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Abstract 

 

Relationship Between Airway Metabolites and Structural Damage 

in Young Children with Cystic Fibrosis 

 

By Alexandria Portelli 

 

 

Background: Cystic Fibrosis (CF) is a genetic disease affecting over 70,000 people 

worldwide. Airway disease, the main cause of morbidity and mortality in CF, has been 

found to begin soon after birth. The Perth-Rotterdam Annotated Grid Morphometric 

Analysis (PRAGMA-CF) method, used to score chest computed tomography (CT) scans, 

is a sensitive and reproducible measure of the extent of lung disease in CF children. 

There is limited knowledge of relationships between PRAGMA-CF scoring of chest CT 

scans and molecular biomarkers of disease measured by metabolomics of 

bronchoalveolar lavage fluid (BALF) in CF children. 

 

Objective: Identify significant statistical correlations and relationships between the 

PRAGMA-CF score of overall structural airway damage (PRAGMA-%Dis, or %Dis) in 

CF children and specific BALF metabolites. 
 

Methods: Univariate and multivariate biostatistical methods were used to assess a 

longitudinal dataset from a prospective study of CF children (I-BALL study) to identify 

BALF metabolites associated with airway damage. Pearson and Spearman correlation 

coefficients of %Dis and metabolite concentration were calculated for cohorts at ages 1, 

3, and 5 years old. Linear mixed models assessed the response of metabolite 

concentration to covariates including %Dis, age, total BALF protein concentration and % 

BAL neutrophils. 

 

Results: Significant correlations and linear relationships between the concentration of 

specific BALF metabolites and %Dis were identified. Trends in the Pearson and 

Spearman correlations coefficients change in the first 5 years of children born with CF. 

The linear mixed model including %Dis and total BALF protein concentration was 

chosen because it had the lowest Akaike information criterion (AIC) overall across most 

metabolites. %Dis showed significant positive associations with diacyl (aa) and acyl ether 

(ae) phosphatidylcholines (PCs) aa C30:0, aa C34:1, aa C36:2, ae C34:0 and ae C34:1, 

and sphingomyelin SM C16:0 when adjusting for total BALF protein concentration. 

 

Conclusions: These results add to our growing understanding of early CF pathogenesis, 

and how metabolomics can be used to generate clinically-relevant molecular outcomes for 

disease monitoring at a stage when conventional biomarkers remain at low to undetectable 

levels. More extensive investigation of age as a covariate is needed on progression of early 

CF per the %Dis outcome. 
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Introduction 

Cystic fibrosis (CF) is an autosomal recessive genetic disease that affects over 30,000 

people in the US and over 70,000 people worldwide.1,2 CF is caused by more than 2,000 

different mutations affecting the gene coding for the CF transmembrane conductance 

regulator (CFTR) protein.3-5 It affects all major secretory organs in the body, including 

sweat glands and the digestive, reproductive, and respiratory tracts. Symptoms include 

salty skin, digestive issues such as meconium ileus, hypofertility, as well as wheezing, 

frequent lung infections, and progressive lung function decline.2 With enzymatic 

supplements and improved patient care, the main cause of morbidity and mortality among 

CF patients has shifted from gastrointestinal to lung disease.6 Due to improved care, the 

life expectancy for people with CF born between 2012 and 2016 has increased to 43 years, 

from 31 years for those born with CF two decades earlier (between 1992 and 1996).7 

Despite the progress made in the last decade, little is known about the specific molecular 

factors initiating lung disease in asymptomatic infants and fueling its progression at later 

stages.8 Furthermore, there is a need for more effective treatments of core symptoms, such 

as inflammation, to limit disease progression under development in CF patients regardless 

of genetic background. A critical component of CF research is devoted to understanding 

the pathogenesis of early lung disease to inform the creation of new therapies and 

ultimately, a cure. 

Background 

CF lung disease is characterized by excessive neutrophil infiltration in the lumen of the 

airways. Therein, these powerful leukocytes actively release primary granules containing 
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enzymes that may exert toxic effects (toward extracellular pathogens and/or host tissue), 

such as neutrophil elastase (NE), myeloperoxidase (MPO), arginase-I and cathepsins.9 

Consistent with a critical role for neutrophils in CF airway disease pathogenesis, 

extracellular NE activity and airway neutrophil count are the best available risk factors and 

correlates of lung disease in children and adults.9,10 NE and other neutrophil proteins 

contribute directly to progression of lung damage in early and chronic disease stages.9 

Airway inflammation of early CF lung disease has been found to begin soon after birth.11 

It appears to be the earliest evidence of lung disease associated with CF, as studies have 

shown that inflammation can be present before the onset of infection and in those that have 

yet to show symptoms of detectable lung disease.11-15 

Despite the presence of inflammatory mediators in the airways of all CF patients, the 

severity of airway damage varies broadly.11 Therefore, to assess structural damage in 

young children, sensitive methods such as the Perth-Rotterdam Annotated Grid 

Morphometric Analysis (PRAGMA-CF) scoring system are needed to interpret chest 

computed tomography (CT) scans. To conduct PRAGMA-CF scoring, CT scans are 

overlaid with a grid and each cell is evaluated by an observer to identify bronchiectasis, 

mucus plugging, bronchial wall thickening, atelectasis, or normal lung structure. This 

information is then used to obtain a volumetric proportion of total disease (%Dis). Specific 

proportions such as bronchiectasis (%Bx) and trapped air (%TA) may also be quantified. 

The PRAGMA-CF method has been validated as a sensitive and reproducible outcome 

measure for assessing the extent of lung disease in children younger than 6 years with CF.16  

The key to preserving lung function in CF is early intervention. To develop more effective 

interventions, the discovery of more sensitive measurements to track early disease 
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progression and the identification of mechanistic molecular and cellular biomarkers are 

needed.3 Biomarkers of airway disease and airway inflammation are usually detected 

through tests of clinical samples that represent airway surface fluids such as sputum, 

bronchoalveolar lavage (BAL) cells and fluid (BALF), or exhaled breath condensate.3,11 

Currently, BAL samples are the most reliable specimen to examine inflammation occurring 

in the lungs of young children with CF, because they yield information on the small airway 

region of the lungs where CF disease is first detectable.17,18 Sputum is not readily available 

from young children and exhaled breath condensate contains low biomarker 

concentrations.11  Thus, BAL is considered the gold standard method to obtain airway 

samples and quantify inflammatory markers.18,19 BAL is performed by flushing the lobes 

of a patient’s lungs with fixed volumes of saline, and retrieving the instilled fluid.18,20 

Caveats of BAL are that it is invasive, requires sedation, and is prone to technical variation 

among clinical sites and individual practitioners.17,18,21  

As mentioned earlier, NE is currently one of the best candidate biomarkers for CF airway 

disease, as it has been correlated with structural damage and lung function decline in 

multiple studies in infants and adults.12,17,22 However, detection of NE in the BALF is quite 

challenging due to the diluted nature of this biological specimen.  

To address the gaps in understanding of early CF airway disease biomarkers, 

metabolomics, the measurement of small molecules (metabolites) seems particularly well-

suited. Untargeted metabolomics, which analyzes a large number of chemicals without an 

a priori hypothesis about their relationship to the actual biological mechanisms underlying 

health or disease in a given cohort of subjects, has been proposed as a method for the 

identification of pathways associated with CF airway inflammation.23 Prior studies showed 
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that untargeted metabolomics can enable discovery of inflammatory biomarkers that could 

be used for early disease detection, monitoring of drug effectiveness, and lead to better 

understanding of disease progression.11,20,24 Furthermore, the measurement of metabolites 

and resolution of associated pathways may lead to the development of new drugs and serve 

as indicators of efficacy in clinical trials.11 

Untargeted metabolomics can entail multiplexed quantification of known molecules, 

unbiased detection of spectral features (sometimes called “discovery metabolomics”), or 

hybrid approaches that iteratively combine the two. Assessing the presence and abundance 

of known metabolites has the advantage of providing absolute quantities of all recovered 

chemicals in a sample, with varying degrees of analytical precision (i.e., quantitative vs. 

semi-quantitative data). However, these methods have the disadvantage of being inflexible 

in calibration when they are provided as kits, and it can be difficult to predict their 

successful application to biological matrices in which they were not first developed (e.g., 

plasma-validated kits applied to BALF).25   

So far, only two published studies have described metabolomics analyses of BALF from 

CF patients in relation to airway inflammation.20,23 The study by Wolak et al. measured 

metabolites with nuclear magnetic resonance (NMR), not mass spectrometry (MS) as was 

used in this analysis, and compared these measurements to subjects with high vs. low 

airway inflammation.20 Esther et al. furthered the understanding of airway disease 

biomarkers through identification of metabolic pathways in CF children.23 The latter 

publication reported untargeted metabolomics of BALF in relation to lobe-specific 

PRAGMA-CF scoring of chest CT scans, and found several hits using a hierarchical 

mixed-effects model. Additional studies are critical to confirm hypotheses generated in 
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such discovery analyses, provide coverage of additional metabolites, and advance 

mechanistic understanding of the discrete steps in the progression of early airway disease 

in young CF children. 

The main goal of this thesis is to fill this critical gap, by identifying significant statistical 

correlations that exist between specific BALF metabolites and the PRAGMA-CF score of 

structural airway damage in young CF children. To accomplish this, we used a multiplex 

metabolomics platform developed for human plasma samples (Biocrates AbsoluteIDQ® 

p180 Kit; vide infra), which provides absolute concentrations of for nearly 200 endogenous 

metabolites. The remainder of this thesis will go through details of univariate and 

multivariate biostatistical methods used to assess a longitudinal dataset and identify 

metabolites that may be associated with airway inflammation. Key results will be 

highlighted and discussed to draw conclusions about the contribution of metabolomics to 

the understanding of the progression of early airway disease in children with CF. 

Identification of metabolites will help clinicians and researchers better understand the 

biological pathways related to CF to develop better interventions.  

Methods 

Study Cohort: I-BALL Study 

An NIH R01-funded study (R01HL126603, Principal Investigator: Rabindra 

Tirouvanziam) is currently ongoing in collaboration between our team at Emory and the 

Erasmus University / Sophia Children's Hospital group in Rotterdam, the Netherlands, 

combining chest CT scans with multiple molecular and cellular outcome measures on 

blood and BAL, which include but are not limited to metabolomics. In what is referred to 
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as the I-BALL study (Principal Investigator: Hettie Janssens, M.D.), children with CF are 

enrolled and followed over the course of the first 6 years of life. Blood samples, BAL 

samples, and CT scans are collected during visits based on age [E1 (6 months of age), E2 

(1 year old), E3 (2 years old), E4 (3 years old), E5 (4 years old), and E6 (5 years old)].  

Demographic (e.g., age, gender) and clinical characteristics (e.g., CTFR mutation, 

infection status) are recorded at each visit. The data collection and management for this 

paper was performed using the OpenClinica open source software, version 3.1© 

(Copyright © OpenClinica LLC and collaborators, Waltham, MA, USA, 

www.OpenClinica.com). This particular study also collects data from the BALF samples 

and PRAGMA-CF scores from CT scans of children enrolled in the I-BALL cohort.  

Data Acquisition 

Targeted Metabolomics 

BAL was collected by bronchoscopy by four serial saline instillations, of which an aliquot 

of the pooled second and third fractions (B2+3) was used for metabolomics studies. Two 

preparation protocols were used over the course of sample collection. According to the first 

protocol, BALF was prepared through a 330 x g spin at 4 ºC for 10 minutes. According to 

the second protocol, BALF was prepared by first spinning the BAL at 800 x g at 4 ºC for 

10 minutes, followed by spinning the supernatant a second time at 3000 x g at 4ºC for 10 

minutes. Aliquots were stored immediately after single or dual centrifugation at -80 ºC and 

shipped frozen to Emory for analysis. BALF samples were then analyzed with an 

AbsoluteIDQ® p180 Kit (Biocrates, Innsbruck, Austria) on a triple quadrupole mass 

spectrometer at the Emory Lipidomics Core. This commercial kit created a sample profile 

for 188 metabolites classified as amino acids, biogenic amines, acylcarnitines, 
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glycerophospholipids, sphingolipids, or hexose (generically; glucose may not be 

discriminated from other species of equal mass). Briefly, samples were distributed into 96-

well plates, extracted and run through ultra-high performance liquid chromatography 

combined with tandem mass spectrometry (UPLC-MS/MS) analysis and flow injection 

analysis (FIA)-MS/MS (in parallel) to yield an absolute concentration for each measured 

metabolite (full list of metabolites in Appendix 1). 

PRAGMA-CF Scoring of Chest CT Scans 

At or around the same visit that the BAL was obtained, a CT scan was also performed to 

assess structural lung disease. From these scans, an overall score (PRAGMA-%Dis) was 

calculated and used in the analyses presented here. To minimize variability, PRAGMA-CF 

scores were done in batches by a qualified clinician. The subjects in this analysis were 

scored in two separate batches. Intra-observer reliability of the measurements was found 

to be high. 

Data Cleaning 

Metabolomics Data 

Data were obtained in Excel sheets as numerical values or “NA”. “NA” (not available) was 

recorded whenever an analyte was not detected. As detailed in Table 1 below, each reading 

was classified as Valid, <LOD, LLOQ, ULOQ, Semi Quant, ISTD out of range, or No 

Interception. 
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Table 1: Classification of metabolomics data 

Classification Definition 

Valid Internal standard intensity is in range, valid concentrations 

can be read, concentration is between LLOQ and ULOQ 

<LOD Value is below limit of detection (LOD), and treated as 

missing value 

LLOQ Value is above LOD but below lower limit of quantification 

(LLOQ), value can be used as semi-quantitative 

ULOQ Value is above the upper limit of quantification (ULOQ), 

value can be used as semi-quantitative 

Semi Quant Applicable to FIA data, calibration curve for metabolite is 

determined by a compound similar in composition to what 

is being measured 

ISTD Out of Range Internal Standard Out of Range, calibration curve for 

metabolite cannot be determined, therefore measurement is 

not valid, and treated as missing value 

No Interception Concentration of metabolite cannot be calculated because 

the value is too high and does not intersect with calibration 

curve, and treated as missing value 

 

We further classified each data point as “usable” or “unusable”, per the definitions above 

in Table 1, for analysis. If a value was <LOD, ISTD out of range, No Interception, or NA 

the data was “unusable”. Otherwise, the value was classified as “usable”. The output of LC 
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and FIA runs included 188 metabolites measured over 79 experimental samples along with 

a blank, standards, quality control (QC) samples, and a pooled BALF reference sample. 

Data were converted from µM to nM by using a multiplication factor of 1,000 nmol per 

µmol. “Unusable” data were imputed to a value of NA, if not already NA. Metabolites to 

be used for analysis were then filtered based on quality metrics. Data were filtered based 

on percent unusable data, values that were classified as “Valid” or “Semiquant”, and by 

comparing the sample mean to the blank concentration. Figure 1 shows the attrition of 

study metabolites occurring upon implementation of these data cleaning steps. 

 

  

 

 

 

 

 

 

 

Figure 1: Attrition of metabolites 

 

Glutamine, Proline  

Methionine 

All metabolites measured in the p180 set 
m = 188 

< 20% LOD, Internal standard out of range, No interception and NA 
m = 20 

> 50% Valid or Semiquant 
m = 18 

Sample mean >1.5 x blank 
m = 17 

168 metabolites 
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After data filtering, 17 of 188 metabolites remained to be used in the analysis. Appendix 

1 specifies which 17 metabolites remained. This high rate of attrition is not entirely 

surprising for two reasons: first, BALF is known to be a dilute sample from the instillation 

of saline required to collect it. Second, the kit uses plasma values of the metabolites 

measured for calibration. Therefore, it may be less sensitive to the lower levels expected 

in BALF.  

Of the 17 metabolites being investigated, glycerophospholipids and a sphingomyelin were 

included. Their nomenclature refers to their chemical structure where phosphatidylcholine 

and sphingomyelin are abbreviated by PC and SM, respectively. Their name then specifies 

if they are diacylated (aa) or have one acyl and one ether (ae) bond to describe the glycerol-

bound fatty acids. The first number (e.g., 30 in PC aa 30:0) represents the amount of total 

fatty acyl/ether carbons while the second number (:0) specifies the number of double bonds 

present in either fatty acid. For example, PC aa C30:0 corresponds to a diacylated 

phosphatidylcholine with 30 acyl groups and no carbon double bonds. Additionally, 

lysolipids were analyzed which only have one fatty acid, and are denoted with a single “a” 

or “e”. Many of the lipid measurements can encompass multiple unique lipid compounds 

with various structural arrangements of the fatty acids resulting in the same exact mass. 

Thirty-six unique patients were included in this study. A total of 44 samples were used, 9 

patients had two visits, and 26 had only one visit. Samples were not included if they had 

inaccurate PRAGMA scores (n=3) or if all metabolite concentrations were NA (n=1); the 

latter case was suspected to be a mis-labeled sample vial, and was corroborated by several 

orthogonal methods not the subject of this thesis. 
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PRAGMA-CF Scores 

PRAGMA-CF scores were generated in two batches. The total disease score (%Dis, on a 

0-100 scale) was used for this analysis. Based on the methods developed by Rosenow et 

al., if a CT scan was scored in each batch, the value from the first batch was taken because 

it had a larger sample size.16 If there was no score from batch 1, the score from batch 2 was 

used. 

Age 

The age of each study subject at the time of sample collection was found by linking data 

with clinical information entered in OpenClinica. Each patients’ birth month and year and 

date of bronchoscopy of which the BAL sample was retrieved were obtained from the 

clinical dataset. Age was calculated as the difference in months between the BAL date and 

the date of birth (DOB). A more precise age could not be calculated as DOB was only 

recorded as month and year, but this modest level of imprecision is not expected to skew 

results and (critically) enables patient health information to remain hidden during analysis. 

Data checking was done to ensure correct dates were used in the age calculation. 

Descriptive Characteristics of Study Cohort 

Summary statistics of the study cohort across visits were examined. Means and standard 

deviations of PRAGMA scores and age were summarized along with the number and 

percent of the cohort gender, infection status, and CF mutation type.  
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Univariate Correlation Analysis 

Pearson and Spearman tests were performed for data corresponding to separate age-based 

visits (E2, E4, E6, corresponding to ages 1, 3 and 5, respectively) to assess the correlation 

between the metabolic concentration and PRAGMA-CF score. The cross-sectional 

correlations at multiple visits provide an intuitive view of how the relationship between the 

metabolic concentration and PRAGMA score change over time, prior to implementation 

of more complex models (vide infra). 

Pearson Correlation 

Normality of the distribution for each metabolite concentration was assessed through 

histograms, which suggest using natural logarithm transformed metabolite concentration 

to better approximate normal distributions. Appendix 2 shows histograms before and after 

such data transformation. Pearson correlation analysis used the natural log transformation 

of the values. Missing data were left as NA and not imputed to prevent outlier-driven bias 

in results. The Pearson correlation coefficient between each log-transformed metabolite 

concentration and the PRAGMA was calculated. The corresponding p-values for testing 

zero Pearson correlation coefficient were generated. 

Spearman Correlation 

As the Spearman correlation is a non-parametric, rank-based test, the data were not log 

transformed. The missing data in our dataset represent cases where no signal was detected 

for the analyte. We impute the missing data as 0. Another common imputation strategy 

adopted in metabolomics analysis is to impute a value to ½ LOD.  These two different 

imputation approaches are expected to produce similar results on Spearman correlation 
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coefficient, which is a rank-based measure. Spearman correlation coefficients between 

PRAGMA-%Dis and the concentration of each of the 17 metabolites, and corresponding 

p-values for testing zero Spearman correlation were computed by visit. 

Linear Mixed Modeling 

We fit the data with linear mixed models to assess the relationships between metabolic 

concentrations and PRAGMA scores simultaneously across different visits. We set the 

outcome variable in each linear mixed model as the concentration of each metabolite to 

address the interest in how metabolic perturbation activities are responsive to lung 

phenotype progression (assessed by PRAGMA scores). We also specified the correlation 

structure in each linear mixed model as the autoregressive model AR(1) to properly account 

for the intra-person correlation of longitudinal measurements of the same subject at 

different visits. %Dis was included as a variable in every model evaluated, as the purpose 

of this study was to assess the relationship between %Dis and metabolomic concentrations. 

Multiple models were run for each metabolite to select the covariates to include in the final 

linear mixed model. We considered covariates including age at each visit, total protein 

concentration in the sample, and percent BAL neutrophils, as well as their interaction 

terms. Incorporating age at visit can account for the potential temporal variation in 

metabolic concentrations. Total BALF protein concentration and percent BAL neutrophil 

were considered because they have been linked to the pathogenesis of CF lung disease, and 

may display covariance with significant metabolites, particularly those that reflect 

inflammatory pathways. The best model was determined based on the Akaike Information 

Criterion (AIC). The AIC is a measure of the ability of a model to predict the observed 

data, utilizing a specific measure such as log-likelihood, restricted maximum likelihood 
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(REML), or conditional log-likehood. This analysis estimated the AIC using REML. The 

optimal model is the one that minimizes the AIC.26 Table 2 lists the 11 models which 

include %Dis and other covariates. We evaluated and compared these models based on 

AIC. 

Table 2: Descriptions of candidate models 

Model Variables 

p PRAGMA 

p+a PRAGMA, age 

p+pr PRAGMA, total protein 

p+ne PRAGMA, neutrophil count 

p*a PRAGMA, age, PRAGMA*age 

p*a+pr PRAGMA, age, PRAGMA*age, total protein 

p*a+pr*a PRAGMA, age, PRAGMA*age, total protein, total protein*age 

p*a+ne PRAGMA, age, PRAGMA*age, neutrophil count 

p*a+ne*a PRAGMA, age, PRAGMA*age, neutrophil count, neutrophil count*age 

p*a+pr+ne PRAGMA, age, PRAGMA*age, total protein, neutrophil count 

p*pr PRAGMA, total protein, PRAGMA*total protein 

p+pr+a PRAGMA, total protein, age 

p+pr+ne PRAGMA, total protein, neutrophil count 

 

A boxplot was made to compare the AIC across all metabolites in the different models. 

The model chosen was the one with the overall lowest AIC value across the majority of 

metabolites, as opposed to the best model for each metabolite separately. 
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Assessment of Reproducibility of Metabolite Measurements 

Of the samples in the dataset, 11 were run at two unique sites (Emory, the primary 

analytical site for the study; and headquarters of Biocrates, Innsbruck, Austria, for a pilot 

feasibility study). Here, targeted metabolomics was intended to provide robust 

quantification of a large number of metabolites without a priori knowledge of pathway-

specific perturbations. However, this kit was not optimized for BALF. We used Lin’s 

concordance correlation coefficient (CCC) to assess inter-site agreement of the 11 twice-

analyzed BALF samples for the 17 metabolites that withstood statistical attrition. Lin’s 

CCC characterizes the strength of the agreement between two paired measurements of the 

same sample. It is a scaled measure bounded between -1 and 1; a value 1 (or -1) means 

perfect agreement (or disagreement) and a value 0 signifies a purely random relationship.  

Computing Environment 

All analyses were performed using R Statistical Software (Version 3.4.0) for Windows 10, 

implemented in RStudio version 0.99.903. All raw data, code, and processed results have 

been archived on Emory’s storage system within Dr. Tirouvanziam’s ISILON server.  

Results 

Summary Statistics 

Summary statistics for the samples stratified by visit were calculated (see Table 3). There 

were 11 samples at E2, 1 at E3, 17 at E4, 1 at E5, and 14 at E6. The average age at each 

visit aligned with the age range specified in the protocol. Mean %Dis scores at E2, E4, and 
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E6 were 1.50 (SD = 0.83), 2.99 (SD = 1.84), and 4.34 (SD = 2.86), respectively. 55% of 

samples at E2, 59% at E4 and 43% at E6 were from females. The percent of samples with 

infections increased from 18% at E2 to 41% at E4 to 64% at E6. In general, more than half 

the samples at each visit were from patients heterozygous for the F508del mutation of the 

CF gene (i.e., carrying one F508del, and one other mutation). 
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Table 3: Descriptive characteristics stratified by visit 

Characteristic 

Visit 

E2 E3 E4 E5 E6 

n = 11 n = 1 n = 17 n = 1 n = 14 

 mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) 

Age (months) 13.0 (0.9) 25.0 (NA) 37.1 (0.8) 49.0 (NA) 60.9 (0.6) 

%Dis 1.5 (0.8) 3.9 (NA) 3.0 (1.8) 2.3 (NA) 4.3 (2.9) 

 n (%) n (%) n (%) n (%) n (%) 

Female 6 (55) 1 (100) 10 (59) 1 (100) 6 (43) 

Infection present 2 (18) 0 (0) 7 (41) 1 (0) 9 (64) 

CTFR mutation 
          

     F508del homozygous 5 (45) 0 (0) 8 (47) 0 (0) 5 (36) 

     F508del heterozygous 6 (55) 1 (100) 8 (47) 1 (100) 8 (57) 

     Other 0 (0) 0 (0) 1 (6) 0 (0) 1 (7) 
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Pearson Correlations 

Figure 2 presents the Pearson correlation coefficients between %Dis and the natural log of 

the concentration (nM) for each of the 17 metabolites at visits E2, E4, and E6. It shows that 

metabolites and PRAGMA scores have rather low correlations at the young age (e.g., 1 

year) and demonstrate much stronger correlations at older age (e.g., 3 and 5 years). More 

specifically, all but one of the Pearson correlation coefficients at E2 were negative, and all 

were not significant (p≥0.05). At E4, all of the correlation coefficients were positive, and 

15 of the 17 metabolites analyzed were statistically significant (p<0.05). The change in the 

Pearson correlation coefficient per metabolite at E6 was not as uniform, as some 

coefficients increased compared to E4 while others decreased. At E6, some remained 

significant (p<0.05), while others did not. The metabolite that never had a significant 

correlation with PRAGMA was acetylcarnitine (C2).  
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Figure 2: Trend in Pearson correlation coefficients between natural log metabolite 

concentration and %Dis per each metabolite at visits E2, E4, and E6.  

 

Spearman Correlations 

Figure 3 presents the Spearman correlation coefficient (rho) between %Dis and 

concentration (nM) of each of the 17 metabolites at visits E2, E4, and E6. The observations 

for Figure 3 are similar to those for Figure 2. The Spearman correlation coefficients at E2 

were all non-significant (p≥0.05) and all but 2 were negative. At E4, the Spearman 
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correlation coefficient of 16 of the 17 metabolites analyzed were significant (p<0.05) and 

all were positive. Generally, at E6, the Spearman correlation coefficients decreased but 

remained significant. As in the Pearson correlation, the metabolite that never had a 

significant Spearman correlation with %Dis was C2. 

 

Figure 3: Trend in Spearman correlation coefficient between metabolite 

concentration (nM) and %Dis per each metabolite at E2, E4, and E6 
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Linear Mixed Modeling 

Akaike Information Criterion 

In Table 4, we list the model with the smallest AIC corresponding to each metabolite. The 

various models assessed were defined in Table 2. Metabolites of the same class [i.e., amino 

acids (glycine), biogenic amines (taurine), acetylcarnitines (C2), and glycerophospholipid] 

had the same model with lowest AIC.  

Table 4: Model with lowest AIC for each metabolite 

Metabolite 

Model with 

lowest AIC 

 

Metabolite 

Model with 

lowest AIC 

Gly p+ne  PC aa C34:3 p+pr 

Taurine p  PC aa C36:2 p+pr 

C2 p+a  PC aa C36:3 p+pr 

PC aa C30:0 p+pr  PC aa C36:4 p+pr 

PC aa C32:0 p+pr  PC ae C32:1 p+pr 

PC aa C32:1 p+pr  PC ae C34:0 p+pr 

PC aa C32:2 p+pr  PC ae C34:1 p+pr 

PC aa C34:1 p+pr  SM C16:0 p+pr 

PC aa C34:2 p+pr    

 

The box plot in Figure 4 shows the distribution of the AIC across metabolites for each 

linear mixed model. The overall model including %Dis and total protein concentration was 
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chosen because it had the lowest AIC overall across most of metabolites, as suggested by 

Table 4 and Figure 4. 

 

Figure 4: Boxplot of distribution of AIC for metabolites in various models 

 

Linear Mixed Model with PRAGMA and Total Protein 

The linear mixed model chosen for evaluating all metabolites is expressed below in 

Equation (1): 

(1)      log (Concentrationi,j) = β0 + θi + β1 ∗ PRAGMAi,j + β2 ∗ total proteini,j + ϵi,j 

where θi represents the random intercept specific to subject i, and ϵi,j represents the error 
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assumed to follow the AR(1) structure. Table 5 below summarizes the estimates and 

respective p-values of the estimated %Dis and total protein parameters in the models for 

each metabolite. 
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Table 5: Linear mixed model results in model with %Dis and total protein 

Metabolite 

Total 

samples 

Unique 

subjects 

Subjects 

with one 

repeat 

%Dis Total protein 

Estimate p-value Estimate p-value 

Gly 42 35 7 -0.0177 0.7547 0.0018 0.0518 

Taurine 44 35 9 -0.0090 0.8185 0.0019 0.0080* 

C2 44 35 9 -0.0533 0.2278 0.0017 0.0120* 

PC aa C30:0 44 35 9 0.1129 0.0495* 0.0034 0.0019* 

PC aa C32:0 44 35 9 0.1037 0.0887 0.0036 0.0017* 

PC aa C32:1 44 35 9 0.0910 0.0823 0.0037 0.0011* 

PC aa C32:2 38 32 6 0.0246 0.6012 0.0027 0.0060* 

PC aa C34:1 44 35 9 0.1140 0.0379* 0.0037 0.0009* 

PC aa C34:2 44 35 9 0.0952 0.0820 0.0034 0.0011* 

PC aa C34:3 37 31 6 0.0082 0.8696 0.0029 0.0058* 

PC aa C36:2 42 34 8 0.1303 0.0165* 0.0034 0.0010* 

PC aa C36:3 40 33 7 0.0700 0.1758 0.0031 0.0024* 

PC aa C36:4 38 32 6 0.0200 0.4973 0.0023 0.0014* 

PC ae C32:1 35 29 6 0.0424 0.3406 0.0033 0.0017* 

PC ae C34:0 40 33 7 0.1306 0.0178* 0.0032 0.0029* 

PC ae C34:1 41 33 8 0.1352 0.0091* 0.0037 0.0007* 

SM C16:0 40 33 7 0.1218 0.0261* 0.0036 0.0007* 

* denotes significant value (p-value <0.05) 

All metabolites except glycine had an estimate where the total protein was significant 

(p<0.05). The estimate for PRAGMA score was significant (p<0.05) in models for the 

metabolites PC aa C30:0, PC aa C34:1, PC aa C36:2, PC ae C34:0, PC ae C34:1, and 
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SM C16:0. A significant estimate signifies a potential linear relationship between %Dis 

and metabolic activity, after adjusting for total protein concentration.  

Lin’s Concordance Correlation Coefficient 

It is shown in Table 6 that the estimated Lin’s CCC measures for all metabolites are 0.7 

or higher, with the exception of PC aa 32:0 (Lin’s CCC=0.6923). This demonstrates high 

agreement between the two sites of analysis and provides a confirmation of the 

robustness of quantitative and semi-quantitative results in the BALF sample matrix.  

Table 6: Lin’s CCC per metabolite 

Metabolite Lin CCC 

 

Metabolite Lin CCC 

Gly 0.8731 

 

PC aa C34:3 0.8057 

Taurine 0.9054 

 

PC aa C36:2 0.7533 

C2 0.8968 

 

PC aa C36:3 0.8174 

PC aa C30:0 0.8181 

 

PC aa C36:4 0.8204 

PC aa C32:0 0.6923 

 

PC ae C32:1 0.7624 

PC aa C32:1 0.7001 

 

PC ae C34:0 0.7021 

PC aa C32:2 0.7475 

 

PC ae C34:1 0.7338 

PC aa C34:1 0.7506 

 

SM C16:0 0.8625 

PC aa C34:2 0.8169 

 

    

 



26 

 

Discussion 

Interpretation of Results 

Our analyses identified significant correlations and linear relationships between the nM 

concentration of specific BALF metabolites and %Dis in young children with CF. In the 

assessments of the trends of both the Pearson and Spearman correlation coefficients, the 

E2 visit did not see any significant relationships while the E4 visit showed multiple 

significant positive correlations. This likely follows the progression (and increase in range 

between patients) of airway disease between the ages of 1 and 3 years in children with CF. 

Targeted prevention strategies may be most effective during this time. Although every 

effort was made to control for batch effects, we cannot rule out a systematic procedural 

difference between the three age groups as a potential confounder. For example, the 

difference in correlations and significance could derive from a systematic error in 

PRAGMA-CF scoring or BAL procedure methods between the different age groups.  

However, the natural history of early CF (worsening lung disease over time) seems to 

support our delayed detection of metabolic perturbations in these patient samples. At the 

E6 visit, the correlations seemed to be somewhat stable with respect to the previous E4 

subset. Further analysis could examine whether these correlations are stable or undergo 

more change as patients age into late childhood, adolescence and adulthood.  

Linear mixed models were used to assess the relationships between PRAGMA scores and 

metabolites allowing us to fully utilize the multiple longitudinal measurements from the 

same subject while properly accounting for their within-subject correlations. In the process 

of choosing the best model, different classes of metabolites had different models with the 
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lowest AIC. The separation of metabolites by class indicates a cross-species disequilibrium 

in airway regulation except according to biochemical relatedness. This was anticipated due 

to certain intra-class overlap of function, transporters, removal enzymes and scavenger 

receptors. The model with the lowest AIC for glycine included %Dis and % BAL 

neutrophils. However, this was not the case for glycerophospholipids or sphingomyelins, 

signifying that different covariates could influence different classes of metabolites. This 

supports the notion that even closely related physiological processes, such as inflammation 

and bronchiectasis, may exert their most potent influences on different subsets of 

metabolites through the kinetic non-equilibrium of biochemical reactions by various 

enzymes. 

Age was only included in the model with the lowest AIC for C2. Scatter plots of the 

concentrations of the metabolites with significant parameter estimates compared to %Dis 

can be seen in Appendix 3. The points are grouped by visit (E2, E4, E6) and a 95% CI 

statistical ellipse is drawn around each visit. The overlap of the ellipses supports the idea 

that age was not an important variable to include in this analysis, although a larger sample 

size may have reached a different conclusion. As early CF progresses with age, it is 

interesting that age was not chosen for the final model based on AIC for other metabolites. 

This could be due to the small sample size of children that had more than one visit (only 9 

of the 36 unique patients included). Concluding that age is not an important variable to 

include in the model does not help to explain the reasoning for the trend in Pearson and 

Spearman correlation results. In fact, the large change in correlations of metabolites 

between E2 and E4 visits indicates age is a very important factor, so that lack of statistical 
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power is the most likely cause that it was not more important in our linear mixed-effects 

model. 

Upon assessment of all metabolites with the linear mixed models including %Dis and total 

protein count as variables, the estimate associated with total protein concentration was 

significant for all except glycine. This supports the claim that total protein concentration is 

associated with activity of the metabolites analyzed, specifically biogenic amines, 

acetylcarnitines, and glycerophospholipids/sphingomyelins. This model, however, cannot 

give insight into causality.  

In this study, the only metabolites that were linked to a significant coefficient for 

PRAGMA score in the linear mixed model were several glycerophospholipids and the sole 

analyzed sphingomyelin. We found that %Dis had a positive, significant estimate for PCs 

aa C30:0, aa C34:1, aa C36:2, ae C34:0, ae C34:1, and SM C16:0 when modeled with total 

protein as a covariate. This could mean that the abundance of these types of compounds 

have the potential to be responsive to the severity of early airway disease when accounting 

for the influence of total protein, which is a crude proxy for burden of inflammatory 

exudate in the airway lumen. Therefore, they may reflect the extent of a particular 

biochemical activity of inflammatory cells (or possibly occurring independent of 

inflammation) which is increased in patients with worse disease. Such a biochemical 

mechanism should be active in lipid pathways (synthesis, transport or catabolism), and may 

reflect such activities in neutrophils. However, further investigation needs to be performed 

to confirm these findings.  
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Limitations 

There were multiple limitations in this study that may have affected the results. First, the 

relationship between metabolite concentration and %Dis could not be analyzed for all 

metabolites because of the stringent filtering of the AbsoluteIDQ® p180 results we 

performed to ensure optimal quality of data. Because of this, a significant biological 

relationship could have been missed. Second, the PRAGMA-CF score was computed 

manually by a clinical researcher and is thus prone to observational error. Third, the process 

of preparing the BALF used for the metabolomics analysis was done in two different ways 

over the course of sample collection and was not accounted for in the analysis. The samples 

done following the second protocol that included a second centrifugation step to remove 

extra contaminants, including airway bacteria, that could influence BALF composition. 

However, the likelihood of a bacterial influence on the results is not certain as conditions 

(i.e., samples were stored at -80 ºC) were not favorable for bacteria metabolism to occur 

ex vivo. After isolation from BAL, BALF was always maintained at either 4 or -80 ˚C. 

Further Research 

There is room for further analysis to expand on the results from this study. For example, a 

logistic regression may be conducted to assess if the severity of early CF airway disease is 

associated with the presence or absence of certain metabolites. This approach would have 

greater sensitivity than the current approach for any metabolites which are altered in binary 

fashion according to progression of disease. Ideally, a control cohort should be included to 

assess the difference in concentrations or trends compared to a cohort with CF to 

potentially identify CF specific metabolites (however, healthy control BAL sampling is 
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extremely rare; generally, some form of disease must be present for patients to justify this 

clinical procedure). Models to account for interaction between metabolites, including but 

not limited to metabolites associated with the same pathway, should be assessed. Also, as 

the linear mixed model with the lowest AIC was not the same for all metabolites, different 

models for different classes of metabolites may be necessary to use in future analyses. 

However, more information is needed to confirm and better understand this result these 

findings. Finally, more extensive investigation of age as a potential covariate is needed on 

progression of early CF per the %Dis outcome. 

Conclusions 

Investigating how the severity of early airway disease relates to metabolomics in patients 

with early CF can lead to a greater understanding of the progression of the disease. These 

results add to our growing understanding of early CF pathogenesis, and how metabolomics 

can be used to generate clinically-relevant molecular outcomes for disease monitoring at a 

stage when conventional biomarkers remain at low to undetectable levels. This analysis 

supports the idea that the progression of early airway disease is related to metabolic 

pathway activity and steady-state metabolite concentrations as the trends in Pearson and 

Spearman correlations change in the first 5 years of children born with CF. Utilizing a 

linear mixed model to account for intra-person correlation is a method to continue to pursue 

to explore longitudinal analysis in metabolomics. Progression of early airway 

inflammation and damage in children with CF varies individually and may become 

measurable at different ages. A linear mixed model can account for these inter-individual 

differences. As additional data are collected, more robust conclusions can be drawn to 

further the understanding of the relationship of the progression of early airway disease with 
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metabolomics in children with CF. This information is important for clinicians and 

researchers in the development of effective early interventions to limit lung function 

decline in CF.  
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Appendix 1: List of Metabolites Detected by AbsoluteIDQ® 

p180 Kit 

Note: Metabolites used in correlation and linear analysis are marked by an asterisk (*) 

Class Compound 

Amino acids & Biogenic amines Alanine (Ala) 

Amino acids & Biogenic amines Arginine (Arg) 

Amino acids & Biogenic amines Asparagine (Asn) 

Amino acids & Biogenic amines Aspartate (Asp) 

Amino acids & Biogenic amines Citrulline (Cit) 

Amino acids & Biogenic amines Glutamine (Gln) 

Amino acids & Biogenic amines Glutamate (Glu) 

Amino acids & Biogenic amines Glycine (Gly)* 

Amino acids & Biogenic amines Histadine (His) 

Amino acids & Biogenic amines Isoleucine (Ile) 

Amino acids & Biogenic amines Leucine (Leu) 

Amino acids & Biogenic amines Lysine (Lys) 

Amino acids & Biogenic amines Methionine (Met) 

Amino acids & Biogenic amines Ornithine (Orn) 

Amino acids & Biogenic amines Phenylalanine (Phe) 

Amino acids & Biogenic amines Proline (Pro) 

Amino acids & Biogenic amines Serine (Ser) 

Amino acids & Biogenic amines Threonine (Thr) 
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Class Compound 

Amino acids & Biogenic amines Tryptophan (Trp) 

Amino acids & Biogenic amines Tyrosine (Tyr) 

Amino acids & Biogenic amines Valine (Val) 

Amino acids & Biogenic amines Acetylornithine (Ac-Orn) 

Amino acids & Biogenic amines Asymmetric dimethylarginine (ADMA) 

Amino acids & Biogenic amines alpha-Aminoadipic acid (alpha-AAA) 

Amino acids & Biogenic amines cis-4-Hydroxyproline (c4-OH-Pro) 

Amino acids & Biogenic amines Carnosine 

Amino acids & Biogenic amines Creatinine 

Amino acids & Biogenic amines DOPA 

Amino acids & Biogenic amines Dopamine 

Amino acids & Biogenic amines Histamine 

Amino acids & Biogenic amines Kynurenine 

Amino acids & Biogenic amines Methioninesulfoxide (Met-SO) 

Amino acids & Biogenic amines Nitrotyrosine (Nitro-Tyr) 

Amino acids & Biogenic amines Phenylethylamine (PEA) 

Amino acids & Biogenic amines Putrescine 

Amino acids & Biogenic amines Symmetric dimethylarginine (SDMA) 

Amino acids & Biogenic amines Serotonin 

Amino acids & Biogenic amines Spermidine 

Amino acids & Biogenic amines Spermine 

Amino acids & Biogenic amines trans-OH-Pro (t4-OH-Pro) 
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Class Compound 

Amino acids & Biogenic amines Taurine* 

Amino acids & Biogenic amines total DMA 

Acylcarnitines Carnitine (C0) 

Acylcarnitines Acetylcarnitine (C2)* 

Acylcarnitines Propionylcarnitine (C3) 

Acylcarnitines Propenonylcarnitine (C3:1) 

Acylcarnitines Hydroxybutyrylcarnitine (C3-DC (C4-OH)) 

Acylcarnitines Hydroxypropionylcarnitine (C3-OH) 

Acylcarnitines Butanoylcarnitine (C4) 

Acylcarnitines Butenylcarnitine (C4:1) 

Acylcarnitines Valerylcarnitine (C5) 

Acylcarnitines Tiglylcarnitine (C5:1) 

Acylcarnitines Glutaconylcarnitine (C5:1-DC) 

Acylcarnitines Glutarylcarnitine (Hydroxyhexanoylcarnitine) 

(C5-DC (C6-OH)) 

Acylcarnitines Methylglutarylcarnitine (C5-M-DC) 

Acylcarnitines Hydroxyvalerylcarnitine 

(Methylmalonylcarnitine) (C5-OH (C3-DC-

M)) 

Acylcarnitines Hexanoylcarnitine (Fumarylcarnitine) (C6 

(C4:1-DC)) 

Acylcarnitines Hexenoylcarnitine (C6:1) 
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Class Compound 

Acylcarnitines Pimelylcarnitine (C7-DC) 

Acylcarnitines Octanoylcarnitine (C8) 

Acylcarnitines Nonaylcarnitine (C9) 

Acylcarnitines Decanoylcarnitine (C10) 

Acylcarnitines Decenoylcarnitine (C10:1) 

Acylcarnitines Decadienylcarnitine (C10:2) 

Acylcarnitines Dodecanoylcarnitine (C12) 

Acylcarnitines Dodecenoylcarnitine (C12:1) 

Acylcarnitines Dodecanedioylcarnitine (C12-DC) 

Acylcarnitines Tetradecanoylcarnitine (C14) 

Acylcarnitines Tetradecenoylcarnitine (C14:1) 

Acylcarnitines Hydroxytetradecenoylcarnitine (C14:1-OH) 

Acylcarnitines Tetradecadienylcarnitine (C14:2) 

Acylcarnitines Hydroxytetradecadienylcarnitine (C14:2-OH) 

Acylcarnitines Hexadecanoylcarnitine (C16) 

Acylcarnitines Hexadecenoylcarnitine (C16:1) 

Acylcarnitines Hydroxyhexadecenoylcarnitine (C16:1-OH) 

Acylcarnitines Hexadecadienylcarnitine (C16:2) 

Acylcarnitines Hydroxyhexadecadienylcarnitine (C16:2-OH) 

Acylcarnitines Hydroxyhexadecanoylcarnitine (C16-OH) 

Acylcarnitines Octadecanoylcarnitine (C18) 

Acylcarnitines Octadecenoylcarnitine (C18:1) 
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Class Compound 

Acylcarnitines Hydroxyoctadecenoylcarnitine (C18:1-OH) 

Acylcarnitines Octadecadienylcarnitine (C18:2) 

Lysophosphatidylcholines lysoPC a C14:0 

Lysophosphatidylcholines lysoPC a C16:0 

Lysophosphatidylcholines lysoPC a C16:1 

Lysophosphatidylcholines lysoPC a C17:0 

Lysophosphatidylcholines lysoPC a C18:0 

Lysophosphatidylcholines lysoPC a C18:1 

Lysophosphatidylcholines lysoPC a C18:2 

Lysophosphatidylcholines lysoPC a C20:3 

Lysophosphatidylcholines lysoPC a C20:4 

Lysophosphatidylcholines lysoPC a C24:0 

Lysophosphatidylcholines lysoPC a C26:0 

Lysophosphatidylcholines lysoPC a C26:1 

Lysophosphatidylcholines lysoPC a C28:0 

Lysophosphatidylcholines lysoPC a C28:1 

Phosphatidylcholines PC aa C24:0 

Phosphatidylcholines PC aa C26:0 

Phosphatidylcholines PC aa C28:1 

Phosphatidylcholines PC aa C30:0* 

Phosphatidylcholines PC aa C30:2 

Phosphatidylcholines PC aa C32:0* 
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Class Compound 

Phosphatidylcholines PC aa C32:1* 

Phosphatidylcholines PC aa C32:2* 

Phosphatidylcholines PC aa C32:3 

Phosphatidylcholines PC aa C34:1* 

Phosphatidylcholines PC aa C34:2* 

Phosphatidylcholines PC aa C34:3* 

Phosphatidylcholines PC aa C34:4 

Phosphatidylcholines PC aa C36:0 

Phosphatidylcholines PC aa C36:1 

Phosphatidylcholines PC aa C36:2* 

Phosphatidylcholines PC aa C36:3* 

Phosphatidylcholines PC aa C36:4* 

Phosphatidylcholines PC aa C36:5 

Phosphatidylcholines PC aa C36:6 

Phosphatidylcholines PC aa C38:0 

Phosphatidylcholines PC aa C38:1 

Phosphatidylcholines PC aa C38:3 

Phosphatidylcholines PC aa C38:4 

Phosphatidylcholines PC aa C38:5 

Phosphatidylcholines PC aa C38:6 

Phosphatidylcholines PC aa C40:1 

Phosphatidylcholines PC aa C40:2 
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Class Compound 

Phosphatidylcholines PC aa C40:3 

Phosphatidylcholines PC aa C40:4 

Phosphatidylcholines PC aa C40:5 

Phosphatidylcholines PC aa C40:6 

Phosphatidylcholines PC aa C42:0 

Phosphatidylcholines PC aa C42:1 

Phosphatidylcholines PC aa C42:2 

Phosphatidylcholines PC aa C42:4 

Phosphatidylcholines PC aa C42:5 

Phosphatidylcholines PC aa C42:6 

Phosphatidylcholines PC ae C30:0 

Phosphatidylcholines PC ae C30:1 

Phosphatidylcholines PC ae C30:2 

Phosphatidylcholines PC ae C32:1* 

Phosphatidylcholines PC ae C32:2 

Phosphatidylcholines PC ae C34:0* 

Phosphatidylcholines PC ae C34:1* 

Phosphatidylcholines PC ae C34:2 

Phosphatidylcholines PC ae C34:3 

Phosphatidylcholines PC ae C36:0 

Phosphatidylcholines PC ae C36:1 

Phosphatidylcholines PC ae C36:2 
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Class Compound 

Phosphatidylcholines PC ae C36:3 

Phosphatidylcholines PC ae C36:4 

Phosphatidylcholines PC ae C36:5 

Phosphatidylcholines PC ae C38:0 

Phosphatidylcholines PC ae C38:1 

Phosphatidylcholines PC ae C38:2 

Phosphatidylcholines PC ae C38:3 

Phosphatidylcholines PC ae C38:4 

Phosphatidylcholines PC ae C38:5 

Phosphatidylcholines PC ae C38:6 

Phosphatidylcholines PC ae C40:1 

Phosphatidylcholines PC ae C40:2 

Phosphatidylcholines PC ae C40:3 

Phosphatidylcholines PC ae C40:4 

Phosphatidylcholines PC ae C40:5 

Phosphatidylcholines PC ae C40:6 

Phosphatidylcholines PC ae C42:0 

Phosphatidylcholines PC ae C42:1 

Phosphatidylcholines PC ae C42:2 

Phosphatidylcholines PC ae C42:3 

Phosphatidylcholines PC ae C42:4 

Phosphatidylcholines PC ae C42:5 
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Class Compound 

Phosphatidylcholines PC ae C44:3 

Phosphatidylcholines PC ae C44:4 

Phosphatidylcholines PC ae C44:5 

Phosphatidylcholines PC ae C44:6 

Sphingomyelins SM (OH) C14:1 

Sphingomyelins SM (OH) C16:1 

Sphingomyelins SM (OH) C22:1 

Sphingomyelins SM (OH) C22:2 

Sphingomyelins SM (OH) C24:1 

Sphingomyelins SM C16:0* 

Sphingomyelins SM C16:1 

Sphingomyelins SM C18:0 

Sphingomyelins SM C18:1 

Sphingomyelins SM C20:2 

Sphingomyelins SM C22:3 

Sphingomyelins SM C24:0 

Sphingomyelins SM C24:1 

Sphingomyelins SM C26:0 

Sphingomyelins SM C26:1 

Hexoses H1 

 

  



45 

 

Appendix 2: Histograms Comparing Distributions 
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Appendix 3: Scatterplots of Significant Metabolites  
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