S); large α corresponds to

a highly ordered nematic phase. The second virial term is now dependent on orienta-

tional order as α−1/2, while the rotational and configurational free energies penalties

for nematic ordering scale as ln(α)/M and α/lp, respectively. The mean chainlength

M becomes

Mnem =
1

2
+

1

2

√
1 + ρα exp(E + κNρ). (2.14)

Like M , α is not an independent parameter but is determined at each choice of den-

sity, association constant, and persistence length lp by minimization of the free energy;



2.4. RESULTS ON SEMIFLEXIBLE EQUILIBRIUM POLYMERS 40

unlike M , α is not available as a simple expression in terms of the other system quan-

tities (unless some terms in Eq. (2.13) are assumed negligible), so it is determined by

a numerical minimization of fnem.

In addition to the bond strength and persistence length, the analytical model

uses three characteristic parameters with units of volume: B, κI , and κN . While

van der Schoot and Cates [27] have used geometrical arguments to determine values

of these parameters for spherocylinders, the simulation model employs tangent hard-

sphere chains rather than spherocylinders. We have chosen values for the first two of

these factors to reproduce the simulation data in the isotropic phase in the limit of

low monomer density. As shown in Fig. 2.5, the growth law Miso(ρ) of Eq. (2.12) fits

simulation results from five values of Kassoc, and two values of lp, with one adjustable

parameter, κI = 1.45 σ3. Also shown in Fig. 2.5, the chemical potential µiso obtained

from the first derivative of fiso with respect to ρ in Eq. 2.11:

µiso = −E(1−M−1) + 2
(
B +

κI

M

)
ρ +

1

M
ln

ρ

M
+

M − 1

M
ln(M − 1)− ln M (2.15)

is likewise in good agreement with the simulation results for monomer concentrations

below ρ = 0.1 σ−3 with the second virial coefficient set to B = 0.85 σ3. As deviation

from between theory and simulation in the measured concentration range depends only

on ρ, this discrepancy can be attributed to a simple neglect of third and higher-order

terms in the virial expansion of pressure, independent of persistence length and chain

length distribution.
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Figure 2.5: Comparison of theoretical predictions to simulation results for isotropic phases.

Panel (a), mean chain length M versus total monomer concentration, showing simulation

data and fits to Eq. (12). Panel b, ratio of simulation values of exp(βµ) to values predicted

using Eq. (15). Open symbols: lp = 100 σ ; filled symbols: lp = 1000 σ. Circles, squares,

diamonds, triangles, and left-facing triangles correspond to Kassoc = 12500; 5000; 2000; 800;

and 320, respectively. Parameters are κI = 1.45 σ3, B = 0.85 σ3.
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Nematic Phase properties

The choice of κN in Eqs. (2.14) and (2.13) is somewhat arbitrary, as end effects

on packing entropy are in fact dependent on the degree of orientational order ; here we

fix κN using the the relation κN = 1.5κI used in Ref. [27] and the value κI = 1.45 σ3

determined from the isotropic chain length distributions. (Other choices of κN do not

significantly improve the global fit between simulation and theory as presented below.)

The theory does not attempt to include chain-length dependent orientational

order, which was shown above to accompany an enhancement of short chains in the

system relative to the limiting single exponential distribution for long chains. It is no

surprise, therefore, that the theory over-predicts the overall mean chain length M in the

nematic phase, as shown in Fig. 2.6 (points below the solid diagonal line.) Considering

the long chains alone in the simulation does not yield much improved agreement; also

shown in Fig. 2.6 is the ratio of the mean chain length for the long-chain limit, Mlong,

to the theoretically predicted M (points above the diagonal line). The theory appears

to under-predict the degree of growth with respect to increasing ρ, and to fail in

quantitatively predicting the influence of persistence length on the size distribution.

Qualitatively, the simulation results and theoretical predictions are in agreement with

the trends of increasing M with increasing ρ and lp.

The chemical potential of the nematic phase, from the differentiation of Eq. (2.13)
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Figure 2.6: Summary of simulation results vs. theoretical predictions for nematic phases.

Upper panel: ratio of observed to predicted values of mean chain length M using Eq. (14).

Values below the line: MN/Mtheor; values above the line, Mlong/Mtheor. Lower panel: ratio

of simulation values of exp(βµ) to values predicted using Eq. (16). Symbols are defined as

in Fig. 2.5.



2.4. RESULTS ON SEMIFLEXIBLE EQUILIBRIUM POLYMERS 44

with respect to ρ, is

µnem = −E(1−M−1) + 2

(
4√
πα

B +
κN

M

)
ρ +

(
1

M
ln

(α

4

)
+

α

4lp

)

+
1

M
ln

ρ

M
+

M − 1

M
ln(M − 1)− ln M (2.16)

Figure 2.6 (lower panel) shows that the theory underestimates the chemical potential

by a significant factor that grows as ρ increases. In contrast to the isotropic case,

however, the deviation cannot be fixed by a simple ρ-dependent correction, as the

degree of deviation is dependent on Kassoc and lp as well as ρ. Quantitative prediction

of the nematic phase chemical potential and chain length distribution would apparently

require non-trivial modifications to the simple theory of Ref. [27].

Determination of coexistence region

The approximate boundaries of the isotropic, nematic, and two-phase coexis-

tence concentration ranges at any given Kassoc and lp can be determined with little

difficulty through a series of simulations over a range of chemical potentials, to de-

termine the limits of stability of isotropic and nematic phases. Due to hysteresis (i.e.

over a range of values of µ, both phases are kinetically stable over the course of the

simulation), the chemical potential data alone are insufficient to identify the unique

pair of coexistence densities at each Kassoc and lp, which are distinguished by common

values of both pressure (pI = pN) and chemical potential (µI = µN). As we are able to

determine the system pressure during our simulations, in principle we should be able
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to find the coexistence pair with little trouble. Unfortunately, pressure determination

is particularly sensitive to the number, length, and configurations of the longest chains

in the system through the center-of-mass displacement term rij in Eq. (2.10); these

chains have long relaxation times that lead to large and uncertain statistical error in

pressure results. Improving the statistical sampling for all simulation runs to reduce

the error bars sufficiently to determine an intersection point between isotropic and

nematic phases with some precision would be prohibitively time-consuming. Instead,

a single nematic phase point, generally the lowest stable nematic concentration, was

chosen for over-sampling (up to 108 Monte Carlo moves) for each choice of Kassoc and

lp investigated. The Gibbs-Duhem relation dp/dµ = ρ used to extrapolate from this

(relatively) precisely determined pressure to obtain the pressure at higher densities:

p(µ) ≈ p(µ0) + (µ− µ0)ρ + (dρ/dµ)(µ− µ0)
2/2 (2.17)

Pressure data for Kassoc = 5000 is shown in Fig. 2.7, including the Gibbs-

Duhem extrapolation from the over-sampled points in the nematic and isotropic phase.

We found reasonable general agreement between simulation results and Eq. (2.17),

although in some cases, as shown in the figure for lp = 1000 σ, the extrapolation

from the over-sampled nematic phase point lies outside the error bars of the other

points (note that this is an extrapolation, not a fit). Error bars are derived only

from the error in fitting the weighted site-site correlation function, and therefore do

not account for system fluctuations at large length- and time-scales that would not
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Figure 2.7: pressure versus chemical potential, from simulations of equilibrium polymers with

Kassoc = 5000. Circles: simulation results for isotropic (open) and nematic (filled) phases.

Curves: extrapolation from the best-measured simulation point using Gibbs-Duhem relation,

Eq. (2.17), for isotropic (dashed curve) and nematic (solid curve) phases.
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affect the smoothness of this function; in other words, we believe that the error bars

are underestimated, especially for data points that were not oversampled. A different

problem arises at lp = 100 σ: the combination of narrow coexistence regions (which,

consistent with the Gibbs-Duhem relation, yield nearly superimposable graphs of p

versus µ for isotropic and nematic phases near coexistence) and uncertain pressures

made it impossible to even estimate a unique coexistence pair.

The intersections of Gibbs-Duhem curves were used to determine a pair of co-

existence densities for the five systems with lp = 1000 σ (with error bars based on the

estimated uncertainty in calculated pressure). Due to the difficulty in choosing a unique

pair of coexisting densities for systems with lp = 100 σ, only ranges are presented in

the figure and table, with the limits determined by either the instability of the phase

on the simulation timescale (e.g., the highest µ at which a spontaneous transition from

nematic to isotropic was observed was used for the lower limit) or a clear difference in

pressure (e.g., the lowest µ for which the pressure was clearly greater in the nematic

phase than in the isotropic phase was used for the upper limit.) Figure 2.8 shows the

phase boundaries determined from simulation with those predicted by the theory of

van der Schoot and Cates, obtained by solving for the intersection of plots of chemi-

cal potential versus pressure for the free energy expressions of Eqs. (2.11) and (2.13).

Additional data pertaining to the coexisting phases are collected in Table 2.1.
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Figure 2.8: Comparison of phase diagrams from simulation and theory. Dashed lines: co-
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lp(σ) Kassoc G ρI(σ−3) MI ρN(σ−3) MN Mlong Mshort SN

1000 12500 1.08 0.066 30.6 0.10 73.4 121.8 9.5 0.865
5000 1.12 0.088 23.2 0.16 87.2 138.2 6.2 0.932
2000 1.17 0.114 16.9 0.22 92.2 144.0 3.8 0.957
800 1.22 0.137 12.0 0.25 63.0 104.2 2.9 0.955
320 1.32 0.175 9.0 0.34 69.9 107.6 1.7 0.970

100 12500 1.221 0.117 42.1 0.128 53.9 62.4 12.6 0.556
1.225 0.119 42.6 0.132 57.1 66.6 10.7 0.601

5000 1.265 0.135 29.1 0.147 36.8 44.1 10.8 0.547
1.285 0.142 30.3 0.165 46.3 56.1 7.2 0.686

2000 1.345 0.163 20.9 0.183 29.4 36.5 6.9 0.629
1.360 0.167 21.1 0.194 32.9 42.3 5.9 0.687

800 1.456 0.192 14.8 0.227 24.0 32.0 3.5 0.706
1.520 0.209 15.8 0.261 32.2 41.4 4.9 0.795

320 1.632 0.235 10.9 0.269 16.8 22.5 3.9 0.684
1.792 0.262 11.9 0.343 32.1 41.5 2.0 0.856

Table 2.1: Properties of isotropic and nematic phases at coexistence. For systems with lp =

1000 σ, properties of isotropic and nematic phases at a common value of G = Kassoc exp(βµ),

selected based on intersection of Gibbs-Duhem extrapolations of pressure versus µ to give

the best estimate of the phases at coexistence. For systems with lp = 100 σ, lower and upper

limits of G and corresponding isotropic and nematic phase properties are given. Columns

4 and 5 contain data from isotropic phase simulations; columns 6 − 10 from nematic phase

simulations.
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A few comments on methodology before discussing the results: we note that the

long chains that complicate pressure determination via Eqs. (2.9) and (2.10) would

similarly pose problems in constant pressure or Gibbs Ensemble simulation methods

of determining coexistence that rely on volume re-scaling moves; the relative displace-

ments associated with volume changes are proportional to center-of-mass displacement,

so very small volume change moves would be required in dense systems of long chains.

A more promising alternative to the present approach would be to use a density-of-

states method [60], sampling throughout isotropic, nematic, and coexistence regions

using addition and removal MC moves. It is not clear, however, whether the hysteresis

observed in the present simulations would interfere with the calculation of a smooth

and statistically meaningful density-of-states function across the transition. We did

not make an effort to study the hexagonal phase, which has commonly been observed

in experiments on equilibrium polymers [34] and was seen in simulations by Fodi and

Hentschke [30]. Hexagonal ordering was not observed at any of the conditions tested;

some possible explanations may be that the present simulation algorithm does not allow

for periodically repeating unbroken chains, that the fixed box size was incommensurate

with hexagonal ordering, or that the rate of the nematic-hexagonal transition was too

slow to observe using our algorithm.

Qualitatively, the simulated phase diagrams’ shapes are in good agreement with

theoretical predictions. Following Eq. (2.13), the rotational free energy penalty for or-

dering in the nematic phase is inversely proportional to mean chainlength M , while the
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conformational free energy penalty is independent of M . For systems of predominantly

short chains (roughly, M < lp), which are plentiful when Kassoc is small, the position

of the phase transition is strongly dependent on Kassoc through its effect on M ; in the

limit of large Kassoc (i.e., high M) the position of the phase transition becomes inde-

pendent of Kassoc because of the M−1 dependence of the rotational free energy term,

and is determined by the persistence length alone. This long-chain regime has not been

achieved in the present simulations. In general, the breadth of the coexistence region

is greater at low Kassoc, where the presence of short chains leads to strong coupling

between chain growth and ordering as the monomer concentration increases.

The width of the coexistence region is generally overestimated by the theory, as

expected given that the theory gives good agreement with simulation for the isotropic

phase but underestimates of the chemical potential of the nematic phase. An important

contribution to the discrepancy is that the theory only includes steric effects within the

second virial approximation, and so overestimates the stability of nematic phases at

high concentrations. Even within the second virial approximation, the orientationally

disordered short chain component observed by simulation but not incorporated in the

theoretical model may also contribute to this discrepancy.
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Scaling of short chainlength Mshort

To guide future refinements of the theoretical model, we attempt to characterize

the scaling behavior of the chainlength distribution for short chains. In an ideal system,

the equilibrium concentration ratio of chains of length L to length L + 1 equals G =

Kassoc exp(βµ). For a system with excluded volume, the ratio is

ρL+1/ρL = G[1− γ(ρ, L)], (2.18)

where γ(ρ, L) is the probability that addition of a monomer to the end of an L-mer

results in a hard-sphere overlap. The number ratio of L-mers to (L + 1)-mers within

the population of orientationally disordered short chains is exp(1/Mshort). We find that

when G−1 exp(−1/Mshort) is plotted against ρ, as shown in Fig. 2.9, the data lies along

two straight lines segregated by persistence length, corresponding to (1 − 1.95ρ) for

lp = 100 σ and (1−1.65 σ) for lp = 1000 σ. For the short, isotropically oriented chains

that contribute to the initial exponential decay in the nematic chain length distribution,

γ appears to be independent of i and proportional to the total monomer density ρ to a

first approximation, with a constant of proportionality that depends on the persistence

length. (Previous work [27] has already served for a qualitative understanding of the

chain length distribution in the long-chain limit, as expressed in Eq. (2.14); in terms of

Eq. (2.18), the probability γ(ρ, L) is lower for long chains because of their orientational

order, giving a slower decay in the chain length distribution for large L.)
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Figure 2.9: Scaling behavior of the short chain-length decay constant M−1
short for nematic

phases, with G ≡ Kassoc exp(βµ). Symbols are as in Fig. 2.5. Solid line: y = 1 − 1.95x;

dashed line, y = 1− 1.65x.
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2.4.3 Disordering of short chains in the nematic phase

The nematic ordering transition of hard rigid and semirigid rods is strongly

dependent on rod length [24]. In bidisperse and polydisperse mixtures of rods or semi-

flexible polymers, the length-dependent partitioning of chains between ordered and

isotropic phases, and the dependence of order parameter on length, has been stud-

ied by theory and simulation [48, 61, 62]. In self-assembled systems in which the size

distribution of either phase is determined by the forming and breaking of bonds at equi-

librium, the length distributions of the two phases are expected to be quite different,

as has been verified by simulation [30, 31, 63]. In the simulation study, we identified

the length distribution of the nematic phase in semiflexible equilibrium polymers as

being roughly bi-exponential, dropping off quickly for short chains and slowly for longer

chains, and found that the division between the two regimes corresponds to a division

between low and high order parameters. In this Note, we explore the qualitative effects

of the length distribution by modifying the existing mean-field statistical thermody-

namic treatment of the problem. The issues we will address are: does the phenomenon

influence the coexistence boundaries of the I-N transition? And under what conditions

is the disordered, short chain component of the distribution most prominent?
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Theory

In simulations of semiflexible hard-sphere chains, the degree of orientational

order in the nematic phase increases continuously with chain length, approaching a

maximum value for long chains. Taylor and Herzfeld [64] have studied the limiting

case of perfectly rigid spherocylinders allowing full optimization of the orientational

distribution as a function of rod length. To simplify theoretical calculations, we will

instead represent all short chains (those below a variationally determined crossover

length Lc in units of monomer diameter σ) as isotropically oriented and all long chains

(those with contour length greater than Lc) as having a Gaussian orientational distri-

bution independent of length. The contributions of each population to the system free

energy can then be treated as additive, except for a single cross term describing the

excluded volume interactions between short and long chains. The free energy densities

of the isotropic and nematic phases can be written [27, 63] (kBT ≡ 1)

fiso = −Eρtot +
∑

Eρ(i) + B2ρ
2
tot +

∑
ρ(i) [ln ρ(i)− 1] ; (2.19)

fnem = −Eρtot +
Lc∑

i=1

Eρ(i) +
∞∑

i=Lc+1

ρ(i)(E + ln
α

4
)

+B2(ρ
2
s + 2ρsρl +

4√
πα

ρ2
l ) + ρl

α

4lp

+
Lc∑

i=1

ρ(i)[ln ρ(i)− 1] +
∞∑

i=Lc+1

ρ(i)[ln ρ(i)− 1], (2.20)
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where E = ln Kbond is the intrachain bond free energy and B2 = 0.85 σ3 is the second

virial coefficient obtained from simulation as in Ref. [63]. For simplicity, we ignore

the steric end effect [27] here. Assumption of a Gaussian orientational distribution

function fG(θ) = (α/4π) exp(−αθ2/2) gives the free energy penalty per chain [25–27]

ln(α/4), where α is related to the order parameter S = (3〈cos2 θ〉 − 1)/2 through

α = 3/(1− S). The configurational entropy contribution is included as α/(4lp), where

lp is the persistence length [25–27].

Equilibrium chain densities in the isotropic phase are described by ρ(i) =

ρ(1)qi−1
1 , where q1 = ρ(1)Kbond. The nematic phase is comprised of disordered and or-

dered components, therefore the total number density ρtot = ρs + ρl =
∑Lc

1 iρ(1)qi−1
1 +

∑∞
Lc+1 iρ(Lc)q

i−Lc
2 . The equilibrium condition is satisfied by equating monomer chem-

ical potentials of the two components,

µ0 =
1

i

∂f

∂ρ(i)
=

∂f

∂ρ(1)
= ln ρ(1) + 2B2ρtot; i > Lc, (2.21)

then we have

q2 = ρ(1)Kbond exp

[(
2− 8√

πα

)
B2ρl −

α

4lp

]
.

The value of α is numerically solved from the system of equations: ρl =
∑∞

Lc
iρ(i) and

ρl = ρtot − ρs.

The free energy is minimized with respect to the unbound monomer density ρ(1)

and the critical length Lc at any given ρtot, Kbond, and lp. It is necessary to replace sums

by integrals and sample Lc in a continuum space for the sake of accuracy and precision,
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especially at high densities. A method to obtain the phase coexistence range is that

two equilibrated phases satisfy µiso(ρiso) = µnem(ρnem) and piso(ρiso) = pnem(ρnem), from

which we find the coexisting densities ρiso and ρnem.

Results and discussions

Figure 2.10 shows the optimized nematic length distribution near the phase

boundary, which qualitatively agrees well with simulation. The deviation is increasing

with higher association constants, or in other words, the number density. The average

chain length of long chains, which is the negative inverse of the slope, is less than that

of simulation, partly due to the omission of end effects and the simplification of the

orientational distribution.

The phase diagram from the new “bi-exponential” length distribution model is

shown in Fig. 2.11 along with the theory and simulation results from Ref. [63]. Allowing

the short chains of the nematic phase to be orientationally disordered significantly shifts

the nematic phase boundary to a lower density. Other factors that may contribute to

the discrepancy between theory and simulation are the assumption of the Gaussian

form for the orientational distribution and, especially at low Kbond and high ρ, the

truncation of the virial series at the quadratic term.

The driving force for this isotropic-nematic phase transition is the competition

between the orientational entropy and the translational (or packing) entropy. The
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Figure 2.10: Semi-log plot of the chain length distribution: average number density of chains

of contour length L versus L for Kbond and lp = 1000 σ for the nematic phase at different

constants. The top-to-bottom number densities are 0.118, 0.168, 0.221, and 0.304, respec-

tively.
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disordering of short chains maximizes the orientational entropy as well as increases

the excluded volume interactions between short and long chains. The former stabilizes

the system by decreasing the free energy while the latter results in higher packing and

ordering of long chains. An optimal fraction of disordering short chains makes the

phase transition occur at a lower density.

In principle, the critical length Lc is governed by the empty space between

ordered long chains in the nematic phase, which depends on the density. In Fig. 2.12

the reciprocal of Lc is plotted against ρ and fitted by 1/Lc = aρ, where a ≈ 0.388 is a fit

coefficient independent of both the bond constant and the persistence length in a wide

range. The universal relationship implies that the local structure of the nematic phase

almost solely depends on the density, while varying Kbond and lp only serves to change

the average chain length. Not coincidentally, the same inverse relation between length

and density is found in the Onsager theory for hard rods. When Lc approaches lp in

the extreme low density, Lc is underestimated systematically because the end-to-end

distance is no longer linearly proportional to the contour length. Caution should also

be taken if the persistence length is not long enough for a nematic phase to form.

To determine the conditions where the phenomenon of disordered short chains

is most important, we plotted the fraction of monomers belonging to short chains

over a range of bond association constants and densities in Fig. 2.13. At constant

Kbond, this fraction drops rapidly with ρ as Lc decreases while the mean chain length
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Figure 2.11: Comparison of phase boundaries obtained from both simulation and different

theoretical models. Dots with error bars from simulation and dashed lines from the old

model are as in Ref. [63]. Red star-dot curves are results of the new “bi-exponential” length

distribution model.
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Figure 2.12: The critical length (reciprocal scale) versus the total number density at lp =

1000 σ. Dots are data at the nematic phase boundary for different association constants.

The slope of the fit line is 0.388.

increases. The highest fraction can therefore be found at the phase boundary. As

Kbond is increased and ρ decreases, a maximum fraction of around 4.6% is reached

at ρ ≈ 0.06. A qualitative explanation is that as the density increases, compact

ordered long chains “squeeze” many not-that-short chains into the ordered state, i.e.,

Lc decreases as shown in Fig. 2.12, which results in a smaller fraction of monomers

in short chains. At low density, although Lc is relatively large, high Kbond’s result in

a great average chain length and a higher fraction of monomers entering the ordered

long chains’ component. The composition at the phase boundary is a result of the

competition between the average chain length and Lc.
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Figure 2.13: The fraction of monomers belonging to short chains at lp = 1000 σ. Dots

are at the nematic phase boundary; three curve segments are in the nematic phase with

Kbond = 106, 5× 104, and 800, respectively.

2.4.4 Summary

We have used µV T Monte Carlo simulation to map out the phase diagram

of a simple model for semiflexible equilibrium polymers. The PDIRR algorithm for

changing aggregate size yielded a several-fold increase in efficiency in the equilibra-

tion of chain size distributions. We are able to roughly delineate not only the regions

of stability of isotropic and nematic phases, but also the boundaries of the narrow

coexistence region. The simplicity of the model affords a direct comparison with ana-

lytic theory of van der Schoot and Cates [27], giving quantitative agreement between

theory (with two adjustable parameters) and simulation for chemical potential and
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mean chain length in isotropic systems over a wide concentration range in ten systems.

Agreement between theory and simulation in the nematic phase is only qualitative, and

simulation yields phase coexistence regions that are significantly narrower than pre-

dicted by theory. The most important novel observation from the simulations is that a

strong dependence of the degree of orientational order on chain length for short chains

leads to a bi-exponential chain length distribution. The scaling of the length Mshort

characteristic of the short chain component has been expressed in terms of the bond

association constant, chemical potential, and total monomer concentration. We also

shows that the presence of a short-chain disordered component in the nematic phase of

a semiflexible equilibrium polymer lowers the phase transition point, and accounts for

part, but not all of the discrepancy between mean field theory results and simulation.

The analysis of the critical chain length Lc and the chain composition helps provide

more insight to the isotropic-nematic phase transition of a self-assembled semiflexible

polymer system.
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Chapter 3

Monte Carlo simulation of actin

self-assembly using a spherocylinder

based coarse graining

Using grand canonical Monte Carlo simulations we study the equilibrium prop-

erties of actin self-assembly. The statistics of actin polymerization is described by

a mechanism involving monomer activation and chain propagation with bond associ-

ation constants derived from experimental free energy parameters. For efficiency in

representing systems of extremely long, stiff chains we use a coarse-graining based on

spherocylinders. We present results pertaining to the isotropic-nematic transition in

this equilibrium biopolymer system.
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3.1 Introduction

The actin protein abundantly exists in the cytoskeleton network of many living

cells and plays important roles in cells’ fundamental functions [10]. Actin has two

structural states: unbound globular actin (G-actin) and polymerized long filamentous

actin (F-actin). Under certain conditions, G-actin can reversibly self-assemble into

F-actin through non-covalent forces [19, 20]. The actin self-assembly has been inves-

tigated extensively in many aspects such as the isotropic-to-nematic phase transition,

the network structure and elastic behavior, etc. under in vitro conditions [23, 65, 66].

The actin filament is semiflexible and extremely polydisperse in length distribution

(up to 70 µm) with a diameter of 8 nm and a persistence length of 10 ∼ 20 µm [65].

Particularly, the actin solution shows a exponential length distribution [20], and the

isotropic-nematic phase transition of actin solutions has been examined in both theory

and experiments. However, whether the transition is first-order or continuous is ar-

guable in experiments [23, 67, 68], in contract with the first order prediction from the

Onsager theory based on a long rod model. On the other hand, though the polymer-

ization mechanism is not clear yet, it is believed to involve an unfavorable nucleation

step followed by a favorable propagation step [16, 21]. The computer simulation is a

convenient tool to study such a complicated system by using rather simple models to

catch the main features of the actin self-assembly. In this article we use a hard sphe-

rocylinder chain to represent the actin filament in order to improve the computational



3.2. SIMULATION MODEL 66

efficiency as compared with the hard-sphere model. We mainly present the simulations

results pertaining to the isotropic to nematic phase transition.

3.2 Simulation model

Our previous work [63] showed that the isotropic-to-nematic phase transition

can be simulated by using a chain of tangent hard spheres to represent a polymer chain.

However, the hard-sphere chain model simulation becomes computationally prohibitive

when the polymer chain length is too long as in the case of actin filaments. In order to

improve the simulation efficiency, in this work we model the actin filament as a series of

jointed hard spherocylinders as shown in Fig. 3.1. The length of the cylinder rod is lrod

and the diameter is σ. Two successive spherocylinders are jointed by sharing the end

sphere, which does not in fact exist and is represented by a dashed circle. The stiffness

of the chain is subject to a square well potential function of the angle θ between two

end jointed spherocylinders, where the maximum angle θm is related to the persistence

length (lp) through the cosine correlation function,

lp =
2× lrod

1− cos θm
. (3.1)

The formula is identical to that of the hard-sphere model except for that the bond

length is replaced by the rod length (lrod). If θm approaches zero gradually, the model

transitions to the straight spherocylinder rod model.
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θ
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Figure 3.1: 2-D Schematic drawing of the coarse-graining model based on spherocylinders. θ

is the angle between two adjacent spherocylinders. The dashed circles only serve to indicate

the length relationship between the hard-spherocylinder model and the hard-sphere model,

as well as the virtual end sphere shared by the two connected hardspherocyliders.

The association constant between spherocylinders is indirectly defined in terms

of sphere monomers. The contour chain length L is related to the rod length by

L = n σ = (n′ − 1)lrod + 1, (3.2)

where lrod is practically set to be an integer multiple of σ and n′− 1 can be considered

as the number of rods in a chain. In the hard-sphere chain model the weight function

for a chain of length L is [63]

ωn =
V Kn−1

assoc exp(nβµ)

Nch + 1
, (3.3)

where V is the volume of the simulation box, Kassoc the association constant for two

monomers, β = (kBT )−1, µ the chemical potential for a free monomer, and Nch the

number of chains existing in the system. For the spherocylinder model, the weight
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functions are rewritten accordingly as:

ω1′ = ω1; ωn′ =
(n′−1)lrod+1∑

i=(n′−2)lrod+2

ωi, n = 2, 3, · · · . (3.4)

For example, if lrod = 20 σ, then ω2′ =
∑21

i=2 ωi, ω3′ =
∑41

i=22 ωi, and so on. That is to

say, the contour length can be 1, 21, 41, 61 · · · with an incremental length of lrod.

In practice, the spherocylinder chain is determined by the coordinates of the

two ends and joint monomers. The overlap check involves the sphere-spherocylinder

and spherocylinder-spherocylinder checks. The former one can be done by computing

the shortest distance between a line segment and a point. In the latter case we compute

the shortest distance between two line segments in 3-dimensional space and compare

it with the diameter (σ), of which a detailed account is given in Ref. [69]. In the

following, we give a summary of the overlap check algorithm.

The problem is divided into two parts:

• Find the perpendicular distance (d⊥) between two lines on which the two line

segments lie on.

• Project the two lines onto a plane normal to the perpendicular distance vector.

Then, find the shortest distance (din) within the plane between the two line

segments.

The shortest distance between two line segments is then

d2
shortest = d2

⊥ + d2
in. (3.5)
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The two lines can be described by two parametric vector equations:

/ri(t) = /ri,c + t× /ui; i = 1, 2, (3.6)

where /ri,c and /ui denote the center positions and directional unit vectors of the two

line segments. The shortest distance vector /d⊥ = /r1(λ) − /r2(µ) is obtained from the

fact that it is normal to both lines:

/r⊥ · /u1 = 0; /r⊥ · /u2 = 0. (3.7)

The minimum distance between the two lines is then d⊥ = |/d⊥|.

The two lines are projected onto a plane normal to /d⊥. The intersection point is

given by (λ, µ). Taking this point as the origin, the two line segments are /r1 = γ/u1 and

/r1 = δt2/u2, where −lrod < γ−λ < lrod and −lrod < δ−µ < lrod. The constraints define

a rectangle in the γδ-plane. The shortest in-plane distance (d2
⊥) is the minimum of

d2(γ, δ) = γ2 + δ2−2γδ(/u1 ·/u2). The minimization algorithm is as follows: if the origin

is inside the rectangle, that is, on both line segments, the shortest in-plane distance

is zero. If not, find the end (γm or δm) closet to the origin and minimize the in-plane

distance with respect to one of the parameters. With d2
in we readily obtain the shortest

total distance from Eq. 3.5. The relative positions of two line segments in plane can

also be categorized into three cases as shown in Fig. 3.2.



3.2. SIMULATION MODEL 70

Figure 3.2: Three cases of the relative positions of two line segments in plane. (1) The

intersection point is on both line segments, din = 0; (2) The intersection is on only one of the

two line segments, din is the end-to-line distance; (3) The intersection is not on either line

segment, din is the end-to-end distance.
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3.3 Mechanism and thermodynamics of actin poly-

merization

Generally, the polymerization of actin consists of nucleation and propagation

steps. The mechanism is usually studied from the viewpoint of kinetics [70], where rate

constants are obtained from data fitting as a function of time. Recently, Niranjan et

al [16, 17] showed that temperature can also be used as a measurement variable and

the polymerization curve at equilibrium has been fitted effectively to give free energy

parameters for a proposed reaction mechanism. In this Monte Carlo study, we follow

the same basic reaction model with some necessary modifications.

Here we summarize the proposed mechanism and the derivation of thermody-

namic parameters for actin polymerization in Ref. [16]

A1 ! A∗
1 (monomer initiation), (3.8)

A∗
1 + A∗

1 ! A2 (dimerization), (3.9)

A2 + A∗
1 ! A3 (trimerization), (3.10)

Ai + A1 ! Ai+1 i = 3, 4, · · · (propagation), (3.11)

where A1 is a G-actin monomer, A∗
1 an activated monomer, and Ai a polymerized actin

i-mer. The equilibrium constants for the trimerization step and the propagation step

are simplified to be identical so that only three different equilibrium constants (Kinit,

Kdim and Kprop) are needed to determine the equilibrium distribution of actin species
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at a given temperature T . Each K is related to the free energy change by

K = exp[−∆G/RT ] = exp[−(∆H − T∆S)/T ], (3.12)

where ∆H and ∆S are the reaction enthalpy and entropy changes, respectively. Based

on the Flory-Huggins theory, all K’s can be determined from the equilibrium volume

fraction (φi) for each actin species. The extent of actin polymerization here is defined

as Φ = (φ0
1 − φ1 − φ∗1)/φ

0
1, where φ0

1, the initial volume fraction of G-actin, is given by

the conservation of mass

φ0
1 = φ1 + Kinitφ1 + 2Kdimφ∗1

2

+
K3

initKdimKprop(3− 2Kpropφ1)φ3
1

(1−Kpropφ1)2
. (3.13)

Three pairs of (∆H, ∆S) are obtained from the data fitting.

In our grand canonical Monte Carlo simulation, equilibrium constants obtained

from (∆H, ∆S) pairs are converted in accordance with the appropriate units. The

activated monomers are treated the same as unactivated monomers as we have no

intention to distinguish two kinds of monomers in our simulation. The resultant equi-

librium constants are written as:

K ′
dim =

[A2]

[A1][A1]
=

[A2]

[A∗
1][A

∗
1]
×

(
[A∗

1]

[A1]

)2

= KdimK2
init; (3.14)

K ′
trim =

[A3]

[A1][A2]
=

[A3]

[A2][A∗
1]
× [A1]

[A∗
1]

= KpropKinit; (3.15)

K ′
prop = Kprop, (3.16)
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where primed K’s denote association constants used in simulation. We choose the

physiological temperature T = 310 K and the total G-actin concentration 2 mg/ml,

from which we obtain three association constants for simulation K ′
dim ≈ 87 σ3, K ′

trim ≈

5704 σ3 and K ′
prop ≈ 25507 σ3, where σ is the monomer diameter.

The association constants are applied to produce a reasonable equilibrium dis-

tribution of actin chain length. As discussed in Ref. [16], the free energy parameters

of initiation and dimerization are sensitive to the initial G-actin concentration, that is,

the association constants depend on the initial G-actin concentration, which makes it

practically impossible to reproduce the exactly same initial G-actin concentration and

the extent of polymerization. The other thing might be of note is that in this Monte

Carlo simulation, the temperature is incorporated into the K’s and Boltzmann factor

rather than defined directly.

3.4 Simulation results and discussion

In our simulation, the rod length lrod = 20 σ; the persistence length lp =

1000 σ, which has the same order of magnitude as the experimental measurement; the

simulation cubic box edge length is 300 σ with periodic boundary conditions. The

resultant ratio of the mean chain length to the box size is the same magnitude as our

previous simulation [63], where the relatively small box size does not severely affect

the ordering transition.
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The hard spherocylinder differs from the hard-sphere chain in both the actual

occupied volume and the excluded volume. Nevertheless, we continue to use the number

density in terms of monomers in this context. Also the spherocylinder should has a

good approximation of a stiff hard-sphere chain.

For the isodesmic model, the mean-field free energy per unit volume can be

minimized with respect to the mean chain length M [27, 63]. Based on Eq. (2.11)

for the isotropic phase, if the fraction of monomers and dimers is negligible, the free

energy density is written as

fiso = − ρ

M
[E1 + E2 + E3(M − 3)] +

(
B +

κI

M

)
ρ2 (3.17)

+
ρ

M

(
ln

ρ

M
− 1

)
+ ρ

M − 1

M
ln(M − 1)− ρ ln M, (3.18)

where E1, E2 and E3 correspond to three different association constants in the actin

polymerization, respectively; ρ is the number density of monomers; B is the second

virial coefficient; κI reflects the the chain end effect and is negligible in this case. The

physical meanings of the formula is elucidated in Ref. [63] or Chapter 2.

Miso(ρ) = 0.5 + 0.5
√

1 + 4ρ exp(3E3 − E1 − E2 + κIρ), (3.19)

where we have the relationship

exp(3E3 − E1 − E2) = K3
3/(K1K2). (3.20)

On the other hand, the relationship between M and ρ can also be derived

through a kinetic analysis. The number densities of different actin species are con-



3.4. SIMULATION RESULTS AND DISCUSSION 75

strained by the association constants similar to the analysis of the extent of polymer-

ization in section 3.3. At equilibrium, from i ∂f
∂ρ1

= ∂f
∂ρi

we obtain the total monomer

number density (ρ) and the chain number density (ρch):

ρ = ρ1 + 2ρ2
1K1 +

3− 2ρ1K3

(1− ρ1K3)2
· ρ3

1K1K2, (3.21)

ρch = ρ1 + ρ2
1K1 +

ρ3
1K1K2

(1− ρ1K3)2
, (3.22)

where ρi denotes the number density of i-mer. The average chain length M = ρ/ρch

is obtained numerically from Eqs. 3.21 and 3.22 at a given concentration of the free

monomer (ρ1). In fact, the result is a simple exponential distribution except for the

over-populated monomers and dimers. Therefore, we also compute the average chain

length excluding the free monomers and dimers:

Mlong =
ρ− ρ1 − 2ρ2

1K1

ρch − ρ1 − ρ2
1K1

=
3− 2ρ1K3

1− ρ1K3
.

(3.23)

The results from simulation and theory are shown in Fig. 3.3. For Mlong, the

free energy analysis and the kinetic theory agree very well in a certain range of low den-

sity. The simulation data are also qualitatively in line with the theoretical prediction.

However, for the overall chain length, we need to more accurate on the approximation

in the free energy equation.
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Figure 3.3: Comparison of theoretical predictions to simulation results for isotropic phases

in low density regime: the mean chain length as a function of the monomer number density.
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3.4.1 Comparison with the sphere-chain model

As discussed in Ref. [63], for a certain association constant, the isotropic-nematic

phase transition only occurs when the persistence length is long enough, or in other

words, the chain is stiff enough. The phase diagrams for lp = 100 σ and 1000 σ showed

that the phase coexistence range becomes much narrower with increasing bonding

energy, but the transition remains first-order in our simulation. Although we can

explore much larger association constants, the current spherocylinder model still cannot

overcome the limit of expensive computational cost with increasing Kassoc. Therefore,

we have no conclusive results for the question whether the nature of the isotropic-

nematic phase transition in the limit case of Kassoc is affected by the chain length

polydispersity.

3.4.2 The phase transition of actin filaments

In experiments the threshold concentration for the isotropic-nematic transition

is about 2 mg/ml [22]. As a benchmark, 1 mg/ml is equal to 24 µM [10], which can be

converted to the number density 0.0074 as used in our model. In our simulations the I-

N phase transition is first-order and occurs in the extremely low density regime. With

the three association constants deduced from section 3.3, the transition number density

is around 0.012, which is in the same magnitude of the experimental observations.

The coexistence region is relatively narrow, which is in line with the prediction of
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Figure 3.4: The isotropic-nematic phase transition regions for extremely large association

constants. Ovaled red bars are the coexistence regions on the phase diagram taken from

Fig. 2.8 lp = 1000 σ in Chapter 2. No phase transition points as accurate as in Chapter 2

are obtained using the spherocylinder model.
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the isodesmic model that the coexistence region narrows down with increasing Kassoc,

i.e., the mean chain length. The order parameter of the nematic phase is ∼ 0.7,

which is consistent with experimental results of semiflexible actin filaments in a quite

dilute solution. Compared to Ref. [16], we were not able to reproduce the extent of

polymerization under similar conditions such as concentration and temperature.

3.4.3 The length distribution

In general, the observed length distributions are very similar to the simulation

results in Chapter 2 or the isodesmic model in section 3.4.1. The difference lies in

the overpopulated free monomers, which results from the aggregation barrier of the

dimerization step. Beyond that, the propagation step dominates the behavior of the

chain system (the mediocre trimerization step does not contribute much to the length

distribution, Ref. to section 3.3). Therefore, the rest part of the length distribution

roughly obeys the same rule as observed in Chapter 2: an exponential distribution in

the isotropic phase and a “biexponential” distribution in the nematic phase. In the

latter case, the two distinct regimes for ordered long chains and disordered short chains

are not as profound as the isodesmic sphere-chain model, which can be attributed to

the facts such as the nonuniform association constants and the extremely low density.

Compared to the isodesmic model, the barrier of the dimerization results in a much

greater mean chain length with a relatively low bond energy for the propagation step,
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which is the main reason for the resulting low transition point. Showed in Figs. 3.5

and 3.6 are the isotropic and nematic length distributions, respectively. In these simu-

lation results, we did not include free monomers for the sake of geometrical consistency

in the model, that is, the constituent monomer is a spherocylinder instead of a sphere

(an extension from the original model).
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0.0001
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−3
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Figure 3.5: The length distribution in the isotropic phase. The simulation box is (300 σ)3.

lp = 1000 σ. The number density is about 0.00073.

3.5 Summary

We have used a spherocylinder based coarse grained model to represent ex-

tremely long polymer chains in a grand canonical Monte Carlo simulation. First, we
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Figure 3.6: The length distribution in the nematic phase. The simulation box is (300 σ)3.

lp = 1000 σ. The number density is about 0.00124.

have performed simulations using the isodesmic model for the limit case of large as-

sociation constant. We observed the I-N coexistence range consistently narrows down

with increasing Kassoc, however questions remains whether the I-N phase transition of

self-assembled chain polymers remains first-order as in the case of monodisperse infinite

long rods, or becomes continuous due to complications such as polydispersity. Second,

we incorporated nonuniform association constants deduced from an experimental study

into our model to simulate the actin filaments. The simulation results are considerably

consistent with experimental observations.
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Chapter 4

Monte Carlo simulation of

self-assembled polymer chains with

inter-chain attractions

4.1 Introduction

Actin filaments (F-actin) are stiff chains formed by the reversible self-assembly

of globular actin protein monomers (G-actin); the filaments themselves organize into

networks and bundles that constitute a major component of they cytoskeleton [11, 32].

In the high density regime, actin filaments undergo the isotropic-nematic phase transi-

tion in in vitro experiments [22, 23]. However, the in vivo biological system is usually
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abundant in attraction agents such as crosslinking proteins and polyvalent counterions,

which gives rise to the inter-chain interactions. With this inter-chain interaction, the

actin filaments can form a network of bundles, rings, etc. [14, 71, 72] This behavior

has also been observed with a wide range of biological polymers such as DNA and

microtubules [73–75]. In vitro experiments have shown that short-range inter-chain

attractions narrow the length distribution, which was interpreted as indicating the

attraction induced filament bundling [76]. However, to directly observe the bundles

of actin filaments using techniques such as confocal microscopy and TEM, most au-

thors focused instead on phalloidin stablized F-actin solution [72, 77]. For example,

Kwon et al. [77] utilized polycations as attraction agents in a F-actin solution with a

quenched actin length distribution. The authors measured the bundling threshold as

well as the bundle thickness and length, and proposed an anisotropic nucleation-growth

mechanism based on the analysis of the bundle’s length and diameter growth.

Recent efforts to understand the morphologies and structures of this type of sys-

tem include both theoretical and simulation works. Monte Carlo simulations have been

applied to study the isotropic-nematic phase transition of equilibrium self-assembled

polymers with only excluded volume interaction [63], and whereof the unique biex-

ponential length distribution in the nematic phase (instead of an exponential distri-

bution in the isotropic phase) was also analyzed theoretically [78]. However, due to

the anisotropy of actin filaments, parallel chains have the maximized inter-chain at-

traction energy gain, which by forming aligned bundles wins out in the competition
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with the translational and orientational entropy. Depending on the physical properties

of the system, the linker-assisted fixed-length filament aggregation can take different

structures or phases such as cubatic and bundle phases [79], of which the theory was

modified to explain the narrowed length distribution to some extent [76]. Kierfeld

et al. used both theory and Monte Carlo simulations to show that the unbinding of

fixed-length filament bundles is discontinuous and the bundle tends to separate into

several sub-bundles due to slow kinetics [80]. Sayer et al. [81] performed Monte Carlo

simulations of network formation from free monomers through chain self-assembly and

bundling. Even with an effective bond fluctuation method, the authors did not observe

complete phase separation as expected in thermodynamic equilibrium. Additionally,

the length distribution issue was not addressed quantitatively.

In this work, we focus on the short range attraction induced bundle formation

of self-assembled equilibrium semi-flexible chain polymers using canonical ensemble

Monte Carlo method. The coupling between the reversible chain polymerization and

the attraction energy gain from aligned chains strongly alters the length distribution.

The resultant bundle is analyzed both qualitatively and quantitatively. Grand canon-

ical ensemble simulation results are also presented as a comparison, showing that for

the current model and conditions, the formation of discrete bundles is unstable with

respect to condensation of a macroscopic dense aligned phase.
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4.2 Model

In this work, we use the same model as in Ref. [63]. A polymer chain is modeled

as a string of tangentially connected hard spheres with diameter σ, which is equal to

the bond length in this case. The reversible monomer association and dissociation

on the end of a chain is controlled by an association constant Kassoc = exp(βEbond),

where Ebond is the bond energy and β = 1/(KBT ). The polymer flexibility is controlled

independently by an infinite square well potential function of bond angle θ: U(θ) = 0

for θmin < θ ≤ π; U(θ) = ∞ for θ ≤ θmin. Additionally, we apply a square-well

isotropic attraction potential function to phenomenologically describe the inter-chain

attraction’s dependence on the monomer-monomer separation r,

u(r) =






∞ r ≤ σ

ε σ < r ≤ σ + δ

0 σ + δ < r.

(4.1)

Here, note that an appropriate δ can exclude the adjacent monomer-monomer at-

tractions within a chain, though the self-attraction of a polymer chain is intrinsically

allowed, especially when a chain is flexible enough to coil up.

Our off-lattice canonical ensemble Monte Carlo simulations are performed in a

cubic cell with standard periodic boundary conditions, more specifically, the number

of monomers (N), the volume (V ), and the temperature (T ) are fixed. We apply two

main types of Monte Carlo moves:
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1. Single monomer move

In each step there are two possibilities. 1) An end monomer of a chain becomes

a free monomer; 2) a free monomer is attached onto another randomly selected

chain. The exception is the dimerization step and its reverse one, which involves

two free monomers. This conventional move involves chain-end bond formation

or breaking, which guarantees the equilibration process in simulation. If Nch is

defined as the total number of chains including free monomers, the acceptance

probability for bond formation is min[1, W ] (min[1, 1/W ] for bond breaking),

where W is obtained from the condition of detailed balance:

W =
1

V
Kassoc exp[−βε∆nattr]Nch2π(1 + cos θmin). (4.2)

Here ∆nattr,j is the change of the number of attractions in this step. The accep-

tance probability is the same for the dimerization step.

2. Multiple monomers move

This move allows multiple monomers to be transferred from one chain to the

other in one single Monte Carlo step, in the same spirit of the PDIRR algorithm

as in Ref. [63], First, two chains (≥ 2-mers) are randomly selected, and one end

is randomly chosen out of each chain’s two ends. Monomers are then sequentially

transferred from one end to the other and vice versa until the transfers are inter-

rupted due to the excluded-volume interaction or a dimer is reached (to simplify

the calculation of the acceptance probability). The weight factor wi for an i-mer
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move is computed after each successful monomer move:

wi =
i∑

j=1

exp(−βε∆nattr,j), (4.3)

where ∆nattr,j is the change of the number of isotropic attractions after the j-

th monomer is transferred. Second, the probability of the transfer is given by

min[1, W ], where W is defined by

W =
imax∑

i=1

wi. (4.4)

Then, the number of transferred monomers and the direction of the transfer are

determined by the acceptance probability ratio wi/W .

As shown in the formulae, the success rate of this multiple monomers move de-

pends only on the inter-chain attraction energy change and the excluded volume

interaction since the number of bonds stays constant. This Monte Carlo move

speeds up the equilibration of existing polymer chains while the number of chains

remains constant, i.e., the mean chain length does not vary.

The simulation starts from a box of randomly inserted unbound hard spheres (or

whatever appropriate initial configuration), eventually will form a equilibrium polydis-

perse chain system. With a carefully chosen simulation box size and periodic boundary

conditions, the finite size effect can be reduced to be negligible, that is to say, if the

aggregate size is relatively small compared with the simulation cell’s dimension. With

inter-chain attractions, the simulation can generate a variety of phases with differ-

ent combinations of physical parameters: the polymer chain flexibility (or stiffness),
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the bonding association constant, the concentration of monomers, and the attraction

strength. The general procedure is that we first adjust exp(−βε) to a relatively high

value for the aggregation to occur, then we gradually lower exp(−βε) to achieve equi-

librium bundles and obtain the transition boundaries. Starting from right above the

transition boundary, we can also increase exp(−βε) incrementally and compare the

results to that of the decremental procedure.

4.3 Results and discussions

Throughout this study, we set σ = 1. The attraction range δ =
√

2−1 ≈ 0.414,

which is the distance between two monomers separated by one monomer within a chain

when the bond angle is π/2. This value is chosen so to exclude the the intra-chain

monomer-monomer attraction. We performed simulation with a wide range of physical

parameters. The simulated concentrations (or volume fraction φ = (1/6)πσ3N/V ) are

far below the isotropic-nematic phase transition concentrations determined from chains

with only excluded volume interactions [63]. In the following, the simulation cube size

is (160 σ)3, except where noted.
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4.3.1 Phase behavior and diagram

For a constant volume fraction φ = 0.082%, we performed extensive simula-

tions for three persistence lengths, lp = 10 σ, 100 σ, and 1000 σ, respectively. With

small association constants or weak attractions, the chain system is in the isotropic

phase. Increasing either Kassoc or exp(−βε) leads to a transition to a microphase sepa-

rated phase, where multiple chains align together to form a cluster at equilibrium with

surrounding dilute isotropic chains. The transition boundaries from the simulation

are summarized in Fig. 4.1. The squares are the upper boundary where the isotropic

phase stays stable before condensation with incrementally increasing attraction. While

the attraction strength is decreased, the bundle will not fall apart until the values of

exp(−βε) reach the circle points. This strong hysteresis can be attributed to the fact

that the transition involves a high energy barrier, therefore, both phases are kineti-

cally stable in the region between the two boundaries. Besides direct observation of the

bundling from snap shots, the most convenient criterion is the average number of at-

tractions per monomer 〈nattr〉, which is nearly zero in the isotropic phase and increases

dramatically with nascent bundles.

Figure 4.2(a) is a snapshot of the isotropic phase for lp = 1000 σ. At this

persistence length, the mean chain length in our simulation is far less than than lp,

therefore, a well-defined bundle can be observed, as shown in Fig. 4.2(b), with strong

enough inter-chain interactions. With increasing chain flexibility, or in other words,
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Figure 4.1: Phase diagrams of the phase separation with different persistence lengths and

attraction strengths. The volume fraction is 0.082%. I stands for isotropic, B for bundle,

and C for cluster (globule or toroid). Circles are the lower boundary; squares are the upper

boundary.
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decreasing persistence length, the transition boundaries shift to the higher values of

exp(−βε).

(a) (b)

Figure 4.2: Snapshots from the simulation, where monomers with non-bonded attractions

are highlighted in red. (a)Isotropic phase with exp(−βε) = 1.15. (b) Bundled phase with

exp(−βε) = 1.16, the bundle wraps across the periodic boundaries twice. For both (a) and

(b), lp = 1000 σ and Kassoc = 64000.

The phase behavior becomes different when the mean chain length is comparable

with the persistence length as in the case lp = 10 σ. The isotropic phase for flexible

chains is almost identical with the stiff chain case. If the association constant is so small

that chains much longer than 10-mers seldom form, a short bundle can be observed. It

is not the case anymore with large Kassoc’s as shown in Fig. 4.3, where the cluster can

take shapes such as globule and toroid, depending on the simulation details, such as the
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(a) (b)

(c) (d)

Figure 4.3: Snapshots from the simulations, where monomers with non-bonded attractions

are highlighted in red. (a) Isotropic phase with exp(−βε) = 1.8 and Kassoc = 6400. (b)

Short bundle with exp(−βε) = 2.3 and Kassoc = 640. (c) Globule with exp(−βε) = 1.7

and Kassoc = 64000. (d) Toroid: an intermediate to convergence with exp(−βε) = 2.0 and

Kassoc = 6400. For all snapshots, lp = 10 σ.
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physical parameters, the initial configuration and the number of Monte Carlo steps .

Figure 4.3(c) is a globule where polydisperse chains irregularly coil up and form a cluster

with flexible chain ends or segments sticking out. Figure 4.3(d) is an intermediate stage

of a toroid, where finally the other smaller free cluster will disappear and coalesce into

the big toroid. These phenomena were also observed in the coarse-grained simulation

work by Noguchi et al. [82, 83] for the collapse of a single homopolymer chain, as a

model of DNA toroid formation [73, 74]. The difference is that in our simulation the

toroid or globule contains multiple chains rather than a single chain coil. The flexible

chains can be attracted to themselves, which is different from the stiff chain case. Due

to the relatively irregular packing of flexible chains compared with bundles of stiff

chains, the value of 〈nattr〉 is significantly less than that of bundles.

The bundle formation is essentially a process of nucleation and cluster forma-

tion. Analogous to simulations of gas-liquid nucleation, multiple aggregates formed

in the early stage relax into a single bundle (cluster) in equilibrium with a limited

number of chains. Similarly, bundles with branched ends, as shown in Fig. 4.4, only

appear in the intermediate stage. In the end the branches were always observed to

merge into one unbranched bundle. This annealing process might be prevented due

to slow kinetics if branched bundles were to fuse together in a network. Under these

dilute conditions, such behavior was not seen. It may not be the case if the bundle

can interact with itself across the periodic boundary, which is carefully avoided in this

particular simulation in order to observe the equilibrium microphase. Limited by the
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computational capacity, we have not explored extensively in the high density regime,

which might produce long-lived connected bundles due to slow kinetics.

Figure 4.4: An intermediate branched bundle with monomers with attractions highlighted in

red. The volume fraction φ = 0.123%, lp = 50, Kassoc = 640000, and exp(−βε) = 1.4.

Figure 4.5 shows the relationship between the attraction strength and the vol-

ume fraction at the transition boundary. The simulation box size is 160 σ. The

transition attraction strength decreases and finally levels off with increasing volume

fraction. For very weak attractions, the transition density is so high that bundling is

superseded by bulk nematic ordering, which was not studied in this work. Also plot-

ted on the figure are the theoretical predictions for the transition boundary. If sphere

chains are approximated by perfectly rigid rods and the rod length is set to be the
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mean chain length of the polydisperse system, based on an Onsager-like theory [24],

the leading terms in the second virial coefficient can be written as [76, 79]

w =
1

2
πl2d + 2πld2 +

1

2
πl2δ[1− e−4βε] + 4πldδ

[
1 + (e−

2l
d βε − 1)

d

2lε

]
, (4.5)

where l is the rod length and d is the rod diameter (equal to σ in this study). The rod

length is equal to the mean chain length 〈L〉 = 0.5+0.5
√

1 + 4ρKassoc exp(kIρ), where

ρ is the monomer number density and the end effects parameter kI is obtained from

fitting simulation results [78]. The first two terms of w are the hard-core repulsion.

The remaining terms are introduced by the short-range attractions. Approximately,

two chains crossing at large angles have four pairs of attractions, and two parallel

chains have 2lε. At the transition point, the repulsion and attraction contributions

cancel off, that is, wc = 0, which is then solved numerically for the critical exp(−βε).

In Figure 4.5, the transition boundary for the stable isotropic phase is not shown due

to the issue of consistency. With increasing volume fraction, it becomes increasingly

difficult to pinpoint the transition points for the condensation process, which is due

in large part to the computational expense incurred by the geometrically increased

number of monomers. To some extent, the general trend is captured by the current

crude approximation. A more precise theoretical account should include the effects of

the chain flexibility, the polydispersity, etc.



4.3. RESULTS AND DISCUSSIONS 96

0 0.002 0.004 0.006 0.008 0.01
Volume Fraction (φ)

1

1.1

1.2

1.3

1.4

ex
p(

-β
ε)

Lowest stable point for bundle
Mean field theory

Figure 4.5: The inter-chain attraction strength versus the volume fraction at the transition

boundary of microphase separation. Kassoc = 6400, lp = 1000 σ. The solid upper triangles

are the lower boundary in simulation. The dots are critical values for condensation obtained

from a theoretical approximation.
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4.3.2 Chain length distributions

Even with the inter-chain attractions, the chain length distribution in the isotropic

phase is still an simple exponential distribution and almost identical to the simulation

results without inter-chain attractions in Ref. [63]. Only with strong enough attrac-

tions, the chain growth coupled with the attraction energy gain from clustering gives

rise to more long chains. Especially in bundling, the distribution develops a peak

around the magnitude of the bundle contour length. This phenomenon is in partial

agreement with the simulation work [81] (because their results are completely in the in-

termediate regime, we did not make further comparisons) and the experimental results

in Ref. [76], where the authors measured the coefficient of variance of the length distri-

bution, rσ ≡ σl/ 〈l〉, which is the standard deviation divided by the mean chain length.

As a result of actin filaments bundling, the authors argued, the value of rσ changes

from rσ = 1 of an exponential distribution to rσ < 1 of a Gaussian-like distribution;

while in the intermediate regime, the length distribution is bimodal and rσ > 1. In our

simulation, we have observed a dramatic increase of rσ because the length distribution

is divided into two parts: the isotropic phase part and the cluster part, but not the

reduction of rσ to be less than 1. This discrepancy arises from factors: first, our NV T

ensemble simulation result is unstable with respect to the macroscopic closely packed

phase, which will be discussed in the section of µV T simulation; second, as the authors

discussed, short filaments cannot be measured experimentally so that this part of con-
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tribution is excluded. As for the numerical prediction shown in Ref. [76], we were not

able to reproduce the same length distribution, but have applied the same theory to

predict the condensation boundaries in the previous section.

Figure 4.6 shows the chain length distribution in a well equilibrated bundled

system. Since the system size is reasonably small, the simulation can efficiently explore

the configurational space and achieve a smooth histogram curve. We can roughly assign

the straight line with short chains to the isotropic solution, and the Gaussian-like peak

to the bundle. (In fact, the two parts overlap considerably in the valley region.) We

can fit the peak to a Gaussian function

f(l) = c exp

[
(x− Lb)2

2b2

]
, (4.6)

where the first term describes the isotropic chains and the second term for the bundle.

The method of defining and analyzing the bundle will be presented in section 4.3.3.

To elucidate the question whether the Gaussian shape of the peak results primarily

from the fluctuation of bundle itself or the chain length polydispersity within the

bundle, we computed the standard deviation of chains within each bundle, 4.8 which

was averaged over 101 snapshots. This value is significantly (∼ 40%) less than b = 7.8,

the standard deviation of the full length distribution of the bundle. This suggests that

the distribution’s Gaussian-shape can be attributed to in the bundle fluctuation, which

has a standard deviation of 4.1 in this case. The bundle fluctuation is related to the

fluctuation of the total monomers within the bundle, which stems from the equilibrium
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between the bundle and the isotropic solution.
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Figure 4.6: Semi-logarithmic plot of the chain length distribution. The simulation box size

is 80 σ, φ = 0.082%. lp = 1000 σ, Kassoc = 6400, and exp(−βε) = 1.30. The red curve is a

Gaussian fit in the length range of [31, 98]: the mean is 60.5 and the standard deviation is

7.88.

Figure 4.7 shows the chain length distribution for a system with a thick and

long bundle with lp = 10000, where chains (much shorter than lp) are so stiff that

the bundle consists of almost “perfectly” aligned polymer chains rather than possible

interwoven chains as in the case of small lp values. For such a system, the distribution

is further divided into two far separated parts: the isotropic chains and the bundle.

The peak for the bundle becomes no longer symmetric (or Gaussian) as in the small

bundle case. Here we propose one hypothesis that surface and bulk chains in the bundle
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become more and more distinct as the bundle grows. The surface chains are attracted

to fewer surrounding chains than the bulk chains, thus the two types of chains have

different environments and follow different growth laws. If the bundle is approximated

by a cylinder of length Lb, then the surface chains’ distribution (assuming l < Lb)

is proportional to (Lb − l)/l exp(al) with a fitting parameter a. For an ideal system

a = ln[ρ(1)Kassoc exp(−βε〈nattr〉)], where ρ(1) is the number density of free monomers

and 〈nattr〉 is the average number of attractions per surface chain monomer. In the

formula (Lb− l) and 1/l account for the surface chain’s translational and orientational

entropy’s dependence on the chain length, respectively. On the other hand, the bulk

chains’ distribution is a Gaussian-like distribution. Therefore, the distribution function

used for fitting can be written as

f(l) = c1
1

2
[(Lb − l) + |Lb − l|] 1

l
exp(al) + c2 exp[−(l − Lb)

2/(2b2)], (4.7)

where c1 and c2 are coefficients for the two components, containing some physical

constants such as π. Here we optimize the fit to ln f(l). The fitting results are:

c1 = 2.76 × 10−11, c2 = 2.62 × 10−4, a=0.10021, b = 11.21, and Lb = 203. With

〈ρ(1)〉 = 1.05 × 10−4, Kassoc = 6000 and exp(−βε), we obtain the average number of

attractions per surface monomer 〈nattr〉 is 3.08. As a comparison, for the whole bundle

(including both bulk and surface monomers) 〈nattr〉 ∼ 7 with the reasonable assumption

that dilute isotropic chains have no attractions. The values of 〈nattr〉 can be related to

how chains pack in the bundle, which will be further discussed in the section of bundle
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structure analysis. The irregularity of the fitting curve near the peak can be attributed

to the assumption of a fixed cutoff Lb while Lb itself fluctuates around the peak value.
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Figure 4.7: Semi-logarithmic plot of the chain length distribution. The simulation box size

is 160 σ, φ = 0.082%. lp = 10000 σ, Kassoc = 6000, and exp(−βε) = 1.20. The red curve is a

fit of the chain length distribution of the bundle.

In order to explain the difference for the surface chain behavior between small

and big bundles, we neglect the internal conformational entropy of a chain of length

l. The free energy of such a (straight) chain in the dilute surrounding space can be

written as

βFiso = − ln(V − Vb)− Ebond(l − 1) ≈ − ln V − Ebond(l − 1), (4.8)

where the bundle volume Vb is tiny compared to V . The orientational entropy is zero
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from the definition

Sor = −kB

∫
f(Ω) ln[4πf(Ω)]dΩ, (4.9)

because f(Ω) = 1/4π for the isotropic chains. While the chain resides on the surface

of a bundle, the free energy will be

βFbundle = − ln[πD(Lb − l)]− ln

(
π

D

l

)
+ εl − Ebond(l − 1). (4.10)

Here the first term accounts for the translational entropy of a chain of length l on the

surface of a cylinder of width D and length Lb. Here we neglect the contribution of the

surface chains longer than Lb because of too high energy penalty. In the Section 4.3.3

we show that surface chains are indeed shorter than bulk chains. The second term

is the orientational entropy if we assume the surface chain can freely rotate within

θ ≈ D/l without any energy penalty. (This is a very crude approximation since the

actual angle can be much smaller than D/l. It should suffice here since the contribution

of this term is both constant and negligible.) The third term is the energy gain from

the inter-chain attractions and the last term the bond energy. For a small value of

Lb, Fbundle is larger than the Fiso for all l < Lb, which means that surface chains

are not stable on a small bundle. Only when the Lb is large enough, the curve of

Fbundle as a function of l intersects that of Fiso, which means that a long chain becomes

more stable on a big bundle than on a small bundle. We have plotted the relative

free energy F ′ = Fbundle − Fiso as a function of the chain length l for given bundle

contour lengths Lb in Fig. 4.8. Therefore, the answer to the question why the length
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distribution of a small bundle system is less affected by surface chains than that of a

big bundle is that stable surface chains requires the bundle size to be above a critical

value. For example, the critical bundle contour length is approximately 110 σ while

D = 3 σ is assumed. This simple analysis also explains the crossover length between

the two length distribution parts, namely, the bundle and the isotropic solution. Given

D = 3 σ and Lb = 200 σ, we have the crossover length close to 80 σ, which is in

agreement with the length distribution as shown in Fig. 4.7. Noticeably, the upswing

trend of the free energy curve when the chain length approaches the bundle contour

length indicates that for chains of length comparable with Lb, we can not neglect the

translational entropy resulting from partial overlapping between surface chains and the

bundle. To further understand the mechanism of actin bundling, we may need further

simulation work on the nucleation and growth steps. We can a cylinder composed of

straight chains as a growth front similar to the model by Liu et al. [84], then allow

self-assembling chains to attach onto or detach from the cylindrical growth front.

4.3.3 Analysis of the bundles

The bundle is determined by a connectivity matrix P defined by [81]

Pij =






1 i = j

1 monomers i and j are either attracted or bonded

0 otherwise,

(4.11)
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Figure 4.8: Relative free energy (F ′ = Fbundle − Fiso) as a function of the chain length l and

the bundle contour length Lb. The number labels are Lb.
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In principle, PN−1 generates the global connectivity matrix G where

Gij =






*= 0 at least one path exists between i and j

= 0 otherwise.

(4.12)

But this matrix exponentiation is computationally expensive. In practice, we search

the matrix P recursively and find the largest number of connected monomers, then

record their coordinates and other relevant information at regular intervals.

The bundle takes a cylindrical shape if the persistence length is longer than the

bundle contour length, as in the case lp = 1000 σ. The ends of the bundle are not flat

like a true cylinder, but rough. As shown in 4.3.2, the chain length distribution in the

bundle is highly peaked around the bundle contour length. In Fig. 4.9 we count the

number of chains through the cross-section area along the contour the bundle. The

plot shows that the number of chains in the buddle’s middle part is almost constant

while the two ends taper off. The difference between red triangles and black stars

arises from different procedures, namely decremental and incremental, to obtain the

data as explained in the MODEL section. The extent of smoothness in the middle

suggests where component chains are continuous or broken. Generally, The smoother

the distribution, the better equilibrium the system achieves. This is also true for

the smoothness of the chain length distribution. The nonequilibrium problem will be

further discussed later.

Within the bundle, we can construct a discrete central axis by slicing the bundle

along its contour and then computing the center of mass of monomers in each resulting
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Figure 4.9: The number of chains through the cross-section versus the bundle contour length.

which is averaged over 101 samples. The simulation system is a 160 × 160 × 160 box with

6400 monomers. Both colors are for lp = 1000 σ, Kassoc = 64000, and exp(−βε) = 1.17.

Red triangles are results from a decremental procedure; black stars are from an incremental

procedure.
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bin. In Fig. 4.10 we plotted the mean monomer displacement from the center axis

against the length of the chain which the monomers belong to. We can observe the

trend that the displacement decreases with increasing chain length, which implies that

surface chains are shorter than bulk chains, consistent with the model of section 4.3.2.

Both small and big bundles show this feature, although the latter is more profound. We

also compare two bundles of similar size with different persistent lengths, 1000 σ and

10000 σ, respectively. More flexible chains in a bundle tend to be somewhat interwoven

such that the descending slope is not as steep as that of stiffer chains. In both cases,

very short chains (roughly l < 25 σ) have significantly greater displacements than long

chains do. These irregular points suggest that the bundle defined in this work can

include short chains occasionally. One possible scenario is that a relatively short chain

is in contact with and perpendicular to the bundle. This phenomenon is also confirmed

by both the length distribution analysis of the bundle and the intermediate snapshots.

Chains are packed hexagonally within a bundle. Technically, the local order of

packing can be estimated by slicing the bundle using the method described in previous

paragraphs. For simplicity, it will suffice to project the whole bundle of monomers onto

a plane perpendicular to the director of the bundle. Similar to the nematic phase, the

director is determined through solving for the order parameter of the entire bundle as

defined by

S =
1

N

N∑

i=1

(
3

2
cos2 θi −

1

2

)
, (4.13)
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Figure 4.10: The distribution of chains as a function of the mean displacement from the

central axis of the bundle, which is averaged over 101 bundle samples. Black dots are lp =

1000 σ, Kassoc = 64000 and exp(−βε) = 1.16. Blue upper triangles and red stars are the

same systems as in Fig. 4.6 and Fig. 4.7, respectively. The volume fraction is 0.082% for all

three data sets, but the simulation box is (80 σ)3 for the small bundle instead of (160 σ)3 for

others.
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where θi is angle between the ith bond and the director. All monomers are projected

onto a new x− y plane with one arbitrary monomer as the origin as shown in Fig. 4.11

and the director as z axis. For perfectly packed straight chains, it should show only

N (the number of chains) data points because all monomers on a same chain overlap.

While in our simulation, even with a persistence length as long as 10000 σ, a projected

chain traces a irregular curve on the x− y plane. An approximate method is to obtain

the average position of each chain. The hexagonal order parameter, Shex, is defined

by [30]

Shex =
2

N(N − 1)

N∑

i

N∑

j>i

cos(g · rij), (4.14)

where rij is a vector from i to j in x− y plane, and g is an arbitrary reciprocal lattice

vector. In practice, we simply use one of the reciprocal basis vectors bi. For a perfect

hexagonal lattice (i.e., vertices with periodic boundary conditions), the value of Shex is

1 (independent of the choice of g). The magnitude of the basis vector, from which bi

is obtained, is approximated by the average nearest pair distance for N data points.

The directions of the basis vectors were determined arbitrarily from one of the closet

pair points as shown in Fig. 4.11. One way to refine the current Shex estimation is

to obtain basis vectors through maximizing Shex instead of choosing basis vectors a

priori. Interestingly, figure 4.11 also shows the twist pattern of the whole bundle,

where all chains in the bundle winds roughly in the same direction (counterclockwise

in the figure).
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Figure 4.11: Estimation of Shex by projecting chain monomers onto the x − y plane per-

pendicular to the nematic director (positive z) of the bundle chains. The bundle sample is

extracted from a simulation snapshot with Kassoc = 4000 and lp = 10000 σ. Each curve

of different color represents the projection of a different chain. Stars represent the chains’

ends on one side of the bundle. Each red dot is the mean position of one curve. The two

blue vectors are the arbitrarily chosen basis vectors of the lattice. The estimated Shex of this

snapshot is 0.23.
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The hexagonal structure of bundle chains further explains why not surpris-

ingly, the attraction number per surface monomer 〈nattr〉 is very close to 3, which is

straightforward if a monomer is on the side of a hexagonal lattice. This comparison

confirms that the fitting result of the proposed length distribution formula is reasonable

and agrees well with the bundle structure. On the other hand, in our simulations, a

monomer is allowed to be attracted to two consecutive monomers of another chain due

to the range constraint on the short-attraction, which is the reason that the estimated

〈nattr〉 ∼ 7 for all monomers in a bundle is greater than 6, which is straightforward for

a perfect bulk hexagonal lattice.

4.3.4 Aspect ratio of the bundle

Figure 4.12 shows the relationship between the percentage of monomers in the

bundle and the inter-chain attraction strength. The bundle size (Nb) increases very

fast with increasing exp(−βε) above the transition point, but then gradually levels off

when the bundling approaches a degree as high as 70 ∼ 80%. At equilibrium, the

monomer chemical potential of the bundle surface is equal to that of the surrounding

isotropic solution, which logarithmically approaches negative infinity with decreasing

monomer concentration as we can ignore the volume of the bundle. This implies that

the equilibrium exp(−βε) also exponentially increases with the decreasing monomer

concentration in the solution, i.e., increasing percentage of bundled monomers Nb/N .
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Figure 4.12: The simulation box is (160 σ)3 with 6400 monomers (φ = 0.082%). lp = 1000 σ

and Kassoc = 64000.

For a fixed volume fraction, we also study an interesting property of the bundle:

aspect ratio, an important quantity which can be directly measured in experiments [77].

If the bundle is considered as an ideal cylinder, the free energy can be expressed as

F = γS + g
V

Lb
, (4.15)

where γ is the surface energy per unit area, S is the surface area of the actin bundle,

g is the end-cap energy per cross-section area, and V is the bundle volume. γ and

g correspond to the microscopic parameters −ε and KBT ln Kassoc, respectively. The

cross-section area is given by V/Lb. If the diameter of the cylinder is denoted as D,

then we have

S = π(D2/2 + DLb); V = πD2Lb/4. (4.16)

Then we can obtain the optimal aspect ratio (Lb/D) through free energy minimization
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with respect to either Lb or D:

Lb/D = 1 +
g

2γ
. (4.17)

This formula suggests that the stronger the inter-chain attraction is, the thicker the

bundle is; while the association constant mainly controls the bundle length. However,

this simple result does not agree with our NV T ensemble simulation results, where we

do not have ideally packed straight chains, neither guaranteed is the equilibration of

the bundled system. The combination of bundle aggregation and geometrical optimiza-

tion complicates the relationship between the aspect ratio and physical parameters as

shown in Fig. 4.13, where we plot the aspect ratios and their corresponding error bars

for the procedure of decreasing exp(−βε) progressively. Above the transition bound-

ary, the aspect ratio initially increases with increasing attraction, then decreases with

further stronger attraction. It suggests that in the early stage the bundle aggregation

prefers the longitudinal growth. When the aggregation levels off, the axial growth of

actin bundles begin to win out in the competition with the longitudinal growth. One

remaining problem here is how to improve the efficiency of Monte Carlo sampling,

which may play a critical role in this interesting phenomenon. For example, in the

incremental procedure, it is extremely slow for a closely packed bundle to relax back

to a shorter one (in terms of L/D), although the results for relatively small exp(−βε)’s

(≤ 1.18) are identical to that of the decremental procedure.
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Figure 4.13: Aspect ratio varies with the attraction strength. The simulation box is (160 σ)3

with 6400 monomers (φ = 0.082%). lp = 1000 σ and Kassoc = 64000. The error bars indicate

standard deviation.
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4.3.5 Convergence issues

For practical purposes, we use two quantitative criteria to follow the convergence

of a system to equilibrium. A parameter for fast examination is the average number

of isotropic attractions per monomer 〈niso〉. In an isotropic phase, 〈niso〉 is almost zero

at low densities as in our study; when the bundle microphase emerges, 〈niso〉 increases

dramatically to be greater than one. When 〈niso〉 is stable, we need to examine the

length distribution carefully. An equilibrated bundle system always has one single peak

around the magnitude of the bundle contour length in the chain length distribution.

Multiple peaks can be observed in the intermediate stage.

The dissolution of a bundle depends sensitively on whether the system is well

equilibrated. Figure 4.14 shows that a not-well-equilibrated bundle quickly disappears

while a well-equilibrated bundle lasts significantly longer. Starting from the same initial

configuration at exp(−βε) = 1.30, the system transitions to the isotropic phase within

2 × 107 steps if exp(−βε) is reduced to 1.25. On the other hand, if the attraction

strength is reduced by decrements of 0.01 and each reduction is followed by 3 × 107

Monte Carlo steps, the system continues to stay stable at the same ending point of

exp(−βε) = 1.25. For which, the main reason is that the procedure of decrementally

reducing exp(−βε) allows both the bundle and chains in the isotropic solution to relax

into a more stable state than the exp(−βε) quenching method.
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Figure 4.14: Comparison of the stability of the same initial bundle responding to different

reduction rates of exp(−βε). Red curve: A not-yet-equilibrated system at exp(−βε) = 1.30

transitions to an isotropic phase quickly after exp(−βε) is quenched to 1.25. Black curve:

The bundle is still stable at exp(−βε) = 1.25. The starting configuration of exp(−βε) = 1.26

is obtained by decrements of 0.01 from the exp(−βε) = 1.30 configuration. Note that the

shown black curve is the fifth segment, each equals 3× 107 Monte Carlo steps.
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4.3.6 The effect of the simulation box size

The system undergoes a complete microphase separation in our simulation. The

simulation box size has strong influence on the simulation results. Intuitively, the sim-

ulation box must be spacious enough to accommodate the formed bundle, otherwise

a straight enough bundle can easily interact with itself across the box boundary. Dif-

ferent simulation box sizes with the same volume fraction result in different transition

boundaries because the microphase size increases with increasing number of monomer

as the volume of the system is increased. We tested two typical cubic side lengths

80 σ and 160 σ with the volume fraction φ = 0.082%, for which the transition value of

exp(−βε) for a stable bundle to fall apart is 1.29 and 1.23, respectively. Approximately,

the number of monomers in the bundle is octupled as expected; while the aspect ratios

of the bundle differ significantly, which may be attributed to the non-equilibrium issue

as discussed in the previous two sections.

4.3.7 Comparison with grand canonical Monte Carlo simula-

tions

We have also performed Monte Carlo simulations of the same system using grand

canonical ensemble (µV T ) [63, 85], where we fix the chemical potential µ instead of the

total number of monomers N . Figure 4.15 shows a snapshot of such a typical GCMC

simulation. The result shows that the the bundles are thermodynamically unstable
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with respect to the bulk phase separation, where chains form a macroscopic dense

aligned phase. The comparative simulation is carried out as follows. In practice, we

set a maximum number of monomers, for example, 20000 in a simulation box (40 σ)3.

Then, first we choose a value of exp(−βε) as small as 1.00 to achieve an isotropic phase

with a density roughly equal to the NV T simulation parameter. Second, we increase

the attraction strength to observe the transition value of exp(−βε). To observe the

phenomenon of closed packed simulation box, we tested 20000 monomers in three boxes

of 160, 80, and 40 within our computational capability. Due to the fact that the chain

length greatly exceeds the box size, the self-interaction of chains becomes profound with

small simulation boxes. Therefore, the transition exp(−βε) decreases with increasing

simulation box size. Overall, for the transition point, the µV T simulation results agree

well with the NV T simulation results obtained from the increasing procedure as shown

in Fig. 4.1.

4.4 Conclusion

We have performed comprehensive canonical Monte Carlo simulations of self-

assembled linear polymers with inter-chain attractions. We observed that the phase

behavior considerably depends on the volume fraction and association constant. The

polymer chain flexibility plays a role in the microphase morphology, which is deter-

mined by the relative length scale of the persistence length and the mean chain length.
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Figure 4.15: A snapshot of a highly dense system. The simulation box size is 40 σ, lp = 1000 σ,

Kassoc = 6400, exp(−βε) = 1.53, µ = 1.14×10−4. The volume fraction is 16.36% (a maximum

imposed in the simulation code). Here all monomers are in red whether they have attractions

or not.
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We proposed a simple statistical thermodynamical model to interpret the chain length

distribution of a bundled system. The bundle aspect ratio is not monotonically propor-

tional to the inter-chain attractions, but it is still unclear how much this phenomenon

is affected by the limited computational capacity. The grand canonical Monte Carlo

simulations have been performed to show that the microphase bundles are thermody-

namically unstable with respect to the macroscopic condensed bulk phase of aligned

chains.
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