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Abstract 
 

Design Strategies Under Some Random Effects Models for Repeated Measures or 
Longitudinal Data Subject to Outcome Pooling 

By Guandong Yang 
 
 

 
 
For repeated measures or longitudinal studies, the cost and the effort of applying expensive 
laboratory assays to assess biomarker levels can be prohibitive. To mitigate assay costs, it is 
relatively common to pool samples prior to performing a laboratory test. In certain settings, 
an optimal pooling design has been shown to minimize information loss. Pooling laboratory 
samples can also preserve biospecimens and avoid issues with limits of detection. In this 
thesis, we explore the efficiency of pooling strategies for estimating fixed effects and 
variance components under mixed linear models for normally distributed outcomes as well 
as a mixed nonlinear model assuming a gamma-distributed outcome. We conducted a series 
of simulations to assess and compare the pooling strategies and models discussed in section 
2. We evaluate the efficiencies of different pooling design strategies with initial simulation 
studies under standard Gaussian assumption-based linear mixed models. We also examine 
the efficiency of within-individual pooling a right-skewed outcome under the gamma model. 
The design strategies are presented with simulations inspired by The HIV Epidemiology 
Research Study, with assumed parameters mimicking a prior longitudinal study that 
estimated average trajectories of HIV ribonucleic acid (RNA) over time. 
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Evaluation of E�ciency in Pooling Strategies for

Some Mixed Linear and Nonlinear Models in

Longitudinal Studies

1. Introduction

The basic nature of longitudinal data consists of repeated measures on each of a

number of subjects. We must use more sophisticated statistical models to take ac-

count of the dependency within each subject, which could allow various correlation

structure (McCulloch and Searle, 2005). However, when you have multiple measures

for each subject, the cost and the e↵ort of testing the assay are prohibitive. Lon-

gitudinal studies involve resource-intensive measurements obtained form laboratory

assays, which motivates researchers to consider study designs to mitigate those costs.

Strategies such as randomly sampling a part of biospecimens or combining samples

prior to performing laboratory assays is often deployed. These techniques, while ef-

fective in reducing cost, are often accompanied by a considerable loss of statistical

e�ciency. An optimal pooling design prior to performing these lab assays has been

shown to minimize the information loss, respective to a given model, parameters of in-

terests in a logistic regression and linear regression settings. At the same time, pooling

laboratory samples can also preserve biospecimens and avoid limits of detection issue.

There are numerous articles that investigate the advantages of deploying pooling
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strategies to di↵erent scenarios. Dorfman (1943) showed that combining samples or

group testing can reduce expense while archiving elimination of rare disease. Vanstee-

landt et al. (2000) and Chen et al. (2009) considered regression models with fixed

and/or random e↵ects for group testing with binary outcomes. McMahan et al.

(2012) investigated the technical violation of dilution e↵ects when performing group

testing. The pooling idea also been extended to continuous outcomes. For example,

Schisterman and Vexler (2008) presented a cost-e�cient pooling design for biomarker

studies. Mitchell et al. (2014) took consideration of the skewness of the outcome

and proposed three di↵erent models for pooling: lognormal, Gamma with constant

shape and Gamma with constant scale. Malinovsky et al. (2012) investigated pool-

ing designs for estimating the interclass correlation and variance components under

a Gaussian random intercept model.

Biospecimen data are often continuous but right skewed and positive. One of the

common ways to analyze such data is to log-transform outcome variable, in an e↵ort

to maintain the nice properties of normality that permits the use of a standard mixed

linear model. There are alternatives in the generalized linear model framework, which

might provide better model interpretation and avoid model assumptions violations.

For example, through the log-link function, we can use Gamma distribution to model

positive, continuous and right-skewed outcome data. For a pooled outcome, they

share a useful summation property with the normal distribution; that is, if an indi-

vidual level measure follows normal or Gamma distribution, then a pooled measure

will also follow a normal or Gamma distribution.

In this article, we explore the e�ciency of pooling strategies for fixed e↵ects and

random e↵ects under mixed linear models and Gamma models for repeated measures

or longitudinal data. In sections 2 and 3, we introduce the basic properties of mixed
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e↵ect models and Gamma models with constant scale and their corresponding nota-

tion. In section 4, we describe three types of pooling strategy: pooling within subjects,

pooling across subjects, and mixed pooling. The pooling strategy is illustrated by in-

troducing a transformation matrix Q. In section 5, we summarized simulation studies

motivated by the data from HIV Epidemiology Research Study (HERS) and inves-

tigate the mean bias and relative e�ciency of di↵erent pooling design in estimating

fixed e↵ects and variance components. In section 6, we summarize di↵erent pooling

strategies under di↵erent models and discuss potential future research topics.

2. Linear Mixed E↵ect Model

Mixed e↵ect linear models are widely used for repeated measures and longitudinal

data. Let Yij denote a continuous outcome, where i = 1, ...I indicates individual and

j = 1, ..., Ji indicates repeated measurements on a given individual. When we do

not pool, we assume that each measurement Yij is obtained from a separate assay.

A common model is a randomized regression, whereby each subject is allowed to

have their own random intercept and slope. For right-skewed outcomes, which are

relatively common, are frequently applied a log transformation and works with a

variant of the following models:

Yij = �0 + b0i + (�1 + b1i)tij + ✏ij, (1)

where b0i denotes the individual random e↵ect on the intercept, b1i denotes the in-

dividual random slope for the e↵ect time and ✏ij denotes the random within-subject

error. Typically, one assume the random intercept deviations, random slope devia-

tions and random errors (b0i, b1i, ✏ij) follows a trivariate normal distribution:
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2

66664

b0i

b1i

✏ij

3

77775
⇠ MVN(0,

2

66664

�2
0 �01 0

�01 �2
1 0

0 0 �2

3

77775
)

If �1 and b1i are all equal to 0, then Model (1) reduce to the one-way random e↵ects

analysis of variance(ANOVA) model. Then we have:

Yij = µ+ ↵i + ✏ij, (2)

The notation remains similar, ↵i denotes the individual random e↵ect on the inter-

cept, ✏ij denotes the random within-individual error. One typically assumes that ↵i

and ✏ij are mutually indeoendent, where ↵i
iid⇠ N(0, �2

↵), ✏ij
iid⇠ N(0, �2).

There is a more general expression for linear mixed model (McCulloch and Searle

(2005)). Consider that the ith individual, and consider Xi and Zi as corresponding

design matrices of fixed e↵ects and random e↵ects. In matrix notation, it expressed

as:

yi = Xi� + Zibi + ✏i

where, bi =

2

64
b0i

b1i

3

75 ⇠ MVN(0,D =

2

64
�2
0 �01

�01 �2
1

3

75)

✏i ⇠ MVN(0, �✏IJ i)

Therefore for each individual, we have

yi ⇠ MVN(Xi�,Hi = ZiDZi
T + �2

✏ IJ i)

Then we build on this to write the model for all the individuals as:

Y = X� + Zb+ ✏ (3)
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where

Y =

2

66666664

y1

y2

...

yI

3

77777775

X =

2

66666664

X1

X2

...

XI

3

77777775

Z =

2

66666664

Z1 0 · · · 0

0 Z2 · · · 0

...
. . .

...

0 0 · · · ZI

3

77777775

b =

2

66666664

b1

b2

...

bi

3

77777775

✏ =

2

66666664

✏1

✏2
...

✏I

3

77777775

Such that,

Y ⇠ N(X�,V) (4)

where,V =

2

66666664

H1 0 · · · 0

0 H2 · · · 0

...
. . .

...

0 0 · · · HI

3

77777775

3. Gamma Model

Biomarker data are often right-skewed so that it is not always realistic to make a

Gaussian distributional assumption. Gamma regression is more suitable for modeling

continuous right-skewed outcomes while still o↵ering convenient summation charac-

teristics that are appealing to pooling analysis[Emily 2014]. Gamma regression with

a constant shape parameter is closely associated with quasi-likelihood models, which

lends it some robustness to model misspecification[26]. In our application, the ob-

served data likelihood can be maximized using PROC NLMIXED procedure in SAS

(Institute (2011)). We propose a Gamma model with a random intercept in the linear

predictor for the scale parameter; in this way, we can directly model outcome without

a non-linear transformation (i.e., log, square-root). We assume the shape parameter

✓ is constant across individuals, and the scale terms �i are constant within the ith

subject.
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Let Yij denote the observation from the jth measures in the ith individual, such that

Yij ⇠ Gamma(✓, �i), where ✓ > 0, �i > 0 (5)

ln(�i) = � + bi (6)

where bi ⇠ N(0, �2) (7)

In particular, the overall mean and variance for the outcome follows rules involving

conditional moments. µi = E(Yij) = E[E(Yij|�ij)] = E[✓�ij] = ✓E(�i) = ✓e�+�2/2

and V ar(Yij) = E[V ar(Yij|�ij)] + V ar[E(Yij|�ij)] = ✓e2�+�2
[(✓ + 1)e�

2 � ✓]. Under

this model, our interest is in valid and e�cient estimation of the parameter(✓, �, �2)

subjected to various pooling designs.

4. Pooling Strategies

In repeated measures or longitudinal data, pooling of biospecimens could be used to

reduce the cost of assays. We will compare di↵erent pooling strategies under di↵erent

scenarios with the goal of obtaining the estimators of fixed e↵ects and variance com-

ponents with as little information loss as possible. These strategies include combining

samples within individual and/or across individuals. In all the pooling strategies that

we considered, we do not allow samples to be pooled more than once. In other words,

each biospecimen will only be used in one pool as an individual sample. For Gaussian

mixed linear model, because of the properties of the multivariate normal distribution,

we can express the pooling strategies conveniently with a transformation matrix Q

that convert full data Y to pooled data Y
⇤

Y
⇤ = QY ⇠ MVN(QX�,QVQ

T = V
⇤) (8)
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For Gamma model with constant shape, it is di�cult to express the pooled distribu-

tion with Q matrix.

Pooling within Individuals, Type I

We define pooling performed within each individual or across time as Type I pooling.

To maintain consistent notation, here we useY and Y
⇤ to denote full data and pooled

data. We demonstrate the type I pool matrix Q with I = 2, J = 4, and pool size =

2.

Y
⇤ = QY =

2

6666666664

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

3

7777777775

2

6666666666666666666666664

Y11

Y12

Y13

Y14

Y21

Y22

Y23

Y24

3

7777777777777777777777775

=

2

6666666664

(Y11 + Y12)/2

(Y13 + Y14)/2

(Y21 + Y22)/2

(Y23 + Y24)/2

3

7777777775

In a general form, if the pool size is n and J is divisible by n, then we define the pth

poolwise outcome for subject i as:

Y ⇤
ip =

1
n

Ppn
j=(p�1)⇤n+1(yij) where i = 1, ..., I, p = 1, ..Jn

For the random intercept/slope model,

Y ⇤
ip = �0 + b0i + (�1 + b1i)t

⇤
ip + ✏⇤ip, (9)

where

t⇤ip =
1
n

Ppn
j=(p�1)⇤n+1(tij)

✏ip
iid⇠ N(0, �2/n)
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For the one-way ANOVA(random intercept ) model,

Y ⇤
ip = µ+ ↵i + ✏⇤ip (10)

where

✏⇤ip
iid⇠ N(0, �✏/n)

For the Gamma model, we work with the poolwise sum (Y ⇤
ip =

Ppn
j=(p�1)+1 yij)

Y ⇤
ip ⇠ Gamma(n✓, �i) (11)

Pooling across Individuals, Type II

Pooling performed across individuals is defined as Type II pooling. We demonstrate

the type II pool matrix Q with I = 2, J = 4, and pool size n = 2.

Y
⇤ = QY =

2

6666666664

1
2 0 0 0 1

2 0 0 0

0 1
2 0 0 0 1

2 0 0

0 0 1
2 0 0 0 1

2 0

0 0 0 1
2 0 0 0 1

2

3

7777777775

2

6666666666666666666666664

Y11

Y12

Y13

Y14

Y21

Y22

Y23

Y24

3

7777777777777777777777775

=

2

6666666664

(Y11 + Y21)/2

(Y12 + Y22)/2

(Y13 + Y23)/2

(Y14 + Y24)/2

3

7777777775

In a general form, if the pool size is n and I is divisible by n, then we have

Y ⇤
pj =

1
n

Ppn
i=(p�1)⇤n+1 yij, where j = 1, ..., J, p = 1, .. In

For random slope model,



9

Y ⇤
pj = �0 + b⇤0p + (�1 + b⇤1p)t

⇤
pj + ✏⇤pj (12)

where

t⇤pj =
1
n

Ppn
i=(p�1)⇤n+1 tij2

64
b⇤0p

b⇤1p

3

75⇠ MVN(0,D = 1
n

2

64
�2
0 �01

�01 �2
1

3

75)

✏⇤pj ⇠ N(0, �2/n)

For the one way ANOVA model with random intercepts,

Y ⇤
pj = µ+ ↵⇤

p + ✏⇤pj (13)

where,

↵⇤
p ⇠ N(0, �2

↵/n), ✏pj ⇠ N(0, �2/n)

Mixed Pooling, Type III

Type III pooling is considered as the mixture of Type I and Type II pooling. We also

demonstrate Type III pool matrix Q with I = 4, J = 2, and pool size n = 2. In this

case we assume that half of the biospecimens are pooled within individual and half

of them are pooled across individual.
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Y
⇤ = QY =

2

6666666664

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2 0 1

2 0

0 0 0 0 0 1
2 0 1

2

3

7777777775

2

6666666666666666666666664

Y11

Y12

Y21

Y22

Y31

Y32

Y41

Y42

3

7777777777777777777777775

=

2

6666666664

(Y11 + Y12)/2

(Y21 + Y22)/2

(Y31 + Y41)/2

(Y33 + Y42)/2

3

7777777775

There is no simple closed-form expression for the mixed linear model in the case.

However, the mixed linear model still dictates thatY⇤ ⇠ MVN(QX�,QVQ
T = V

⇤).

This type of pooling is not easily accommodated by a standard procedure like SAS

PROCMIXED for mixed linear model. Instead, we used the general likelihood facility

in SAS PROC NLMIXED to specify and to maximize the observed data likelihood.

5. Simulation Study

The HIV Epidemiology Research Study (HERS) conducted from 1993 to 1995 is a

perspective, large-scale cohort study of HIV infection. The study rationale, organi-

zation, and methods have been described in detail elsewhere (Smith et al. 1997). In

brief, from 1993 to 1995, 871 HIV-infected women aged 16 to 55 years, and 439 demo-

graphically matched women at risk of HIV through either self-reported injecting drug

use or sexual contact, were enrolled at four US cities (Baltimore, Detroit, New York

City and Providence). Semiannual visits consisted of an extensive interview, a physi-

cal examination and specimen collection. For monitoring the progression of diseases,

at each visit, a viral load cell lymphocyte count was determined and HIV RNA was

quantified in heparinized plasma specimens by using a branched chain DNA signal
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amplification assay (Chiron Corp, Emeryville, California), with a quantification limit

of 500 copies per milliliter (Todd et al. 1995).

Results from the analysis of longitudinal HIV RNA data in the HERS motivated

(Lyles et al. (2000)) the simulations to test the pooling strategy and models were

mentioned in section 2. To simplify the analysis, we simulate data such that each

visit is at equally spaced fixed time points and without censoring of outcomes. 12

observations from I participants were generated under a multivariate normal distribu-

tion or multivariate Gamma distribution, in concordance with section 2. The outcome

mimicking log(HIV RNA) was generated through the linear mixed with random inter-

cepts and slopes model, or the Gamma model with random intercepts based roughly

on the parameter estimator provided from the analysis on the full HERS dataset.

In this simulation study, we consider results for three values of the patient number

(I = 50, 100, 500) with 5000 iterations, under the model assumptions:

1) log(V iral load) = Yij = µ+ ↵i + ✏ij, j = 1, ..., 12, i = 1, ..., I

where µ = 2.88,↵i ⇠ N(0, �2
↵ = 0.718), ✏ij ⇠ N(0, �2 = 0.382)

2) log(V iral load) = Yij = �0 + b0i + (�1 + b1i)tij + ✏ij, j = 1...12, i = 1, ..., I

where, �0 = 2.88, �1 = 0.0622

64
b0i

b1i

3

75 ⇠ MVN(0,D =

2

64
�2
0 �01

�01 �2
1

3

75) =

2

64
0.718 �0.06

�0.06 0.039

3

75)

✏ij ⇠ N(0, �2 = 0.382)

t = {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5}

3) V iral load = Yij ⇠ Gamma(✓ = 0.626, �i), j = 1...12

ln(�i) = � + bi

where � = 0.346, bi ⇠ N(0, �2 = 0.534)
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Scenario 1 and 3 represent the repeated measures that are not a↵ected by time, Sce-

nario 2 represents longitudinal data, in which each subject is assumed to have a linear

trend in log (Viral load) over time.

To compare the simulation results for pooling design, we also consider random sam-

pling. We randomly sample n observation for each participant to maintain what would

be the same total number of assumptions for the outcome variable. When consid-

ering mixed pooling, we only consider the mix of half Type I and half Type II pooling.

We used the SAS PROCMIXED procedure to perform the regression analysis for type

I and type II pooling under the mixed linear model. We used the PROC NLMIXED

procedure to perform analysis for type I pooling under Gamma model and mixed

pooling under the mixed linear e↵ect. In the mixed linear model analysis, we used

both the Restricted Maximum Likelihood (REML) and Maximum Likelihood (ML)

approaches. However, Type III pooling and Gamma model could only accommodate

the ML approach. All pooling under the linear mixed model use pools of size 2, and

for Type III pooling, we only consider the mixture of exact half Type I and half Type

II pools. Pooling strategies subject to the Gamma model consider pool sizes 2, 3, 4

and 6 to explore the e↵ect of sample size on the information loss.

In the mixed linear models, we compared the accuracy and precision for estimating

fixed e↵ects and variance component separately. In terms of fixed e↵ects, we calcu-

lated the mean bias, relative e�ciency and 95% confidence interval (CI) coverage.

The relative e�ciency is defined as the ratio of the empirical variance of the fixed

e↵ect estimate calculated from the pooled data, and the one calculated from the

complete data (V arP (�̂)

V arF (�̂)
). Since REML and ML produce di↵erent estimated standard

errors, the relative e�ciency is calculated separated for each approach. For 95% CI
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coverage on fixed e↵ect, we rely on parameters approximate T reference distribution

with degree of freedom calculated according to default rules conformed to by the SAS

PROC MIXED and NLMIXED procedure. In terms of variance component, since the

ML approach obtains biased but consistent estimators, we consider mean bias and

empirical relative e�ciency for each of the variance components.

In terms of fixed e↵ects, the Type I and II pooling strategies obtain identical unbiased

estimates as do the full data regressions (Table 1). There is no information loss for

these parameters through performing pooling. All the methods provide close to 95%

coverage rates, except for Mixed pooling when the sample size is small.

For one way ANOVA model, researchers are often interested in the ICC as well, due

to its value for assessing the reproducibility of certain biomarkers (e.g Malinovsky

et al. 2012). Thus, we also show the empirical e�ciency for the ICC as well as the

variance components. As seen in Table 2, the relative e�ciency for Type I is less

than 2 and closer to 1 (1.003, if rounded to the third digit) for the between indi-

vidual variance (i.e. �2
↵) and greater than 2 for the within-individual variance (i.e.

�2). The relative e�ciency of Type II pooling for both �2
↵ and �2 is close to 2. It is

much less e�cient to pool across as opposed to within subjects for estimating �2
↵, but

more e�cient for estimating �2. The results from the ANOVA model are consistent

with known asymptotic results (Searle et al. 2009; Malinovsky et al. 2012) and the

relative e�ciency is invariant to the number of participants. Type I is a highly e�-

cient strategy for estimating ICC compared to Type II, Type III and random pooling.

Compared to random sampling, Type I pooling has better precision in both between

individual variation and the ICC. However, they have similar e�ciency for estimating

within individual variation. As expected, Type III mixed pooling provides e�ciency

of variance components and the ICC between that of Type I and Type II. It loses
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some precision in estimating the fixed e↵ect when the sample size is small, as seen in

Table 1.

Table 1: Fixed e↵ect for random intercept models

µ†

Approach Strategy I = 50 I = 100 I = 500

ML

Type I § 0.0 (1.00) 95.2 0.0 (1.00) 95.3 0.0 (1.00) 95.1
Type II k 0.0 (1.00) 95.0 0.0 (1.00) 95.2 0.0 (1.00) 95.0
Type III ‡ 0.0 (1.08) 89.2 0.0 (1.00) 95.2 0.0 (1.00) 95.2

Random Sampling 0.0 (1.07) 95.2 0.0 (1.09) 94.9 0.0 (1.10) 95.3

REML
Type I 0.0 (1.00) 95.5 0.0 (1.00) 95.3 0.0 (1.00) 95.2
Type II 0.0 (1.00) 95.5 0.0 (1.00) 95.4 0.0 (1.00) 95.0

Random Sampling 0.0 (1.04) 95.4 0.0 (1.09) 95.0 0.0 (1.09) 95.3
† Bias (Relative E�ciency) 95% Confidence Interval Coverage Rate.
§ Within individuals pooling
k Across individuals pooling
‡ Mixed pooling

From Table 3, it appeared once again that all the methods obtain unbiased and ef-

ficient estimators of the fixed e↵ect and CI coverages are close to 95% for Mixed

linear models, excepts for Mixed pooling with sample size 50. As expected, random

sampling is the least e�cient methods. Even though the total number of the observa-

tions is the same as for the pooled data strategies, it su↵ers from relatively significant

information loss.

For variance components in Mixed linear models, especially the between individual

variation, REML obtains unbiased estimators even when the sample is small. While

the ML estimator shows larger bias, it has better precision. These two approaches

are approximately similar when the sample size is large enough (n = 500). In terms

of design methods, we can rule out the random sampling. Random sampling shows

the largest empirical relative e�ciency, which by our definition indicates the most in-

formation loss with the same number of assays. Type I and Type II pooling provides

nearly identical estimators as in the full data regression so that one can expect almost
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Table 2: Variance components and interclass correlation of random intercept mod-
els(bias(relative e�ciency)).

I = 50 I = 100 I = 500
Strategy �2

↵
† �2 † ICC† �2

↵ �2 ICC �2
↵ �2 ICC

M
L

Type I§
0.01
(1.00)

0.00
(2.49)

0.01
(1.23)

0.01
(1.00)

0.00
(2.46)

0.00
(1.21)

0.00
(1.00)

0.00
(2.52)

0.00
(1.26)

Type IIk
0.03
(1.99)

0.00
(2.05)

0.02
(2.17)

0.01
(2.01)

0.00
(1.91)

0.01
(2.06)

0.00
(1.97)

0.00
(2.02)

0.00
(1.99)

Type III ‡ 0.02
(1.23)

0.00
(2.46)

0.01
(1.47)

0.01
(1.33)

0.00
(2.14)

0.01
(1.46)

0.00
(1.33)

0.00
(2.19)

0.00
(1.49)

Random
Sampling

0.02
(1.19)

0.00
(2.46)

0.01
(1.50)

0.01
(1.19)

0.00
(2.46)

0.01
(1.49)

0.00
(1.19)

0.00
(2.57)

0.00
(1.48)

R
E
M
L Type I

0.00
(1.00)

0.00
(2.49)

0.00
(1.23)

0.00
(1.00)

0.00
(2.46)

0.00
(1.21)

0.00
(1.00)

0.00
(2.52)

0.00
(1.26)

Type II
0.00
(2.07)

0.00
(2.05)

0.01
(2.14)

0.00
(2.05)

0.00
(1.91)

0.01
(2.05)

0.00
(1.98)

0.00
(2.02)

0.00
(1.98)

Random
Sampling

0.00
(1.11)

0.00
(2.52)

0.01
(1.42)

0.00
(1.19)

0.00
(2.46)

0.00
(1.49)

0.00
(1.16)

0.00
(2.52)

0.00
(1.45)

† Bias (Relative E�ciency)
§ Within individuals pooling
k Across individuals pooling
‡ Mixed pooling

no information loss for estimating the fixed e↵ect coe�cient under the within- and

across- subject pooling designs.

In Table 4, we examine the performance of di↵erent pooling strategies for estimat-

ing the variance components in the random/slope intercept model. Type I pooling

showed better empirical relative e�ciency than Type II pooling for estimating the

between-subject variance components. Furthermore, the relative e�ciency remains

the same with the increase of the sample size. Type I pooling provides a relative

e�ciency close to 1, and Type II pooling has a relative e�ciency close to 2, which

indicates Type I pooling has a noticeably smaller information loss than Type II when

estimating the between individual variance components.
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Table 3: Fixed e↵ect for mixed linear models (bias (relative e�ciency) confidence
interval coverage rate)

�0
† �1

†

Strategy I = 50 I = 100 I = 500 I = 50 I = 100 I = 500

M
L

Type I§
0.0
(1.00)
94.9

0.0
(1.00)
94.9

0.0
(1.00)
95.3

0.0
(1.00)
95.1

0.0
(1.00)
94.7

0.0
(1.00)
95.5

Type II k
0.0
(1.00)
95.1

0.0
(1.00)
94.7

0.0
(1.00)
95.4

0.0
(1.00)
94.8

0.0
(1.00)
94.7

0.0
(1.00)
95.6

Type III ‡
0.0
(1.09)
90.1

0.0
(1.00)
94.8

0.0
(1.00)
95.3

0.0
(1.09)
90.1

0.0
(1.00)
94.9

0.0
(1.00)
95.3

Random
Sampling

0.0
(1.61)
94.7

0.0
(1.66)
94.6

0.0
(1.66)
94.7

0.0
(2.07)
94.5

0.0
(2.18)
94.3

0.0
(2.13)
95.5

R
E
M
L Type I

0.0
(1.00)
95.1

0.0
(1.00)
94.9

0.0
(1.00)
95.4

0.0
(1.00)
95.5

0.0
(1.00)
94.9

0.0
(1.00)
95.4

Type II
0.0
(1.00)
95.1

0.0
(1.00)
94.9

0.0
(1.00)
95.4

0.0
(1.00)
94.8

0.0
(1.00)
94.9

0.0
(1.00)
95.6

Random
Sampling

0.0
(1.61)
94.8

0.0
(1.66)
94.7

0.0
(1.66)
94.7

0.0
(2.07)
94.7

0.0
(2.18)
94.3

0.0
(2.14)
95.0

† Bias (Relative E�ciency) 95% Confidence Interval Coverage Rate
§ Within individuals pooling
k Across individuals pooling
‡ Mixed pooling

With respect to within individual variance; Type II pooling provides empirical relative

e�ciency close to 2. However, Type I provided empirical relative e�ciency greater

than 2, which indicates Type II pooling yields relatively smaller information loss than

Type I in for estimation the within-individual variance. As expected, mixed pooling

yielded precision in between Type I and Type II pooling methods. These results are

consistent with one finding under the one-way ANOVA model.

Although one main goal is the access the performance of di↵erent pooling methods, it

is also worthwhile to compare the performance of the REML and ML approaches in

both the ANOVA model and mixed linear regression models for pooled data. When

comparing the REML and ML within the same pooling strategy (full data regres-



17

Table 4: Variance components and interclass correlation of mixed linear models.

I = 50 I = 100 I = 500
Strategy �2

1
† �2

0
† �2

01
† �2† �2

1 �2
0 �2

01 �2 �2
1 �2

0 �2
01 �2

M
L

Type I§ 0.01
(1.01)

0.00
(1.03)

0.00
(1.02)

0.00
(2.51)

0.01
(1.01)

0.00
(1.01)

0.00
(1.01)

0.00
(2.49)

0.00
(1.01)

0.00
(1.02)

0.00
(1.01)

0.00
(2.47)

Type IIk 0.03
(2.01)

0.00
(2.04)

0.00
(2.01)

0.00
(1.99)

0.01
(2.03)

0.00
(1.98)

0.00
(2.00)

0.00
(2.00)

0.00
(2.05)

0.00
(2.00)

0.00
(2.02)

0.00
(2.01)

Type III ‡ 0.02
(1.27)

0.00
(1.33)

0.00
(1.31)

0.00
(2.55)

0.01
(1.31)

0.00
(1.31)

0.00
(1.32)

0.00
(2.21)

0.00
(1.34)

0.00
(1.35)

0.00
(1.36)

0.00
(2.24)

Random
Sampling

0.02
(2.62)

0.00
(4.92)

0.00
(4.23)

0.00
(8.42)

0.01
(2.67)

0.00
(4.56)

0.00
(3.92)

0.00
(7.91)

0.00
(2.65)

0.00
(4.60)

0.00
(3.94)

0.00
(8.24)

R
E
M
L Type I 0.00

(1.01)
0.00
(1.03)

0.00
(1.02)

0.00
(2.51)

0.00
(1.01)

0.00
(1.01)

0.00
(1.01)

0.00
(2.49)

0.00
(1.01)

0.00
(1.02)

0.00
(1.01)

0.00
(2.47)

Type II 0.03
(1.93)

0.00
(1.96)

0.00
(1.93)

0.00
(1.99)

0.00
(2.07)

0.00
(2.02)

0.00
(2.04)

0.00
(2.00)

0.00
(2.06)

0.00
(2.01)

0.00
(2.02)

0.00
(2.01)

Random
Sampling

0.01
(2.57)

0.00
(4.84)

0.00
(4.15)

0.00
(8.44)

0.01
(2.66)

0.00
(4.52)

0.00
(3.89)

0.00
(7.91)

0.00
(2.65)

0.00
(4.6)

0.00
(3.94)

0.00
(8.24)

† Bias (Relative E�ciency)
§ Within individuals pooling
k Across individuals pooling
‡ Mixed pooling

sion, Type I and Type II pooling), we note that, REML estimators provide unbiased

estimators of variance components, especially between the individual variation, even

when the sample size is small (n = 50 and 100). Even though the ML estimators are

biased, they showed smaller empirical standard deviation than the REML estimator.

As with the fixed e↵ect, REML and ML estimators provide unbiased estimators with

similar e�ciency, when the sample size is large (n = 500).

Table 5 examines estimation under the Gamma model with random intercepts in the

linear predictor for the scale parameter. With I = 500, ML yields nearly unbiased

estimators. Indeed, we know from ML theory that for large enough sample size, all

the estimators will converge in probability to the true value. From Table 5, we can

see the Maximum Likelihood estimator (MLE) for the scale parameter ✓ and the fixed

e↵ect � appear to converge faster in probability than does to MLE variance �2. In

the full data Gamma regression we note that the MLE for �2 still exhibited small bias.



18

With an increase in the pool size, the loss of e�ciency for estimating ✓ is even more

pronounced for within-subject (Type I) pooling than for random sampling. When

pool size equals to 2, the empirical standard deviation from the Type I pooling is

greater than random sampling with the same total number of assays. Pooling ex-

hibits more e�ciency in terms of estimating � and �2 and performs much better than

corresponding random sampling for the purpose. Especially we have that �2 remains

as precisely estimated as with the full data Gamma regression even when the pool

size increases to 6.

In summary, our study support that the Type I pooling under Gamma model yields

almost no information loss in terms the variance of the random e↵ect. However, the

e�ciency loss increases with the increase of the pool size when it comes to estimat-

ing the scale parameter. On the contrary, Type I pooling under the ANOVA model

showed no information loss in fixed e↵ect estimation and only a small amount of loss

of e�ciency for estimating the variance component.

Table 5: parameter comparison among di↵erent pool sizes Gamma model

✓ † �† �†

Type I§
Random
Sampling

Type I
Random
Sampling

Type I
Random
Sampling

Pool Size 2
0.00
(2.47)

0.00
(2.09)

0.00
(1.20)

0.00
(1.36)

0.01
(1.00)

0.03
(1.36)

Pool Size 3
0.00
(4.43)

0.00
(3.42)

0.00
(1.46)

0.01
(1.82)

0.01
(1.01)

0.03
(1.73)

Pool Size 4
0.00
(6.92)

0.00
(5.08)

0.00
(1.77)

0.00
(2.36)

0.01
(1.00)

0.01
(2.67)

Pool Size 6
0.00
(14.57)

0.00
(8.39)

0.00
(2.78)

0.00
(3.81)

0.01
(1.04)

0.01
(4.43)

† Bias (Relative E�ciency)
§ Within individuals pooling
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6. Discussion

We have generalized the settings consider by work of Malinovsky et al. (2012) to

extend to considering a random slope model and a Gamma model with random in-

tercepts. We considered three pooling strategy and have compared REML and ML

estimates under di↵erent sample sizes. In a study with repeated measures, it is possi-

ble to cut assay costs by half even when performing pooling with pool size 2. Because

biospecimen data are often continuous right-skewed and violating the Gaussian as-

sumption, we proposed two types of models for pooling. One is the traditional mixed

linear model, and the other is Gamma model with a constant shape.

Through the simulation study, we showed in the random intercept model, Type I pool-

ing showed superior performance to that of Type II pooling for estimating between

individual variation while Type II pooling was more e�cient in terms of estimating

within individual variation. Both the pooling strategies were e�cient for estimating

fixed e↵ect and more e�cient than the corresponding random sampling.

Again, the motivation for proposing the Gamma model is that the Gaussian assump-

tion may not be realistic for biospecimens data, while a typical logarithm transfor-

mation complicates model fitting for pooled outcomes (Mitchell et al. 2014). In this

article, we considered Type I pooling subject to a Gamma model with constant shape

and random intercepts in the linear predictor for the scales, which provides better

e�ciency in estimating the parameters used to model the scale than does random

pooling. In order to perform Type II pooling, we need a new way to parameterize

the standard Gamma model. This parameterization can be referred as an ”alternate”

Gamma model, which assume constant scales and models the mean through a linear

predictor of the shape term (Mitchell et al. 2015). This ”alternate” Gamma model

can also be estimated through PROC NLMIXED by maximizing the likelihood, and
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is a subject for our future work. Another interest of longitudinal data is marginal

mean or overall population mean. Because of the nonlinear assumption, the marginal

mean is di↵erent than the individual or conditional mean. It will be worthy to inves-

tigate the e�ciency of di↵erent pooling strategies for estimating the marginal mean

as a future topic.

Goodness-of-fit tests is of great interest in accessing model fitting and variable se-

lection (Zheng 2000). In future work, we could develop goodness-of-fit measures to

access that whether a particular model (e.g., mixed linear model or mixed nonlinear

model with Gamma assumptions) fits better based pooled data.

In Type I pooling for the longitudinal data, if we have the linearity assumption on

the e↵ect of time, we can show that pooling specimens taken closer in time yields the

most e�ciency and it can provide conditional mean estimator for each individual.

In the random e↵ect model, we did not incorporate covariate information of each in-

dividual. We assumed the baseline characteristics (i.e., gender, age) would not a↵ect

the virus load, which is not true for most of the studies. Further work with Type

II pooling can seek optimization by forming pools based on covariate information.

In Mitchell et al. 2014 it was shown that a k-means clustering strategy can reduce

the information loss and provide more precision than random pooling or sampling.

This pooling strategy could also be deployed in the random e↵ect models to obtain

the most e�ciency. The model could have more complex hierarchical random e↵ect

structure. Future research could be to develop closed-form expressions for relative

e�ciency for both fixed e↵ects and variance components in the longitudinal setting.

All the pooling considered above is under the assumption that there is no technical
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violation (i.e., dilution e↵ects and measurement error). However, pooling strategies

are not only used as a technique to save laboratory assay costs but also as a way

to protect data confidentiality (Saha-Chaudhuri and Weinberg 2013). If researchers

cannot access the clinic raw data, then pooling can be used for data ”encryption”. In

this way, the clinic or medical center will perform data ”pooling”, the data we have

is the average or the sum of two or more sample without no technical violation.

In summary, di↵erent pooling strategies showed advantages in di↵erent scenarios un-

der the models considered herein. Choosing optimal strategies tailored to specify

models and parameters of interest can save laboratory assay costs while maintaining

minimal information loss. Next steps would include developing information matrix

for our three types of pooling design and illustrating the strategies by the analysis of

real data that involves biospecimens or the need to preserve data privacy.
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