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Abstract 

Low-Dimensional Mapping of Corticostriatal Circuitry Dynamics Underlying Pair Bonding 
By Elizabeth A. O’Gorman 

Extensive research has shed light on neurochemistry and neuroendocrinology 

contributing to the formation of socially monogamous relationships, known as pair bonds. 

However, until recently (Amadei et al., 2017), the dynamic neural circuitry underlying the 

formation of pair bonds has remained unstudied. By analyzing local field potential (LFP) 

recordings from brain regions in the “social brain network”, namely the medial prefrontal cortex 

(mPFC), nucleus accumbens (NAcc), and bed nucleus stria terminalis (BNST) of prairie voles, 

the canonical model organism of pair bonding, we can assess whether the neural dynamics 

exhibited during pair bonding are stereotyped between individuals or behaviors. Here, an 

unsupervised machine learning method, t-distributed Stochastic Neighbor Embedding (t-SNE) 

(van der Maaten & Hinton, 2008) was used to map the structure of LFP recordings collected 

from the mPFC and NAcc (hit subjects), and mPFC and within or bordering the BNST (non-hit 

subjects) of female prairie voles during a six-hour cohabitation period with a male partner. The 

primary objective was to identify behavior-specific brain-states during pair bonding. Intra-

behavior variability of hit subjects’ neural dynamics was greater than the intra-animal variability, 

suggesting there may not be behavior-specific structure in the hit subjects’ brain-state mappings. 

On the other hand, the intra-animal variability of non-hit subjects’ neural dynamics was greater 

than the intra-behavior variability, suggesting there may be behavior-specific structure in the 

non-hit subjects’ brain-state mappings. Furthermore, 36 stereotyped brain-states (i.e. specific 

pairings of peak oscillatory frequencies) were identified, which may be used for decoding neural 

signal. Overall, these results provide the basis for further analyses of stereotyped neural 



dynamics across individuals and behaviors, as well as the temporal emergence of stereotyped 

neural dynamics over the course of pair bonding. 
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INTRODUCTION 

Affiliative social and socio-sexual behaviors are essential for facilitating social cohesion 

and bonding, which are fundamental for species survival (Goodson & Kabelik, 2010; Tinbergen, 

1951). These natural social behaviors displayed across species (Getz, Carter, & Gavish, 1981; 

Stanley & Adolphs, 2013; Svendsend, 1989) are known to be endogenously modulated via 

individual neurochemistry (Lim et al., 2004) and neuroendocrinology (Aragona et al., 2006; Ross 

et al., 2009; Young & Wang, 2004), and exogenously modulated via influences from other 

conspecifics (Williams, Catania, & Carter, 1992). However, the detailed neural, specifically 

electrophysiological, mechanisms underlying the dynamic formation of a prosocial bond remains 

elusive.  

Socially monogamous relationships, known as pair bonds, occur in less than 5% of 

mammalian species; it is not a common phenomenon across species, but rather species-specific 

(Kleimen, 1977). The canonical model organism for examining pair bonding is the prairie vole 

(Microtus ochrogaster), known for co-parenting and being socially monogamous (McGraw & 

Young, 2010; Young & Wang, 2004). There exists an extensive body of literature concerning 

prairie vole’s neuroendocrinology, namely the influence of oxytocin (OT) (Ross et al., 2009; 

Sofroniew, 1983), vasopressin (de Vries and Miller, 1998; de Vries and Panzica, 2006), and 

dopamine (DA) (Liu & Wang, 2003), on the formation and expression of a pair bond. In the 

prairie vole, the nucleus accumbens (NAcc), prelimbic cortex (PLC) located in the medial 

prefrontal cortex (mPFC), and bed nucleus stria terminalis (BNST) contain high densities of OT 

receptors (Insel & Shapiro, 1992). Blocking OT receptor activation in the NAcc and PLC with an 

OT antagonist prevents the formation of a partner preference (Young, Lim, Gingrich, & Insel, 

2001). This indicates OT receptor activation in the NAcc and PLC are essential for the 
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development of a pair bond. Furthermore, the NAcc also contains inhibitory projection neurons, 

medium spiny neurons, expressing DA receptors, D1 or D2 (Lobo et al., 2010). Administering a 

D2 receptor antagonist in the NAcc prevents the formation of mating-induced partner 

preferences (Gingrich et al., 2000). Therefore, this indicates DA receptor activation in the NAcc 

is also necessary for the development of a pair bond. However, until recently, the 

neurophysiological underpinnings of pair bond formation have remained disproportionately 

under-examined. 

The NAcc is well-characterized as a primary brain-region for reward-processing. Activity 

of this region facilitates goal- and particularly reward-directed behaviors (Nicola, 2007). It plays 

an essential role in encoding the reward of external stimuli (Stuber et al., 2011), which is at the 

forefront of affiliative social behavior and pair bonding (Floresco, 2015; Stuber et al., 2011). 

Also, the NAcc receives inputs from the mPFC. The mPFC is crucial for decision-making and 

biasing of social behavior, in that its activity facilitates the decision-making required to 

accomplish a goal or achieve reward (Block et al., 2007).  

As the first to record neural activity in prairie voles during cohabitation, Amadei et al. 

(2017) examined the mPFC-NAcc corticostriatal circuitry supporting the formation of a pair 

bond. Socio-sexual interactions dynamically modulate corticostriatal circuity to drive changes in 

pair bond formation and expression. By recording local field potentials (LFPs) from the mPFC 

and NAcc, individual variation in the strength of the neural signal from the mPFC to the NAcc 

was shown to be dynamically modulated over the course of pair bond formation. Furthermore, by 

recording LFPs from the mPFC and within or bordering the BNST as an internal control, no 

individual variation in the strength of the neural signal from the mPFC to within or bordering the 

BNST was shown to be dynamically modulated over the course of pair bond formation. 
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Importantly, individual variation in the strength of this functional connectivity was measured by 

the mean Kullback-Liebler divergence (DKL) of mPFC low-frequency phase activity modulating 

NAcc high-frequency amplitude and NAcc low-frequency phase activity modulating mPFC 

high-frequency amplitude. The mean DKL for one direction, NAcc to mPFC was subtracted from 

the other, mPFC to NAcc, to determine the net mean modulation index. It was concluded that the 

mean net modulation index, particularly after the first mating bout, predicts how quickly female 

subjects begin affiliative huddling with their male partner. If there are stereotyped brain-state-

specific features during the formation and expression of a pair bond, it follows that those 

potential features change over the course of formation and expression of said pair bond. As such, 

there may be stereotyped neural dynamics underlying individual-specific variation in expression 

of affiliative behaviors and the formation of a pair bond.  

 While behavioral expression of social bonding need not be stereotyped between or within 

species, it may be possible to predict an animal’s behavior by assessing the underlying subtle 

neural dynamics as exemplified by Amadei et al.’s findings (2017). The extent to which 

stereotyped behavior-specific features can be extracted from complex neural data is reliant on 

simplifying the data – this is the main objective of dimensionality reduction techniques 

(Stephens, Osborne, & Bialek, 2010). Furthermore, by assessing the underlying neural dynamics 

of complex affiliative behaviors such as pair bonding, the temporal emergence of a social bond 

can be better understood. 

Implementations of unsupervised machine learning for neural decoding best allow 

unbiased and robust analysis of large-scale and complex neural dynamics. Thus, applying 

unsupervised machine learning techniques allows for more subtle and unbiased analysis of 

continuous neural dynamics during prairie vole pair bonding. A particular unsupervised machine 
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learning method, t-distributed Stochastic Neighbor Embedding, embeds high-dimensional data 

into a lower dimensional space, minimizing the information lost when reducing the data to the 

lower dimension (van der Maaten & Hinton, 2008). Previous implementations of t-SNE have 

ranged from analyzing emotional states in response to stimuli (Cowen and Keltner, 2017), to 

mapping resting brain-states (Billings et al., 2017), to mapping the stereotyped behavior of fruit 

flies (Berman et al., 2014), to clustering large-scale neural recordings to identify spiking neurons 

(Dimitriadis, Neto, & Kampff, 2016). Here, t-SNE will be utilized to explore and map the 

structure of underlying neural dynamics during the development of pair bonding. Embedding this 

high-dimensional data into a lower dimension allows for visualization and straightforward 

extraction of brain-state-specific features during the cohabitation period. By mapping the 

underlying structure of neural activity, (i.e. brain-states during pair bonding), subtler neural 

dynamics and features can be extracted to classify affiliative behaviors. As such, the primary 

objective is to extract stereotyped neural features predictive of specific behaviors during prairie 

vole pair bonding. 

This implementation relies on the LFP recordings collected from female prairie voles 

during a six-hour cohabitation period with a male partner to assess whether behavior-specific 

brain-states can be identified over the time course of pair bond formation. If specific brain-states 

are identified and stereotyped for individual behaviors across animals, then those identified 

patterns may be used to further decode neural signal. These identified features then may be used 

to assess the probability of a given behavior occurring during prairie vole pair bonding. 
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METHODS 

Experiments 

All procedures were approved by the Emory University Institutional Animal Care and 

Use Committee. To probe the underlying neural dynamics of pair bonding, LFP recordings from 

fifteen adult, sexually-naïve female prairie voles (laboratory-bred colony derived from wild-

caught Illinois stock) 76-154 days of age at the start of experimentation were collected as 

previously described by Amadei et al. (2017).  

All surgical procedures for electrode implantation were described by Amadei et al. 

(2017).  However, it is important to note females were first ovariectomized to control for inter-

animal hormonal variability, and then chronically implanted with electrodes 10-20 days later. 

Electrodes (tungsten microelectrodes, 1 MΩ, FHC) were stereotaxically targeted to the left 

mPFC, and NAcc for 9 hit subjects. For 6 non-hit subjects, electrodes were placed more 

posterior, in or bordering on the BNST, as verified by post-hoc histological analysis. These 

subjects are non-hit subjects and will be used as an internal control, as BNST is a part of the 

“social brain network” (Greenberg et al., 2010; Lee et al., 2008) and functionally connected to 

the mPFC (Lebow & Chen, 2016).  

Electrodes were positioned in a fixed implant design that interfaced with the connector on 

the top of the skill, and in turn, the connector interfaced with a battery-powered Neurologger35 

chip (1-GB model, New Behaviour) with eight channels (four neural data, two reference, one 

accelerometer, and one infrared synchronization) and the capability to sample data up to 500 Hz, 

to wirelessly collect LFP recordings during behavioral experiments. Before behavioral 

experiments, the Neurologger was programmed with sampling rate and data storage parameters 

and secured onto the connector on top of the animal’s skull as pictured (Figure 1). The sampling 
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rate was 199.805 Hz for all subjects except hit subject 2 (489.075 Hz). For hit subject 2, linear 

interpolation was used to generate a time-series with matched sampling frequency as all other 

subjects. 

Figure 1. Neurologger recording device on a female subject animal during cohabitation with a 
male. Neurologger interfaces with chronic electrode implantations targeting mPFC and NAcc in 
hits subjects of mPFC and BNST in non-hits subjects to record LFP signal. Subjects were 
habituated to this device for at least 1 hour on the day before experiments. Adapted from Amadei 
et al. (2017). 
 
LFP Data Collection During Cohabitation 

Prior to behavioral experiments, all female subjects were primed with estradiol benzoate 

(17-β -estradiol-3-benzoate, Fisher Scientific, daily injections of 1–2 μ g dissolved in sesame oil 

starting 3-4 days before experiments) to induce socio-sexual interest in males (Donaldson, 

Spiegel, & Young, 2010).  For hit subjects, LFPs were then recorded from the mPFC and NAcc 

of awake, behaving female subjects during a 6-hour cohabitation period with an adult, sexually 

experienced male partner animal under 1.5 years of age. For non-hit subjects, LFPs were 

recorded from the mPFC and within or bordering the BNST of awake, behaving female subjects 
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during the same behavioral paradigm. Male partner animals were matched by age (within 61 

days) and weight (within approximately 5 g) for each female subject.  

Subjects with electrodes within or on the medial border of the NAcc were included as hit 

subjects (n = 9), while subjects with electrodes posterior to the NAcc (within or bordering 

BNST) were included as non-hit subjects (n = 6). For the purposes of this paper, subjects are 

ordered from hits 1-9 and non-hits 1-6 by their latency to huddle for a cumulative 5 minutes. 

Neural and video recording were performed throughout the baseline, 10–15 minute solo 

habituation period, and 6-hour cohabitation period, and were synchronized using periodic 

timestamps delivered every 100 frames (3.3 s) from a Cleversys Topscan system running on a 

32-bit Dell Precision T3500 computer. Notably, to account for 60-Hz electrical noise, 

experiments were performed under a Faraday cage. 

 Cohabitation videos were behaviorally scored by developing an ethogram to define 

mating, self-grooming, and huddling behaviors occurring in these experiments (Figure 2). 

Mating accelerates pair bond formation (Williams, Catania, & Carter 1992), side-by-side 

huddling is an index of bond expression (Ahern et al. 2009; Lim, et al., 2004), and self-grooming 

is a self-directed, high-motion control behavior (Figure 2). Notably, behaviors were variable 

from individual to individual, but not significantly different between hit and non-hit subjects 

(Amadei et al., 2017).  
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Figure 2. Ethogram definitions of mating, self-grooming, and huddling used to score 
experimental videos. Adapted from Amadei et al. (2017). 
 
Overview of Analyses 

The general framework of analyses is depicted in Figure 3. While Amadei et al. (2017) 

assessed coherence, Granger causality, and cross-frequency coupling between brain regions 

during mating, self-grooming, and huddling, the spectral features of the LFP data were not 

assessed on a continuous time scale. As such, previous analyses may not have provided a 

complete description of behavioral-specific brain-states or spectral features. LFP data from the 

mPFC and NAcc was first wavelet transformed to generate wavelet spectrograms. Next, the 

spectrograms were used to construct spectral feature vectors, which were embedded into two 

dimensions using t-SNE (van der Maaten & Hinton, 2008). The probability distribution over this 

two-dimensional space was estimated, and resolvable peaks were identified in the distribution. 
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Figure 3. Overview of the data analysis pipeline. Raw LFP time-series collected from the mPFC, 
NAcc (hits), and BNST (non-hits) are collected. A Morlet continuous wavelet transform is 
applied to each time series for each animal, creating a spectrogram representation of the LFP 
time-series collected from each brain region. After normalization, each point in time is mapped 
into a two-dimensional space via t-SNE (van der Maaten & Hinton, 2008). Lastly, a watershed 
transform is applied to the Gaussian-smoothed probability density functions, isolating peaks of 
highest density to determine regions with unique spectral properties. Adapted from Berman et al. 
(2014). 
 
Spectrogram Generation 

As an alternative to Amadei et al.’s approach (2017), we used a spectrogram 

representation of the neural dynamics, measuring the power, 𝑆(𝑘, 𝑓; 𝜏), at a set of frequencies, 𝑓, 

for each brain region, 𝑘, over an interval of time, 𝜏. Each LFP time-series, 𝑦(𝑡) was assessed, 

such that 

𝒀 =  {𝑦𝑚𝑃𝐹𝐶(𝑡), 𝑦𝑁𝐴𝑐𝑐(𝑡)} (1)   

where 𝑦(𝑡) was approximately 4,300,000 time-points long, (i.e. 6 hours sampled at 

approximately 200 Hz). The Morlet continuous wavelet transform was then used to provide a 

multiple time-scale representation of brain-state dynamics. LFP signal was decomposed in terms 

of time and frequency information. Although a Fourier transform or fast-Fourier transform could 

have been similarly used to decompose the LFP signal, a Morlet continuous wavelet transform 

can uniquely extract both frequency and time information to better assess temporal changes in 

power at multiple frequencies. This allows for more complete analysis of the LFP signal, as the 
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power at different frequencies at one time-point reflect changes in power at neighboring time 

points. For this reason, the Morlet wavelet is better suited for isolating short instances or changes 

of power at specific frequencies (Daubechies, 1992). By measuring the amplitudes of the 

transform at high temporal and frequency resolution, the need to assess the signal using moving 

time-windows is eliminated. Details of these calculations are included in Appendix B. 

For the analysis, 100 frequency channels, dyadically spaced between 1 and 100 Hz, the 

latter being the Nyquist frequency, were used. These frequencies were used to ensure analysis of 

power at all previously identified frequency bands of interest – 5 Hz and 80 Hz (Amadei et al. 

2017). 

Spatial Embedding 

𝑆(𝑘, 𝑓; 𝜏) comprises 100 frequency channels for each of the 2 brain regions. We would 

like to find a low-dimensional representation that captures the important features of the dataset, 

such that subtle neural dynamics throughout cohabitation can be assessed. The aim of 

dimensionality reduction of the feature vectors was to construct a space, 𝑩 of behavioral-specific 

brain-states at each point in time. We aimed to maximally preserve the local structure of the data, 

namely, spectral features on small time scales, while simultaneously preserving the general, 

global structure of the data. An ideal embedding reduces dimensionality by altering the distances 

between more distant points on the manifold. This was used to assess clustering of similar brain-

states and behavioral-specific brain-states over time.  

One method that does possess this property is t-SNE (van der Maaten & Hinton, 2008). 

Like other embedding algorithms, t-SNE aims to take data from high dimensional space and 

embed it into a space of much smaller dimensionality, preserving some set of invariants as best 

as possible. For t-SNE, the conserved invariants are related to the Markov transition probabilities 
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if a random walk is performed on the dataset. Thus, this is a stochastic modeling process. 

Specifically, we defined the transition probability from time-point 𝑡𝑖 to time-point 𝑡𝑗, 𝑝𝑗|𝑖, to be 

proportional to a Gaussian kernel of the distance (as of yet, undefined) between them 

𝑝𝑗|𝑖 =  𝑒𝑥𝑝(−𝑑(𝑡𝑖,𝑡𝑗)2/2𝜎𝑖
2)

∑ 𝑒𝑥𝑝(−𝑑(𝑡𝑖,𝑡𝑘)2/2𝜎𝑖
2)′𝑘≠1

 (2) 

All self-transitions (i.e. 𝑝𝑖|𝑖) were assumed to be zero. Each of the 𝜎𝑖 were set such that all points 

had the same transition entropy, 𝐻𝑖 = ∑ 𝑗𝑝𝑗|𝑖 log 𝑝𝑗|𝑖 = 5. This can be interpreted as restricting 

transitions to roughly 32 neighbors. 

 The t-SNE algorithm was then used to embed the data points in the lower-dimensional 

space while keeping the new low-dimensional set of transition probabilities, 𝑞𝑗|𝑖 as similar to the 

high-dimensional set of transition probabilities, 𝑝𝑗|𝑖 as possible. The 𝑞𝑗|𝑖 were defined similarly 

to the high-dimension transition probabilities but were proportional to a Cauchy (or Student-t) 

kernel of the points’ Euclidean distances in the embedded space. This algorithm results in an 

embedding that minimizes local distortions. If 𝑝𝑗|𝑖 is initially very small or zero, it will place 

little to no constraint on the relative positions of the two points, but if the original transition 

probability is large, it will factor significantly into the cost function. 

Because this is computationally expensive, it is impossible to incorporate the entire 

dataset into the embedding, as that would mean incorporating approximately 40,000,000,000 

points. Therefore, we used an importance sampling technique to select a training set of 

approximately 35,000 data points, build the space from these data, and then re-embed the 

remaining points into the space as best as possible (Appendix C). Roughly 4,380 data points 

from 8 hit subjects, out of 4,380,000 data points per subject, were used to create a representative 

set of data. t-SNE was performed on 20,000 randomly selected data points from 8 hit subjects, 
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and the resultant embedding was then used to estimate a probability density by convolving each 

point with a two-dimensional Gaussian whose width is equal to the distance from the point to its 

5 nearest-neighbors. This space was segmented by applying a watershed transform to the inverse 

of the PDF. Points were grouped by region, and the number of points selected out of each region 

was proportional to the integral over the PDF in that region. This was performed for 8 hit subject 

data sets, yielding a total of approximately 35,000 data points in the training set. 

Lastly, we defined a distance function, 𝑑(𝑡𝑖, 𝑡𝑗) between the feature vectors. This function 

should accurately measure the difference between the shapes of two frequency spectra. Simply 

measuring the Euclidean distance between two spectra will be greatly affected by amplitude 

modulations. However, because 𝑆(𝑘, 𝑓; 𝑡) is composed of a set of wavelet amplitudes, it must be 

positive semi-definite. As such, if we define 

�̂�(𝑘, 𝑓; 𝑡) = 𝑆(𝑘,𝑓;𝑡)
∑ 𝑆(𝑘′,𝑓′;𝑡)𝑘′,𝑓′

′ (3) 

then we can treat this normalized feature vector as a probability distribution over all frequency 

channels for each brain region at a given point in time. Thus, an appropriate distance function is 

the DKL (Cover & Thomas, 2006) between two feature vectors in time,  

𝑑(𝑡1, 𝑡2) =  𝐷𝐾𝐿(𝑡1|| 𝑡2) 

= ∑ �̂�(𝑘, 𝑓; 𝑡) log2 [�̂�(𝑘,𝑓;𝑡1)
�̂�(𝑘,𝑓;𝑡2)]𝑓,𝑘      (4) 

Jensen-Shannon Divergence 

To assess the extent to which two probability density functions are dissimilar, the Jensen-

Shannon divergence (JSD) was used. This is a symmetric and smoothed version of the DKL, such 

that values from 0 to 1 indicate similarity to dissimilarity of the probability density functions, 

respectively. Specifically, for two probability density functions, 𝑃 and 𝑄, the JSD is defined by 



 

 

13 

𝐽𝑆𝐷(𝑃||𝑄) =  1
2

𝐷𝐾𝐿(𝑃||𝑀) +  1
2

𝐷𝐾𝐿(𝑄||𝑀),  (5) 

where 𝐷𝐾𝐿(𝑃||𝑀) is the DKL from 𝑀 to 𝑃, 𝐷𝐾𝐿(𝑄||𝑀) is the DKL from 𝑀 to 𝑄, and 𝑀 =  1
2(𝑃 +

𝑄) (Fuglede & Topsøe, 2004; Lin, 1991). This was used to assess intra-animal and intra-

behavior variability for hit and non-hit subjects over the full cohabitation period, during the first 

hour of cohabitation after the first bout of mating, and during the last hour of cohabitation. To 

determine statistical differences between the intra-animal and intra-behavioral JSD, a Wilcoxon 

rank-sum test was used (Wilcoxon, 1945). A Wilcoxon signed rank-sum test was then used to 

determine statistical differences between the intra-animal JSD for the first hour of cohabitation 

after the first mating bout and for the last hour of cohabitation for hit and non-hit subjects. This 

was repeated to determine statistical differences between the intra-behavior JSD for the first hour 

after the first mating bout and for the last hour of cohabitation for hit and non-hit subjects. 

 

RESULTS 

Structure and Dynamics of the Low-Dimensional Embedded Space 

To assess the neural dynamics underlying affiliative social behavior and the development 

of a pair bond, LFP signals from the mPFC and NAcc were embedded in a low-dimensional 

space as previously described. First, spectral feature vectors, (e.g. amplitudes of the wavelet-

transformed LFPs from mPFC and NAcc), were embedded into a two-dimensional space 

(𝑧1, 𝑧2) for eight of nine hit subjects (subjects 1-6, 8, 9) to generate an optimized training set 

embedding. Neighboring optimized training set points do not exhibit similar log-normalized 

amplitudes - there is no obvious clustering of nearby points by similar power (∑ 𝑆(𝑘, 𝑓; 𝑡)𝑘,𝑓 ) 

(Figure 4. A.). The lack of clustering by amplitude indicates nearest-neighbors, and thus 

structure of the embedded space, are not determined by the amplitude information alone. When 
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re-embedding all data points from all 9 hit subjects, ~93.6% of points remain in the training set 

embedding space. The re-embedding of all 9 hit subjects show clear local maxima and minima – 

peaks and valley – to be assessed for spectral features (Figure 4. B.). These peaks may indicate 

stereotyped brain-states between or within animals, or stereotyped behavior-specific brain-states 

between or within animals. 

A.            B. 

 
Figure 4. Low-dimensional embedding of wavelet-transformed LFP signal from the mPFC and 
NAcc. A. ~35,000 training set points subsampled from 8 hit subjects embedded into two 
dimensions via t-SNE. Coloring is proportional to the logarithm of the training set 
amplitudes, ∑ 𝑆(𝑘, 𝑓; 𝑡)𝑘,𝑓 . B. Probability density function (PDF) generated from embedding all 
9 hit subject points via t-SNE and convolving all points with a Gaussian (𝜎 = 1.3), which 
represents local maxima of embedded points. 
 

Likewise, when embedding the same spectral feature data into three dimensions using the 

same parameters, training set points are also not clustered by their amplitude information (Figure 

4. A.). The general topology of embedded points in three dimensions remains the same, as the 

data are distributed along the same axes and exhibit a similar shape (Figure 5. B.). When 

embedding the data into this higher dimension, the embedding cost function (C1) is reduced by 

log(Amplitude) 
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0.6166 bits and improved by 3% (6.429 bits for two dimensions versus 5.812 for three 

dimensions compared to the total Shannon entropy calculated for the sparse transition matrix 

resulting from embedding in two dimensions, 20.717 bits) (Figure 5). This means a similar 

amount of total information, total entropy, is preserved in both a two- and three-dimensional 

mapping. In other words, approximately 97% of the data can be explained by the mapping in 

two-dimensions, and there is no dramatic improvement or unique three-dimensional structure 

that suggests we should analyze the data in three-dimensions. 

A.      B. 

Figure 5. Comparison between A. two-dimensional embedding and B. three-dimensional 
embedding via t-SNE. All parameters remained constant for both embedding processes, except 
the embedding dimension. Coloring is proportional to the logarithm of the training set 
amplitudes, ∑ 𝑆(𝑘, 𝑓; 𝑡)𝑘,𝑓 . There is a 3% improvement in the cost of embedding as defined by 
the KL divergence (C 3) (6.4288 bits for two dimensions versus 5.8122 for three dimensions). 
 

Moreover, an estimate of the probability density function (PDF), 𝑏(𝒛), was generated by 

convolving each point in the embedded space with a Gaussian of a small width (𝜎 = 1.3) (Figure 

4. B.). The space, 𝑏(𝒛) contains a number of resolved local maxima as indicated by regions of 

high PD. Potentially, the locations of these peaks correspond to stereotyped brain-states, either 
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behavior- or individual- specific. Throughout the duration of cohabitation, subjects transition 

through these mapped spaces, as they transition through brain-states.  

As such, this low-dimensional embedded space of the LFP spectral features can be 

assessed in terms of the trajectory and velocity of transitions through the space, meaning the 

time-course and time it takes for animals to move through brain-states can be assessed. 

Specifically, the distribution of velocities within the embedded space is well represented by a 

two-component logarithmic Gaussian mixture model in which the two peaks of the Gaussian 

distributions are separated by an almost one-and-a-half-fold increase (Figure 6). The distribution 

of points in the low-velocity peak (approximately 33% of all time-points, 𝜇 = 2.0287, 𝜎 = 

0.3561) is separable from the distribution of the points in the high-velocity peak (approximately 

33% of all time-points, 𝜇 = 3.0224, 𝜎 =0.0612). This suggests future analyses can be conducted 

to assess the temporal dynamics of brain-states during affiliative social behavior, namely, 

analyses of brain-state transition matrixes over different time scales and during different 

behaviors (Berman et al., 2016). Questions probing the temporal emergence of stereotyped 

neural dynamics over the course of pair bonding, and how the temporal structure of the neural 

dynamics bias organization of behaviors, can be further assessed. 
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Figure 6. Histogram of velocities within the embedded behavioral space for the re-embedding of 
all data from all 9 hit subjects fitted to a two-component log-Gaussian mixture model. The blue 
bar chart represents the measured probability distribution, the red line is the fitted model, and the 
cyan and green lines are the mixture components of the fitted model. This represents two 
separable states of slow and fast velocity – resting and transition states through the embedded 
space.  
 

Intra-Animal and Intra-Behavior Comparisons 

 All points for each hit and non-hit subjects during all behaviors, huddling, mating, self-

grooming, and other (all behaviors not huddling, mating, or self-grooming), were embedded in a 

two-dimensional map to assess whether behaviors and corresponding brain-states are stereotyped 

across behaviors or across individuals. This is done to assess how variability between individual 

animals’ brain-states across all behaviors compares to variability between behavior-specific 

brain-states across all animals. PDFs for each behavior, huddling, mating, self-grooming, and 

other, were compared pairwise via the JSD (5) and averaged for each hit (Figure 7. A.) and non-

hit subject (Figure 7. B.), (i.e. the average JSD between pairs of behavior-specific maps for each 

log(Velocity) (s-1) 
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animal, across one row of maps, was computed). This is a measure of how dissimilar the 

behavior-specific PDFs are for each animal, reflecting intra-animal variability of PDFs. 

Furthermore, PDFs for one behavior were compared pairwise via the JSD (5) and averaged for 

all hit (Figure 7. A.) and non-hit subject (Figure 7. B.), (i.e. the average JSD between pairs of 

animal-specific maps for each behavior, down one column, was computed). This is a measure of 

how dissimilar the animal-specific PDFs are for each behavior, reflecting intra-behavior 

variability of PDFs.  

For hit subjects, the median intra-behavior variability is significantly greater than the 

median intra-animal variability, suggesting mPFC and NAcc brain-states are more dissimilar 

between individuals than between behaviors for hit subjects (p = .020) (Figure 8. A.). Individual 

signatures may thus washout any effect seen by the behaviors. However, for non-hit subjects, the 

median intra-animal variability is significantly greater than the median intra-behavior variability, 

suggesting mPFC and within or bordering BNST brain-states are more dissimilar between 

behaviors than between individuals (p = .001) (Figure 8. B.).  

All points for each hit and non-hit subject during all behaviors for the first hour of 

cohabitation after the first mating bout (Figure 9. A. and B.) and for the last hour of cohabitation 

(Figure 10. A. and B.) were embedded in a two-dimensional map to assess whether brain-states 

become stereotyped or distinct across behaviors or across individuals over time. The average 

JSD between PDFs for hit and non-hit subjects was computed as described above for the first 

hour after the first mating bout and for the last hour of cohabitation. For hit subjects, there are no 

significant differences between intra-animal and intra-behavior variability for the first hour after 

the first mating bout and for the last hour of cohabitation. Within both intra-animal and intra-

behavior variability for hit subjects, there are no significant differences between the first hour 
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after the first mating bout and the last hour of cohabitation. (Figure 11. A.) For non-hit subjects, 

there are no significant differences between intra-animal and intra-behavior variability for the 

last hour of cohabitation (Figure 11. B.). Within both intra-animal and intra-behavior variability 

for non-hit subjects, there are no significant differences between the first hour after the first 

mating bout and the last hour of cohabitation. However, for the first hour after the first mating 

bout, the median intra-behavior variability is significantly greater than the median intra-animal 

variability (p = 010) (Figure 11. B.). 



 

 

20 

A.  
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B. 

Figure 7. Jensen-Shannon divergence (bits) computed for all unique pairs of individual 
behaviors across all A. 9 hit subjects and B. 6 non-hit subjects ordered vertically from least to 
greatest latency to huddling for a total of five minutes, as defined by Amadei et al. (2017). This 
is a measure of dissimilarity between compared PDFs wherein values ranging from 0 to 1 
indicate similar to dissimilar PDFs. The average intra-animal variability is located in the last 
column for each animal, and the average intra-behavior variability is located in the last row for 
each behavior.  
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A. 

B. 

Figure 8. Jensen-Shannon divergence (bits) computed for all unique pairs of individual 
behaviors across all A. 9 hit subjects and B. 6 non-hit subjects. This is a measure of dissimilarity 
between compared PDFs wherein values ranging from 0 to 1 indicate similar to dissimilar PDFs. 
A. For hit subjects, the median intra-behavior variability (Median = 0.034) is significantly 
greater than the intra-animal variability (Median = 0.011) as determined by the Wilcoxon rank-
sum test, p = .020. B. For non-hit subjects, the intra-animal variability (Median = 0.139) is 
significantly greater than the intra-behavior variability (Median = 0.072) as determined by the 
Wilcoxon rank-sum test, p = .001. 
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B.  

Figure 9. Jensen-Shannon divergence (bits) computed for all unique pairs of individual 
behaviors across all A. 9 hit subjects and B. 6 non-hit subjects for the first hour of cohabitation 
after the first bout of mating. Subjects are ordered vertically from least to greatest latency to 
huddling for a total of five minutes, as defined by Amadei et al. (2017). This is a measure of 
dissimilarity between compared PDFs wherein values ranging from 0 to 1 indicate similar to 
dissimilar PDFs. The average intra-animal variability is located in the last column for each 
animal, and the average intra-behavior variability is located in the last row for each behavior.  
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A. 
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B. 

Figure 10. Jensen-Shannon divergence (bits) computed for all unique pairs of individual 
behaviors across all A. 9 hit subjects and B. 6 non-hit subjects for the last hour of cohabitation. 
Subjects are ordered vertically from least to greatest latency to huddling for a total of five 
minutes, as defined by Amadei et al. (2017). This is a measure of dissimilarity between 
compared PDFs wherein values ranging from 0 to 1 indicate similar to dissimilar PDFs. The 
average intra-animal variability is located in the last column for each animal, and the average 
intra-behavior variability is located in the last row for each behavior.  
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A. 

B. 

Figure 11. Jensen-Shannon divergence (bits) computed for all unique pairs of individual 
behaviors across all A. 9 hit subjects and B. 6 non-hit subjects for the first hour after the first 
mating bout (1 Hr) and last hour of cohabitation (6 Hr). This is a measure of dissimilarity 
between compared PDFs wherein values ranging from 0 to 1 indicate similar to dissimilar PDFs. 
A. For hit subjects, there are no significant differences between the median intra-animal or intra-
behavior variability for 1 Hr or 6 Hr. B. For non-hit subjects, the median intra-behavior 
variability (Median = 0.065) is significantly greater than the median intra-animal variability 
(Median = 0.013) as determined by the Wilcoxon rank-sum test, p = .010. 
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Identified Brain-States Corresponding to Regions of the Embedded Space 

 The embedded space of the LFP data is comprised of peaks surrounded by valleys – local 

maxima and surrounding local minima – as indicated by the coloring of the PDFs (Figure 12. 

A.). By finding connected areas in the (𝑧1, 𝑧2) plane such that climbing up the gradient of PD 

consistently leads to the same local maximum, (i.e. conducting a watershed transform) (Meyer, 

1994), 36 separable regions were identified (Figure 12. B.). Each of the identified regions 

contains a single local maximum of PD. Unique peak frequencies of the PSD for each brain 

region characterize the 36 unique regions where there is an identified local maximum of PD 

(Figure 12). Mean power of the mPFC, mean power of the NAcc, net mean power (mean mPFC 

power for all frequencies – mean NAcc power for all frequencies), peak frequency at which 

mPFC power is maximum, and peak frequency at which NAcc power is maximum were 

identified for each region (Table 1). Unique segmented regions of local maximum PDs are 

clustered by PSD similarity, in that the shape of the PSD between brain regions is the most 

similar feature (Figure 14, Figure D. 1 - 36). There is no particular pattern of mean wavelet 

coefficients and the corresponding standard errors, mean PSD of the mPFC, mean PSD of the 

NAcc, or net mean PSD; however, the combinations of the peak frequencies at which mPFC and 

NAcc power are maximum is unique for each identified region, (Table 1, Figure D. 1 - 36). Thus, 

the frequency at which the LFP signal is strongest, namely, power is maximum, is the most 

salient and separable feature for each identified region in the low-dimensional map. 

 Specifically, all regions correspond to similar power spectral densities (PSDs). This 

reflects how we defined our parameters, in that, regions should be clustered by similar power 

spectral density – this confirms t-SNE reliably distinguishes regions with separable spectral 

features. 12 of the 36 regions correspond to exact pairings of peak frequencies, meaning, for 12 
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of 36 regions, both mPFC and NAcc exhibited the maximum power at the same frequency. 

Furthermore, 19 of the 36 regions exhibited nearly-paired peak frequencies wherein the paired 

frequencies differed by up to 12 Hz; these regions will hereafter be referred to as nearly-paired. 7 

of the 36 regions exhibited frequencies differing by greater than 10 Hz: 5, 10, 11, 12, 17, 18, 27, 

31, and 32. First, the regions corresponding to strongest, paired and nearly-paired delta power (1 

to 3 Hz) are 8, 9, 16, 19, 20, 29. Regions corresponding to strongest, paired and nearly-paired 

theta power (4 to 10 Hz) are 1, 2, 3, 4, 13, 14, 15, 22, 23, 24, 25, 26, 28, 30, 33, 34, 35, and 36. 

Additionally, regions corresponding to strongest, paired and nearly-paired gamma power (40 to 

100 Hz) are 6, 7, 10, 12, and 21. Interestingly, region 5 contains points exhibiting highest power 

in the high-gamma band (79.248 Hz) in the mPFC, and in the theta band in NAcc. Furthermore, 

regions 17, 18, and 27 contain points exhibiting highest power in the theta band (approximately 4 

Hz to 9 Hz) in the mPFC and in the high-gamma band (approximately 59 Hz to 79 Hz) in the 

NAcc. Regions 31 and 32 contain points exhibiting highest power in the delta band 

(approximately 1 Hz) in the mPFC and in the low-gamma band (approximately 27 to 36 Hz) in 

the NAcc. The only region corresponding to highest power in the high-gamma band 

(approximately 76 Hz) in the mPFC and in the low-gamma band (approximately 21 Hz) in the 

NAcc is region 11. Overall, pairwise strongest frequency band power determines clustering in 

the low-dimensional embedding. Next, the extent to which pairwise strongest frequency band 

power may be used to classify individuals or behaviors must be assessed. Given LFP data and 

mapping of the LFP data, it may be possible to predict what brain-state one individual is in or 

what behaviors that individual is expressing.  
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A.                     B. 

 
Figure 12. Segmentation into regions via a watershed transform. A. Boundary lines were 
obtained from performing a watershed transform on the PDF of the re-embedding of all 9 hit 
subjects data. The number of regions, unique local maxima, identified were 36. B. Labeled 
watershed map identifying 36 regions of unique local maximum PD. Here, coloring does not 
mean anything. 
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A.            B. 

 
Figure 13. Labelled segmentation of the PDF for the re-embedding of 9 hit subjects into 36 
regions via a watershed transform. Coloring corresponds to the peak frequency of the power 
spectrum for that region. A. The spectral features of LFPs recorded from the mPFC per region 
and B. The spectral features of LFPs recorded from the NAcc. 
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A.                          

Figure 14. Examples of PSDs for signal from each brain region, mPFC and NAcc, within 
specific segmented regions as follows: A. Region 1, B. Region 5, and C. Region 17 in Figure 
13. Coloring is blue for the mPFC and red for the NAcc. All PSDs for each identified region can 
be found in Appendix D.  

B. 

C. 
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Table 1. Summary of identified region features – maximum power for mPFC signal, maximum 
power for NAcc signal, peak frequency for mPFC signal, peak frequency for NAcc signal, and 
net mean power (mean power for mPFC signal – mean power for NAcc signal). Values within 
the bolded box represent the peak frequencies for each brain region, which are the most distinct 
features between segmented regions. 
 

Region mPFC  
Max  
PSD 

NAcc  
Max  
PSD 

mPFC  
Peak F  
(Hz) 

NAcc  
Peak F  
(Hz) 

Net  
Mean  
PSD 

1 0.010 0.015 4.037 3.854 -0.192 
2 0.010 0.012 3.854 3.854 -0.020 
3 0.009 0.010 4.229 4.229 0.063 
4 0.008 0.013 3.678 3.511 -0.202 
5 0.010 0.009 79.248 5.337 0.084 
6 0.008 0.017 45.349 47.508 -0.155 
7 0.009 0.018 52.140 49.770 -0.119 
8 0.008 0.011 2.535 2.535 -0.110 
9 0.007 0.008 2.915 2.915 -0.009 
10 0.011 0.008 68.926 59.948 0.083 
11 0.008 0.007 75.646 20.565 0.028 
12 0.010 0.012 68.926 57.224 -0.030 
13 0.007 0.008 3.511 3.511 -0.162 
14 0.007 0.008 4.037 3.854 -0.092 
15 0.008 0.007 2.310 4.863 0.013 
16 0.011 0.008 2.783 2.915 0.075 
17 0.007 0.011 4.641 79.248 -0.118 
18 0.006 0.007 4.863 59.948 -0.117 
19 0.016 0.009 1.748 1.748 0.133 
20 0.010 0.006 1.668 1.668 0.081 
21 0.008 0.015 79.248 79.248 -0.122 
22 0.007 0.008 6.136 6.136 -0.020 
23 0.009 0.010 7.055 7.055 -0.063 
24 0.008 0.009 7.743 8.498 -0.062 
25 0.009 0.010 5.857 6.136 -0.107 
26 0.009 0.009 5.857 6.136 0.027 
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27 0.007 0.010 9.326 75.646 -0.151 
28 0.009 0.010 1.048 5.857 -0.159 
29 0.012 0.013 1.150 1.205 -0.125 
30 0.007 0.010 6.428 6.428 -0.160 
31 0.015 0.012 1.000 27.186 -0.540 
32 0.012 0.009 1.098 35.938 -0.047 
33 0.005 0.014 5.857 1.668 -0.413 
34 0.011 0.013 10.235 10.235 -0.001 
35 0.013 0.005 11.233 9.326 0.341 
36 0.010 0.014 9.426 9.326 -0.048 

 
DISCUSSION 
 

Here, it has been shown that the neural dynamics, namely corticostriatal signal recorded 

over the course of prairie vole pair bonding can be mapped in a low-dimensional space (Figure 4. 

B.). That mapping can further be assessed by segmenting regions that contain local maxima 

(Figure 12) and by assessing the speed at which animals transition between these regions (Figure 

6). With this mapping, we can assess subtle dynamics and structure of the signal that differ 

between and within individuals during specific behaviors. We can further assess subtle dynamics 

and structure of the signal that emerge over time, by mapping the neural dynamics at different 

time-scales, such as one hour after the first mating bout compared to the last hour of cohabitation 

to assess the temporal emergence of behavior-specific brain-states over the course of pair 

bonding. Given LFP data and this mapping of the LFP data, it may be possible to predict what 

brain-state one individual is in or what behaviors that individual is expressing, conducting neural 

decoding of the LFP signal to understand and identify the neural dynamics contributing to pair 

bond formation, and social behavior at large. 

For hit subjects, intra-behavior variability supersedes that of intra-animal variability 

(Figure 8. A.), meaning individual subject differences in the neural signal from mPFC and NAcc 
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during behaviors were greater than the difference between neural signal exhibited during specific 

behaviors. This may be explained by variable electrode placement, which must be examined by 

sorting individuals by most anterior to posterior electrode placement. It is possible that the more 

similar the electrode placement is between animals, the more similar the corresponding maps 

may be. Although Amadei et al. (2017) did not observe a significant effect of electrode 

placement on mean non-huddling net modulation, this does not necessarily mean electrode 

placement cannot account for subtle differences in signal because Amadei et al. (2017) assayed a 

specific feature of the signal – the amount signal is modulated by low-frequency phase-high-

frequency amplitude coupling from the mPFC to NAcc and NAcc to mPFC. Analyses utilized 

here more generally considered the spectral features of the signal throughout all points in time of 

the recording.  

However, for non-hits subjects, intra-animal variability supersedes that of intra-behavior 

variability (Figure 8. B.), meaning the difference between neural signal from mPFC and within 

or bordering BNST exhibited during specific behaviors was less than individual subject 

differences in the neural signal. This is particularly interesting because the BNST is also a brain-

region considered part of the “social brain network”, in that it works to mediate social anxiety 

and support recognition of conspecifics (Greenberg et al., 2010; Lee et al., 2008). Perhaps there 

are signature neural features of signal from the BNST to be identified for future use to 

understand and decode social behaviors, given neural signal. Future work to assess this include 

identifying the regions present in non-hits animals by using the established mappings of PDFs 

via t-SNE and segmented regions via watershed transform. Overall, by using the mapping and 

segmentation of the mapping (Figure 12) we can now assess spectral features present in 

identified regions for mappings of neural signal during specific behaviors and at specific points 
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in time over the course of pair bonding for both hit and non-hit subjects. Besides assessing how 

mapping of the neural dynamics changes over course intervals of time (Figure 9 -11), we can 

further assess more local changes of the neural dynamics over shorter intervals of time.  

 Here, only LFP data was used to construct mappings. It is theorized that LFP signal is a 

measure of inhibitory activity (Buzsáki, Anastassiou, & Koch, 2012; Herreras, 2016), and as 

such, these constructed mappings may only be reflective of inhibitory neural signal. This may be 

appropriate for analyzing recordings of neural activity in the NAcc, as neuronal inhibition in the 

NAcc facilitates encoding of reward-directed behavior (Taha and Fields, 2006), however, it may 

not be appropriate for assessing the activity in the mPFC or BNST. With neuronal spike data, the 

underlying neural dynamics of pair bonding could be more thoroughly analyzed to assess for 

behavior-specific features relevant for neural decoding (Holdgraf et al., 2017; Munuera, Rigotti, 

& Salzman, 2018). 

Future Directions 

 As we identified the low-dimensional embedded space of the LFP spectral features can 

be assessed in terms of the trajectory and velocity of transitions through the space, meaning the 

time-course and time it takes for animals to move through brain-states, we can now assess the 

transitions in more depth (Figure 6). The data suggest there are two separable states of rest and 

activity in which animals transition through brain-states. Now, the temporal and hierarchical 

pattern of “visiting” brain-states can be assessed, in that the probability an animal will go from 

one brain-state to the next after a certain time can be analyzed as in Berman et al., 2016. In turn, 

this can facilitate elucidation of how transitions between brain-states are reflective of transitions 

between behavior. Thus, a specific question that can be posed is as follows: do transitions 

between brain-states predict transitions between behaviors or vice-versa? Naturally, that allows 
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us to assess if there is hierarchical control of brain-states on behavioral-states and vice versa, and 

if so, what that hierarchy entails. 

Moreover, with the identified spectral features identified for specific behaviors exhibited 

over the course of pair bonding, we may be able to classify a support vector machine (SVM) to 

determine when a specific social behavior is occurring given the neural signal. SVM 

classification and neural nets are used to decode behavior from spectrogram representations of 

LFP signal (Mehring et al., 2003; Niketeghad et al., 2014). As such, if we can identify spectral 

features present during specific behaviors or at specific points in time over the course of pair 

bonding, we may be able to classify those specific behaviors given LFP signal. To test this, we 

must first identify specific spectral features present in the identified segmented regions of the 

low-dimensional map (Figure 9), then identify what features correspond to what behaviors (i.e. 

which regions are represented for which behaviors), and then use the identified features to train 

an SVM. After training an SVM, we can analyze data from a different population of subjects to 

assess if the identified spectral features of the LFP signal are sufficient for classifying behaviors 

during pair bonding. 

Then, to assess the conclusions of Amadei et al., using t-SNE, that is, to map the phase-

amplitude coupling dynamics, we can use the phase-amplitude information represented as the 

Kullback-Liebler modulation index (KL MI) as input. This would require changing the distance 

metric used to separate points, namely, using a different cost function which is not the DKL. 

However, using this input for the mapping will allow us to assess how the net modulation 

changes over time and with respect to specific behaviors exhibited during pair bonding. First, the 

LFP signal must be filtered and transformed in accordance with Amadei et al.’s method (2017) 

by applying a low- and high-pass filter, applying a Hilbert transform to extract phase and 
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amplitude signal at low and high frequencies, then computing the KL MI according to Tort et al., 

2008. The distance metric, (i.e. the cost function minimized during t-SNE implementation), must 

be changed to assess the dissimilarity and similarity of points over time, represented by the KL 

MI over time – we will no longer be assessing PDFs. 

Overall, as Amadei et al. (2017) were the first to elucidate the electrophysiological 

underpinnings of pair bonding, we are now working more towards decoding the neural basis of 

pair bonding and affiliative social behavior at large. With the analysis of subtler dynamics 

present in the neural signal, we may be able to deconstruct the complex mechanism of pair 

bonding and affiliative social behavior as a whole. If we identify unique behavior-specific brain-

states present during pair bonding, and thus social bonding, we may be able to better assess and 

decompose this highly complex phenomenon. 
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Appendix A. Experiments 

All procedures were approved by the Emory University Institutional Animal Care and 

Use Committee. Experimental subjects were fifteen adult, sexually-naïve female prairie voles 

(M. ochrogaster) 76-154 days of age at the start of experimentation. All animals were socially-

housed in same-sex duos or trios until electrode implantation surgery – after surgery, they were 

separated and housed individually. Food (Laboratory Rabbit Diet HF 5326, LabDiet) and water 

were provided ad libitum during a 14:10 hour light:dark cycle. 

Partner animals used in behavioral experiments were adult, sexually experienced males 

under 1.5 years of age. They were matched by age (within 61 days) and weight (within 

approximately 5 g) for each female. 

 

Appendix B. Morlet Wavelet Decomposition 

Specifically, the transform, 𝑊𝑠,𝜏[𝑦(𝑡)] was calculated via  

𝑊𝑠,𝜏[𝑦(𝑡)] =  1
√𝑠 ∫ 𝑦(𝑡)𝜓∗(𝑡−𝜏

𝑠
∞

−∞ ) 𝑑𝑡    (B 1) 

where 

𝜓(𝜂) = 𝜋−1 4⁄ 𝑒𝑖𝜔0𝜂𝑒−1 2𝜂2⁄       (B 2)    

is the Morlet wavelet kernel or mother wavelet, 𝑦𝑖(𝑡) is the continuous LFP time-series data, 𝑠 is 

the time scale of interest, 𝜏 is a point in time, and 𝜔0 is a non-dimensional parameter which 

determined time-frequency resolution, set to 5 here. 

Notably, the Morlet wavelet has the additional property that the time scale, 𝑠, is related to 

the Fourier frequency, 𝑓, by  

𝑠(𝑓) =  𝜔0+ √2+𝜔20
4𝜋𝑓

 ,     (B 3) 
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This can be derived by maximizing the response to a pure sine wave, 𝐴(𝑠, 𝑓) =

|𝑊𝑠,𝜏[𝑒2𝜋𝑖𝑓𝑡]|with respect to 𝑠. However,  𝐴(𝑠, 𝜔)is disproportionally large when responding to 

pure sine waves of lower frequencies. To correct for this, we find a scalar function 𝐶(𝑠) such 

that 𝐶(𝑠)𝐴(𝑠, 𝜔∗) = 1 for all 𝑠, where 𝜔∗ is 2𝜋 times the Fourier frequency, (𝐵 3). For a Morlet 

wavelet, this function is  

𝐶(𝑠) =  𝜋−1 4⁄

√2𝑠
𝑒−1 4(⁄ 𝜔0+ √2+𝜔20)     (B 4) 

 

where again, 𝜔0 is from the relation of the time-scale to frequency. 

Accordingly, we can define our power spectrum as,  

𝑆(𝑘, 𝑓; 𝜏) =  1
𝐶(𝑠(𝑓))

|𝑊𝑠(𝑓),𝜏[𝑦𝑘(𝑡)]|,     (B 5) 

determined from the transform taken from 𝑠(𝑓)to 𝜏 for a time-series 𝑦𝑖(𝑡). This is important, as 

the power spectral density is the input for the non-linear embedding. Last, we use a dyadically 

spaced set of frequencies between 𝑓𝑚𝑖𝑛 = 1 Hz and the Nyquist frequency, 𝑁𝑓(𝑓𝑚𝑎𝑥 = 100 Hz), 

via 

𝑓𝑖 = 𝑓𝑚𝑎𝑥2
𝑖−1

𝑁𝑓−1𝑙𝑜𝑔2
𝑓𝑚𝑎𝑥
𝑓𝑚𝑖𝑛       (B 6) 

for 𝑖 = 1, 2, … 𝑁𝑓 and their corresponding scales via equation (A 3). This creates a wavelet 

spectrogram that is resolved at multiple time scales for each of the first 100 frequencies. 

 

Appendix C. t-distributed Stochastic Neighbor Embedding Implementation 

For our initial embedding using t-SNE, we largely follow the method introduced by van 

der Maaten & Hinton (2008), minimizing the cost function  

𝐶 = 𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑝𝑖𝑗 log 𝑝𝑖𝑗

𝑞𝑖𝑗
 𝑖𝑗                   (C 1)  
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where 𝑝𝑖𝑗 = 1
2⁄ (𝑝𝑗|𝑖 + 𝑝𝑖|𝑗), and 

𝑞𝑖𝑗 =
(1+∆𝑖𝑗

2 )−1

∑ ∑ (1+∆𝑘,𝑙
2 )𝑙≠𝑘

−1
𝑘

 (C 2) 

and ∆𝑖𝑗 is the Euclidean distance between points 𝑖 and 𝑗 in the embedded space. The cost 

function is optimized through a gradient descent procedure that is preceded by an early 

exaggeration period, allowing for the system to more readily escape local minima. This is much 

like to pulling the points, exaggerating the extent to which they are separated, or maximally 

dissimilar. 

The memory complexity of this algorithm prevents the practical number of points from 

exceeding 35,000. The solution here is to generate an embedding using a selection of roughly 

4,375 data points from each of the 8 subjects out of the 9 total hit subjects observed (out of 

approximately 4,000,000 data points per individual). To ensure that these points create a 

representative sample, we perform t-SNE on 20,000 randomly selected data points from each 

individual. This embedding is then used to estimate a probability density by convolving each 

point with a two-dimensional Gaussian whose width is equal to the distance from the point to its 

𝑁𝑒𝑚𝑏𝑒𝑑  = 5 nearest neighbors. This space is segmented by applying a watershed transform to the 

inverse of the PDF, creating a set of regions (Meyer, 1994). Finally, points are grouped by the 

region to which they belong, and the number of points selected out of each region is proportional 

to the integral over the PDF in that region. This is performed for all datasets, yielding a total of 

approximately 35,000 data points in the training set. 
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Given the embedding resulting from applying t-SNE to our training set, we wish to 

embed additional points, i.e. re-embed new points, into our brain-state space by comparing each 

with the training set individually. Mathematically, let 𝑋 be the set of all feature vectors in the 

training set, 𝑋′ be their associated embeddings via t-SNE, 𝑧 be a new feature vector that we 

would like to embed according to the mapping between 𝑋 and 𝑋′, and 𝑧 be the embedding of 

𝑧 that we would like to determine.  

As with the t-SNE cost function, we embedded 𝑧 by enforcing that its transition 

probabilities in the two spaces were as similar as possible. Like before, the transitions in the full 

space, 𝑝𝑗|𝑧, are given by 

𝑝𝑗|𝑧 =  𝑒𝑥𝑝(−𝑑(𝑧,𝑗)2/2𝜎𝑧
2)

∑ 𝑒𝑥𝑝(−𝑑(𝑧,𝑘)2/2𝜎𝑧
2)′𝑥∈𝑋

      (C 3) 

where 𝑑(𝑧, 𝑗) is the Kullback–Leibler divergence (DKL) between 𝑧 and 𝑥 ∈ 𝑋, and 𝜎𝑧 is once 

again found by constraining the entropy of the condition transition probability distribution, using 

the same parameters as for the t-SNE embedding. Similarly, the transition probabilities in the 

embedded space are given by 

𝑞𝑖|𝜁 =
(1+∆𝜁,𝑖

2 )−1

∑ (1+∆𝜁,𝑥′
2 )−1

𝑥′∈𝑋′
       (C 4) 

where ∆𝜁,𝑥′ is the Euclidean distance between 𝜁 and 𝑦 ∈ 𝑋′. 

For each 𝜁, we then found the 𝜁∗ 

𝜁∗ = arg min
𝜁

𝐷𝐾𝐿(𝑝𝑥|𝑧|| 𝑞𝑦|𝜁)     (C 5) 

= arg min
𝜁

∑ 𝑝𝑥|𝑧log 
𝑝𝑥|𝑧

𝑞𝑦(𝑥)|𝜁
𝑥∈𝑋      (C 6) 

that minimizes the DKL between the transition probability distributions in the two spaces. 
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As before, this is a non-convex function, leading to potential complexities in performing 

our desired optimization. However, if we start a local optimization, using the Nelder–Mead 

simplex algorithm (Jongen, Meer, & Triesch, 2004; Lagarias, et al.,1998) from a weighted 

average of points, 𝜁0 , where 

 𝜁0 = ∑ 𝑝𝑥|𝑧𝑦(𝑥)
𝑥∈𝑋

,      (C 7) 

this point is almost always within the basin of attraction of the global minimum. To ensure that 

this is true in all cases, however, we also performed the same minimization procedure, but 

starting from the point 𝑦(𝑥∗), where 

𝑥∗ = arg max
𝑥

𝑝𝑥|𝑧                  (C 8) 

This returned a better solution. Because this embedding can be calculated independently for each 

value of z, the algorithm scales linearly with the number of points. We also made use of the fact 

that this algorithm is embarrassingly parallelizable, allowing the algorithm to run faster. 

Moreover, because we have set our transition entropy, 𝐻, to be equal to 5, there are rarely more 

than 50 points to which a given 𝑧 has a non-zero transition probability. Accordingly, we sped up 

our cost function evaluation considerably by only allowing 𝑝𝑥|𝑧 > 0 for the nearest 200 points to 

𝑧 in the original space. 

Lastly, we found the space of brain-states for the non-hits subjects by embedding these 

data into the space created with the hits training set. We find that the mean extent to which all 

points embedded well in the space is 93.7%, indicating all hit subjects’ data embedded well. 

When re-embedding all non-hits animals, that value was 93.7%. If above 90%, we determined 

the data were embedded well. 
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Appendix D. Identified Spectral Features (PSD) For Each Region 

 

Figure D. 1. Region 1 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 2. Region 2 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 3. Region 3 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 4. Region 4 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 5. Region 5 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 6. Region 6 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 7. Region 7 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 8. Region 8 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 9. Region 9 PSD for Morlet wavelet decomposed LFP signal recorded from the mPFC 

and NAcc. 
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Figure D. 10. Region 10 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 11. Region 11 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 12. Region 12 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 13. Region 13 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 14. Region 14 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc.
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Figure D. 15. Region 15 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 16. Region 16 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 17. Region 17 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 18. Region 18 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 



 67 

 

Figure D. 19. Region 19 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 20. Region 20 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 21. Region 21 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 22. Region 22 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 23. Region 23 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 24. Region 24 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 25. Region 25 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 26. Region 26 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 27. Region 27 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 28. Region 28 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 29. Region 29 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 30. Region 30 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 31. Region 21 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 32. Region 32 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 33. Region 33 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 34. Region 34 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 35. Region 35 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 
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Figure D. 36. Region 36 PSD for Morlet wavelet decomposed LFP signal recorded from the 

mPFC and NAcc. 

 

 

 

 

 


