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Abstract

Accurate Imaging of Particle Motion in Dusty Plasmas

By Jonathan Cho

The use of cameras to track the trajectory of objects is important in the

science of imaging. Therefore, accuracy in locating particle motion is of

high priority. We explore the motions of dusty plasma in a weakly-ionized

Argon-filled vacuum chamber in real experiments using a Phantom V7.11

high-speed camera. Then we simulate dusty plasma motion and track its

trajectory using Trackpy, a Python tracking package. An issue called pixel

locking arises when tracking few-pixel wide objects, which make particle

tracking inaccurate. Pixel locking is apparent in dusty plasma experiments

where the sizes of particles are 11− µm. The analysis of the characteristics

of dusty plasmas in a controlled environment is heavily biased due to pixel

locking. There is a commonly used method called the SPIFF method which

mathematically finds the true location of particles given an estimated location

fed by a tracking algorithm. However, we find that the SPIFF algorithm does

not correctly solve the fundamental issues caused by pixel locking as huge

amounts of error are found when comparing the velocity probability density

functions of a simulated particle trajectory and a SPIFF corrected particle

trajectory.
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1 Introduction

The usage of imaging has become progressively more popular and important

in many fields of science. Imaging is prevalent in biology such as sizing and

identifying cellular vesicles [1], in motion computation [2], in stereo match-

ing [3], in structural analysis near the colloidal glass transition [4], and more

[5, 6, 7]. Thus, reducing the amount of noise and minimizing error that occur

in imaging is of high priority. However, a universal error called pixel-locking

is introduced when tracking very small objects that are only a few pixels

wide. Pixel-locking is the inclination of a particle image velocimetry velocity

field to measure more integer values of pixel displacement [8]. This error

occurs due to the lack of resolution to determine precise sub-pixel locations

[8]. Pixel-locking can cause drastic errors in understanding the character-

istics of flow fields when using small particles as observable objects as the

tracking is heavily biased. One specific application of using pixel tracking

software in experiments is tracking particles in dusty plasma experiments [9].

The presence of pixel locking inhibits investigators to accurately determine

physical aspects of a dusty plasma system. We explore when pixel locking

occurs in regards to particle and mask size and see if the widely accepted

SPIFF method is a valid solution to fix pixel locking [10]. We simulate par-

ticle motion with Gaussian noise so that we know the exact velocities at

all times. Then, using Trackpy, we track the particle motion and create a

probability density function of the tracked velocities. We will create a prob-
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ability density function for the simulated particle velocities and compare it

to the tracked velocities and see if there are any significant differences. If

tracking is done nearly perfectly, then the probability density functions of

both velocities will be similar. If both probability density functions are sig-

nificantly different, we can conclude that pixel locking does have significant

effects on measuring fundamental data. We also want to explore if deploying

machine learning strategies in place of fixing algorithms, such as SPIFF, can

successfully correct measurement errors caused by pixel locking.

1.1 Dusty Plasma

Dusty plasma is observed in extraterrestrial bodies such as the rings of Saturn

or in interstellar clouds [11]. Dusty plasma is also seen in Earth’s ionosphere

where dust particles in the atmosphere are charged mainly by solar wind

plasma [12]. Dusty plasma is the phenomena in which few nanometers- to few

centimeters-sized dust particles are suspended in an ionized gas environment

[13, 14, 15, 16, 17]. The plasma environment is usually generated by applying

a current through an electrode in a vacuum chamber. Dust particles are

then suspended into the system and are charged by ions and even more

electrons from the plasma, making them negatively charged [9]. This allows

dusty plasma to be suspended over the electric plate due to the electric field

generated. Dusty plasma obey the same plasma physics as charged particles

such as repulsion, drag from ions, and stochastic effects. This allows the

fluid mechanics of the plasma system to be identified through analyzing the
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motions of dusty plasma [9]. Core advantages of dusty plasma compared to

ions and electrons are their relatively large size and slow speed. This allows

us to identify some of the qualities of the plasma fluid system by observing

motions of dusty plasma using a simple camera [9].

1.2 SPIFF Algorithm

A commonly used method to solve pixel-locking is the single-pixel interior

filling function (SPIFF) algorithm [18]. The SPIFF algorithm looks at the

histogram of the decimal distribution of a tracked sample. It then forcefully

fits the histogram to a uniform distribution to find the true position of the

particle [19]. The true position of the particle can be calculated by solving,

XT = ±
∫ XE

0

P (X ′
E) dXE

where XE is the estimated position of the particle, XT is the true position

of the particle, and P(XE) is the SPIFF density function [10]. Although

the SPIFF method estimates the true value of the position of the particle

mathematically, SPIFF still produces significant error in finding the position

of the particle. This error is seen when we produce a 1-dimensional velocity

distribution. We then compare it to a purely Gaussian velocity distribution,

which is an indication of white stochastic noise.
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1.3 Tracking Particles

Cameras capture and process images by detecting photons of the desired

image and then are distributed based on the point spread-function of the

camera used [20, 21]. A point spread-function explains the image produced

from a point source from a specific camera. Even though the exact shape and

size of the particle is limited by the resolution of the camera used, the center

of the particle can be determined based on the number of photons hitting the

pixels [22]. Thompson et al. used a localization algorithm based on a least-

square fitting theory to determine the positions of fluorescent probes [23].

Similarly, the Crocker-Grier algorithm tracks objects through a least-square

fitting method [24]. We are going to use Trackpy in our experiments, which

is an open-source tracking algorithm based on the Crocker-Grier algorithm

that analyzes bright spots of a video and maps their trajectory in Python

[25]. Trackpy captures objects that are vastly different from the background

color and pinpoints their positions by fitting their brightness to a Gaussian

distribution. Trackpy is able to monitor how much of an area around the

brightest spots it analyzes, control how many light-emitting objects we expect

to observe at each frame, and determine each particle’s trajectory based on

a given memory [25]. We will explore the presence of pixel-locking in dusty

plasma experiments and see if the bias can be fixed using the SPIFF method.
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2 Methods

2.1 Plasma Experiment

Figure 1: Experimental apparatus for dusty plasma experiment. Consists of
vacuum chamber kept at 0.6-1.0 Pa and injected with argon gas [26].

We have observed the motions of dusty plasma in our custom built vac-

uum chamber to determine characteristics of a plasma field on charged par-

ticles. The plasma environment is generated inside of a vacuum chamber

with pressure of 1.0 Pa that has an electric plate installed within the cham-

ber to excite gas molecules. We pump argon gas into the vacuum chamber

and ionize the gas by applying a 13.56 MHz radio-frequency voltage through

the electrode [26]. An aluminum ring is set around the electrode to prevent

ionized dust particles from escaping horizontally. A spherical melamine-
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formaldehyde dust particle (microParticles GmbH) with diameter=11 µm

is suspended into the vacuum chamber and then ionized by the electrode.

The ionized dust particle ”floats” in the vacuum chamber due to the electric

force countering the gravitational force. The voltage of the electrical plate

is controlled by a capacitor and is optimized to 2.9 ± 0.1W of input power

running through the system. The ionized particles are observed by shining

an oscillating green laser into the vacuum chamber at the same level in which

the ionized particles are suspended in the system. The laser oscillated with

a 50 Hz sawtooth wave to observe vertical motion. The ionized particles are

not always at a constant charge as they are susceptible to noise, differences

in the plasma system, or many other external factors [14]. However, we will

ignore the vertical motions of the experiments and analyze the purely hor-

izontal planar movement of the particle. The ionized particles are visible

due to the green laser and are recorded using a Phantom V7.11 high speed

camera. We can introduce more ionized particles into the system by slightly

disturbing the particle reservoir. We can remove ionized particles from the

system by quickly pulsing the electrical plate to ”drop” some particles, pre-

venting them from being suspended again. We observe in experiments that

the particle moves in an elliptical pattern before finally resting after a long

time. This can occur due to the effect of the magnetic vortex on influencing

the particle trajectory [27, 28, 29]. We will want to simulate the effect of the

vortex on our simulated particle motion to most accurately follow our dusty

plasma procedures.
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2.2 Simple Harmonic Motion

To simulate experimental particle motion, we first have to understand the

core physics influencing the dusty plasma. We can assume particles are

suspended in mid-air due to the influence of the electric field counteracting

gravity by

F = E ∗ q = m ∗ g (1)

where:

Figure 2: Free body diagram of a single particle affected by the electric field
and gravity.

• E is the electric field strength, V/m

• q is charge on each particle, C.

• m is the mass of each particle, g.

• g = 9.8 m/s2.

This simplifies our analysis by confining each particle movement to a 2-D

plane with horizontal confinement.
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2.3 Particle Trajectory Model

The motion of ionized particles within the system is dependent on the char-

acteristics of the vortex. One can imagine the effects of a vortex on dusty

plasma to be similar to the effects of a whirlpool on floating balls. Just as

the floating balls rotate around the center of a whirlpool, a vortex affects

dusty plasma by spinning the dusty plasma [30]. Let ẍ(t) and ẋ(t) be the

time derivatives of x(t). Similarly, let ÿ(t) and ẏ(t) be the time derivatives of

y(t). The relationship between the acceleration and the position solely due

to the effects of the external electrostatic confinement can be shown as,

x′′(t)

y′′(t)

 =

w+ 0

0 w−


x(t)
y(t)

 (2)

where w− = (1−δ)w2
0 and w+ = (1+δ)w2

0. w0 stands for the average confine-

ment of the plasma and δ stands for the asymmetry. Now we can introduce

the damping factor, γ, dusty plasma will experience. The particle will expe-

rience higher damping effects which scales linearly with their velocities. The

faster the particle goes, the more resistance it will feel from the surrounding

ions. We can represent the damping factor as,

damping = −γ

x′(t)

y′(t)

 (3)
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Figure 3: Visualization of the asymmetry of the confinement as visualized
by the ellipse [26].

Now we have to see how the particle experiences an influence from how strong

the magnetic vortex is, which is represented by kc > 0. This can be visualized

as how strong a whirlpool is. The stronger the magnetic vortex, the more

the particle inside is affected.

kc

−x(t)

y(t)

 (4)

We can now show an expression of how the vortex affects the positions of

dusty plasma by combining equations (2), (3), and (4),

x′′(t)

y′′(t)

 =

(1 + δ)w2
0 0

0 (1− δ)w2
0


x(t)
y(t)

− γ

x′(t)

y′(t)

+ kc

−x(t)

y(t)

 (5)
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However, the particle motion does not fully follow the trajectory of equa-

tion (5) due to noise in the system. We assume that the random noise in

the system follows a stochastic model in which randomness in particle mo-

tion is predicted based on a Gaussian probability [31]. The majority of the

particle trajectory will follow closely to the path explained by equation (5).

Considering stochastic noise, N(α), the resulting equation is,

x′′(t)

y′′(t)

 =

(1 + δ)w2
0 0

0 (1− δ)w2
0


x(t)
y(t)

−γ

x′(t)

y′(t)

+kc

−x(t)

y(t)

+N(α)

(6)

α = 2 expresses a purely Brownian randomness and α < 2 shows a more

spread out Gaussian distribution with long tails. Since we simulated particle

Figure 4: Used Mathematica to simulate single particle motion following
equation (6) considering Gaussian noise. Simulated with w0 = 1, γ = 0.9, δ =
0.3, kc = 0.9604, α = 2.

motion with inherent stochastic noise, we expect α = 2 for the velocity dis-

tribution. Since pixel locking affects key measurements in tracked particles,
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we expect α ̸= 2 for the velocity distribution of tracked videos.

2.4 Particle Generation

We also want to imitate real experimental particles by simulating how real

recorded particles are seen in tracked recordings. A camera captures an

image based on the point spread-function of the camera. Experiments with

micro-objects have shown that the light emitted from very small objects

follow a least-squares Gaussian approximation [32]. Similarly, dusty plasma

in experiments show a Gaussian distribution of light where the center of the

particle shows a much brighter spot and deviates away from the center [33].

We can use this characteristic of how light is captured from a point source

to generate our simulated particles. A spherical dusty plasma will show as

a pixelated Gaussian distribution on the screen. The standard form that

generates the character of the Gaussian distribution is represented as,

f(x) = e−
1
2
(
x−x0

σ
)2 (7)

where σ is the standard deviation and x0 is the deviation from the mean.

σ describes the width of the particle and can be altered to vary particle

size. This equation describes the spread of a normal distribution in a 1-D

scenario. Because we are working with particle motion on a 2-D plane, we
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Figure 5: Real experimental picture of a dusty plasma suspended in vacuum
chamber.

must introduce a secondary variable y to simulate 2-D particles:

f(x) = e−
(x−x0)

2+(y−y0)
2

2σ2 (8)

Using equation (8), we are able to simulate light-emitting symmetrical par-

ticles that are only a few pixels in width.

Since we are able to simulate both the particle and particle motion in a

vortex, we run a simulation by generating a particle in regards to equation

(8) and simulate its movement that follows the trajectory described by equa-

tion (6). We will then use Trackpy to locate the positions of the simulated

particle over its lifetime and create a histogram of the decimal values of the

coordinates to determine if pixel-locking is present or not.
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Figure 6: Simulated particle with x0 = y0 = 0, σ = 1

2.5 Error Analysis

To analyze the error produced by pixel lcoking, we need to determine when

there is a significant bias towards the integer values. We extract the decimal

values of all points of the simulated particle trajectory and then produce a

histogram. To determine if bias is present, we conduct a probability test

to see if the bias present is statistically significant. A noticeable trend of a

biased sample is that there are much less decimal values that are near 0.4-

0.6. To mark if there is a significant bias, we took the sum of the number

of values between 0.4-0.6 and compared it to the number of values 0.0-0.2

and 0.8-1.0. If the number of values between 0.0-0.2 and between 0.8-1.0 is

much greater than twice the number of values between 0.4-0.6, then we deem

the sample as biased. Through trial and error, we found that a scale of 0.7
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Figure 7: Pixel-locking present histogram of decimal point values.

Figure 8: No pixel-locking histogram of decimal point values.
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reliably detects the presence of pixel-locking.

2N [0.4− 0.6] < 0.7(N [0.0− 0.2] +N [0.8− 1.0]) (9)

If equation (9) turns out to be true, then the sample is biased as there is a

bias towards the integer values in the histogram. The relevant variables that

affects whether or not pixel-locking occurred are the mask size and the value

of σ. σ affects the size of the particle and the mask size controls the size of

the area around the brightest spot of an object. The value of the mask size,

n, will analyze an nxn area centered around the brightest pixel on the screen

and determine the position of the object with sub-pixel accuracy by fitting

the observed pixels to a Gaussian distribution. The mask size needs to be

an odd number greater than 1 since the even value mask sizes do not have

a pixel center. We vary mask sizes and sigma values to see in which set of

conditions do pixel-locking occur to understand the nature of pixel-locking

in tracking programs.

2.6 Velocity Distribution

Brownian motion observed in particles are mainly due to random fluctuations

within the system that interact with the particles. To analyze how effective

raw tracking and SPIFF method are on determining velocities, we create a

probability density function of the velocity distribution. We first normalize
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Figure 9: The area of light values analyzed with mask size=3 around the
brightest pixel on screen.

all the velocities by the overall standard deviation.

vnorm =
v

σv

(10)

Then we create a probability density function of the normalized velocities

with log scaling on the y-axis. We fit the resulting probability density func-

tion to a best fit curve with an exponential term,

y = −A ∗ xα +B (11)

where A and B are arbitrary constants. We used scipy.optimize.curvef it()

on Python to find the best fit curve for the probability density function. We

expect the probability density function for a perfect stochastic motion to
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have α = 2. Any other result for α means that particle trajectory did not

experience purely stochastic noise.

3 Results and Discussion

Real experimental particles were recorded to be about 5 pixels in width,

which correspond to the value of σ lying between 0.9-1.1. As seen in figure

10, we observe that pixel locking occurs when the mask size, m, is m ≤ 5

and pixel locking is not present when the mask size is m ≥ 7. We tested the

Figure 10: Mask size vs. σ plot expressing presence of pixel-locking. Decision
to see if pixel locking has occurred or not is based on equation 9.

validity of equation 9’s ability to successfully detect pixel locking or not by

looking at the decimal distribution of the tracked particles and graphed a list

plot of different mask sizes vs. values of σ. We found that, no matter the
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mask size, pixel locking occurs if the size of the particle is too small, which is

what we expected. This occurs because Trackpy is unable to accurately fit

Figure 11: Visualization of particle with x0 = y0 = 0, σ = 0.5.

Figure 12: Visualization of particle with x0 = 0.3, y0 = 0.25, σ = 0.5.

the light distribution to a Gaussian distribution with high accuracy due to
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the lack of information given by the dim particle. Trackpy has no problem

tracking particles if they are tracking a perfectly symmetrical picture of a

particle. However, pixel locking occurs once particles move away from the

center of pixels due to the uneven distribution of light evident in Figure 12.

We also see pixel locking occur when the mask size is too low in com-

parison to the pixel size. Figure 12 shows an example in which tracking

Figure 13: Visualization of particle with σ = 2.0 and mask size =3.

a large object still results in pixel locking due to the mask size being too

small. The pixels surrounding the center of the particle are way too similar

in light intensity, so Trackpy is unable to fit the particle light levels to a

Gaussian distribution accurately. We see in Figure 10 that a tracked particle

with σ = 1.5 and mask size m = 7 has pixel locking due to the mask size

being too small in comparison to the pixel size. We see that pixel locking

does not occur when we increase the mask size to m = 9 since Trackpy is
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able to extract sufficient enough data to fit the light levels to a Gaussian

distribution.

Figure 13 shows the velocity probability density function for simulated

data. A velocity profile with p = 2 means that the only noise affecting

the system is stochastic noise. Figure 13 shows that when the simulated

particle with Gaussian noise is tracked, p = 2 which is expected. We also

observed that a simulation with non-Gaussian noise has p = 1.49, which is

also expected since we only expect a system with pure Gaussian noise to have

p = 2. However, when we used the SPIFF method on a tracked particle with

pixel locking, we got p = 1.36. This means that SPIFF correction does not

completely fix the issue of pixel locking as the fitted exponent p = 1.36 does

not equal the fitted exponent of the true particle trajectory velocity p = 2.00.

4 Conclusion

In this investigation, we observed how pixel locking drastically affects the

velocity distribution from tracking dusty plasma experiments and see if im-

plementing conventional methods to correct for pixel locking significantly

improves data collected. We specifically looked into the nature of when pixel

locking occurs through the use of simulated particle motion and see if the

SPIFF algorithm is a viable method of fixing for the errors caused by pixel

locking. We found that the general issue of sub-pixel bias in tracking minute

objects still exists even after using the SPIFF method. The use of simula-
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Figure 14: Log probability density function of x-velocity of particle, —vx—,
normalized by

√
⟨v2x⟩. Red dots represent Gaussian simulated velocity PDF,

α = 2. Blue squares represent non-Gaussian simulated velocity PDF, α =
1.8. Green triangles represent SPIFF correction on data with pixel locking,
α = 2. Solid lines represent their respective colors fits in regards to the form
y = Avp where p is the fitted exponent profile.
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tions allows us to compare how accurate tracking algorithms and the SPIFF

method are at tracking the true location of a single pixel trajectory to the

actual known location.

We want to explore how mask size affects the presence of pixel locking

since it would be ideal to have the smallest mask size possible. A smaller mask

size will significantly improve the speed of tracking. Each tracking analysis

with m = 13 took > 3min while analysis with m = 11 took < 1min. A

smaller mask size also allows us to analyze multiple particles. Experiments

that require multiple particles to be tracked prefers smaller mask sizes as

numerous particles may be present under one mask, which makes tracking

inaccurate. Trackpy will treat overlapping particles as one object as they are

all under one mask. A smaller mask size will reduce the chance for multiple

particles to occur in each analysis. However, the trade off for a smaller mask

size as seen in Figure 10 is the higher chance of pixel locking to occur.

We observe that pixel-locking exists when tracking real dusty plasma mo-

tions in an ionized vacuum environment. Even though the SPIFF algorithm

mathematically estimated the true value of the position of the particles, the

velocity distribution of the tracked particle is significantly different than the

velocity distribution of the actual trajectory. This error means that an alter-

native method to fix sub-pixel inaccuracy must be introduced to successfully

resolve pixel locking. The observed particles were about 5 pixels in width,

which correspond to the value of σ lying between 0.9-1.1. As seen in figure

8, we observe that pixel locking occurs when the mask size, m, is m ≤ 5 and
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Figure 15: Image of mask size m=5 represented by green square and mask
size m=7 represented by red square.

pixel locking is not present when the mask size is m ≥ 7.

We saw that despite a mask size of m = 5 able to encompass the majority

of the light emitted by a particle of σ = 0.5, pixel locking still occurs when

the particle is tracked. However, a mask size of m = 7 is able to successfully

detect the particle position without pixel locking. The only difference is that

mask size m = 7 encompass more ”blank space” than m = 5, which we

initially thought would make negligible difference. Further investigation is

needed for determining the sensitivity of mask sizes and what it calculates.

The present work only deals with simulated particle trajectory. Extension

into using simulated data to fix real experimental data will require research

in tracking projection of simulated particle movement.
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