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Abstract 

CodeCuddle: Automating Inclusive Web Design with Large Language Model 
By Yijun Liu 

This thesis presents a novel approach to enhancing social inclusiveness in collaborative 
websites by leveraging the capabilities of Large Language Models (LLMs). In this work, we 
developed a system, CodeCuddle, which utilizes LLMs to generate socially inclusive features and 
auto-implement these features via LLM code completion. The primary objective is to automate 
the process of improving inclusivity in existing web pages. 

The system design integrates the generation of socially inclusive features, code 
generation, and code integration using the advanced GPT-4 Turbo Chat Completion function 
from OpenAI. Users can input descriptions of their existing websites, select generated inclusive 
features, and upload their codebase. The system then intelligently generates functional web 
code that incorporates the selected features into the user's original code. 

Experiments were conducted to evaluate the system's performance in two 
representative test cases: a scheduling app and a Q\&A platform. The results showed that the 
Q\&A platform had slightly better performance in terms of generating socially inclusive 
features. The Q\&A platform also has a higher number of features that met both inclusiveness 
and feasibility criteria, while the scheduling app had a higher feasibility score. The code 
generation evaluation revealed that while the LLM can generate code that compiles 
successfully, there are still challenges in ensuring the generated code accurately implements 
the intended functionality. 

This thesis presents preliminary findings in the capacities of automated LLM-aided web 
improvement to enhance social inclusiveness. Future research directions include conducting 
qualitative studies to thoroughly assess the current state of social inclusiveness across websites 
and enabling users to upload their own code for a more comprehensive evaluation of the 
system's performance and adaptability.
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Chapter 1

Introduction

1.1 Background Motivation

As collaborative technology increasingly embeds itself into our daily interactions, its

technical robustness often overshadows a critical shortfall: inclusiveness. Despite

their technical prowess, many collaborative tools fail to cater to diverse user groups,

inadvertently fostering socially awkward situations within the tools. This oversight has

been highlighted in several studies, noting a reluctance among varied user demographics

to engage with these technologies due to a lack of inclusive design considerations for

their groups.[16][7] In this thesis, we aim to focus on social inclusiveness, defined as

avoiding social anxiety, awkwardness, and isolation, as well as synchronizing users

from a variety of backgrounds in using online collaborative technologies.

With the growing popularity and advancement of Large Language Models (LLMs),

we observe their ability in tasks ranging from natural language understanding and

ideation to data analysis and code generation. Prior research demonstrates LLMs’

proficiency in generating webpages and fostering creative ideation.[14][10][9] This

study aims to utilize these capabilities of LLMs in automating the enhancement of

inclusivity in collaborative websites. In this paper, we propose a novel approach where

1
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LLMs generate ideas for inclusive features, auto-implement these features, and refine

them based on user feedback.

1.2 Thesis Objective and Contributions

The goal of this thesis is to find a solution in designing and building an LLM-powered

system that can help users improve their existing webpages’ inclusivity as well as

understand the efficacy of the design. The potential benefits of this study include the

following:

1. Enhancing Inclusivity in Collaborative Websites: We aim to develop a tool that

inputs existing websites and employs LLM-generated ideas to introduce missing

inclusiveness features, thereby automating the enhancement process. This not

only minimizes human effort but also capitalizes on LLMs’ ability to ideate

inclusively, potentially revolutionizing the design process in this domain.

2. Streamlining Web Development for Developers: Current practices often require

manual integration of LLM-generated code. Our study proposes to streamline

this process, significantly enhancing development efficiency. Users may also use

this tool alone to improve efficiency in any web development code generation.

3. Redefining Web Design and Prototyping Paradigms: Traditional web develop-

ment often involves initial prototyping to test effectiveness. With LLM-facilitated

code generation, we explore the possibility of bypassing this conventional step,

potentially transforming the standard workflow in web design and development.

1.3 Significance

We have identified the following stakeholders that will be benefitted from this study:
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1. Web Developers and Designers: These professionals will directly benefit from

the automated process of integrating inclusivity features into existing web pages,

enhancing their efficiency and effectiveness in web development.

2. Low-status workers and Underrepresented User Groups: As the primary benefi-

ciaries of increased inclusiveness in collaborative technologies, they will have a

more smooth and welcoming experience in using the systems.

3. UI/UX Experts: The system may be able to be enhanced to be able to add

user-written features come up by the UI/UX experts.

1.4 Thesis Organization

Chapter 2 provides an overview of the existing works in social inclusiveness and LLM

web code generating, which are the two building blocks of this thesis. Chapter 3

introduces the system design for the interface, the prompting methods, as well as the

algorithms for code generation and combination. Chapter 4 discusses the evaluation

methods for this system and Chapter 5 presents the results. Chapter 6 concludes the

thesis and Chapter 7 shows the limitations and future directions of this thesis.



Chapter 2

Background

2.1 Inclusiveness in Collaborative Technology

As collaborative technologies continue to evolve and become increasingly integrated into

our daily lives, reaching a broader spectrum of user groups, a significant shortcoming

in the current state of collaborative technology has emerged: the lack of emphasis on

inclusiveness. Inclusiveness, in this context, refers to the practice of providing equal

access to resources and opportunities for all individuals. Within the scope of this thesis,

the focus is specifically on social inclusiveness, which is defined as the prevention of

social anxiety, awkwardness, and isolation, while fostering synchronization among

users from diverse backgrounds in their use of online collaborative technologies.

Park highlights the heightened social anxiety and reluctance of low-status workers

to use collaborative systems in her thesis, emphasizing the need for interfaces that are

more attuned to the challenges these users face when interacting with higher-status

individuals.[16] Several existing works also focus on the current practices of social

inclusiveness, such as implementing a self-reflection system for team practices and a

language technology for multilingual conferences.[17][7]

The primary objective of this study is to enhance the social inclusiveness of

4
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collaborative technology by leveraging the potential of Large Language Models (LLMs)

generated ideas. By focusing on practical, implementable features for each system,

we aim to contribute to the development of collaborative technologies that are more

accessible, user-friendly, and inclusive for all users, regardless of their social status or

background. Through the incorporation of LLM-generated ideas, we seek to identify

and address the specific needs and challenges faced by diverse user groups, ultimately

fostering a more equitable and inclusive collaborative environment.

2.2 LLMs and Web Code Generation

Large Language Model (LLM) code generation, also known as text-to-code, has

emerged as a thriving and rapidly advancing field of research in both academia and

industry.[4][11][13][1][15][14][20] Prominent models such as OpenAI GPT, OpenAI

Codex, and Tabnine have gained significant popularity, particularly in the domain of

web front-end code generation. These models assist front-end developers in quickly

producing usable and readable HTML and CSS codes, streamlining the development

process and enhancing productivity.[15][14][20]

The effectiveness of LLM code generation lies in its ability to understand and

interpret natural language input, enabling developers to express their desired webpage

structure and styling using intuitive, human-readable instructions. By leveraging the

vast knowledge and patterns learned from extensive training on diverse codebases,

these models can generate syntactically correct and semantically meaningful code

snippets, reducing the time and effort required for manual coding.[3]

In the following sections of this thesis, we will delve deeper into the current state-

of-the-art technologies in using LLM for webpage code generation, examining their

strengths, limitations, and potential future directions. By providing a comprehensive

overview of this rapidly advancing field, we aim to contribute to the ongoing research
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and development efforts on LLM web code generation.

2.2.1 Commercial Projects

Several existing companies have successfully harnessed the power of Large Language

Models (LLMs) to generate customized websites for their customers. Durable is a

web tool that enables business owners to create their websites by simply providing

their company’s name and industry, streamlining the initial setup process.[6] Similarly,

TeleportHQ offers an intuitive platform that generates entire websites based on a

single line of description from the customer.[21]

One of the key advantages of these tools is their flexibility in allowing users to

modify and customize the generated web pages according to their specific needs and

preferences. Both Durable and TeleportHQ provide user-friendly interfaces and preset

toolkits that enable users to easily adjust various design elements, such as font colors,

background pictures, links, and icons. This level of customization empowers users

with limited technical expertise to take control of their website’s appearance and

branding. Moreover, these platforms leverage the capabilities of LLMs to automate

content generation, further simplifying the website creation process.

However, it is important to note that while these tools excel in generating visu-

ally appealing and content-rich static web pages, they cannot currently incorporate

interactive functionalities. The generated websites serve primarily as informational or

brochure-style pages, without the dynamic features and user interactivity that many

modern websites require.

2.2.2 Academic Projects

End-user development (EUD) has emerged as a popular and extensively researched

technique that empowers users to develop websites without the need to write complex

code.[2][18][12] Numerous tools have been created to enable users to create websites by



7

Figure 2.1: Durable Website Generation Post Modification. A recent example of an
LLM-generated website. The website including the text and images is generated by
LLMs. The text and pictures are editable and movable.

arranging preset elements (such as buttons and text boxes) within templates, requiring

limited or no coding expertise.[5][22] The use of Large Language Models (LLMs)

to develop websites represents a novel approach in EUD, aiming to provide greater

flexibility and ease of use compared to traditional methods of arranging elements.[8][3]

Several studies have focused on leveraging LLMs to streamline the process of

end-user development. In 2021, Huang et al. proposed a method to generate user

interfaces based on textual descriptions provided by users via LLMs.[8] Calò and Russi

introduced a new framework for prompting, enabling end-users to modify website

elements through prompts instead of relying on preset toolkits.[3] Additionally, Li et

al. developed a tool that utilizes an LLM-powered website extension to alter the user

interface of websites.[10] These works collectively demonstrate the promising potential

of LLMs in assisting users without coding expertise to build or modify websites.

However, similar to commercial projects on LLMs in code generation, these studies

primarily concentrate on static web pages. Stocco’s paper in 2019 also acknowledges

the possibility of AI generating interfaces but does not delve into the implementation
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of dynamic features.[19]

Our study aims to elevate the application of LLMs beyond the foundational work

of generating static webpages from prompts. We advance past the approaches explored

by Li et al. and Calò and Russis, who focused on using LLMs for customizing webpage

styles and generating HTML and CSS files from user prompts. Instead, our focus lies

in enhancing existing, fully functional webpages by integrating dynamic, functional

features through the use of LLMs. These features are implemented using JavaScript,

enabling a more interactive and engaging user experience.

By leveraging LLMs to generate JavaScript code, our approach not only broadens

the scope of LLM applications in web development but also introduces a novel

dimension in upgrading and enriching user interaction and social inclusiveness on

already established websites.



Chapter 3

System Design and Implementation

In this study, we developed an innovative system (CodeCuddle) that integrates

generating socially inclusive features, code generation, and code integration using

Large Language Models (LLMs). The primary objective of this system is to allow

users to select socially inclusive features generated by LLMs and then upload their

existing codebase. The system then intelligently generates functional web code that

incorporates the selected features into the user’s original code. To ensure cutting-

edge performance and capabilities, we designed this system using the most advanced

OpenAI LLM API, specifically the GPT-4 Turbo Chat Completion function.

By leveraging the power of LLMs, our system streamlines the process of enhancing

web applications with socially inclusive features. Users can easily explore and select

from a range of generated features that promote social inclusivity. The system then

seamlessly merges these features with the user’s existing codes, minimizing manual

effort and ensuring a smooth integration process.

3.1 Web Feature Prompting

To generate new socially inclusive features to improve users’ websites, we require

user input to describe their existing websites. In this study, we ask users three

9
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Figure 3.1: System Interface. The left image shows the text boxes for users to input
and describe their existing websites and the inclusive features generated. The right
image shows the interface for users to upload their existing code.

questions to understand their websites, aiming to cover a clear description of the main

functionalities of their websites:

• What’s your website about? We hope to receive the topic of the website

and a few keywords on what the website is about. The interface provides an

example stating that ”it’s a scheduling app...”.

• What’s the main goal of this website? We hope to answer the question of

why users would use the tool. The interface provides an example stating that

”The main goal is to find a commonly available time for all users”.

• What are the key functionalities? This question is to ensure that the users

must discuss the key functionalities in case they were not mentioned in the

previous two questions as well as understand the specific functionalities of the

website. The interface provides an example stating that ”1. input user names

and times 2. find commonly available times”.

The system requires users to fill in all of the information. After obtaining the user

information, we use the following prompt to obtain the list of features:

Prompt 1:

I currently have a website about [question 1 & 2 answer].
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It has these functionalities [question 3 answer].

Now, I want to make the webpage more inclusive by avoiding socially awkward

situations, reducing the anxiety for users to use the website, and bringing

all users together regardless of their backgrounds such as language,

ethnicity, gender, and educational levels by making them feel comfortable

while using the website. Some examples include using nudges and social signalings.

Output the top seven important features in a JSON format like

{"features":[{"feature": "feature name", "description": "feature description"}]}

There will be a function to then check the return of this prompt to ensure that

1) it is in the correct JSON format and 2) returns 6 functionalities. After the initial

generation of these functionalities will be re-checked. Specifically, we ask the LLMs to

rate on the features based on the social inclusiveness and feasibility of the features,

trying to provide more quantified bases on their selection process. Here is the prompt:

Prompt 2:

I have a list of features that I hope to implement on my website to improve

the social inclusiveness of my website on [question 1 answer].

Social inclusiveness is defined as avoiding socially awkward situations,

reducing the anxiety for users to use the website, and bringing all users

together regardless of their backgrounds such as language, ethnicity, gender,

and educational levels by making them feel comfortable while using the website.

The features are [list returned from the last prompt].

For each feature, please rate them based on these two evaluation metrics:

Social Inclusiveness: This metric evaluates whether the generated features are

directly related to social inclusiveness rather than other forms of

inclusiveness, such as accessibility or UI design. Features that specifically

address social inclusion is considered successful.

Feasibility: This metric assesses the complexity and practicality of
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implementing the generated features. Features that are straightforward to

implement and do not require complex systems are considered feasible.

Features that are overly complicated and impractical to implement such as

AI-related systems or real-time systems are regarded as infeasible.

Please rate each feature on a scale of 1 to 5, where 1 indicates the lowest

rating and 5 indicates the highest rating. For each feature, provide two ratings.

Now, please only return the top 5 features based on the ratings’ sum for

each feature, return in this JSON format:

{{"features":[{{"feature":"feature name", "description":"feature description",

"social_inclusiveness":"1", "feasibility":"1"}}]}}

Finally, these features will be sent to the front end to display and for users to

select from.

3.2 LLM Code Integration

This section discusses how this thesis integrates the Large Language Model (LLM)

generated code into users’ existing code. Specifically, it will discuss the code type we

chose and the integration algorithm we adopted.

3.2.1 Code Type

Caló and Russis’s study introduces a novel approach to generating new code and

modifying existing code based on prompts.[3] In the context of webpage generation,

their system allows the LLMs to generate multiple HTML pages and a single CSS

file.[3] When users need to modify the webpage, the prompt instructs the LLM to

specify the file name, change type (add or replace), and the specific lines where the
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changes should occur.[3] This modification approach effectively eliminates the risk of

the LLM inadvertently altering or removing existing user input codes.

While Caló and Russis’s approach is effective for static webpage generation and

modification, our system aims to focus more on interactive features, which require

the integration of JavaScript. Dealing with multiple files and file types (HTML,

CSS, JavaScript) simultaneously can introduce complexity and potentially reduce the

effectiveness of the LLM in code generation.

To address this challenge, our approach is to adapt React.js, a popular JavaScript

library for building user interfaces. React.js allows for the combination of HTML

and JavaScript within a single file format called JSX (JavaScript XML). JSX enables

developers to write HTML-like code directly within JavaScript, simplifying the struc-

ture and organization of the codebase. Additionally, React.js provides the option to

include CSS styles within the same JSX file, further streamlining the development

process by combining all types of front-end codes.

By leveraging React.js and the JSX file format, our system simplifies the code

generation process for the LLM. Instead of managing multiple separate files for

HTML, CSS, and JavaScript, the LLM can generate code within a single JSX file,

which encapsulates all the necessary components for rendering and interactivity. This

approach reduces the complexity of dealing with multiple file types and allows the

LLM to focus on generating cohesive and functional code snippets.

3.2.2 LLM Code Generation and Integration Algorithm

Similar to Caló and Russis’s study, we leverage the power of Large Language Models

(LLMs) to generate web code and utilize prompts to guide the necessary changes. The

prompt we employ to generate the webpage is as follows:

Prompt 3:

You are tasked with modifying an existing JSX file that is a website



14

about [question 1 & 2 answer]. When modifying the JSX, please output

the changes in the following JSON format, accommodating two change

types (add and replace):

{"CodeChanges":[

{"change_type": "add", "lines": "(12)", "code":"<JSX code here>"},

{"change_type": "replace", "lines": "(1,10)", "code":"<JSX code here>"}]

}

When adding a new code snippet, please specify only the lines where the code

should be inserted; when replacing existing code, please indicate the starting

and ending lines of the code to be replaced in the format (1,10).

The feature I would like you to implement is: [selected feature].

And here’s the existing JSX code: [user code].

Please add only the necessary code snippets required to realize the desired

functionality, keeping the code concise. Be cautious when replacing any lines,

and ensure that you do not comment out any code that is still needed.

Additionally, please be mindful to import packages in the first line;

please make sure all the variables used are defined prior to using them.

In additional to the prompt to obtain the changes in the code, the following prompt

is used to ensure that the code generated is able to compile:

Prompt 4:

Please make this code below functional and able to compile.

[code from the previous prompt].

Return in the following JSON format {{"Code":"<Python code here>"}}

To handle the potential presence of commented original code, we employ an

additional prompt:
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Prompt 5:

I have noticed that there are commented lines in the code snippet

indicating the inclusion of the original code. Here is the new code snippet:

[code returned from the last prompt with numbered lines]. And here is my

original code: [user code]. Could you please replace the commented lines

with the necessary code that needs to be added?

Please return the modified code in the following JSON format:

{"CodeChanges":[

{"change_type": "replace", "lines": "(1,10)",

"code":"<new, uncommented JSX code>"}]

}

By utilizing these carefully crafted prompts, we enable the LLM to generate and

modify web code effectively. The JSON format provides a structured approach to

communicate the required changes, specifying the change type (add or replace), the

affected lines, and the corresponding code snippet.

The initial prompt 3 clearly conveys the context of the existing website, the specific

feature to be implemented, and the current JSX code. This comprehensive information

allows the LLM to generate code snippets that are tailored to the website’s specific

requirements as well as provide LLM with an understanding of the website.

The emphasis on code conciseness and careful replacement ensures that the gen-

erated code is efficient, readable, and maintains the existing functionality of the

website. By cautioning the LLM about replacing lines and preserving necessary code,

we minimize the risk of inadvertently breaking the website’s functionality during the

modification process. Prompt 4 ensures that the code should be able to compile.

The follow-up prompt 5 addresses the potential inclusion of commented original

code by the LLM. By providing the LLM with the new code snippet containing

numbered lines and the original user code, we enable the LLM to replace the commented
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lines with the necessary code that needs to be added. This step ensures that the

generated code is clean, uncommented, and ready for integration.

Algorithm 1 shows how these prompts are utilized.

3.3 Interface Design

3.3.1 System Workflow

The system workflow, illustrated in Figure 3.2, is divided into two main stages: the

ideation stage and the code generation stage. The ideation stage, primarily described

in Section 3.1 and depicted on the left side of Figure 3.1, involves user interaction and

feature selection. Once the user has chosen the desired features, the system proceeds

to the code generation and integration stage, detailed in Section 3.2. During this

stage, the system generates the necessary code based on the user’s feature selection

and integrates it with the existing codebase. Upon completion, the updated code is

automatically downloaded to the user’s device, streamlining the process. However,

the system offers flexibility, allowing users to navigate back to the previous page with

saved website descriptions, select additional or alternative features, and re-upload

their web codes for further modifications.

3.3.2 Minimizing Coding Efforts

As discussed in Section 2.2.2, this system also focused on the effort of reducing the need

to read and write codes, which aligns with the goals of many end-user development

research projects. The main objective is to simplify the process of code modification

and generation, making it more accessible to users with limited programming expertise.

In the proposed system, users will only need to upload their existing code file, and

the new, generated code file will be automatically downloaded upon completion. This

process eliminates the need for users to manually read through the code and make
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Algorithm 1 LLM Code Integration

1: Input: Original code C, feature F
2: Output: Modified code Cmodified

3: procedure CombineCode(C, F )
4: JSON ← Generate JSON code instructions based on C and F via LLM

prompting
5: attempt ← 1
6: maxAttempts ← 3
7: offsetLines ← 0
8: for each instruction in JSON.instructions do
9: if instruction.type is replace then
10: if ContainsPhrases(instruction) or IsShorter(instruction.lines,

C.lines) then
11: while (attempt ≤ maxAttempts) do
12: instruction ← Prompt again with Prompt 5 to fill the replace

lines
13: attempt ← attempt+ 1
14: end while
15: attempt ← 1
16: end if
17: Cnew ← Replace lines in C according to instruction
18: else if instruction.type is add then
19: Cnew ← Add lines to C according to instruction
20: end if
21: end for

Cfinal ← Prompt with C Again with Prompt 4
22: return Cfinal

23: end procedure
24: function ContainsPhrases(C)
25: if C contains phrases “fill”, “your code”, “rest of”, “existing code”, “original”.

then
26: return true
27: end if
28: return false
29: end function
30: function IsShorter(Cnew, C)
31: if number of lines in Cnew ¡ number of lines in C then
32: return true
33: end if
34: return false
35: end function
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Figure 3.2: Workflow for CodeCuddle

changes themselves, saving time and effort.



Chapter 4

Evaluation

The evaluation of this system focuses on two primary aspects: inclusiveness improve-

ment and code generation and integration. To assess the functionality and effectiveness

of the system, we employed two simple test cases as the target websites: a scheduling

app and a Q&A platform.

The scheduling app serves as a representative example of a collaborative tool

that requires user input and coordination. The core functionality of the app involves

collecting the availability of each user and identifying commonly available time slots.

The Q&A platform, on the other hand, represents a different type of collaborative

environment where users engage in knowledge sharing and problem-solving. The

platform enables users to post questions and provide answers. These test cases allow

us to evaluate how well the system generates and integrates code snippets that enhance

inclusiveness features.

4.1 Inclusiveness Improvement

LLMs have shown remarkable abilities in generating human-like text and ideas, but

their inherent randomness can lead to challenges when applied to specific domains.

In the context of generating features related to social inclusiveness, LLMs struggle

19



20

Figure 4.1: Testing Systems. The left image shows the Q&A platform. The right
image shows the scheduling app.

to differentiate between social inclusiveness and other forms of inclusiveness, such

as accessibility and UI design. Moreover, the generated features can sometimes be

overly complex, making them difficult to implement in one step, especially when they

involve AI systems, real-time modifications, or collaboration. This section aims to

evaluate the effectiveness of prompts in guiding LLMs to generate socially inclusive

and feasible features.

In the recent work by Lee et al., the researchers explore various methods for

evaluating human-LLM interaction across different LLM models.[9] In their study,

one task they focused on was evaluating the creative task of metaphor generation.[9]

To assess the output of this creative task, they defined a metric called ”acceptance,”

which measures the degree to which the model’s output is accepted by the users.[9]

Similarly, our study aims to evaluate the inclusive features generated by the LLM.

While this task shares similarities with metaphor generation, it is more complex.

Generating inclusive features requires the model to not only demonstrate creativity
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but also to understand and incorporate principles of social inclusiveness. To ”accept”

the feature, the feature has to satisfy 1) it complies with the social inclusiveness

definition and 2) it is feasible to be implemented. Therefore, the evaluation process

involves assessing the generated features based on two key criteria: their relevance to

social inclusiveness and their feasibility for implementation. Specifically, we define

social inclusiveness and feasibility as follows:

1. Social Inclusiveness: This metric evaluates whether the generated features are

directly related to social inclusiveness rather than other forms of inclusiveness,

such as accessibility or UI design. Features that specifically address social

inclusion are considered successful.

2. Feasibility: This metric assesses the complexity and practicality of implementing

the generated features. Features that are straightforward to implement and do

not require complex systems such as changes in JavaScript that do not require

external packages are considered feasible. Features that are overly complicated

or impractical to implement such as AI or real-time modifications are regarded

as infeasible.

In each run, a set of five features will be evaluated. The features will be assessed

as a group (the five features together) for their social inclusiveness and feasibility.

Each feature will be assigned a score of either 0 or 1 based on whether it satisfies the

criteria for social inclusiveness and feasibility. The total score for each category will

range from 0 (lowest) to 5 (highest). The evaluation process will be repeated for 10

runs in each task (Q&A and scheduling app).

In addition to the binary labeled ratings, we will also disclose the GPT-generated

ratings for the features. In prompt 2, when we attempt to refine the features, we use a

prompt that includes the definitions of social inclusiveness and feasibility to generate

ratings for each feature. In the GPT-generated ratings, each feature will be rated on
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a scale from 1 to 5. We will report the average GPT-generated ratings for the same

features that were labeled by the human labeler, allowing for a comparison between

the human and AI-generated assessments.

4.2 Code Generation

To evaluate the code generation aspect of the system, we focus on assessing whether

the generated code complies with the specified requirements and successfully realizes

the intended functionality. This evaluation is carried out by testing each of the

two sample websites, the scheduling app and the Q&A platform, with ten randomly

selected representative features that were labeled both 1 for feasibility and social

inclusiveness in the previous 4.1 section.

During the evaluation process, we systematically execute the test cases on each

website and compare the actual behavior of the generated code with the expected

outcomes. This involves manually inputting the website, selecting the features, and

verifying whether the output complies and performs the desirable outcome.

The evaluation metrics for code generation include two parts:

1. Functional Correctness: This metric assesses whether the generated code ac-

curately implements the specified functionality for each feature. It involves

verifying that the code produces the expected output or behavior when given

valid inputs. The functional correctness success score is binary, where a score of

1 indicates successful implementation of the function, and a score of 0 indicates

a failure.

2. Code Compilation Success: This metric evaluates whether the generated code

can be successfully compiled without any syntax errors or compilation issues. If

the code compiles successfully without any errors, it indicates that the generated

code is syntactically correct and follows the language’s grammar and structure.



23

The code compilation success score is binary, where a score of 1 indicates

successful compilation and a score of 0 indicates compilation failure.



Chapter 5

Results

We conducted experiments to evaluate the performance of a system designed to

generate features and code snippets that enhance inclusiveness in two representative

test cases: a scheduling app and a Q&A platform. The scheduling app aims to help

users find commonly available times for all participants within a week, while the

Q&A platform enables users to collaboratively ask and answer questions anonymously

without restrictions.

For each test case, we need to answer the following questions to describe the

interfaces, as previously stated in 3.1 Web Feature Prompting:

1. What’s your website about?

2. What’s the main goal of this website?

3. What are the key functionalities?

For the scheduling app, we provided the following information:

1. The website is a scheduling app.

2. The main goal is to find commonly available times for all users in a week.

3. 1) Input names and available times. 2) Find commonly available times.

24
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For the Q&A platform, we provided the following details:

1. The website is a Q&A platform.

2. The main goal is to collaboratively ask and answer questions.

3. Users can input questions and answer them without any restrictions.

The experiments focused on two primary aspects: inclusiveness improvement and

code generation and integration. We evaluated the system’s ability to generate features

that enhance social inclusiveness and assessed the functionality and effectiveness of

the generated code snippets.

In the following sections, we will present the results of our experiments.

5.1 Inclusiveness Features

The section aimed to evaluate the effectiveness of prompts in guiding LLMs to generate

socially inclusive and feasible features for two distinct tasks: a Q&A platform and a

scheduling app. The generated features were rated on two criteria: social inclusiveness

and feasibility, with a binary score of 0 and 1 for each feature for a generation (five

features for each generation). The scores are added up for each generation for social

inclusiveness and feasibility, resulting in a maximum score of 5 and a minimum score

of 0. Additionally, this section also provides the results from GPT-based evaluation,

which ranks each feature from 1-5. The results for GPT-based evaluation are averages

of the feature scores.

The results in Table 5.1 show that for the scheduling app, in each generation,

an average of 3.6 out of 5 features were socially inclusive, 2.8 were feasible, and 1.4

satisfied both criteria. In comparison, the Q&A platform had slightly higher scores,

with an average of 3.8 out of 5 features being socially inclusive, 2.4 being feasible,

and 2.2 satisfying both criteria in each generation. These findings suggest that the
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Figure 5.1: Exemplary Features. The boxes on the top represent Social Inclusiveness
and the boxes on the bottom represent Feasibility. Red represents a 0 and green
represents a 1.

Q&A platform had slightly better performance in terms of social inclusiveness and

the number of features that met both criteria, while the scheduling app had a higher

feasibility score. The ”Satisfy Both” scores were important because they demonstrated

the number of features that could be in fact implemented.

Table 5.1: Inclusiveness Features Performance
Website Social Inclusiveness Feasibility Satisfy Both
Scheduling App 3.6 2.8 1.4
Q&A Platform 3.8 2.4 2.2

Table 5.2 presents the GPT-generated ratings for social inclusiveness and feasibility.

The GPT-generated ratings for social inclusiveness were 4.28 for the scheduling app

and 4.4 for the Q&A platform, indicating that the LLM considered the generated

features to be highly socially inclusive. On the other hand, the GPT-generated

ratings for feasibility were 3.44 for the scheduling app and 3.52 for the Q&A platform,

suggesting that the LLM regarded the features as moderately feasible.
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Table 5.2: GPT Inclusiveness Rating
Website Social Inclusiveness Feasibility
Scheduling App 4.28 3.44
Q&A Platform 4.4 3.52

Although the GPT-generated ratings have different scoring criteria, they show

similar trends in social inclusiveness as the binary evaluation outcomes. In both cases,

the social inclusiveness criteria score higher in the Q&A platform. On the other hand,

feasibility shows that the two methods are different.

5.2 Code Generation

The results of the code generation evaluation for the scheduling app and Q&A

platform are presented in Table 5.1. The features selected have scored both 1s in

social inclusiveness and feasibility.

Table 5.3: Code Generation Performance
Website Code Compilation Functional Correctness
Scheduling App 80% 60%
Q&A Platform 90% 70%

For the scheduling app, the code compilation success rate was 80%, indicating

that 8 out of the 10 selected features had code that was successfully compiled without

any syntax errors or compilation issues. The functional correctness rate for the

scheduling app was 60%, suggesting that 6 out of the 10 features had generated code

that accurately implemented the specified functionality. All the features that failed to

be compiled included features involving local times or language supports, where the

code generated includes some fictional packages. Among those who were compiled,

two of them failed to realize the desired functionalities. These two features are the

Anonymized Feedback Collection and Bad Word filter, where the generated code only

modified the front end for feedback collection and the package used for bad word does
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not work.

In the case of the Q&A platform, the code compilation success rate was 80%

and the functional correctness was 70%. This means that 9 out of the 10 selected

features had code that was successfully compiled and 7 out of 10 have been accurately

implemented the intended functionality. The feature that failed to compile was

Anonymity Assurance Prompt, and the features that failed to be functionally correct

were user name modification and inclusivity reminder text, where the text was empty.

In both cases, the functional correctness rates were lower, at 60% for the scheduling

app and 70% for the Q&A platform comparing their code completion percentages.

This suggests that while the LLM can generate code that compiles successfully, there

are still challenges in ensuring that the generated code accurately implements the

intended functionality. There are still questions about whether it was the features

that were not well-defined so that when implemented, they did not function or it was

the LLM that failed to generate feasible code for that function.
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Conclusion

This thesis presents a novel approach to enhancing social inclusiveness in collaborative

websites by leveraging the capabilities of Large Language Models (LLMs). We develop

a system that uses LLMs to generate ideas, auto-implement features, and refine them

based on user feedback. We aim to automate the process of improving inclusivity in

existing web pages.

Building upon the existing work in social inclusiveness and LLM web code gen-

eration, our study takes a step further by focusing on the integration of dynamic,

functional features using JavaScript. This advancement goes beyond the generation of

static web pages and enables a more interactive and engaging user experience.

The evaluation of this system focuses on how the system can enhance inclusiveness

and integrate code for a scheduling app and a Q&A platform. It examines the features

generated by the system as well as the code generation and integration process. The

study measures the features’ inclusiveness by assessing whether features promote social

inclusion, and feasibility by their simplicity and practicality for implementation. It

found that both platforms performed reasonably well in generating socially inclusive

features, but they had varying success with feasibility and meeting both criteria

simultaneously. For the Q%A platform, on average, only 2.2 out of 5 features are

29
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both feasible and satisfy the social inclusiveness definition; for the scheduling app, the

number drops to 1.4. In terms of code generation and integration, both of the test

cases (scheduling app and Q&A platform) performs well for generating codes that are

able to compile, but yet only around 60%-70% of times the features are functionally

implemented.
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Limitations and Future Direction

This work only presents a preliminary finding in the capacities of automated LLM-aided

web improvement to improve social inclusiveness. Many potential future directions

could be explored. Particularly, this study suffers from two major limitations: the

lack of qualitative studies on social inclusiveness and large user experiments. Below

are the potential future works that could be done on these two topics.

1. A qualitative study in understanding social inclusiveness in online collaborative

platforms. The findings from this thesis suggest that the quality of the generated

features was inconsistent and the quality was not well. In future research, I

believe that it is important to move beyond refining the prompts used to gen-

erate features and instead focus on thoroughly assessing the current state of

social inclusiveness across a wide range of websites. By conducting a rigorous

quantitative analysis, future studies on this topic can establish a baseline under-

standing of the prevalence and effectiveness of existing inclusiveness features.

This foundational knowledge will serve as a valuable benchmark for evaluating

the social inclusiveness on websites and therefore how to improve the current

state of web development.

2. Crowdsourced user experiment allowing users to upload their own code. The

31
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current study relied on simple and easy template code, which may not adequately

represent the complexity and diversity of real-world websites. In future research,

I believe it is important to enable users to upload their own code for their

own systems, allowing to assess the LLM-powered system’s ability to generate

inclusive features for a broader range of websites. This approach will provide

more comprehensive insights into the system’s performance and adaptability.



Appendix A

Appendix

The interface is openly published at Heroku.
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https://codecuddle-534dbc6324af.herokuapp.com/


Bibliography

[1] Anthropic. Claude. https://www.anthropic.com, 2023.

[2] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno.

End-user development, end-user programming and end-user software engineering:

A systematic mapping study. Journal of Systems and Software, 149:101–137,

2019. ISSN 0164-1212. doi: 10.1016/j.jss.2018.11.041. URL https://doi.org/

10.1016/j.jss.2018.11.041.
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