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Abstract 

Dermatologic Diseases Prediction Using Deep Learning Method on Facial Images 

By Xisha Weng 

 

Background: Computer vision is a research field where algorithms are developed so that 
computers can gain high-level understanding from digital images or videos. With the rapid 
development and application of deep learning method, it has become one of the hottest area in 
the field of artificial intelligence. In clinical research, medical images are commonly used for 
disease diagnosis, which is a perfect application area for computer vision methods. In recent 
years, deep learning methods are widely applied in different types of medical images, which 
greatly improves the image-based disease diagnosis. In this thesis work, we focus on one of the 
dermatologic diseases, rosacea, to identify the subtypes based on facial images. With previous 
works utilizing deep neural networks on other medical image data achieving great performance, 
such as skin cancer and retinopathy screening, it is reasonable to apply deep neural networks on 
the facial images for rosacea disease prediction.  
 
Methods and Materials: Facial images from rosacea patients with subtypes: ETR, PPR, PhR 
were collected as raw data. The raw image data were preprocessed to crop (solely facial region 
cropped from raw image) and mask (decoloring unnecessary region from cropped image) data. 
Each dataset were used under all the proposed models to evaluate the effect of image 
preprocessing. A simple 5-layer convolutional neural networks (CNN) was constructed as 
baseline model for disease prediction. Transfer learning from existing deep neural networks 
including ResNet, Inception, Inception-ResNet model were used to evaluate the prediction 
performance. To train and evaluate the model performance, 80% of each dataset were used as 
training set, 10% as validation set and 10% as testing set for final performance evaluation. 
 
Results: Baseline CNN does not perform well on the current dataset with slightly higher than 
50% of validation accuracy. Using transfer learning on all the deep neural network models has 
good performance on all three datasets, with worst performance occurs when using raw data, 
indicating the necessity of image preprocessing. ResNet152 and Inception-ResNet V2 were 
selected for disease prediction with highest validation accuracy of 93.6% and 93.95%, 
respectively, on the crop data. The final performance of ResNet152 and Inception-ResNet V2 on 
crop testing set had 85.84% and 93.24% testing accuracy, respectively. 
 
Conclusion: Using transfer learning based on Inception-ResNet V2 model has achieved the best 
prediction performance on rosacea disease prediction with a 93.24% testing accuracy. Deep 
neural network architectures including ResNet or Inception can also be considered for 
dermatologic disease prediction with moderately good performance. The application of 
convolutional neural network on medical image analysis and disease diagnosis is promising and 
can be considered to extend to other medical area with image data analysis.  
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Introduction 

Computer Vision   

Computer vision is one of the hottest research field within Deep Learning for various of 

applications in image classification, object detection, object tracking, etc. Earlier, the application 

of computer vision was focused on mimicking human visual system for digital image processing. 

It was first introduced in the area of artificial intelligence in the late 1960s in the Summer Vision 

Project endowing robots with ability to describe what it saw from a camera (Papert, 2004). 

However, with the desire shifted to fully understanding image features from three-dimensional 

image structure, studies in the 1970s formed the foundation of many computer vision algorithms 

that exist today (Szeliski, 2010). The algorithms include extraction of edges from images, 

labeling of lines, non-polyhedral and polyhedral modeling and motion estimation, etc (Szeliski, 

2010). Recent work on image analysis or computer vision has been focusing more on feature-

based methods using the conjunction of machine learning techniques and complex optimization 

frameworks (Sebe et al., 2005; Freeman et al., 2008). It has been shown that deep neural 

networks (DNN) have greater capabilities for image feature recognition and are widely used in 

Computer Vision algorithms in modern works, with convolutional neural network as a most 

common method in visual imagery analysis (Sebe et al., 2005). Different from other machine 

learning approaches which rely on explicit features to be addressed for the model training and 

testing process (Abramoff et al., 2010; Yousefi et al., 2014), the algorithm of CNN allows it to 

learn features from training data and maximize the network’s ability to distinguish from different 

categories. In addition, due to the annual ImageNet Large Scale Visual Recognition Competition 

(He et al., 2016; Krizhevsky et al., 2017), well established DNN architectures has shown great 

performance in image pattern recognition and classification. The development of DNN 
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architectures resulted from winners of ImageNet Competition for each year: LeNet (Lecun et al., 

1998), AlexNet (Krizhevsky et al., 2012), ZFNet (Zeiler and Fergus, 2014), GoogleNet/Inception 

(Szegedy et al., 2015; Szegedy et al., 2016), VGGNet (Simonyan and Zisserman, 2014), ResNet 

(He et al., 2016). Among those, AlexNet has been shown to outperformed any of previous 

computer vision algorithms in image recognition, while Inception, VGGNet and ResNet had 

further improvement in the overall performance (Krizhevsky et al., 2012; Simonyan and 

Zisserman, 2014; Szegedy et al., 2015; Szegedy et al., 2016; He et al., 2016).  

 

Application of CNN 

Modern biomedical research increasingly relies on image data as a primary source of information 

to identify the associations or differences between the image features. The complexity of the 

image data required state-of-art computational methods to fully explore the information. In 

addition, use of computers and modern software improve the accuracy and sensitivity of the 

biomedical image analysis to detect unnoticeable features (Meijering et al., 2016). With the 

development of computer vision algorithms deploying deep learning techniques, the application 

of CNN or transfer learning based on DNNs in medical research area has also achieved great 

performances. Pronounced work included the diabetic retinopathy screening study (Gulshan et 

al., 2016), dermatologist-level skin cancer classification (Esteva et al., 2017), lymph node 

metastasis detection (Bejnordi et al., 2017), and optic disease identification (Christopher et al., 

2018), etc.  
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Rosacea 

Rosacea is a chronic, inflammatory skin disease that affecting approximately 10% of the 

population (Tan et al., 2016). Symptoms present in various combinations and severity, often 

fluctuating between periods of exacerbation and remission (Tan et al., 2016; Rainer et al., 2017) . 

Rosacea is most often characterized by transient or persistent central facial erythema, visible 

blood vessels and often papules and pustules (Crawford et al., 2004). It can be classified into 4 

broad subtypes based on patterns of physical findings: erythematotelangiectatic rosacea 

(Freeman et al., 2008),  papulopustular rosacea (PPR), phymatous rosacea (PhR), and ocular 

rosacea (Wilkin et al., 2002). Among the four subtypes, ETR, PPR and PhR are characterized 

with different facial syptoms. Patients with ocular rosacea are commonly found to have 

blepharitis and conjunctivitis and usually found to be accompanies by other subtypes of rosacea 

(Crawford et al., 2004).  

 

Convolutional Neural Networks 

The classification on subtypes of rosacea are mainly done by medical staffs based on the 

standard classification criteria (Gallo et al., 2018). However, the process can be slow and 

inaccurate, especially when classifying the three main subtypes with facial symptoms (ETR, PPR 

and PhR). Previous applications using CNN in computer vision tasks and medical image 

classification indicated the potential capability of CNN in rosacea subtype classification task 

(Gulshan et al., 2016; Bejnordi et al., 2017; Esteva et al., 2017). Thus, it is reasonable to 

experiment the CNN algorithm with established DNN architectures on the rosacea disease 

prediction and classification.  
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Building Blocks of CNN Architecture 

The main building blocks of a CNN model are convolution layers, pooling layers, and fully 

connected layers. A typical architecture consists of repetitions of a stack of one or several 

convolution layers and a pooling layer, followed by one or more fully connected layers (Figure 

1).  

 

Figure 1. Typical structure of CNN model with 2 convolutional layers and 2 pooling 

(subsampling) layers followed by fully connected layers. Adapted from 

https://github.com/tavgreen/cnn-and-dnn.  

 

The image is input as arrays of pixels for the CNN models to train and test. The convolution 

layer is a fundamental component that performs feature extraction. Each kernels of the 

convolutional layer learn a specific feature of the image. A pooling layer provides a typical down 

sampling operation which reduces the in-plane dimensionality of the feature maps and decrease 

the number of subsequent learnable parameters. The fully connected layers, also known as dense 

layers, transform the output feature map of the final convolution or pooling layer to a one-

dimensional vector, with the length of the last fully connected layer equals to the categories of 
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the classification task. The output of the last fully connected layer is applied with a softmax 

function to yield probabilistic values between 0 and 1 for each class.  

 

Transfer Learning 

The major techniques to successfully employ CNN in image recognition task included: 1). 

training CNN from scratch; 2). or using transfer learning to fine tune pre-train CNN model on 

current data. As a common problem to all deep learning networks, a much larger amount of data 

and computation time are required compared to more traditional machine learning techniques. 

However, in medical image analysis area, the scale of data is unavailable in most medical image 

classification tasks in order to train the complex deep learning neural networks. Small dataset 

may also result in model overfitting. Transfer learning is now a common technique to be used to 

overcome this situation (Pan and Yang, 2010). It allows us to utilize the pre-trained CNN model, 

usually pretrained on large general image dataset, such as ImageNet database (Russakovsky et 

al., 2015), as a starting point for an specific imaging task (Pan and Yang, 2010). Transfer 

learning has previously been employed to train models for other medical image recognition 

tasks, such as skin cancer cases (Esteva et al., 2017) and optic disease images (Christopher et al., 

2018). In addition, both works illustrated reduced training time and computation cost as well as 

good testing performance. Thanks to the yearly ImageNet Challenge (Russakovsky et al., 2015), 

advanced and deep CNN models have been explored and applied to different areas. The most 

popular deep CNN models include VGGNet (Simonyan and Zisserman, 2014), ResNet (He et al., 

2016) and Inception (Szegedy et al., 2015; Szegedy et al., 2016), etc.  
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Study Goal 

The aim of this project is to develop and evaluate convolutional neural networks to identify the 

three rosacea subtypes with facial symptoms (ETR, PPR, PhR) in the patient skin images. The 

classification accuracy of different CNN architectures, including simple CNN model from 

scratch and transfer learning from deep neural networks (Szegedy et al., 2015; Szegedy et al., 

2016) were evaluated.  

 

Methods  

Data collection and preprocessing 

Study participants were selected from Xiangya Hospital Central South University. All 

participants were diagnosed as having one of the three facial subtypes of rosacea: ETR, PPR, 

PhR. Face images of each patients were taken and used in this project. For analysis, photographs 

were stored as high resolution (~1800 × ~2500 pixels) JPG images. Total 338 ETR, 756 PhR and 

368 PPR images were collected as the raw data for analysis. All images were preprocessed to a 

new dataset evaluate the effect of image preprocessing on model performance. 

 

1. Face Cropping 

To avoid the unnecessary region effect on model computation and performance, the face regions 

of the images were detected and cropped using the Multitask Cascaded Convolutional Networks 

Model (MTCNN) (Zhang et al., 2016). There was a few data loss due to the unsuccessful 

detection in faces on some raw images. The final cropped dataset included 336 ETR, 694 PhR 

and 362 PPR images. The programming  
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2. Color Mask 

To further eliminate the uninformative regions, additional color masking was processed based on 

the cropped dataset. Since all the symptoms are shown as redness in the human face region, 

region with color rather than red or pink, such as background or hair, are masked as black color 

based on the RGB and HSV skin color model (Anwar et al., 2019). There were 336 ETR, 694 

PhR and 362 PPR images in the mask dataset.  

The examples of raw, cropped and masked images are shown in Figure 2. 
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Figure 2. Examples of raw, face cropped, color masked images of ETR, PhR and PPR rosacea 

cases. 
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CNN Models 

1. Baseline CNN 

The baseline model is a simple convolutional neural networks with 5 convolutional layers and a 

max pooling layer followed by each convolutional layer. The final max pooling layer is followed 

by three fully connected layers and softmax function was applied for the final classification. The 

output of all convolutional layer and first two fully connected layers was applied with the ReLU 

activation function for nonlinearity. The model architecture is shown in Figure 3A.  

 

2. Deep CNN models 

Three main different deep learning architecture were evaluated using transfer learning 

technique: Inception V3 (Szegedy et al., 2016), ResNet (He et al., 2016) and Inception-ResNet 

V2(Szegedy et al., 2016). These architectures have been widely adopted for both general and 

medical image classification tasks and their performances are commonly used for comparison. 

The architectures are shown in Figure 3A and Figure 4. For the ResNet architecture, 

ResNet18, ResNet50, ResNet101 and ResNet152 models were evaluated in the current 

project. All ResNet models have similar architecture but differs in the numbers of residual 

blocks and layers.  

All the deep CNN models were pretrained on ImageNet database (Russakovsky et al., 2015) so 

that model weights were initialized based on pretraining on a general image dataset, and 

transfer learning approach can be applied on current dataset. Additional training was 

performed on rosacea medical image data. 
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Figure 3. (A) Schematic diagrams of the baseline CNN, Inception V3, and ResNet. The 

Inception (B) and Residual (C) are used as building blocks for the Inception and ResNet 

architectures, respectively. Adapted from Christopher et al., 2018. 
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Figure 4. Schematic diagram of Inception-ResNet V2. Adapted from 

https://ai.googleblog.com/2016/08/improving-inception-and-image.html 

 

Model Training and Evaluation 

The image datasets (raw, crop, mask set) were randomly divided into independent training, 

validation and testing sets using an 80-10-10 percentage split. For training, a total of 100 epochs 

with batch size of 4 were performed. The fine-tuning procedures included adding dropout layer, 

learning rate schedule modification and random image augmentation. The model was evaluated 

on the validation set at every epoch. This process was repeated for each CNN model, including 

baseline CNN, Inception V3, ResNet and Inception-ResNet V2. The model training for baseline 

CNN, Inception V3 and ResNet were performed using PyTorch (Paszke et al., 2017), and for 

Inception-ResNet V2 was performed using Keras (François, 2015). The model that achieved the 

highest performance on the validation set was selected for evaluation on the testing set. The 

highest training accuracy, validation accuracy and final best model testing accuracy were 

reported.  
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Results 

Model performance was evaluated on the validation datasets for each epoch. Table 1 shows 

the best validation accuracy of the baseline CNN, ResNet and Inception models. The baseline 

CNN did not perform very well on any of the dataset, with only slightly higher than 50% of 

validation accuracy. The transfer learning on the deep neural network models performed quite 

well on raw, crop and mask data set. The models have an overall worst performance on the 

raw dataset. The Inception V3 model with 0.5 dropout on the last layer had higher 

performance compared without dropout. It performed the best on the mask data with a 91.47% 

validation accuracy. For the ResNet models, the ResNet152 performed the best on the crop 

data with a validation accuracy of 93.6%.  For the Inception-ResNet V2 model performed the 

best on the crop data with a validation accuracy of 93.95%, which is the highest among all the 

experiments. In addition, the ResNet18, 50 and 101 had similar performance on all three 

dataset, while the deeper neural network ResNet152 and Inception-ResNet V2 performed 

better on the crop data set.  

Models Raw Crop Mask 

Baseline CNN 51.77% 54.40% 51.16% 

Inception V3 89.6% 87.23% 89.15% 

Inception V3(with 
dropout) 

87.94% 90.40% 91.47% 

ResNet18 90.78% 90.40% 90.70% 

ResNet50 89.36% 89.60% 91.47% 

ResNet101 89.36% 88.80% 89.15% 

ResNet152 90.78% 93.60% 87.15% 
Inception-Resnet V2 84.92% 93.95% 88.15% 

Table 1. The best validation accuracy of the models on raw, crop and mask validation set 
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The Figure 5 shows the model performance including the accuracy and loss for training and 

validation process. Only the plots for ResNet152, Inception V3 and Inception-ResNet V2 are 

shown to illustrate the model evaluation. All the models converge fast within about 10 epochs 

of training. The Inception V3 models shows the largest disparity between training and 

validation accuracy and loss, which indicates a higher possibility of overfitting. The plots of 

Inception-ResNet V2 model had smallest disparity indicating no apparent sign of overfitting. 

a) ResNet152 

 

b) Inception V3 
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c) Inception-ResNet V2 

Figure 5. Model performance on the training and validation dataset by epochs for a). 

ResNet152, b). Inception V3, c). Inception-ResNet V2. 

Based on the above results, the Inception-ResNet V2 and ResNet152 were chosen for 

evaluation on the test set of the crop data. The final testing accuracy for ResNet152 and 

Inception-ResNet V2 were 85.84%, and 93.24%, respectively. The confusion matrix for the 

testing set are shown in Figure 6. It is indicated that the subtypes ETR and PhR are more 

likely to be mistakenly classified as subtype PPR by both models. The Inception-ResNet V2 

had an overall better performance than ResNet152 on rosacea subtype prediction based on 

current dataset results. However, it is hard to compare between models since the different 

testing set were selected through the randomization process.   
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a) ResNet152 

 

b) Inception-ResNet V2 

 

Figure 6. Confusion matrix on crop data testing set with best models for a). ResNet152, b). 

Inception-ResNet V2. 
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Discussion 

The baseline CNN model did not perform well, possibly due to the complexity of image and 

small sample size for each category. Since most of the features are similar between the 

categories, the simple CNN model is not sufficient to acquire the difference between the 

categories. Simply increasing the number of layers in the CNN model won’t help due to the 

small sample size. On the other hand, transfer learning methods show significantly improved 

results. They utilize the learnt features from larger scale of image set and fine-tune the 

existing model to capture more advanced difference between the categories of one specific 

domain (Pan and Yang, 2010; Feng et al., 2019). Such procedure borrows information from 

historical data, and is proved to be very effective in our data where the sample size is small.  

 

The model fine-tune procedure for deep neural networks included learning rate selection, 

modifying the last few layers of the existing model, adding dropout layers, horizontal image 

flip, etc. It is shown that the dropout layers increased performance for Inception V3 model 

and decreased overfitting (Table 1). In addition, the horizontal image flipping increased 

sample size which may explain part of increased performance for deep neural networks 

compared with baseline CNN. 

 

As regard to the deep neural network model’s performances, all the models performed quite 

well on the validation set with an approximately ~90% validation accuracy. As expected, all 

the models have a similar to worse performance on the raw dataset compared with crop and 

mask dataset. This indicates that the background information on the image do have a noisy 

impact on the model performance. The Inception V3, ResNet18, 50 and 101 had slightly 
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better performance on the mask dataset compared with crop dataset. Contradictory, the much 

deeper ResNet152 and Inception-ResNet V2 models performed best on the crop dataset with 

the validation accuracy of 93.60% and 93.95%, respectively. The underlying mechanism is 

not entirely clear, however, one assumption is that the mask dataset eliminated too much 

information on the image which resulted a worse performance with a deeper neural networks.  

 

The plots from Figure 5 indicated the evidence of overfitting for the Inception V3 model, but 

less extent of overfitting for ResNet and Inception-ResNet V2 models. The residual blocks in 

the ResNet model are designed as a way to eliminating the possibility of vanishing gradient 

with deeper neural networks, and to give at least the same performance from the output before 

the residual block with the idea of identity mapping (He et al., 2016). With introducing the 

residual blocks into the Inception models, it significantly improved the model performance 

compared with ResNet or Inception V3, which is consistent with the results published 

previously (Szegedy et al., 2016). 

 

The overall model selection gives priority to the ResNet152 and Inception-ResNet V2 to be 

applied on the crop data set (Table 1), with a final testing accuracy of 85.84% and 93.24%, 

respectively. It shows that Inception-ResNet V2 performed better when predicting the 

incoming unseen data, while the ResNet152 had a lower performance. One reason may be the 

proposed increased performance applying residual blocks with inception blocks connection 

(Szegedy et al., 2016). In the current project, the train test set, although randomly split, were 

different between the two models, due to the different framework utilization (PyTorch 

framework for ResNet modeling, and Keras for Inception-ResNet V2). The small sample size 
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and different train test set may play a role in the disparity of model performance. For further 

investigation, a K-fold cross-validation procedure is strongly recommended to minimizing the 

differences in performance introduced by the different train test set (Schaffer, 1993; Erickson, 

2017).  

 

In conclusion, the transfer learning on existing deep neural networks had good prediction 

results (93.24% testing accuracy) on human skin medical images in the current project. 

Applying machine learning algorithm such as convolutional neural networks on image data is 

a promising way for the medical disease diagnosis. Future application for other image data not 

limited to human face may be considered.  
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