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Abstract 

 

Theoretical and Experimental Studies of the Pharmaco-, Population and Evolutionary 

Dynamics of Single- and Multi-Drug Therapy for Bacterial Infections 

 

By Peter Ankomah 

 

The discovery of antibiotics and their use for the treatment of bacterial infections 
represents one of the major advances of modern medicine. However, despite being 
available for decades, it is not clear that these drugs are being used in a manner that 
maximizes their clinical utility; treatment of some bacterial infections is beset by 
substantial morbidity and high likelihoods of recrudescence and mortality. The goal of 
this dissertation, in its broadest sense, is to provide quantitative insights to facilitate the 
design and evaluation of optimal treatment regimens that minimize the likelihood of 
mortality, the magnitude and term of morbidity and the likelihood of antibiotic resistant 
bacteria emerging and being transmitted during therapy. To accomplish this, we use a 
combination of in vitro pharmacodynamic experiments, mathematical models and 
computer simulations to explore the pharmaco-, population and evolutionary dynamics of 
bacteria under single and multi-drug treatment regimens. As measures of efficacy for 
different regimens, we examine the relative rates at which they clear infections and their 
ability to prevent the emergence and ascent of single- and multi-drug resistant bacteria. 
We conduct these assessments for Mycobacterium marinum, a time- and cost-effective 
surrogate organism for Mycobacterium tuberculosis (Chapter 2), Staphylococcus aureus 
and Escherichia coli (Chapter 3). We find that for drug combinations, the type of 
interaction between the component drugs, synergy, additivity or antagonism, can 
substantially affect the time to clearance of an infection. Save for scenarios in which 
patients are non-adherent to therapy, the evolutionary advantage of combination therapy 
in preventing treatment failure due to single-drug resistance, however, prevails regardless 
of the type of drug interaction. In Chapter 4, we extend the within-host mathematical 
models of antibiotic therapy developed in the previous chapters by incorporating the 
contribution of host innate and adaptive immune responses. We explore the properties of 
this model to determine the relationship between antibiotic dose, dosing frequency and 
term of therapy on treatment success. We find that under most conditions, high dose 
treatment for extended periods is more effective than more moderate regimens in 
increasing the rate of cure, preventing the emergence and ascent of resistance and 
minimizing potential immunopathology.   
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CHAPTER 1 

Introduction 

1.1 BACTERIAL INFECTIONS AND TREATMENT: A BRIEF HISTORY 

Bacterial infections have been an important component of human existence since 

antiquity (Nelson and Williams, 2007), but their effects on mortality and morbidity 

became increasingly pronounced as communal societies expanded in size and 

interconnectedness. Mycobacterium tuberculosis provides a particularly germane 

example; one of the oldest known human pathogens, it was an infectious scourge in 

Ancient Egypt and had been established in mainland Europe around 2000 BCE (Ryan, 

1993). By the 1800’s, tuberculosis was responsible for about a quarter of all mortality in 

Europe (Bloom, 1994). Yersinia pestis, the causative agent of the bubonic plague, also 

cast a black shadow through 14th century Europe, decimating close to half the continent’s 

population (Haensch et al., 2010). Prior to the 20th century, the syphilitic infections 

caused by Treponema pallidum were another major source of global mortality (Nelson 

and Williams, 2007).  

Advances in microscopy and the firm establishment of the germ theory of disease 

in the 18th and 19th centuries led to rapid improvements in the understanding of infectious 

disease pathophysiology. A direct corollary of this was enhanced optimism that effective 

antimicrobial agents could be developed to treat bacterial and other infectious diseases. 

Serum therapy, the delivery of antitoxins (antibodies) that were isolated from animals 

exposed to infectious bacterial agents such as Streptococcus pneumoniae and 

Corynebacterium diphtheriae, was one of the foremost rational approaches to treatment 

(Winau and Winau, 2002). However, its logistical impracticality and limited therapeutic 
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success meant that the search continued for alternative therapies (Magner, 2009). Paul 

Ehrlich was especially convinced that synthetic ‘magic bullets’ could be developed to 

destroy pathogenic agents without harming normal human cells (Ehrlich, 1913). He and 

his colleagues synthesized the first modern chemotherapeutic agent, Salvarsan, which 

became the first available treatment for syphilis, despite its substantial side effects (Vecki 

and Ottinger, 1921). Another class of synthetic antimicrobial agents, the sulfonamides, 

were discovered in the early 1930’s and shown to have some efficacy against streptococci 

and Neisseria gonorrheae (Hager, 2006).  

The antibiotic era was officially ushered in with the discovery of penicillin by 

Alexander Fleming. Penicillin revolutionized antimicrobial therapy because it exhibited 

high-level cidal efficacy against a number of different bacteria – Neisseria gonorrheae, 

Treponema pallidum and many staphylococcal and streptococcal species (Brown, 2005). 

Streptomycin soon followed and was of particular value because of its activity against 

Mycobacterium tuberculosis (Comroe, 1978). A large number of antibiotic agents were 

subsequently discovered/developed over a short period of time and effective treatment 

became available for most bacterial infections (Clatworthy et al., 2007). Optimism about 

the decline in infectious causes of morbidity and mortality during this period is 

encapsulated by the unfortunate and oft-parodied pronouncement in 1967 by the then 

Surgeon-General of the United States, William H Stewart, that it was time to ‘close the 

book on infectious diseases and declare the war against pestilence won’ (Garrett, 1994). 

While the attribution of this quote to him has been challenged (Spellberg, 2008), there is 

ample evidence of widespread belief among many in the medical community in the 
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1960’s and 1970’s that infection no longer posed a significant threat to human health 

(Fauci, 2001; Petersdorf, 1978).  

1.2 BACTERIAL RESISTANCE TO ANTIBIOTICS 

 This optimistic outlook about infection control was myopic in the extreme, 

primarily due to the ability of bacteria to evolve resistance to antibiotics. Bacteria acquire 

resistance via the horizontal transfer of resistance-conferring genes/genetic elements or 

through de novo mutations. The transfer of resistance-conferring genes occurs through 

DNA uptake from the environment (transformation), phage-mediated DNA transfer 

(transduction) or through cell-to-cell conjugation. Mutations arise spontaneously during 

cell division, and some of those may confer resistance and provide an advantage in the 

face of antibiotic selection pressures. Mutation rates can also be substantially augmented 

in bacterial strains that exhibit deficiencies in mismatch repair mechanisms (Diacon et al., 

2007; Munro et al., 2007; Smith and Romesberg, 2007) resulting in a higher likelihood of 

such bacteria exhibiting antibiotic resistance (Cirz and Romesberg, 2006; LeClerc et al., 

1996; Miller, 1996; Oliver et al., 2000). Moreover, there are indications that antibiotic-

mediated stress can also enhance mutation rates and increase the likelihood of resistance 

evolution (Boshoff et al., 2003; Kohanski et al., 2010; Riesenfeld et al., 1997).  

These resistance-conferring genetic changes allow bacteria to evade antibiotic-

mediated killing via a myriad mechanisms, including: (i) structural barriers that limit 

drug access into cells, (Nguyen and Pieters, 2009) (ii) efflux pump-mediated extrusion of 

antibiotics, (Webber and Piddock, 2003) (iii) enzymatic inactivation of drugs, (Davies 

and Wright, 1997; Jacoby and Medeiros, 1991) (iv) enzymatic modification to prevent 

activation of drugs, (Guo et al., 2006) (v) alteration of the drug target, (Hooper, 2000; 
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Weisblum, 1995) (vi) increased expression of drug target to saturate drug molecules, 

(Hanaki et al., 1998) and (vii) utilizing alternative metabolic pathways that minimize the 

effect of drug inhibition (Tenover, 2006). 

It should be noted that bacteria can be simultaneously resistant to multiple 

antibiotics. One means by which this occurs is through the accumulation of multiple 

mutations, each of which results in resistance to a particular antibiotic (Almeida Da Silva 

and Palomino, 2011). Resistance genes can also cluster on plasmids such that acquisition 

of a single plasmid confers multiple drug resistance phenotypes (Nikaido, 2009). In 

addition, multi-drug efflux pumps that extrude a broad spectrum of antibiotics out of cells 

also serve as important mediators of multi-drug resistance (Li and Nikaido, 2009).  

The forms of resistance highlighted in the preceding paragraphs are all heritable, 

i.e. borne on genes or accessory genetic elements and transferable to progeny bacteria. 

Another form of resistance occurs when bacteria are genetically susceptible to antibiotics, 

but under certain conditions, exhibit a temporary (and reversible) decrease in 

susceptibility to antibiotics that is non-heritable. One of the major mechanisms leading to 

this phenotypic form of resistance is bacterial entry into non-replicating or slowly-

replicating states. Bacteria can, for instance, cease active growth under conditions of 

nutrient exhaustion as occurs during the stationary phase of in vitro growth, or when a 

host restricts access to sources of carbon, iron, oxygen, etc (Nathan, 2012). Also, among 

growing antibiotic-sensitive populations of bacteria, various errors in cellular replication 

can generate minority subpopulations that undergo temporary periods of non-replication 

or slowed metabolism (Johnson and Levin, 2013). While in this state of ‘persistence’, 

these bacteria can survive exposure to otherwise cidal antibiotic concentrations (Bigger, 
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1944). It is assumed that since antibiotics typically interfere with biomass-building 

processes, the phenotypic resistance of bacteria in growth stasis follows, at least in part, 

from their reduced need for building biomass (Nathan, 2012). In addition, persisters and 

other bacteria in non-replicating states may modify metabolic and transcriptional 

processes to decrease their susceptibility to antibiotics (Burian et al., 2012; Nguyen et al., 

2011). Phenotypic resistance can also be mediated by physical structures such as biofilms 

(Costerton et al., 1999; Hoyle et al., 1992; Kumon et al., 1994), granulomas (Kjellsson et 

al., 2012) and abscesses (Wagner et al., 2006) that limit antibiotic access to bacteria 

within. These structures also provide conducive environments for non-replicating bacteria 

and usually harbor large populations of these.  

Clinically, phenotypic resistance is of no less importance than genotypic 

resistance, and it has been argued that it may even be the reason why most antibiotics fail 

(Levin and Rozen, 2006). Aqueous microenvironments with constant nutrient flow and 

surfaces for attachment are ubiquitous in the human body and promote the formation of 

microbial biofilms during many infectious bacterial processes (Bell, 2001). Many 

surgical procedures also involve the temporary or permanent use of catheters, prosthetic 

joints, valves and other foreign bodies, and the artificial surfaces of these are especially 

conducive for microbial aggregation. Biofilm growth is a common worry with infections 

such as cystic fibrosis, endocarditis, osteomyelitis and chronic rhinosinusitis, often 

lengthening the term of therapy and substantially increasing the probability of treatment 

failure and/or relapse (Hoiby et al., 2010). Recent lines of evidence have also pointed to 

persisters playing an important clinical role in extending the length of treatment and 
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increasing the likelihood of treatment failure for some infections (Lafleur et al., 2010; 

Mulcahy et al., 2010). 

It is worth noting that even during the headily optimistic early days of antibiotic 

discovery and use, it was readily apparent that resistance could develop and adversely 

affect treatment outcomes. Once widespread penicillin usage began, resistant strains of S. 

aureus, for instance, began to increase in prevalence until by the late 1960’s about 80% 

of all isolates were resistant to penicillin (Lowy, 2003). The transfer of plasmid-borne 

broad spectrum beta-lactamases between bacterial species led to resistance to newer 

generations of beta-lactam antibiotics like methicillin, cephalosporins and carbapenems 

that were introduced after penicillin (Bush, 2002; Medeiros, 1997; Moosdeen, 1997). 

Macrolide resistance in staphylococcal isolates also developed rapidly after the 

introduction of erythromycin in the 1950’s, and this phenotype was transferred to S. 

pneumoniae within a decade (Bergstrom and Feldgarden, 2008).  

1.3 EPIDEMIOLOGY OF BACTERIAL INFECTIONS AND RESISTANCE 

In spite of Stewart’s pronouncement, bacterial diseases still rank among the major 

causes of human mortality and morbidity. In the most recent analysis of the global burden 

of disease, lower respiratory infections such as pneumococcal and Haemophilus 

influenzae pneumonia, diarrhoeal diseases like cholera, shigellosis and 

enteropathogenic/enterotoxigenic Escherichia coli as well as tuberculosis were among 

the top ten causes of mortality worldwide (Lozano et al., 2012). Contrary to popular 

perception, the impact of bacterial infections is not limited to the developing world; it is 

estimated, for instance, that around 200,000 people acquire a nosocomial infection in the 

United States each year (Bergstrom and Feldgarden, 2008). These infections are, by some 
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estimates, the sixth leading cause of mortality in the United States, leading to about 

90,000 deaths each year (Bergstrom and Feldgarden, 2008; Peleg and Hooper, 2010). 

As has been noted earlier, resistance plays a major role in treatment outcomes of 

bacterial infections. Relative to infections caused by antibiotic-susceptible bacteria, those 

caused by resistant bacteria are associated with longer hospitalizations, greater costs and 

higher mortality rates (Daxboeck et al., 2006; Schwaber et al., 2006). A brief (and by no 

means comprehensive) survey of resistance epidemiology delineates the scale of the 

problem. Methicillin-resistant staphylococcus aureus (MRSA) rates, for example, exceed 

a quarter of all cases of S. aureus bacteremia in many areas of Western and Southern 

Europe (Woodford and Livermore, 2009). In the United States, the corresponding number 

is around 50% (Draghi et al., 2005; Jones et al., 2008). Most in-hospital MRSA cases 

exhibit concurrent resistance to fluoroquinolones, macrolides, tetracyclines and 

aminoglycosides (Woodford and Livermore, 2009). The increasing prevalence of 

community-acquired MRSA cases poses even more of a challenge to efforts aimed at 

curbing MRSA spread (Weber, 2005; Zetola et al., 2005). Incidences, though isolated, of 

vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) 

have raised concerns that the glycopeptides, the conventional therapy for MRSA, may 

also be lost to resistance (Bierbaum et al., 1999; Hiramatsu et al., 1997; Martin and 

Wilcox, 1997; Ploy et al., 1998; Sievert et al., 2008).  

Enterococci are important agents of opportunistic infections, especially in the in-

patient setting (Woodford and Livermore, 2009). These bacteria exhibit a high-level of 

resistance to aminoglycosides and cephalosporins. Vancomycin-resistant Enterococcus 

(VRE) is increasing in prevalence, raising concern about a potential increase in incidence 
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of VRSA via horizontal gene transfer. For S. pneumoniae, another key pathogenic 

bacteria, penicillin and macrolide resistance poses major clinical problems (Woodford 

and Livermore, 2009). Enterobacteriaceae that produce extended spectrum beta-

lactamases (ESBL) are another important component of the epidemiological landscape in 

many places around the world. In Europe, for instance, the average rate of ESBL 

production in enterobacteria is around 4%, with some countries having rates greater than 

70% in their intensive care units (Turner, 2009). Carbapenemase-producing Klebsiella 

pneumoniae are also rising in incidence and could pose a particularly difficult threat in 

health care settings (Ho et al., 2010).  

Then, of course, there is tuberculosis. The World Health Organization (WHO) 

estimates that close to 4% of the 8.7 million new cases of TB recorded in 2011 were 

multi-drug resistant (MDR-TB), i.e. resistant to isoniazid and rifampin, the two most 

potent first-line drugs (WHO, 2012). Approximately 9% of these MDR-TB cases were 

extensively-drug resistant (XDR-TB), i.e. they exhibited additional resistance to two 

classes of second-line drugs; a quinolone and at least one of kanamycin, amikacin or 

capreomycin (WHO, 2012). There have also been worrying reports of pan-resistant TB 

strains that are not susceptible to any of the current antimycobacterial drugs (Udwadia et 

al., 2012).  

1.4 DESIGN OF ANTIBIOTIC TREATMENT REGIMENS 

 In order to improve treatment outcomes for bacterial infections, there is the need 

to design and implement effective antibiotic treatment regimens that minimize: (i) the 

likelihood of mortality (ii) the term and magnitude of morbidity (iii) the likelihood of 

relapse (iv) deleterious drug-induced side effects and (v) the likelihood of acquired 
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resistance and transmission of resistant bacteria. This involves determining the most 

effective antibiotic for an infection and using it at its optimal dose, dosing frequency and 

term. This is not a straightforward undertaking, as changing the various parameters of a 

treatment regimen may affect the goals of therapy in different ways. For instance, a 

priori, increasing antibiotic dose will be expected to increase the rate of bactericidal 

activity and the likelihood of eradication of the infection. This strategy, however, also 

increases the potential for serious drug-induced side effects in the patient. With regards 

the prevention of resistance, high doses are likely to reduce pathogen numbers rapidly 

and thereby decrease the likelihood of de novo resistance evolution. Conversely, it has 

been suggested that this strategy of ‘aggressive chemotherapy’ maximizes the selection 

pressure for any resistant pathogens that are present prior to the initiation of therapy and 

could promote the ascent and transmission of resistance (Read et al., 2011). For term 

considerations, the shortest treatment regimens are desirable because they limit antibiotic 

selective pressure for resistance to the barest minimum necessary (Rice, 2008). However 

there are always concerns that short courses may also increase the likelihood of 

recrudescence of the treated infection (Rice, 2008).  

It is obvious that well-designed, randomized control trials are needed to help 

determine optimal therapeutic regimens (Rice, 2008), but these are virtually nonexistent 

because they are dogged by ethical quandaries and a lack of pharmaceutical industry 

wherewithal. As precursors to (and unfortunately, in many cases, as stand-in’s for) such 

studies, pharmacodynamic-pharmacokinetic studies and mathematical modeling have 

been employed to assist in the design of treatment protocols for bacterial infections.   



	   10	  

1.4.1 THE PHARMACOKINETIC-PHARMACODYNAMIC (PK-PD) 

APPROACH 

Pharmacodynamics (PD) is the study of the biochemical and physiological effects 

of drugs on a treated organism or on pathogens in a host (Lees et al., 2004). 

Antimicrobial pharmacodynamics specifically assesses the relationship between drug 

exposure and specific microbiological effects such as bacterial killing and/or resistance 

suppression (Drusano, 2004). Pharmacokinetics (PK), on the other hand, describes the 

effect of physiological processes in the treated organism on the administered drug. It 

involves assessments of absorption, distribution, metabolism and elimination of drugs 

(Drusano, 2004). The PK-PD approach to the treatment of bacterial infections attempts to 

quantitate the relationship between drug potency against the pathogen, the extent of host 

exposure to the drugs and the microbiological effects that accompany changes in drug 

concentration (Mouton et al., 2011). It allows for evaluations of various drugs, doses and 

dosing schedules to determine the composition of regimens that improve antimicrobial 

efficacy (Mouton et al., 2011).  

PK/PD indices are used as measures of antibiotic efficacy in this approach. The 

pharmacodynamic component of these indices is usually restricted to a single parameter, 

the Minimum Inhibitory Concentration (MIC), i.e. the minimum concentration of 

antibiotic required to prevent in vitro growth of a bacterial population over a specified 

period of time (typically, ~ 18 – 24h). The pharmacokinetic components of these indices 

describe antibiotics based on whether they exhibit time- or concentration-dependent 

killing. The cidal effect of time-dependent antibiotics increases with increasing 

concentration until a maximum kill rate is reached such that further increases in 
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concentration do not engender any more changes in killing rate. For concentration-

dependent antibiotics, killing rates do not plateau with increasing concentrations. PK/PD 

indices combine the pharmacodynamic and pharmacokinetic elements of antibiotic-

bacteria-host interactions to evaluate drug regimens using one of three measures: (i) the 

time for which drug concentrations are above the MIC (t>MIC), (ii) the ratio of the peak 

plasma concentration attained by the drug to the MIC (Cmax/MIC) and (iii) the ratio of the 

area under the concentration-time curve to the MIC (AUC/MIC) (Van Bambeke et al., 

2006). The PK/PD of different classes of antibiotics are considered to be best-described 

by one of these indices, and comparisons among antibiotics or regimens within these 

classes are undertaken by quantifying these indices using in vitro experimental systems or 

model organisms, typically neutropenic or other immunocompromised mice (Mouton et 

al., 2011). A number of studies have provided some evidence to suggest that there is a 

positive correlation between the values of these PK-PD indices and clinical responses 

(Ambrose et al., 2001; Bhavnani et al., 2006; Drusano et al., 2004; Forrest et al., 1993; 

Lodise et al., 2005; Preston et al., 1998; Rayner et al., 2003).  

In spite of the aforementioned clinical correlations, it is not clear that the PK-PD 

approach allows for the determination of truly optimal regimens for treatment of bacterial 

infections. For one, the use of categorical indices is overly restrictive and may not 

properly capture the cidal dynamics of all types of drugs (Tam and Nikolaou, 2011). 

Another major limitation of the approach is its reliance on the MIC as the sole formal PD 

parameter (Levin and Udekwu, 2010; Mueller et al., 2004). MIC’s only measure a limited 

component of the antibiotic-bacteria interaction, and are designed to assess antibiotic 

killing under conditions that are optimal for antibiotic action (Udekwu et al., 2009). In 
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the standard procedure, low densities of exponentially growing bacteria in liquid media 

are exposed to twofold serial dilutions of antibiotics under ionic conditions in which the 

drugs are most effective (CLSI, 2005). A number of factors that affect the efficacy of 

antibiotics are not explicitly considered in this procedure. They include: (i) the 

physiological state of the bacteria (most antibiotics are ineffective against cells that are 

not actively growing) (Eng et al., 1991), (ii) the physical structure of the bacterial 

population (eg. biofilms, cords, granulomas) (Fux et al., 2005; Julian et al., 2010; Parrish 

et al., 1998), (iii) persistence (subpopulations of non-growing bacteria in exponentially 

growing cultures) (Lewis, 2010; Wiuff et al., 2005), (iv) the shape of the 

pharmacodynamic function (the relationship between bacterial killing and antibiotic 

concentration) (Regoes et al., 2004), (v) the density of the bacteria (as low as a two-order 

magnitude increase in the density of the initial inoculums used for MIC protocols, for 

instance, can increase the MIC by up to one hundred-fold) (Davey and Barza, 1987; 

Soriano et al., 1990; Udekwu et al., 2009) and (vi) post-antibiotic effects (such as the 

suppression of bacterial growth after brief exposure to antibiotics) (Craig, 1993). 

Moreover, the MIC is a static parameter that does not consider the relationship between 

changing antibiotic concentrations and bactericidal activity. Being a simple threshold 

measure, it does not provide information about the relative cidal effect of sub- and supra-

MIC concentrations (Mueller et al., 2004).  

An alternative approach to assessing the pharmacodynamics of antibiotics 

involves the use of classical time-kill experiments that examine the cidal activity of 

different antibiotic concentrations (Fung-Tomc et al., 2000; Lentino and Strodthman, 

1989; Odenholt et al., 2001; Regoes et al., 2004; Udekwu et al., 2009). This more 
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dynamic approach provides a better picture of the relationship between a range of 

antibiotic concentrations and bacterial killing. Mathematical models can be used to 

conduct formal and comprehensive quantitative PD assessments based on concentration-

kill results from these experiments. Sigmoid Emax pharmacodynamic functions (Equation 

1) for characterizing non-linear and saturable dose-responses are often the mathematical 

tool of choice (Bonapace et al., 2002; Boylan et al., 2003; Corvaisier et al., 1998; 

Delacher et al., 2000; Hyatt et al., 1995; Kim et al., 2002; Louie et al., 2001; Madaras-

Kelly et al., 1996).  

 

           (1) 

 

For these functions, the relationship between bacterial killing (E) and antibiotic 

concentration (C) is summarized by three parameters that represent (i) the maximum kill 

rate of the antibiotic (Emax), (ii) the sigmoidicity of the kill function, i.e. how sensitive the 

kill rate is to changes in antibiotic concentration (κ) and (iii) the concentration of the 

antibiotic that achieves a half-maximal kill rate (EC50) (Tam and Nikolaou, 2011). The 

Hill function is one form of the Emax models used in pharmacodynamic modeling 

(Goutelle et al., 2008). In its general form, it is a four-parameter function that 

incorporates a baseline response at a drug concentration of 0 in addition to the 

aforementioned parameters (Equation 2) (Goutelle et al., 2008).  

 

     (2) 

E = Emax *C
!

EC50
! +C!

E = E0 +
Emax *C

!

EC50
! +C!
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This has the added advantage of demonstrating maximal growth rate differences between 

different bacterial strains (Regoes et al., 2004) as would result from, for instance, fitness 

deficits due to resistance (Andersson and Levin, 1999).  

Studies that employ these Emax-type models typically restrict their use to the 

determination of correlations between empirically-determined PK-PD indices for an 

antibiotic and the maximal antimicrobial effect determined from the model e.g. 

(Bonapace et al., 2002; Corvaisier et al., 1998; Dalla Costa et al., 1997; Kim et al., 2002; 

Madaras-Kelly et al., 1996). More comprehensive Hill function-based analyses have been 

used to demonstrate that antibiotics can differ in the values of all the parameters that 

make up the pharmacodynamic function (Regoes et al., 2004). Crucially, these analyses 

also show that antibiotics with the same MIC’s but different maximal kill rates or 

sigmoidicity coefficients can exhibit dramatically different cidal dynamics (Regoes et al., 

2004).  

1.4.2 MATHEMATICAL MODELS  

Mathematical modeling has also been used to explore the design of antibiotic 

regimens and control programs that maximize infection control and minimize the 

evolution of resistance during the treatment of bacterial infections. These theoretical 

studies have been used to examine treatment dynamics at the level of a single infected 

host and on larger population scales. At the single-host level, models have been used to 

explore bacterial growth and clearance dynamics under different antimicrobial selection 

pressures (D'Agata et al., 2008; Gehring et al., 2010; Gerrish and Garcia-Lerma, 2003; 

Iwasa et al., 2004; Murphy et al., 2008; Roberts and Stewart, 2004). Factors such as 
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mutation rates to resistance (Gerrish and Garcia-Lerma, 2003), rates of horizontal gene 

transfer (Gehring et al., 2010), rates of compensatory evolution (Levin et al., 2000; 

Schulz zur Wiesch et al., 2010), the fitness of resistant bacteria (Cohen and Murray, 

2004), timing of treatment onset (D'Agata et al., 2008), duration of treatment (D'Agata et 

al., 2007) and adherence to therapy (Lipsitch and Levin, 1998) have been shown to have 

substantial effects on treatment success.  

At the epidemiological level, the most important features of an infectious bacterial 

agent are its rate of spread in the population (described mathematically by the basic 

reproduction number, which is the number of healthy individuals infected by each 

infected individual at the beginning of an epidemic), the threshold number of hosts it 

requires to become established, and the average level of infection (Dobson and Carper, 

1996). Models have been used to determine the values of these parameters and how they 

are affected by various factors (Austin et al., 1999; Cohen and Murray, 2004; Melegaro et 

al., 2004; Opatowski et al., 2010). For instance, theoretical studies suggest that there may 

be a quantifiable fitness cost threshold that determines the ability of a resistant pathogen 

to invade and persist in a population (Cohen and Murray, 2004) and that this threshold is 

affected by the amount of antibiotic selection pressure present in the community (Austin 

et al., 1999; Boni and Feldman, 2005). Models have also shown that subgroups of 

individuals can disproportionately impact the spread of resistance in a community 

(Andersson et al., 2005; Hotchkiss et al., 2005; Karlsson et al., 2008; Temime et al., 

2009) suggesting potential high-yield for control approaches that pay particular focus to 

these groups.  
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Theoretical studies have proved particularly useful for assessing the utility of 

different types of control programs in improving resistance management in hospital 

settings (Bergstrom et al., 2004; Bonhoeffer et al., 1997; Brown and Nathwani, 2005; 

Levin and Bonten, 2004; Lipsitch et al., 2000; Sun et al., 2010; Wang and Lipsitch, 

2006). The oft-made comparison is between two different strategies: cycling, in which 

antibiotics are used sequentially on a scheduled basis, and mixing, the heterogeneous use 

of different antibiotics by different physicians with no regulation of prescription 

practices. A priori, cycling was advocated to be the more effective strategy, but empirical 

assessments have thus far been inconclusive (Brown and Nathwani, 2005). Mathematical 

modeling has provided insight to this by showing that the patterned heterogeneity in 

antibiotic selection pressure generated by cycling does not provide a superior 

evolutionary advantage over the heterogeneity inherent in non-regulated use (Bergstrom 

et al., 2004; Bonhoeffer et al., 1997; Levin and Bonten, 2004). 

Despite the contributions made by theory, current models have a number of 

crucial limitations, which, if addressed, could help improve designs of treatment 

protocols. Particularly glaring is the limited consideration of the host immune defense’s 

contribution to clearance of an infection during treatment (see (D'Agata et al., 2008; Geli 

et al., 2012; Handel et al., 2009) for exceptions). This is in spite of the fact that antibiotics 

likely play only a supportive role in the eradication of many infections (Allos, 2001; 

Garbutt et al., 2012); they serve to decrease bacterial densities to levels at which immune-

mediated clearance can occur and thereby minimize the term of the infection and 

accompanying morbidity as well as the likelihood of mortality. The immune system, 

however, is not completely benign to the host. Morbidity and mortality due to infections 
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are as much a consequence of an over-response of the host defenses that leads to 

immunopathology (Margolis and Levin, 2008) as they are the result of disruptions in 

normal physiological processes due to bacterial virulence factors. Another limitation of 

most existing models is their consideration of resistance as an ‘all-or-nothing’ 

phenomenon whereby resistant bacteria are regarded as completely unsusceptible to 

antibacterial action. In reality, resistance represents a continuum of declining 

susceptibility to drug effect and properly accounting for this in models will likely have a 

substantial impact on treatment dynamics for resistant bacteria. Moreover, bar a few 

exceptions (Cogan et al., 2005; Levin and Rozen, 2006; Roberts and Stewart, 2005; 

Wiuff et al., 2005) resistance is considered only at the genotypic level and most models 

ignore the effects of different forms of phenotypic resistance, the importance of which 

has been discussed above.  

1.5 COMBINATION ANTIBIOTIC THERAPY 

The above consideration of the design of treatment regimens was limited to a 

simple one antibiotic-one bacteria scenario. However, the simultaneous use of different 

antibiotics (combination therapy or multi-drug therapy) is also a strategy that is 

considered when choosing antibiotic regimens to treat bacterial infections. Multi-drug 

therapy is principally utilized as a means of preventing treatment failure resulting from 

resistance to single drugs. For a disease like tuberculosis in which resistance to all the 

major drugs is mediated by single point mutations, resistance to single antibiotics is likely 

to exist prior to, or develop during the course of therapy. Using combination therapy 

allows these single-drug resistant bacteria to be eradicated by other drug(s) in the 

regimen to which they are susceptible (Lipsitch and Samore, 2002). Initial trials of 
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streptomycin monotherapy for tuberculosis conducted by the British Medical Council, for 

instance, showed that while many patients could be cured, a substantial proportion of 

treatment failure resulted from streptomycin resistance (Crofton and Mitchison, 1948). 

Subsequent studies demonstrated that combining streptomycin with either one of two 

new antituberculosis agents, thiacetazone and para-aminosalicylic acid decreased rates of 

treatment failure (Medical Research Council, 1950). As newer agents were added to the 

TB drug arsenal, there was always a rapid onset of resistance whenever a 

monotherapeutic regimen was employed (Fox et al., 1999; Manten and Van Wijngaarden, 

1969). Eventually, a four-drug regimen was recommended as the most effective strategy 

to combat resistance and maximize treatment success (Fox et al., 1999).  

In addition to this evolutionary virtue, combining antibiotics is also useful for 

providing broad therapeutic coverage such as in the treatment of polymicrobial infections 

and under conditions when the etiologic agent is unclear at the start of therapy (Gorbach, 

1994). Moreover, multi-drug therapy also has a number of important pharmacological 

virtues. Antibiotics can be combined at lower concentrations to generate the required 

cidal effects if single antibiotic use at high concentrations results in intolerable side 

effects. There is also the potential for synergistic interactions between antibiotics, and 

consequently, greater cidal activity than would be expected from using single alone.  

Combination therapy has its disadvantages though. From a practical perspective, 

taking more than one drug (likely on different dosing schedules) introduces additional 

logistical complication into treatment regimens. There is also the potential for 

antagonistic interactions between drugs, leading to decreased bactericidal efficacy. 

Moreover, combination therapy increases the selection pressure for resistance and can 
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favor the emergence of multi-drug resistant bacteria during therapy (Donskey et al., 2000; 

Michea-Hamzehpour et al., 1987; Rice, 2008).  

In order to determine the utility of a multi-drug regimen for treatment, it is 

essential that the antimicrobial efficacy of the combination be determined. One major 

way of doing this is by assessing the nature of the interaction between the drugs in a 

regimen. Combinations may be: (i) additive, (the drugs together generate cidal activity 

that is equivalent to what would be expected from the activity of the individual drugs); 

(ii) synergistic (cidal effects of the combination are greater than what would be expected 

from the activity of the individual drugs); or (iii) antagonistic/suppressive (cidal effects of 

the combination are less than what would be expected from the independent activity of 

the constituent drugs). Classifications of synergy or antagonism are based on deviations 

from a reference/null case of no interaction (additivity), and as such, defining the 

reference additivity model is crucial for multi-drug pharmacodynamic studies (Greco et 

al., 1995). There are two predominant pharmacological definitions of additivity; Bliss 

Independence and Loewe Additivity. Bliss Independence assumes that each constituent 

drug in an additive combination exerts its cidal action independently of the other drug(s) 

(Bliss, 1939). Loewe Additivity on the other hand, assumes that drugs in an additive 

combination operate, functionally, as identical drugs (Loewe, 1928). Thus, for two 

additive drugs A and B, the Loewe assumption is that the combined effect of equipotent 

doses of both drugs should be equal to doubling the dose of either drug A or B (Yeh et 

al., 2009). The ideas behind these definitions of additivity form the basis for various 

types of drug interaction assessments.   
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The checkerboard titration method is one of the most common methodologies for 

evaluating the nature of interactions between antibiotics. It generates a single parameter, 

the Fractional Inhibitory Concentration (FIC) index which is determined by calculating 

the ratio of the MIC of each drug in combination to its MIC when used alone and 

summing these together for all the individual drugs. For example; for two drugs A and B, 

FIC = (CA/MICA) + (CB/MICB), where MICA and MICB are the MIC’s of drugs A and B 

individually, and CA and CB are the concentrations of drugs A and B in the combinations 

that generate equivalent inhibitory activity as MICA or MICB (Hall et al., 1983; 

Meletiadis et al., 2010). Additivity here is based on Loewe’s definition, and an FIC index 

of 1 represents the case of perfect additivity. In practice, combinations with an FIC 

between 0.5 – 4 are considered to interact additively, with values greater than 4 

representing antagonism and those less than 0.5, synergy (Meletiadis et al., 2010).  

Time-kill assays are an alternative means of assessing the pharmacodynamics of 

drug combinations. They are used to compare the log-fold reduction in viable cell density 

generated by a combination relative to that generated by the most effective single 

constituent antibiotic (Lorian, 2005). Combinations that generate greater than two-fold 

log decreases in cell density are considered synergistic, while antagonistic combinations 

lead to a two-fold or greater increase in cell density, and additive drugs generate less than 

a two-fold log difference in viable cell density (Petersen et al., 2006).  

Both of these methodologies have their limitations. Checkerboard titrations base 

their PD assessments solely on MIC assessments, the limitations of which have been 

discussed in detail above. The FIC index range for additivity is also overly broad, thus 

making it difficult to determine subtle non-additive drug interactions (O'Shaughnessy et 
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al., 2006). For time-kill assays, the period over which assessments are conducted, the 

drug concentrations used and the degree of kill that is indicative of the various types of 

interactions are nonstandard and vary between studies (Lorian, 2005; Tam et al., 2004). 

In addition, this method only makes ordinal quantitative distinctions between types of 

interaction and does not distinguish between quantitatively different levels of interaction 

within the same class (Tam et al., 2004). Crucially, neither of these measures properly 

assesses a dose-response relationship between the concentrations of the antibiotics in the 

combination and bacterial killing.  

In order to account for some of these limitations, a few studies have utilized 

modified Emax-based models that allow for the generation of dose-response surfaces for 

antibiotic combinations (Greco et al., 1990; Lim et al., 2008; Tam et al., 2004; Yuan et 

al., 2010). Other studies have used sub-lethal (and hence sub-therapeutic) antibiotic 

concentrations to compare the inhibitory effects on bacterial growth rates engendered by 

combinations relative to their constituent antibiotics (Wood et al., 2012; Yeh et al., 2006). 

Generally, however, the pharmacodynamics of multiple antibiotics at clinically realistic 

and dynamic concentration ranges is still very under-explored. In addition, although a 

few mathematical models have considered combination therapy as part of their analyses 

(Bonhoeffer et al., 1997; Lipsitch and Levin, 1997; Lipsitch and Levin, 1998), none of 

these models has comprehensively assessed the effect of multi-drug PD on treatment 

dynamics.  

Clearly, there is a surfeit of adequately rigorous experimental and theoretical 

work examining the utility of combination therapy for bacterial infections. For the most 

part, a number of critical questions remain unanswered. These include: (i) whether there 
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any generalizable rules about how different classes of antibiotics interact, (ii) what the 

relationship is between pharmacodynamic interactions of drugs and their evolutionary 

efficacy, i.e. preventing the emergence of either single- or multi-drug resistance within a 

treated host, and (iii) under what conditions, and for which (types of) infections multi-

drug therapy will be more effective than monotherapy.     

1.6 THE QUESTIONS 

As the above discussion has shown, antibiotic treatment of bacterial infections is 

still beset by a substantial amount of problems despite considerable theoretical, 

epidemiological and experimental efforts. How can we improve on this? One approach is 

to actively engage in an evolutionary arms race against bacteria by continually 

developing newer and more effective antimicrobial agents to combat both phenotypic and 

genotypic resistance. This, however, is a cost- and labour-intensive undertaking, and the 

serendipity that will be needed for some of these discoveries may not track 

synchronously with bacterial advancements in the arms race. In addition, the potential 

financial rewards from developing such drugs are relatively meager, and the current 

disinterest of pharmaceutical companies in developing antibiotics is likely to continue.  

An alternative approach is to determine ways to optimize the use of the current 

antibiotic arsenal. In order to do this, a number of important questions need to be 

comprehensively explored. How, for instance, do antibiotics and the immune system 

collaborate to clear an infection? A better quantitative understanding of this could 

contribute to the design of treatment protocols that use just the right drug dose, dosing 

frequency and term to maximize treatment success and minimize selection pressure for 

resistance. It is also important to know the contribution of various forms of non-inherited 
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resistance – cells in spatial refugia, cells in growth stasis, etc, to treatment failure and 

how different antibiotics affect this. Moreover, a priori, combination therapy would 

appear to be an effective strategy for decreasing treatment failure due to de novo or pre-

existing single-drug resistance. Yet, it is only standard for the treatment of a few 

infections like tuberculosis. For many other bacterial infections, it is used in an ad-hoc 

manner with minimal evidence for why particular drug combinations are employed. 

Regimens are often based on a few case reports and/or ‘expert opinion’ and their 

optimality or otherwise is not stringently analyzed. Proper quantitative assessments of the 

pharmaco-, population and evolutionary dynamics of multi-drug therapy could help 

improve the utility of this approach for treatment of bacterial infections. The 

investigations included in this dissertation begin to address some of these critical issues.  

1.7 OUTLINE OF THE THESIS AND CHAPTER SUMMARIES 

In Chapter 2, I present a jointly theoretical and experimental investigation to 

explore the pharmacodynamics of multi-drug mycobacterial therapy and its potential 

impact on treatment success. In spite of the fact that combination therapy is the standard-

of-care treatment for tuberculosis, virtually all studies of the pharmacodynamics of TB 

drugs are restricted to single agents. A major goal of this study was to help mitigate this 

shortcoming in the literature.  

For our experimental organism, we used Mycobacterium marinum as a time and 

cost-effective surrogate for M. tuberculosis. M. marinum shares over 99% sequence 

homology with, and exhibits similar intracellular growth, survival mechanisms and other 

pathogenic behaviors as Mtb (Stamm and Brown, 2004; Stinear et al., 2008). It grows 

about four times faster in vitro than Mtb, and is considered safe for use in BSL2 facilities, 
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in contrast to Mtb that requires BSL3 containment. M. marinum is a natural pathogen of 

fish, frogs and other ectotherms, but is also capable of causing peripheral granulomatous 

infections in immunocompetent humans and disseminated disease in 

immunocompromised people (Stamm and Brown, 2004). Zebrafish (Swaim et al., 2006) 

and leopard frogs (Ramakrishnan et al., 1997) are being developed as experimental in 

vivo models of M. marinum infection, thus providing a potential means of extending our 

investigations into animal models.  

For the PD component of this study, we conducted time-kill experiments using 

five antimycobacterial drugs singly and in pairs to estimate the parameters and evaluate 

the fit of Hill-function-based pharmacodynamic models. We found that while Hill 

functions provided excellent fits for the PD of the single antibiotics, two-drug Hill 

functions with a unique interaction parameter could not account for the PD of any of the 

drug pairs. By assuming two antibiotic-concentration dependent functions for the 

interaction parameter, one for sub-MIC and one for supra-MIC drug concentrations, we 

were able to generate modified biphasic Hill functions that provided a reasonably good fit 

for the PD of the drug pairs.  

We used Monte Carlo simulations of antibiotic treatment based on the 

experimentally-determined PD functions to evaluate the potential microbiological 

efficacy (rate of clearance) and evolutionary consequences (likelihood of generating 

multi-drug resistance) of these different drug combinations as well as their sensitivity to 

different forms of non-adherence to therapy. The simulations predicted varying outcomes 

for different pairs of antibiotics with respect to the aforementioned measures of efficacy. 

Hence, this investigation confirmed the necessity of multi-drug pharmacodynamic studies 
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for tuberculosis drugs and showed that drug interactions could have potentially important 

effects on the efficacy of treatment regimens.  

 The study I present in Chapter 3 is also a jointly experimental and theoretical 

study of the pharmaco-, population and evolutionary dynamics of multi-drug therapy. In 

this investigation, we used other pathogens that can be responsible for chronic infections, 

the gram-positive bacterium Staphylococcus aureus and the gram-negative Escherichia 

coli. For both these bacteria, multi-drug therapy is gaining increasing traction as a useful 

treatment option for some infections that they generate. For instance, recommended 

therapy for infective endocarditis caused by S. aureus, especially when prosthetic valves 

are involved, uses at least two drugs simultaneously (Baddour et al., 2005). Further, 

successful treatment using combination therapy is being used to successfully treat 

osteoarticular infections and osteomyelitis caused by staphylococcal species (Barberan et 

al., 2008). Some recent studies have also reported improved results for using combination 

therapy to treat E. coli and other Gram-negative bacteria associated sepsis and bacteremia 

(Al-Hasan et al., 2009; Kumar et al., 2010; Micek et al., 2010).  

After the investigation in Chapter 2 demonstrated the lack of generality of a 

single, unique parameter model to describe the interactions between drugs, we developed 

a more general approach to assess drug interactions. In this study, we converted 

equipotent concentrations of different antibiotics in a drug pair into a single concentration 

variable. This strategy allowed us to determine the magnitude of cidal activity that was 

generated by the combination relative to the constituent drugs at comparable 

concentrations. We assessed antibiotic efficacy in two ways: (i) by conducting time-kill 

experiments and fitting Hill functions to the exponential phase of antibiotic-mediated 
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killing, and (ii) by determining the efficacy of the antibiotics and antibiotic pairs in 

reducing the level of persister subpopulations in the post-exponential phase of killing.  

For both bacterial species, we compared the pharmacodynamics of four 

antibiotics of different classes individually and in pairs to determine whether the 

combinations were more effective than the individual drugs. Our results provided 

compelling support for the proposition that the nature and form of the interactions 

between drugs of different classes needs to be determined empirically and cannot be 

inferred from the pharmacodynamics or mode of action of the individual drugs. We also 

found limited correlation between the pharmacodynamic efficacy of drug combinations in 

the exponential cidal phase and the density of persisters that remain after exposure to 

cidal concentrations of the antibiotics.  

To explore the potential implications of the experimental results for the design 

and evaluation of multi-drug treatment regimens, we used Monte Carlo simulations of 

within-host antibiotic treatment that incorporated clinically relevant refuge 

subpopulations. The results of these simulations suggested that: (i) the form of drug-drug 

interactions can profoundly affect the rate at which infections are cleared, (ii) two-drug 

therapy can prevent treatment failure even when bacteria resistant to single drugs are 

present at the onset of therapy, and (iii) this evolutionary virtue of two-drug therapy is 

manifest even when the antibiotics suppress each other’s activity. 

Of note, the ‘within-host’ mathematical models we used in the aforementioned 

investigations did not explicitly consider the contribution of the immune system to the 

eradication of an infection. To address this limitation, we developed a mathematical 

model that combines innate and adaptive immune responses with the pharmacodynamics 
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of antibiotics and bacteria, the pharmacokinetics of the drug and the population and 

evolutionary dynamics of bacteria (Chapter 4). In our analysis of the properties of this 

model, we gave primary consideration to the relationship between antibiotic dose, dosing 

frequency and term of treatment on the time before clearance and the likelihood of 

resistance emerging and/or ascending during therapy. We examined two types of acute 

infections, one that would be self-limiting and non-lethal and another that would be lethal 

in the absence of treatment. Our results suggested that under many conditions, high dose 

treatment for extended periods would be more effective than more moderate regimens in 

increasing the rate of cure, preventing the emergence and ascent of resistance and 

minimizing potential immunopathology. We also observed a saturating effect of 

increasing doses, such that at certain antibiotic concentrations, there were minimal gains 

to be made with further dose increases. We explored the current status of data in support 

of predictions and hypotheses made from our analyses and discussed the design of 

potential empirical studies suggested by our results.  

Finally, I briefly summarize the general conclusions of the investigations 

contained in this dissertation in Chapter 5. I discuss additional questions and lines of 

inquiry that the studies herein have generated and consider potential future directions.     
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CHAPTER 2 
 
Two-drug antimicrobial chemotherapy: A mathematical model 
and experiments with Mycobacterium marinum  
 
Peter Ankomah and Bruce R. Levin 

Modified from PLoS Pathog 8(1): e1002487. doi:10.1371/journal.ppat.1002487 

2.1 INTRODUCTION 

The concurrent use of multiple drugs, which is one of the mainstays of 

chemotherapy, is useful and in some cases necessary for the successful treatment of 

diseases such as tuberculosis (TB), HIV/AIDS, malaria and various cancers. Shortly after 

antimycobacterial agents became available for treating TB, it was recognized that single 

drug therapy almost invariably led to treatment failure due to the ascent of resistance, but 

that this could be mitigated by the use of multiple drugs with different modes of action 

(Medical Research Council, 1948; 1950; 1952; 1953). In its current form, standard 

tuberculosis treatment consists of a two-month combinatorial course of rifampin, 

isoniazid, pyrazinamide and ethambutol, followed by a four-month continuation phase of 

isoniazid and rifampin.  

Despite the barrage of antibiotics and long term of combination therapy, 

Mycobacterium tuberculosis (Mtb) strains that are resistant to multiple drugs are an 

increasingly troubling component of the epidemiological landscape. In 2009, the World 

Health Organization estimated close to half a million cases of multidrug resistant (MDR) 

TB (cases in which recovered strains were resistant to the most potent first-line 

antibiotics, rifampin and isoniazid) (WHO, 2010). By mid-2010, 58 countries had 

reported at least one case of extensively drug-resistant (XDR) TB (MDR strains that are 
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additionally resistant to any fluoroquinolone as well as at least one of the injectable drugs 

capreomycin, kanamycin and amikacin) (WHO, 2010). The important issue is thus: how 

can the term of tuberculosis chemotherapy and the likelihood of treatment failure due to 

the evolution of resistance during the course of therapy be reduced?   

One approach to improving the efficacy of single drug therapy has been to design 

treatment regimens based on in vivo data of the changes in the concentration of the 

antibiotic, pharmacokinetics (PK), and in vitro data on the relationship between the 

concentration of the drug and the rate of growth/death of the bacteria, pharmacodynamics 

(PD) (Ambrose et al., 2007; Craig, 1998; Drusano, 2004; Jacobs, 2001). This PK/PD 

approach to the rational design of antibiotic treatment regimes has been employed for 

tuberculosis but almost exclusively for single antibiotics (Diacon et al., 2007; Gumbo et 

al., 2005; Gumbo et al., 2009; Gumbo et al., 2004; Gumbo et al., 2007a; Gumbo et al., 

2007b; Jayaram et al., 2003; Jayaram et al., 2004; Shandil et al., 2007; Wilkins et al., 

2008). To extend this approach to the multi-drug treatment regimes clearly needed to 

prevent acquired resistance, it is necessary to concurrently account for the PD of the 

different drugs, and most critically, how they interact (Chait et al., 2007; Hegreness et al., 

2008; Michel et al., 2008).  

 Drug interactions are generally classified as antagonistic, synergistic or additive. 

In the case of bactericidal antibiotics, additive interactions are usually described in one of 

two ways, ‘Bliss Independence’ and ‘Loewe Additivity’. Bliss Independence asserts that 

each drug in a combination exerts its killing action independently of the other drugs 

(Bliss, 1939). For example, if there are two drugs, A and B, and at particular 

concentrations they kill fa and fb (0 < fa,fb <1) fractions of a bacterial population in an 
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hour, at the end of the hour the viable cell density would be reduced to (1-fa)(1-fb) of its 

initial level. For Loewe additivity, the fraction of surviving cells with both drugs would 

be 1-fa-fb, the constraint being that fa+fb <1 (Loewe, 1928). Antagonism and synergism 

can then be defined relative to one of these descriptions of additivity: drugs interact 

antagonistically if their combined cidal activity is less than would be predicted for an 

additive drug combination, and synergistically if the cidal activity is more.   

Unfortunately, these definitions cannot be readily translated into the PD of two 

drugs as they do not account for how the rate or extent of killing would vary with the 

concentrations of the drug. To address this, Greco and colleagues proposed a seminal 

Emax-based two-drug pharmacodynamic function which assumes that a single parameter 

can account for the interaction between both drugs (Greco et al., 1990; Greco et al., 

1995). If the value of this parameter is zero, then the drugs are additive, with a negative 

value indicating antagonism and a positive value indicating synergy. Although this and 

other Emax-based models have been used to characterize the nature of the interactions 

between different kinds of drugs, including antimicrobials (Deciga-Campos et al., 2003; 

Ferron and Jusko, 1998; Jonker et al., 2004; Lim et al., 2008; Meletiadis et al., 2007; Tam 

et al., 2004; Yuan et al., 2010), there has been limited quantitative consideration of how 

two-drug PD models apply to the design and evaluation of antibiotic treatment regimes 

for bacteria, particularly those, like tuberculosis, where multiple drug therapy is essential 

(Lim et al., 2008; Yuan et al., 2010).  

In this study, we explore the fit of Hill functions (which subsume Emax models) 

for the PD of the antimycobacterial antibiotics rifampin, amikacin, clarithromycin, 

streptomycin and moxifloxacin. We then employ a Hill-function-based variant of the 
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Greco model to explore the PD of the 10 possible pairs of these drugs. As our 

experimental organism, we use Mycobacterium marinum. In addition to being safer and 

more convenient to work with, M. marinum is a close genetic relative and shares 

numerous virulence determinants with Mtb. It also recapitulates key immunopathological 

features of human tuberculosis infection in its natural poikilothermic hosts 

(Ramakrishnan et al., 1997; Stinear et al., 2008; Swaim et al., 2006).  

To explore the potential clinical implications of these theoretical and in vitro PD 

studies, we use Monte Carlo simulations of antibiotic treatment and resistance that 

incorporate PD functions that best fit our data. Of particular concern in this analysis are: 

(i) the relative rates at which these different drug combinations clear the simulated 

infections (their microbiological efficacy) (ii) the likelihood of resistance to the two drugs 

evolving during the course of therapy (their evolutionary efficacy), and (iii) how that 

efficacy is affected by different forms of non-adherence to the treatment regime.   

2.2 MATERIALS AND METHODS 

2.2.1 Bacteria and media: Mycobacterium marinum strain ATCC BAA-535 / M was 

used in all experiments. Bacteria were grown in Middlebrook 7H9 broth (Difco, Detroit, 

Mich.) supplemented with 0.2% glycerol and 10% albumin-dextrose complex (7H9) at 

32°C. Cell densities were estimated by plating on Middlebrook 7H10 agar (Difco) 

supplemented with 0.5% glycerol and 10% oleic acid-albumin-dextrose complex (7H10) 

at 32°C. 

2.2.2 Antibiotics: Rifampin, amikacin, clarithromycin, streptomycin (Sigma, St. Louis, 

MO, USA) and moxifloxacin (Bayer, Pittsburgh, PA, USA) were purchased 
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commercially. Stock solutions were prepared by dissolving the antibiotics in sterile water 

or methanol, and appropriate dilutions were made in 7H9 broth immediately before use.  

2.2.3 Time-kill experiments for generating single-antibiotic Hill functions: Mid-log 

cultures of M. marinum were diluted in fresh medium to obtain a density of 

approximately 5x106 CFU/mL. 200 µL aliquots of this culture were introduced into wells 

in a 12-well plate containing 1.8 mL of antibiotic solution. The plates were incubated 

with shaking at 32°C for 72 h, and samples were taken every 12 h to determine viable 

CFU’s.  

2.2.4 MIC determination: Minimum Inhibitory Concentrations (MICs) were estimated 

using a broth microdilution procedure similar to that recommended by the CLSI(CLSI, 

2005) (7H9 was used instead of Mueller-Hinton Broth). Initial inoculating bacterial 

densities were similar to the densities used to initiate time-kill experiments in order to 

account for the inoculum effect on MIC demonstrated in Udekwu et al. (Udekwu et al., 

2009).  

2.2.5 Antibiotic-kill experiments for generating two-drug PD functions: Antibiotics 

were combined to generate solutions that contained 0.1, 0.5, 1.0, 2.0, 5.0 and 10.0 

multiples of MIC (xMIC) of each antibiotic. Mid-log cultures of M. marinum were 

diluted in fresh medium to obtain a density of approximately 5x106 CFU/mL. 200 µL 

aliquots of this culture were introduced into wells in a 12-well plate containing 1.8 mL of 

antibiotic solution. The plates were incubated with shaking at 32°C for 72 h, and samples 

were taken at the end of the incubation. The experiment was repeated four times, and 

gave good quantitative and qualitative replication. We show a representative experiment 

in the Results section of the manuscript.  
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2.2.6 Drug interaction modeling: As in Regoes et al., (Regoes et al., 2004) we assume 

that for single antibiotics, bacterial net growth in the presence of an antibiotic, ψ(A), is 

dependent on the growth rate of the bacteria in the absence of antibiotics, ψ max, and the 

death rate due to the antibiotic. The latter is a Hill function, Η, composed of the following 

parameters: ψ max; ψ min, the maximum antibiotic-generated bacterial killing; zMIC, the 

pharmacodynamic MIC; and κ, which describes the sigmoidicity of the Hill function 

(Regoes et al., 2004). i.e.:   

  ! ( Ai ) =! max " Hi ( Ai )                           (1)             
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Bacterial net growth rates were determined from the change in bacterial density over the 

time-kill period, and the pharmacodynamic function was fit to these data using the least 

square algorithm nls() of R (www.r-project.org) to obtain estimates for the parameters of 

the Hill function. For two-antibiotic combinations, we incorporated an interaction 

parameter (α) into the Hill-function mediated killing by both antibiotics. Thus, net 

bacterial growth rates would be described by the following equation:  

max( , ) ( ) ( ) * ( )* ( )i j i j i jA A H A H A H A H Aψ ψ α= − − −                               (3)                       

and the rate of change in the viable cell density of bacteria, D, treated with combinations 

of two drugs given by, 

( , )*i j
dD A A D
dt

ψ=                                                                                      (4)                                                                                                                          
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2.2.7 Estimation of drug interaction parameter (α): By assessing bacterial killing over 

72 h when exponentially-growing cultures were challenged with pairwise combinations 

of antibiotics (Ai and Aj) at different concentrations, we obtained empirical estimates for 

net bacterial growth rates in the presence of both antibiotics, ψ exp. As the theoretical 

analyses outlined above generate estimates for ψmax, Hi(Ai) and Hj(Aj), algebraically 

rearranging the net bacterial growth rate equation gives an equation for determining α:  

exp max( ( ) ( ))
( )* ( )

i j

i j

H A H A
H A H A

ψ ψ
α

− − −
=                                                         (5)                       

2.2.8 Numerical solutions: To follow the predicted change in the viable cell density of 

bacteria, we use numerical solutions to the differential equation (4) programmed in 

Berkeley MadonnaTM. Copies of this program and other programs used in this study and 

instructions for their use can be obtained on www.eclf.net/programs. 

2.3 RESULTS 

2.3.1 Single drug pharmacodynamics: In Figure 2.1 we show the fit of the theoretical 

single-drug pharmacodynamic function (Equation 1) to the PD data obtained from 

experiments with five antimycobacterial agents. These data were generated by exposing 

M. marinum to the antibiotics at different concentrations and estimating net bacterial 

growth/death rates (based on the increase or decrease in the density of viable bacteria) 

over 72 hours. The analyses of these time-kill data were restricted to 72 hours in order to 

ensure that bacteria were growing and/or being killed exponentially.  

For single antibiotics, the Hill function provides a good fit for the relationship between 

the concentration of the drug and the growth/death rate of the bacteria (Figure 2.1, see R2 

values). This is also evident in Table 2.1, where we list the estimates of the Hill function 

parameters for each of the drugs.  The maximum growth rates calculated from this 
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function are very close to that estimated independently (data not shown). Moreover, the 

estimated zMIC’s (MIC’s calculated from the Hill functions) and MIC’s determined by 

the CLSI (CLSI, 2005) recommended broth dilution method are, given the factor of two 

limitation of the latter, coincident. The individual antibiotics exhibited different 

pharmacodynamic signatures reflected in the varying shapes of the PD function (the 

parameter κ) and the kill rate parameter ψmin, which ranged from -0.043 to -0.166 h-1.   

 

 

Figure 2.1 Fit of the Hill function to time-kill data for single antibiotics. Adjusted R2 
values determined from an F test are shown. (a) Rifampin, (b) Amikacin, (c) 
Clarithromycin, (d) Streptomycin, (e) Moxifloxacin. 
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Table 2.1 Single-drug pharmacodynamic function parameter estimates and standard 
errors. 
Drug ψmax (h-1) ψmin (h-1) κ zMIC 

(mg/L) 
MIC 
(mg/L
) 

Rifampin 0.0453±0.0018 -0.125±0.0072 0.925±0.17 1.27±0.22 0.512 
Amikacin 0.0457±0.0012 -0.145±0.0019 1.23±0.12 0.38±0.029 0.5 
Clarithromyci
n 

0.0483±0.0006
8 

-
0.0434±0.001
3 

0.783±0.07
7 

1.58±0.14 1 

Streptomycin 0.0465±0.0021 -0.134±0.013 0.508±0.11 2.31±0.50 2 
Moxifloxacin 0.0478±0.0015 -0.166±0.0052 0.863±0.09

1 
0.461±0.05
5 

0.37 

 

2.3.2 Two -drug pharmacodynamics:  With the PD function parameter estimates for 

single antibiotics in hand, we proceeded to assess the validity of the two-drug  

pharmacodynamic function (Equation 3). To accomplish this, we exposed M. marinum to 

combinations of antibiotics, each of which was at some multiple of its respective MIC, 

and estimated the growth/death rates of the bacteria over 72 hours. Using the differential 

equation (Equation 4), the estimated single-drug Hill function parameters and different 

values of α, we compared the observed growth/death rates to those anticipated from the 

unique α model.  

In Figure 2.2 we show the experimentally-observed changes in bacterial 

growth/death rates generated by different two-antibiotic combinations (curves with 

markers) together with those predicted from our model for different drug interaction 

parameters, the α’s (curves without markers). Our estimates of these growth/death rates 

were limited to situations where the density of surviving cells exceeded 10 CFU per ml. 

Both the experimental and theoretical analyses were conducted for all possible two-drug 

combinations of the antimycobacterial drugs used in the study.  
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Figure 2.2 Predicted and observed growth/death rates of M. marinum exposed to 
different combinations of two antibiotics. Curves without markers represent predicted 
theoretical rates, and curves with markers represent observed experimental rates. Values 
of α represent different degrees of interaction between antibiotics. Positive values 
indicate synergy, negative values antagonism, and values of zero, additivity. (a) amikacin 
+ clarithromycin (b) amikacin + moxifloxacin (c) amikacin + streptomycin (d) 
clarithromycin + moxifloxacin (e) clarithromycin + streptomycin (f) rifampin + amikacin 
(g) rifampin + clarithromycin (h) rifampin + moxifloxacin (i) rifampin + streptomycin (j) 
streptomycin + moxifloxacin.    
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For all the drug combinations, it is apparent that a single interaction parameter is 

insufficient to describe the dynamics over the entire range of concentrations assessed. 

While the deviation of fit from this single α function varies among antibiotic pairs, in all 

cases, at lower drug concentrations the observed growth rate is greater than that 

anticipated from the model. The fit with a single value of α does, however, get somewhat 

better at higher drug concentrations.  

To get a better idea of the relationship between antibiotic concentration and α, we 

used Equation 5 to separately estimate this interaction parameter for different 

concentrations of the ten drug pairs (Figure 2.3). For all antibiotic combinations, this 

interaction became relatively more synergistic with increasing drug concentration. 

Interactions at sub-MIC concentrations were universally antagonistic, but could be mildly 

antagonistic, additive or synergistic at supra-MIC concentrations (Figure 2.3 and Table 

2A.1 in Appendix). In addition, the rate of change in α from one concentration to the next 

was much greater at sub-MIC than at supra-MIC concentrations. Interaction coefficients 

at the larger concentrations only changed to a limited extent and appeared to approach 

constancy, mirroring the results shown in Figure 2.2. Although not providing a precise fit 

to these data, if we assume a two-phase interaction function, one for sub- and one for 

supra-MIC concentrations and use linear regressions to generate the α functions for each 

phase, a reasonable fit obtains (Figure 2.3 and Table 2A.1 in Appendix).  
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Figure 2.3 The interaction parameter as a function of antibiotic concentration. 
Independent linear regressions are shown for sub-MIC (triangles) and supra-MIC 
(circles) concentrations. (a) amikacin + clarithromycin (b) amikacin + moxifloxacin (c) 
amikacin + streptomycin (d) clarithromycin + moxifloxacin (e) clarithromycin + 
streptomycin (f) rifampin + amikacin (g) rifampin + clarithromycin (h) rifampin + 
moxifloxacin (i) rifampin + streptomycin (j) streptomycin + moxifloxacin. 
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2.3.3 Asymmetric antibiotic concentrations: For convenience, but also to make this 

approach to evaluating the pharmaco- and population dynamics of two-drug antibiotic 

treatment readily applicable, we restricted the above PD experiments to situations in  

which both antibiotics were at the same xMIC concentration. In an effort to explore the 

robustness of the two-drug PD observed for these cases of symmetric drug 

concentrations, we performed time kill experiments for three asymmetric (unequal xMIC 

concentrations) situations: (i) where both antibiotics are below their respective MICs, (ii) 

where one antibiotic is below its MIC and the other above and (iii) where both are above 

their MICs. 

When both antibiotics are below the MIC, there is antagonism similar to that 

observed for the symmetric case.  This can be seen in Figure 2A.1 (in Appendix), where 

we present the observed growth rates and those anticipated for situations where there is 

no interaction between the drugs, α=0. As would have been anticipated from the 

symmetric combination results (Figure 2.2), at sub MICs the drugs together kill at a lower 

rate than expected were there no interactions between them i.e. they exhibit antagonism. 

Moreover, the estimated α’s for the combination of 0.1 and 0.5 xMIC concentrations of 

the antibiotics were generally less negative than those calculated for combinations of 0.1-

0.1xMIC but more negative than those calculated for the 0.5-0.5 xMIC symmetric cases 

(Table 2A.2, in Appendix).  

 Of particular concern in situations where one drug is below the MIC and the 

other above is that the substantial antagonism observed for below-MIC antibiotic 

concentrations would be manifest by sub-MIC drugs reducing the efficacy of supra-MIC 

antibiotics. The results of our experiments indicate that this is not the case (Figure 2A.2, 
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in Appendix). When combined with a sub-MIC concentration of a second drug, the rate 

of kill of the supra-MIC drug is no less than that when it is alone and in some cases 

greater.    

To explore the effects of asymmetric concentrations for pairs of above-MIC 

antibiotics, we compared the observed death rate with that anticipated for no interaction 

between the antibiotics. The results of these experiments suggest that there is either no 

interaction between the antibiotic pairs or there is the mild antagonism or synergy 

observed for the symmetric drug concentration experiments (Figure 2A.3, Appendix). In 

sum, the results of these experiments with asymmetric drug concentrations are consistent 

with that anticipated from the symmetric concentration experiments depicted in Figure 

2.3.  

2.3.4 Predicted dynamics of treatment:  To evaluate how the pharmacodynamics 

estimated above would be manifest in a treatment regime, we use a simulation of the 

within-host population dynamics of bacteria in a two-drug therapy regime for 

tuberculosis. In Figure 2.4, we present a diagram of the model used for the analysis 

(equations for the model can be found in Protocol 2A.1 in the Appendix). In designing 

this model and in choosing the dosing parameters, bacterial densities and PD parameters, 

we tried to mimic that which would be appropriate for mycobacterial chemotherapy. The 

structure of our model is based on that suggested by D. Mitchison (Mitchison, 1979). It 

assumes two compartments, one in which the bacteria are actively proliferating and the 

other where they are dividing slowly and thereby responding differently to antibiotics 

(Lipsitch and Levin, 1998; Warner and Mizrahi, 2006). This compartment difference in 

antibiotic susceptibility is reflected in the pharmacodynamic Hill functions, such that the 
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maximum and minimum rates of growth/death are proportional to the rate of replication 

in the two compartments. The idea is that the slowly dividing subpopulation is relatively 

refractory to killing by the antibiotics, as would be the case for latent or persister cells in 

a tuberculosis infection.  

 

Figure 2.4 Two-compartment population and evolutionary dynamic model of two-
drug antibiotic therapy. Main (active) compartment: S0, bacteria susceptible to both 
antibiotics; S1, bacteria resistant to antibiotic 1; S2, bacteria resistant to antibiotic 2, S12, 
bacteria resistant to both antibiotics. Latent (refractory) compartment: L0, bacteria 
susceptible to both antibiotics; L1, bacteria resistant to antibiotic 1; L2, bacteria resistant 
to antibiotic 2, L12, bacteria resistant to both antibiotics. C, reservoir resource 
concentration; R, internal concentration of the limiting resource; A1 and A2, internal 
concentrations of the antibiotics; A1max and A2max, concentration of antibiotics added 
periodically; w, flow rate of resources into and out of the compartments; wL, flow rate of 
latent population from the latent compartment. 
 

We allow for four states of the bacteria, one that is susceptible to both drugs, S0 

and L0 (S and L for rapidly- and slowly-dividing populations respectively), S1 and L1 for 

those resistant to drug 1, S2 and L2 for cells resistant to drug 2, and S12 and L12 for cells 

that are resistant to both drugs. These variables are both the densities (cells/ml) of 
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bacteria in these states as well as their state designations. By resistance we are assuming 

that these bacteria are totally refractory to the drugs, with MICs at least 100X that of the 

susceptible cells. Resistance also engenders a 5% fitness cost which is manifest as a 5% 

lower maximal growth rate of bacteria in those states. This assumed cost is in the range 

of what has been observed for M. marinum mutants resistant to the antibiotics considered 

in this study (Table 2A.3, in Appendix). We allow migration at rates fls (from latent to 

susceptible) and fsl  (from susceptible to latent) cells per hour, representing either a 

physical or a physiological translocation between the compartments.  

Resources for bacterial growth enter and are removed from the habitat (host) at a 

constant rate, w ml per hour. The bacteria, however, are removed from the habitat at two 

rates, w for S0, S1, S2 and S12, and wL for L0, L1, L2, and L12, where w > wL. For the 

pharmacodynamic functions, we use the two-drug Hill functions with the biphasic model 

for the interaction coefficient described above. For pharmacokinetics we assume that a 

fixed dose A1max and A2max of each drug is added every T hours. In addition to 

washout at rate w, both drugs also decay at a rate d mg/L per hour. In these simulations 

we assume that at the onset of treatment, the sensitive population is initially at a density 

of S0=5x107 in the main compartment (Shimao, 1987) and L0= 5x104 cells per ml in the 

refractory compartment.  

As would be anticipated for hosts infected with numbers of bacteria that exceed 

the reciprocal of the mutation rates, we assume that there are minority populations of 

bacteria resistant to single antibiotics, S1, S2, L1 and L2, with a relative frequency of 10-3 

to the corresponding susceptible population (Pyle, 1947). We also allow resistance to 

single drugs to evolve during the course of the simulations at rates proportional to the 
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product of the number of individuals of each ancestral state and a mutation rate. The 

actual generation of mutants occurs in a semi-stochastic manner, via a Monte Carlo 

routine. At each time step (Δt) in the finite step size (Euler) simulation, the probability 

that a mutant would be generated is the product of the number of individuals of the 

genotype, Δt and the mutation rate µ. When the random number is less than this product, 

a mutant is added to the noted population, e.g. when S1 is generated from S0, a bacterium 

is added to the S1 state and one removed from the S0 state. We use step sizes of Δt so 

that the probability of a mutant being added at a particular time interval is always less 

than 1. For these simulations, µ takes values in the range of that estimated from 

fluctuation experiments for different antibiotics and M. marinum (Table 2A.3, in 

Appendix). There are no doubly resistant cells, S12 and L12 at the start of the 

simulations, but they can evolve by mutation from the single resistant states.   

In Figure 2.5, we follow the changes in density of the different bacterial 

populations in the main compartment (5a) and in the refractory compartment (5b). The 

PD parameter values used in this simulation are those in the range estimated in our 

experiments for the combination of rifampin (A1) and amikacin (A2). These antibiotics 

are inoculated every 24 hours at a concentration of 5X their respective MICs and decline 

in concentration due to flow and a decay rate, d=0.075 per hour. With these parameters, 

the overall densities of the sensitive and single-resistant populations continue to decline 

during the course of the simulation. In the main compartment this decline is punctuated 

by oscillations in density reflecting the waxing and waning of the antibiotic 

concentration, with net decline each hour. The single resistant populations are cleared 

earlier than the sensitive for two reasons: their lower initial densities and their lower 
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fitness relative to the sensitive bacteria. This interpretation was confirmed by running 

simulations in which single resistant populations were at higher initial densities and had 

lower fitness costs (data not shown). Under these conditions, their resistance to single 

antibiotics does not make up for this fitness cost. 

 

Figure 2.5 Clearance dynamics for different subpopulations in the main and 
refractory compartments of the PD/PK model. Parameters used are those observed for 
the rifampin (A1) + amikacin (A2) combination. In these simulations, w and wL are, 
respectively, 0.02 and 0.002 per hour; fls=fsl=0.001; the antibiotic decay rate is d=0.075hr-

1 and the maximum and minimum bacterial growth rate for each subpopulation in the 
latent compartment is 10% of those in the active. (a) Main compartment, (b) Refractory 
compartment.   
 

In the refractory compartment, the rate of change in cell density is lower and the 

oscillations are not manifest to the same extent as in the main compartment. This occurs 

because the replication and washout rates are lower, as is the rate of kill by the 

antibiotics. As a result of continuous migration of cells from and to the slower-growing 

population, the rate of decline in the density of cells in the main compartment is reduced 
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whilst that in the refractory compartment increased relative to what would obtain were 

they the sole compartments or not connected. Said another way, the existence of a 

refractory compartment prolongs the term of therapy.   

To compare the relative efficacy of different combinations of antibiotics, we ran 

these simulations with the estimated PD parameter values obtained for the different 

combinations of drugs. In addition to simulations with symmetric antibiotic 

concentrations for the two drugs, we also conducted these simulation experiments with 

asymmetric antibiotic concentrations. The former were initiated with 5xMIC of both 

drugs and the latter with 5xMIC of one antibiotic and 2xMIC of the other. As a result of 

flow and decay, the asymmetric drug concentration simulations include periods where 

both drugs are above the MIC, one above and one below, and both below. The interaction 

coefficients used in these simulations are those estimated from the corresponding 

symmetric and asymmetric concentration experiments. As our measure of the efficacy of 

treatment, we considered the time until the total density of bacteria was less than one 

(time to clearance). The results of these simulations are presented in Table 2.2.  While in 

some runs doubly resistant mutants emerged, ascended and thereby precluded clearance, 

these were not included in the Table 2.2 clearance data. The frequencies of runs in which 

double resistance emerged are considered separately.  

Although mutation is a stochastic process, there was effectively no between-run 

variation in the time before clearance. For eight out of the ten combinations, clearance 

occurred in less than 1600 hours. The rifampin + amikacin combination was the most 

effective, leading to clearance in 1080 hrs. The combinations of clarithromycin + 

moxifloxacin and clarithromycin + streptomycin took substantially longer to clear the 
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bacteria; compared to the rifampin + amikacin combination, the clarithromycin + 

moxifloxacin combination took some 4 times longer, with the clarithromycin + 

streptomycin combination taking approximately 11 times longer. This is what would be 

anticipated from the relative pharmacodynamics of the different drug combinations 

(Figure 2.2).  

Table 2.2 Relative efficacy of antibiotic combinations in clearing bacteria during 
simulated infections. 
 Time to Clearance (hours) 
Antibiotic Combination Antibiotics at symmetric 

xMIC concentrations 
Antibiotics at 
asymmetric xMIC 
concentrations 

Rifampin + Amikacin 1080 2785 
Rifampin + Clarithromycin 1527 2521 
Rifampin + Streptomycin 1433 2396 
Rifampin + Moxifloxacin 1453 2642 
Amikacin + Clarithromycin 1428 2568 
Amikacin + Streptomycin 1315 2452 
Amikacin + Moxifloxacin 1090 2690 
Clarithromycin + Streptomycin 11668 13035 
Clarithromycin + Moxifloxacin 4530 5793 
Streptomycin + Moxifloxacin 1422 2257 
 

As in the symmetric case, the majority of the antibiotic combinations in the 

asymmetric simulations cleared the infection over a relatively similar period, i.e. <2800 

hours. The reason that the average time to clearance is greater for the asymmetric 

concentrations is because there is a lower peak concentration for one of the two drugs, 

rather than equal peaks. While clarithromycin + streptomycin and clarithromycin + 

moxifloxacin remained the least effective drugs, the most effective combination was 

streptomycin + moxifloxacin rather than rifampin + amikacin. Compared to streptomycin 

+ moxifloxacin, clarithromycin + moxifloxacin and clarithromycin + streptomycin took, 

respectively, approximately 2.5 and 6 times longer to clear the infection.  
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2.3.5 The evolution of multiple resistance:  What is the relationship between the PD of 

the antibiotics and the likelihood of mutants resistant to both drugs emerging? To address 

this question, we separately performed 1000 simulation experiments using three sets of 

parameters reflecting the ‘extreme’ conditions of relative efficacy for the symmetric 

combinations: rifampin + amikacin, clarithromycin + moxifloxacin and clarithromycin + 

streptomycin. The aggregate results from these simulation experiments are presented in 

column one of Table 2.3.  

As can be seen, the two-drug resistant population emerged in only a few runs. 

Although the relative number of runs in which resistance emerged for the different drug 

combinations is what would be anticipated from the clearance data in Table 2.2, the 

differences were not statistically significant (p~0.525). With these parameters, the 

frequency of two-drug resistance emerging was low and was roughly the same for all 

three pairs of drugs.  

2.3.6 Non-adherence: In a number of epidemiological studies, non-adherence to the 

prescribed treatment regime has been associated with adverse therapeutic outcomes 

(Burman et al., 1997), longer terms of treatment and acquired drug resistance (Espinal et 

al., 2001; Pablos-Mendez et al., 1997).  In practice, non-adherence takes a number of 

forms and depends on a variety of factors such as organization of treatment and care 

(access to services, length, drug-type and other requirements for therapy, support 

services, etc) individual interpretations of illness and wellness, drug side effects and the 

social context in which therapy is undertaken (Munro et al., 2007).  How does non-

adherence contribute to the amount of time required for microbiological cure and the 

likelihood of multi-drug resistance emerging within a host during the course of 
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treatment?  How sensitive are different drug combinations to the adverse outcomes of 

non-adherence?  To address these questions, we considered three broadly-inclusive types 

of non-adherence that we call random, thermostat (Lipsitch and Levin, 1998), and drug 

holiday (described below). To explore the relationship between the PD of the drug 

combinations and the frequency of non-adherence with respect to the generation of the 

double resistant mutants, we conducted 1000 runs for each of the three aforementioned 

drug combinations and the different non-adherence scenarios. The results of these 

simulations are presented in Table 2.3.  

Table 2.3 Percent of 1000 runs in which multi-drug resistant mutants emerged by 1000 
hours. 
  Random Non-adherence   
Antibiotic 
Combination 

Complete 
Adherence 

10% Non-
adherence 

20% Non-
adherence 

Thermostat 
Non-
adherence 

Extended 
Drug 
Holiday 
Non-
adherence 

Rifampin + 
Amikacin 

0.8 1.2 1.4 100 1.7 

Clarithromycin 
+ Moxifloxacin 

1.2 2.1 3.9 1.3 5.2 

Clarithromycin 
+ Streptomycin 

1.3 2.6 4.1 1.7 5.8 

 

2.3.6.1 Random non-adherence: We model this scenario in the following manner: At 

each dosing period there is a probability P (0 ≤ P ≤1) that both drugs will be taken and a 

corresponding probability (1-P) that neither will be taken. To simulate this we use a 

Monte Carlo routine where if the random number, r ≤ P, the drugs are administered, but if 

r>P that dosing period is skipped.  In Figure 2.6(a), we illustrate this process for a single 

run where two-drug resistance emerges. Non-adherence is reflected in a hiatus in the 

dosing and a rise in the density of all the bacterial populations. There are periods, such as 
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between 600 and 648 hours, where consecutive doses are missed. This results in a 

substantial rise in the density of bacteria and thereby an increase in the likelihood of a 

doubly resistant mutant being generated.   

 

Figure 2.6 Dynamics of non-adherence with therapy. Changes in the absolute 
concentrations of the antibiotics and densities of bacteria: S0- sensitive to both drugs, S1- 
resistant to drug A1, S2- resistant to drug A2, and S12- resistant to both A1 and A2. (a) 
Random non-adherence: Parameters used are those estimated for clarithromycin + 
streptomycin, assuming a 20% probability of non-adherence at each dosing. (b) 
Thermostat non-adherence: Parameters used are those estimated for rifampin + amikacin. 
(c) Drug holiday non-adherence: Parameters used are those estimated for clarithromycin 
+ moxifloxacin. These figures represent runs in which double resistance (S12) emerged. 
The relative frequencies of this outcome are shown in Table 3. See the text for 
descriptions of these different modes of non-adherence. 
 

With 10% random non-adherence (P=0.9), there was no significant difference 

among drug combinations in the probability of resistance arising (p~0.073) (Table 2.3, 

Column 2). With 20% random non-adherence (P=0.8) there was a highly significant drug 

combination effect, p~0.001 (Table 2.3, Column 3). The likelihood of multiple resistance 

arising with 20% non-adherence was negatively related to the microbiological efficacy of 
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these different drug combinations. The relationship between the probability of a doubly 

resistant population emerging for different levels of random non-adherence was also 

directly related to the microbiological efficacy of the drug combinations. For the rifampin 

+ amikacin combination, there was no significant difference among the 0, 10% and 20% 

non-adherence regimes (p~0.435). For the other two pairs, there were significant p<0.001 

relationships between the frequency of non-adherence and the likelihood of double 

resistance emerging. 

2.3.6.2 Thermostat non-adherence: We simulate this by incorporating a situation in 

which treatment ceases when the density of the rapidly growing population falls below 

104 and doesn’t commence again until the density exceeds 106. The situation we are 

mimicking is one in which patients cease taking their antibiotics when they are feeling 

better (the bacterial densities are low enough not to be symptomatic) and do not take the 

drugs again until the density is high enough to be symptomatic. We illustrate this 

situation in Figure 2.6(b) with a run in which two-drug resistance emerged.   

In column 4 of Table 2.3, we summarize the results of 1000 simulations of 

thermostat non-adherence for the three drug combinations.  With respect to our measure 

of microbiological efficacy, the thermostat non-adherence scenario seems paradoxical. 

Two-drug resistance emerged far more frequently in the runs with the most 

microbiologically effective drug combination, indeed in all 1000 runs. The reason for this 

is that the more effective drug combination reduced the density more rapidly than the less 

effective drug combinations. As a result there were far more frequent periods where 

drugs were not taken and the single-resistant populations ascended to high-enough 

densities where two-drug resistant mutants were produced with a very high probability. 
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Under the parameter conditions of this simulation, the non-adherence threshold was never 

crossed in any of the 1000 simulations for either of the two less effective drugs.   

2.3.6.3 Drug Holidays: We model this scenario in the following manner: Both drugs are 

taken for 4 consecutive dosing periods, at which time neither drug is taken for the 

subsequent 3 dosing periods. This regime continues throughout the duration of simulated 

treatment.  We are mimicking a situation where holidays are imposed because the drugs 

may be costly, limited in their availability or induce debilitating side effects that are 

alleviated by terminating treatment for an interval. In Figure 2.6(c) we illustrate this 

situation for a run where two-drug resistance emerged. As noted in the last column of 

Table 2.3, the overall frequency of double resistance was on the order of 5% and similar 

for the two microbiologically less effective drug combinations. For the most effective 

drug combination, relative to complete adherence, the drug holidays doubled the 

likelihood of two-drug resistance emerging.   

2.4 DISCUSSION 

With few exceptions, studies of the pharmacodynamics (PD) of antibiotics and 

bacteria have been restricted to single drugs (Diacon et al., 2007; Gumbo et al., 2005; 

Gumbo et al., 2009; Gumbo et al., 2004; Gumbo et al., 2007a; Gumbo et al., 2007b; 

Jayaram et al., 2003; Jayaram et al., 2004; Shandil et al., 2007; Wilkins et al., 2008). 

Some infections, particularly those that are long-term like tuberculosis, require multiple 

antibiotics for treatment to be effective.  It follows then, that for the rational design of 

treatment protocols for these infections, multidrug PD analyses are necessary.  

Our results indicate that Hill functions provide an excellent fit for the single-drug 

PD for Mycobacteria marinum and each of the five antibiotics considered in this study, 
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amikacin, clarithromycin, moxifloxacin, rifampin and streptomycin. On the other hand, 

if, as is assumed in the classical model of Greco and colleagues (Greco et al., 1990; 

Greco et al., 1995), the interactions between drugs is expressed as a single parameter with 

a constant value, two-drug Hill function models do not fit the PD observed for any of the 

10 pairs of drugs considered.  In all cases, at lower antibiotic concentrations the 

interactions between the drugs is antagonistic; they are less effective together than 

anticipated from their action alone.  As the antibiotic concentrations increase, this drug-

drug interaction becomes relatively more synergistic and approaches constancy. To 

address this phenomenon, we allow for two phases of the drug-drug interaction, one for 

low (sub-MIC) and one for high (supra-MIC) concentrations with an antibiotic 

concentration-dependent function for the interaction term. Albeit not as convenient as a 

unique parameter, these functions can be readily estimated from time-kill data. Most 

importantly, the biphasic drug interaction Hill function models thus generated provide 

quantitatively accurate analogues of the PDs of all 10 pairs of antibiotics examined.  

It has been hypothesized that there are subpopulations of bacteria within an 

infected TB host that exhibit differential growth rates and, by extension, variable 

susceptibility to antimycobacterial agents (Dickinson et al., 1972; Grosset, 1980; 

Mitchison, 1979; Zhang and Mitchison, 2003; Zhang et al., 1999). Here, we develop a 

simple mathematical model that accounts for this within-host bacterial heterogeneity by 

assuming that there are two ‘compartments’, one that houses rapidly-growing and the 

other slowly-growing bacteria. The model incorporates the possibility of non-adherence 

to therapy, which is considered to be one of the major contributory factors to TB 

treatment failure (Burman et al., 1997; Pablos-Mendez et al., 1997; Wares et al., 2003).  
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Our computer simulations of tuberculosis chemotherapy employing the 

empirically estimated biphasic Hill functions suggest that there can be substantial 

differences among drug combinations in treatment efficacy, as measured by the time to 

clearance. Of the ten antibiotic pairs we consider, rifampin + amikacin is the most 

effective and streptomycin + clarithromycin the least, with some eleven-fold difference in 

the time before clearance. With the parameters used in our semi-stochastic model of 

treatment and assuming different probabilities for the occurrence of random non-

adherence, either complete adherence or limited non-adherence to the therapeutic regime 

would not be manifest as a significant difference among drug combinations in the 

likelihood of the generation and ascent of two-drug resistant mutants. However, with 

greater rates of non-adherence, the likelihood of two-drug resistance emerging becomes 

increasingly dependent on the drug combination employed. The emergence of two-drug 

resistance due to random non-adherence is more likely for less microbiologically 

effective drug combinations than those that are more effective.  

With externally imposed regular drug holidays, the likelihood of emergence of 

two-drug resistance is also inversely proportional to the microbiological efficacy of the 

antibiotic combination. Our results suggest that quite a different situation obtains when 

the drug holidays depend on the bacterial load, as is the case for thermostat non-

adherence. Under the parameter conditions used in our simulations, the most 

microbiologically effective drug combination almost invariably leads to the emergence of 

two-drug resistance. As a result of the enhanced efficacy, the time required to reduce the 

bacterial densities to below a non-symptomatic threshold is decreased for the more 

effective antibiotic combination. Consequently, in the course of therapy this threshold 
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and the resulting drug holidays are reached and manifest more frequently for the more 

effective drug combinations than the less effective. During these holidays, intermediates 

resistant to single antibiotics can reach high enough densities for the single drug resistant 

clones to acquire the second mutation needed for two-drug resistance. It is easy to write-

off this paradoxical result as an artifact of the model because of the extraordinary 

frequency of two-drug resistance emerging in our simulations. On the other hand, this 

outcome is not entirely unreasonable if indeed patients go off treatment when they are no 

longer symptomatic but remain infected. While we are not championing the validity of 

this potential downside of effective chemotherapy, we believe it may warrant further 

consideration. 

This jointly theoretical and experimental study raises important as well as 

intriguing issues about the interactions between antibiotics of different classes and how 

these interactions are affected by their concentrations. Our results, however, provide no 

information about the physiological, molecular and other processes underlying these 

interactions.  What are these processes? It is clear that answering this question is not 

going to be trivial. As Yeh and Kishony argue, intuitive deductions about the type of 

interactions between drugs based on the metabolic pathways of action of their individual 

action are, at best, simplifications (Yeh and Kishony, 2007).  Antibiotic action is 

pleiotropic and not limited to structural or metabolic alterations to a particular target. As 

such, the resulting cellular death or growth cessation upon antibiotic use can be due to 

multiple factors. Although there is evidence that antibiotics of different types kill by a 

common non-specific mechanism, the production of hydroxyl radicals (Dwyer et al., 

2007; Kohanski et al., 2007; Kohanski et al., 2008), the rates of kill vary among drugs 
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and their concentrations in ways that cannot be predicted from their respective targets and 

mode of action.    

Particularly intriguing is the antagonistic interaction observed at lower (sub-MIC) 

concentrations among all the antibiotic pairs studied. Why? How? We know that 

antibiotics at both sub- and supra-MIC concentrations affect mycobacterial transcription 

patterns in a variety of ways and can lead to a number of physiological and biochemical 

stress responses (Goh et al., 2002; Wilson et al., 1999). Some of these responses have 

been observed to reduce antimicrobial activity through actions such as antibiotic efflux, 

ribosomal protection, etc (Colangeli et al., 2005; Colangeli et al., 2007; Michele et al., 

1999; Morris et al., 2005).  One possible explanation is that at sub-MIC concentrations 

for two drugs, these stress responses make the bacteria more refractory to antibiotic 

activity, but the drugs do not generate enough cidal activity to overcome this 

refractoriness – a phenomenon that would manifest as pharmacodynamic antagonism.    

To paraphrase the statistician George Box, ‘All models (and model systems) are 

wrong, some are useful’ (Box, 1987). We endorse this perspective and of course believe 

our model and model system are useful. However, we see this utility restricted to its 

potential to evaluate, in vitro, the efficacy of different antibiotic combinations for clinical 

applications. Our models are not intended to be quantitatively exact analogs of 

tuberculosis chemotherapy but rather to generate a framework within which questions 

relevant to TB treatment could be approached. They were designed in the tradition 

advocated by Richard Levins (Levins, 1966), to maximize reality and generality at the 

loss of precision. Thus, even though the pharmacodynamic parameters are directly 

estimated and drug doses simulated in clinically realistic range (Hall et al., 2009), the 
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time scale in these simulations do not reflect the actual time course of tuberculosis 

chemotherapy and dosing schedule. 

We elected to do the experimental work on this project with M. marinum because 

we are particularly interested in multi-drug treatment of tuberculosis. As a model for 

Mtb, M. marinum has its virtues and limitations. In addition to being more convenient to 

work with than Mtb, M. marinum infections in fish and amphibians demonstrate key 

elements of Mtb infections in humans (Ramakrishnan et al., 1997; Swaim et al., 2006). 

Of particular import is the formation of epitheloid granulomas with lymphocytic 

involvement (Tobin and Ramakrishnan, 2008). Thus, using either fish or amphibians, it 

should be possible to evaluate, in vivo, the predictions of our models. M. marinum is also 

limited as a model for multi-drug treatment of Mtb primarily because of its natural 

resistance (relatively high MICs) to some the first line antibiotics used to treat 

tuberculosis, in particular isoniazid, ethambutol and pyrazinamide. While one of the 

antibiotics used in this study, rifampin, is a first line tuberculosis drug, the others are only 

used in cases where first line drugs fail.  

Albeit simple, our TB chemotherapy model incorporates some, but clearly not all 

of the complexity of a M. tuberculosis infections and their treatment. It accounts for the 

subpopulation heterogeneity that has been postulated for these infections (Dickinson et 

al., 1972; Grosset, 1980; Mitchison, 1979; Zhang and Mitchison, 2003; Zhang et al., 

1999) and the effects of that heterogeneity on the PD of the antibiotic treatment. On the 

other hand, this model does not formally account for the third subpopulation suggested by 

the recent observation that some Mycobacteria in macrophages induce efflux pumps that 

make them tolerant to antibiotics (Adams et al., 2011). At a pharmacodynamic level, this 
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phenomenon is, however, somewhat subsumed in our model by the presence of a 

subpopulation of bacteria that is less susceptible to the antibiotics than another segment 

of the population. Additionally, while our model takes into account three forms of the 

non-adherence that is considered to be one of the major contributory factors to TB 

treatment failure (Burman et al., 1997; Pablos-Mendez et al., 1997; Wares et al., 2003), it 

certainly does not incorporate all of the nuances of non-adherence.   

We are unaware of other studies that have combined experimental work on the 

PD of multiple drugs with a quantitative consideration of the potential clinical 

implications of these PDs. There have been investigations of the PD of multiple 

antibiotics that have employed a fitting approach for a quantitative description of the 

interactions between drugs (Meletiadis et al., 2003; Meletiadis et al., 2007). Similar to 

that observed here, some of these studies provide evidence that the interactions between 

antibiotics can vary with their concentrations (Berenbaum et al., 1983; Hegreness et al., 

2008; Meletiadis et al., 2007). Nevertheless, to our knowledge, this quantitative 

relationship has not been taken into account in the design of treatment programs; the 

interactions between different antibiotics are simply described as additive, synergistic or 

antagonistic, but without consideration of how this relationship changes with antibiotic 

concentration. The models we develop and the experimental methods we employ in this 

study can be used for any combinations of bactericidal antibiotics and bacteria that can be 

grown in vitro. Whether the biphasic interaction phenomenon observed with M. marinum 

and the five drugs considered would be manifest with other bacteria and drug 

combinations remains to be seen.  
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2.5 APPENDIX 

The following appendix contains supplementary information for the above investigation. 

All the figures, tables and protocols that follow have been pre-referenced in the text of 

the chapter.  

 

 

Figure 2A.1 Predicted and observed growth rates of M. marinum exposed to 
asymmetric sub-MIC antibiotic concentrations. Blue bars represent predicted rates 
anticipated from the Hill functions under the assumption that the drugs are acting 
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additively. Red bars represent the growth rates observed for the noted concentrations. 
Multiples-of-MIC concentrations at which antibiotics are combined are indicated. R-
rifampin; A-amikacin; C-clarithromycin; S-streptomycin; M-moxifloxacin. (a) amikacin 
+ clarithromycin (b) amikacin + moxifloxacin (c) amikacin + streptomycin (d) 
clarithromycin + moxifloxacin (e) clarithromycin + streptomycin (f) rifampin + amikacin 
(g) rifampin + clarithromycin (h) rifampin + moxifloxacin (i) rifampin + streptomycin (j) 
streptomycin + moxifloxacin. 
 

 

 

Figure 2A.2 Predicted and observed growth/death rates of M. marinum exposed to 
sub- and supra-MIC antibiotic combinations. Growth/death rates observed for single 
drugs in comparison to that observed with those drugs in combination with a sub-MIC 
concentration of second antibiotic.  Red bars represent combinations of antibiotics at 
2xMIC and 0.1xMIC; blue bars represent combinations of antibiotics at 5xMIC and 
0.5xMIC.  For amikacin, only the lower (2xMIC+0.1xMIC) concentration results are 
presented.  At the higher concentrations the extent of kill exceeded the limit of detection.  
R-rifampin; A-amikacin; C-clarithromycin; S-streptomycin; M-moxifloxacin. (a) 
rifampin (b) amikacin (c) clarithromycin (d) streptomycin (e) moxifloxacin.   
 



	   61	  

 

Figure 2A.3 Predicted and observed death rates of M. marinum exposed to 
asymmetric supra-MIC antibiotic concentrations. Blue bars represent predicted rates 
anticipated from the Hill functions under the assumption that the drugs are acting 
additively. Red bars represent the growth rates observed for the noted concentrations. 
Multiples-of-MIC concentrations at which antibiotics are combined are indicated. R-
rifampin; A-amikacin; C-clarithromycin; S-streptomycin; M-moxifloxacin. (a) amikacin 
+ clarithromycin (b) amikacin + moxifloxacin (c) amikacin + streptomycin (d) 
clarithromycin + moxifloxacin (e) clarithromycin + streptomycin (f) rifampin + amikacin 
(g) rifampin + clarithromycin (h) rifampin + moxifloxacin (i) rifampin + streptomycin (j) 
streptomycin + moxifloxacin. 
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Table 2A.1 Linear Regression Parameters for the Biphasic Antibiotic Interaction 
Function. 
Antibiotic 
Combination 

Sub-MIC Antibiotic 
Concentrations 

Supra-MIC Antibiotic 
Concentrations 

Slope Intercept R2 Slope Intercept R2 
Amikacin + 
Clarithromycin 

329.22 -308.12 0.79 3.606 -15.676  0.77 

Amikacin + 
Moxifloxacin 

316.26 -272.49 0.52 0.4221 -3.9734 0.53 

Amikacin + 
Streptomycin 

276.93 -241.77 0.77 -0.2866 3.8084 0.15 

Clarithromycin + 
Moxifloxacin 

659.53 -592.83 0.57 0.9247 -24.867 0.64 

Clarithromycin + 
Streptomycin 

191.33 -210.46 0.74 4.3471 -35.223 0.71 

Rifampin + 
Amikacin 

2135.8 -1720.5 0.54 -11.794 56.529 0.65 

Rifampin + 
Clarithromycin 

1328.8 -1095.5 0.54 -0.6755 12.103 0.34 

Rifampin + 
Moxifloxacin 

1845.8 -1576 0.57 2.6737 -27.569 0.85 

Rifampin + 
Streptomycin 

649.7 -594.83 0.66 7.5399 -29.97 0.67 

Streptomycin + 
Moxifloxacin 

308.13 -289.7 0.79 1.4934 -15.582 0.65 
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Table 2A.2 Value of interaction parameter at different combinations of sub-MIC 
concentrations. 

 

 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 First Antibiotic named in the combination is Antibiotic A 

 Interaction Parameter  
Antibiotic 
Combination1 

0.1xMIC + 
0.1xMIC 

0.1xMIC(Antibiotic 
A) + 0.5xMIC 
(Antibiotic B) 

0.5xMIC 
(Antibiotic 
A) + 
0.1xMIC 
(Antibiotic 
B) 

0.5xMIC+0.5xMIC 

Rifampin + 
Amikacin 

-2470 -97.1 -355.8 -25.7 

Rifampin + 
Clarithromycin 

-1559.6 -326.6 -259.2 -42.7 

Rifampin + 
Streptomycin 

-756.1 -403.2 -195.4 -115 

Rifampin + 
Moxifloxacin 

-2163.9 -164.5 -248.1 -112.5 

Amikacin + 
Clarithromycin 

-352.3 -290.5 -79.3 -71.8 

Amikacin 
+Streptomycin 

-280.4 -176.4 -74.7 -37.9 

Amikacin + 
Moxifloxacin 

-390.9 -32.5 -17.9 -40.0 

Clarithromycin 
+ Streptomycin 

-242.1 -77.2 -61.3 -67.5 

Clarithromycin 
+ Moxifloxacin 

-805 -118.2 -68.3 -92.6 

Streptomycin + 
Moxifloxacin 

-325.6 -60.6 -67.3 -61.8 
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Protocol 2A.1 Differential equations used for simulation of the mathematical model. 
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where s1, s2 and s12  (0 ≤ sx≤1) are the selection coefficients (fitness costs of resistance) 

and α(A1,A2) is the antibiotic concentration–dependent drug-drug interaction coefficient 

(see text).   
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CHAPTER 3 

The Pharmaco –, Population and Evolutionary Dynamics of 
Multi-Drug Therapy: Experiments with S. aureus and E. coli 
and Computer Simulations 
 
Peter Ankomah, Paul J.T. Johnson, Bruce R. Levin 

Modified from PLoS Pathog 9(4): e1003300. doi:10.1371/journal.ppat.1003300	  
 

3.1 INTRODUCTION  

The simultaneous use of multiple anti-microbial agents is standard for the 

treatment of long-term infectious diseases like tuberculosis and HIV/AIDS (Connolly et 

al., 2007; Thompson et al., 2010). Multiple drugs are also used to treat polymicrobial 

infections and in situations where the etiologic agent of an infection is unknown at the 

start of therapy (Gorbach, 1994). Increasingly, this “combination therapy” is being used 

for the treatment of other chronic bacterial infections like endocarditis, osteoarticular 

infections and osteomyelitis as well as sepsis (Baddour et al., 2005; Barberan et al., 2008; 

Micek et al., 2010).  

The motivation for treating with multiple, rather than single drugs, has both 

evolutionary and pharmacological components. Theoretically, if multiple drugs with 

different modes of action are used for treatment, bacteria resistant to each single drug, if 

present, will remain susceptible to the other drugs. Hence, multi-drug therapy would be 

less likely to be thwarted by the evolution of resistance than monotherapy. This 

intuitively appealing evolutionary reason for combination therapy is supported by 

evidence (Cappelletty et al., 1995; den Hollander et al., 1997; Johnson and Thompson, 
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1986; Johnson et al., 1985; Kang and Rybak, 1995; Kang et al., 1994; Mclaughlin et al., 

1983; Michalsen and Bergan, 1981) as well as logic. From a pharmacodynamics (PD) 

perspective, there are at least two potential virtues for combination therapy. The drugs 

can be synergistic in their action and provide greater cidal activity than single drugs at 

comparable doses. Combining drugs can also result in increased antimicrobial activity 

without elevating single-drug concentrations to levels that engender debilitating side 

effects. In some situations, the in vitro synergy of multiple treating drugs is positively 

correlated with bactericidal activity and clinical outcome (Anderson et al., 1978; Dejongh 

et al., 1986; Klasters.J et al., 1972; Klastersky et al., 1976a; Klastersky et al., 1976b; Lau 

et al., 1977) and, at the same time, antagonistic interactions between drugs in vitro can 

negatively impact therapeutic success (Jawetz et al., 1951; Johansen et al., 2000; Lepper 

and Dowling, 1951). 

As appealing as the reasons for multi- rather than single drug therapy may be, the 

clinical utility of combination therapy remains equivocal for many infections (Dellit et 

al., 2007). One of the reasons for this is the relative dearth of sufficient answers to a 

number of fundamental questions. How does one know whether a specific combination 

therapy regimen will be more or less effective than monotherapy for a specific infection? 

How does one quantify the pharmacodynamics of multiple drugs? Are there generalizable 

rules about how drugs of different classes interact? Under what conditions will the 

collective activity of multiple drugs exceed their individual activity? How do the 

pharmacological interactions between drugs in combination affect the emergence of 

resistance during the course of therapy? 
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Although these questions have been addressed in various ways, at this juncture 

the answers obtained are restrictive. Checkerboard titrations and time kill assays seem to 

be the most popular in vitro methods to evaluate the form of interactions between 

antibiotics (synergy, antagonism, suppression or additivity). The checkerboard assay 

generates a single parameter, the Fractional Inhibitory Concentration (FIC) index as a 

measure of the efficacy of drug combinations relative to their respective individual 

efficacies measured by the Minimum Inhibitory Concentration, MIC (Hall et al., 1983). 

Time-kill assays express the efficacy of drug combinations in terms of the log-fold 

reduction in viable cell density generated by these combinations relative to the most 

active single agent over an arbitrary time period (Lorian, 2005). Neither of these 

measures of the combined action of drugs provides information about the functional 

relationship between the concentrations of these drugs and the rate at which the target 

bacteria are killed (Regoes et al., 2004). The dynamics of antibiotic-mediated killing by 

pairs of drugs with the same FIC index and/or log-fold reductions in viable cells can 

differ profoundly and these single parameter measures may not provide an adequate 

picture of the cidal properties of drug combinations for the design of antibiotic treatment 

regimens. Another limitation of this single interaction parameter approach is that it fails 

to account for the changes in the form of the interaction with changing concentrations of 

the drug, pharmacokinetics (Ankomah and Levin, 2012; Berenbaum et al., 1983; 

Hegreness et al., 2008; Meletiadis et al., 2007).  

The relationship between the concentration of single bactericidal antibiotics and 

the rate of growth or death of bacteria during the initial exposure can be fit to Hill 

functions (Ankomah and Levin, 2012; Regoes et al., 2004), but at this juncture it is 
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unclear how these or other pharmacodynamic functions can account for the complication 

of the interactions between drugs. To our knowledge, there is no a priori way to 

quantitatively predict how multiple drugs will interact from their single drug 

pharmacodynamics. Although there have been some compelling analyses of the 

pharmacodynamics of multiple antibiotics and bacteria, with few exceptions e.g. 

(Ankomah and Levin, 2012; Lim et al., 2008) these have been restricted to low and often 

sub-MIC and thereby sub-therapeutic concentrations of these drugs (Wood et al., 2012; 

Yeh et al., 2006).  

Finally, there is the phenomenon of persistence. Antibiotic-mediated killing is a 

biphasic process: the rate of bactericidal activity during in vitro time-kill experiments 

declines with time and approaches zero. Depending on the drug employed, a substantial 

fraction of genetically susceptible but phenotypically resistant bacteria, the persisters, 

survive (Bigger, 1944; Lewis, 2010). A comprehensive consideration of the 

pharmacodynamics of combination therapy would also provide information about how 

multiple drugs affect the level of persistence. Bar two recent exceptions (Allison et al., 

2011; Hofsteenge et al., 2013), all studies of persistence of which we are aware have 

focused solely on single drugs.  

In this report we develop, illustrate and evaluate a procedure that addresses these 

quantitative questions of the pharmaco- and evolutionary dynamics of multi-drug 

antibiotic therapy. Using in vitro experiments with Staphylococcus aureus and 

Escherichia coli, we determine the functional relationship between the concentrations of 

four antibiotics of different classes (singly and in pairs) and the rate of growth/kill of 

these bacteria during the exponential phase of their confrontations with these drugs. 
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Using this method, we are able to explore the pharmacodynamics of multiple drugs at 

supra- as well as sub-MIC concentrations. We also evaluate the relationship between 

cidal concentrations of these antibiotic combinations and the density of persisters 

surviving exposure to the drugs. To explore the potential clinical implications of the 

experimental PD results, we employ a mathematical model of multi-drug therapy that 

allows for the evolution of resistance to the treating drugs. Using computer simulations 

with parameter values in the ranges of those estimated from the experimental analyses, 

we explore the effects of two-drug PD efficacy on the rate of clearance of infections and 

the emergence of single- and multi-drug resistance.  

3.2 MATERIALS AND METHODS 

3.2.1 Bacterial Strains and Growth/Sampling Media: Experiments involving E. coli 

were conducted using strain 018:K1:H7 (designated CAB1) that was originally isolated 

from a child with meningitis and supplied by Craig A. Bloch (Bloch et al., 1989). This 

strain has been used in previous studies of the within-host pharmacodynamics of 

antibiotic and phage treatment (Bull et al., 2002; Regoes et al., 2004; Wiuff et al., 2005). 

The experiments involving Staphylococcus aureus were conducted using strain Newman 

which was isolated from a patient with osteomyelitis and generously provided by Dr. 

William Shafer. Bacteria were grown in 10 mL of Lysogeny Broth (LB) (E. coli) or 

Mueller-Hinton II (MHII) broth (S. aureus) in 50-mL Pyrex flasks at 37°C with aeration 

and shaking (200 rpm). Viable cell densities in bacterial cultures were determined by 

plating dilutions (made in 0.85% saline) on LB Agar.  

3.2.2 Antibiotics: For experiments involving E. coli, 10 µg/mL stock solutions of 

ciprofloxacin, ampicillin, tobramycin and tetracycline were diluted in fresh LB to 
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appropriate concentrations for each experiment. Antibiotic stocks used in the S. aureus 

experiments were prepared to a final concentration of 10 µg/ml for ciprofloxacin, 

gentamicin and oxacillin while vancomycin was prepared to a final stock concentration of 

15 µg/ml. Dilutions of requisite antibiotics were made fresh in MHII broth to the 

appropriate concentrations for each experiment. All antibiotics were procured from 

Mediatech, Inc. (Herndon, Va.) and Sigma-Aldrich (St. Louis, Mo.).  

3.2.3 MIC Determination: Minimum Inhibitory Concentrations (MIC) for E. coli CAB1 

and S. aureus Newman were estimated using the broth microdilution procedure 

recommended by the Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2005). 

3.2.4 Antibiotic Time-kill Experiments: Overnight cultures of E. coli CAB1 were 

diluted 1:2000 into fresh LB to initiate exponential growth, and were allowed to grow to 

a final density of approximately 1 x 107 cells per mL before antibiotics at desired 

concentrations were added. For single drug experiments, 0, 0.2x, 0.5x, 1x, 2.5x, 5x and 

10 multiples of MIC (xMIC) were added to each culture, and for dual drug time kill 

experiments, pairs of antibiotics were combined to generate solutions that contained 0, 

0.2x, 0.5x, 1x, 2.5x, 5x and 10xMIC of each antibiotic. The cultures were sampled to 

estimate viable cell densities every 10 min for the first 1 h, every 30 min for the next 2 h, 

and at 6h. Overnight S. aureus Newman cultures were diluted to a final concentration of 

~ 1x107 bacteria per ml in fresh MHII media and incubated for 1 hour at 37°C shaking at 

200 rpm to ensure entry into the exponential growth phase. Cultures were then inoculated 

with 0, 0.1x, 0.5x, 1x, 2.5x, 5x and 10xMIC of each antibiotic individually and then in 

pairs of equal concentrations for the dual treatment. Viable cell densities were estimated 

every 10 minutes for the first hour and then every 30 minutes for the next 5 hours.  
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3.2.5 Level of Persistence Experiments: In order to assess the level of persistence, we 

conducted late-term time kill experiments using 10 independent replicate cultures for 

each drug and drug pairing. Experiments were initiated as described in the 

aforementioned time-kill assays, but sampling was done at a single time point - 6 h for E. 

coli and 22 h for S. aureus. Sampling at these time points has been previously shown to 

provide good estimates for persisters in a culture (Dorr et al., 2010; Johnson and Levin, 

2013). We also confirmed that, with the protocol used, there were no drug carryover 

effects on plating efficiency.    

3.2.6 Pharmacodynamic Functions: As in Regoes et al. (Regoes et al., 2004), we use a 

four-parameter Hill function-based pharmacodynamic function (Equation 1) to 

characterize the exponential phase death rate engendered by the antibiotic(s) singly and in 

pairs, 
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where ψmax is the maximum bacterial growth rate in the absence of antibiotics, ψmin is the 

maximum death rate generated by the antibiotic, κ describes the sigmoidicity of the Hill 

function, the MIC is the pharmacodynamic minimum inhibitory antibiotic concentration, 

and A is the antibiotic concentration. In this study, the concentrations of single antibiotics 

are presented as multiples of the MICs as estimated by standard CLSI serial dilution 

procedures. For pairs of drugs, A is equal to the sum of equal multiples of the component 

single drug CLSI estimated MICs. For both single and two drugs, we use exponential 

phase time kill data for different multiples of the CLSI MICs and the procedure in 
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(Regoes et al., 2004) to generate Hill functions and estimate their parameters. Thus for 

each single drug, we have two estimates of MIC, that obtained by serial dilution and the 

realized MIC (rMIC) estimated from the Hill function. For pairs of drugs we only have 

single estimate of the minimum inhibitory concentration, that obtained by fitting the Hill 

function, rMICs.  

For single drugs and for drug pairs, net bacterial growth rates under antibiotic action are 

described by the following respective equations:  

  ! ( Ai ) =! max " Hi ( Ai )                                             (2) 

  
! ( Ai , Aj ) =! max " Hi, j ( Ai + Aj )                               (3) 

 

3.3 RESULTS 

3.3.1 Multi-drug pharmacodynamics in theory: We open this section with an a priori 

consideration of the pharmacodynamics of two drugs for qualitatively different forms of 

interactions between these drugs. As our measure of the concentrations for pairs of drugs, 

in theory and in practice, we use a single variable xCU (x multiples of “Cidal Units”), 

which is calculated as the sum of equal multiples of the MICs of each single drug. For 

example, if the MIC of drug A is 1 µg/mL and that of B 2µg/mL, for the pair, 2xCU is 

the combination of 1µg/mL of A and 2.0 µg/mL B. Implicit in this measure is a null 

assumption of Loewe’s additivity (Loewe and Muischnek, 1926) which assumes that the 

magnitude of the killing effect of additive multiple drugs is proportional to that which 

would result from the sum of equipotent concentrations of each drug separately. For 

instance, under this assumption, the combination of 0.5xMIC each of two additive drugs, 
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xCU=1, would be equal to 1xMIC of each of the antibiotics on their own (Yeh et al., 

2009).  

Using the xCU’s as measures of the concentrations of single and pairs of drugs 

and a method similar to that used in Regoes et al. (Regoes et al., 2004) (See Materials 

and Methods), it is possible to fit Hill functions to the rate of bacterial killing during the 

exponential phase of kill. In Figure 3.1, we illustrate the form of the Hill functions that 

would be anticipated for single drugs (A or B) and qualitatively different types of two 

drug interactions (A+B).  

 

Figure 3.1 Anticipated single and two-drug Hill functions for qualitatively different 
types of drug interactions. Hill functions of single antibiotics (A or B) and combinations 
(A+B) representing synergy, additivity and suppression are shown. The growth and death 
rates used for these illustrations are in the range of those observed experimentally.  
 

In this idealized case, if (i) the drugs are additive at each concentration, the rate of kill 

generated by the two drugs together is identical to that of each of the drugs alone; (ii) the 

drugs are suppressive, their combined rate of kill is less than that of each of the single 

drugs alone, and (iii) the drugs are synergistic, their combined rate of kill is greater than 

that for the individual drugs. It should be noted that in this illustration, per our 
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assumption of Loewe additivity, the single drug Hill functions are identical and the same 

as that for a purely additive drug combination. In generating Figure 3.1, we assumed a 

directly proportional relationship between antibiotic concentration and the rate of kill 

engendered. In theory, more complex relationships between drug concentration and rate 

of antibiotic-mediated killing can occur, and as seen from the below experimental results, 

do obtain.  

3.3.2 Multi-drug pharmacodynamics in practice: We performed time-kill experiments 

using single and two-drug combinations to determine the relationship between the 

concentrations of these drugs and the rate of kill of the target bacteria (Figures 3A.1-

3A.4, in Appendix). Ampicillin, ciprofloxacin, tobramycin and tetracycline were used in 

the E. coli experiments and oxacillin, vancomycin, ciprofloxacin and gentamicin in 

experiments with S. aureus. For both single and multiple drugs, we observed biphasic 

cidal dynamics; an exponential decline in bacterial survival followed by a leveling off 

period with minimal cidal activity.  

We fit Hill functions to the concentration-dependent rate of kill of bacteria during 

the exponential phase of killing in our experiments, between 0 and 1 hour for E. coli and 

between 0 and 4 hours for S. aureus. We estimated the Hill function parameters for each 

of the four single antibiotics and six pairs of antibiotics used in the time-kill experiments 

with both bacteria. As the equivalent of the pharmacodynamic, Hill function estimate of 

the MIC for single drugs, we determined the analogous Hill function estimate for pairs of 

drugs, which we call the realized MIC, rMIC. The estimates of these parameters are 

available in Tables 3A.1 and 3A.2 (in Appendix). 
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In Figures 3.2 and 3.3, we show the PD functions for all two-drug combinations 

together with the corresponding single-drug PDs for the component antibiotics. For E. 

coli there was no detectable cidal activity at antibiotic concentrations less than 0.1xCU 

and we use 0.1xCU as the minimum concentration (Figure 3.2). Since we observed cidal 

activity at lower drug concentrations for S. aureus (a consequence of lower rMIC’s), we 

use 0.01xCU as the minimum concentration (Figure 3.3). 

For E. coli, combining ampicillin with any drug yielded a greater rate of kill than 

ampicillin alone at comparable concentrations. The ampicillin+ciprofloxacin (Figure 

3.2a) and ampicillin+tetracycline (Figure 3.2b) combinations were generally intermediate 

in efficacy between the component single antibiotics (a qualitative result we designate as 

antagonism), while the ampicillin+tobramycin combination (Figure 3.2e) exhibited 

synergy at most concentrations. When used in combination, tetracycline diminished the 

cidal activity of the two most efficacious antibiotics, ciprofloxacin and tobramycin. In 

combination with ciprofloxacin a suppressive interaction prevailed (Figure 3.2c), while 

for the tobramycin+tetracycline combination, the two drugs together exhibited the same 

efficacy as tetracycline alone (Figure 3.2f). The combination of tobramycin with 

ciprofloxacin exhibited synergistic interactions at concentrations below approximately 

5xCU. At greater concentrations than this, the single antibiotic tobramycin was more 

effective than when used in combination (Figure 3.2d).  

For S. aureus, most antibiotic combinations were either intermediate in efficacy 

between the individual drugs or generated cidal activity equivalent to that of the more 

effective of the constituent drugs (Figures 3.3a,b,d,e). We observed suppressive 

interactions at higher concentrations when vancomycin was combined with either 
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ciprofloxacin (Figure 3.3c) or oxacillin (Figure 3.3f). Indeed, for the latter combination, 

the two individually bactericidal drugs became bacteriostatic. It is also worth noting that 

save for the representative beta-lactams, the maximal death rates exhibited in the S. 

aureus experiments for all drugs/drug pairings were substantially lower than those 

observed in the E. coli experiments. 

 

Figure 3.2 Hill functions for two-drug combinations and the constituent individual 
antibiotics (E. coli). Each graph shows the Hill functions for a drug combination and the 
constituent single drugs with drug concentrations normalized as multiples of Cidal Units 
(xCU). Error bars represent the standard errors for the growth/death rate at each antibiotic 
concentration. (a) ampicillin (AMP), ciprofloxacin (CIP), and ampicillin+ciprofloxacin 
(b) ampicillin, tetracycline (TET), and ampicillin+tetracycline (c) ciprofloxacin, 
tetracycline, and ciprofloxacin+tetracycline (d) ciprofloxacin, tobramycin (TOB), and 
ciprofloxacin+tobramycin (e) tobramycin, ampicillin, and tobramycin+ampicillin (f) 
tobramycin, tetracycline, and tobramycin+tetracycline. 
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Figure 3.3 Hill functions for two-drug combinations and the constituent individual 
antibiotics (S. aureus). Each graph shows the Hill functions for a drug combination and 
the constituent single drugs with drug concentrations normalized as multiples of Cidal 
Units (xCU). Error bars represent the standard errors for the growth/death rate at each 
antibiotic concentration. (a) ciprofloxacin (CIP), gentamicin (GEN), and 
ciprofloxacin+gentamicin (b) ciprofloxacin, oxacillin (OXY), and 
ciprofloxacin+oxacillin (c) ciprofloxacin, vancomycin (VAN), and 
ciprofloxacin+vancomycin (d) gentamicin, oxacillin, and gentamicin+oxacillin (e) 
gentamicin, vancomycin, and gentamicin+vancomycin (f) oxacillin, vancomycin, and 
oxacillin+vancomycin. 

 

3.3.3 Persistence: Hill functions provide good fits for the initial exponential phase of 

time-kill curves but not for the second phase during which the rate of killing declines and 

the viable cell population is dominated by persisters. In an effort to examine how two-

drug therapy affects levels of persisters, we extended our analysis to the relationship 

between single and two-drug treatment regimens and the density of persisters present 

after exposure to the drugs. In Figures 3.4 and 3.5, we show persistence levels for drug 

combinations and the component single antibiotics of each combination. The average 
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CFU’s and standard errors for ten independent replicate cultures of 2.5x, 5x and 10xCU 

treatments sampled at 6h for E. coli (Figure 3.4) and 22h for S. aureus (Figure 3.5) are 

shown.  

For E. coli, similar densities of persisters were observed for ciprofloxacin and 

ampicillin used individually as well as in combination (Figure 3.4a). Tetracycline used on 

its own resulted in the highest level of persistence among all the antibiotics studied. 

When combined with ampicillin, the density of persisters observed was similar to that 

generated by tetracycline alone. This result occurred despite the observation that treating 

with the other antibiotic in the combination, ampicillin, led to a lower level of persistence 

compared to tetracycline (Figure 3.4b). Combining ciprofloxacin and tetracycline, 

however, led to lower levels of persistence than equivalent concentrations of tetracycline 

(Figure 3.4c). Among all the antibiotics, tobramycin was the most effective in reducing 

the level of persisters. We recovered persisters only at 2.5xCU in treatments with 

tobramycin. When combined with ciprofloxacin, the combination was more effective 

than ciprofloxacin used singly and just as effective as tobramycin alone (Figure 3.4d). 

Combining tobramycin with ampicillin (Figure 3.4e) and tetracycline (Figure 3.4f), on 

the other hand, decreased the efficacy of tobramycin. 

 In the S. aureus experiments, gentamicin and ciprofloxacin used singly resulted 

in lower levels of persistence than oxacillin and vancomycin (Figures 3.5a,f). Strikingly, 

cultures exposed to the presumptively cidal 2.5xCU of oxacillin had, by 22 hours, grown 

to the same densities as antibiotic-free controls (Figure 3.5b). This result can be attributed 

to a decline in the effective concentration of this drug, rather than mutations to resistance 

(Johnson and Levin, 2013). However, combinations of 1.25xMIC of oxacillin with 
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1.25xMIC of any of the other drugs exerted a cidal effect, and the cultures did not grow 

(Figures 3.5b,d,f). When gentamicin was present in the drug pair, for all combinations of 

two drugs the level of persistence was at least as low as when gentamicin was used alone 

(Figures 3.5a,d,e). Combinations involving ciprofloxacin generated densities of persisters 

either equivalent to that generated by ciprofloxacin alone (Figures 3.5a,b) or intermediate 

between those generated by the individual antibiotics (Figure 3.5c). 

 

 

Figure 3.4 Density of persisters for two-drug combinations and the constituent 
individual antibiotics (E. coli). Viable cell densities of E. coli following 6 hours of 
exposure to equivalent cidal concentrations of single drugs and two-drug combinations 
(mean and standard error for 10 independent cultures shown). (a) ampicillin (AMP), 
ciprofloxacin (CIP), and ampicillin+ciprofloxacin (b) ampicillin, tetracycline (TET), and 
ampicillin+tetracycline (c) ciprofloxacin, tetracycline, and ciprofloxacin+tetracycline (d) 
ciprofloxacin, tobramycin (TOB), and ciprofloxacin+tobramycin (e) tobramycin, 
ampicillin, and tobramycin+ampicillin (f) tobramycin, tetracycline, and 
tobramycin+tetracycline. 
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Figure 3.5 Density of persisters for two-drug combinations and the constituent 
individual antibiotics (S. aureus). Viable cell densities of S. aureus following 22 hours 
of exposure to equivalent cidal concentrations of single drugs and two-drug combinations 
(mean and standard error for 10 independent cultures shown). (a) ciprofloxacin (CIP), 
gentamicin (GEN), and ciprofloxacin+gentamicin (b) ciprofloxacin, oxacillin (OXY), and 
ciprofloxacin+oxacillin (c) ciprofloxacin, vancomycin (VAN), and 
ciprofloxacin+vancomycin (d) gentamicin, oxacillin, and gentamicin+oxacillin (e) 
gentamicin, vancomycin, and gentamicin+vancomycin (f) oxacillin, vancomycin, and 
oxacillin+vancomycin.  
 

3.3.4 Potential Clinical Implications: What are the implications of the preceding 

pharmacodynamic results for the design and evaluation of antibiotic treatment regimens 

and the emergence of antibiotic resistance? To begin to address these questions we use a 

simple mathematical model of the within-host pharmacokinetics, population and 

evolutionary dynamics of bacteria undergoing multi-drug therapy.  

3.3.4.1 The Model: The model used here is a variant of that used in (Levin and Udekwu, 

2010). It considers two antibiotics with concentrations and designations, A and B, and 
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two subpopulations of bacteria; one that is actively replicating and one that is not (the 

persisters), with densities and designations, S and P, respectively. Bacteria can be of one 

of four different genotypic resistance profiles: they can be susceptible to the action of 

both antibiotics, susceptible only to A or B and resistant to the other, or resistant to both. 

Note though, that any bacterium in a persister state exhibits a phenotypic refractoriness to 

antibiotic action regardless of its genotypic resistance profile.  

Persisters are generated from S cells in a stochastic manner which we simulate via the 

following Monte Carlo procedure:  the maximal rate of persister production is set at f per 

cell per hr, and if f*S*Δt is greater than the value of a rectangularly-distributed random 

number between 0 and 1, then one individual is lost from the S population and one gained 

by the P population. The step size of an Euler simulation, Δt, is chosen so that the 

probability of generating a persister is less than 1. The transition from persisters back to 

growing cells is simulated in a similar fashion, with a maximal rate of g per cell per hour, 

where g<f. Single- and two-drug resistant bacteria are also generated via a similar Monte 

Carlo procedure, with maximal rates of mutant production µA and µB, representing 

mutation rates to resistance for antibiotics A and B respectively.  

We represent the pharmacodynamics of both single and combined antibiotic 

action (i.e. treating with Antibiotic A, B, or both) with a Hill function, as per the 

preceding experimental analyses. For pharmacokinetics, we assume regular antibiotic 

input of Amax and Bmax µg/mL every T hours. The effective concentration of these drugs 

decline at rates dA and dB µg/mL per hour. Net bacterial growth depends on the efficacy 

of antibiotic cidal action as well as on the availability of a limiting resource of 
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concentration R µg/mL. We assume a continuous flow of this resource from a reservoir 

where it is maintained at a concentration C µg/mL. This resource enters the host at a rate 

w per mL per hour, which is the same rate at which antibiotics, bacteria, resources and 

wastes are washed out. The rate of bacterial replication is a monotonically increasing 

function of R with a half-saturation coefficient of km µg/mL (Monod, 1949). Conversion 

of resources into bacterial cells occurs at a conversion efficiency of e µg/cell. For the 

numerical analysis of the properties of this model, computer simulations, we use 

Berkeley MadonnaTM. Copies of the program can be obtained from 

www.eclf.net/programs.  

The standard values and/or ranges of the parameters and variables considered in our 

numerical analysis of the properties of this model are presented in Table 3.1. We note 

here that this simple mathematical model is not intended as a quantitatively precise 

analogue of a specific disease and treatment process but rather to provide a schema for 

assessing the potential clinical implications of our in vitro pharmacodynamic results. 

Whenever possible, the parameter values used are in the range of those estimated from 

the experimental analyses. Parameters not specific to this study are within the range of 

those used in other pharmacodynamic and pharmacokinetic studies of antimicrobial 

therapy (Levin and Udekwu, 2010; Regoes et al., 2004; Wiuff et al., 2005). 
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Table 3.1 Values and ranges for variables and parameters used for generating numerical 
solutions. 

Variable/Parameter Description Value or range 
considered* 

Variables  
A, B Antibiotic concentration (µg/mL) 0 – 10 
SX Density of planktonic bacteria sensitive to both 

antibiotics, x=0; resistant to A, x=RA; resistant 
to B, x=RB; and resistant to A and B, x=RAB 
(cells per mL) 

1-1010 

PX Density of persisters sensitive to both antibiotics, 
x=0; resistant to A, x=RA; resistant to B, x=RB; 
and resistant to A and B, x=RAB (cells per mL) 

1-1010 

R Concentration of the limiting resource (µg/mL) 0-1000 
Parameters 
ψmax Maximum hourly growth rate of replicating 

bacteria  
(1.5) 

ψminy Maximum hourly death rate of antibiotic y, 
where y=A, B and AB (A+B) 

-1 – -15 

MICy Minimum Inhibitory Concentration of antibiotic 
y, where y=A, B and AB (A+B) (µg/mL)  

(1) 

κy Hill coefficient of antibiotic y, where y=A, B and 
AB (A+B) 

(1) 

w Hourly washout rate  (0.2) 
f Hourly rate at which S is converted into P 10-2 or 10-5 

g Hourly rate at which P is converted into S 10-3 or 10-6 

C Reservoir resource concentration (µg/mL) (1000) 
e Efficiency of resource conversion into cells 

(µg/cell) 
(5x10-7) 

km Concentration of resource at half maximal 
growth (µg/mL) 

(0.25) 

Amax, Bmax Antibiotic concentration added at each dosing 
period (µg/mL) 

(5) 

dA, db Antibiotic decay rate (h-1) (0.1) 
T Time between doses (h) (12) 
µA, µB Mutation rate (mutations per cell division)  10-8  
* Values in parentheses are the standard values used for numerical analysis of the model. 

3.3.4.2 Single and multi-drug therapy and the contribution of persistence levels: We 

open this consideration with sample simulations involving single- (Figure 3.6a) and dual-
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drug therapy (Figure 3.6b) to explore the contributions of persistence to the term of 

therapy and the emergence of resistance. Figure 3.6a shows that with single-drug therapy, 

when mutants resistant to the treating drug are present they ascend to high levels and 

generate concomitant levels of resistant persisters. Since resistance to the second drug is 

generated by mutation, the large numbers of bacteria resistant to the treating drug can 

allow for the generation of a minority population of bacteria resistant to both drugs. With 

two-drug therapy the bacteria resistant to single drugs will be eradicated due to their 

susceptibility to the other antibiotic (Figure 3.6b). Populations of these single-drug 

resistant bacteria do not grow to high enough densities to generate persister populations 

that can influence the clearance dynamics.  

We explore the combined roles of exponential-phase cidal dynamics and persistence with 

a consideration of two extreme cases: (i) a worst case scenario in which the two 

antibiotics interact suppressively and also lead to a high level of persistence (Figure 3.6c) 

and (ii) the best case scenario of synergistic antibiotics that lead to a low level of 

persistence (Figure 3.6d). We differentiate between the types of drug interaction by using 

different values for the maximal death rate that drug combinations engender. To account 

for the observation that different combinations of drugs generate different levels of 

persistence, we modulate the persister generation and loss parameters, f and g, such that 

increased efficacy for drug combinations in terms of reducing the level of persistence 

leads to lower values of these parameters. Values of the conversion parameters are 

chosen such that densities of persisters are in the range of those we observed in our 

experimental results. To address the fact that most infections are only treated when the 

number of bacteria is sufficiently great to cause symptoms, and that resistance can be 
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acquired by mutation or horizontal gene/genetic element transfer from the existing flora, 

in our simulations we assume that at the onset of treatment there are already minority 

populations of cells resistant to each antibiotic (Drlica, 2003). We also assume that there 

is a minority population of persister cells present prior to the initiation of therapy.  

 

Figure 3.6 Simulation of the population dynamics of actively replicating and 
persister bacteria under antibiotic treatment. Unless otherwise noted, parameter 
values used for the simulations are the standard values in Table 1. (a) Clearance 
dynamics under single antibiotic treatment, assuming low level persistence (Amax = 0, 
Bmax=10, f=10-5, g=10-6, ψminA=0, ψminB=-5) (b) Clearance dynamics under dual antibiotic 
treatment, assuming additive drug interactions and low level persistence (f=10-5, g=10-6, 
ψminA=-5, ψminB=-5, ψminAB=-5)  (c) Clearance dynamics under dual antibiotic treatment, 
assuming suppressive drug interactions and high level persistence (f=10-2, g=10-3, ψminA=-
10, ψminB=-5, ψminAB=-2)  (d) Clearance dynamics under dual antibiotic treatment, 
assuming synergistic interactions and low level persistence (f=10-5, g=10-6, ψminA=-10, 
ψminB=-5, ψminAB=-15). 
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As can be seen by comparing Figures 3.6c and 3.6d, synergistic interactions 

between antibiotics and a low level of persistence serve to decrease the time to clearance 

of the infection. Evidenced by the similarities in the decline slopes of the P populations in 

Figures 3.6c and 3.6d, it is worth noting that the rate of clearance of the persister 

population with synergistic antibiotics is similar to that with suppressive drugs. However, 

the synergistic antibiotics are able to eradicate the persister population more rapidly by 

more efficiently reducing the numbers of the sensitive population that replenishes lost 

persister cells. Mutants simultaneously resistant to both drugs do not arise because the 

number of cells in the populations resistant to single drugs and their persisters remain too 

low to generate doubly resistant mutants.  

3.3.4.3 The contribution of a spatial refuge: The above situation, where the entire 

population is exposed to the same level of the antibiotic is an idealized one that may be 

met in flasks, but is unlikely in patients. For many infections, perhaps the majority, 

antibiotics will not have complete access to the infecting population of bacteria. Some 

bacteria may be in abscesses, empyema or embedded as non/slowly-dividing cells in 

biofilms (Davies, 2003; Wagner et al., 2006). To account for this, we extend the model to 

allow for another population of bacteria, B, which occupy a spatial refuge and are thereby 

less responsive to the antibiotics than the planktonic population. Bacteria in this 

subpopulation are generated deterministically from both S and P cells at a rate of fb per 

hour and return to the actively replicating population at a rate of gb per hour. We assume 

that bacterial growth rate is decreased in the refuge and that bacterial susceptibility to 

antibiotics is proportional to their growth rate (Brown et al., 1988). As such, the decrease 

in maximal growth in the refuge population (ψmaxb) is paralleled by an equivalent 
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quantitative increase in the MIC of antibiotics in that compartment. Resources enter this 

refuge and the bacteria within are washed out at rate wb per hour (wb<w). We show a 

schematic of this two-compartment model in Figure 3.7. The complete set of equations is 

available in Text 3.A1 (in Appendix).  

 

Figure 3.7 Schematic diagram of the population and evolutionary dynamic model of 
two-drug therapy. Sx, actively-growing bacteria; Px, persisters; Bx, bacteria in spatial 
refuge; x=O, sensitive to both antibiotics; x=RA, resistant to antibiotic A; x=RB, resistant 
to antibiotic B; x=RAB, resistant to both antibiotics. C, resource reservoir; R, internal 
concentration of resource; Amax and Bmax, concentration of antibiotic periodically added; 
A and B, internal concentration of antibiotics, dA and dB, antibiotic decay rates; w, flow 
rate, main compartment; wb, flow rate, spatial refuge.  
 

We consider the role of the refuge with simulation runs using the same parameters and 

initial conditions as in the single compartment simulation, Figures 3.6c and 3.6d, but now 

allow bacteria to migrate to a refuge at the same rates at which persisters are formed. 
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Contrary to the results shown in Figure 3.6, the infections are not cleared, and susceptible 

bacteria in both the refuge and the planktonic compartment oscillate around constant 

densities (Figures 3.8a and 3.8b). This result obtains because for both physiological 

(decreased replication rate) and spatial (reduced antibiotic access) reasons, bacteria in the 

refuge are more refractory to antibiotics than a more transient planktonic persister 

subpopulation which continually reverts to a rapidly growing state. It should be noted 

though, that the infections can be cleared by either increasing antibiotic dose or 

decreasing the rate of migration of cells into the refuge (Figure 3A.5, in Appendix). 

 

Figure 3.8 Simulation of the population dynamics of actively replicating and spatial 
refuge bacteria under antibiotic treatment. Unless otherwise noted, parameter values 
used for the simulations are the standard values in Table 1. For subpopulations in the 
spatial refuge, ψmaxb=0.5, wb=0.05, fb =10-5, gb =10-6, MICA=3, MICB=3, MICAB=3. (a) 
Clearance dynamics under dual antibiotic treatment, assuming synergistic drug 
interactions (ψminA=-10, ψminB=-5, ψminAB=-15) (b) Clearance dynamics under dual 
antibiotic treatment, assuming suppressive drug interactions (ψminA=-10, ψminB=-5, 
ψminAB=-2).  

 

A comparison of Figures 3.8a and 3.8b shows an effect of the type of interaction 

between antibiotics. The susceptible cells are maintained at a lower density when the 

drug interaction is synergistic (Figure 3.8a) than when it is suppressive (Figure 3.8b). 
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Also, while the single-drug resistant mutants are eliminated under synergistic interactions 

(Figure 3.8a), they are maintained when the interaction is suppressive (Figure 3.8b). 

Under the latter conditions, the population of susceptible cells is maintained at a high 

enough density to continually generate single-drug resistant mutants. However, since the 

single-drug resistant bacteria remain susceptible to the activity of the other drug, we do 

not record any instances of dual-drug resistance in these simulations regardless of 

whether interactions are synergistic or suppressive.  

3.4 DISCUSSION  

The rational design of multi-drug antibiotic therapy requires information about the 

pharmacodynamics of the component drugs individually and in combination as well as 

how those drugs will affect the population and evolutionary dynamics of the target 

bacteria. In this study, we use in vitro pharmacodynamic experiments with E. coli and S. 

aureus to explore the pharmacodynamics of single and pairs of antibiotics of different 

classes. Using mathematical models and computer simulations, we explore how the 

observed pharmacodynamics will affect the microbiological course of therapy and 

evolution of resistance. Here we briefly summarize these theoretical and experimental 

results and discuss their potential implications for multi-drug therapy.  

3.4.1 Pharmacodynamics: We use Hill functions to characterize the relationship 

between the concentrations of single and pairs of drugs and the rates of kill of the target 

bacteria during the initial, exponential, phase of exposure. The concentrations of both 

single and pairs of drugs are expressed as single variables, multiples of cidal units. These 

cidal units are, for single drugs, equivalent to multiples of Clinical and Laboratory 
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Standards Institute (CLSI) (CLSI, 2005) estimates of their MICs; for pairs of drugs, they 

are sums of equipotent concentrations of the two drugs (equal multiples of their 

respective CLSI MICs). This formulation allows a comparison of the cidal/inhibitory 

activities of drugs in combination with those of their component single drugs at 

equivalent concentrations. Using this method we characterize and quantify the form of 

the interaction between pairs of drugs, synergy, antagonism, suppression or additivity.  

Our experimental results illustrate the necessity of comprehensive empirical PD 

assessments for drug combinations rather than attempting to predict their interactions a 

priori or based on single interaction parameters. In experiments with E. coli, drug 

combinations exhibited concentration-dependent synergy, antagonism and suppression in 

ways that, for most combinations, could not have been predicted from current 

understanding of the mechanisms of drug action. For example, it is generally assumed 

and seemingly reasonable to anticipate that when mixed with drugs that are bacteriostatic, 

like chloramphenicol, antibiotics that require cell division for their action, like the beta 

lactams, will not be as effective in killing bacteria than when they are alone (Jawetz and 

Gunnison, 1952). Unfortunately, the classification of antibiotics as bactericidal or 

bacteriostatic is not as clear in practice as is often alluded to (Pankey and Sabath, 2004). 

For example, in our E. coli experiments, tetracycline, which is often classified as 

bacteriostatic (Lorian, 2005), was clearly bactericidal at higher concentrations, more so 

than ampicillin, which is a member of the presumptively bactericidal beta-lactam family 

of drugs. The combination of tetracycline and ampicillin was more effective in killing 

bacteria than ampicillin alone, albeit less so than tetracycline on its own. On the other 



	   91	  

hand, combinations of tetracycline with ciprofloxacin or tobramycin were less effective 

than either of these drugs alone.  

For S. aureus we only observed antagonistic and suppressive interactions for all six 

pairs of drugs considered. With two exceptions, the efficacy of the combinations of drugs 

was intermediate between that of the most and least bactericidal. The exceptions are 

noteworthy; vancomycin in combination with either ciprofloxacin or oxacillin exhibited 

suppressive interactions. Most dramatically, the combination of vancomycin and 

oxacillin had virtually no bactericidal activity. This is a good illustration of the point we 

made earlier, that based on the PD of these single drugs we could not have predicted how 

they would interact in combination. 

It is clear from single drug studies that the level of persistence depends on the 

antibiotics and their concentrations (Johnson and Levin, 2013). While the present 

experiments support this interpretation, they are also consistent with the proposition that 

there is no way to predict how two drugs will interact to determine the level of 

persistence. What is clear from our results is that the density of persisters with two-drug 

combinations will be no greater than that of the single drugs alone. For most 

combinations, the density of persisters was intermediate between that of the two 

antibiotics or at a level similar to that observed for the component drug that generated a 

lower level of persistence. This suggests that the component antibiotics determine the 

lower and upper limits for the density of persisters when drugs are combined. 

Interestingly, there is limited correlation between the pharmacodynamic efficacy of 

combinations in the exponential, cidal, phase of the encounter between the bacteria and 
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drugs and the level of persistence. As suggested earlier for the kill phase of the 

pharmacodynamics, the physiological and molecular reasons for this are unclear.  

3.4.2 Population and evolutionary dynamics and potential implications for 

treatment: Our mathematical and computer simulation model of the pharmaco-, 

population and evolutionary dynamics of bacteria undergoing dual drug therapy 

illustrates how the interactions between drugs affect the microbiological course of 

treatment. Drug combinations that exhibit suppressive interactions in either the rate of 

kill and/or level of persistence will require more time to clear an infection than 

synergistic drugs. From the perspective of treatment, persistence is a refuge from the 

cidal action of the antibiotics. If that refuge is small, i.e. the persistence level is low, it 

will have little effect on the rate of clearance. On the other hand, a high level of 

persistence serves as a substantial refuge that continually re-seeds the treated population 

and lengthens the term of therapy. Our analysis suggests that in general, while persisters 

may retard the rate at which bacteria are cleared, they are unlikely to prevent clearance. 

This, however, should not be interpreted to suggest that persistence cannot lead to 

treatment failure, since the magnitude of morbidity and the probability of mortality 

increases with the term of the infection. Lengthier treatment durations can also increase 

the likelihood of patient non-adherence and thus increase the probability of exposure to 

sub-therapeutic concentrations of antibiotics. Recent work by two of the authors (PJTJ 

and BRL) suggests that these sub-MIC concentrations can enrich bacterial populations 

for existing persisters and also promote the generation of persisters and thereby increase 

their density in treated populations (Johnson and Levin, 2013). Most importantly, there is 

evidence from clinical studies that supports the proposition that in addition to delaying 



	   93	  

clearance, persistence may also lead to treatment failure (Chao and Rubin, 2010; Lafleur 

et al., 2010; Lewis, 2010; Mulcahy et al., 2010). 

In addition to subpopulations of bacteria that are physiologically refractory 

because they are not growing or growing slowly, there are also subpopulations that, for 

spatial or other reasons, are less accessible to antibiotics than the dominant population. In 

our simulations we show that the presence of these refugia can prevent clearance by 

treatment regimens that lead to clearance in their absence. This has in fact been observed 

for chronic infections with physically-structured subpopulations of bacteria, such as 

endocarditis and osteomyelitis, and also for catheter and other foreign-body associated 

infections (Costerton et al., 1999). As with persistence, our models indicate that treatment 

with synergistic combinations of drugs can improve the microbiological course of 

treatment, i.e. reduce the densities of bacteria in chronic infections relative to suppressive 

combinations. 

A traditional reason for using multiple, rather than single, antibiotics is to prevent 

the ascent of bacteria resistant to single antibiotics. The results of our simulations support 

this interpretation of the evolutionary utility of two-drug therapy. Although in our 

simulations mutants resistant to single drugs were initially present at low frequencies, 

these cells were either cleared or remained minority populations. Further, with the 

parameters employed, two-drug resistance never emerged. The reason for the latter is that 

the populations of single-drug resistant bacteria and their corresponding persister and 

refuge subpopulations remained in check by the drug to which they were susceptible. 

They did not grow to high enough numbers to generate multi-drug resistance via 

mutation. This evolutionary benefit of two-drug therapy obtained even when the drugs 
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suppressed each other’s activity. Indeed, there exists some experimental evidence to 

suggest that antagonistic and suppressive drug combinations may be even more efficient 

than synergistic combinations in preventing evolution of multi-drug resistance 

(Hegreness et al., 2008). When interactions are synergistic, evolution of resistance to one 

of the drugs aborts the enhancing effect of the other, whereas with antagonistic 

interactions single-drug resistance removes the suppressive effect on the drug to which 

those mutants are susceptible (Chait et al., 2007; Hegreness et al., 2008).  

Of note though; while in the absence of refugia two-drug therapy can lead to the 

clearance of minority populations of single-drug resistant bacteria, this need not be the 

case when there are refugia.  As a consequence of these refugia, the number of bacteria 

sensitive to both antibiotics can remain sufficiently large to continually seed the 

population with mutants resistant to single drugs. Whether or not this will occur depends 

on the nature of the two-drug interactions. Suppressive drugs, because they lead to 

greater densities of susceptible cells, are more likely to allow for the continuous 

repopulation of single–drug resistance by mutation.  

3.4.3 Caveats and Limitations: At best, in vitro pharmaco- and population dynamics 

experiments and mathematical modeling and simulation studies of the sort presented here 

can only provide a rational and necessarily quantitative base for the design of antibiotic 

treatment protocols. The within-host model we use here, for instance, does not explicitly 

consider the contribution of the innate or adaptive immune systems to clearance. 

Ultimately the evaluation of these protocols has to be made in treated animals where the 

immune system contributes to the clearance of the infection and, alas, the pathology 

(Margolis and Levin, 2008).  
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The approach we have used in both the experimental and modeling elements of 

this study have been phenomenological, they do not incorporate or address the 

physiology and molecular mechanisms of action of single antibiotics or interactions 

between antibiotics in inhibiting the growth and killing their target bacteria. We justify 

this approach in two ways:  First from the practical perspective of antibiotic treatment, 

the phenomenology considered, the relationship between the concentrations of single and 

multiple antibiotics in inhibiting the growth and killing the bacteria is more important 

than an understanding of the mechanisms responsible. Second, despite all that is known 

about the targets of antibiotic action and how they are related to the molecular structure 

of these compounds, we still know relatively little about how antibiotics inhibit the 

growth of and kill bacteria, see for example (Kohanski et al., 2007). Similarly, in our 

consideration of persisters we assume that these bacteria are generated stochastically, and 

do not explicitly account for deterministic mechanisms such as stress responses (Vega et 

al., 2012; Wu et al., 2012b) that can also contribute to persister generation. This approach 

has the virtue of simplifying the model while still maintaining its quantitative integrity, 

since the levels of persisters generated in the simulations are equivalent to those observed 

experimentally.  

For convenience and tractability, in our model we treated susceptibility and 

resistance as discrete states with different pharmacodynamic properties. In reality 

bacterial susceptibility and resistance to antibiotics is a continuum that depends not only 

on the specific target of the drug, but also the rates at which cells take up and remove 

these compounds, e.g. via efflux pumps. In some cases, single mutations in regulatory 

loci or efflux systems can simultaneously reduce the susceptibility of bacteria to multiple 
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antibiotics (Howden et al., 2011; Ziha-Zarifi et al., 1999). Multi-drug resistance may also 

be acquired in a single step by the horizontal transfer of genes or accessory genetic 

elements from the resident flora (Martinez and Baquero, 2002; Martinez-Suarez et al., 

1987). Another noteworthy caveat is that for some infections, bacterial population sizes 

may well exceed the numbers we have considered here, thereby increasing the likelihood 

that mutants resistant to two antibiotics will be generated. As intriguing as they may be, a 

formal consideration of these realities is beyond the scope of this study.  
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3.5 APPENDIX 

The following appendix contains supplementary information for the above investigation. 

All the figures, tables and protocols that follow have been pre-referenced in the text of 

the chapter.  

 

 

Figure 3A.1 Time-kill curves of E. coli CAB1 exposed to single antibiotics. Changes 
in viable cell density for cultures treated with varying concentrations (0.2xCU, 0.5xCU, 
1xCU, 2xCU, 5xCU and 10xCU). Each multiple of cidal unit (xCU) is equivalent to the 
corresponding multiple of MIC (xMIC). (a) ampicillin (b) ciprofloxacin (c) tetracycline 
(d) tobramycin.   
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Figure 3A.2 Time-kill curves of E. coli CAB1 exposed to pairs of antibiotics. Changes 
in viable cell density for cultures treated with varying concentrations (0.4xCU, 1xCU, 
2xCU, 5xCU, 10xCU and 20xCU) of each antibiotic pair. Each multiple of cidal unit 
(xCU) is equivalent to the sum of equal multiples of MIC (xMIC) of each drug, e.g. 
1xCU is the combination of 0.5xMIC of each antibiotic. (a) ampicillin + ciprofloxacin (b) 
ampicillin + tetracycline (c) ciprofloxacin + tetracycline (d) ciprofloxacin + tobramycin 
(e) ampicillin + tobramycin (f) tetracycline + tobramycin. 
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Figure 3A.3 Time-kill curves of S. aureus Newman exposed to single antibiotics. 
Changes in viable cell density for cultures treated with varying concentrations (0.1xCU, 
0.5xCU, 1xCU, 2xCU, 5xCU and 10xCU) of each antibiotic. Each multiple of cidal unit 
(xCU) is equivalent to the corresponding multiple of MIC (xMIC). (a) ciprofloxacin (b) 
gentamicin (c) oxacillin (d) vancomycin.  
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Figure 3A.4 Time-kill curves of S. aureus Newman exposed to pairs of antibiotics. 
Changes in viable cell density for cultures treated with varying concentrations (0.2xCU, 
1xCU, 2xCU, 5xCU, 10xCU and 20xCU) of each antibiotic pair. Each multiple of cidal 
unit (xCU) is equivalent to the sum of equal multiples of MIC (xMIC) of each drug, e.g. 
1xCU is the combination of 0.5xMIC of each antibiotic. (a) gentamicin + ciprofloxacin 
(b) ciprofloxacin + oxacillin (c) ciprofloxacin + vancomycin (d) gentamicin + oxacillin 
(e) gentamicin + vancomycin (f) oxacillin + vancomycin.  
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Figure 3A.5 Effects of increasing dose and decreasing rates of migration into spatial 
refuge on clearance dynamics. Unless otherwise noted, parameter values are the same 
as those used for corresponding simulations shown in Figure 5. (a) Clearance dynamics 
with a higher dose of antibiotics, assuming synergistic interactions (Amax=10, Bmax=10) 
(b) Clearance dynamics with a higher dose of antibiotics, assuming suppressive 
interactions (Amax=10, Bmax=10 (c) Clearance dynamics with a lower rate of migration of 

cells into the spatial refuge assuming synergistic interactions (fb=10
-6

, gb=10
-7

) (d) 
Clearance dynamics with a lower rate of migration of cells into the spatial refuge 
assuming suppressive interactions (fb=10

-6
, gb=10

-7
)  
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Table 3A.1 Pharmacodynamic function parameter estimates and standard errors for E. 
coli experiments. 

Antibiotic(s) ψmax (h-1) ψmin (h-1) κ MIC or rMIC 

Ciprofloxacin 1.59±0.20 -15.7±1.06 1.42±0.14 0.70±0.06 

Ampicillin 1.57±0.15 -1.16±0.30 4.53±1.99 3.47±0.45 

Tetracycline 1.30±0.15 -8.32±0.76 1.46±0.19 0.92±0.08 

Tobramycin 1.08±0.35 -16.6±1.08 2.67±0.48 1.20±0.19 

Ciprofloxacin + Ampicillin 1.98±0.48 -18.0±4.21 1.29±0.30 1.68±0.30 

Ciprofloxacin + Tetracycline 1.91±0.15 -5.69±0.22 2.56±0.29 2.22±0.13 

Ciprofloxacin + Tobramycin 1.43±0.69 -15.2±1.12 1.30±0.25 0.34±0.10 

Ampicillin + Tetracycline 1.24±0.23 -5.96±4.72 0.61±0.24 1.15±0.25 

Ampicillin + Tobramycin 1.41±0.85 -15.1±0.99 1.58±0.37 0.38±0.12 

Tetracycline + Tobramycin 1.48±0.55 -9.68±1.17 1.45±0.38 0.92±0.21 
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Table 3A.2 Pharmacodynamic function parameter estimates and standard errors for S. 
aureus experiments. 

Antibiotic(s) ψmax (h-1) ψmin (h-1) κ MIC or rMIC 

Ciprofloxacin 1.53±0.27 -3.01±0.26 1.55±0.48 0.34±0.07 

Gentamicin 1.28±0.26 -4.06±0.23 1.62±0.41 0.23±0.05 

Oxacillin 1.51±0.04 -1.04±0.08 1.42±0.14 1.56±0.08 

Vancomycin 1.07±0.02 -1.53±0.01 2.43±0.08 0.56±0.007 

Ciprofloxacin + Gentamicin 1.66±0.47 -4.26±0.33 1.74±0.63 0.42±0.13 

Ciprofloxacin + Oxacillin 1.50±0.27 -2.88±0.18 2.05±0.65 0.49±0.11 

Ciprofloxacin + Vancomycin 1.46±0.21 -1.23±0.14 1.82±0.59 0.70±0.13 

Gentamicin + Oxacillin 1.41±0.19 -3.67±0.15 2.33±0.61 0.62±0.10 

Gentamicin + Vancomycin 1.50±0.34 -3.85±0.25 1.86±0.62 0.47±0.12 

Oxacillin + Vancomycin 1.41±0.03 -0.095±0.02 3.00±0.50 0.81±0.17 
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Text 3A.1 Differential equations used for simulation of the two-compartment 

mathematical model. 

dSO
dt

= SO (grAB !w ! fb ! f !muSA !muSB )+ gPO + gbBO

dSRA
dt

= SRA(grB !w ! fb ! f !muSB )+ gPRA + gbBRA +muSASO

dSRB
dt

= SRB(grA !w ! fb ! f !muSA )+ gPRB + gbBRB +muSBSO

dSRAB
dt

= SRAB(" !w ! fb )+ gbBRAB +muSBSRA +muSASRB

dPO
dt

= PO (!w ! fb ! g)+ fSO

dPRA
dt

= PRA(!w ! fb ! g)+ fSRA

dPRB
dt

= PRB(!w ! fb ! g)+ fSRB

dBO
dt

= BO (bgrAB !wb ! gb !muBA !muBB )+ fb (PO + SO )

dBRA

dt
= BRA(bgrB !wb ! gb !muBB )+ fb (PRA + SRA )+muBABO

dBRB

dt
= BRB(bgrA !wb ! gb !muBA )+ fb (PRB + SRB )+muBBBO

dBRAB

dt
= BRAB(" b !wb ! gb )+ fbSRAB +muBABRB +muBBBRA
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Growth Rates: 
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Mutation Rates: 
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Resources: 
dR
dt

= w(C ! R)! e(grABSO + grASRB + grBSRA +" SRAB )

dRf

dt
= wb (C ! Rf )! e(bgrABBO + bgrABRB + bgrBBRA +" bBRAB )

  

 
 
Antibiotics:  
dA
dt

= A(!w ! dA )

dB
dt

= B(!w ! dB )
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CHAPTER 4 

Pharmacokinetics and Pharmacodynamics meets Population 
Dynamics meets Immunology: Predictions and Hypotheses for 
the Design and Evaluation of Antibiotic Treatment Regimens 
 
Peter Ankomah and Bruce R. Levin 

In preparation; to be submitted to PLoS Pathogens	  

 

4.1 INTRODUCTION 

The goals of antibiotic treatment of bacterial infections are straightforward and 

interrelated: to maximize the likelihood and rate of cure, to minimize the toxic and other 

deleterious side-effects of treatment, and to minimize the chance and/or extent of 

resistance emerging during the course of treatment. In addition to the advantage to the 

individual patient, controlling acquired resistance reduces the contribution of treatment to 

the spread of resistance in hospitals and open communities. How does one choose the 

most effective antibiotic(s) for a given infection and determine its optimum dose, 

frequency and term of administration to achieve these goals? 

One answer has been to combine in vitro studies of the pharmacodynamics (PD) 

of the antibiotics and bacteria and the in vivo pharmacokinetics (PK) of the antibiotics in 

treated patients or model organisms (Craig, 1998; Drusano, 2004). Central to this 

“rational” (as opposed to purely empiric) approach to antibiotic treatment are three 

PK/PD indices: (i) the ratio of the peak antibiotic concentration achieved in vivo to the 

lowest level required to prevent the in vitro growth of the bacteria (the Minimum 

Inhibitory Concentration), CMAX/MIC, (ii) the ratio of the area under the concentration-
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time curve to the MIC, AUC/MIC and (iii) the amount of time the antibiotic 

concentration exceeds the MIC, T>MIC. The therapeutic efficacies of different classes of 

antibiotics are considered to be best described by one of these indices. Thus, antibiotic 

regimens that are based on the same index can be empirically evaluated and compared 

using in vitro experimental systems (e.g. hollow fiber models) or with laboratory 

organisms, typically neutropenic or other immunocompromised mice (Mouton et al., 

2011).  

PK/PD indices have the virtue of reductionism; save for host variation in PK 

(Drusano, 2007), the treatment regimen is founded on a single index that can be estimated 

in a standardized way. Although there is evidence that antibiotic use protocols based on 

these indices are correlated with treatment success, (Ambrose et al., 2001; Forrest et al., 

1993; Kashuba et al., 1999; Preston et al., 1998), it is not at all clear whether these 

protocols are optimal (McKinnon and Davis, 2004; Udekwu et al., 2009). Treatment fails 

and resistance emerges even when PK/PD-based protocols are used and adhered to 

(Forrest et al., 1993; Tapsall et al., 1998). Are there ways to develop antibiotic treatment 

regimens that would lead to lower rates of treatment failure and emergence of resistance 

than those based on PK/PD indices alone?  

Mathematical and computer simulation models could provide a framework to 

facilitate the development of optimal antibiotic treatment protocols. They have been 

successfully used to design and evaluate antibiotic use regimens for hospitals and to 

evaluate the relationship between antibiotic use and epidemiology of resistance in open 

communities, e.g (Bergstrom et al., 2004; Bonhoeffer et al., 1997; D'Agata et al., 2007; 

Webb et al., 2005).  To a lesser extent, mathematical models have also been used to 
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explore and evaluate protocols for the treatment of individual patients with single and 

multiple antibiotics (Ankomah and Levin, 2012; Bonhoeffer et al., 1997; D'Agata et al., 

2008; Lipsitch and Levin, 1998). However, while it is well known that the clearance of 

bacterial infection can be attributed to a collaboration of the host’s immune defenses and 

antibiotics, with few exceptions, e.g. (D'Agata et al., 2008; Geli et al., 2012; Handel et 

al., 2009), models of antibiotic treatment do not consider the host’s contribution. And, the 

few models that do allow for a generalized host contribution to the clearance of the 

infection also fail to consider other significant realities bacterial infection. Included 

among these are the physiological variation in susceptibility of the infecting bacteria, like 

the phenomenon of persistence (Lewis, 2010), and tissue and other within-host 

heterogeneities that contribute to dynamics of bacterial infections and their clearance.  

Finally, most existing models of the within-host dynamics of antimicrobial chemotherapy 

treat inherited resistance as a discrete state, rather than the reality of a continuum of 

declining susceptibility to these drugs.     

In this report, we use a mathematical model and computer simulations to explore 

the efficacy of different antibiotic dosing and term-of-use regimens on the rate of 

clearance (cure) and emergence of resistance in self-limiting as well as potentially lethal 

acute bacterial infections. Our model combines the pharmacokinetics of periodic 

antibiotic dosing with multi-parameter functions for the pharmacodynamics of the 

antibiotics and bacteria and the innate and adaptive host immune response. The model 

also considers the effects of phenotypic resistance (persistence), inherited variation in the 

susceptibility of the bacteria to the treating drugs, and within-host variation in the 

efficacy of antibiotic action. In our analysis, we give primary consideration to the 
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relationship between the dose, frequency and term of administration of the antibiotic and 

the rate of clearance of the infection as well as the emergence of resistance. Our 

assessments of the properties of this model provide a number of predictions (hypotheses) 

about the consequences of different antibiotic treatment regimens on the course of 

bacterial infections. Contrary to recent arguments against “orthodox” high dose therapy 

(Read et al., 2011), our results suggest that under most conditions, high dose therapy is 

more effective than more moderate dosing as measured by both the rate of clearance and 

the likelihood of emergence of resistance. We discuss the current status of data in support 

of the predictions of this study, briefly consider those elements that require testing and 

suggest how they can be tested.  

4.2 METHODS 

4.2.1 The Model: The model we develop here is an extension of that we employed in 

(Levin and Udekwu, 2010) that incorporates innate and adaptive host immune responses 

and the emergence of resistance (Figure 4.1). In the following, we outline the different 

elements of this model.   

4.2.2 Population growth and maintenance: In the absence of antibiotics, the maximum 

growth rate of the bacteria of population Bi (φiMAX) is proportional to the concentration of 

a limiting resource, R µg/ml: 

 

where k is the concentration of the resource at which the population is growing at half its 

maximum rate, and Vi is the maximum resource-independent growth rate (Monod, 1949). 

Resources continually infuse into the site of the infection out of a resource reservoir C at 

a rate w µg/mL per day and are consumed by the bacteria at a rate proportional to their 

! iMAX (R) =Vi
R

k + R
"
#$

%
&'
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maximum growth rate and a conversion efficiency parameter, e µg per cell (Stewart and 

Levin, 1973). The latter is the amount of resource required to produce a single new cell. 

With these definitions and assumptions, the rate of growth of bacterial population Bi and 

the rate of change in the resource concentration are given by: 

 

 

 

 

Figure 4.1. Schematic diagram showing the mathematical model of the population 
and evolutionary dynamics of bacteria with host immune responses and antibiotic 
treatment. Bi, rapidly-growing bacteria; BPi, slowly-growing persister bacteria; i = 1, 
susceptible to antibiotic action; i=2, intermediate-resistance; i=3, high-level resistance. 
PMAX, reservoir of inactive innate immune cells; P, activated innate immune cells; I, 
adaptive immune cells. C, resource reservoir; R, concentration of resource in infection 
site; Amax, dose of antibiotic added periodically; A, concentration of antibiotic in infection 
site; w, rate of flow of resources into and out of the infection site; w2, rate of washout of 
persisters.  
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4.2.3 The Bacterial Populations: There are three populations of bacteria, with densities 

and designations B1, B2 and B3. These bacteria can vary in their MICi, with the higher 

index number bacteria being less susceptible to the antibiotic than the lower index 

populations. The bacteria can also exhibit different maximum rates of growth, Vi, due to 

fitness costs of resistance. Bacteria of more susceptible states can generate those of lower 

susceptibility by mutation: B1 à B2 at a rate µ1 per cell per generation and B2 à B3 at a 

rate µ2 per cell per generation. For convenience and also because the effect is negligible, 

we do not consider reverse mutation. The cells of each of these bacterial populations can 

be in one of two states: (i) rapidly replicating and phenotypically susceptible to the 

antibiotics, or (ii) replicating slowly and phenotypically refractory to the antibiotics. The 

latter subpopulations, BP1, BP2 and BP3, represent a refuge from the antibiotics as would 

be expected for persisters as well as cells in biofilms and other sub-habitats where the 

efficacy of the antibiotics is reduced. We assume that these populations divide at a low 

rate, ψpi(R), where ψpi(R)<< φiMAX(R), and that bacteria change from the susceptible to the 

refractory state at rate fSP per cell per hour and return to the susceptible state at a rate fPS 

per cell per hour, fSP < fPS.  

4.2.4 Pharmacodynamics and pharmacokinetics: Central to the PD of this model is a 

Hill function, for which the net rate of growth or death of a bacterial population, ψi, is a 

function of the concentration of the antibiotic, A µg/mL, and the limiting resource, R 

µg/mL: 
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where φiMAX(R) is the maximum resource-limited growth rate of the bacteria, φiMIN(R) is 

the minimum bacterial growth rate (maximum antibiotic kill rate), κ, the Hill coefficient 

is a shape parameter that describes the sensitivity of the bacterial growth rate to changes 

in antibiotic concentration, and MICi is the minimum inhibitory concentration of the 

antibiotic. The level of bacterial susceptibility to antibiotics in this model is directly 

proportional to the MIC (CLSI, 2005; Kahlmeter et al., 2003). We assume that 

intermediate (B2) and high-level (B3) resistant populations have MICs, respectively two- 

and ten-fold greater than that of the susceptible population (B1). For the 

pharmacokinetics, we assume that in the absence of input the concentration of the 

antibiotic declines exponentially at rate d per hour, and is also lost due to flow from the 

site of infection at rate w.  

  

4.2.5 The innate and adaptive immune responses: Our model incorporates two 

components of mammalian immune defenses, a rapid innate response and a slowly 

developing adaptive response.   

4.2.5.1 The innate Immune Response: Our model of the innate immune response is 

similar to that developed by (Kochin et al., 2010). Activated effector cells (phagocytes) 

are recruited into the site of the infection at a rate proportional to the density of cells in an 

inactive reservoir and a rate parameter η per hour. The total density of cells in the 

reservoir is PMAX, and P represents the density of activated phagocytes, with the latter 

becoming inactive at a rate γ  per hour. The rate of recruitment is proportional to the total 

dA
dt

= !(d +w)A
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density of the infecting bacterial population, N =B1+B2+B3+ BP1 + BP2 +BP3 via a 

Monod-like hyperbolic function.  

                

where σP >0 is a saturation constant employed to reflect the relationship between the rate 

of recruitment of phagocytes and the density of bacteria in the site of the infection.     

4.2.5.2 Adaptive immune response: The adaptive immune response proceeds via a 

clonal expansion of effector cells, I, that are specific for the collective of antigens borne 

on the infecting bacteria. The intensity of the adaptive response increases at a rate 

governed by the maximum rate at which the I population increases, α per hour, and the 

density of the target population of bacteria. The constant σI  is the density of bacteria at 

which the adaptive immune response increases at half its maximum rate (Antia et al., 

1994). Since we are modeling short-term infections, we assume that there is no waning of 

the adaptive immune response over the course of the infection.  

 

4.2.6 Bacterial Population dynamics under immune action: We assume the sensitivity 

to inhibition (killing) by the innate and adaptive immune response is the same for the all 

replicating populations of bacteria and proportional to the product of their densities, P 

and I and the mass action constants kp and ki (per immune cell per hour), respectively. We 

also assume that the three refuge populations of bacteria are killed at a lower rate than the 

more rapidly replication subpopulations. The mass action constants for the innate and 

adaptive immune responses for these refuge populations are, respectively, jp and ji, where 

jp<kp and ji<ki. 
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With the above definitions and assumptions, the rates of change in the densities of the 

bacterial populations are given by: 

 

 

4.2.7 Computer simulations: We use a semi-stochastic algorithm to solve the above 

array of coupled differential equations. The changes in the densities of the bacteria, 

immune cells and concentrations of the resource and antibiotic are deterministic. The 

corresponding differential equations are solved by the Euler method with a finite step size 

Δt. The generation and loss of persisters and mutation to antibiotic resistance are 

stochastic. We incorporate these stochastic elements into the model via a Monte Carlo 

protocol. To illustrate this algorithm we consider that used for the generation of 

persisters. At each finite time interval Δt, the probability that a single persister cell BP1 

will be produced by the B1 population is fSPB1Δt, where Δt is chosen so that this product 

is less 1. If a random number x (0<x<1) is less than or equal to fSPB1Δt, a single B1 is 

removed from that population and enters the persister BP1 population. Mutations that 

change the resistance state of the bacteria are generated using a similar protocol, at rates 

proportional to bacterial growth rates and the product of the number of individuals of the 

ancestral state and the mutation rate, µ1 or µ2. In addition, since stochastic extinction 

processes are important at lower population densities (Handel et al., 2007; zur Wiesch et 

al., 2011), we assume that when the density of a bacterial population is less than 5 

cells/mL, there is a 50% chance of extinction of that population with each iteration of the 

simulation. In Table 4A.1, we list the variables and parameters of the model and the 

dBi
dt

=! i (A,R)Bi " kPBiP " kiBiI + fPSBPi " fSPBi

dBPi
dt

=! Pi (R)BPi " jPPBPi " jiBPiI " fPSBPi + fSPBi
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ranges and/or standard values of the parameters employed in our simulations. Whenever 

possible, we use parameter values in the ranges of those estimated experimentally for S. 

aureus and E. coli (Johnson and Levin, 2013; Regoes et al., 2004; Udekwu et al., 2009; 

Wiuff et al., 2005). For more justifications of the parameter values used, see the footnotes 

to Table 4A.1.  

We initiate the simulations with a single bacterium of state B1, a single phagocyte 

P=1 and a single adaptive immune cell I =1. We choose parameter values to address the 

reality that a bacterial population increases exponentially and reaches substantial 

densities before the host response begins to control the population. We also assume that 

treatment is not initiated until the bacterial population is at a level where the infection is 

symptomatic. We consider infections of two major types: (i) a self-limiting infection for 

which combined innate and adaptive immune responses will, in the absence of antibiotics 

clear the infection over a clinically realistic term (Gwaltney et al., 2004; Ternhag et al., 

2007), and (ii) a non-self-limiting and therefore potentially lethal infection for which 

clearance does not occur in the absence of antimicrobial agents. Antibiotic treatment 

commences when infecting bacteria attain their resource-limited density at which time 

antibiotics at a concentration AMAX are pulsed into the site of infection every T hours. The 

simulation used for this model was programmed in Berkeley MadonnaTM. Copies of the 

program are available at www.eclf.net/programs.  

4.3 RESULTS: 

4.3.1 Self-limited infection: We open with a consideration of the null case, the dynamics 

of an infecting bacterial population in the absence of an immune response and antibiotic 

treatment. Under these conditions, the infecting bacteria (B1) grow to high densities but 
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are limited by the availability of resources for growth (Figure 4.2a). The susceptible 

bacteria grow to densities that are high enough that they generate a concomitantly high 

level of persister bacteria (BP1). Intermediate-resistance bacteria (B2) are generated but 

do not ascend due to resource restriction. Figure 4.2b illustrates infection dynamics when 

the innate immune defenses operate, in the absence of antibiotics or the adaptive immune 

response. Here, the maximum density of bacteria is lower than that in the null case 

(Figure 4.2a) but the infection is not cleared.  If however, we allow for an adaptive 

immune response, the infection is cleared well before the end of the 20-day simulation 

(Figure 4.2c). The addition of a small dose of antibiotics in combination with the immune 

response leads to a somewhat earlier clearance of the infection (Figure 4.2d). The cidal 

activity of the antibiotics also reduces the density of the infection population earlier than 

immune action alone. Of note though, at this treatment level the resources that are freed 

up with the decrease in density of the B1 population enable the temporary ascent of 

intermediate-resistance bacteria, but these too are eventually cleared by the immune 

response.  

In the subsequent section, we examine the efficacy of various treatment regimens 

on the time to clearance of the bacteria and the rate of evolution of intermediate and high-

level resistance. As our measure of clearance, we consider the average number of days 

required for the density of the total bacterial population to be less than 1 CFU/mL over 

ten independent simulations. For the emergence of resistance, we consider the number 

out of 100 simulations in which B2 or B3 bacteria are produced before day 20.  

In Figure 4.3a and 4.3b we examine the effects of dose on these two measures of 

treatment efficacy. The average time to clearance and the fraction of runs in which B2 
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bacteria emerge decline with increasing concentrations of the antibiotic. This decline, 

however, is not monotonic. After a point, increasing the dose of the drug has little or no 

effect on either of these measures of antibiotic efficacy.  

 

 

Figure 4.2 Bacterial population dynamics of a self-limited infection with immune 
action and antibiotic treatment. Changes in the densities of the bacteria and immune 
cells under the following conditions: (a) No immune action, no antibiotic treatment (b) 
Innate immune action (c) Innate and adaptive immune action (d) Innate and adaptive 
immune action with antibiotic treatment, dose = 2 µg/mL. Standard parameter values 
used for the simulations are listed in Table 4A.1.  
 

This is a reflection of the Hill function pharmacodynamics. For example, with the Hill 

function parameters used for the susceptible strain, increasing the concentration of the 
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increasing the dose from 2.5xMIC to 5xMIC and from 10xMIC to 20xMIC are, 

respectively, 0.64 and 0.13.  

 

Figure 4.3. The effects of different treatment regimens on the average time to 
clearance of the bacteria (left column) and fraction of simulations in which bacteria 
with intermediate levels of resistance emerge (right column). (a and b) Single daily 
doses of different concentrations of the antibiotic (c and d) 20 µg/mL of the antibiotic 
administered at different frequencies ranging from one dose of 20 µg/mL to 8 doses of 
2.5 µg/mL per day (e and f) Different density thresholds for the cessation of antibiotic 
dosing in thermostat regimens, standard treatment of 10 µg/mL per day.  
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Bacteria exhibiting high-level antibiotic resistance (B3) were not produced in these or any 

other simulations for this self-limited infection because the immune response cleared the 

infection before B2 could ascend to densities high enough to allow for the generation of 

B3 bacteria by mutation.   

In Figures 4.3c and 4.3d we illustrate the effect of the frequency of administration 

on clearance and resistance. On first consideration, it may seem surprising that dosing 

rates have little effect on these measures of the efficacy of treatment. Why this is the case 

can be seen in Figure 4A.1 (in Appendix) where we follow the dynamics of the changes 

in density of bacteria for dosing either once (Figure 4A.1a) or eight (Figure 4A.1b) times 

daily while keeping the total administered dose constant. High concentrations of the drug 

dosed at a low frequency rapidly reduce the density of bacteria, but without frequent 

replenishment, antibiotic concentrations wane to low levels due to the decay and 

washout. At these lower concentrations of the bactericidal effects of treatment are modest 

(Figure 4A.1a). By partitioning the total amount of drug employed for treatment into 

more frequently administered doses, the amplitude of the oscillations in concentration is 

damped and the rate of antibiotic-mediated killing more constant (Figure 4A.1b). 

Although this leads to a somewhat higher rate of clearance of the susceptible population, 

the frequency of administration of the drug has little effect on the rate of clearance of the 

persister sub-population and thus the infection at large. The net effect is that both the rate 

of clearance and intensity of selection for resistance are relatively insensitive to 

frequency of administration of the drug.  

In Figures 4.3e and 4.3f, we consider the effects of a ‘thermostat’ treatment 

regimen, whereby drugs are only administered when the density of bacteria exceed a 



	   121	  

threshold. The assumption here is that this threshold represents the density below which 

symptoms would be abrogated. We illustrate the effects of varying these thresholds on the 

rates of clearance (Figure 4.3e) and emergence of resistance (Figure 4.3f). At lower 

threshold densities, clearance occurs more rapidly than at higher thresholds and the rate 

of emergence of resistance is lower. There is, however, an intriguing exception to this 

result; with threshold densities of 103 and 104, clearance did not occur in any of the runs. 

The reason for this is the interplay between the density of the bacteria and the immune 

response. At the very low threshold densities (101 and 102), the hiatuses in treatment are 

relatively rare and thereby the antibiotics are effective in reducing the density of the 

bacterial population. Since the intensity of the immune response is directly proportional 

to the density of the infecting bacteria, at high threshold densities (105 and above) 

immune-mediated killing plays a major role in clearance. On the other hand, because the 

numbers of bacteria are relatively large, mutants of intermediate resistance are more 

likely to be generated (see Figure 4.3f and Figure 4A.2b, in Appendix). At intermediate 

threshold densities the joint action of the antibiotics and the immune system are least 

effective in clearing the bacteria (Figure 4A.2a, in Appendix). Hiatuses in antibiotic 

dosing are relatively frequent and because the densities of bacteria are low, the adaptive 

immune response is only marginally stimulated and thereby plays only a modest role in 

killing the bacteria.    

In Figure 4.4a we consider the treatment dynamics of an infection for which there 

is already a minority population of B3 cells prior to the initiation of therapy. The density 

of susceptible bacteria is rapidly reduced whilst the resistant minority ascend to high 

densities. In this self-limiting infection however, they are eventually cleared by the 
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immune response. In Figure 4.4b, we show that the rate of ascent and the density of these 

resistant bacteria can be reduced by treating with a higher antibiotic concentration. If a 

thermostat treatment regimen is employed, even at the higher antibiotic concentrations 

used in 4b the dosing hiatuses result in a rapid ascent of resistant bacteria to high 

densities and increase the time to clearance of the infection (Figure 4.4c).  

 

Figure 4.4 Bacterial population dynamics of a self-limited infection with pre-existing 
high-level resistant bacteria. Changes in the densities of the bacteria (NB1=B1+BP1, 
NB2=B2+BP2, NB3=B3+BP3) under the following conditions: (a) Dose = 10 µg/mL (b) 
Dose = 20 µg/mL (c) Dose = 20 µg/mL, thermostat threshold = 105 bacteria. Standard 
parameter values used for the simulations are listed in Table 4A.1. 
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explore this situation, we use the same model as for the self-limiting infections but 

modify the immune response parameters so that the infection is not cleared in the absence 

of treatment and the bacteria maintain a level determined by availability of resources.  

Under these conditions, the combination of the innate and adaptive immune action 

only marginally reduces the density of bacteria (Figure 4.5a). An immunological boost, 

such as by infusing bacteria-specific antibodies, as in serum therapy (Casadevall and 

Scharff, 1994) can lead to clearance (Figure 4.5b). Antibiotic treatment can also promote 

clearance (Figure 4.5c). It worth noting that, at least in this example, the antibiotics more 

rapidly reduce the density of bacteria than immune serum.  

 

Figure 4.5 Bacterial population dynamics of a non-self-limited infection with 
immune action and antibiotic treatment. Changes in the densities of the bacteria 
(NB1=B1+BP1, NB2=B2+BP2, NB3=B3+BP3) under the following conditions: (a) Innate 
and adaptive immune action (b) infusion of exogenous adaptive immune mediators (c) 
Innate and adaptive immune action with antibiotic treatment, dose = 10 µg/mL. Standard 
parameter values used for the simulations are listed in Table 4A.1. 
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Relative to the self-limited infection described previously, larger antibiotic doses 

are required to clear this type of infection. In Figure 4.6a we show that clearance only 

occurs at antibiotic concentrations of 6 µg/mL or greater. Here as well, there is a 

saturation effect such that clearance rate changes relatively little at higher antibiotic 

doses. Lower doses of antibiotics are also more likely to lead to the emergence of 

resistance than higher doses (Figure 4.6b). At doses of 2 and 4 µg/mL, highly resistant 

bacteria (B3) emerged in 16% and 91% of simulations respectively. On first 

consideration, this relationship between dose and the frequency of resistance emerging 

may seem counter-intuitive. The reason for this result is illustrated in Figure 4A.3 (in 

Appendix). At the lower dose of antibiotics, the susceptible population maintains 

densities near that imposed by resource limitation (Figure 4A.3a). The effect is to 

competitively suppress the rate of ascent of B2, the population with intermediate levels of 

resistance and thereby postpone or reduce the likelihood of the emergence of the B3 

population (compare Figures 4A.3a and 4A.3b).  

As noted in our consideration of a self-limiting infection, the frequency of 

administration of fractions of a total daily dose has little effect on the rate of clearance or 

emergence of resistance (Figure 4.6c and 4.6d). For this type of potentially lethal 

infection, however, the hiatuses in treatment that occur in thermostat regimens preclude 

clearance. Moreover, there is an increasing rate of emergence of B2 and B3 bacteria with 

increasing thermostat threshold densities (Figure 4.6e). If high-level resistant bacteria 

exist prior to the initiation of therapy even greater doses of the antibiotic are needed for 

these drugs to promote clearance than would be for self-limiting infections (Figure 4A.4, 

in Appendix).   
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Figure 4.6 The effects of different treatment regimens on the average time to 
clearance of the bacteria (left column) and fraction of simulations in which bacteria 
with intermediate (grey bars) and high (black bars) levels of resistance emerge 
(right column). (a and b) Single daily doses of different concentrations of the antibiotic 
(c and d) 20 µg/mL of the antibiotic administered at different frequencies ranging from 
one dose of 20 µg/mL to 8 doses of 2.5 µg/mL per day (e) Different density thresholds 
for the cessation of antibiotic dosing in thermostat regimens, standard treatment of 10 
µg/mL per day. 
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and the likelihood of mortality would be proportional to the density of the bacterial 

population and the time it is maintained at these densities. Both of these consequences of 

infection also depend in a negative way on the immune response, immunopathology. The 

latter would be proportional to the density of activated phagocytes and the rate of 

increase in the intensity of the adaptive immune response. As shown in Figures 4.7a and 

4.7b, increasing the dose of the antibiotic reduces both of these elements of 

immunopathology. Here too, there is a saturation effect, i.e. diminishing returns with 

increasing doses.   

 

 

Figure 7. Levels of immune-cell activity associated with different doses. (a) Density 
of activated innate immune cells and (b) Rate of change of the adaptive immune response 
corresponding to 2, 5, 10, and 20 µg/mL doses. Standard parameter values used for the 
simulations are listed in Table 4A.1. 
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consideration of the pharmacodynamic, pharmacokinetic, innate and adaptive immune 

responses that govern the population and evolutionary dynamics of antibiotic treatment of 

bacterial infections. Although for our numerical analyses we used parameters in realistic 

ranges for S. aureus and E. coli, we do not consider these models to be quantitatively 

precise analogues of the dynamics of antibiotic treatment of specific infections with these 

or other bacteria. The purpose of the models is to provide a framework for exploring and 

evaluating different antibiotic treatment regimens and generating qualitative rather than 

quantitative predictions about the microbiological and evolutionary consequences of 

these regimens. Ultimately the utility of the models and our analysis lies in the validity of 

the predictions made, how these can account for existing observations and be used to 

generate hypotheses for additional empirical studies. Some of the predictions made in this 

study have been supported experimentally in vitro, in laboratory animals and in treated 

patients, while others have yet to be evaluated. In the following, we discuss the major 

predictions, the evidence in their support and opposition, the limitation of this evidence 

and the implications of this theoretical study for the optimal design of antibiotic treatment 

regimens. 

Our analysis of the properties of the mathematical model indicates that for both 

acute self- and non-self-limiting infections, the term of the infection will be inversely 

proportional to the dose of the antibiotic. This prediction has been corroborated in a 

number of in vitro studies (Gumbo et al., 2004; Tam et al., 2005a; Tam et al., 2005b), 

animal model experiments (Daikos et al., 1990; Knudsen et al., 2000; Knudsen et al., 

2003) and in patients (Dunbar et al., 2003; Forrest et al., 1993; Moise-Broder et al., 2004; 

Moore et al., 1987; Preston et al., 1998). In line with clinical reality (Markou et al., 2003; 
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Pea et al., 2005), we find that the need for high doses of antibiotics in potentially lethal 

infections is even greater than for self-limiting infections. The magnitude of the 

immunopathology responsible for the symptoms and the mortality of these non-self-

limited infections is proportional to the density of the target population of bacteria and 

the term of the infection (Chuang et al., 2012; Ho et al., 2009). Our study indicates that 

these densities and terms of the infection will be inversely proportional to the 

concentration of the antibiotics used for treatment. 

The results of this study predict that if at the onset of treatment all of the infecting 

bacteria are susceptible to the antibiotic, the likelihood of de novo resistance evolving 

will decline with the dose of the antibiotic. By rapidly reducing the density of the 

infecting bacteria, higher doses of antibiotics supplement the action of immune defenses 

and bring the numbers of bacteria down to levels where resistant mutants are not likely to 

be generated. Moreover, if as in the case of fluoroquinolones, the generation of clinically 

significant levels of resistance is a multi-step process (Marcusson et al., 2009) and first 

step mutants are already present at the onset of or evolve during treatment, the likelihood 

of high-level clinical resistance emerging also declines with the dose. These predictions 

are well supported by in vitro experiments (Blaser et al., 1987; Firsov et al., 2003; 

Gumbo et al., 2004; Olofsson et al., 2005; Olofsson et al., 2006; Tam et al., 2007; Tam et 

al., 2005a; Tam et al., 2005b; Thorburn and Edwards, 2001), animal models (Fantin et al., 

1994; Knudsen et al., 2003; Stearne et al., 2007; Wiuff et al., 2003) and in patients 

(Guillemot et al., 1998; Hansen et al., 2009; Thomas et al., 1998).  

Although it is convenient to consider susceptibility and resistance as qualitatively 

distinct states, in reality the susceptibility of bacteria to antibiotics is a quantitative rather 
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than a qualitative phenomenon (CLSI, 2005; Kahlmeter et al., 2003). As long as the 

antibiotic dose is high enough, even if there are preexisting populations of cells of 

reduced antibiotic susceptibility, higher doses of antibiotics can retard their rate of ascent 

and thereby the likelihood that they will be transmitted or, in the case of a potentially 

lethal infection, lead to treatment failure. For Streptococcus pneumoniae infections, for 

instance, there is both in vitro and in vivo evidence to show that by employing higher 

doses, beta lactam antibiotics can be used to treat some infections containing populations 

of bacteria that are officially ‘non-susceptible’ to the drug (Klugman et al., 1995; 

Odenholt et al., 2003; Viladrich et al., 1996). Of course, because of toxicity and other 

side effects, there are limits to the concentrations at which most antibiotics can be 

employed. Nevertheless, there is evidence that the doses at which some antibiotics are 

employed could be increased to enhance bactericidal responses in patients with little or 

no toxic side effects (Diacon et al., 2007; Roberts et al., 2008; van Ingen et al., 2011). At 

this juncture, for most antibiotic-bacteria combinations, there is no general way to predict 

the overlap between concentrations of the drug that will limit the rate of ascent of pre-

existing resistant mutants and those that will be toxic to the treated patient. These 

concentrations will have to be determined empirically, with experimental animals and 

clinical trials.  

On first consideration, the results of this study seem inconsistent with the argument 

presented by Andrew Read and colleagues against the “orthodoxy” of high dose 

antibiotic treatment protocols (Read et al., 2011).  They are also inconsistent with the 

results of rodent malaria model experiments, which provide the empirical support for 

Read and colleagues’ arguments (Huijben et al., 2010): for mixed infections of 
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susceptible and resistant Plasmodium chabaudi in mice, they found low-dose 

chemotherapy to be more effective in reducing the rate of ascent of the resistant parasites 

than high doses. This result is what would be anticipated by classical population genetic 

theory; that the rate of ascent of a character will be proportional to the intensity of 

selection for that character (Crow and Kimura, 1970). In this case, the “character” is 

resistance to the chemotherapeutic agent, and the dose of that agent is proportional to the 

intensity of selection for resistance. If, as Read and colleagues assume, resistance 

engenders a fitness cost on the pathogen, at lower doses of the antimicrobial, the 

advantage gained by resistance may not exceed its cost and its ascent can be 

“competitively suppressed” by the intrinsically more fit co-infecting susceptible 

pathogens.  

How general this “competitive suppression” effect is remains to be seen. Even when 

resistance engenders a fitness cost, compensatory mutations may ameliorate these costs 

(Bjorkman et al., 1998; Comas et al., 2012; Levin et al., 2000; Nagaev et al., 2001; 

Schrag and Perrot, 1996) and thereby minimize these competitive suppression effects on 

the dynamics of chemotherapy-mediated selection for resistance. Also, in reality, the 

population dynamics of resistance in bacteria are not uniquely determined by the 

concentration of the antibiotic at a particular point in time, but as suggested by our 

model, depends on a complex interplay between multiple processes including 

pharmacokinetics, the pharmacodynamics of susceptible and resistant bacteria and the 

contribution of the innate and adaptive immune system to the clearance of infections.  

While our analysis supports the use of higher doses of antibiotics for treatment, it also 

suggests that there are diminishing returns to increasing antibiotic concentrations. In 
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addition to the potential deleterious side effects, after a point, the gain in antibiotic-

mediated killing and the capacity to limit the de novo evolution of resistance declines as 

the concentration of drug increases. In our models this can be attributed to the saturation 

effect associated with Hill function pharmacodynamics. It worth noting that a number of 

in vitro studies (Corvaisier et al., 1998; Delacher et al., 2000; Hyatt et al., 1995; Madaras-

Kelly et al., 1996; Regoes et al., 2004) and experiments using animal models (Bonapace 

et al., 2002; Boylan et al., 2003; Kim et al., 2002; Louie et al., 2001) have demonstrated 

that the pharmacodynamics of antibiotics are consistent with saturating functions like 

those employed in our model. We are unaware of clinical studies that have a directly 

explored the saturation effect, but there have been studies that support the proposition 

that after a point increasing doses of antibiotics have diminishing effects on clinical 

outcome (Diacon et al., 2010; Wallis et al., 2011). It would seem particularly useful for 

the optimal use of existing antibiotics to have more studies determining the doses of 

antibiotics beyond which there is little or no effect on clinical outcome.  

In the preceding discussion we have focused on the concentration of the antibiotic 

administered but not the frequency of administration. Clearly they are related and there is 

a play-off between these two elements of antibiotic treatment.   The results of our 

analysis suggest that there is only a modest effect of dividing the high concentrations of 

antibiotics into more frequently administered lower doses. This is suggestive of a 

practical advantage of administering drugs at higher doses. This strategy may allow for 

less frequent dosing and thereby ease the logistics of treatment and improve adherence.  

What about the term, the length of therapy? It has been suggested that using lower 

doses for short amounts of time would be an effective way to reduce the rate of ascent of 
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resistance and thereby constitute a prudent use of antimicrobials (Read et al., 2011). The 

assumption is that by reducing the density, rather than clearing the bacteria, such ‘light 

touch therapy’ would promote clearance by immune responses whilst reducing the 

intensity of selection for resistance. To explore this “light touch” approach, we used a 

‘thermostat’ model of antibiotic treatment where drugs are only administered when the 

density of bacteria is above some minimum threshold.  We assume that the thresholds 

correlate with bacterial densities that elicit symptoms in a patient.  Because of the 

hiatuses in treatment, the total amount of drugs employed and the amount of time a 

patient is under therapy are less than they would be for a treatment regimen with a pre-

defined term. The results of our analysis suggest that the downside of this form of light 

touch therapy will offset the virtues of prudence. It can increase the term of treatment of 

self-limiting infections and preclude clearance of potentially lethal infections. For both 

types of infections, it also increases the likelihood of resistance emerging and ascending 

during therapy.  

While our theoretical results question the generality of more moderate therapeutic 

regimens, it is difficult to predict how our thermostat model will hold up for the treatment 

of a broad array of real infections. It bears noting, however, that our thermostat regimen 

is analogous to non-adherence and there are several lines of evidence indicating that non-

adherence is a major risk factor for both treatment failure and the ascent of resistance 

(Alexiou et al., 2007; Burman et al., 1997; Ringdahl, 2000). Be this as it may, our model 

points to questions that should be addressed to evaluate moderate treatment regimens 

based on the manifestation of symptoms:  (i) What are the densities of bacteria at which 

patients can cease taking antibiotics without affecting the rates of microbiological cure? 
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(ii) What is the relationship between these bacteriological loads and patient symptoms? 

To obtain answers to these questions, it will be critical to monitor the densities of the 

infecting populations of bacteria and determine the relationship between these densities 

and the symptoms of the infection during the course of treatment. When this information 

is available, the term of therapy may then be modulated by the manifestation of 

symptoms rather than a pre-prescribed term.  

In reference to clearing infections, Paul Ehrlich recommended that drugs be used 

as early in the infection as possible and at high doses (Ehrlich, 1913). The results of this 

computer-assisted theoretical study support this century old recommendation, but raise a 

number of questions about the details of this “hit them hard” protocol with respect to the 

microbiological, immunological and evolutionary components of the rational design of 

antibiotic treatment regimes. We believe these questions can and should be answered 

empirically and look forward to the results of these studies.  
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4.5	  APPENDIX:	  
	  
The following appendix contains supplementary information for the above investigation. 

All the figures, tables and protocols that follow have been pre-referenced in the text of 

the chapter.  

 

Figure 4A.1. Bacterial population dynamics of a self-limited infection with different 
frequencies of administration of a constant total daily dose. Changes in the densities 
of the bacteria under the following conditions: (a) One dose of 20 µg/mL per day (b) 
Eight doses of 2.5 µg/mL per day. Standard parameter values used for the simulations are 
listed in Table 4A.1. 
	  

 

Figure 4A.2. Bacterial population dynamics of a self-limited infection with 
thermostat treatment regimens. Changes in the densities of the bacteria (NB1=B1+BP1, 
NB2=B2+BP2) under the following conditions: (a) Thermostat threshold = 103 bacteria (b) 
Thermostat threshold = 106 bacteria. Standard parameter values used for the simulations 
are listed in Table 4A.1. 
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Figure 4A.3. Bacterial population dynamics of a non-self-limited infection with low 
dose treatment. Changes in the densities of the bacteria (NB1=B1+BP1, NB2=B2+BP2, 
NB3=B3+BP3) under the following conditions: (a) Dose = 2 µg/mL and (b) Dose = 4 
µg/mL. Standard parameter values used for the simulations are listed in Table 4A.1. 
  

 

Figure 4A.4. Bacterial population dynamics of a non-self-limited infection with pre-
existing high-level resistant bacteria. Changes in the densities of the bacteria 
(NB1=B1+BP1, NB2=B2+BP2, NB3=B3+BP3) under the following conditions: (a) Dose = 5 
µg/mL (b) Dose = 20 µg/mL (c) Dose = 40 µg/mL. Standard parameter values used for 
the simulations are listed in Table 4A.1. 
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Table	  4A.1.	  Values	  and	  ranges	  for	  variables	  and	  parameters	  used	  for	  generating	  
numerical	  solutions	  to	  the	  model.	  	  

Variable/Parameter	   Description	   aValue	  or	  
range	  
considered	  

Variables	  	  
A	   Antibiotic	  concentration	  (µg/mL)	   0	  –	  40	  (10)	  
Bi	   Density	  of	  bacteria	  (cells	  per	  mL);	  population	  

wholly	  susceptible	  to	  antibiotic	  action,	  i=1;	  
intermediate-‐resistance,	  i=2;	  high-‐level	  
resistance,	  i=3.	  	  

1-‐1010	  

BPi	   Density	  of	  persisters	  (cells	  per	  mL);	  
population	  wholly	  susceptible	  to	  antibiotic	  
action,	  i=1;	  intermediate-‐resistance,	  i=2;	  
high-‐level	  resistance,	  i=3.	  

1-‐1010	  

R	   Concentration	  of	  the	  limiting	  resource	  
(µg/mL)	  

0-‐500	  

Parameters	  
Vi	   Maximum	  hourly	  growth	  rate	  of	  replicating	  

bacteria	  	  
(0.5)	  

s2,	  s3	   Fitness	  costs	  of	  resistance;	  assessed	  as	  
decreases	  in	  maximum	  hourly	  growth	  rate	  
for	  B2	  and	  B3	  populations	  

0	  –	  0.025	  

VPi	   Maximum	  hourly	  growth	  rate	  of	  persisters	   0.001	  

ψmin	   Maximum	  hourly	  death	  rate	  generated	  by	  the	  
antibiotic	  

(-‐0.75)	  

MICi	   Minimum	  Inhibitory	  Concentration	  of	  
antibiotic	  A	  for	  population	  Bi	  (µg/mL)	  	  

1,	  2,	  10	  

κ	   Hill	  coefficient	  	   (1)	  

w	   Hourly	  washout	  rate,	  rapidly-‐replicating	  
bacteria	  

(0.2)	  

w2	   Hourly	  washout	  rate,	  persisters	   (0.001)	  
fSP	   Hourly	  rate	  at	  which	  Bi	  is	  converted	  into	  BPi	   (0.005)	  
fPS	   Hourly	  rate	  at	  which	  BPi	  is	  converted	  into	  Bi	   (0.05)	  
C	   Reservoir	  resource	  concentration	  (µg/mL)	   (500)	  
e	   Efficiency	  of	  resource	  conversion	  into	  cells	  

(µg/cell)	  
(5x10-‐7)	  

k	   Concentration	  of	  resource	  at	  half	  maximal	  
growth	  (µg/mL)	  

(1)	  

Amax	   Antibiotic	  concentration	  added	  at	  each	  
dosing	  period	  (µg/mL)	  

0	  –	  40	  (10)	  

d	   Antibiotic	  decay	  rate	  (h-‐1)	   (0.1)	  
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T	   Time	  between	  doses	  (h)	   3	  –	  24	  (24)	  
µ1,	  µ2	   Mutation	  rate	  (mutations	  per	  cell	  division)	  	   10-‐8	  ,	  10-‐9	  	  	  
kp	   Rate	  constant	  for	  phagocyte	  clearance	  of	  

replicating	  populations	  
c	  5x10-‐6,	  	  	  	  	  	  	  	  	  	  	  	  	  
d	  5x10-‐7	  

ki	   Rate	  constant	  for	  lymphocyte	  clearance	  of	  
replicating	  populations	  

b,c	  5x10-‐4,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
d	  5x10-‐5	  

jp	   Rate	  constant	  for	  phagocyte	  clearance	  of	  
persister	  populations	  

c	  5x10-‐8,	  	  	  	  	  	  	  	  	  	  	  	  
d	  5x10-‐9	  

ji	   Rate	  constant	  for	  lymphocyte	  clearance	  of	  
persister	  populations	  

b,c	  5x10-‐5,	  	  	  	  	  	  	  	  	  	  	  
d	  5x10-‐6	  

η	   Rate	  of	  phagocyte	  recruitment	   (3x10-‐4)	  
PMAX	   Phagocyte	  reservoir	  (cells	  per	  mL)	   (106)	  	  
γ	   Rate	  of	  phagocyte	  inactivation	   (10-‐3)	  	  
α	   Rate	  of	  increase,	  lymphocytic	  cells	   0.01,	  d	  0.02	  	  
σp	   Saturation	  constant	  that	  reflects	  the	  

relationship	  between	  rate	  of	  phagocyte	  
recruitment	  and	  bacterial	  density	  (cells	  per	  
mL)	  

c	  (104)	  	  

σI	   Bacterial	  density	  at	  which	  adaptive	  immune	  
response	  is	  at	  half-‐maximum	  activity	  (cells	  
per	  mL)	  

c	  (103)	  	  

a	  Values	  in	  parentheses	  are	  the	  standard	  values	  used	  for	  numerical	  analysis	  of	  the	  
model.	  Save	  for	  simulations	  in	  which	  parameters	  are	  varied,	  unless	  otherwise	  
stated,	  the	  standard	  parameter	  values	  are	  employed	  for	  all	  simulations.	  	  	  	  	  

b	  As	  in	  (Antia	  et	  al.,	  1994),	  we	  assume	  that	  as	  adaptive	  immune	  cells	  need	  to	  be	  at	  
high	  densities	  to	  control	  the	  infection,	  the	  clearance	  rate	  constant,	  ki,	  is	  less	  than	  the	  
initial	  density	  of	  adaptive	  immune	  cells.	  In	  addition,	  we	  assume	  that	  the	  bacterial	  
density	  at	  which	  the	  specific	  immune	  response	  grows	  at	  half	  its	  maximum	  rate	  will	  
be	  intermediate	  between	  the	  initial	  bacterial	  density	  and	  the	  saturation	  density.	  	  
i.e.	  ki,	  ji<<1<<σi<<bacterial	  saturation	  density.	  	  
	  
c	  We	  also	  assume	  that	  antigens	  that	  elicit	  specific	  immune	  responses	  are	  present	  at	  
higher	  densities	  on	  bacterial	  surfaces	  than	  those	  that	  generate	  non-‐specific	  (innate)	  
responses	  (Antia	  et	  al.,	  1996),	  and	  that	  the	  adaptive	  immune	  response	  exhibits	  more	  
effective	  bactericidal	  activity	  than	  the	  innate	  immune	  response.	  	  	  
i.e.	  σI<σp,	  and	  ki>kp,	  ji>jp	  .	  	  	  
	  
d	  In	  modeling	  potentially	  lethal	  infections,	  we	  assume	  that	  relative	  to	  a	  self-‐limited	  
infection,	  the	  immune	  mass	  action	  parameters	  are	  an	  order	  of	  magnitude	  lower,	  and	  
also	  halve	  the	  rate	  of	  recruitment	  of	  adaptive	  immune	  mediators.	  
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CHAPTER 5: SUMMARY AND OUTLOOK 

In this thesis, I have described a number of theoretical and experimental studies 

designed to explore the pharmaco-, population and evolutionary dynamics of single- and 

multi-drug therapy. We utilized novel Hill function-based pharmacodynamic studies to 

assess the impact of single antibiotics and antibiotic combinations on the in vitro rate of 

exponential-phase bacterial killing as well as the effect on genotypically-susceptible but 

phenotypically-resistant subpopulations of bacteria, persisters. To explore the potential 

clinical implications of our PD studies, quantitative insights from those analyses were 

incorporated into mathematical models of antibiotic treatment. The models combined the 

population and evolutionary dynamics of bacteria, the pharmacodynamics of antibiotics 

and bacteria, the pharmacokinetics of antibiotics, phenotypically-resistant subpopulations 

such as persisters and bacteria in spatial refuges as well as innate and adaptive host 

immune responses. We used computer simulations to explore the properties of these 

models, giving primary consideration to: (i) the effects of drug-drug interactions, and (ii) 

the effects of varying different components of a treatment regimen (dose, dosing 

frequency, term of therapy) on time to clearance of an infection and the emergence and/or 

ascent of single- or multi-drug resistance.    

The results of our studies have demonstrated that the types of interactions 

between antibiotics can substantially affect clearance and resistance dynamics during 

treatment. Antagonistic and/or suppressive interactions between drugs decrease rates of 

clearance and increase the likelihood that single drug resistant bacteria will emerge and 

ascend. Even though combining drugs generally helps prevent the evolution of multi-drug 

resistance regardless of the type of drug interactions between the component drugs of the 
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combination, we find that non-adherence to therapy can thwart this evolutionary virtue of 

multi-drug therapy. Under various scenarios where patients do not take their drugs as 

prescribed, the type of interactions between drugs becomes important; more synergistic 

combinations are better able to prevent the evolution of multi-drug resistance and are also 

less sensitive to the effects of hiatuses in dosing. 

Our results indicate that a priori assumptions about the type of interactions that 

will exist between antibiotics made on the basis of mechanisms of action or the 

pharmacodynamics of individual drugs are likely to be incorrect. Moreover, we also show 

that drug interactions cannot be assumed to stay constant (both quantitatively and 

qualitatively) when conditions change. Antibiotics may, for instance, interact additively 

over one concentration range but synergistically over another. Our work therefore 

suggests that with our current, limited, understanding of the mechanisms of antibiotic 

cidal action, drug interactions should be determined empirically over clinically relevant 

concentration ranges.  

While only theoretical, our study examining the relationship between the dose, 

dosing frequency and term of a single-drug regimen and treatment success yielded 

interesting and potentially useful insights and predictions. Our results demonstrate the 

utility of high-dose therapy in limiting the term and likelihood of mortality of infections, 

preventing the emergence and/or ascent of resistance and minimizing immunopathology. 

We also show that the effects of high doses saturate such that, after a point, there are 

minimal gains to be made by further increases in dose. We only found modest effects of 

dose fractionation at higher doses, suggesting a practical advantage for high dose therapy; 

antibiotics may be administered less frequently without diminishing their efficacy. Our 
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results also indicate that more moderate regimens that make treatment coincident with 

patient symptoms can adversely affect the likelihood of successful therapy.  

As would be expected from any worthwhile thesis, the studies contained herein 

have generated more questions than answers and provided new directions for further 

research. For one, we have not elucidated the biochemical, cellular or physiological 

reasons for the interactions that we observed between drugs from different classes. Of 

particular import, a mechanistic explanation remains to be determined for our results 

showing sub-MIC antagonism between all drugs assessed in our multi-drug PD M. 

marinum experiments. Why, also, did we find limited correlation between the efficacy of 

drug combinations in the exponential phase of bacterial killing and in the reduction of 

persister populations? While our analyses indicate that there may be no simple general 

rules to explain these observations, the reasons for this lack of generality need to be 

explored.  

Research that sheds further light on the mechanisms of antibiotic cidal activity 

will help generate answers to some of these questions. Studies like those of Kohanski et 

al. (Kohanski et al., 2007) directed at determining whether there are generalizable 

mechanisms of antibiotic action for different classes of antibiotics are laudable, and these 

lines of enquiry should be continued. Such studies should also be extended into model 

organisms to determine how in vivo conditions affect the mechanisms of antibiotic 

activity. It should be recognized that our experimental pharmacodynamic assessments 

were conducted using classical in vitro culture methods to examine cidal dynamics for 

large bacterial population sizes. Complementary studies using microfluidic culture assays 
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will provide increased resolution at single-cell and small population levels and generate 

insights that are not readily evident with conventional culture methods. 

 It bears noting that conventional antibiotics are not the only viable way to treat 

bacterial infections; a number of novel approaches are under consideration as potential 

effectors of antibacterial therapy. Endolysins produced by bacteriophage are one 

example, having been used to control pathogenic Gram-positive bacteria in a number of 

animal models (Loeffler et al., 2001; Nelson et al., 2001). Anti-virulence strategies 

involving the use of inhibitors to target:  (i) bacterial toxins (Karginov et al., 2005; 

Scobie et al., 2005), (ii) adhesive structures/molecules (Svensson et al., 2001a; Svensson 

et al., 2001b), (iii) specialized secretory systems (Bailey et al., 2007; Muschiol et al., 

2006), (iv) virulence gene expression (Hung et al., 2005; Shakhnovich et al., 2007) and 

(v) cell-to-cell signaling (Hentzer et al., 2003; Manefield et al., 2002; Wright et al., 2005) 

are showing promise as antibacterial therapies. Agents that destabilize biofilm matrices 

such as norspermidine (Kolodkin-Gal et al., 2012) and D-amino acids (Kolodkin-Gal et 

al., 2010) as well as those that interrupt signaling pathways which promote biofilm 

formation and maintenance (Hentzer et al., 2003; Janssens et al., 2008) could be used 

clinically to enhance treatment in biofilm-associated infections.  

Host-targeting approaches to anti-bacterial therapy are now also starting to gain 

some traction. One of these is a return to the old idea of passive antibody (serum) therapy 

as a means of boosting the hosts’ immunological response (Casadevall et al., 2004). 

Advances in recombinant DNA and cloning technologies have meant that pure and highly 

specific antibodies can be produced in a relatively facile manner for treating various 

bacterial diseases (Casadevall et al., 2004). Another host-based antimicrobial approach 
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involves denying the pathogen access to host factors it requires for pathogenicity. This 

has been investigated mostly for mycobacteria, and it has been demonstrated that 

inhibiting some host kinases can reduce bacterial burdens in animal models (Napier et al., 

2011; Wu et al., 2012a). It is expected that most of these new-generation agents will be 

used in conjunction with existing antibiotics (Smith and Romesberg, 2007). Our work 

would suggest that assessing the pharmacodynamics of these new types of antimicrobial 

combinations should be a crucial component of their evaluation.  

The within-host mathematical models we have developed here would also benefit 

from additional refinement. In particular, our pharmacokinetic considerations were 

limited by our assumption of first-order kinetics for all drugs. Subsequent models should 

incorporate realistic pharmacokinetics for different drugs since this is an important factor 

affecting the concentrations of individual drugs that will interact during therapy. Non-

cidal effects of antibiotics on bacterial population dynamics such as antibiotic-associated 

increases in mutation rate (Gillespie et al., 2005; Henderson-Begg et al., 2006; Kohanski 

et al., 2010) and elevation of persister densities (Johnson and Levin, 2013) should also be 

factored into the models.  

 In conclusion, we hope that the work described in this thesis stimulates further 

thought (and action) to help improve success rates of antibiotic treatment regimens and 

minimize the contribution of bacterial infections to human mortality. The prospect of a 

post-antibiotic era is too dark to consider, and all stakeholders should join hands and 

work stringently to prevent this from occurring. 
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