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Abstract

Essays on housing and macroeconomics
By Tianhao Zhao

The U.S. economy after the Great Recession shows a set of persistent and puzzling
macroeconomic patterns, including a sharp and prolonged decline in aggregate con-
sumption, a slow recovery in house prices and employment, and substantial regional
variation in these economic outcomes. These facts have raised ongoing academic and
policy debates about the underlying mechanisms driving the depth and persistence
of the economic downturn, as well as the slow and uneven path to recovery. Exist-
ing studies highlight the role of financial frictions such as collateral constraints, and
nominal rigidities, particularly downward nominal wage rigidity (DNWR). However,
these two classes of frictions have often been studied in isolation. This disserta-
tion proposes and systematically investigates a unified theory of friction interaction,
which emphasizes how the simultaneous presence of financial and nominal frictions
can jointly amplify the effects of aggregate shocks and delay recovery dynamics in a
nonlinear and persistent manner.

The first chapter provides empirical support for this theory by estimating the
heterogeneous effects of net worth shocks across the U.S. counties using a newly con-
structed dataset, CountyPlus, covering the period from 2003 to 2019. The analysis
focuses on two key frictions: collateral constraints and DNWR. It uncovers sub-
stantial spatial heterogeneity in the response of consumption, unemployment, and
housing outcomes to net worth shocks. Using a semi-varying coefficient model, this
chapter identifies significant amplification and interaction effects in the transmission
of shocks: counties facing both tighter collateral constraints and more binding down-
ward wage rigidity experience deeper and more persistent downturns. These effects
are understated by standard models. The empirical findings are rationalized by a
tractable two-agent general equilibrium model, which demonstrates how the inter-
action of these frictions can endogenously produce the observed heterogeneity and
persistence, especially through their impact on household deleveraging, consumption
cuts, and labor market slack.

Building on this evidence, the second chapter develops a full-scale quantitative
heterogeneous agent model to formally study the amplification effects of friction in-
teraction. The model features households with liquid savings, illiquid housing wealth,
fixed mortgage debt payment, and portfolio adjustment decisions, combined with col-
lateral and DNWR constraints. The equilibrium is solved globally, and the model is
calibrated to match key macroeconomic outcomes before the Great Recession. When
subject to an adverse aggregate shock, the model reproduces the joint dynamics of the
U.S. economy after the Great Recession, including the deep drop and slow recovery
in consumption, employment, house prices etc. Comparative statistics demonstrate
that the interaction of collateral constraint and DNWR generates the strongest and
most persistent responses across all major macro variables. Removing either friction
significantly weakens the amplification channel. A welfare analysis further quantifies



the economic cost of each friction and their interaction, offering insights into targeted
stabilization policies.

Together, these chapters provide a coherent and empirically grounded explanation
for the uneven and prolonged recovery from the Great Recession. By highlighting the
amplification effects arising from the interaction of financial and nominal frictions, this
dissertation contributes to a deeper understanding of the transmission of aggregate
shocks in frictional economies and informs the design of more effective macroeconomic
stabilization policies.



Essays on housing and macroeconomics

By

Tianhao Zhao
M.A., Emory University, GA, 2022

B.A., Beihang University, China, 2018

Advisor: Vivian Yue, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Economics
2025



Acknowledgments

I would like to express my deepest gratitude to Professor Vivian Yue, my advisor,

for her exceptional mentorship, unwavering support, and constant encouragement

throughout my PhD journey. Her intellectual guidance, patience, and generosity

have been instrumental in shaping not only this dissertation but also my academic

career. I feel incredibly fortunate to have had her as my advisor.

I am also sincerely thankful to my committee members: Professor Tao Zha, Profes-

sor Kaiji Chen, and Professor Elena Pesavento. Their deep insights, critical feedback,

and continued support have pushed me to improve my work at every stage. Their ad-

vice has profoundly influenced both the structure and substance of this dissertation.

I am truly grateful for the time and thought they have invested in my training.

I thank the Department of Economics at Emory University for providing a sup-

portive and stimulating academic environment over the past six years. I would like

to extend special thanks to the three Directors of Graduate Studies I have worked

with: Professor Ian McCarthy, Professor David Jacho-Chávez, and Professor Sara
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1

Chapter 1

Frictions, Net Worth Shocks, and

Heterogeneous Impacts

1.1 Introduction

The wealth effect is a key mechanism through which economic shocks propagate

through the economy, influencing household consumption, unemployment, and other

economic outcomes. In the analysis of 2008 Great Recession, Bernanke (2018) em-

phasized how disruptions in credit supply, including those stemming from declines in

housing wealth, significantly impacted economic activity. This perspective continues

to shape policy discussions today, with Federal Reserve officials consistently high-

lighting the importance of housing market dynamics and their potential impacts on

the broader economy (Powell, 2022, 2023).

The recovery from the Great Recession revealed significant geographical dispari-

ties. Yagan (2019) documents that workers in harder-hit areas faced persistent em-

ployment losses even six years after the shock, and Beraja et al. (2019) shows how

regional differences in wage flexibility led to varying unemployment responses. These

regional patterns extend beyond crisis periods. Guren et al. (2021) reveals substan-
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tial geographic differences in housing wealth effects across cities over a 40-year period.

These findings suggest that local economic conditions play a crucial role in determin-

ing both the initial impact and the persistence of aggregate shocks.

This paper aims to uncover the mechanisms that drive disparate economic out-

comes in response to similar aggregate shocks by examining the heterogeneous effects

of net worth shocks across U.S. counties. We focus specifically on local collateral con-

straints, downward nominal wage rigidity (DNWR), and their interactions. A grow-

ing body of research indicates that the presence of financial and nominal frictions can

amplify the effects of net worth shocks and impede the recovery process. Financial

frictions, including collateral constraints and borrowing limits, can constrain house-

holds’ ability to smooth consumption and limit firms’ investment capacity, thereby

leading to more severe and persistent downturns (Mian and Sufi, 2014). Similarly,

nominal frictions, such as downward nominal wage rigidity, may hinder wage ad-

justments during recessions, resulting in elevated unemployment and slower recovery

(Schmitt-Grohé and Uribe, 2016). While these frictions have been examined in isola-

tion, there is a lack of empirical evidence on their interaction and collective influence

on shock propagation and recovery dynamics.

This gap in our understanding has significant policy implications, as the effective-

ness of macroeconomic interventions may vary substantially across regions with differ-

ent financial and labor market characteristics. While the aggregate effects of wealth

shocks are well-documented, their manifestation across diverse local economies, each

with its own financial and labor market characteristics, remains less understood. Re-

gions may exhibit markedly different dynamics of consumption, unemployment, and

housing prices in response to the same aggregate shock, necessitating tailored policy

responses. For instance, areas with tighter collateral constraints might require tar-

geted credit easing measures, while regions with higher DNWR might benefit more

from active labor market policies.
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We fill this gap by presenting new empirical evidence of the persistent and hetero-

geneous effects of net worth shocks throughout the United States. We have developed

a novel county-level dataset, named CountyPlus, covering 3,058 US counties spanning

the years 2003 to 2019. This granular data allows us to study the impact of shocks at

a local scale and examine how the effects vary depending on the severity of collateral

constraints and DNWR within each county. We posit that these interactions may

lead to non-linear effects, where the impact of shocks varies disproportionately with

the intensity of local frictions. To capture the nonlinear and heterogeneous effects of

net worth shocks, we employ a semi-varying coefficient model. This approach allows

us to uncover significant non-linearities in the impact of net worth shocks, which

standard linear models, such as linear local projections (Jordà, 2005), fail to capture.

The linear local projections that assume linear heterogeneous effects across counties

(Cloyne et al., 2023), thereby underestimate the potential heterogeneity in the effects

of net worth shocks arising from the interaction of financial and nominal frictions.

Our empirical analysis reveals several key findings. Firstly, we observe significant

heterogeneity in the impact of net worth shocks across counties, with the magni-

tude of effects varying based on the degree of local financial and nominal frictions.

Counties with tighter collateral constraints and greater prevalence of DNWR tend to

endure more enduring and pronounced downturns subsequent to adverse net worth

shocks. Furthermore, employing a semi-varying coefficient model, we unveil notewor-

thy non-linearities in these heterogeneous effects, suggesting that the impact of net

worth shocks can be disproportionately amplified when both collateral constraints

and DNWR are binding.

To rationalize these empirical findings, we develop a tractable two-agent general

equilibrium model that integrates collateral constraints and DNWR. In the model, a

negative net worth shock induces households to increase precautionary savings and

deleverage in response to tightened collateral constraints. This adjustment process
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is prolonged by the illiquidity of housing wealth, leading to a persistent decline in

consumption. In the meanwhile, the drop in aggregate demand caused by deleveraging

results in higher unemployment due to DNWR. The model provides a conceptual

framework for understanding the slow recovery observed after the Great Recession

and the role of financial and nominal frictions in propagating the effects of shocks.

Our paper contributes to several strands of the literature. We add to the growing

body of work concerning the impact of balance sheet shocks on economic outcomes,

extending the influential studies conducted by Mian et al. (2013) and Mian and Sufi

(2014). Recent research in this domain has explored the role of housing wealth during

the Great Recession (Kaplan et al., 2020a; Guren et al., 2021; Kaplan et al., 2020b).

We complement these studies by providing new evidence on the heterogeneous and

persistent effects of net worth shocks across US counties while also emphasizing the

role of local financial and nominal frictions in shaping these outcomes. Furthermore,

our findings contribute to the literature on the importance of financial and nominal

frictions in amplifying economic shocks. In situations where borrowing constraints

exist, households with high debt positions exhibit heightened sensitivity to income

fluctuations (Baker, 2018), while this effect demonstrates differentiated impacts on

consumption during boom and bust years (Guerrieri and Iacoviello, 2017a). On the

firm side, financial frictions in the form of borrowing and liquidity constraints also

contribute to reduced employment growth (Siemer, 2019). Several recent theoretical

studies have explored how collateral constraints lead to a slow deleveraging process

following a crisis (Guerrieri et al., 2020c; Berger et al., 2018a) in partial equilib-

rium models. Concurrently, recent empirical research, such as Jones et al. (2022),

has emphasized the role of credit shocks in decelerating recovery due to the gradual

household deleveraging process. In the meanwhile, theoretical work has explored the

consequences of DNWR for the labor market and the macroeconomy (Schmitt-Grohé

and Uribe, 2016, 2017). Empirical works have examined the relationship between
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DNWR and unemployment in the US, demonstrating the significant negative impact

on the labor market (Fallick et al., 2016; Daly and Hobijn, 2014; Elsby et al., 2016).

Additionally, research has shown that DNWR can affect other macroeconomic vari-

ables and policy multipliers (Shen and Yang, 2018). We provide empirical evidence

on the interaction between these two types of frictions, emphasizing their joint role

in generating non-linear and persistent responses to shocks.

The remainder of the paper is structured as follows. In Section 1.2, we present a

straightforward theoretical framework that accounts for the slow recovery following

the Great Recession, employing collateral constraint and DNWR. Section 1.3 outlines

the construction of the CountyPlus dataset, while Section 1.4 provides the estimated

heterogeneous impact of net worth shocks under financial and nominal frictions.

1.2 A simple two-agent model

This section proposes an analytical two-agent general equilibrium model, following

the approach outlined by Bocola and Lorenzoni (2020a), to illustrate our mechanism.

The model is in discrete time with an infinite horizon starting from t = 0. Uncer-

tainty is encapsulated by a Markov chain st, with transition probabilities denoted

by π(st+1|st). Let st := (st, st−1, . . . ) denote the history. The economy is popu-

lated by two types of homogeneous agents, entrepreneurs (borrowers) and households

(lenders). Households supply one unit of labor inelastically and receive wage income.

They enjoy non-durable goods consumption and housing services, denoted as cl and

hl respectively. Furthermore, households can allocate their resources into two types

of assets: liquid savings at and liquid housing wealth hl. Equation (1.1) outlines the

household’s lifetime problem, where q(st+1|st) represents the price of liquid bonds,

p(st) denotes house prices, w(st) signifies wage rates, and l(st) indicates labor supply.
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V l(st) = max
cl(st),{a(st+1)},hl(st)

cl(st) + γ log hl(st) + βEV l(st+1) (1.1)

cl +
∑
st+1

q(st+1|st)a(st+1) + p(st)[hl(st)− hl(st−1)] = w(st)l(st) + a(st)

The entrepreneurs function as producers of consumption goods, utilizing their

housing wealth and hiring labor from households. They employ technology, as rep-

resented in Equation (1.2), to produce consumption goods and pay households with

wages. The market for consumption goods is perfectly competitive, , with producers

earning zero profits. However, the labor market encounters friction due to downward

nominal wage rigidity (DNWR). DNWR is modeled, as shown in Equation (1.3), by

imposing a lower bound δ on the growth rate of nominal wages, following the for-

mulation in Schmitt-Grohé and Uribe (2016). The slackness condition outlined in

Equation (1.4) signifies the presence of involuntary unemployment when the DNWR

constraint becomes binding.

Y (st) = Alα(st)[u(st)h(st)]1−α (1.2)

w(st) ≥ δw(st−1) (1.3)

(1− l(st))(w(st)− δw(st−1)) = 0 (1.4)

Entrepreneurs have the option to obtain a loan b(st+1) to finance their house purchase.

However, they encounter friction in the financial market, leading to state-contingent

collateral constraints governing the extent of debt they can secure. Specifically, the

amount of raised debt cannot exceed θ fraction of the purchased housing value1.

1WLOG, an alternative model equivalently assumes experts face a ”lottery” for borrowing ad-
justments, winning with probability λ(st+1). The empirical measure of collateral constraints in later
sections aligns conceptually with this λ.
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Equation (1.5) gives the formulation of the entrepreneur’s lifetime problem, wherein

u(st) denotes the housing productivity shock2, the sole source of uncertainty in this

economic framework, and n(st) represents net worth. Further details regarding the

model and proofs are presented in Appendix A.2.

V b(st) = max
c(st),{b(st+1)},h(st),l(st)

log c(st) + βEV b(st+1) (1.5)

c(st) + p(st)h(st) = n(st) +
∑
st+1

q(st+1|st)b(st+1)

n(st) := p(st)h(st−1) + y(st)− b(st)

y(st) := Y (st)− w(st)l(st)

b(st+1) ≤ θp(st+1)h(st),∀st+1

We adopt a general equilibrium in our analysis. This framework enables us to

explore the interaction between nominal and financial frictions. In equilibrium, the

liquid bond market must clear, ensuring that assets equal liabilities, expressed as

a(st) = b(st), given bond prices {q(st+1|st)}. In the housing market, with a constant

supply denoted as H, equilibrium is achieved when the sum of housing and liquid

housing wealth equals the total supply, represented by h(st) + hl(st) = H, at the

equilibrium price level p(st). The labor market, however, does not necessarily clear

due to DNWR. Nonetheless, when it does, labor supply equals 1, denoted as l(st) = 1,

and entrepreneurs remunerate households at competitive wage rates. We examine a

specific case of one-shot deviation in our economy, where all ut ≡ 1 except for u1.

The housing productivity shock u1 is drawn from a distribution over the support

(0, ū]. Consequently, the realized economy follows a deterministic trajectory from

t = 2. In a frictionless version of this model, the shock u1 would exert no influence

2This shock can be translated into a shock to household wealth, as its impact on household net
worth can be analytically determined within this model.
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on consumption and unemployment, and the economy would remain on an unbinding

equilibrium trajectory.

Proposition 1.2.1 (Persistent effect). There exist a unique continuation equilib-

rium that depends on the states (u1, h0, b1(u1)). In the continuation equilibrium,

the collateral constraint is binding for a finite number of periods J , with J = 0 iff

n1(u1) ≥ n̄1 := p̄h̄(1− βθ)/β, where p̄ and h̄ are jointly determined by

(1− β)p̄ =
γ

H − h̄
(1.6)

p̄(1− β) = β(1− α)h̄−α (1.7)

Proposition 1.2.2 (Heterogeneous effect). There exist levels of the entrepreneur’s

financial friction parameter θ and the DNWR parameter δ, such that if

w0

n0

≥ α

δ(1− α)

[
1 + (1− θ)(1− α)(

p0h
l
0

γ
− 1)

]
(1.8)

then, in equilibrium, the date 1 collateral constraint and DNWR both bind when u1 is

in a non-empty interval [û0, u
∗
0] where

u∗0 =

(
δw0

αA

) 1
1−α

h−1
0 (1.9)

û0 =
n0

A(1− α)h0

(
δw0

αA

) α
1−α

[
1 + (1− θ)(1− α)

(
p0h

l
0

γ
− 1

)]
(1.10)

, and the u1 shock effects:

∂c1
∂u1

> 0,
∂l1
∂u1

> 0,
∂p1
∂u1

> 0 or < 0 or = 0 depends (1.11)

which are also non-linear functions of θ and δ.

Proposition 1.2.1 provides the formal statement regarding the potential persistent
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effect of the one-deviation shock u1
3. In a frictionless economy, state-contingent

claims enable borrowers to fully insure their consumption against any magnitude of

the one-deviation shock u1, which is a standard conclusion in complete market models.

However, the presence of collateral constraints impedes borrowers from immediately

adjusting to maintain the ideal net worth level. Consequently, when a significant net

worth loss occurs due to the shock u1, borrowers are unable to borrow sufficiently

to promptly revert to an unbinding equilibrium trajectory but must instead wait for

J periods. As a result, they endure an extended period of consumption cut. This

slow recovery process is influenced by both economic frictions. Notably, the threshold

of net worth required for instant adjustment decreases with the collateral constraint

parameter θ, implying that even minor negative shocks can induce persistent effects in

regions characterized by stringent collateral constraints. Additionally, the magnitude

of net worth loss is depending on the DNWR parameter δ, indirectly contributing to

the persistence of effects.

Figure 1.1: Baseline shock effects

0.0 0.5 1.0 1.5

lo
g
c 1

Consumption

0.0 0.5 1.0 1.5

u1

1
−
l 1

Unemployment

0.0 0.5 1.0 1.5

lo
g
p 1

House price

CC binding

DNWR binding

Friction-less

Baseline

The financial and nominal frictions not only divert the economy from an unbinding

equilibrium path over time, but also generate heterogeneous effects regarding the size

of the u1 shock. Consider the scenario at t = 1. Let f1 := f1(u1) represent a period-1

economic outcome (e.g., consumption, unemployment, and house price). Quantita-

3See Appendix A.2.2 for the proposition proof.
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tively, f ′
1(u1) indicates the impact of the u1 shock. If f

′
1(u1) exhibits dependence on θ

or δ, then we denote the presence of heterogeneous effect(s) of the financial or nomi-

nal frictions. Moreover, we refer to such heterogeneous effects as non-linear if f ′
1(u1)

varies for equal-size deviations in θ or δ from the baseline level. Proposition 1.2.2

addresses these non-linear heterogeneous effects. Under specific initial conditions,

the effects of the u1 shock on period-1 consumption, unemployment, and house price

are highly non-linear functions of θ and δ. Depending on varying initial conditions

and whether the collateral constraint and DNWR constraint bind, the effects of the

u1 shock at the same u1 level differ. Figure 1.1 offers an illustrative depiction of the

u1 shock effects, contrasting the baseline economy satisfying Equation (1.8) with a

friction-less version of the model introduced in Appendix A.2.4. To further demon-

strate the heterogeneity and non-linearity of these effects concerning the frictions,

consider the point u1 = û0 as an example. At this shock level û0, the collateral con-

straint exactly binds while c′1(u1) equals zero under the baseline θ level. Such a shock

effect on consumption would be positive for a lower θ, indicating a tighter collateral

constraint. However, it would remain zero for larger θ. This discrepancy in the u1

shock effect across different levels of the financial friction underscores its heteroge-

neous nature, with this heterogeneity being non-linear relative to the baseline level

of θ. Furthermore, the threshold level û0 is also depending on the nominal friction

parameter δ, indicating complex interaction effects between the financial friction and

nominal friction. A more direct illustration of such non-linear heterogeneous effects

is depicted in Figure A.2, which showcases the results of simple sensitivity analysis

concerning the θ and δ parameters. Expanding on this, the interval of amplification

effects of the u1 shock in Figure 1.1 may vanish if the initial condition of Equation

(1.8) is not met. In such cases, the functional shapes of the u1 shock effects would

further alter. In Section A.2.3 of Appendix A.2, we engage in further theoretical

discussions concerning the global properties of our model.
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So far, we have presented a basic two-agent model to explore the dynamics of

financial and nominal frictions and their interactive impact on the economy, echoing

the large heterogeneous economic fluctuations and sluggish recovery observed during

and post the Great Recession. Certainly, our model is oversimplified, lacking sev-

eral quantitatively significant features such as incomplete markets, realistic balance

sheet structures, long-term mortgages, and illiquid housing wealth. The frictions are

reduced to two parameters for analytical tractability, whereas recent research has

highlighted a more intricate relationship between unemployment and financial fric-

tions (Siemer, 2019). Nonetheless, our simplified model unveils complex non-linear

heterogeneous effects of shocks to net worth. In the following sections, we quantita-

tively estimate these effects using a novel dataset, employing an empirical strategy

adapted to accommodate such non-linear heterogeneity.

1.3 Data: CountyPlus

We construct a county-level panel dataset (CountyPlus) spanning the period from

2003 to 2019, covering about 3,058 counties in the United States4. This dataset

comprises a broad collection of variables relating to household balance sheets, local

economies, and demographics. Its high replicability stems from the fact that all

data sources are publicly available and accessible free of charge. In this section,

we outline the definition of core variables and detail the methodology employed for

dataset construction5. Table 1.1 presents the descriptive statistics of the principal

variables in the sub-sample used in the analysis of this paper.

We adhere to the methodology outlined in Mian et al. (2013) for constructing

household asset and liability variables. The primary variable under consideration in

our study is household net worth. We define household net worth for county i in year

4Github repository: github.com/Clpr/CountyPlus
5See Appendix A.1 for a comprehensive list of available variables.
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Table 1.1: Descriptive statistics for regressions

Variable N 25% qt Median Mean Std. Dev 75% qt

Logarithm real net worth per capita, log million $ 25974 -9.18 -8.59 -8.69 1.00 -8.11
Logarithm real consumption per capita, log $ 27640 4.36 4.73 4.71 0.58 5.08
Unemployment rate, pct 27751 4.10 5.50 6.10 2.68 7.60
Logarithm real house price index 27751 -0.30 -0.02 0.05 0.49 0.32
Fraction of Wage Cuts Prevented (FWCP), pct 25009 -31.46 -11.03 -26.86 57.65 -1.29
Share of mortgage loan denials due to lack of collateral, pct 27744 10.17 13.64 14.87 6.72 18.56
Logarithm housing wealth share to net worth 25974 0.54 0.78 0.88 2.19 1.17
Share of tradable sector employment, pct 27751 0.00 1.03 4.48 8.00 5.80
Share of construction sector employment, pct 27751 8.25 11.68 13.45 9.95 16.47
Logarithm housing units per capita 27751 -0.88 -0.79 -0.78 0.38 -0.67

Notes: 1. The year spans from 2013 to 2019. 2. Because of the availability of consumption data, only 1700 counties are reported
in this table which is consistent with the baseline regressions. 3. Real variables are deflated by CPI All Urban Consumers (1982-
1984=100)

t as NW it = Sit + Bit + Hit − Dit, where Sit represents equity asset holdings, Bit

denotes fixed-income holdings, Hit signifies housing asset holdings, and Dit indicates

the debt position. Our estimation of equity and fixed-income holdings works under the

assumption that households hold the market portfolio. This assumption implies that

the income share from these asset classes aligns with the proportion of asset holdings.

To determine the income derived from equity and fixed-income holdings, we utilize

data on ordinary dividends and taxable interest sourced from the Survey of Income

(SOI)6 published by the Internal Revenue Service (IRS). This approach enables us

to allocate national holdings for households and non-government organizations across

individual counties. The aggregate data used for this purpose is obtained from the

Federal Reserve’s Flow of Funds, which is regularly updated on a quarterly basis7. For

each year, we derive the average holding value. Specifically, equity holdings consist of

directly held and indirectly held equity, while fixed-income holdings encompass both

directly held and indirectly held debt securities8. Equation (1.12) and (1.13) outline

the formulas employed to estimate Si,t and Bi,t.

6IRS: Survey of Income - County Data
7Fed Flow of Funds: Balance Sheet of Households and Nonprofit Organizations, 1952 - 2022
8In this way, the holding of mutual funds is split into the two asset categories.

https://www.irs.gov/statistics/soi-tax-stats-county-data
https://www.federalreserve.gov/releases/z1/dataviz/z1/balance_sheet/table/
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Si,t =
County dividend incomei,t∑
j County dividend incomej,t

× National total equity of householdt (1.12)

Bi,t =
County interest incomei,t∑
j County interest incomej,t

× National total debt security of householdt

(1.13)

To derive the aggregate household debt position for county i in year t, we multiply

the debt-to-income ratio with the adjusted gross income (AGI) sourced from the SOI.

The county-level debt-to-income ratio is accessible through the Enhanced Financial

Accounts of the Fed’s Flow of Funds9. The formula to calculate debt positions is

outlined in Equation (1.14).

Di,t = Household debt-to-income ratioi,t × AGIi,t (1.14)

Estimating household housing wealth holdings involves employing more intricate

techniques. In Mian et al. (2013), the assumption was made that changes in housing

wealth value were solely attributed to fluctuations in housing prices, utilizing the

2006 housing wealth exposure and the Core Logic house price index. However, due to

improved data availability today, we are now able to relax this assumption. Equation

(1.15) defines the formula for estimating household housing wealth for each year.

Specifically, the exposure is estimated by considering the total number of housing

units estimated by the Census Bureau10 and a parameter representing the average

number of housing units per house. As illustrated in Figure 1.3, this parameter is set

to 1.8 to align with the trajectory of household balance sheet structure. County-level

housing prices are projected using the House Price Index (HPI)11 published by the

Federal Housing Finance Agency (FHFA), alongside the cross-sectional distribution

9Fed Flow of Funds: Enhanced Financial Accounts, Household Debt by State, County, and MSA
10Census Bureau: Population and Housing Unit Estimates Datasets
11Federal Housing Finance Agency: House Price Index Datasets

https://www.federalreserve.gov/releases/efa/enhanced-financial-accounts.htm
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-housing-units.html
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx
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of median housing values in 2019 estimated from Ameican Community Survey (ACS)

data.

Hi,t =
Total housing unitsi,t

Average housing units per house
×Median house valuei,2019 ×

HPIi,t
HPIi,2019

(1.15)

The net worth shock is identified as a Bartik-style shock12 in Equation (1.16)

which alleviates the endogeneity concern. Here, sji,t−1 represents the one-year lagged

exposure of asset type j, while gjt−1,t means the one-year growth rate of the asset price.

To illustrate, the net worth shock from 2008 to 2009 is formulated by interacting the

2008 asset exposures with the 2008-2009 growth rate of aggregate price indices. Such a

constructed shock is considered exogenous to the county’s outcome variables and other

predetermined factors. Specifically, we utilize the NASDAQ composite index as the

price index for equity holdings, the ICE BoA Corporate Bond Index for fixed income

holdings, and the logarithmic growth of state leave-one-out average House Price Index

(HPI) for housing asset holdings. Figure 1.2 displays the large geographical variation

of both net worth and net worth shocks across the U.S.

xi,t :=
∑

j∈{S,B,H}

sji,t−1g
j
t−1,t (1.16)

To estimate county consumption, we adopt a methodology akin to Zhou and Car-

roll (2012) and Case et al. (2011), leveraging sales tax data. Sales tax in the United

States varies across states, principally applying to tangible consumption and some ser-

vices for final consumers. Equation (1.17) outlines the formula for estimating county

consumption within state s. This method distributes state aggregate consumption,

obtained from personal consumption expenditure (PCE) data by the Bureau of Eco-

12Appendix A.7 performs panel unit root tests for the identified shock.
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Figure 1.2: Net worth and net worth shocks

(a) Net worth shock during the Great Reces-
sion

(b) Net worth before the Great Recession

nomic Analysis (BEA) and population estimates by the Census Bureau, to counties

within the state. The distribution share is determined by the taxable sales in each

county13. We collect tax data from local departments of revenue in 27 states, encom-

passing 1700 counties14.

Ci,t =PCEs,t × Populations,t ×
Taxable salesi,t∑
j∈sTaxable salesj,t

(1.17)

To measure the magnitude of financial friction, particularly in the form of collat-

eral constraints, we construct an indicator termed as the proportion of mortgage loan

denials attributable to insufficient collateral in relation to total denial cases (DENI )

in each county. The data for this indicator is sourced from the public version of the

Home Mortgage Disclosure Act (HMDA) transaction data. Figure 1.4 illustrates the

overall pattern of financial friction intensity over time. Notably, the share of collateral

constraints experienced a substantial surge during the Great Recession, followed by a

13Some states directly report gross/taxable sales (consumption), while some states report tax
revenue only. For those states only reporting tax revenue, we adjust the distribution with tax rates
to correct the measurement error. In our regression analysis, state fixed effects are also added to
further control the potential measurement errors. See Appendix A.1.1 for details.

14See Appendix A.1 for a list of available states and discussions about important institutional
details.
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Figure 1.3: Comparing with Flow of Funds
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protracted period to revert to pre-crisis levels. Meanwhile, Figure 1.6a reveals there

is also a large geographical variation of the financial friction across the county, which

allows us to empirical examine the heterogeneity of shock propagation.

Local labor markets are investigated through wage and employment data by in-

dustry, classified into tradable, non-tradable, and construction sectors at the 4-digit

NAICS level, utilizing the County Business Pattern (CBP) dataset and following the

methodology of Mian and Sufi (2014). Hourly wages are estimated using an equation

where total salaries and wages are sourced from the Statistics of Income (SOI), and

state-level weekly working hours are obtained from the Bureau of Labor Statistics’

Current Employment Statistics (CES)15. Furthermore, the Herfindahl-Hirschman In-

dex (HHI) is computed for each industry annually, defined as the sum of the squared

employment share percentages across counties.

15Bureau of Labor Statistics: Current Employment Statistics

https://www.bls.gov/sae/data/
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Figure 1.4: Collateral constraint intensity over time
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Wi,t =
Total salaries and wagesi,t

Weekly working hourss,t × 52
(1.18)

To measure DNWR, we adopt the approach of Holden and Wulfsberg (2009). We

assess DNWR in counties by contrasting the actual nominal wage growth distribution

with a rigidity-free notional distribution, using data from county-industry pairs by

assuming average employees. The nominal wage growth for industry j in county i

during year t is represented by ∆wj,i,t, while Gi,t means the assumed notional distri-

bution of nominal wage growth for county i in year t. We parameterize Gi,t using

a location parameter and a dispersion parameter, (µi,t, σi,t), with µi,t indicating the

median nominal wage growth for the county, and σi,t representing the span between

the 35th and 75th quantiles, q35i,t and q75i,t , respectively. This model allows variations

in Gi,t across different counties and years. To construct Gi,t = G(µi,t, σi,t), we first

estimate an empirical normalized distribution G(0, 1), then re-scale it to G(µi,t, σi,t),

assuming uniformity in the shape of notional distributions across counties. Specifi-

cally, we take a sub-sample from all counties with upper 25% wage growth in a given
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year to estimate a normalized empirical distribution G(0, 1). These upper-quarter

observations are considered unbinding to downward nominal wage rigidity such that

Equation (1.19) can be seen as realizations from G(0, 1).

xj,m,t =
∆wj,m,t − µi,t

q75m,t − q35m,t

,m = 1, . . . , N top25%
t , xj,m,t ∼ G(0, 1) (1.19)

With the empirical distributionG(0, 1) estimated from {xj,m,t}, we construct a rigidity-

free notional distribution Gi,t for all counties using Equation (1.20), where µi,t repre-

sents the median nominal wage growth in county i, and X is a random variable that

follows G(0, 1). The realizations of the random variable Zi,t then define an empirical

notional distribution Gi,t for county i in year t.

Zi,t = X(q75i,t − q35i,t) + µi,t, X ∼ G(0, 1) (1.20)

In Holden and Wulfsberg (2009), the fraction of wage cuts prevented (FWCP) is used

in Equation (1.21) as a measure of the extent of DNWR, where πt represents the

inflation rate, Ni,t denotes the number of observations in county i, p̃i,t is the notional

incidence rate of a nominal wage cut as defined in Equation (1.22), and pi,t means

the actual incidence rate of nominal wage cuts in Gi,t as outlined in Equation (1.23).

Figure 1.5 illustrates the proportion of counties with a positive FWCP each year. A

higher proportion reflects a more pronounced DNWR. It is evident that DNWR was

more restrictive during the Great Recession and then decreased to pre-crisis levels.

In the meantime, Figure 1.6b displays the large degree of geographical variation of

the DNWR.
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Figure 1.5: FWCP over time

20
22

24
26

28
30

Sh
ar

e 
of

 c
ou

nt
ie

s 
w

ith
 F

W
C

P 
> 

0 
(%

)

2005 2010 2015
Year (Data source: CBP)

Figure 1.6: Geographical variation of the frictions

(a) FWCP (b) DENI

FWCPi,t = 1− pi,t/p̃i,t (1.21)

p̃i,t :=
#{Zi,t < 0}
N top 25%

t

(1.22)

pi,t :=
#{∆wj,i,t < 0}

Ni,t

(1.23)
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1.4 Estimating the heterogeneous effects

This section outlines the empirical framework for analyzing the persistent and non-

linear heterogeneity in the effects of net worth shocks. Initially, we discuss the esti-

mation results from linear local projections that allow for linear heterogeneous effects

(Cloyne et al., 2023). These results reveal the presence of heterogeneous effects due to

financial (collateral constraint) and nominal (DNWR) frictions. Then, we introduce

our baseline model: a semi-varying coefficient model (Fan and Huang, 2005) which

is a non-linear extension of Jorda’s local projections. This model helps the estima-

tion of complex, heterogeneous shock effects across counties, influenced concurrently

by the two economic frictions. It accounts for potential non-linear heterogeneous

relationships in the shock’s effects and the interaction between economic frictions.

Furthermore, we conduct F -tests to assess the semi-varying coefficient model against

the linear LP specification.

1.4.1 Linear LP with independent heterogeneous effects

Jorda’s local projection method is a widely used approach in empirical macroeco-

nomics to estimate the potential persistent effects of identified shocks. The LP method

is favored for its robustness of the average treatment effects estimation against po-

tential misspecifications. A recent study by Cloyne et al. (2023) has expanded this

framework to include linear heterogeneous effects. In the context of unanticipated

continuous shocks, this parametric model facilitates analysis by extending the aver-

age marginal effects to encompass heterogeneous effects. These effects are assumed

to be linear and independent of each other. The causality argument is further re-

inforced by the Kitagawa-Oaxaca-Blinder (KOB) decomposition. In our theoretical

model, as discussed in Section 1.2, we investigate not only the linear heterogeneous

effects of DNWR and collateral constraints but also identify potential non-linearity
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and complex interaction between these two economic frictions. To preliminarily as-

sess the presence of non-linearity and friction interaction, we estimate Equation (1.24)

following Cloyne et al. (2023).

yi,t+h =αh + xi,tβh + xi,t∆Z′
i,t

γfwcp
h

γdenih

+∆Z′
i,tδh (1.24)

+ g(Ni,t−1) +Wi,tλh + ιi∈s + νt + εi,t+h, h = 0, . . . , H (1.25)

∆Zi,t :=(∆zfwcp
i,t ,∆zdenii,t )′ =

(
fwcpi,t − fwcpi denii,t − denii

)′

(1.26)

In the model equation, βh represents the average treatment effect (ATE) of the net

worth shock xi,t, and ∆Zi,t represents the deviation of FWCP and DENI from their

mean levels. The coefficients γfwcp
h and γdenih reflect the heterogeneous effects, while

δh accounts for the composition effects of heterogeneity deviations. The function

g(Ni,t−1) controls predetermined economic conditions using logarithm lagged house-

hold net worth, and the vector Wi,t includes the remaining control variables. Fixed

effects for state s and year t are denoted by ιi∈s and νt respectively. Following Mian

et al. (2013); Mian and Sufi (2014), the shock to household net worth is identified

as a Bartik-style net worth shock, as delineated in Equation (1.16), ensuring that

xi,t is exogenous to county i by using lagged exposure and aggregate price growth 16.

When the causality identification assumptions outlined in Cloyne et al. (2023) hold

true, analyzing the coefficients γfwcp
h and γdenih allows for the exploration of potential

heterogeneous effects arising from the nominal and financial frictions.

With exogenous and pre-determined covariates, the OLS estimator is consistent.

Figure 1.7 illustrates the yearly projection horizon against the model coefficients,

including the impulse response function (IRF) of the shock. The IRF estimates

16Appendix A.7 performs panel unit root tests which shows that there is no common trend between
outcomes variables and the shock.
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reveal that net worth shocks have statistically significant and persistent impacts on

key economic indicators: logarithm real consumption per capita, unemployment rate,

and logarithm real house price index, as shown in the first row of the figure matrix.

This finding supports the intuition that positive shocks increase consumption and

house prices while decreasing unemployment, and the opposite for negative shocks,

consistent with findings from theoretical studies (Berger et al., 2018a; Guerrieri et al.,

2020c). The last two rows of Figure 1.7 present the estimated coefficients of the

composition effects of FWCP andDENI. They clearly indicate that deviations of these

two types of frictions from their average levels can directly affect outcomes. A deeper

analysis into the second and third rows reveals the heterogeneous effects of DNWR

and collateral constraints on these economic outcomes. Regions with more severe

financial frictions experience less growth in consumption and house prices following

a positive net worth shock compared to regions with fewer frictions. This detail is

in line with theoretical expectations and emphasizes the varying impact of financial

frictions on local economies. Moreover, the inference on γ̂fwcp
h suggests significant

heterogeneous effects on house prices, with counties facing a higher degree of DNWR

showing a smaller house price response to net worth shocks. However, the results

of linear LP largely underestimate the heterogeneous effect of DNWR. The next

section, which is our baseline model, reveals the necessity of modeling the non-linear

heterogeneous effects.

1.4.2 A semi-varying coefficient model

The parametric KBO extension terms in Equation (1.24) offer an intuitive inference

of the heterogeneous effects of financial and nominal frictions. However, the model’s

assumption of linear and independent heterogeneous effect terms precludes the pos-

sibility of heterogeneous effects arising from interactions between frictions, as well

as potential non-linear heterogeneous effects. Our theoretical model in Section 1.2
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Figure 1.7: Linear LP with linear independent heterogeneous effects
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indicates interactions between the two types of frictions, as well as a certain degree

of non-linearity in these heterogeneous effects. Consequently, it is beneficial to inves-

tigate the interactions of frictions by further relaxing the assumptions of usual local

projections. The semi-varying coefficient model discussed by Fan and Huang (2005),

Zhang et al. (2002) and Li et al. (2002), provides a robust and flexible method to

accommodate potential higher-order and non-linear effects of shocks. In this section,

we estimate non-linear local projections using a non-parametric coefficient βh(∆Zi,t):

yi,t+h = αh + xi,t · βh(∆Zi,t) + ∆Z′
i,tδh + g(Ni,t−1) +Wi,tλh + ιi∈s + νt + εi,t+h

(1.27)

(1.28)

where βh(∆Zi,t) is the coefficient of shock effect which depends on county-specific

heterogeneities ∆Zi,t; δh is the composition effects of friction levels; g(Ni,t−1) is a

functional control of pre-determined economic conditions; Wi,t is a vector of the left

control variables; ιi∈s is the state fixed effect; and νt is the year fixed effect. This

model is a natural extension of the linear local projections with heterogeneous effects

(Gourieroux and Lee, 2023; Cloyne et al., 2023). However, the causal interpretation

of βh(Zi,t) requires some key assumptions given our semi-parametric context. By

assuming the true coefficient βh(Zi,t) is right continuous (Potter, 2000), we define the

following marginal response function for the infinitesimal shock:

MRh(∆Zi,t) = lim
δ→0+

1

δ
Ex

{
yi,t+h(xi,t + δ,∆Zi,t|Ni,t−1,Wi,t) (1.29)

−yi,t+h(xi,t,∆Zi,t|Ni,t−1,Wi,t)
}

(1.30)
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which is a function of the friction heterogeneities ∆Zi,t. With the non-anticipated

and randomly assigned shock assumptions, the marginal response function then has

causality interpretations (Rambachan and Shephard, 2019a; Gonçalves et al., 2024;

Bojinov and Shephard, 2019; Rambachan and Shephard, 2019b). In this case, the

coefficient βh(∆Zi,t) is the conditional treatment effect of the shock xi,t.

In our baseline results, we use a sieve estimator by approximating the effects

βh with the following quadratic polynomial globally, which expands the coefficient

functional at Zi,t = Z̄i:

βh(∆Zi,t) ≈b0h + b1h∆z
fwcp
i,t + b2h∆z

deni
i,t + b3h∆z

fwcp
i,t ∆zdenii,t (1.31)

+ b4h(∆z
fwcp
i,t )2 + b5h(∆z

deni
i,t )2 (1.32)

Subsequently, we employ an OLS estimator for Equation (1.27). According to Chen

(2007), this estimator is consistent. In Appendix A.3, we conduct robustness checks

on the sensitivity of our polynomial choices, revealing that higher approximation

orders do not introduce new patterns but may heighten the risk of overfitting. In

Appendix A.4, the results of a local kernel-polynomial estimator (Zhang et al., 2002)

are also provided as robustness check. The results show the local patterns are also

consistent with our global approximation. Meanwhile, in Appendix A.5, we perform

the sensitivity analysis on our βh(∆Zi,t = 0) estimates against any potential leftover

confounding effects, e.g. policy interventions, that were not captured by the fixed

effects. The results suggest that our baseline estimates are robust against the omitted

variable bias. Furthermore, Appendix A.6 performs the robustness check on potential

spatial spillover effects of the net worth shocks. The estimates of average spillover

effects reveals statistically significant spillover effects of the shocks on unemployment

whereas it does not largely change the baseline estimates of βh(∆Z). Figure 1.9
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Figure 1.8: Results of the varying coefficient model
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Figure 1.9: Comparing the ATE of linear LP and varying coefficient LP
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compares the βh estimate from the linear LP model with the βh(∆Zi,t = 0) point

estimates from the varying coefficient model. This comparison indicates that for a

”representative” county, the average treatment effect estimates from both models are

in alignment.

The heterogeneous effects can then be qualitatively analyzed by examining the es-

timated function βh(∆Zi,t) across the space of (∆zfwcp
i,t ,∆zdenii,t ). Figure 1.8 presents

the estimated βh(∆Zi,t) as a contour diagram, which allows for visually checking the

heterogeneous effects. The individual subplots show the estimated βh(∆Zi,t) against

(∆zfwcp
i,t ,∆zdenii,t ). This figure visually characterizes the heterogeneous effects across

nominal and financial friction heterogeneities. The intersection of the white dashed

lines indicates the ATE point estimate in Figure 1.9. In the matrix of figures, each

row corresponds to the estimated βh(∆Zi,t) at different projection horizons h, and

each column gives the estimates for each outcome variable. In the absence of hetero-

geneous effects, one would expect these contour diagrams to appear as flat surfaces

across all values of (∆zfwcp
i,t ,∆zdenii,t ). However, the diagrams for all outcome variables

and across different horizons are not flat, indicating the presence of heterogeneous
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effects. Specifically, for consumption as the outcome variable, the estimates suggest

that counties with higher financial or nominal frictions experience a reduced impact

from positive net worth shocks. This implies that economic frictions generally mit-

igate the effects of net worth shocks on consumption, as supported by (Christiano

et al., 2015). A similar pattern is observed with house prices, where economic frictions

diminish the impact of net worth shocks. Regarding unemployment, the estimates

reveal heterogeneous effects of financial friction. This discrepancy highlights the sig-

nificant impact of financial friction on labor market outcomes (Branch et al., 2016),

a conclusion that is consistent with the linear LP model’s estimates. There, linear

heterogeneous effects across the dimensions of financial and nominal friction hetero-

geneity would suggest that equal deviations of ∆zfwcp
i,t or ∆zdenii,t from zero would result

in similar changes in effect level or magnitude. However, the observed variation in

effect level changes across these subplots reveals a non-linearity in the heterogeneous

effects, further emphasizing the complexity of the economic dynamics under examina-

tion. Upon reconfirming the presence of heterogeneous effects, we turn our attention

to the interaction between financial and nominal frictions. In the absence of such

interaction, contour diagrams would display parallel straight lines. However, the cur-

vature observed in these diagrams’ level lines indicates a clear interaction between

the heterogeneous effects of financial and nominal frictions. In the end of this section,

we confirm the above observations with statistical inference.

Beyond qualitative observations, baseline estimates yield significant quantitative

results. The direct interpretation of the IRF βh(∆Z) is elasticity: the relative per-

centage change of the outcome variables regarding one percent relative change in net

worth shocks. The marginal propensity to consume (MPC) out of wealth is another

crucial indicator for various policies. With our baseline specification, one can estimate

MPC out of the wealth by simply multiplying the estimated coefficient β0(∆Z) with
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the ratio between the conditional average consumption and household net worth17.

The average MPC is 10.1 cent per dollar which is larger but still aligns with the

estimate of around 7 percent per dollar out of housing wealth using the US data

(Mian et al., 2013; Aladangady, 2017; Angrisani et al., 2019). Figure 1.10 illustrates

the significant variation in the MPC across different levels of local frictions. As ei-

ther ∆zfwcp or ∆zdeni increases, the MPC decreases, reflecting the intuitive idea that

households consume a smaller fraction of each additional dollar of wealth when there

is larger unemployment risk or precautionary saving motive. MPC can reach as high

as 11 cents per dollar in counties with minimal frictions, yet drop to 3 in counties with

the most frictions. This broad range of MPC estimates offers a plausible rationale

for the disparate MPC estimates derived from a variety of structural models, which

incorporate varying degrees of frictions based on their assumptions and demographic

structures. Additionally, the MPC profile across ∆Z serves as a valuable instrument

for model calibration.

The counterfactual IRFs for four scenarios, derived from our tractable model, are

presented in Figure 1.11, allowing for an intuitive interpretation of the estimation

results. We define the scenarios based on the quantiles of ∆Z, corresponding to: nei-

ther friction constraint binding, either the collateral constraint or DNWR binding,

and both constraints binding. The results indicate that net worth shocks have the

most significant impact on counties with minimal economic frictions, aligning with

the theoretical predictions of the model. Specifically, consumption, unemployment,

and house prices each exhibit varying sensitivities to net worth shocks. For consump-

tion, a 1% relative increase in net worth (e.g., from 5% to 5.05%) can lead to a 0.25%

rise in consumption, reflecting high sensitivity in this area. Unemployment, however,

is less responsive; reducing the unemployment rate by approximately one percentage

point would require a doubling of household net worth. This lower sensitivity is likely

17The identification comes from differentiating both sides of the baseline specification with respect
to household net worth at the moment t of the shock.
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Figure 1.10: MPC estimates
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due to unemployment being influenced by broader, more aggregate factors than the

other variables. House prices show even greater sensitivity than consumption, with a

1% relative change in net worth shock resulting in a 0.4% fluctuation in house prices.

In contrast, when either friction constraint is binding, the effects of a positive shock

are generally reduced. Notably, when only the collateral constraint is binding, the

reduction in unemployment is minimal, which aligns with the theoretical relationship

between DNWR and unemployment, emphasizing DNWR’s essential role in these dy-

namics. Meanwhile, in the case where both constraints are binding, the effects of net

worth shocks are substantially suppressed. The magnitude of these effects is reduced

by a factor of 2 to 5 compared to the scenario with the least binding frictions. These

findings provide additional support for the theoretical results. These results from the

counterfactual IRF carry significant policy implications. When the government seeks

to stimulate the economy through policies that increase household wealth—such as

universal basic income or stimulus checks—the presence of economic frictions can sub-
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Figure 1.11: Impulse response by friction constraint
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stantially dampen the effectiveness of such interventions. Policymakers must account

for these frictions when evaluating the potential outcomes of wealth-based stimulus

policies to ensure accurate assessments of their impact. Moreover, to maximize the

effectiveness of these stimulus policies, it is crucial for policymakers to implement

complementary measures aimed at reducing local economic frictions, such as tight-

ening labor markets or increasing credit supply. By addressing these frictions, the

overall economic response to wealth-based stimulus policies can be enhanced, leading

to more robust outcomes.

The heterogeneous effects of net worth shocks across regions, as demonstrated by

our analysis of financial and nominal frictions, highlight the importance of local eco-

nomic conditions in shock transmission. A key dimension of local economic variation

is income disparity, which is substantial across U.S. counties. Figure A.1 illustrates

that counties with different household income levels experience varying degrees of

economic friction. The impact of net worth shocks should vary among counties based

on their income levels. To empirically test this, we categorize all counties into three

income groups: the bottom 40%, the middle 40%, and the top 20%. We then apply
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Figure 1.12: IRF by income group
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our baseline model, which properly handles the non-linear heterogeneous effects of

the frictions, to these sub-samples. Figure 1.12 illustrates the IRF assessed at the

average counties (i.e., ∆Z = (0, 0)) for each income group. Regarding consumption,

it is observed that lower and middle income groups are more vulnerable to net worth

shocks and endure a longer recovery period post-shock. Conversely, the top income

group exhibits minimal response less thant 0.05% to such changes in their wealth.

This could be attributed to the marginal propensity to consume decreasing as income

rises. In terms of unemployment, the bottom and middle income groups display com-

parable sensitivity to net worth shocks, whereas the top income group shows little

reaction. This disparity may stem from occupational differences among the income

brackets: higher income counties likely have a greater proportion of firm owners,

entrepreneurs, and other occupations with increased job security (Clark and Postel-

Vinay, 2009). With respect to house prices, the middle and top income groups react

more significantly to net worth shocks, while the bottom income group shows less

sensitivity of value 0.08% which is half of the other two groups. This variation could

be due to the diversity in household balance sheet exposures across these counties:
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those in the lower income bracket may possess a smaller share of secondary or invest-

ment housing wealth. Coupled with their generally lower income levels, households

in these counties tend to engage less frequently in buying or selling properties.

The heterogeneous responses across income groups, along with the varying preva-

lence of economic frictions, hold significant implications for both the transmission of

macroeconomic shocks and the design of stabilization policies. These findings suggest

that broad, country-wide interventions may have uneven effects across the income dis-

tribution, potentially exacerbating existing inequalities. For instance, policies such as

lowering interest rates for large national banks like Chase or Bank of America may not

be as effective as implementing differentiated policies for local financial institutions,

which could have a more direct impact on lower-income households. To optimize

the effectiveness of stimulus measures, policymakers should account for the differing

sensitivities of outcome variables across regions. For example, lowering interest rates

on credit card or consumption loans could be more beneficial in lower-income regions,

while reducing mortgage rates might yield better outcomes in higher-income areas.

These tailored approaches could enhance the overall impact of economic stimulus.

Future research could delve deeper into understanding the mechanisms behind these

differential responses and their implications for the design of optimal policies.

To statistically test for potential interaction and non-linear heterogeneous effects,

one must conduct inference on the semi-varying coefficient model. Typically, this

involves point testings such as profile likelihood ratio tests (Fan and Huang, 2005;

Härdle et al., 1998) and bootstrapping-based tests (Cai et al., 2000; Wang and Xue,

2011; Belloni et al., 2019). Moreover, the body of literature on the uniform inferences

on functional coefficients is rapidly expanding (Hu, 2024). In this paper, we can

conveniently conduct an F-test on the semi-varying coefficient model utilizing the

fact that we approximate βh(∆Zi,t) with a polynomial globally. Specifically, the

null hypothesis is that the polynomial approximation coefficients for the non-linear
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terms in Equation (1.31) are jointly zero, indicating no interaction nor non-linear

heterogeneous effects. It is important to note that such F-test does not necessitate

the form of non-linearity and interaction to be identical to the quadratic polynomials

in Equation (1.31). Table 1.2 presents the F-statistics and corresponding p-values.

The null hypotheses are rejected in most cases. In Appendix A.4, we also perform the

profile likelihood ratio test (Fan and Huang, 2005) as robustness check. The results

also align with the F tests.

Table 1.2: F-test of non-linear heterogeneous effects in the linear LP model

h = 0 1 2 3 4 5 6 7

Consumption 9.680 9.709 9.392 8.086 8.226 11.013 8.152 5.830

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Unemployment 5.919 3.874 2.551 2.963 3.453 3.292 2.532 1.627

(0.001) (0.009) (0.054) (0.031) (0.016) (0.020) (0.056) (0.181)

House price 24.967 23.961 22.215 21.083 22.661 19.744 14.116 11.973

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: 1. H0 : 0 = b3h = b4h = b5h. 2. The numbers with stars are F -statistic; the numbers

between parentheses are the p-values.

1.5 Conclusion

By constructing a comprehensive new county-level dataset, we empirically estimated

the heterogeneous effects of net worth shocks in the US. The findings suggest that

counties with tighter financial friction (collateral constraints) and more severe nomi-

nal friction would experience a more severe recession and prolonged economic recovery

following negative net worth shocks. Our estimation results also reveal non-linear het-

erogeneous effects of the shock, which underscores the complex interactions between

financial constraints and wage rigidity. Moreover, we proposed a two-agent general

equilibrium model that provides a simple theoretical framework to understand how

the financial friction and the nominal friction interactively shape the heterogeneity
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among the net worth shock effects. This work contributes to the existing literature by

offering new empirical evidence of how financial and nominal frictions may amplify

the effects of economic shocks. It highlights the necessity for policy interventions

addressing structural issues related to financial access and labor market rigidities.
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Chapter 2

Downward Nominal Wage Rigidity

and Collateral Constraints: A

Theory for Post-Great Recession

U.S. Economy

2.1 Introduction

The U.S. economy suffered a severe slump during the Great Recession, followed by

a prolonged housing deleveraging process and recovery (Powell, 2023). A noticeable

feature of this recovery is the slow rebound of key macroeconomic indicators (Guer-

rieri et al., 2020a). For instance, aggregate consumption growth remained subdued

for nearly a decade, only gradually returning to its pre-crisis trend until 2015. The

unemployment rate also sharply increased at the beginning of the period then grad-

ually fell down. Similar slow recoveries were observed in housing prices and a wide

range of asset and labor markets (Powell, 2023; Favilukis et al., 2017). These patterns

have raised important questions about the fundamental forces shaping the post-crisis
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dynamics: what factors contributed to such a protracted recovery? What mecha-

nisms can account for the observed joint sluggish adjustments across sectors? These

questions remain central in both academic and policy discussions. As evidence of the

continuing relevance of this topic, Federal Reserve officials have highlighted the need

to understand the structural causes of the post-crisis stagnation (Bernanke, 2018),

emphasizing that “the crisis left lasting scars on demand and productive capacity.” In

response, a growing body of research has sought to explain the post-crisis trajectory

by emphasizing the role of economic frictions, such as financial constraints, nominal

rigidities, and asset illiquidity that may have amplified the initial shock and slowed

the return to equilibrium.

Financial frictions that restrict the household credit availability has been shown

to be important in explaining the households response during and after the Great Re-

cession (Christiano et al., 2015). These frictions, particularly collateral constraints,

play a critical role when interacting with the illiquidity of housing wealth. Housing

wealth accounts for approximately 60% of total assets for U.S. families, making it a

central component of the household balance sheet. In an incomplete market economy,

precautionary motives generate strong demand for savings (Berger and Vavra, 2015;

Berger et al., 2018b). However, the illiquidity of housing wealth makes it difficult

for households to adjust their portfolios quickly in response to shocks (Garriga and

Hedlund, 2020). When asset liquidation is infeasible or costly, borrowing becomes

an important channel for consumption smoothing. During the crisis, as house prices

declined substantially, many households attempted to borrow more to offset income

or asset losses. At the same time, a major financial friction emerged. Large-scale

borrowing typically requires collateral, and the value of collateral directly determines

the borrowing limit. For most households, the collateral consists of their homes. As

house prices dropped significantly during the Great Recession, the borrowing capac-

ity of many households fell sharply, preventing them from obtaining the amount of
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funding they needed (Guerrieri and Iacoviello, 2017b). Consequently, they had to

cut consumption, save more, and gradually deleverage by selling housing assets to

rebuild the necessary buffer for portfolio adjustment. When the house price remains

low for an extended period, this deleveraging and consumption adjustment process

becomes long and drawn-out (Guerrieri et al., 2020a). As house prices recover over

time, more households accumulate sufficient savings and complete their portfolio ad-

justment. This leads to a gradual rebound in aggregate consumption and a slow

recovery of debt after the Great Recession.

Nominal frictions have also been widely recognized as important contributors to

the dynamics of key macroeconomic variables following the Great Recession (Ka-

plan et al., 2018; Schmitt-Grohé and Uribe, 2016). The large body of New Key-

nesian literature has developed a coherent framework to study these frictions, most

notably through the Phillips curve, which jointly analyzes inflation and unemploy-

ment. Among the various types of nominal rigidities, downward nominal wage rigidity

(DNWR) offers a particularly compelling mechanism for understanding the asym-

metric behavior of unemployment relative to wage adjustments during downturns

(Schmitt-Grohé and Uribe, 2016). Recent theoretical and empirical work has ex-

tended this insight by deriving non-linear Phillips curves under DNWR, which offer

a clear explanation for the observed phenomenon of missing inflation during the long

recovery (Schmitt-Grohé and Uribe, 2022; Aktug, 2025). In the context of the post-

crisis period, DNWR helps explain why unemployment remained elevated despite

limited declines in nominal wages. Specifically, as aggregate demand contracted due

to widespread household consumption cuts, firms faced declining revenues and needed

to reduce production. In a frictionless labor market, this would translate into falling

wages to restore equilibrium. However, when wages are downwardly rigid, employers

cannot lower wages in response to weaker demand. Instead, they reduce labor input

by cutting jobs or freezing hiring, resulting in involuntary unemployment despite an
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ample labor supply. This mechanism illustrates how DNWR contributes to persis-

tent slack in the labor market and a slower recovery in aggregate output. Therefore,

DNWR provides a powerful and intuitive explanation for several puzzling features of

the post-recession macroeconomic environment and complements the role of financial

frictions in shaping the broader adjustment path.

In this paper, I study the interaction between financial frictions and nominal

frictions, and argue that their joint presence provides a unified explanation for the

observed dynamics of consumption, unemployment, and house prices during and after

the Great Recession. In particular, I emphasize the persistent nature of the recovery

and show that the interaction of these two frictions plays a central role in shaping

the adjustment process. When both friction constraints are simultaneously binding,

I find that they generate a significant amplification effect, which allows the model to

qualitatively and quantitatively match the U.S. data. Specifically, an adverse aggre-

gate shock, such as a decline in land supply or total factor productivity, depresses

house prices and tightens collateral constraints. As households approach their bor-

rowing limits, especially those with high leverage, the precautionary saving motive

induces consumption cuts and deleveraging. In the aggregate, this widespread reduc-

tion in consumption leads to a fall in the aggregate demand. With downward wage

rigidity, producers respond by reducing employment, which results in involuntary

unemployment. At the household level, increased unemployment risk raises idiosyn-

cratic income uncertainty, further strengthening precautionary saving behavior. This

leads to additional consumption cuts, more house selling, and continued downward

pressure on house prices. The illiquidity of housing wealth prolongs this feedback

loop, making the recovery even more slow and persistent. By combining these two

frictions within a coherent framework, my analysis captures the co-movement and

persistence of key macroeconomic indicators and offers a elegant account of the U.S.

economy’s adjustment in the period after the Great Recession.
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The first contribution of this paper is to provide a simple but unified explana-

tion for the joint trends of key macroeconomic indicators in the post-crisis period by

slightly extending the workhorse heterogeneous agent framework. I build a baseline

model in the spirit of the workhorse model in this literature, featuring a continuum of

heterogeneous households. Each household holds a realistic balance sheet composed

of liquid savings, illiquid housing wealth with convex adjustment costs, and mortgage

debt that requires fixed periodic payments. In addition to standard savings decisions,

households choose how much housing wealth to allocate to a mutual fund that trans-

forms housing wealth into productive capital. This capital is then used by firms to

produce consumption goods. On the production side, firms hire capital and labor by

taking prices as given. Importantly, the labor market features DNWR, which pre-

vents the wage rate from falling below a fraction of the previous period’s level. To

analyze the effect of aggregate shocks, I solve the model globally and simulate the

transition paths of the economy following an one-shot-deviation adverse productivity

shock1. The baseline model replicates several central features of the U.S. macroe-

conomic dynamics following the Great Recession with notable accuracy. It captures

the sharp initial contraction in aggregate consumption, the spike in unemployment,

and the steep decline in house prices, all of which align closely with the magnitude

and timing observed in the data. The model also reproduces key dynamics of output

and household leverage, including the delayed peak in leverage and its gradual un-

winding, consistent with empirical patterns. Importantly, the model explains a large

fraction of the observed movements in house prices, highlighting its strength in cap-

turing asset price sensitivity to household balance sheets. Notably, the model achieves

this without relying on detailed institutional assumptions or additional sector-specific

mechanisms, demonstrating the explanatory power of a parsimonious framework that

1When household idiosyncratic income uncertainty depends on aggregate dynamics, the transition
paths obtained from the first and second order perturbations tend to underestimate the strength of
the precautionary saving motive, as argued by Reiter (2023) and Auclert et al. (2021).
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integrates key financial and nominal frictions. While some differences in persistence

remain, due in part to real-world policy responses and structural frictions not mod-

eled, the baseline framework offers a quantitatively compelling account of the crisis

dynamics and provides a strong foundation for further policy analysis.

In addition to the analysis of the baseline model, I examine a set of model vari-

ants that selectively remove one or both of the key frictions. These counterfactual

experiments allow us to isolate the individual and joint contributions of the collateral

constraint and downward nominal wage rigidity. The comparative statics analysis

demonstrates that the baseline model, which includes both collateral constraints and

DNWR, most effectively replicates the magnitude and persistence of observed macroe-

conomic responses to large shocks. Across consumption, unemployment, and house

prices, the baseline scenario consistently shows the largest responses, highlighting the

importance of friction interactions in amplifying economic fluctuations. The collat-

eral constraint alone accounts for a substantial share of the declines in consumption

and house prices, while DNWR is essential for generating unemployment dynamics

and further amplifies the effects when combined with financial frictions. These find-

ings underscore the model’s strength in capturing key empirical patterns and support

the central role of economic frictions—especially their interaction—in explaining the

severity of macroeconomic downturns. Beyond the dynamic responses, I also conduct

a welfare analysis across the different model specifications. This analysis compares

social welfare under alternative scenarios and highlights the costs associated with each

friction. The findings suggest that reducing the severity of collateral constraint and

DNWR can lead to substantial improvements in household welfare in the meaning of

consumption equivalence variation. These results offer important policy implications

for the design of effective stimulus and stabilization policies aimed at addressing local

economic distress in the period after large aggregate shocks.

The second contribution of this paper is the development of a new and efficient
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algorithm for computing the global solution of high-dimensional heterogeneous agent

models with occasionally binding constraints and implicit asset prices. The algorithm

is designed to enforce these constraints while accurately capturing the economy’s

equilibrium responses. The primary challenge lies in the high dimensionality of the

problem, which requires advanced numerical techniques to ensure both computational

feasibility and accuracy. Standard approaches often struggle with issues such as

divergence in value function iteration due to non-convexities and the lack of shape

preservation in high-dimensional approximations (Bohn, 2018). To overcome these

challenges, I adopt a sequential programming algorithm to solve the deterministic

steady state by progressively narrowing the search space. In addition, I introduce a

bounded rationality assumption on house price expectations to enhance the efficiency

and numerical stability of updating the house price profile. This approach enables

efficient computation of the equilibrium while preserving essential nonlinearities and

binding constraints, and it broadens the applications of finite moment methods in

models with rich heterogeneity and frictional features.

In Section 2, I present the baseline model and define the equilibrium. Section 3

and 4 outline the numerical algorithm and the calibration strategy. In Section 4, I

analyze the dynamic response of the baseline economy by computing the transition

paths following an one-shot-deviation from the deterministic steady state. I then

conduct comparative statics by selectively removing each friction and evaluate the

resulting welfare implications.

2.2 Model

I consider an economy with heterogeneous agents, illiquid housing wealth, fixed debt

payment, and a collection of frictions. The economy is in discrete time and starts

from t = 0. There lives a continuum of ex ante homogeneous households whose
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distribution measure is Φt(x) of total mass 1.

Firm. There is a representative competitive firm that is owned by households

through a mutual fund. It produces consumption goods using capital Kt and using

labor hired from the households. The production technology is Cobb-Douglas in

Equation (2.10).

Yt = eZtKα
t [Nt · (1− ξ̄)]1−α (2.1)

where Zt is an aggregate uncertainty of total productivity that follows an exogenous

AR(1) process. The unemployment in this model is distinguished to be two types: in

addition to Nt ∈ [0, 1], ξ̄ ∈ (0, 1) is the natural rate of unemployment due to some

frictions in the labor market (Schmitt-Grohé and Uribe, 2022). In each period, the

firm chooses (Kt, Nt) by taking the wage rate wt as given. After paying the wage to

the households, the left profit Πt := Yt−wtNt(1− ξ̄) is paid to the mutual fund which

has the technology of converting housing wealth to capital and supplies the capital

to the firm.

DNWR. In the economy, the labor market is not necessary to be cleared. The

wage rate wt is downward rigid which prevents it falls below a δ fraction of the last

period’s wage rate wt−1

wt ≥ δwt−1 (2.2)

(wt − δwt−1)(Nt − 1) = 0 (2.3)

When the downward nominal wage rigidity constraint of Equation (2.2) is binding,

the optimality condition of the firm gives a labor demand Nt < 1 which generates

involuntary unemployment. The slackness condition in Equation (2.3) characterizes

the relationship between the wage rate and the involuntary unemployment.

Mutual fund. The households own the firm by holding the shares of a revenue-
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maximization competitive mutual fund. The mutual fund collects housing wealth

from the households and use technology κ(h) to convert them into productive capital.

κ(h) := Zhh
τ , τ ∈ (0, 1] (2.4)

When receiving the profit Πt from the firm, the mutual fund pays returns Rt to the

households per unit of housing wealth.

Households. Households are differentiable and the law of large numbers holds.

Each individual household has a vector of individual states

xt := (at−1, bt−1, ht−1, st−1, ξt) (2.5)

where at−1 denotes liquid asset holdings at the beginning of period t; bt−1 is the out-

standing mortgage debt balance; ht−1 is the value of housing wealth; st−1 represents

the share of ht−1 allocated to a mutual fund, determined in the previous period; and

ξt captures idiosyncratic frictional unemployment, which follows an exogenous AR(1)

process over a finite support [ξ̄ − ∆ξ, ξ̄ + ∆ξ] (Schmitt-Grohé and Uribe, 2022). In

period t, each household inelastically supplies one unit of labor to the market and

receives a wage from the firm. Households have access to three types of assets: liquid

savings at ≥ 0, which are lent to a neutral external borrower at a risk-free interest

rate r; perpetual mortgage debt bt ≥ 0, borrowed from a neutral external lender at a

mortgage rate rb ≥ r; and illiquid housing wealth ht, valued at the market house price

pt, which is endogenously determined in equilibrium. In addition, households can al-

locate a share 1 − st ∈ [0, 1] of their housing wealth ht to a mutual fund that yields

a return Rt+1. The remaining share st is retained for residential use and provides in-

stantaneous utility jointly with consumption. In each period, the household chooses

consumption ct ≥ 0, new mortgage debt holdings bt ≥ 0, the housing wealth growth

rate ht ≥ −1, and the share st ∈ [0, 1] of housing wealth allocated to the mutual fund
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for the following period. In making decisions, households face several frictions. First,

housing wealth is illiquid: any adjustment to the housing stock incurs a quadratic

adjustment cost, denoted by φh(·). Second, the financial market is imperfect, and

households are subject to a collateral constraint that limits borrowing to a fraction θ

of the housing wealth allocated for residential use. In addition, households must pay

a convex maintenance cost φs(·) for consuming residential housing services valued at

st−1ht−1.
2 The Bellman equation of the individual household is then as follows:

v(xt;Xt) = max
Ct

u(ct, st−1ht−1) + βEt{v(xt+1;Xt+1)|xt, Xt+1} (2.6)

s.t.

xt := (at−1, bt−1, ht−1, st−1, ξt)

Xt := (Φt−1(x), wt−1, Zt)

Ct := (ct, bt, µ
h
t , st)

at = Yt(xt, Xt)− Et(xt, Xt, Ct)

ht = (1 + µh
t )ht−1

bt ≤ θp(Xt) · (stht)

ct ≥ 0, bt ≥ 0, µh
t ≥ −1, st ∈ [0, 1]

ξt+1 ∼ AR(1)[ξ̄ −∆ξ, ξ̄ +∆ξ]

Yt(xt, Xt) := (1 + r)at−1 − rbbt−1 +R(Xt)(1− st−1)ht−1 + w(Xt)(1− ξt)N(Xt)

Et(xt, Xt, Ct) := ct + p(Xt)ht−1[µ
h
t + φh(µ

h
t )] + bt−1 − bt + φs(st−1)

φh(µ
h
t ) :=

ψh

2
(µh

t )
2

φs(st−1) :=
ψs

2
s2t−1ptht−1

where β is the utility discounting factor; θ is the loan-to-value ratio; ψh and ψs are

2For computational simplicity, I impose an additional solvency constraint at ≥ rbbt to rule out
default, which is not explicitly modeled in this framework.
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the adjustment cost coefficients; Ct is the vector of control variables; Yt is the flow

income function; Et is the flow expenditure function; and Xt is the vector of aggregate

states. The equilibrium profiles Q(X) := (p(X), w(X), R(X), N(X)) are functions of

the aggregate variables Xt.

Aggregation. Aggregating the individual households over the distribution Φt(x)

leads to

A(Xt) :=

∫
at(x;Xt)dΦt−1(x) (2.7)

B(Xt) :=

∫
bt(x;Xt)dΦt−1(x)

H(Xt) :=

∫
ht(x;Xt)dΦt−1(x)

S(Xt) :=
1

H(Xt)
·
∫
st(x;Xt)ht(x;Xt)dΦt−1(x)

ξ̄ ≡
∫
ξt(x;Xt)dΦt−1(x)

while the distribution Φt(x) evolves according to Kolmogorov forward equation.

Equilibrium. There is a constant supply H̄ ∈ R of housing wealth in each period.

The house price pt is a function of the aggregate states Xt which solves the following

market clearing condition.

H̄ = H(Xt), t = 0, 1, . . . (2.8)

A recursive equilibrium is defined as a collection of functions: the household value

function v(x,X), the policy functions C(x,X), the distribution Φ(x), and the equilib-

rium price profiles Q(X). In equilibrium, the household’s value and policy functions

solve the dynamic optimization problem given the equilibrium prices. The distribu-

tion Φ(x) aggregates to satisfy all market clearing conditions except for the labor

market. In addition, the DNWR constraint and the associated slackness condition

are satisfied.
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2.3 Computation algorithm

I solve the approximate equilibrium of the model by modifying the algorithm pro-

posed in Krusell and Smith (1998). This section begins by briefly discussing the key

numerical challenges, followed by an explanation of the sequential programming al-

gorithm used to compute the deterministic steady state. It then describes the global

solution method based on approximating the joint dynamics of (pt, Zt). Appendix B.1

explains how I solved the high-dimensional individual household’s problem in detail

where I combine a set of advanced numerical techniques.

Solving the equilibrium of the model is computationally intensive, particularly for

the baseline specification. To address the challenges described below, I employ a set

of advanced numerical techniques to compute an approximate equilibrium.

1. High dimensionality : The model includes five individual state variables and

at least five aggregate state variables, even under a first-order finite-moment

approximation. As a result, solving the household’s problem involves a 10-

dimensional dynamic programming problem, which is impractical using stan-

dard numerical algorithms.

2. Multiple control variables : Each period involves solving a portfolio allocation

problem with four control variables. The presence of multiple controls increases

the likelihood of numerical instability during iteration, particularly when the

gradient of the value function is small in magnitude.

3. Intra-temporal house price determination: Unlike wages wt and returns Rt, the

house price pt lacks a closed-form solution and must be determined numerically

by solving the equation H̄ = H(Xt) for each Xt. This creates an ”outer” or

”nested” fixed-point problem, which is common in the literature of two-agent

models (Bocola and Lorenzoni, 2020b). This issue still exists even in solving

the deterministic steady state.
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4. Occasionally binding constraints : The model features two occasionally binding

constraints: collateral and DNWR. These inequality constraints introduce kinks

in the policy functions, rendering standard perturbation methods ineffective.

Given the model’s high dimensionality, widely used approaches such as the

endogenous grid method are not applicable.

The deterministic steady state serves as the reference point for computing impulse

responses and defining the computational state space. A central challenge in solv-

ing for the steady state, including the stationary distribution of households, lies in

determining the equilibrium house price p̄. This difficulty stems from the nature of

the housing market clearing condition, where housing demand depends implicitly and

nonlinearly on the price profile p(X). Specifically, housing demand aggregates over

individual households, whose decisions are functions of p(X) itself. Since evaluating

this demand requires solving the household problem under a given p(X), which is

an infinite-dimensional object, computing its functional derivative is practically in-

feasible. In the steady state, the functional p(X) simplifies to a scalar p̄, but it still

must be jointly determined with other equilibrium objects. In the baseline model,

this involves simultaneously guessing (S̄, p̄) and updating them. While S̄ can be

directly updated through aggregation, no explicit equation guides the update of p̄,

which remains embedded in the housing demand. Therefore, a numerical search over

a bounded domain is required to solve for p̄. To reduce the computational burden

associated with repeatedly solving the household problem, I adopt a sequential pro-

gramming approach detailed in Algorithm 1. This procedure exploits the structure

of the p(X) profile and strategically samples the state space to limit the number of

required household problem evaluations3.

In addition to solving the aggregate law of motion X ′(X), computing the global

3For simplicity and to ensure uniqueness, I approximate the (p̄, S̄) profiles using linear functions.
A quadratic approximation would correspond to the traditional sequential quadratic programming
(SQP) framework in optimization theory.
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Algorithm 1: Solving the deterministic steady state

1 Set up a bounded space [pmin, pmax]× [Smin, Smax] for (p̄, S̄) and sample total
N points uniformly ;

2 while (p̄, S̄) not converge do
3 For every sample point (p̄j, S̄j) where j = 1, . . . , N , solve the individual

household problem taking them as given ;
4 Aggregate individual households to compute the distance

∆Sj := |
∫
s′(x|p̄j, S̄j)dx− S̄j| for each j ;

5 Aggregate the individual households to compute the residual of the house
market clearing condition ∆Hj := |

∫
h′(x|p̄j, S̄j)dx− H̄| for each j ;

6 Fit the linear system

[
∆Sj

∆Hj

]
=M1 ·

[
Sj

pj

]
+M2 ;

7 Solve the root (p̄∗, S̄∗) of M1 ·
[
Sj

pj

]
+M2 = 0 ;

8 Resolve the stationary model using (p̄∗, S̄∗) and check the corresponding
(∆S,∆H). If the error is small enough, then quit the algorithm.
Otherwise, set up a new bounded space for (p̄, S̄) by centering at (p̄∗, S̄∗)
and using smaller radius ;

9 Repeat the above procedures until the bounded space converges;

10 end

solution of the model requires numerically solving for the house price profile p(X),

which mathematically corresponds to searching for an optimal functional. This task

is challenging for two main reasons. First, the infinite-dimensional nature of p(X)

necessitates updating the function at every grid point of the aggregate state space. A

naive update strategy, which feeds the entire approximated profile into the individual

household problems, often leads to non-convergence in the dynamic programming step

and introduces numerical instability in the fixed-point iteration. Second, when using

the standard Krusell–Smith simulation-based procedure to update forecasting rules,

the realized simulation paths may not sufficiently explore the full state space, leading

to poorly identified or unstable approximations. To address these issues, I impose

an additional bounded rationality assumption on top of the standard finite-moment

method. Specifically, households do not observe the full p(X) profile but instead

treat pt as an exogenous stochastic process. They form expectations based on a joint
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Markov process for (pt, Zt), which summarizes aggregate uncertainty4. Algorithm

2 outlines the global solution procedure under this assumption. In particular, the

algorithm begins with an initial guess of the p(X) profile, simulates the aggregate law

of motion, estimates a bi-variate AR(1) process for (pt, Zt), and then discretizes the

process using the method of Tauchen (1986).

Algorithm 2: Solving the approximated equilibrium globally

1 Solve the deterministic steady state using Algorithm 1, then set up the
computational domain centered at the steady state ;

2 Discretize the distribution Φ(x,X) with its first order moment and denote
the new aggregate states as X ;

3 Guess a collection of aggregate profile approximations for (X ′(X), p(X)),
while the profiles for (w(X), R(X)) are analytical ;

4 Denote the approximation coefficient vector in iteration j with θj ;
5 while θj does not converge do
6 Taking (X ′

j(X), pj(X)) as given, simulate the aggregate states for a long

period to get {pt, Zt} sample paths ;
7 Estimate an AR(1) process of (pt, Zt) with covariance, then discretize the

process as a bi-variate finite state Markov chain that has total M states ;
8 Solve the individual household problem v(x,X, p, Z) with bounded

rationality5 ;
9 Uniformly sample N individual households from the state space of x to

adequately cover the state space of X ;
10 for (pij, Z

i
j) in the state space of the Markov chain (p, Z) do

11 Apply the individual policy functions C(x,X, pij, Zi
j) to all individual

households ;
12 Aggregate the total N individual households to obtain the aggregate

housing wealth demand and the other aggregate variables ;
13 Compute the residual of the house market clearing condition ∆H i

j ;

14 end
15 For every possible discrete Z state, choose p∗j := argminH i

j conditional
on Z as the updated value of the p(X) profiles. Only the valid
observations are kept ;

16 Update the approximated (X ′(X), p(X)) profiles using the filtered
observations. Check θj+1 until convergence ;

17 end

4The covariance between pt and Zt should be included to correctly form the expectation.
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2.4 Calibration

To simulate the economy, I calibrate the model at the deterministic steady state using

the parameters listed in Table 2.1. The stationary distribution is shown in Figure 2.1.

One model period corresponds to one quarter for a representative U.S. county. The

instantaneous utility of households is specified by Equation (2.9), following Guerrieri

et al. (2020b). Consistent with standard practice, the coefficient of relative risk

aversion is set to γ = 2, while the consumption preference for housing, η = 0.82, is

calibrated based on Guerrieri et al. (2020c).

u(ct, st−1, ht−1) :=
1

1− γ
[cηt (st−1ht−1)

1−η]1−γ (2.9)

The production function follows a Cobb–Douglas specification as shown in Equa-

tion (2.10), with the capital share set to the conventional value of α = 0.3. The

average frictional unemployment rate is set to ξ̄ = 0.04, consistent with U.S. data

(Schmitt-Grohé and Uribe, 2022). The downward nominal wage rigidity parameter δ

is calibrated to 0.99, following the literature (Schmitt-Grohé and Uribe, 2016).

Yt = eZtKα
t−1[Nt(1− ξ̄)]1−α (2.10)

The bounded rationality algorithm requires approximating the productivity pro-

cess Zt, idiosyncratic unemployment ξt, and the house price pt using finite-state

Markov chains. In the baseline model, the AR(1) process for Zt is discretized into a

two-state Markov chain following the method of Tauchen (1986). Similarly, the id-

iosyncratic unemployment process is discretized into two states, 0 and 0.08, centered

around the average ξ̄ = 0.04, with a stationary distribution assigning equal proba-

bility to each state. To reduce approximation error in the housing market clearing
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Figure 2.1: Deterministic steady state

Notes: The liquidity ratio is defined as the ratio between the liquid saving a and the debt balance b.
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condition, the house price process pt is discretized using five states, which provide

sufficient resolution to capture the relevant variation in the state space.

Table 2.1: Baseline parameters

Parameter Value Definition
α 0.3 Capital income share
ξ̄ 0.04 Average frictional unemployment

Z̄, NZ , N
σ
Z 0,2,1 Productivity

H̄ 1 House supply
δ 0.99 DNWR
Zh 1 House-to-capital technology
τ 1
r 0.04 Risk-free rate on the liquid saving
rb 0.04 Mortgage rate
ψh 0.04 Housing wealth adjustment cost
ψs 1 Housing maintenance cost
β 0.96 Utility discounting
θ 0.8 Loan-to-value ratio
γ 2 CRRA coefficient
η 0.82 Consumption preference

Nξ,Pr{ξ′ = 0|0},Pr{ξ′ = 1|1} 2, 0.9, 0.9 Unemployment process
ξ ∈ {0, 0.08}

Np, N
σ
p 5,2 House price process

Notes: The notations Nσ
Z and Nσ

p represent how many standard deviation to apply in the Tauchen
(1986) algorithm.

2.5 Quantitative results

Figure 2.2 presents the nonlinear impulse responses of selected aggregate variables to

a one-time, 20% deviation shock, starting from the deterministic steady state. Each

panel compares the model’s response to corresponding U.S. data from 2007Q1 to

2015Q4, displayed on the secondary vertical axis.6 The model predictions and the

data show similar pattern and persistence, especially in the early periods after the

shock. Panel 1 shows the percentage deviation of aggregate consumption Ct from the

6Certain empirical series are detrended to remove long-term growth components, as the model
does not incorporate trend growth.
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steady state, benchmarked against real personal consumption expenditures.7 Panel

2 plots the unemployment rate alongside actual U.S. unemployment data. Panel 3

reports the percentage change in the model-implied house price pt compared to ob-

served house prices. Panel 4 illustrates the percentage change in output Yt, aligned

with U.S. real GDP over the same period. Panel 5 plots the change in household lever-

age, measured as Bt/(ptH̄), and compares it with the debt-to-asset ratio of households

and nonprofit organizations from the Federal Reserve’s Flow of Funds. Finally, Panel

6 presents the change in the model-generated homeownership rate St, alongside the

empirical homeownership rate reported by the U.S. Census Bureau.

Figure 2.2: Impulse response of the one-shot-deviation shock
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Facing the large one-shot-deviation shock, aggregate consumption drops by ap-

proximately 70% over the first 9 quarters, as shown by the blue solid line. This

sharp decline is substantially larger than the drop observed in the actual data (or-

ange dashed line), which reflects a more moderate contraction in real personal con-

sumption expenditure. The exaggerated response in the model is partly due to the

7A value of 0.01 on the vertical axis represents a 1% deviation.
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absence of long-term growth, which causes the simulated consumption path to de-

viate more significantly from trend-relative measures. After reaching its trough, the

model predicts a gradual recovery, with consumption returning to the steady state

around quarter 25. In contrast, the data exhibit much more persistent weakness, with

consumption remaining below pre-shock levels throughout the sample period. This

difference in persistence may stem from the model’s use of a one-time shock, whereas

in reality the economy experienced more sustained or recurring shocks. Addition-

ally, real-world dynamics such as institutional frictions may further delay recovery in

actual consumption behavior.

The model predicts that the unemployment rate rises sharply from 4% to just

under 9% within 8 quarters, closely matching the peak level and timing observed in

the actual data, as shown in the figure. However, while the initial rise is similar,

the model-generated unemployment rate quickly reverts to its steady-state level after

about 16 quarters. In contrast, the observed unemployment rate remains elevated for

a considerably longer period, declining only gradually over the entire sample horizon.

This difference in persistence likely reflects the greater persistence of shocks in real-

ity, as the model assumes a one-time shock with no further propagation. Moreover,

additional labor market frictions, such as slow job matching, skill mismatch, or dis-

couraged workers exiting the labor force, could have contributed to the slower decline

in actual unemployment (Branch et al., 2016). Notably, the stagnation in labor force

growth during the post-crisis period may have further impeded recovery in the data,

a feature not captured in the current model framework.

Following the one-shot-deviation shock, the model predicts that house prices fall

sharply by more than 70% within the first 6 quarters, as shown by the blue solid line.

In contrast, the actual housing price decline, illustrated by the orange dashed line, is

both smaller in magnitude and more gradual, with the trough occurring several quar-

ters later. Even though the model-generated response is more immediate and volatile



56

than the empirical counterpart, the model-generated response essentially explain a

large fraction of the pattern in the data. This discrepancy may reflect real-world pol-

icy interventions that buffered the housing market during the crisis period, such as

government-supported mortgage programs and housing market stabilization efforts,

which delayed or softened price adjustments. Additionally, housing is a financial asset

subject to regulatory oversight, and post-crisis financial market reforms, along with

ongoing frictions in credit access and refinancing, likely contributed to the prolonged

and smoother adjustment path observed in the data. These features are abstracted

from in the model, which helps explain the faster and deeper response of house prices

in the simulated economy.

The model’s output response closely mirrors the data in the immediate aftermath

of the shock, with both series showing a sharp decline followed by a trough around

quarter 10. However, the recovery in the data is noticeably slower, a pattern con-

sistent with the persistence observed in consumption dynamics. This difference may

again be attributed to more persistent real-world shocks and additional frictions not

captured in the model. For household leverage, the model replicates the observed

dynamics well: leverage rises for several quarters post-shock, peaking around quar-

ter 8, and then gradually declines over time. The homeownership rate also exhibits

a qualitatively similar downward trend in both the model and the data. However,

the model predicts a substantially larger decline. This overreaction may stem from

the modeling choice: homeownership is proxied by the share st of housing wealth

allocated to residential use. In the model, households endogenously choose between

residential and investment use of housing. In reality, according to ACS data, most

U.S. households own only one home, and secondary homeownership is relatively rare8.

To evaluate the individual contributions of the mechanism proposed in the paper,

as well as the roles of the collateral constraint and DNWR, I conduct comparative

8https://eyeonhousing.org/2024/09/the-nations-stock-of-second-homes-2/
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statics by selectively removing each friction and both simultaneously. This yields four

scenarios: the baseline economy, an economy with only the collateral constraint (CC

only), an economy with only DNWR (DNWR only), and a frictionless economy. For

comparability, all four economies begin from the same initial state and are subjected

to an identical one-shot deviation shock to Zt. The resulting impulse responses of the

three main outcome variables are presented in Figure 2.3.

Figure 2.3: Comparative statistics
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Figure 2.3 presents the comparative impulse responses of aggregate consumption

under the four model specifications. Among them, the baseline economy exhibits the

largest drop in consumption, highlighting the compounded effect of both frictions. In

contrast, the frictionless economy shows no persistent deviation in consumption fol-

lowing the shock, indicating sufficient consumption smoothing and perfect insurance

in the absence of frictions. The economy with only the collateral constraint active

(CC only) shows the second-largest decline in consumption, around 45%, underscor-

ing the critical role of financial market frictions in amplifying the effects of shocks.

The economy with only DNWR active exhibits a more moderate decline of about

30%, suggesting a smaller standalone contribution of nominal wage rigidities. These

comparative results reinforce the discussion in Chapter 1 regarding the importance

of nominal wage rigidity in shaping consumption dynamics, particularly through its

interaction with collateral constraints.
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The figure displays the comparative impulse responses of the unemployment rate

across the four economies. The baseline economy exhibits the largest response to

the shock, with unemployment rising by approximately 5 percentage points before

gradually returning to steady state. In contrast, both the frictionless economy and

the economy with only the collateral constraint show no increase in unemployment,

reflecting the absence of wage rigidity, which eliminates involuntary unemployment

in these settings. The DNWR-only economy generates a moderate increase in unem-

ployment of about 1.5 percentage points, indicating that wage rigidity alone accounts

for a limited portion of the baseline response. These results not only reinforce the

justification in Chapter 1 regarding the importance of nominal wage rigidity, but

also highlight the amplification effect of the collateral constraint. Specifically, the

interaction between DNWR and financial frictions amplifies both the magnitude and

persistence of unemployment dynamics in the baseline economy, relative to the case

with wage rigidity alone.

The figure shows the comparative impulse responses of house prices across the four

economies. The baseline economy exhibits the largest decline in house prices, with a

peak drop of approximately 70%, highlighting the combined impact of financial and

nominal rigidities. The frictionless economy displays only a temporary and modest

drop of about 20%, suggesting limited amplification in the absence of frictions. The

collateral constraint–only economy experiences a sharp decline of around 65%, under-

scoring the sensitivity of asset prices to household balance sheet conditions and the

role of financial market frictions. The DNWR-only economy shows a more moderate

decline of about 30%, indicating that nominal wage rigidity alone contributes less

significantly to house price dynamics. These results are consistent with the empir-

ical evidence discussed in Chapter 1, which documents large house price responses

to aggregate shocks. The findings here further support the presence of amplification

effects arising from the interaction between financial and nominal frictions.
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Finally, I summarize the welfare implications under the four model specifications.

Table 2.3 reports two welfare measures: ex-post discounted utility and consumption

equivalent variation (CEV). The ex-post discounted utility is computed by plugging

the realized paths of ct, st, and ht into the utility function and discounting back

to the beginning of the simulation. The CEV is defined as the percentage change

in consumption that would equate social welfare between a given economy and the

frictionless benchmark, holding (st, ht) fixed. In the baseline economy, the ex-post

discounted utility reaches the lowest level at −23.227, corresponding to a CEV of

516.0%, indicating substantial welfare losses due to the combined frictions. In the

economy with only the collateral constraint (CC only), the ex-post utility improves

to −11.942, and the associated CEV is reduced to 173.7%, suggesting that financial

frictions alone account for a large share of the welfare loss. The DNWR-only economy

yields an ex-post utility of −6.745 and a CEV of 36.4%, reflecting a more limited

welfare impact from nominal wage rigidity in isolation. As expected, the frictionless

economy produces the highest welfare level with an ex-post utility of −5.230 and

serves as the reference point with a CEV of 0.0%. These results confirm that both

types of frictions contribute to welfare deterioration, with financial frictions playing

the dominant role.

Table 2.3: Welfare analysis

Baseline CC only DNWR only Frictionless
Ex-post discounted utility -23.227 -11.942 -6.745 -5.230
CEV (%) 516.0 173.7 36.4 0.0

2.6 Conclusion

In this chapter, I construct a quantitative heterogeneous agent model and solve for

the recursive equilibrium globally to examine the role of two key frictions, collateral

constraints and DNWR, in shaping the macroeconomic dynamics of the U.S. economy
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following the Great Recession. The model successfully replicates several empirical

patterns observed in the data, including the depth and persistence of declines in

consumption, house prices, and unemployment. Through a series of comparative

statics exercises, I evaluate the relative contributions of each friction individually and

in combination, and assess the associated welfare implications under each scenario.

The findings provide a coherent and quantitatively grounded explanation for the

macroeconomic dynamics observed in the period after the Great Recession. In par-

ticular, the results highlight the critical role of the interaction between collateral

constraints and DNWR in amplifying and propagating the effects of large shocks.

This interaction generates substantial and persistent deviations from steady state,

consistent with empirical evidence. The analysis underscores the importance of in-

corporating economic frictions in macroeconomic models, both to improve empirical

fit and to guide policy design. These insights have meaningful implications for the

formulation of stabilization policies aimed at mitigating the impact of adverse shocks

in frictional economies.
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Appendix A

Chapter 1
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A.1 Data documentation

This appendix provides detailed documentation for the construction and contents

of a new US county-level panel dataset spanning from 2003 to 2019. The dataset

includes various economic and demographic variables that can be used to analyze a

range of topics related to local economies, household behavior, and housing markets.

This documentation provides a detailed account of data sources, construction, and

limitations.

For further details, please check our data repository CountyPlus on GitHub.

A.1.1 Measurement error of consumption

In some states, only sales tax revenue data are available while the taxable sales

(consumption) are not. Directly estimating the in-state distribution of consumption

using tax revenue leads to measurement error. In year t, households living in county

i = 1, . . . , I may consume J types of goods. Denote the true value of consumption

by Cj,i,t for goods j. The true consumption distribution S̃i,t of county i is defined as:

S̃i,t :=
Ci,t∑I

m=1Cm,t

=

∑J
j=1Cj,i,t∑I

m=1

∑J
j=1Cj,m,t

(A.1)

If we estimate the consumption distribution using tax revenue, then the observed

consumption distribution Si,t is:

Si,t :=
Ti,t∑I

m=1 Tm,t

=

∑J
j=1Cj,i,tτj,t∑I

m=1

∑J
j=1Cj,m,tτj,t

(A.2)

where Ti,t is the sales tax revenue of county i, τj,t is the tax rate applied to goods

type j. The measurement error is then defined as:

ei,t := Si,t − S̃i,t (A.3)
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One can see that the measurement error ei,t is zero if the same tax rate applies to tall

types of goods. Such a measurement error is raised by the differential tax rate among

goods. To further check it, we define the following county average tax rate and state

average tax rate

τ̄i,t =

∑J
j=1Cj,i,tτj,t∑J
j=1Cj,i,t

(A.4)

τ̄t =

∑I
m=1

∑J
j=1Cj,m,tτj,t∑I

m=1

∑J
j=1Cj,m,t

(A.5)

which are average tax rates weighted by consumption. Thus, the observed distribution

is proportional to the true distribution

Si,t =
τ̄i,t

∑J
j=1Cj,i,t

τ̄t
∑I

m=1

∑J
j=1Cj,m,t

=
τ̄i,t
τ̄t
S̃i,t (A.6)

The measurement error ei,t =
(

τ̄i,t
τ̄t

− 1
)
S̃i,t is a non-classical measurement error.

Therefore, for those states reporting tax revenue only, we correct such measurement

error due to tax rate by multiplying τ̄t/τ̄i,t on the observed consumption distribution.

A.1.2 Supplementary figures
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Figure A.1: Friction distribution by income decile
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A.2 Theory model

A.2.1 Model system

Solving the lifetime problems of the households and entrepreneurs, the system of

equilibrium conditions is listed from Equation (A.7) to Equation (A.25). Additionally,

the optimal consumption policy c(st), which is easy to derive, is a 1 − β fraction of

the net worth n(st).

∀st, (A.7)

a(st) = b(st) (A.8)

hl(st) + h(st) = H (A.9)

cl(st) + c(st) = Yt (A.10)

Yt = Alαt (utht−1)
1−α (A.11)
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wt = αAlα−1
t (utht−1)

1−α (A.12)

wt ≥ δwt−1 (A.13)

(wt − δwt−1)(1− lt) = 0 (A.14)

n(st) := p(st)h(st−1) + y(st)− b(st) (A.15)

c(st) + p(st)h(st) = n(st) +
∑
st+1

q(st+1|st)b(st+1) (A.16)

cl(st) +
∑
st+1

q(st+1|st)a(st+1) + p(st)[hl(st)− hl(st−1)] = w(st)l(st) + a(st) (A.17)

l(st) =


1, else

( αA
δwt−1

)
1

1−αht−1ut, ut < ( δwt−1

αA
)

1
1−αh−1

t−1,

(A.18)

and ∀st+1, (A.19)

βπ(st+1|st) = q(st+1|st) (A.20)

γ

hl(st)
+ βπ(st+1|st)p(st+1) = p(st) (A.21)

q(st+1|st)
c(st)

=
βπ(st+1|st)
c(st+1)

+ βπ(st+1|st)µ(st+1) (A.22)

p(st)

c(st)
=
βπ(st+1|st)
c(st+1)

[p(st+1) + (1− α)2Al(st+1)αu(st+1)1−αh(st)−α]

+ θβπ(st+1|st)µ(st+1)p(st+1) (A.23)

b(st+1) ≤ θp(st+1)h(st) (A.24)

y(st) = (1− α)Al(st)α(u(st)h̄(st−1))1−α (A.25)

Combining Equation (A.21), Equation (A.23), and Lemma A.2.2, there is risk sharing

condition ∀st+1:

1

c(st)

1

1− γ
p(st)hl(st)

=
1

c(st+1)
{1 + (1− α)2A[l(st+1)]α[u(st+1)]1−α

[h(st)]−α[p(st+1)]−1}+ θµ(st+1) (A.26)
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A.2.2 Proof: Proposition 1.2.1

Proposition (Persistent effect). There exist a unique continuation equilibrium that

depends on the states (u1, h0, b1(u1)). In the continuation equilibrium, the collateral

constraint is binding for a finite number of periods J , with J = 0 iff n1(u1) ≥ n̄1 :=

p̄h̄(1− βθ)/β, where p̄ and h̄ are jointly determined by

(1− β)p̄ =
γ

H − h̄
(A.27)

(1− β)p̄ = β(1− α)h̄−α (A.28)

Proof. First, we define a continuation equilibrium since date 2, then we show the

threshold for the collateral constraint to bind. We assume that ut is drawn from

a degenerated distribution after date 1 i.e. there is no uncertainty. The economy

follows a deterministic path which can be characterized as follows:

h =
βn

p− θβp′
(A.29)

n′ = (1− θ)p′h+ (1− α)h1−α (A.30)

p =
γ

H − h
+ βp′ (A.31)

p

n
=
β

n′ [p
′ + A(1− α)2h−α] + θβp′(

1

n
− 1

n′ ) (A.32)

Knowing net worth n at the beginning of the current period, then the whole path is

determined then. We recursively return to date 1 and look at the definition of net

worth n1:

n1(u1) = p1(u1) · h0 + (1− α)Ah1−α
0 (l1(u1))

αu1−α
1 − b1(u1) (A.33)

When knowing states u1, b1(u1) and h0, the deterministic path is determined then.

If collateral constraint is unbinding, then net worth must be fully insured and keep
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constant across time. The Equation (A.29) suggests that if net worth n1 is above

such a fully insured level n̄1 := p̄h̄(1−βθ)/β, then borrower saved enough to instantly

adjust net worth to the fully insured level. Otherwise, the collaterl constraint will

bind at least one another period.

A.2.3 Proof: Proposition 1.2.2

Lemma A.2.1 (Entrepreneur’s consumption policy). ∀st, c(st) = (1− β)n(st).

Lemma A.2.2 (Household’s housing wealth lower bound). For all st, p(st)hl(st) > γ

Proof. Rearranging Equation (A.21), then for all st, βπ(st+1|st) = p(st)−γ/hl(st)
p(st+1)

> 0

must hold on the support of st+1. Knowing p(st+1) > 0, then p(st)hl(st) > γ

Lemma A.2.3 (Non-negative net worth with collateral constraint). Iff 0 ≤ θ <

1
1− γ

p(st)hl(st)

and n(st) > 0, then n(st+1) > 0.

Proof. Plugging entrepreneur’s consumption policy and Equation (A.22) into the

risk sharing condition of Equation (A.26), one can find that n(st+1) > 0 iff θ(1 −
γ

p(st)hl(st)
) < 1. By Lemma A.2.2, one can get the range of θ.

Lemma A.2.4 (Involuntary unemployment). There exists a threshold u∗(st) of u(st+1)

such that if u(st+1) < u∗(st), then there is involuntary unemployment in equilibrium.

The equilibrium employment is:

l(st+1) =


1, u(st+1) ≥ u∗(st)(

αA
δw(st)

) 1
1−α

h(st)u(st+1), else

(A.34)

u∗(st) :=

(
δw(st)

αA

) 1
1−α

[h(st)]−1 (A.35)

Proof. When the DNWR constraint is binding, one can solve the equilibrium employ-

ment by solving the profit maximization problem of entrepreneurs. When DNWR con-

straint is exactly binding, l(st+1) = 1 such that a threshold u∗(st) can be solved.
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Lemma A.2.5 (Condition of binding collateral constraint). With θ satisfying the

condition in Lemma A.2.3 and α > 0, for all st, there exists a unique û(st+1) defined

in Equation (A.43), such that, if u(st+1) ≥ û(st+1), then b(st+1) = θp(st+1)h(st) in

equilibrium.

Proof. Let’s consider an arbitrary state u(st+1) where the t + 1 collateral constraint

is not binding. By entrepreneur’s Euler equation of Equation (A.22), consumption

is fully insured iff the collateral constraint is not binding such that n(st+1) = n(st).

Applying Lemma A.2.1, the risk sharing condition of Equation (A.26) leads to

p(st+1) =

[
p(st)hl(st)

γ
− 1

]
(1− α)2A[l(st+1)]α[u(st+1)]1−α[h(st)]−α

=(1− α)2
1

h(st)

[
p(st)hl(st)

γ
− 1

]
Y (st+1) (A.36)

Plugging it into the net worth definition of Equation (A.15), there is

b(st+1) = (1− α)Y (st+1)

[(
p(st)hl(st)

γ
− 1

)
(1− α) + 1

]
− n(st) (A.37)

∂b(st+1)

∂u(st+1)
= (1− α)

[(
p(st)hl(st)

γ
− 1

)
(1− α) + 1

]
∂Y (st+1)

∂u(st+1)
(A.38)

Equation (A.36) leads to the expression of the borrowing limit:

θp(st+1)h(st) = θ(1− α)2
(
p(st)hl(st)

γ
− 1

)
Y (st+1) (A.39)

∂[θp(st+1)h(st)]

∂u(st+1)
= θ(1− α)2

(
p(st)hl(st)

γ
− 1

)
∂Y (st+1)

∂u(st+1)
(A.40)

Knowing that ∂Y (st+1)
∂u(st+1)

> 0, and p(st)hl(st) > γ (Lemma A.2.2), the relative speed of

debt growing and borrowing limit growing by u(st+1) is:

∂b(st+1)/∂u(st+1)

∂[θp(st+1)h(st)]/∂u(st+1)
=

1

θ

1 + (1− α)
(

p(st)hl(st)
γ

− 1
)

(1− α)
(

p(st)hl(st)
γ

− 1
) (A.41)
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To assure a non-negative net worth n(st+1) > 0, θ must satisfy the condition in

Lemma A.2.3. Combining with Lemma A.2.2 and parameter restriction α > 0, the

RHS of the relative speed must satisfy:

RHS >
1 + (1− α)

(
p(st)hl(st)

γ
− 1

)
(1− α)

(
p(st)hl(st)

γ
− 1

) (
1− γ

p(st)hl(st)

)

= 1 +

(
1

1− α
− 1

)
γ

p(st)hl(st)
> 1 (A.42)

The above inequality tells that debt always changes faster than the borrowing limit

by u(st+1). Thus, there must be a unique threshold û such that for all u(st+1) ≥ û,

the collateral constraint binds. To obtain the value of û, let’s consider the point

u(st+1) = û where the collateral constraint exactly binds. Equation (A.36) still holds

and Equation (A.37) leads to the following equation if DNWR is unbinding:

n(st) = A(1− α)[h(st)]1−α

[
1 + (1− θ)(1− α)

(
p(st)hl(st)

γ
− 1

)]
· [û(st+1)]1−α

(A.43)

Specially, if DNWR is binding at û(st+1):

n(st) = A(1− α)h(st)

[
1 + (1− θ)(1− α)

(
p(st)hl(st)

γ
− 1

)]
·
(

αA

δw(st)

) α
1−α

û(st+1)

(A.44)

Lemma A.2.6 (Amplification effect on n1(u1) in Case 4 and its iff conditions). If

initial condition of Equation (A.50) holds, then [û1, u
∗
0] is not empty. For all u1 in

this interval, there is εp1 < 1 and n′
1(u1) > 0.

Proof. Assume DNWR and collateral constraints are both binding and [û1, u
∗
0] ̸= ∅.

By Lemma A.2.4, there is εl1 = 1. Plugging εl1 and l1 level into the equilibrium shock
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effect of Equation (A.57), the effect degenerates to:

n′
1(u1) =M0p

−1
1 (1− εp1) (A.45)

M0 := n0(1− α)2A

(
αA

δw0

) α
1−α

[
1

1− γ
p0hl

0

− θ

]−1

> 0 (A.46)

Thus, n′
1(u1) > 0 (amplification effect) iff εp1 < 1. To show this, taking derivatives

about u1 on both sides of Equation (A.60) and plugging ε and l1 in:

M0p
−1
1 (1− εp1) = (1− θ)

p1h0
u1

εp1 + (1− α)A

(
αA

δw0

) α
1−α

h0 (A.47)

For convenience, let

X0 :=

[
1

1− γ
p0hl

0

− θ

]−1

> 0

then we solve εp1 as:

εp1 =
M0

M0 +
(1−θ)h0

u1
p21

[
1− p1h0

X0n0

1

1− α

]
=

M0

M0 +
(1−θ)h0

u1
p21︸ ︷︷ ︸

<1

[
1− α− p1h0

X0n0

]
1

1− α︸ ︷︷ ︸
<1

(A.48)

It is obvious that εp1 < 1. Thus, n′
1(u1) > 0 for all u1 ∈ [û1, u

∗
0].

To ensure [û1, u
∗
0] is not empty, an iff condition is û1 ≤ u∗0. Recalling Lemma A.2.5

and Lemma A.2.4 and plugging in l1 and b1, there is

n0

A(1− α)h0

(
δw0

αA

) α
1−α

[
1 + (1− θ)(1− α)

(
p0h

l
0

γ
− 1

)]−1

≤
(
δw0

αA

) 1
1−α

h−1
0 (A.49)
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which implies

w0

n0

≥ α

δ(1− α)

[
1 + (1− θ)(1− α)(

p0h
l
0

γ
− 1)

]−1

(A.50)

Proposition (Non-linear heterogeneous effect). There exist levels of the entrepreneur’s

financial friction parameter θ and the DNWR parameter δ, such that if

w0

n0

≥ α

δ(1− α)

[
1 + (1− θ)(1− α)(

p0h
l
0

γ
− 1)

]−1

(A.51)

then, in equilibrium, the date 1 collateral constraint and DNWR both bind when u1 is

in a non-empty interval [û0, u
∗
0] where

u∗0 =

(
δw0

αA

) 1
1−α

h−1
0 (A.52)

û0 =
n0

A(1− α)h0

(
δw0

αA

) α
1−α

[
1 + (1− θ)(1− α)

(
p0h

l
0

γ
− 1

)]
(A.53)

, and the u1 shock effects:

∂c1
∂u1

> 0
∂l1
∂u1

> 0
∂p1
∂u1

> 0 or < 0 or = 0 depends (A.54)

which are also non-linear functions of θ and δ.

Proof. We do the proof in two steps. Firstly, we derive the shock effect n′
1(u1) in

equilibrium. Then, we show the conditions for different cases in which n1(u1) (non-

linear heterogeneous effect).

Let’s start from the risk sharing condition at date 1 of Equation (A.26):

1

c0

1

1− γ
p0hl

0

=
1

c1

[
1 + (1− α)2Alα1u

1−α
1 h−α

0 p−1
1

]
+ θµ1 (A.55)
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Rearranging the equation and plugging in consumption policy, and Equation (A.22),

we obtain the equilibrium n1 regardless if DNWR and collateral constraints are bind-

ing:

n1 = n0

[
1

1− γ
p0hl

0

− θ

]−1 [
(1− θ) + (1− α)2Alα1u

1−α
1 h−α

0 p−1
1

]
(A.56)

Taking derivatives with respect to u1 except two special points1, there is equilibrium

shock effect:

n′
1(u1) = n0

[
1

1− γ
p0hl

0

− θ

]−1

(1− α)2Ah−α
0 · (lα1u−α

1 p−1
t )(αεl1 − α + 1− εp1) (A.57)

εl1 :=
u1
l1
l′1(u1) (A.58)

εp1 :=
u1
p1
p′1(u1) (A.59)

where εl1 is the shock elasticity of employment, and εp1 is the shock elasticity of house

price. Lemma A.2.4 tells the level of l1(u1), and suggests that εl1 = 0 if the DNWR is

not binding while εl1 = 1 if the DNWR is binding. To obtain the value of p1 and εp1

in equilibrium, we equate the equilibrium net worth of Equation (A.56) and the net

worth definition of Equation (A.15).

n0

[
1

1− γ
p0hl

0

− θ

]−1 [
(1− θ) + (1− α)2Alα1u

1−α
1 h−α

0 p−1
1

]
= p1h0 + (1− α)Ah1−α

0 lα1u
1−α
1 − b1 (A.60)

Specially, as long as the collateral constraint is binding, there is a quadratic equation2

that determines equilibrium house price p1 the house price h1 can be solved from the

1Specifically, the point where DNWR exactly binds (Lemma A.2.4) and the point where b1 exactly
binds. All other differentials in this paper involving l1 and p1 follows the same exclusion rule as well.

2One can show that the larger root of the quadratic equation is the only feasible solution.



73

following quadratic equation:

h0p
2
1 +

[
1− α

1− θ
Y1 −X0n0

]
p1 −

X0n0

1− θ
(1− α)2

1

h0
Y1 = 0 (A.61)

where X0 is defined in Lemma A.2.6.

To obtain the value of εp1, we take derivatives about u1 on both sides of Equation

(A.60), then re-arrange terms to get the equation.

With formulas of the equilibrium shock effect and its components, now let’s discuss

the non-linear heterogeneity of the effect and derive conditions of each case. Let’s use

n1(u1), or equivalently c1(u1), as an example. In general, if n′
1(u1) varies by θ and/or

δ, then there is heterogeneous effects. If such variation is different by the level of θ

and/or δ, then there is non-linear heterogeneous effects. Lemma A.2.4 and Lemma

A.2.5 suggests the following four possible cases of DNWR and collateral constraints:

• Case 1: DNWR not binding (u1 ≥ u∗0), collateral constraint not binding (u1 ≤

û1)

• Case 2: DNWR binding (u1 < u∗0), collateral constraint not binding (u1 ≤ û1)

• Case 3: DNWR not binding (u1 ≥ u∗0), collateral constraint binding (u1 > û1)

• Case 4: DNWR binding (u1 < u∗0), collateral constraint binding (u1 > û1)

In Case 1, the shock effect on consumption is equivalent to the friction-less econ-

omy in Section A.2.4 such that n′
1(u1) ≡ 0 over the entire non-empty (u1, θ, δ) sub-

space that satisfies Case 1. In Case 2, n′
1(u1) go the same as Case 1 while the shock

effect on employment has non-linear heterogeneous effect over different level of δ

(Lemma A.2.4). In Case 3, n′
1(u1) > 0 iff εp1 < 1−α in which εp1 is a highly non-linear

function of (θ, δ) simultaneously. One can show that
∂n′

1(u1)

∂θ
and

∂n′
1(u1)

∂δ
are not con-

stants such that there is non-linear heterogeneous effects. The situation of εp1 > 1−α
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follows the same idea. In Case 4, n′
1(u1) > 0 is always true. Lemma A.2.6 gives the

proof and the condition for the interval [û0, u
∗
0] being non-empty.

A.2.4 A friction-less economy

In order to illustrate the non-linear heterogeneous effect of the frictions, we compute

comparative statistics of the frictional economy in Section A.2.1 and a friction-less

economy. In such a friction-less economy, there is no DNWR and collateral constraint

such that the agents have perfect consumption insurance. In this case, allocations

keep constant over time and there is no involuntary unemployment. The house price

is determined by the risk sharing condition across households and entrepreneurs via

combining their Euler equations about housing wealth:

∀st+1, p(st+1) =

[
p(st)(H − h(st))

γ
− 1

]
(1− α)2

1

h(st)
Y (st+1) (A.62)

And, the optimal borrowing b(st+1) can be solved from the net worth definition by

having n(st+1) = n(st):

∀st+1, b(st+1) = (1− α)

[
(1− α)

(
p(st)(H − h(st))

γ
− 1

)
+ 1

]
Y (st+1)− n(st)

(A.63)

A.2.5 Deterministic steady state

To set up the baseline scenario of our comparative statistics for illustration purpose,

we assume the economy starts from a steady state defined in a deterministic version

model. In such a deterministic version model, the distribution of ut degenerates such

that π(st+1|st) ≡ 1. Let’s assume the mean of ut is 1 for simplicity. In steady state,

neither DNWR and collateral constraints binds, and the housing productivity shock
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u ≡ 1. Eliminating the time notation, the system equations in steady state are listed

as Equation (A.64) to Equation (A.66)3.

b̄ < θp̄h̄, l̄ = 1, ū = 1 (A.64)

(1− β)p̄ =
γ

H − h̄
(A.65)

(1− β)p̄ = βA(1− α)2h̄−α (A.66)

Lemma A.2.7 (A continuum of deterministic steady states). Equation (A.64) to

Equation (A.66) can uniquely determines a continuum of deterministic steady states

indexed by steady state LTV ratio ν̄ := b̄
p̄h̄
< θ. In these steady states, either collateral

constraint and DNWR is not binding.

A.2.6 Baseline scenario for illustration

We consider a scenario that the economy starts from an unbinding deterministic

steady state while the collateral constraint is almost binding. It depends on initial

steady state LTV ratio ν0 = ν̄ < θ. Table A.1 lists all parameters values.

3The deterministic version model is different from a friction-less (stochastic) model in Section
A.2.4, which leads to different house pricing. Specifically, in the deterministic version model, the
βπ(st+1|st)
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Figure A.2: Non-linear heterogeneous effects
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Table A.1: Baseline parameters

Parameter Definition Value

β Utility discounting factor 0.9

α Labor income share 0.7

δ Parameter of DNWR 0.99

θ Collateral constraint as LTV ratio 0.8

A Technology level 1

ν̄ Steady state LTV ratio 0.79

γ Housing preference 0.8

H House supply 30
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A.3 Robustness check: Degree selection

The baseline results use a second-order polynomial for the sieve estimator. To deter-

mine if there are potential higher-order effects that the approximation should capture,

we do the estimation using third and fourth-order polynomials as robustness check.

Figures A.3 and A.4 present the β estimates, which do not reveal new patterns beyond

those captured by the baseline estimates.

Figure A.3: Order = 3
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Figure A.4: Order = 4
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A.4 Robustness check: Profile likelihood ratio test

The sieve estimator in Equation (1.31) provides a flexible characterization of het-

erogeneity, allowing a direct F test within our semi-varying coefficient model. For

robustness, we use a local kernel polynomial estimator as described in Zhang et al.

(2002) and conduct the profile likelihood ratio test as proposed by Fan and Huang

(2005) and Fan et al. (2001) to further verify our hypothesis testing outcomes.

In this exercise, as an alternative to the global polynomial approximation, we apply

Gaussian kernel smoothing to β(∆zfwcp,∆zdeni). The estimation follows a two-step

procedure. Initially, a varying coefficient model, as described by Hastie and Tibshirani

(1993), is estimated using local linear regressions. The bandwidth for this initial stage

is set at half of the plug-in bandwidth estimator suggested by Yang and Tschernig

(1999). Subsequently, all coefficient profiles, with the exception of the net worth

shock, are averaged across the quantile knots within the space of (∆zfwcp,∆zdeni),

which act as the point estimates for the non-varying coefficient terms. In the second

stage, the ”residuals”, i.e. the outcome after deducting the effects of these non-varying

coefficient terms, are regressed on the net worth shock in another varying coefficient

model. This second stage estimation also employs the kernel polynomial estimator,

with the bandwidth being the plug-in bandwidth.

Figure A.5 presents the estimates of β(∆zfwcp,∆zdeni). These results are con-

sistent with our baseline findings from the sieve estimator and also uncover more

detailed local patterns. Upon reviewing these estimates, we perform the profile like-

lihood ratio test and report the results in Table A.2. The null hypothesis H0 is that

if the overall treatment effect β is dependent on ∆zfwcp and ∆zdeni and the Equation

(1.27) is correctly specified, then it equals to the estimates from the linear LP model

as shown in Equation (1.24). Our findings reject this hypothesis across all outcomes

and time horizons, indicating that the true effect is different from the linear local
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Table A.2: Profile Likelihood Ratio test results

Horizon Consumption Unemployment House price

0
3178.98*** 328.46*** 1596.15***
(0.1503) (0.1503) (0.1503)

1
2880.26*** 355.91*** 1166.61***
(0.1504) (0.1504) (0.1504)

2
3132.23*** 1301.31*** 1230.62***
(0.1504) (0.1504) (0.1504)

3
2840.75*** 1684.84*** 1127.61***
(0.1504) (0.1504) (0.1504)

4
2378.04*** 1605.61*** 589.91***
(0.1504) (0.1504) (0.1504)

5
2051.58*** 1829.66*** 770.64***
(0.1504) (0.1504) (0.1504)

6
1719.26*** 1837.51*** 841.8***
(0.1503) (0.1503) (0.1503)

7
1616.08*** 1799.62*** 935.84***
(0.1502) (0.1502) (0.1502)

Notes: 1. H0 : β(∆zfwcp,∆zdeni) = β̂ + γ̂fwcp∆zfwcp +
γ̂deni∆zdeni, where (β̂, γ̂fwcp, γ̂deni) are the linear LP esti-
mates from Equation (1.24). 2. The number with stars are
the generalized likelihood ratio statistic T0, the number in
parenthesis is δn the degree of freedom of the asymptotic χ2

δn
distribution, the other asymptotic parameter rK ≈ 0.51579
for our Gaussian kernel. 3. ∗∗∗: rKT0 > T99,

∗∗:
rKT0 > T95,

∗: rKT0 > T90, where T90, T95 and T99 are
the critical values of significance level α = 10%, 5%, 1% re-
spectively.

projection estimates4.

4However, caution is important when interpreting such a ”point inference” at a specific point in
the function space of β(·). Rejecting the null hypothesis does not necessarily disprove the linearity
of β(·) in ∆zfwcp and/or ∆zdeni. It merely suggests that the linear LP estimates do not align with
the data patterns as closely as the kernel polynomial method does. For additional testing of the
linearity of heterogeneous effects, one might consult the emerging literature on uniform inference for
functional coefficients (Hu, 2024) in which a uniform inference tests if an estimated β(·) belongs to
a family of functions (such as linear functions).
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Figure A.5: Local linear regression

Notes: 1. The horizontal axis of each panel denotes ∆zfwcp in percentage points, the vertical axis

denotes ∆zdeni in percentage points. 2. The cross of the white dashed lines denote the point β̂(0, 0).

3. The contour plot is created by a piece-wise linear interpolation of β̂ over the along-each-dimension

10% ∼ 90% quantile ranges of ∆zfwcp and ∆zfwcp. 4. The quantile reference grid knots are chosen

by every 5% quantile such that there are 17×17 = 289 knots. 5. The distance for the kernel function

is Euclidean distance where both reference variables are normalized to [0, 1] in order to eliminate

the impact of scales. 6. The bandwidth selection is done by the plug-in estimator in Yang and

Tschernig (1999).
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A.5 Robustness check: Sensitivity analysis

Our baseline results covered the important time period of the Great Recession where

the US government largely intervened the economy5. Such large scale of policy in-

tervention may potentially weaken our estimates by introducing the omitted variable

issue due to unobserved policy-related confounder(s) that were not captured by the

year and state fixed effects. Meanwhile, these confounders may affect the baseline

results in non-linear and interacting fashions. To examine the sensitivity of our ATE

estimates against any potential leftover confounding effects, we perform sensitivity

analysis using the framework introduced by Cinelli and Hazlett (2020). This frame-

work uses the partial R2 of the treatment (net worth shock) R2
Y∼D|X in the baseline

result, and an observed covariate (the 2008 year fixed effect) as the benchmark for

potential confounders, to test the robustness of our estimates against potential omit-

ted variable issue, and how plausible that any proposed confounder(s) Z might be.

Specifically, the sensitivity analysis shows how the baseline estimates could be biased

given the unobserved confounder(s) proposed relationship with the treatment (param-

eterized by R2
D∼Z|X) and the outcome (parameterized by R2

Y∼Z|D,X) respectively
6.

In Table A.3, we report the main sensitivity measures: the robustness value (RV )

for the point estimate of ATE, the robustness value (RVα=0.05) for its t-value at

significance level 0.05, and partial R square R2
Y∼D|X of the treatment. The robust-

ness value RV measures how sufficiently strong the association of unobserved con-

founder(s) with the treatment and outcome, which is denoted by the two scale-free

5For example, these policy interventions included the Emergency Economic Stabilization Act of
2008, which established the Troubled Asset Relief Program (TARP) to purchase toxic assets and
inject capital into banks. Additionally, the Federal Reserve cut interest rates to near zero and
implemented quantitative easing to increase liquidity. The American Recovery and Reinvestment
Act of 2009 injected $787 billion into the economy through tax cuts, unemployment benefits, and
public works projects. These interventions aimed to restore confidence, stimulate economic activity,
and mitigate the impacts of the recession.

6Intuitively, the partial R-square R2
D∼Z|X summarizes the size of potential confounding effects,

and R2
Y∼Z|D,X summarizes the improvement by adding such potential confounder(s) to the baseline

model.
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parameters R2
D∼Z|X and R2

Y∼Z|D,X, must be to reduce our baseline point estimate

of ATE to 0. Any stronger relationship implies sign flip of the estimates. Another

robustness value RVα=0.05 measures how strong that association must be to not reject

the null hypothesis of the t test of ATE estimates. Meanwhile, the partial R square of

the treatment serves as an extreme scenario that how much residual variance of the

outcome must the confounder(s) to explain in order to eliminate our baseline ATE

estimates. Additionally, we report the bounds of the strength of the confounder(s)

by using the 2008 year fixed effect as benchmark7. If a confounder is as ”strong”

as the benchmark covariate, then whether it would overturn the baseline estimates.

Then for any proposed confounder, one could answer the question that how strong

the proposed confounder is compared to the benchmark and whether it is possible. In

our sensitivity analysis, both RV and RVα=0.05 are high which imply that our ATE es-

timates are invulnerable against omitted variable issue in most horizon’s projections.

For example, the RV for 1 horizon of consumption as outcome is 65.5%. It implies

that a potential confounder must have at least > 65.5% partial R square simultane-

ously with the net worth shock and consumption to flip our point estimate’s sign.

The RVα=0.05 is 56.2%, which implies that a confounder must have a high association

to fail the t-testing. In the most extreme scenario, the potential confounders must

be able to explain 55.4% residual variance of the outcome to overturn our estimates.

Given that we have controlled both time and state fixed effects, it is less likely to have

such strong confounding effects that eliminate our baseline results. However, one may

observe that our estimates is less invulnerable by projection horizon increasing. It

suggests that if there are strong policy related confounders not captured by our fixed

effects and other control variables, then they are possibly affecting the ATE estimates

at longer horizons rather than closer horizons. We also give two visualizations Figure

7The choice of benchmark covariate requires domain knowledge about potential confounder(s) and
how they might be related to an observed covariate in the baseline model. In our context, the 2008
year fixed effect is more likely to be conceptually associated with unobserved policy interventions
than the other covariates.
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A.6 and Figure A.7 to comprehensively illustrate the whole profile of our sensitivity

analysis results8.

Table A.3: Sensitivity measures

Outcome: Log(real consumption per capita) Bound (Z as strong as 2008 year FE)

Horizon Estimate SE t-value R2
Y∼D|X (%) RV (%) RVα=0.05 (%) df R2

Y∼Z|D,X (%) R2
D∼Z|X (%)

0 0.210 0.023 9.07 59.9 68.6 60.4 55 1.2 87.5

1 0.202 0.024 8.53 57.4 66.9 58.0 54 46.8 87.7

2 0.175 0.022 8.01 54.8 65.0 55.5 53 79.3 87.9

3 0.162 0.022 7.26 50.3 62.0 51.3 52 81.2 88.8

4 0.159 0.022 7.22 50.5 62.2 51.4 51 80.7 88.0

5 0.150 0.022 6.84 48.4 60.7 49.2 50 79.6 88.4

6 0.112 0.021 5.25 36.0 52.0 37.2 49 78.5 89.7

7 0.095 0.022 4.27 27.5 45.5 28.2 48 78.0 91.1

Outcome: Unemployment rate in percentage points

0 -1.114 0.107 -10.38 66.2 72.9 66.1 55 56.7 87.5

1 -1.114 0.114 -9.78 63.9 71.3 63.9 54 97.0 87.8

2 -0.985 0.105 -9.40 62.5 70.3 62.5 53 97.4 87.9

3 -0.851 0.098 -8.70 59.3 68.1 59.5 52 97.0 88.9

4 -0.780 0.099 -7.86 54.8 65.1 55.3 51 93.6 88.1

5 -0.731 0.099 -7.36 52.0 63.2 52.6 50 79.6 88.5

6 -0.592 0.105 -5.64 39.4 54.4 40.5 49 95.2 89.8

7 -0.539 0.114 -4.73 31.8 48.9 32.8 48 95.5 91.1

Outcome: Log(real house price index)

0 0.298 0.024 12.33 73.4 78.0 72.9 55 76.0 87.5

1 0.308 0.025 12.10 73.0 77.7 72.4 54 82.0 87.8

2 0.297 0.025 11.95 72.9 77.6 72.3 53 86.4 87.9

3 0.286 0.025 11.38 71.4 76.5 70.7 52 88.8 88.9

4 0.284 0.025 11.38 71.7 76.8 71.0 51 88.8 88.1

5 0.269 0.024 10.99 70.7 76.0 70.0 50 87.7 88.5

6 0.236 0.025 9.27 63.7 71.2 63.3 49 85.2 89.8

7 0.197 0.027 7.31 52.7 63.6 53.0 48 79.0 91.1

8As a contrast, we also provide sensitivity analysis to the baseline Cloyne et al. (2023) model in
Figure A.8 and Figure A.9. The comparison suggests that the linear LP model is more vulnerable
to potential confounding effects at long horizon of the projection.
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Figure A.6: Sensitivity contour plots: point estimate of ATE
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triangle mark at the origin denotes the baseline ATE point estimate in which the value is labelled
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Figure A.7: Sensitivity contour plots: t-value of ATE
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Notes: 1. The horizontal axis denotes R2
D∼Z|X, the vertical axis denotes R2

Y∼Z|D,X. 2. The dark

triangle mark at the origin denotes the baseline ATE t-value in which the value is labelled in the

parenthesis. 3. The red diamond mark denotes the t-value if there is confounder(s) as strong as the

benchmark covariate (2008 year fixed effect); The new value is labelled in the parenthesis. 4. The

red thick curve marks the 1.96 critical line. Point estimates beyond this line means not rejecting

the H0.
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Figure A.8: Sensitivity contour plots: point estimate of ATE
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Notes: 1. The horizontal axis denotes R2
D∼Z|X, the vertical axis denotes R2

Y∼Z|D,X. 2. The dark

triangle mark at the origin denotes the baseline ATE point estimate in which the value is labelled

in the parenthesis. 3. The red diamond mark denotes the point estimate if there is confounder(s)

as strong as the benchmark covariate (2008 year fixed effect); The new point estimate is labelled in

the parenthesis. 4. The red thick curve marks the zero line. Point estimates beyond this line means

sign flips.
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Figure A.9: Sensitivity contour plots: t-value of ATE
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Notes: 1. The horizontal axis denotes R2
D∼Z|X, the vertical axis denotes R2

Y∼Z|D,X. 2. The dark

triangle mark at the origin denotes the baseline ATE t-value in which the value is labelled in the

parenthesis. 3. The red diamond mark denotes the t-value if there is confounder(s) as strong as the

benchmark covariate (2008 year fixed effect); The new value is labelled in the parenthesis. 4. The

red thick curve marks the 1.96 critical line. Point estimates beyond this line means not rejecting

the H0.
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A.6 Robustness check: spatial spillover effects

It is well understood that local economies are closely interconnected. Beyond the

geographic variation of economic variables used in our baseline analysis, the uneven

distribution of these variables indicates the potential for significant spillover effects of

net worth shocks. Figure 1.2b illustrates various wealth clusters across the U.S (e.g.

West Coast, New England, and Florida). Concurrently, Figure 1.2a shows clearer

spatial clustering of net worth shocks, with the Great Lakes Region and the South

being most adversely affected during the Great Recession. To examine how robust of

our baseline results against spatial spillover effects of net worth shocks, we re-estimate

the baseline model of Equation (1.27) by adding a spatial Durbin term ηh ·WXt while

not assuming spatial dependency of the outcome variables nor the error. In such a

term, W is the zero-diagonal spatial weight matrix, Xt is the stacked net worth shocks

in year t, and ηh is the coefficient of spillover/indirect effects. In such a simplified

Spatial Durbin Model, the average spillover effects (ASE) of net worth shocks defined

by LeSage and Pace (2009) can be fully represented by the coefficient ηh, while the

inference of ASE is simply implemented by the regular t-test.
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Figure A.10: Average Spillover Effects of net worth shocks
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Notes: 1. The value of Average Spillover Effect is represented by ηh. The data sample is the same

as the baseline regressions. 2. The first row of the figure matrix represents the ASE estimates using

inverse distance weight matrix, in which the distance between two counties are computed using

Haversine formula. 3. The second row of the figure matrix represents the ASE estimates using the

1st-neighbor adjacency matrix. The adjacency data is published by Census Bureau. 4. There are

three confidence interval bands. By the color being lighter: 1-σ, 90% and 95%. The SE estimator is

the same as the baseline regressions.

In this exercise, we explore two types of spatial weight matrices: inverse distance

and 1st-neighbor adjacency, with each assuming different rates of shock decay as dis-

tance increases. Figure A.10 presents the ASE estimates for net worth shocks across

projection horizons. Statistically significant spillover effects on local unemployment

are observed, whereas local consumption and housing prices show no significant ef-

fects. The negative ηh value associated with unemployment indicates that net worth

shocks in other counties can impact the local labor market, likely due to intercon-

nected local labor markets on a broader scale, such as metropolitan areas and states.

Figures A.11 show the βh(∆Z) estimates under both spatial weightings. While the

magnitude of shock effects remains consistent across most of the ∆Z space, account-
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ing for spatial spillover effects yields a more negative βh for unemployment in regions

where collateral constraints and DNWR are likely to be binding simultaneously. This

indicates that the impact of net worth shocks in counties with high frictions is mit-

igated by their distribution across neighboring counties. It also implies a greater

non-linearity in the heterogeneous effects of net worth shocks, further verifying our

baseline results.

Figure A.11: Net worth shock effects: inverse distance weighting
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Figure A.12: Net worth shock effects: 1st neighbor adjacency weighting
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A.7 Robustness check: Panel unit root tests

Unit roots can result in dubious or spurious estimates, which are particularly prob-

lematic when analyzing the longitudinal behavior of data. In our baseline model, the

net worth shock is identified at the first order (growth of net worth); however, it is still

crucial to check for the presence of unit roots for the shocks. Even if time fixed effects

are controlled, the existence of unit roots may indicate a potential misidentification

of the shock or necessitate the use of error correction models (ECM). Considering

the unbalanced wide panel nature and large heterogeneity among counties, we use

the Im-Pesaran-Shin (IPS) test (Im et al., 2003) and the ADF-based Fisher-type test

(Choi, 2001) to check the panel unit roots of the shock xi,t. Table A.4 reports the

testing results in which the null hypothesis are rejected by both tests. Thus, our

baseline model is not suffering severe issue of spurious estimates.

Table A.4: Panel unit root tests

Test Statistic p-value

IPS (Im et al., 2003) t̄ -41.0955 < 0.01

Fisher-type (Choi, 2001) Inverse χ2 8597.715 < 0.01

Inverse normal -41.7423 < 0.01

Inverse logit t -48.5836 < 0.01

Modified inv. χ2 63.0316 < 0.01

Notes: 1. H0 : All panels contain unit roots. 2. The maximum

lag is 2 by convention. 3. Demeaning is performed due to spatial

dependence and the Great Recession period. 4. No trend term added.
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Appendix B

Chapter 2

B.1 Numerical algorithm: household problem

Solving the individual household problems constitutes the main performance bot-

tleneck and is the most time-consuming part of the algorithm. Several challenges

contribute to this. The primary challenge is the high dimensionality of the state

space. Even in computing the deterministic steady state, the problem involves five

individual state variables, making traditional methods based on uniform dense grids

computationally infeasible. To address this, I adopt the sparse grid technique devel-

oped for economic applications by Griebel (1998), Brumm and Scheidegger (2017),

and Brumm et al. (2021). Specifically, I implement an isotropic regular sparse grid

and develop the computation pipeline as a Julia package, AdaptiveSG.jl, which is

publicly available on our GitHub repository.

The second challenge is the irregular shape of the admissible state space. Due

to the collateral constraint and fixed mortgage debt payments, the admissible do-

main of x = (a, b, h, s, ξ) is non-rectangular and evolves endogenously across itera-

tions. In certain regions of the feasible space, no admissible control variables exist.

While economists have developed techniques such as the endogenous grid method
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(Mendoza and Villalvazo, 2020), these approaches are typically applicable only in

low-dimensional settings. To address this issue in the deterministic steady state,

I transform and normalize the individual state variables into an alternative hyper-

rectangle:

x̃t := (ht−1, st−1, ℓt−1, ςt−1, ξt) (B.1)

where ℓt−1 := bt−1

θptst−1ht−1
∈ [0, 1] is the leverage ratio and ςt−1 := rbbt−1

at
∈ (0, 1] is

the liquidity ratio. These two transformed variables automatically satisfy the col-

lateral and solvency constraints under standard box constraints. I then re-write the

household’s Bellman equation and solve the problem within this rectangularized state

space. When solving the global solution of the model, the above transformation is no

longer applicable because the house price pt becomes time-varying. To address this,

I use a high-accuracy sparse grid and dynamically filter the admissible grid points

when updating the aggregate profiles (X ′(X), p(X)) using least squares fitting and

parametric approximations.

The third challenge is numerical oscillation during value function iteration, caused

by the non-smoothness and non-monotonicity of high-dimensional value function ap-

proximations. In high-dimensional settings with sparse grids, grid-based methods

such as multi-linear sparse grid interpolation (Schaab and Zhang, 2022) often suf-

fer from the vanishing phenomenon1 in the “vacuum” regions where grid nodes are

sparse. On the other hand, global approximation methods such as radial basis func-

tion interpolation, Gaussian process regression, and Smolyak polynomials (Judd et al.,

2014; Brumm and Scheidegger, 2017) avoid vanishing but suffer from the Runge phe-

nomenon, which introduces strong oscillations, breaks monotonicity, and generates

many local extrema and saddle points. These approximation issues result in non-

1The vanishing phenomenon refers to situations where the predicted function value is close to zero
because the point being evaluated is far from supporting grid nodes, causing most basis functions
to be zero.
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smooth and non-monotonic value functions, making it difficult to accurately solve

the household’s maximization problem. The associated numerical errors accumulate

across iterations, leading to inconsistent solutions, oscillations, or even divergence.

To address this, I adopt generalized additive model (GAM) approximations, which

are parametric and pseudo-linear. The proposed method is called vector-valued least

square generalized additive model (VLS-GAM) For example, Equation (B.2)

v(x) ≈ m0 +
N∑
i=1

mi · gi(x) (B.2)

g1(x) = h; g2(x) = s; g3(x) = ℓ; g4(x) = ς; g5(x) = ξ

g6(x) = h−1; g7(x) = s−1; . . .

g11(x) = h · s; g12(x) = h · ℓ; . . .

gives a GAM approximation of v(x) consists of an intercept term, linear terms that

capture monotonicity, inverse power-law terms that reflect concavity and risk aver-

sion2, and interaction terms that account for first-order correlations between state

variables. The model is estimated using a least squares method over sparse grid node

points. When fitting policy functions with this method, I impose an additional con-

straint to bound the predicted values within the feasible state space, introducing non-

linearity into the model. To ensure monotonicity of the value function approximation,

I select monotonic additive functionals and perform model selection by comparing the

pseudo R2 values of the converged value function approximations. This VLS-GAM

procedure yields a smooth and monotonic approximation that closely fits the true

value function. Meanwhile, because the policy function approximations do not re-

quire the shape preserving property, I use dimension-specific Chebyshev polynomials

and linear interaction terms to accurately capture the local shapes of the policy func-

2This specification is motivated by classical results on the exponential utility family, which in-
cludes the CRRA utility used in this model.
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tions. The VLS-GAM method is highly efficient. Even without supplying analytical

Jacobians or Hessians, it achieves a high degree of accuracy—requiring fewer than

1,000 grid node points while attaining an R2 above 0.97.
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