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Abstract 

Low-Dimensional Dynamics Encoding in Human Brain Data 

By Yating Yang 

The brain is a complex, multiscale structure where different levels work together to produce 

behaviors and cognition. People have placed much emphasis on the functioning of individual parts of 

the brain, but in order to achieve one of the ultimate goals of neuroscience, we need to consider the 

brain dynamics as a whole, and focus not only on each part of the brain but the functional connectivity 

within the brain dynamics. Here, we find lower dimensional states in ECoG data, looking for long-time 

scale patterns. 

 One of the biggest challenges we face is the complexity of the data; the brain data is high 

dimensional, and it contains structures across different length scales and different time scales. To 

analyze the data, we performed different dimensionality reduction methods to visualize brain dynamics 

in a lower dimensional state. Then, by looking at the embedding space from t-SNE, we found clustering 

features of embedding space are contiguous and also discrete. By looking at the amplitudes of all neural 

channels, we could group clusters on the embedding space together into different brain regions, with 

right hippocampus dentate gyrus (DG) being most dominant across the map. Then, we compare the 

transitions of the dataset to that of Markovian model generated from the data; we observe the dataset 

contains a much longer time scale, far beyond what Markov model can predict, indicating the presence 

of a complex dynamical structure that bridges scales. 
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Introduction 

 
 

The human brain is a complex multiscale structure in terms of temporal and spatial 

domains; molecular, cellular and neuronal phenomena work together to form the basis of 

cognition and behaviors (Bassett et al, 2011). Human behaviors are determined by more than the 

pure sum of each parts of the brain, but also by the underlying connectivity across different 

regions. To understand the human brain’s ability to interact with one’s behavior at certain time 

point, it is crucial to understand not only certain parts of the brain structure but the brain as a 

whole. One of the ultimate goals in neuroscience is to understand the brain-mind mechanisms; 

we are here to look at the brain as a whole and work towards the goal of decoding brain dynamics.        

 Complicating this endeavor, however, is the complexity of the human brain. In terms of 

spatial scaling, it demonstrates a hierarchical structure which facilitates global communication 

(Bassett 2014). In terms of temporal dynamics, it shows a broad range. For example, the highest 

frequency gamma band (>30 Hz) is shown to be important in cognition of binding of information 

from sensory, whereas the beta (12-30 Hz), alpha (8-12 Hz), theta (2-4 Hz), and delta (1-2 Hz) 

bands each respond to different but complementary functions (Uhlhaas PJ, et al. 2008). To 

analyze brain data, we face the challenge of its inherently high-dimension and its varying 

structures across different length scales and different time scales. 

In recent years, interest in examining interactions between brain dynamics and human 

behaviors is mounting. Methods have been invented to measure behaviors and analyze them. 

For example, freely-moving behaviors can be mapped into a space in which an animal’s action is 
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 classified and organized upon its underlying structures of postural movement data (Berman et al, 

2014). Unsupervised approaches to decode neural states from brain recording data have been 

introduced to help analyze interactions between brain dynamics and human behaviors without 

tedious and time-consuming manual labeling of video and audio (Brunton et al, 2016). Various 

computational methods have been created to infer the connectivity from brain data (Magrans 

de Abril, 2017). Moreover, the advent of invasive and noninvasive neuroimaging techniques 

allows scientists to observe a wide range of activities within human brains. Diffusion tensor 

imaging (DTI) is used to characterize changes in microstructures within the neuropathways 

(Alexander, 2017). Electrocorticography (ECoG) is a type of electrophysiological monitoring 

technique that places electrodes directly onto the surface of the brain to record electrical activity; 

it can provide brain signals with high signal-to-noise ratio, and high spatial and temporal 

resolution (Hill 2017).  

Here in our lab, we have the access to ECoG data of patients with epilepsy; local field 

potential (LFP) signals were measured during the ECoG recording (Figure 1). LFP is the electric 

potential in the extracellular space of the neurons in the brain (Destexhe 2013). In the experiment, 

our goal is to find lower-dimensional structures and long time-scale patterns within the brain 

data and decodes human behaviors from brain dynamics. To accomplish this, we have to 

overcome the challenge of inherent high dimension and complexity of human brain by 

performing different data analysis methods.  
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Figure 1 (A) LPF signals in the first 6-minute data. (B) Zoomed in one of the sections of the abrupt potential changes. 

 

Materials and Methods 

Data collection and pre-processing 

Thanks to our collaborators, Dr. Robert Gross, Dr. Jon Willie, and Dr. Cory Inman, we have 

the access to ECoG data from epilepsy patients in Emory Hospital. We focused on one of the 

patients’ 24-hour ECoG recording along with the video tape of her movement at the same time. 

Note that during the time of recording, there was no seizure activity. The patient had electrodes 

implanted on the exposed cortex of her brain, and on one electrode, there were multiple 

recording sites (channels). There were 128 neural channels in the recording, and the data was 

taken at 500Hz. However, not every channel is the actual recording of neural activities; some 

channels are taking signals from both sites on the same electrode, some channels are set to 

record the activity of previous channels, and some channels are for the purpose of stimulation. 
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 Therefore, we excluded channels with these types of artifacts, and only preserved 104 channels 

in the analysis to follow.  

Among these 104 channels, the data needed to be filtered first; the harmonic frequency 

and everything below 1Hz were filtered out in this step to decrease the noise, like movement 

artifacts caused by appliance, in the data. We also filter out 60 Hz noise from the electronics and 

its harmonic frequencies (Sankaran, 1999). The filtering window around each harmonic is 1 Hz. 

 

Wavelet transforms  

 We chose to use wavelet transform in our analysis, because for most natural signals, there 

are slowly varying components interspersed by abrupt changes, but it is hard to separate major 

events from noise by only looking at the time domain. Wavelet transforms allow us to look at 

time and frequency domain at the same time. To reduce the dimensionality of neural data, we 

calculated the amplitudes of the continuous wavelet transform for each neural channel. We used 

the Morlet wavelet in our continuous wavelet transform (Figure 2).  

 

The continuous wavelet transform is able to build a time-frequency representation that 

is good at describing brain dynamics occur at multiple time scales. Moreover, this particular 
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 choice of continuous wavelet transform is able to isolate epochs of periodic dynamics (or 

“chirps”). In our research, we observe 25 frequency channels per neural channel, spaced 

between 1 Hz and 250 Hz, where the maximum frequency is determined by Nyquist frequency of 

the system.  

 In details, we calculate this Morlet continuous wavelet transform, WS,W[y(t)], by 

WS,τ[y(t)] = 1
√𝑠

 ∫ 𝑦(𝑡)𝜓 ∗ (𝑡−𝜏
𝑠

)𝑑𝑡∞
−∞                                         (Eq. 1) 

where 

𝜓(𝜂) =  𝜋−1
4𝑒𝑖𝜔0𝜂𝑒−1

2𝜂2
.                                            (Eq. 2) 

In the equations above, y(t) is the neural time series, s is the time scale, and 𝜔0 is a non-

dimensional parameter which we set to 5 here. 

 Time scale, s, is related to the Fourier frequency, g, by 

s(g) =
𝜔0+√2+𝜔0

2

4𝜋g
 .                                                          (Eq. 4) 

The scaler function C(s) we use to normalize the Morlet wavelet across frequencies 

(Berman, 2014) is  

C(s) = 𝜋−1
4

√2𝑠
𝑒

1
4(𝜔0−√𝜔0

2+2)
2

. 
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 Spatial Embedding 

 The power spectrum includes 25 frequency channels per each of the 104 neural channels, 

making each data point a 2600-dimensional feature vector in time space. One of the common 

dimensionality reduction method is t-distribution stochastic neighbor embedding (t-SNE), which 

aims to take data points from a high dimension space and embed it into a much lower 

dimensional space (van der Maaten, 2008). t-SNE models a random walk on the data points in 

the high dimensional space, attempting to preserve that random walk as best as possible in a low 

dimensional embedding.  

The first stage of the t-SNE algorithm is to compute the probability distribution in which 

objects pairs in the high dimension that are similar have higher probability of being picked first. 

We define the transition probability from time point ti   to time point tj  as p𝑗|𝑖  which is 

proportional to the Gaussian kernel of the distance between these two time points 

p𝑗|𝑖 = exp (−𝑑(𝑡𝑖,𝑡𝑗)2/2𝜎𝑖
2)

Σ𝑘≠𝑖exp (−𝑑(𝑡𝑖,𝑡𝑗)/2𝜎𝑖
2)

.                                                  (Eq. 5) 

 

All self-transitions (i.e. p𝑖|𝑖) are set to zero. 

 Then, t-SNE embeds the data points into the lower dimensional space with new transition 

probability,  q𝑗|𝑖 , similar to the p𝑗|𝑖 . However, the q𝑗|𝑖  here is proportional to a Cauchy 

distribution.  

We define the distance function, 𝑑(𝑡𝑖, 𝑡𝑗), as a Kullback-Leibler (KL) divergence between 

two featured vectors.  

𝑑(𝑡1, 𝑡2) = 𝐷𝐾𝐿(𝑡1||𝑡2) 



 7 
 
 
 The algorithm then aims to minimize the cost function (van der Maaten, 2008)  

𝐶 = 𝐷𝐾𝐿(𝑃||𝑄) =  ∑ 𝑝𝑖𝑗log (𝑝𝑖𝑗

𝑞𝑖𝑗
) 𝑖𝑗                                   (Eq. 6) 

Where                                                       𝑝𝑖𝑗 = 1
2(𝑝𝑗|𝑖+𝑞𝑗|𝑖)

 

𝑞𝑖𝑗 =
(1 + ∆𝑖𝑗

2 )−1

∑ ∑ (1 + ∆𝑘,𝑙
2 )−1

𝑙≠𝑘𝑘

 

And ∆ij is the Euclidean distance between i and j in the embedding space. 

 

Training Set Generation and Re-embedding 

 For each channel, we have 43,200,000 (500 Hz * 24 hour *60 min * 60s) data points, and 

we have 104 neural channels to work with. Due to the limitation of computer memory, we cannot 

compute the t-SNE for the whole data set at once. Therefore, we use sampling techniques to 

generate a training set comprised of 36,000 data points and re-embed the remaining data point 

into the space created by the training set. We re-assembled the 24-hour data into 240 data files, 

and each file contains a 6-minute recording. To make sure that the training set can represent the 

whole data set, we did not randomly select 36,000 data points. Here, we used subsampling 

method in which we separated the whole dataset into 240 files and performed t-SNE on each file. 

Then, we plot out the embedding space of that file, and partition the space into various regions 

using watershed transformation (Meyer, 1994). Data points were taken from every region of the 

embedding space proportional to the size of the region to build the training set. 

 Then, to add more points into the space, we re-embed the remaining data set into the 

space by running t-SNE for each file. We define z as a new featured vector to be embedded into 
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 the space according to the mapping between vectors in the training set (𝑋) and embedding by t-

SNE (𝑋’), and 𝜁 be the embedding of z that need to be computed. The cost function is calculated 

by 

𝑝𝑖|𝑗 =
exp (−𝑑(𝑧, 𝑗)2/2𝜎𝑧

2)
∑ exp (−𝑑(𝑧, 𝑘)2/2𝜎𝑧

2)𝑥∈𝑋
 

Where 𝑑(𝑧, 𝑗)  is the KL divergence between z and 𝑥 ∈ 𝑋. Similarly, the transition probability is 

calculated by 

𝑞𝑗|𝜁 =
(1 + ∆𝜁,𝑗

2 )
−1

∑ (1 + ∆𝜁,𝑥′
2 )

−1
𝑥′∈𝑋′

 

Then, we minimize the KL divergence between the transition probability in two spaces. 

 

Markovian Models Generation  

 The Markovian model data is generated by using the similar method in Shannon’s work 

on information theory (Shannon 1948). The simulated data is generated by randomly selecting a 

state from the watershed regions on the embedding space which is the list of regions that visited 

during embedding process, and the states come next are being randomly chosen next. This 

process continues until the generated sequence is the same size of the original data set. 

 

Transition Matrices and Non-Markovian Time Scale 

 To calculate the transition matrix over different time scales (𝜏), we compute    

[𝐓(τ)]𝑖,𝑗  ≡ 𝑝(𝑆(𝑛 + 𝜏) = 𝑖|𝑆(𝑛) = 𝑗)                                    (Eq. 7) 
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 which describes the probability an object transitions from 𝑖 to 𝑗 after τ time steps. This matrix 

can also be analyzed in terms of their eigenvalues and eigenvectors 

                                                           [𝐓(τ)i,j] =  ∑ 𝜆𝜇(𝜏)𝑢𝑖
𝜇(𝜏)𝑣𝑗

𝜇(𝜏)𝜇                                           (Eq. 8) 

Here,  𝐮μ and 𝐯μ are the eigenvectors, and 𝜆𝜇(𝜏) is the eigenvalue. Since probability is 

conserved in the transitions, the largest eigenvalue 𝜆1(𝜏) = 1, and all other eigenvalues are 

less than 1, describing the loss of predictability. 

 

Results 

Embedding space dynamics 

We generated a probability density map by convolving data points in the embedded space 

under a Gaussian of small width (V = 2, Figure 2). The embedding space is not uniformly 

distributed, but contains multiple local maxima, illustrated in red; these regions have the 

potential to represent significant brain activity or even distinctive human behaviors.  

 
 
 
 
 
 
 
 
 
 
 
Figure 2. Embedding space probability density 
function (PDF) of the whole dataset. 
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 By partition the space using a watershed transformation (Meyer, 1994), we divided the 

space into 60 regions with each region has their own peak points with each region has their own 

peak points (Figure 3A). Then, we can extract data points from each region, and study the 

properties of the brain dynamics in each region. The mean wavelets are calculated and plotted 

for 60 regions (Figure 4). Since we used 25 frequency channels per neural channel, every 25 

points on the x-axis belongs to one neural channel; peaks occur at the similar position on 

continuous regions indicate there might be a pattern of active channels through the embedding 

space.  

After calculating the mean wavelet for each of the 104 neural channels in each region 

(Figure 4), the embedding space can be further clustered based on the channels with the highest 

mean wavelet amplitude (Figure 5). According to the labels of the channels, we can label the 

clusters of the embedding space. The embedding space shows clustering features of channels in 

different brain regions that are both continuous and discrete, with right hippocampus DG contain 

the continuous trend cross the embedding space. Along the continuous dynamical structures, we 

observe that the overall amplitudes are about the same (Figure 6), if we look at the mean 

amplitude of each neural channels in this continuous trend, despite right hippocampus DG being 

the most active, the left hippocampus is the next most active brain structure.  
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Figure 3. Segmentation into 60 regions. (a) Boundary obtained from performing a watershed transformation on the PDF from 
figure 1. (b) Number index of the 60 regions. The sequence of the index is determined by the x-axis from left to right. 

 
 

 
 
Figure 4. Mean wavelet amplitude of region 1. 
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Figure 5. Clustering based on the mean wavelets of each neural channels in each region. We labeled the neural channel with 
the highest mean wavelet in each region, and cluster the space based on the label of the neural channels.   
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Figure 6.  Frequency spectrum in right hippocampus regions, along the continuous trend.  

 

By calculating the velocity within embedding space and plot the velocity on a histogram 

(Figure 7), we observe a two-state pattern: resting states vs. moving states, with a higher 

distribution in resting states. 
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Figure 7. Histogram of velocity in the embedding space fitted into a two-component Gaussian mixture model. The blue bars 
represent the measured probability distribution, the red line is the fitted model, and the green lines are the mixture components. 

 

Transition matrices and non-Markovian time scales 

Plotting the transition matrix on the embedding space (Figure 8A), we observe the 

transitions are mostly localized with large probability transitions travel between nearby regions, 

and the clusters are contiguous in the embedding space. Each red dot represents a local peak 

probability density function, and the black lines represent the transition probability cross 

different regions. The thickness of line is proportional to the transition matrix T (W = 1)ij.  
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Figure 8. (A) Transition rates are plotted on the embedding space. Each red dot represents a maximum of the local PDF, and 
black lines represent the transition probability between two regions. The right-handed curvatures imply the direction of the 
transition. (B) The original embedding space without any annotation of transitions or local peak points. 

 

If we plot out transition matrices of 1 step (W = 1), 100 step (W = 100), 10000 step (W = 

10000), and 100000 steps (W = 100000) (Figure 9), we can tell that when W = 1, there are diagonal 

block-structures, which implies one state only goes to a small amount of other states, while when 

W gets larger, it becomes increasingly difficult to predict the future state of the brain data. 

Although the transition matrices did not change much after W = 100, and the block structures 
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 from W = 1 figure begin to disappear, it still contains a great deal of non-randomness, indicating 

the existence of long time scale pattern in the dataset. 

 

 

Figure 9. Transition matrices for W = 1, 100, 10000, and 100000. 

 
 
Comparison with the Markovian model 

A Markovian model is a stochastic model used in randomly changing system (Gagniuc 

2017). If the dynamics of the brain data are purely Markovian, then the transition of the state at 

any time point is not determined by any previous information but just the current state. By 

comparing the structures in T𝑀(100) and T(τ) for τ = 100 (Figure 10), 100, 10000, and even 



 17 
 
 
 100000 (Figure 9), we can see that, even only by 100 steps, all rows in the Markov model are 

similar, and all transitions are purely random, which indicates that Markov model has already lost 

almost all information. This makes sense if we look at the calculation of transition matrix after τ 

steps. If it is a Markov model that carries no memory into transitions, the first transition matrix 

T(τ = 1) presents a complete characterization of the dynamical system. So, the calculation of 

the matrix after τ transitions will be: 

T𝑀(τ) ≡ [T(1)]τ =  ∑[𝜆𝜇(1)]𝜏

𝜇

𝑢𝜇(1)𝑣𝜇(1). 

Because all eigenvalues are less than one, except for the first eigenvalue, the contribution from 

the 𝜇 > 1 terms will drop exponentially to zero as 𝜏 goes to infinity. Therefore, for long time 

period, 𝐓𝑀(𝜏)  starts to lose all information about current state and transitions. Thus, in a 

Markovian model, the slowest time scale is determined by the absolute value of the second 

eigenvalue in the one-step transition ( |𝜆2(1)| ), and the characteristic decaying time t2 =

−1
log |𝜆2(1)|

 . Calculating the decay time for this system, we have t2 = 15.7 transitions. In other words, 

there are hidden states in the system that carry the memory over longer time, beyond 2 

transitions. 
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Figure 10 Long time scale transition matrices and non-Markovian dynamics. (A) Markov model transition matrix for W =10. (B) 
Transition matrix of the data for W =10. 

 

The observations are more evident if we look at the eigenvalue spectra of the transition 

matrix over time. The transition matrices T(τ) as a function of τ for 2-6 eigenvalues (solid line) 

are shown below, in addition to the prediction from Markovian model (dashed lines) based on 

one time-step, T(1). In both cases, where self-transitions are present (figure 11A) and self-

transitions are excluded (figure 11B), we observe a much longer time scale in data dynamics than 

in the Markov model we generated from the data; without self-transitions, Markov model can 

only predict up to less than 100 transitions; with self-transitions, Markov model can only work 

up to around 1 second. The time scales in our data are way beyond what Markov model can 

predict. 

Final states Final states 

Initial states 

Initial states 

(A) (B) 
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Figure 11 Eigenvalues spectrums: absolute values of the leading eigenvalues of the transition matrix T as a function of W for self-
transitions are excluded (A) and self-transitions are present (B). 

 
 
 
 

(B) 

(A) 
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 Discussion 

 

By looking at 24-hour ECoG recording in human brain, and consider the brain as a whole, 

we reduced the dimension of the dataset and looked the dynamics in its embedding space. Based 

on the mean wavelet of each neural channel in each region, we observed a continuous trend 

within the regions labeled as right hippocampus; along the trend, left hippocampus is next most 

active brain region. However, the structures within the embedding space are hard to describe 

quantitatively, we need to find a way to quantitatively describe the dynamics within the 

embedding space.  

By looking at the movement of the patient in each region on the embedding map, we can 

describe the similarity and difference of human behaviors cross different watershed regions. Due 

to technical difficulties, we haven’t completed the process of extracting video tape from each 

region on the map, but this will be done in the near future. However, even if we have finished 

the process of looking at human behaviors in each region, in order to further decode human 

behaviors, we should utilize methods like behavioral map (Berman et al, 2016), in which we need 

t0 measure the behavior repertoires of individuals and study the behavioral transitions, and long-

time scale patterns. However, human behaviors are far more complicated than those of animals, 

making this process way more difficult.  
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