
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Shuang Ji Date



Quantile Regression for Complex Censored Data

By

Shuang Ji

Doctor of Philosophy

Biostatistics

Limin Peng, Ph.D.
Advisor

Yijian (Eugene) Huang, Ph.D.
Committee Member

Brent A. Johnson, Ph.D.
Committee Member

David H. Howard, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date



Quantile Regression for Complex Censored Data

By

Shuang Ji

B.S., University of Science and Technology of China, 2005

M.S., University of Texas at Arlington, 2007

Advisor: Limin Peng, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Biostatistics

2012



Abstract

Survival data subject to complex censoring schemes are frequently encountered in
biomedical research. For such data, naive application of classical approaches built for
the random censoring case may lead to substantial estimation bias. In this disserta-
tion, we focus on two different scenarios that involve complex censoring mechanisms,
dependent censoring and double censoring. We develop appropriate methods under
the quantile regression (Koenker and Bassett, 1978) framework, which are expected
to accommodate a more dynamic relationship between covariates and survival time
compared to traditional regression models in survival analysis.

The first part of this dissertation is motivated by the Warfarin-Aspirin Symptomatic
Intracranial Disease (WASID) study, in which dependent censoring is posed by infor-
mative withdrawal. One scientific interest is about the analysis of time to a study
endpoint defined as ischemic stroke, brain hemorrhage, or death from vascular causes,
whichever happens first, corresponding to the setting where subjects do not withdraw.
We propose a quantile regression procedure for such dependently censored data, along
with an efficient and stable algorithm. We establish the uniform consistency and weak
convergence of the resulting estimators. Extensive simulation studies demonstrate
good finite-sample performance of the proposed inferential procedures. We illustrate
the practical utility of our method via an application to the WASID study.

The second part of this dissertation is motivated by the US Cystic Fibrosis Foun-
dation Patient Registry (CFFPR) study, in which double censoring presents while
the left censoring variable is always observed. It is of interest to investigate the
association between age at the first Pseudomonas aeruginosa (PA) infection, an im-
portant landmark event of CF pathology, and a set of risk factors. We propose a
new analysis strategy for such doubly censored data and develop computationally
simple estimation and inference procedures. Moreover, we propose conditional in-
ference to address the special identifiability issues attached to the doubly censoring
setting. Asymptotic properties are established for the resulting estimators, and the
finite-sample performance is assessed by simulation studies. Analysis of the CFFPR
study is also conducted based on our method.

In the third part, we study a double censoring data structure with unobservable
left censoring times. We develop a self-consistent estimating equation along with an
iterative algorithm. Our simulation studies demonstrate good finite-sample proper-
ties of the proposed method. We also apply the proposed method to the CFFPR
study.

In summary, this dissertation work provides useful quantile regression tools for an-
alyzing complex survival data, which have broad applications in medical and public
health research.
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1.1 Background

In survival analysis, one important task is to deal with various types of censoring

and truncation. Many efforts have been devoted to handle random right censoring (

i.e., event time and censoring time are independent given covariates if any). For ex-

ample, classical approaches, such as the Kaplan-Meier estimator (Kaplan and Meier,

1958) and the Cox proportional hazards model (Cox, 1972), were originally built for

this scenario. However, in practice, researchers frequently encounter more complex

censoring scenarios, where naive applications of existing methods for dealing with

random right censoring can lead to substantial biases.

Motivated by several large biomedical studies, we develop appropriate methods

for analyzing survival data subject to complex censoring mechanisms. Specifically,

in this dissertation, we study three research problems on two scenarios commonly

encountered: dependent censoring and double censoring. In the first project, we

investigate cases where the independent censoring assumption is not appropriate, for

example, when there is informative dropout in a clinical trial. In the second and

third projects, we concern doubly censored data, which arise when left censoring is

present in addition to right censoring. As elaborated later, considerable statistical

challenges are involved in developing valid statistical methods that can appropriately

accommodate these situations.

Throughout this dissertation research, we focus on the quantile regression model-

ing (Koenker and Bassett, 1978), which has emerged as a valuable alternative to the

popular Cox model and accelerated failure time (AFT) model. With quantile regres-

sion, one would be able to assess how covariates impact various quantiles of event

time without imposing constant effects as contrast to the traditional Cox regression

and AFT model. Such analyses may also help detect population inhomogeneous risk

patterns, for example, covariate effects that vary between patients who have high sus-

ceptibility to the event of interest (e.g., onset of a certain disease, disease progression,



3

or death) versus those who are less prone to this event. In the presence of complex

censoring schemes, such as the dependent censoring and double censoring scenarios

considered here, little has been studied under the quantile regression framework. We

aim to fill this gap in this dissertation.

In the rest of this chapter, we first describe two motivating examples, the War-

farin Aspirin Symptomatic Intracranial Disease (WASID) study and the Cystic Fi-

brosis Foundation Patient Registry (CFFPR) study, and present literature reviews

on analysis of dependently censored data and analysis of doubly censored data sep-

arately. This is followed by a general review of quantile regression for survival data.

An outline of this dissertation is given at the end of this chapter.

1.2 Motivating Examples

1.2.1 The Warfarin-Aspirin Symptomatic Intracranial Dis-

ease (WASID) Study

Dependent censoring is of concern in many clinical studies. A good example comes

from the WASID study, the first clinical trial that compared warfarin and aspirin

in treating atherosclerotic intracranial arterial stenosis, an important cause of stroke

(Chimowitz et al., 2005). In this trial, 569 patients who had stroke or transient

ischemic attack resulting from stenosis of a major intracranial artery were randomized

to receive either warfarin or aspirin. The primary endpoint was ischemic stroke, brain

hemorrhage, or death from vascular causes other than stroke, whichever happens first.

The mean follow-up duration was 1.8 years, and there was administrative censoring,

which is independent of the primary endpoint.

Of note, study medications were terminated early for 125 patients due to various

disease-related reasons, such as adverse events and changes in health conditions. Sub-

sequently, these patients were given treatments other than the original assignments,
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and the follow-up continued. In the primary analysis (Chimowitz et al., 2005), an

intent-to-treat (ITT) strategy was followed. That is, for patients whose assigned

treatments were terminated early, no distinction was made between the follow-up

information before and after the withdrawal. It is of interest to conduct a secondary

on-treatment analysis that considers the withdrawals as censoring to the disease end-

point and thus confers the effect pertaining to the originally assigned treatment. Such

an analysis would provide a useful complement to the primary analysis. For the new

analysis considered here, one complication is that the withdrawals may be correlated

with the study endpoint and thus pose a dependent censoring scenario. In addition,

among those 125 withdrawals, 44 occurred in the aspirin arm and 81 in the warfarin

arm. Such an unbalanced allocation can amplify the estimation bias for treatment

effect caused by falsely treating withdrawals as independent censoring (Huang and

Zhang, 2008). These considerations necessitate properly adjusting for dependent cen-

soring. Inferences on event time corresponding to the removal of patient withdrawals

are of direct scientific relevance and are studied in our first project.

1.2.2 The Cystic Fibrosis Foundation Patient Registry (CFFPR)

Study

Double censoring often arises in registry data and other observational studies. An

example is the US CFFPR study, which documents the diagnosis and annual follow-

ups of all known CF patients. As one of the most common and life-shortening genetic

disorders affecting the lungs and digestive systems, Cystic Fibrosis (CF) has a rather

complex progression path, one landmark event of which is the onset of Pseudomonas

aeruginosa (PA) infection. PA affects 80% of CF patients under age 18 by acceler-

ating decline in lung function (Kosorok et al., 2001), and has been believed to be an

important predictor of mortality in CF (Retsch-Bogart et al. 2008). Therefore, it is

of scientific interest to investigate the association between onset ages of the first de-
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tected PA infection and its risk factors, such as gender, diagnosis mode and diagnosis

year.

To this end, one complication is that ages at the first PA infection were not

observed for two types of patients: those who had been infected and thus were positive

at the first documented CFFPR visit, and those who had no detected or reported PA

infection by the end of follow-up. This poses a double censoring scenario. With the

time origin set as birth, time to first PA infection was subject to left censoring by

time to registry entry, which was always recorded, and also right censoring by time

to last follow-up visit, which was not always known in advance due to the occurrence

of random dropout. Among the 12,818 CF patients whose data were collected by

the CFFPR study during the period between 1986 and 2005, 3,343 (26.1%) patients

had PA infection at study entry (i.e., age at the first PA infection is left censored)

and 2,213 (17.3%) patients had no PA infection documented by December 2005 (i.e.,

age at the first PA infection is right censored). Such a double censoring setting,

with the left censoring time always observed, is the focus of the second part in my

dissertation. In the third project, we study a similar data structure, but further relax

the assumption by not requiring the left censoring time to be always known.

1.3 Literature Review

1.3.1 Existing Work on Dealing with Dependent Censoring

By viewing the occurrence of dependent censoring as a distinct endpoint, we may

formulate the survival data subject to dependent censoring as competing risks data.

As a result, the dependent censoring problem may be tackled by employing tech-

niques for handling competing risks, which are generally classified into two cate-

gories (Kalbfleisch and Prentice, 2002): approaches based on crude quantities, and

approaches that focus on net quantities.
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Crude quantities, such as the cause-specific hazard and the cumulative incidence

function, reflect the failure process in the presence of the competing risks and are

desirable when the problem involves multiple types of failure, such as morbidity and

mortality. Nonparametric estimation of such quantities has been well studied (Gray,

1988; Pepe, Pepe; Lin, 1997). As for regression methods based on crude quantities,

one may naively fit a Cox model or an AFT model by treating dependent censoring

as independent censoring, and the results actually correspond to the cause-specific

hazard. A popular alternative is to fit a proportional hazards type model with respect

to the cumulative incidence function (Fine and Gray, 1999).

Analyses based on the net quantities, such as the marginal distribution function,

are sensible when it is of interest to make inference on the study endpoint while

hypothesizing the removal of the competing risks. For example, when dependent

censoring is caused by events that preclude the observation of but not the development

of the endpoint of interest, such as the informative withdrawals in the WASID study,

methods based on the net quantities may be preferred because it would produce

inference which corresponds to the setting without the interruption of the observation

process. By this consideration, in the first project of this dissertation, we focus on

developing methods based on the net quantities, which may yield scientifically relevant

and meaningful application for the WASID study.

There has been rich literature on competing risks approaches based on net quan-

tities. As a common feature of this type of methods, additional assumptions on the

relationship among times to distinct failure types are required because the marginal

and joint distributions are not nonparametrically identifiable (Tsiatis, 1975). For

example, in the one-sample case, much previous work with dependently censored

data restricts the joint distribution using either semiparametric or parametric models

(Link, 1989; Emoto and Matthews, 1990, among others). Due to lack of sufficient

information to verify the assumed dependence structure, performing a sensitivity
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analysis (Peterson, 1976; Slud and Rubinstein, 1983; Klein and Moeschberger, 1988;

Zheng and Klein, 1995; Scharfstein et al., 2001; Scharfstein and Robins, 2002, among

others) has been advocated to yield bounds for the estimands of interest under various

plausible assumptions on the joint distribution of the event time and the censoring

time.

The first project of this dissertation concerns the general regression setting. Among

existing work based on the net quantities, Huang and Zhang (2008) extended Zheng

and Klein (1995)’s approach to a bivariate Cox proportional hazards model, where

the joint distributions of competing risks are linked to their marginal distributions

through a known copula. More recently, Chen (2010) developed a non-parametric

maximum likelihood approach for a general class of semiparametric transformation

models, similarly assuming a copula model to address the identifiability issue. Both

of these regression methods base inference on models that only allow for constant

effects, which may not be adequate in many real data datasets (Kaslow et al., 1987;

Dickson et al., 1989; Thorogood et al., 1990; Verweij and Van Houwelingen, 1995;

Carey et al., 1995; Jensen et al., 1997, among others).

1.3.2 Existing Work on Dealing with Double Censoring

The simultaneous presence of left censoring and right censoring can bring many com-

plexities to the analysis of doubly censored data. For example, the distribution es-

timator in the one-sample case is generally presented in the self-consistent manner

(Turnbull, 1974; Tsai and Crowley, 1985; Chang and Yang, 1987; Samuleson, 1989;

Chang, 1990; Gu and Zhang, 1993; Zhan and Wellner, 1995; Mykland and Ren, 1996,

among others) and does not have a closed form. For the two-sample problem, Gehan

(1965) and Mantel (1967) studied an extension of the Wilcoxon test. More recently,

Ren (2008) proposed a weighted empirical likelihood-based semiparametric maximum

likelihood estimator as a unified approach for the two-sample problem with various
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censoring schemes including double censoring. Overall, these approaches are more

complicated than their counterparts for randomly right censored data, for example,

Kaplan-Meier estimator (Kaplan and Meier, 1958) or log-rank test (Mantel, 1966).

The second and third projects of this dissertation are concerned with the general

regression setting. Among existing work, Zhang and Li (1996) proposed a Buckey-

James-Ritvo-type M-estimator. Their estimating equation is neither monotone nor

continuous and thus may necessitate special efforts to address some computational is-

sues. More recently, Ren and Gu (1997) and Ren (2003) proposed a parallel regression

M-estimator. This approach requires the independence between censoring variables

and covariates, and thus imposes a stronger random censoring assumption than the

usual one. For scenarios where both left and right censoring times are always ob-

served, Cai and Cheng (2004) studied semiparametric transformation models (Cheng

et al., 1995), and Yan et al. (2009) adapted temporal process regression (Fine et al.,

2004) to doubly censored data. These two approaches are not suitable for the CFFPR

example either because the right censoring time may not be known in advance due to

random loss to follow-up. Without requiring censoring times to be known, Lin et al.

(2012) developed a self-consistent estimator as an extension of Portnoy (2003) to the

double censoring case, but did not provide asymptotic investigation.

1.4 Quantile Regression for Survival Data

In this dissertation, we propose new regression methods adjusting for dependent cen-

soring and double censoring respectively. These methods are based on the quantile

regression modeling, which was first introduced by Koenker and Bassett (1978). In

contrast to the traditional linear regression which models the relationship between

the mean of the response variable and the covariates, quantile regression seeks to

model a spectrum of quantile functions of the response variable conditional on the
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covariates instead of a single mean. It has received increasing attention in survival

analysis. As elaborated in Portnoy (2003) and Peng and Huang (2008), the use of

quantile regression in survival analysis offers straightforward interpretation on event

times as well as extra model flexibility to accommodate varying covariate effects.

Let T denote the event time of interest, and Z̃ be the p × 1 vector of recorded

covariates. Define Z = (1, Z̃)T . The conditional τ–th quantile of T given Z is defined

as QT (τ |Z) = inf{t : FT (t|Z) ≥ τ}, where FT (t|Z) = Pr(T ≤ t|Z). A linear quantile

regression model may take the form

QT (τ |Z) = g{ZT β0(τ)}, τ ∈ (0, 1), (1.1)

where g(·) is a known monotone link function, and β0(τ) is a vector of unknown

coefficients representing covariate effects on Qg−1(T )(τ |Z). As noted in Peng and

Huang (2008), model (1.1) reduces to the accelerated failure time (AFT) model when

g(·) = exp(·), and β(τ |Z) = (Qε(τ), bT )T , where b is an unknown vector of parameters

and ε is an independently and identically distributed (i.i.d.) error term.

Substantial work has been done on applying quantile regression to survival data

with independent right censoring. Among the earliest breakthroughs, Powell (1984,

1986) extended the least absolute deviation (LAD) from traditional quantile regres-

sion to censored quantile regression, assuming the censoring variables are fixed or

always observable. Later efforts have been made to accommodate non-fixed censor-

ing which is not always known by requiring additional restrictions such as uncondi-

tional independent censoring (Ying et al., 1995; Honore et al., 2002, among others), or

nearly i.i.d. errors (Yang, 1999). More recently, without imposing these constraints,

Portnoy (2003) proposed a recursively reweighted estimator as a generalization of the

Kaplan-Meier estimator, with subsequent work by Neocleous et al. (2006) and Port-

noy and Lin (2010) devoted to further polishing the algorithm and the asymptotic
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theory. By utilizing the martingale structure of randomly right censored data Peng

and Huang (2008) proposed an alternative approach, the resulting estimator of which

reduces to the Nelson-Aelan estimator in the one-sample case. Their approach is

well justified in theory and also has a convenient implementation. Wang and Wang

(2009) employed a local reweighting scheme to relax the assumption of global linear-

ity at all quantiles. Huang (2010) developed fundamental quantile calculus as the

base and proposed a grid-free estimation procedure that is asymptotically equivalent

to the procedure of Peng and Huang (2008). More recently, Peng (2011) proposed a

self-consistent estimation based on stochastic integral equations and established the

asymptotic equivalence between the proposed estimator and that of Peng and Huang

(2008). This work also reveals the close connection between the proposed estimator

and Portnoy (2003)’s estimator in their asymptotic behaviors.

To the best of our knowledge, there has been little work on developing quantile re-

gression methods tailored to complex censoring schemes, such as the double censoring

and dependent censoring settings considered in this proposal. For the double censor-

ing case, Lin et al. (2012) proposed an iterative algorithm for estimating regression

quantiles in a self-consistent manner, but did not develop asymptotic properties for

the resulting estimators. For competing risks data, Peng and Fine (2009) proposed a

quantile regression method based on the cumulative incidence function, which is not

applicable to draw inference on net quantities as desired in the WASID study.

1.5 Outline

In Chapter 2 we develop a new quantile regression method for survival data subject

to dependent censoring. We propose unbiased estimation equations for obtaining re-

gression quantiles of the event time of and censoring time simultaneously, with the

dependence structure formulated via a copula. We develop an efficient iterative algo-
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rithm to solve the proposed estimating equations. Asymptotic properties, including

the uniform consistency and weak convergence, are established for the resulting esti-

mators. We report results from simulation studies which show satisfactory empirical

performance of the proposed method, and illustrate the practical utility of our method

by an analysis of the WASID study.

In Chapter 3 we propose a new quantile regression method suitable for doubly

censored data with know left censoring time. We develop a computationally simple

estimation and inference procedure by appropriately using the embedded martingale

structure, and establish asymptotic properties for the resulting estimators. Moreover,

we propose conditional inference to address the special identifiability issues attached

to the doubly censoring setting. We further show that the proposed method can be

readily adapted to handle left truncation. Results from simulation studies are shown

to demonstrate good finite-sample performance. Finally we apply our method to the

CFFPR data.

In Chapter 4 we investigate quantile regression for another double censoring sce-

nario, in which neither left nor right censoring time is always observed. We propose

an estimation procedure in a self-consistent manner, in which we utilize stochastic

integrals to facilitate computation and theoretical developments. We report some

preliminary simulation studies, which suggest proper finite sample performance of

the proposed method, and analysis results for the CFFPR study.

In Chapter 5 we provide a summary of our completed work and propose plans for

future research.
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Chapter 2

Quantile Regression for

Dependently Censored Data
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2.1 Quantile Regression Procedures

2.1.1 Data and Model

Let T denote the failure time, D denote time to dependent censoring, and C be an

additional independent censoring time. Let Z̃ be a p × 1 covariate vector. Define

T̃ = T ∧ D, X = T̃ ∧ C, and Z = (1, Z̃
T
)T . Let δ̃ = I(T̃ ≤ C). The censoring

indicator is defined as δ = δ̃ if T ≤ D, and δ = 2δ̃ if D < T . The observed data

consist of n replicates of (X, δ,Z
)
, denoted by {(Xi, δi, Zi

)
, i = 1, · · · , n}.

Define the conditional τ–th quantile of a random variable Y given Z by QY (τ |Z) =

inf{t : FY (t|Z) ≥ τ}, where FY (t|Z) = Pr(Y ≤ t|Z). We consider the quantile

regression model for T that takes the form

QT (τ |Z) = g{ZT β0(τ)}, τ ∈ (0, 1), (2.1)

where g(·) is a known monotone link function, and the unknown vector β0(τ) repre-

sents the covariate effects on QT (τ |Z). For simplicity, we adopt a similar model for

D:

QD(τ |Z) = g{ZT α0(τ)}, τ ∈ (0, 1). (2.2)

It is important to note that, due to the dependence between T and D given the

covariates, models concerning the marginal probabilities, such as (2.1) and (2.2),

cannot be identified without additional assumptions on the dependence structure

between T and D (Tsiatis, 1975). To address this identifiability issue, we specify the

dependence structure by a copula model which relates the joint survival function of

(T, D) to the marginal distributions as follows:

Pr(T > t1, D > t2|Z) = H{Pr(T > t1|Z), Pr(D > t2|Z)}, (2.3)
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where H(·, ·) is a known copula function.

2.1.2 Copula Functions

As can be seen in (2.3), a two-dimensional copula function maps the square region

[0, 1] × [0, 1] to [0, 1]. It was established in Sklar’s representation theorem (Sklar,

1959) that, for any random variables W1 and W2, there exists a copula function H

such that

Pr(W1 > w1,W2 > w2) = H{Pr(W1 > w1), Pr(W2 > w2)}.

If W1 and W2 are continuous variables, then H is uniquely determined by

H(u1, u2) = Pr{W1 > QW1(1− u1),W2 > QW2(1− u2)}.

A trivial example of the copula functions is the independence copula, which takes

the form H(u, v) = uv. Among commonly adopted copulas, the Clayton copula

(Clayton, 1978) is given by H(u, v) = {u−r +v−r−1}− 1
r , r > 0, and the Frank copula

(Genest, 1987) takes the form H(u, v) = logr{1 + (ru−1)(rv−1)
r−1

}, r > 0 and r 6= 1. Here

r is a known copula parameter, which often contains information on the association

level. For example, under the Clayton copula, the Kendall’s tau equals r/(r + 2).

Under the Frank copula, the Kendall’s tau equals {1 + 4(D(ν) − 1)}/ν, where ν =

− log r and D(ν) = [
∫ ν

0
t/{exp(t)− 1} dt]/ν. In practice, r may be chosen according

to prior knowledge on the strength of the association between T and D. Alternatively,

one may obtain bounds of β0(τ) and hence QT (τ |Z) by perturbing r in a plausible

range.
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2.1.3 Estimation Equations

To estimate β0(τ) in model (2.1), we utilize the martingales associated with cause-

specific hazard functions. Denote the counting process for T by N1(t) = I(X ≤ t, δ =

1). Define M1(t) = N1(t)−
∫ t

0
Y (u)λ∗1(u|Z) du where Y (u) = I(X ≥ u) and λ∗1(t|Z) is

the cause-specific hazard for T . As shown by Kalbfleisch and Prentice (2002), M1(t)

is a martingale with respect to the filtration Ft = {N1(u), Y (u+), Z}. This implies

E{N1(t)−
∫ t

0

Y (s)λ∗1(s|Z) ds} = 0,∀t ≥ 0. (2.4)

Using the fact that λ∗1(t|Z) = −∂ log[H{F̄T (t1|Z), F̄D(t2|Z); r}]/∂t1|t1=t2=t (Kalbfleisch

and Prentice, 2002) and by variable transformation inside the integral, we can show

that

∫ t

0

Y (s)λ∗1(s|Z) ds =

∫ FT {t|Z}

0

Y {QT (u|Z)}φ1(1− u, F̄D{QT (u|Z)|Z}) du, (2.5)

where φ1(v1, v2) = ∂ log{H(v1, v2)}/∂v1 and F̄W (t) denotes the survival function for

a random variable W . Furthermore, we note that under models (2.1) and (2.2),

FD(t|Z) =

∫ 1

0

I{v ≤ FD(t|Z)} dv =

∫ 1

0

I[g{ZT
i α0(v)} ≤ t] dv

and therefore

F̄D{QT (u|Z)|Z} = 1−
∫ 1

0

I{ZT
i α0(v) ≤ ZT

i β0(u)} dv. (2.6)
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From (2.1),(2.4), (2.5) and (2.6) we then have

E
[ 1

n

n∑
i=1

Zi

{
N1i[g{ZT

i β0(τ)}]−
∫ τ

0

Y [g{ZT
i β0(u)}]

× φ1

(
1− u, 1−

∫ 1

0

I{ZT
i α0(v) ≤ ZT

i β0(u)} dv
)

du
}]

= 0,

(2.7)

where N1i(t) is the sample analog of N1(t).

By treating T as the dependent censoring to D, a parallel equality to (2.7) can

be derived for α0(·). Define N2(t) = I(X ≤ t, δ = 2) and {N2i(t)}n
i=1 be the sample

analogs of N2(t). Define φ2(v1, v2) = ∂ log{H(v1, v2)}/∂v2. We can show that

E
[ 1

n

n∑
i=1

Zi

{
N2i[g{ZT α0(τ)}]−

∫ τ

0

Y [g{ZT α0(u)}]

× φ2

(
1−

∫ 1

0

I{ZT
i β0(v) ≤ ZT

i α0(u)} dv, 1− u
)

du
}]

= 0.

(2.8)

Motivated by (2.7) and (2.8), we propose to estimate β0(τ) and α0(τ) from the

following estimating equations:

n
1
2 S(k)

n (β, α, τ) = 0, k = 1, 2, (2.9)

where

S(1)
n (β, α, τ) = n−1

n∑
i=1

Zi

{
N1i[g{ZT

i β(τ)}]−
∫ τ

0

Yi[g{ZT
i β(u)}]

× φ1

(
1− u, 1−

∫ 1

0

I{ZT
i α(v) ≤ ZT

i β(u)} dv
)

du
}

,

S(2)
n (β, α, τ) = n−1

n∑
i=1

Zi

{
N2i[g{ZT

i α(τ)}]−
∫ τ

0

Yi[g{ZT
i α(u)}]

× φ2

(
1−

∫ 1

0

I{ZT
i β(v) ≤ ZT

i α(u)} dv, 1− u
)

du
}

.
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Note that the estimating equation (2.9) requires β0(τ) and α0(τ) be identifiable

for all τ ∈ (0, 1), which may not be possible due to the censoring to T or D. To

circumvent this difficulty, we modify (2.9) by truncating the time scale by an upper

bound, tmax = g{ZT β0(τU,1)} ∧ g{ZT α0(τU,2)}, where τU,1, τU,2 ∈ (0, 1). This leads

to a new estimating equation,

n
1
2 S∗(k)

n (β, α, τ) = 0, k = 1, 2, (2.10)

where

S∗(1)
n (β, α, τ) = n−1

n∑
i=1

Zi

{
N1i[g{ZT

i β(τ)}]I{g−1(Xi) ≤ ZT
i α(τU,2)}

−
∫ τ

0

Yi[g{ZT
i β(u)}]I{ZT

i β(u) ≤ ZT
i α(τU,2)}

× φ1

(
1− u, 1−

∫ τU,2

0

I{ZT
i α(v) ≤ ZT

i β(u)} dv
)

du
}

,

S∗(2)
n (β, α, τ) = n−1

n∑
i=1

Zi

{
N2i[g{ZT

i α(τ)}]I{g−1(Xi) ≤ ZT
i β(τU,1)}

−
∫ τ

0

Yi[g{ZT
i α(u)}]I{ZT

i α(u) ≤ ZT
i β(τU,1)}

× φ2

(
1−

∫ τU,1

0

I{ZT
i β(v) ≤ ZT

i α(u)} dv, 1− u
)

du
}

.

Equation (2.10) now only involves the estimation of {β0(τ), τ ∈ (0, τU,1)} and

{α0(τ), τ ∈ (0, τU,2)}, and thus does not demand the identifiability of β0(τ) and

α0(τ) in the upper tail of τ , pointing to a more realistic scenario. The rigorous theo-

retical conditions for τU,1 and τU,2 are deferred to the statement of asymptotic results.

In practice, τU,1 and τU,2 may need to be selected adaptively. Some empirical rules

for selecting τU,1 and τU,2 are presented in the next subsection.
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2.1.4 Computing Algorithms

We develop an iterative algorithm for finding the solution to equation (2.10), namely

Algorithm A. The procedure is descried below:

Step A0. Set m = 0. Choose the initial value α̂[m](τ), τ ∈ (0, τU,2].

Step A1. Solve S∗(1)
n (β, α̂[m], τ) = 0 for β̂

[m+1]
(τ), τ ∈ (0, τ

[m+1]
U,1 ]. Update τU,1

with τ
[m+1]
U,1 .

Step A2. Solve S∗(2)
n (β̂

[m+1]
, α, τ) = 0 for α̂[m+1](τ), τ ∈ (0, τ

[m+1]
U,2 ]. Update τU,2

with τ
[m+1]
U,2 .

Step A3. Let m = m + 1. Repeat Steps A1 and A2 until certain convergence

criteria are met.

At Step A0, one practical way to set the initial estimates is to fit model (2.1) for T

and fit model (2.2) for D using existing quantile regression techniques which assume

T and D are independent, for example, using Peng and Huang (2008)’s method.

At Step A1, we adopt a grid-based procedure that assumes β̂
[m+1]

(τ) to be a

right-continuous step function jumping only on a prespecified grid, GLn = {0 = τ0 <

τ1 < · · · < τLn = τ
[m+1]
U,1 < 1}. The solution can be obtained by sequentially solving

the following monotone estimating equation in β(τj)(j = 1, · · · , Ln):

n−
1
2

n∑
i=1

Zi

{
I[Xi ≤ g{ZT

i β(τj)}, δi = 1]I{g−1(Xi) ≤ ZT
i α̂[m](τU,2)}

−
j−1∑

l=0

(τl+1 − τl)I[Xi ≥ g{ZT
i β(τl)}]I{ZT

i β(τl) ≤ ZT
i α̂[m](τU,2)}

× φ1

(
1− τl, 1−

∫ τU,2

0

I{ZT
i α̂[m](v) ≤ ZT

i β(τl)} dv
)}

= 0 (2.11)

with g{ZT
i β(0)} set to be 0.

Due to the monotonicity of (2.11), the root finding problem in (2.11) is equivalent
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to locating the minimizer of the following L1-type convex function:

lj(h) =
n∑

i=1

|I(δi = 1)I{g−1(Xi) ≤ ZT
i α̂[m](τU,2)}g−1(Xi)

− I(δi = 1)I{g−1(Xi) ≤ ZT
i α̂[m](τU,2)}hT Zi|

+ |R∗ − hT
n∑

l=1

{−I(δl = 1)}I{g−1(Xl) ≤ ZT
l α̂[m](τU,2)}Z l|

+
∣∣∣R∗ − hT

n∑
r=1

(
2Zr

j−1∑
s=0

I[g−1(Xr) ≥ ZT
r β(τs)]I{ZT

r β(τs) ≤ ZT
r α̂[m](τU,2)}

× φ1

(
1− τs, 1−

∫ τU,2

0

I{ZT
r α̂[m](v) ≤ ZT

r β(τs)} dv
)
× (τs+1 − τs)

)∣∣∣,

(2.12)

where R∗ is a very large number.

Note that τU,1 is adaptively selected and may vary at each iteration. At the end of

the m–th iteration, we choose τU,1 to be τ
[m+1]
U,1 , the largest quantile at which β̂

[m+1]
(·)

can be solved. For example, we may examine the distance between β̂
[m+1]

(τj) and

β̂
[m+1]

(τj+1) for each j, namely dj, and stop the sequential procedure if dj exceeds

a moderate pre-specified threshold and let J = j. The choice of the threshold can

be quite flexible, but should avoid values that are too small (e.g., less than 1) or too

large (e.g., greater than 100). In our numerical studies we set the threshold to 10.

We set τ
[m+1]
U,1 = τJ , for which the underlying rationale is that, given a fine grid GLn ,

β̂
[m+1]

(τj) and β̂
[m+1]

(τj+1) are expected be very close in the identifiable τ–region for

β̂(·) when j > 0.

Similarly as in Step A1, the root-finding procedure at Step A2 can be transformed

to minimizing a L1-type convex function parallel to (2.12) and we omit the exact ex-

pressions here. The L1–minimization problem can be readily solved by using existing

packages implemented in standard statistical software, such as l1fit() function in

S-PLUS and rq() function in R. A similar adaptive strategy as for selecting τU,1 can

be adopted for τU,2, which is updated at the m–th iteration with τ
[m+1]
U,2 , the largest
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quantile at which α̂[m+1](·) can be identified.

Based on our experience, we have found the numerical performance of the above

algorithm sometimes unstable if there is heavy censoring on D. For example, in the

context of the WASID study, about 80% of the observations on D were censored by

either T or C. This is quite expected in a well-designed study when D represents

informative dropouts. In such a case, a more restrictive version of model (2.2) for D

may improve the efficiency and thus help increase the numerical stability. Following

this rationale, we propose to adopt an AFT model for D, which only allows the

intercept α
(0)
0 (τ) to vary with τ but imposes constancy on each covariate effect α

(k)
0 (τ)

for k = 1, · · · , p.

With an AFT model assumed for D, the algorithm is modified as follows:

Step B0. Set m = 0. Obtain the initial values α̂[m](τ), τ ∈ (0, τU,2] by fitting an

AFT model using Jin et al. (2003)’s method.

Step B1. Solve S∗(1)
n (β, α̂[m], τ) = 0 for β̂

[m+1]
(τ), τ ∈ (0, τ

[m+1]
U,1 ]. Update τU,1

with τ
[m+1]
U,1 .

Step B2. Obtain α̂[m+1](τ), τ ∈ (0, τ
[m+1]
U,2 ] via the following procedure:

(a) Solve S∗(2)
n (β̂

[m+1]
, α, τ) = 0 for α̃[m+1](τ), τ ∈ (0, τ̃U,2].

(b) Obtain the constant α̂[m+1](k)

by taking the average of α̃[m+1](k)

(τ) over τ ∈ [τa, τb]

for k = 1, · · · , p, where τa ∈ (0, τ̃U,2) and τb ∈ (τa, τ̃U,2) are prespecified constants

that represent a well identified region for α̃[m+1](τ).

(c) Compute the residual on the g−1 scale, i.e., g−1(εi) = g−1(Xi)−Qi, where Qi =

Z̃
T

i (α̂[m+1](1) , · · · , α̂[m+1](p)

).

(d) Obtain α̂(0)[m+1]

(τ) for τ ∈ (0, τ
[m+1]
U,2 ] by solving

S∗∗(2)
n (β̂

[m+1]
, α(0), τ) = 0,
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where

S∗∗(2)
n (β̂

[m+1]
, α(0), τ) = n−1

n∑
i=1

Zi

{
I[g−1(εi) ≤ α(0)(τ), δi = 2]I{g−1(Xi) ≤ ZT

i β̂
[m+1]

(τU,1)}

−
∫ τ

0

I[g−1(εi) ≥ α(0)(τ)]I{α(0)(u) ≤ ZT
i β̂

[m+1]
(τU,1)−Qi}

× φ2

(
1−

∫ τU,1

0

I{ZT
i β̂

[m+1]
(v)−Qi ≤ α(0)(u)} dv, 1− u

)
du

}
.

Update τU,2 with τ
[m+1]
U,2 .

Step B3. Let m = m + 1. Repeat Steps B1 and B2 until certain convergence

criteria are met.

Note that in this above procedure, τU,2 is selected in a slightly different manner in

contrast with Algorithm A. Specifically, at the m–th iteration, we set τU,2 at τ
[m+1]
U,2 ,

the largest τ at which the intercept α̂(0)(τ) can be obtained. We still select τU,1 based

on the identifiability of the p + 1 vector β̂(τ). As in Steps A1 and A2, equations

involved in Steps B1 and B2 can also be treated as L1 minimization problems and

thus conveniently solved. Details of the convergence criteria for Steps A3 and B3 are

provided in Section 2.6.

2.1.5 Asymptotic Results

Under regularity conditions C1-C5 (provided in Section 2.5.1), we establish the the

uniform consistency and weak convergence for β̂(τ) and α̂(τ) stated in the following

theorems.

Theorem 2.1.1. Assuming conditions C1-C5 hold and limn→∞ ‖GLn‖ = 0, then

supτ∈[ν1,τU,1] ‖β̂(τ) − β0(τ)‖ p−→ 0 and supτ∈[ν2,τU,2] ‖α̂(τ) − α0(τ)‖ p−→ 0, where 0 <

ν1 < τU,1 and 0 < ν2 < τU,2.

Theorem 2.1.2. Assuming conditions C1-C5 hold and limn→∞ n1/2‖GLn‖ = 0, then

n1/2{β̂(τ) − β0(τ)} converges weakly to a Gaussian process for τ ∈ [ν1, τU,1] with
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0 < ν1 < τU,1, and n1/2{α̂(τ) − α0(τ)} converges weakly to a Gaussian process for

τ ∈ [ν2, τU,2] with 0 < ν2 < τU,2.

The proofs of these two theorems can be viewed as extensions of those in Peng and

Huang (2008) to the bivariate case, which however are not straightforward. To prove

Theorem 2.1.1, we first note that the proposed estimating functions S(1)
n (β, α, τ) and

S(2)
n (β, α, τ) converge to their expectations s(1)(β, α, τ) and s(2)(β, α, τ) uniformly

in τ . Second, with fixed α in equations S(1)
n (β, α, τ) = 0 and s(1)(β, α, τ) = 0,

the solutions for β can be viewed as functionals of α, namely β̂(α, τ) and β̃(α, τ),

respectively. We can then use β̃(α̂, τ) to bridge β̂(α̂, τ) and β0(τ) = β̃(α0, τ).

Similarly we can use α̃(β̂, τ) to bridge α̂(β̂, τ) and α0(τ) = α̃(β0, τ), where α̂(β, τ)

and α̃(β, τ) are the solutions for α to S(2)
n (β, α, τ) = 0 and s(2)(β, α, τ) = 0 with

fixed β, respectively. To circumvent the difficulty that ‖β̂(0)‖ = ∞ and ‖α̂(0)‖ = ∞,

which is implied by models (2.1) & (2.2) and our estimating procedure, we consider

θ(τ) = µ




β(τ)

α(τ)


 =




E
(
ZN1[g{ZT β(τ)}]

)

E
(
ZN2[g{ZT α(τ)}]

)


 ,

and prove that θ̂(τ) converges in probability to θ0(τ) uniformly for τ ∈ (0, τU ]. This

result further leads to the uniform convergency of β̂(τ) and α̂(τ) for τ ∈ [ν, τU ], where

0 < ν < τU .

To prove Theorem 2.1.2, we first establish the connection between n1/2({β̂(τ) −
β0(τ)}T , {α̂(τ) − α0(τ)}T )T and n1/2{−S(1)

n (β0, α0, τ)T ,−S(2)
n (β0, α0, τ)T}T via a

stochastic integral equation. This result allows us to express n1/2({β̂(τ)−β0(τ)}T , {α̂(τ)−
α0(τ)}T )T as a linear map of n1/2{−S(1)

n (β0, α0, τ)T ,−S(2)
n (β0, α0, τ)T}T . The latter

can be shown to have weak convergence, which implies the result in Theorem 2.1.2.

The detailed proofs of Theorems 2.1.1 and 2.1.2 are provided in Sections 2.5.2 and

2.5.3.



23

2.1.6 Inferences

Given the complex limiting distributions of β̂(τ) and α̂(τ) as shown in the proof of

Theorem 2.1.2, we employ the bootstrap approach (Efron, 1979) to make inference on

β0(τ) and α0(τ). For each of the B datasets obtained from bootstrapping, we conduct

the estimation procedure presented earlier in this section and obtain {β∗b(τ), τ ∈
(0, τ ∗U,1,b]}B

b=1 and {α∗
b(τ), τ ∈ (0, τ ∗U,2,b]}B

b=1. For each fixed τ , we may estimate the

variances of β̂(τ) and α̂(τ) by the sample variances of {β∗b(τ)}B
b=1 and {α∗

b(τ)}B
b=1

respectively, and then construct confidence intervals of β0(τ) and α0(τ) using normal

approximation.

Hypotheses testing can be conducted to further investigate the patterns of the co-

variate effects. Define β
(q)
0 to be the coefficient corresponding to Z̃

(q)
for q = 1, · · · , p.

In practice, one may be especially interested in testing (I) the overall significance of

β
(q)
0 (τ) across a pre-specified range of τ , say [l, u], where 0 < l < u < τU,1, and

(II) the constancy of β
(q)
0 (τ) over τ ∈ [l, u]. We may formulate these tests as (I)

H0 : β
(q)
0 (τ) = 0, τ ∈ [l, u], and (II) H̃0 : β

(q)
0 (τ) = ρ0, τ ∈ [l, u], where ρ0 is an

unknown constant. To perform these tests, we first define a useful summary statistic,

η0,q ≡
∫ u

l
β

(q)
0 (v)dv/(u− l) for q = 1, · · · , p, which may be interpreted as the average

covariate effect of Z̃
(q)

across τ ∈ [l, u]. It can be shown that η̂q =
∫ u

l
β̂(q)(v)dv/(u− l)

is a consistent estimator for η0,q and is asymptotically normal. Give the observed

data, the limiting distribution of η̂q can be approximated by the sample {η∗b,q}B
b=1

where η∗b,q =
∫ u

l
β∗

(q)

b (v)dv/(u− l). Testing H0 is equivalent to testing η0,q = 0, which

is straightforward given the asymptotically normal distribution of η̂q. To test H̃0, one

may adopt the test statistic Γ̃ = n1/2
∫ u

l
{β̂(q)(v) − η̂q}Θ(v) dv/(u − l), where Θ(·) is

a pre-specified weight function, which may be properly chosen to emphasize the de-

parture from H̃0. The limiting distribution of Γ̃ can be approximated by the sample

{Γ̃∗b}B
b=1, where Γ̃∗b = n1/2

∫ u

l
{β∗(q)

b (v)− η∗b,q}Θ(v) dv/(u− l), and it naturally leads to

Wald-type hypothesis testing.
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2.2 Simulation Studies

We studied the finite-sample performance of the proposed estimators via Monte-

Carlo simulations. For the association structure between T and D, we considered the

Clayton copula with association parameter rc and the Frank’s copula with association

parameter rf . We set rc = exp(1) and rf = exp(−7.325) and correspondingly the

values of Kendall’s tau are around 0.58 for both settings, representing moderate

dependency.

We generated T from a log linear model with heteroscedastic errors:

log T = b1Z1 + b2Z2 + ε1,

where Z1 ∼ Unif(0, 1), Z2 ∼ Bernoulli(0.5), and the error term ε1 follows N(0, 0.22)

if Z2 = 0 and N(0, 0.42) if Z2 = 1. In addition, D was generated from the AFT model

log D = a1Z1 + a2Z2 + ε2,

where ε2 ∼ N(µ2, 0.3
2). The independent censoring time C was assumed to follow

Unif(0, cu). Under this set-up, models (2.1) and (2.2) hold with g(·) = exp(·). It can

be shown that the underlying regression quantile β0(τ) = {β(0)
0 (τ), β

(1)
0 (τ), β

(2)
0 (τ)}T ,

where β
(0)
0 (τ) = QN(0,0.22)(τ), β

(1)
0 = b1, and β

(2)
0 = b2 + QN(0,0.42)(τ) − QN(0,0.22)(τ).

It can also be seen that α0(τ) = {Qε2(τ), a1, a2}T . Under each copula, we considered

two specific configurations: (I) µ2 = 0, b1 = 0.27, b2 = 0, a1 = 0, a2 = 0.3, cu = 12,

which results in 45% dependent censoring rate and 10% independent censoring rate,

and (II) µ2 = 0.1, b1 = 0.27, b2 = 0, a1 = 0, a2 = 0.3, cu = 12, which results in

30% dependent censoring rate and 45% independent censoring rate. For case (I) we

assumed a general quantile regression model for D. For case (II) we adopted the

modified algorithm assuming AFT model for D with τa = 0.1 and τb = 0.4.
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Under each configuration we simulated 1000 date sets of sample size n = 200.

An equally spaced grid on τ with size 0.01 was adopted when estimating β0(τ) and

α0(τ). We chose B = 100 as the number of bootstrap replicates for the variance

estimation.

Table 2.1 presents the estimation results when the Clayton copula was correctly

adopted. We report absolute values of biases (Bias), empirical standard deviations

(EmpSD), average estimated resampling-based standard deviations (AvgSD) of β̂(τ)

and α̂(τ), and coverage rates of 95% Wald confidence intervals of β0(τ) and α0(τ)

with τ = 0.1, 0.3, 0.5 and 0.7. These results show that under these set-ups the biases

are small, the bootstrap standard errors agree well with the empirical ones, and the

coverage rates are in general close to the nominal level. For case (I), the convergence

rate was 94.5% and on average 3.7 iterations were required to achieve convergence. For

case (II) the convergence rate was 99.2%, achieved by an average of 4.4 iterations. In

a similar fashion, Table 2.2 presents the estimation results when the Frank copula was

correctly adopted. These results are also satisfactory. For case (I), the convergence

rate was 92.7% with 5.5 iterations on average. For case (II) the convergence rate was

99.7%, achieved by an average of 5.3 iterations.

We also compared our approach with a naive application of Peng and Huang

(2008) by simply treating D as independent censoring. Figure 2.1 displays the mean

estimated coefficients from the proposed approach and those from the naive approach

along with the true coefficients under a correctly specified Clayton copula, assuming

an AFT model for D in both approaches. We can see that the proposed estimator

β̂(τ) is virtually unbiased and α̂(τ) has only small bias, while the naive approach can

produce substantial bias. This again suggests the importance to properly account for

dependent censoring.

To assess the robustness of our methods, we also carried out estimation procedures

with mis-specified copulas and compared the results to those under the correct copu-
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Table 2.1: Simulation Results on Parameter Estimation under the Clayton cop-
ula. Bias: biases; AvgSD: average estimated resampling-based standard deviations;
EmpSD: empirical standard deviations; Cov95: coverage rates of 95% Wald confi-
dence intervals.

τ Bias EmpSD AvgSD Cov95 Bias EmpSD AvgSD Cov95
45% dep. censoring, 10% indep. censoring, model (2) for D

0.1 β̂(0) 0.02 0.10 0.11 0.95 α̂(0) 0.01 0.10 0.11 0.94

β̂(1) 0.02 0.19 0.22 0.95 α̂(1) -0.02 0.17 0.19 0.94

β̂(2) -0.02 0.10 0.11 0.96 α̂(2) 0.02 0.10 0.11 0.95

0.3 β̂(0) 0.01 0.09 0.10 0.95 α̂(0) 0.02 0.08 0.10 0.94

β̂(1) 0.01 0.16 0.19 0.97 α̂(1) -0.02 0.14 0.16 0.94

β̂(2) -0.01 0.08 0.09 0.96 α̂(2) 0.01 0.08 0.10 0.96

0.5 β̂(0) 0.01 0.08 0.09 0.95 α̂(0) 0.02 0.09 0.13 0.97

β̂(1) 0.02 0.16 0.21 0.97 α̂(1) -0.02 0.14 0.19 0.97

β̂(2) -0.01 0.08 0.09 0.96 α̂(2) 0.01 0.08 0.10 0.97
30% dep. censoring, 10% indep. censoring, AFT model for D

0.1 β̂(0) 0.01 0.09 0.10 0.94 α̂(0) 0.02 0.08 0.10 0.96

β̂(1) 0.01 0.16 0.18 0.95 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.01 0.09 0.10 0.96 α̂(2) 0.03 0.09 0.10 0.96

0.3 β̂(0) 0.01 0.07 0.08 0.95 α̂(0) 0.02 0.08 0.10 0.96

β̂(1) 0.00 0.13 0.15 0.96 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.01 0.07 0.08 0.96 α̂(2) 0.03 0.09 0.10 0.96

0.5 β̂(0) 0.00 0.07 0.08 0.96 α̂(0) 0.02 0.08 0.10 0.97

β̂(1) 0.00 0.13 0.15 0.97 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.00 0.07 0.08 0.95 α̂(2) 0.03 0.09 0.10 0.96

0.7 β̂(0) 0.00 0.07 0.08 0.96 α̂(0) 0.03 0.10 0.11 0.96

β̂(1) 0.01 0.14 0.18 0.97 α̂(1) -0.03 0.13 0.15 0.95

β̂(2) -0.00 0.07 0.08 0.96 α̂(2) 0.03 0.09 0.10 0.96

las. Specifically, we focused on configuration (II), the case with 30% dependent cen-

soring. With the true Kendall’s tau set to be 0.576, we first generated T and D under

the Clayton copula, and then estimated the regression coefficients assuming two types

of dependence structure. One is the Frank copula with Kendall’s tau= 0.576, which

represents the situation of mis-specified copula function with correct degree of associ-

ation, and the other is the Clayton copula with Kendall’s tau= 0.79, 0.33 and 0.16, in

which the copula function was true but the association parameters were not. Similarly,

we also generated T and D under the Frank copula, and examined the estimation
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Table 2.2: Simulation Results on Parameter Estimation under the Frank copula. Bias:
biases; AvgSD: average estimated resampling-based standard deviations; EmpSD: em-
pirical standard deviations; Cov95: coverage rates of 95% Wald confidence intervals.

τ Bias EmpSD AvgSD Cov95 Bias EmpSD AvgSD Cov95
45% dep. censoring, 10% indep. censoring, model (2) for D

0.1 β̂(0) 0.03 0.11 0.12 0.94 α̂(0) 0.01 0.10 0.12 0.95

β̂(1) 0.02 0.20 0.23 0.96 α̂(1) -0.02 0.16 0.19 0.96

β̂(2) -0.04 0.11 0.12 0.95 α̂(2) 0.03 0.11 0.12 0.93

0.3 β̂(0) 0.01 0.08 0.09 0.95 α̂(0) 0.01 0.08 0.10 0.93

β̂(1) 0.01 0.16 0.19 0.96 α̂(1) -0.02 0.14 0.15 0.95

β̂(2) -0.01 0.08 0.09 0.95 α̂(2) 0.02 0.08 0.09 0.96

0.5 β̂(0) 0.01 0.07 0.08 0.95 α̂(0) 0.02 0.08 0.11 0.96

β̂(1) 0.01 0.14 0.19 0.98 α̂(1) -0.03 0.12 0.16 0.97

β̂(2) -0.01 0.07 0.08 0.98 α̂(2) 0.01 0.07 0.08 0.97
30% dep. censoring, 10% indep. censoring, AFT model for D

0.1 β̂(0) 0.01 0.09 0.10 0.96 α̂(0) 0.02 0.09 0.09 0.93

β̂(1) 0.02 0.17 0.19 0.97 α̂(1) -0.02 0.13 0.14 0.94

β̂(2) -0.02 0.09 0.10 0.96 α̂(2) 0.03 0.09 0.09 0.94

0.3 β̂(0) 0.01 0.07 0.08 0.94 α̂(0) 0.01 0.09 0.09 0.94

β̂(1) 0.00 0.14 0.15 0.95 α̂(1) -0.02 0.13 0.14 0.94

β̂(2) 0.00 0.07 0.07 0.95 α̂(2) 0.03 0.09 0.09 0.94

0.5 β̂(0) 0.00 0.06 0.07 0.96 α̂(0) 0.01 0.09 0.09 0.95

β̂(1) 0.00 0.12 0.13 0.96 α̂(1) -0.02 0.13 0.14 0.94

β̂(2) 0.00 0.06 0.07 0.96 α̂(2) 0.03 0.09 0.09 0.94

0.7 β̂(0) 0.00 0.07 0.08 0.95 α̂(0) 0.02 0.09 0.10 0.95

β̂(1) 0.00 0.12 0.17 0.97 α̂(1) -0.02 0.13 0.14 0.94

β̂(2) 0.00 0.07 0.08 0.97 α̂(2) 0.03 0.09 0.09 0.94

when assuming Clayton copula with Kendall’s tau= 0.576 and Frank copula with

Kendall’s tau= 0.26,−0.12 and − 0.33, respectively.

Table 2.3 summarizes the results when we mis-specified the copula function but

correctly specified the association parameter, with the dependent censoring rate set to

be 30%. Interestingly, the biases are still small and the coverage rates are again close

to the nominal level. This suggests that, even with incorrect copula function, we may

still obtain unbiased estimation if right knowledge about the degree of association is

accessible. In contrast, Figures 2.2 and 2.3 depict the estimated coefficients for T
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Figure 2.1: Upper Panel: Comparison among True coefficients β0(τ) (Bold Solid
Lines), Mean Estimates for β0(τ) from the Proposed Method (Solid Lines) under a
Correctly Specified Clayton Copula, and Mean Estimates for β0(τ) from the Naive
Approach (Dotted Lines); Lower Panel: Comparison among True coefficients α0(τ)
(Bold Solid Lines), Mean Estimates for α0(τ) from the Proposed Method (Solid Lines)
under a Correctly Specified Clayton Copula, and Mean Estimates for α0(τ) from the
Naive Approach (Dotted Lines).

under correctly specified copula forms with wrong associations. Unsurprisingly, the

magnitude of the biases increases with the degree the assumed association deviates

from the true value. For example, when the underlying copula was Clayton with

Kendall’s tau= 0.576, the resulting biases may be moderate (as large as 0.05) for

β0(τ) by assuming Kendall’s tau= 0.79 or 0.33, and more pronounced (as large as

0.09) by assuming Kendall’s tau= 0.16.
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Table 2.3: Simulation Results on Parameter Estimation when the Copula Function
is Misspecified. Bias: biases; AvgSD: average estimated resampling-based standard
deviations; EmpSD: empirical standard deviations; Cov95: coverage rates of 95%
Wald confidence intervals.

τ Bias EmpSD AvgSD Cov95 Bias EmpSD AvgSD Cov95
Underlying: Clayton, Kendall’s tau=0.58; Assumed: Frank, Kendall’s tau=0.58

0.1 β̂(0) -0.01 0.09 0.10 0.94 α̂(0) 0.01 0.08 0.09 0.97

β̂(1) -0.01 0.17 0.18 0.95 α̂(1) -0.01 0.13 0.14 0.95

β̂(2) 0.01 0.09 0.10 0.95 α̂(2) -0.02 0.09 0.10 0.94

0.3 β̂(0) -0.01 0.07 0.08 0.95 α̂(0) 0.00 0.08 0.09 0.96

β̂(1) -0.01 0.13 0.15 0.96 α̂(1) -0.01 0.13 0.14 0.95

β̂(2) 0.02 0.07 0.08 0.95 α̂(2) -0.02 0.09 0.10 0.94

0.5 β̂(0) 0.00 0.07 0.08 0.95 α̂(0) 0.01 0.08 0.10 0.97

β̂(1) 0.01 0.13 0.15 0.96 α̂(1) -0.01 0.13 0.14 0.95

β̂(2) 0.00 0.07 0.07 0.95 α̂(2) -0.02 0.09 0.10 0.94

0.7 β̂(0) 0.00 0.07 0.08 0.96 α̂(0) 0.07 0.10 0.11 0.94

β̂(1) 0.05 0.14 0.18 0.97 α̂(1) -0.01 0.13 0.14 0.95

β̂(2) -0.02 0.07 0.08 0.95 α̂(2) -0.02 0.09 0.10 0.94
Underlying: Frank, Kendall’s tau=0.58; Assumed: Clayton, Kendall’s tau=0.58

0.1 β̂(0) 0.04 0.09 0.10 0.93 α̂(0) 0.04 0.09 0.10 0.92

β̂(1) 0.03 0.16 0.19 0.96 α̂(1) -0.04 0.14 0.14 0.93

β̂(2) -0.05 0.09 0.10 0.93 α̂(2) 0.07 0.08 0.09 0.86

0.3 β̂(0) 0.03 0.07 0.08 0.93 α̂(0) 0.03 0.09 0.09 0.93

β̂(1) 0.01 0.13 0.15 0.96 α̂(1) -0.04 0.14 0.14 0.93

β̂(2) -0.02 0.07 0.07 0.96 α̂(2) 0.07 0.08 0.09 0.86

0.5 β̂(0) 0.01 0.07 0.07 0.95 α̂(0) 0.01 0.09 0.09 0.95

β̂(1) -0.01 0.12 0.14 0.96 α̂(1) -0.04 0.14 0.14 0.93

β̂(2) 0.00 0.06 0.07 0.96 α̂(2) 0.07 0.08 0.09 0.86

0.7 β̂(0) 0.00 0.07 0.08 0.94 α̂(0) -0.01 0.09 0.10 0.95

β̂(1) -0.03 0.13 0.15 0.96 α̂(1) -0.04 0.14 0.14 0.93

β̂(2) 0.02 0.07 0.08 0.96 α̂(2) 0.07 0.08 0.09 0.86

2.3 The WASID Study Example

We applied the proposed method to the WASID study (Chimowitz et al., 2005),

a double-blind and multicenter clinical trial that compared warfarin and aspirin in

treating symptomatic intracranial arterial stenosis, an important cause of stroke. In

this trial, 569 patients who had stroke or transient ischemic attack resulting from
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Figure 2.2: Estimates for β0(τ) under the Correctly Specified Clayton Copula with
Misspecified Association Parameters: Kendall’s tau= 0.79 (Dashed Lines), Kendall’s
tau= 0.33 (dotted Lines), Kendall’s tau= 0.16 (Dotdash Lines), and the True Associ-
ation Parameter: Kendall’s tau= 0.58 (Solid Lines); and the True Coefficients β0(τ)
(Bold Solid Lines).

stenosis of a major intracranial artery were randomized to receive either warfarin or

aspirin. In our analysis, T was defined as time from randomization to ischemic stroke,

brain hemorrhage, or death, whichever happened first. Here and hereafter, we refer

to this event as the “study endpoint”. During an average of 1.8-year follow-up, T was

observed for 57 patients treated by warfarin and 60 patients treated by aspirin. Due

to various disease related reasons, the study medications were terminated early for

125 patients, among whom 81 were on the warfarin arm and 44 were on the aspirin

arm. It is often thought that such discontinuation of treatment is correlated with

the underlying disease progression and thus pose dependent censoring to T . We let

D denote time from randomization to study withdrawal. In addition, administrative

censoring occurred for 146 patients in the warfarin group and 172 patients in the

aspirin group. Time to such independent censoring was denoted by C. We considered
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Figure 2.3: Estimates for β0(τ) under the Correctly Specified Frank Copula with
Misspecified Association Parameters: Kendall’s tau= 0.26 (Dashed Lines), Kendall’s
tau= −0.12 (Dotted Lines), Kendall’s tau= −0.33 (Dotdash Lines), and the True
Association Parameter: Kendall’s tau= 0.58 (Solid Lines); and the True Coefficients
β0(τ) (Bold Solid Lines).

three covariates: Treatment, which equals 1 for warfarin and 0 for aspirin; Diabetes,

the indicator of having diabetes; Stenosis Percentage, which stands for the percentage

of stenosis by central reader.

We first analyzed the WASID data based on some classical approaches, naively

treating early drug termination as independent censoring. No treatment effect was

detected by the log rank test. Adjusting for Diabetes and Stenosis Percentage, the Cox

regression also suggested that there was no significant treatment effect. The hazard

ratio of warfarin versus aspirin was 0.91 with p-value=0.63. Stenosis Percentage was

not found to be significant in predicting time to the study endpoint either. Having

diabetes was found to have a significant negative effect on the progression to the

study endpoint. The corresponding hazard ratio and p value were 2.15 and < 0.001

respectively.



32

We then applied the proposed regression approach adjusting for the same set of

covariates considered in the naive analysis. We specified different r values such that

the corresponding Kendall’s tau were 0.2, 0.4, 0.6, and 0.8, representing the cases

where the positive associations between T and D were weak, moderate and strong.

The link function was chosen to be log(·). Due to heavy censoring to D by T or C

with the censoring rate around 80%, we adopted an AFT model for D to increase

numerical stability. For inference, we performed 300 bootstrap resampling for each

scenario. We considered both Clayton copula and Frank copula. Nevertheless we only

present the results based on the Clayton copula, since the results under the Frank

copula are very similar and thus are omitted.

Figure 2.4 depicts the estimates for β0(τ) under the Clayton copula, together with

the results from a naive application of Peng and Huang (2008) in which D was treated

as independent censoring. From Figure 2.4 we observe that, the naive estimate and

the proposed estimates for the treatment effect appear to be similar for τ < 0.18 and

demonstrate a larger yet moderate divergence for later τs. In all cases, the estimated

treatment effects over τ demonstrate a common pattern: being negative at lower

quantiles and then decreasing in the magnitudes and becoming stabilized around 0.

For Diabetes and Stenosis Percentage, the departure of the estimates that assume

dependent censoring from the naive estimate are more noticeable.

In Table 2.4, we summarize the standard errors of the naive estimates and the

proposed estimates under different specifications of r with r > 0. It can be seen that

the proposed estimates have comparable efficiency to the naive estimate obtained

by Peng and Huang (2008)’s method. We also performed the second-stage inference

procedure on the WASID data. Formal tests on the significance of covariate effects

were performed based on the average effects on quantiles of T with τ ranging from

0.05 to 0.25. Results show that the treatment effect was not significant for any choice

of r we considered. This is consistent with Chimowitz et al. (2005), which found
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Figure 2.4: Point Estimates of Regression Coefficients for Time to the Primary End-
point (Ischemic Stroke, Brain Hemorrhage, or Death) under the Clayton Copula with
Kendall’s tau=0, 0.2, 0.4, 0.6 and 0.8.

no benefit of warfarin over aspirin in the WASID trial. However, we found that

Diabetes has significant effects under all choices of r (all p-values < 0.001), with the

average effects being -1.58, -1.49, -1.38, -1.28 and -1.11, corresponding to the cases

where Kendall’s tau = 0, 0.2, 0.4, 0.6 and 0.8, respectively. This result suggests the

diabetic patients may progress significantly faster to the study endpoint compared to

nondiabetic patients. This finding is consistent with the naive Cox regression analysis,

but is better endorsed by taking into account the potential dependence between T

and D.

To illustrate the impact of adjusting for dependent censoring in a more mean-

ingful way, in Figures 2.5 and 2.6 we plot the estimated quantiles of T and D for

each treatment group with and without diabetes, with Stenosis Percentage fixed at
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Table 2.4: The WASID Example: Standard Errors under the Clayton Copula with
Kendall’s tau=0, 0.2, 0.4, 0.6 and 0.8. β̂(1), β̂(2) and β̂(3): estimated coefficients of
Treatment, Diabetes and Stenosis Percentage on T , respectively.

τ K’s tau=0 K’s tau=0.2 K’s tau=0.4 K’s tau=0.6 K’s tau=0.8

0.05 β̂(1) 0.79 0.77 0.78 0.76 0.72

β̂(2) 0.77 0.75 0.73 0.73 0.69

β̂(3) 2.10 2.04 2.04 2.04 1.95

0.10 β̂(1) 0.69 0.69 0.69 0.71 0.74

β̂(2) 0.65 0.65 0.64 0.66 0.69

β̂(3) 1.83 1.67 1.79 1.76 1.73

0.15 β̂(1) 0.43 0.41 0.37 0.36 0.35

β̂(2) 0.41 0.38 0.37 0.36 0.39

β̂(3) 1.45 1.38 1.33 1.26 1.17

0.20 β̂(1) 0.51 0.46 0.40 0.39 0.33

β̂(2) 0.60 0.48 0.44 0.34 0.32

β̂(3) 1.76 1.48 1.42 1.24 1.05

0.25 β̂(1) 0.53 0.50 0.46 0.41 0.35

β̂(2) 0.79 0.66 0.54 0.45 0.33

β̂(3) 2.24 1.85 1.67 1.46 1.19

its mean value. From Figure 2.5, it is apparent that the disparity among different

estimates is negligible in the diabetes group, but accounting for dependent censoring

at different levels can lead to quite dramatically different estimates for QT (τ |Z) in the

non-diabetic group. One plausible explanation for this is that non-diabetic patients

generally progress to the study endpoint slower than diabetic patients and thus are

more prone to the “risk” of early termination of study medication. Consequently, ad-

justing for dependent censoring for the non-diabetic patients makes a bigger influence

on the estimated quantiles of T . It is also interesting to note from Figure E3 that

assuming independence between patient withdrawal and the study endpoint tends to

give more optimistic estimate for QT (τ |Z) compared to the other cases where T and

D were assumed to be positively associated. This phenomenon is also reasonable.

An intuitive explanation may be that an observed D (which means T > D and T is

censored) would be suggestive of a smaller T when T and D are believed to be pos-
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itively associated than that under the independence between T and D. As a result,

the prediction of QT (τ |Z) would be more conservative under a positive association

assumption. From Figure 2.6 we can see that the warfarin group tends to have smaller

D compared to the aspirin group, which means the patients treated by warfarin tend

to withdraw earlier than the other group. This is also consistent with Chimowitz et

al. (2005), which found a higher rate of adverse events in the warfarin group than in

the aspirin group.
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Figure 2.5: Estimated Quantiles of Time to the Primary Endpoint (Ischemic Stroke,
Brain Hemorrhage, or Death) under the Clayton Copula with Kendall’s tau=0, 0.2,
0.4, 0.6 and 0.8, with the Stenosis Percentage Fixed at Its Mean ( 63.7%)

In summary, in the WASID example we found no evidence of better clinical ef-

ficacy for warfarin compared to aspirin in treating symptomatic intracranial arterial

stenosis, which is consistent with previously published results on this trial. In our

analysis, we took into account of the dependence between T and D and provided a
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Figure 2.6: Estimated Quantiles of Time to Early Termination of Study Medication
under the Clayton Copula with Kendall’s tau=0, 0.2, 0.4, 0.6 and 0.8, with the
Stenosis Percentage Fixed at Its Mean ( 63.7%).

comprehensive view of the covariate effects under different specifications of the as-

sociation. The results we obtained are quite consistent across assumptions of weak,

moderate and strong associations between T and D, and therefore more confidence

is gained to support the scientific conclusions of Chimowitz et al. (2005) through

this new analysis. Our method also enables us to explore dynamic patterns of the

covariate effects across different quantiles of T . The predicted conditional quantiles

of T provide intuitive and robust prognostic information to physicians and patients

in clinical practice.
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2.4 Remarks

In this chapter we propose a quantile regression method for survival data subject

to dependent censoring. Under the assumed model for the event time of interest,

covariate effects are formulated on the quantiles defined on the marginal survival

distribution. This type of modeling is sensible when the scenario corresponding the

removal of the dependent censoring event is scientifically relevant.

The dependence structure between the event time and the censoring time is spec-

ified through a known copula model. This is necessary given the competing risks

relationship between the event of interest and dependent censoring. Our numerical

results show that the proposed method is quite robust to misspecification of the type

of the copula function, provided the strength of association is reasonably specified.

When there lacks sufficient information to support a specific choice of the copula

parameter, our regression procedure developed based on quantile regression modeling

offers a robust sensitive analysis tool for analyzing dependently censored data.
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2.5 Proofs

2.5.1 Regularity Conditions

Before stating the regularity conditions, we introduce some necessary notation. For

a random variable W , define FW (t|Z) = Pr(W ≤ t|Z) and fW (t|Z) = dFW (t|Z)/dt.

Define F̃T (t|Z) = Pr(T ≤ t, δ = 1|Z) and F̃D(t|Z) = Pr(D ≤ t, δ = 1|Z), and f̃T (t)

and f̃D(t) as the derivatives of F̃T (t|Z) and F̃D(t|Z) with respect to t, respectively.

For a vector r, let r⊗2 denote rrT and ‖r‖ denote the Euclidean norm of r. De-

fine s(k)(β, α, τ) = E{S(k)
n (β, α, τ)} for k = 1, 2, µ1(b) = E[ZN1{g(ZT b)}], µ2(a) =

E[ZN2{g(ZT a)}], J1(b) = E[Z⊗2f̃T{g(ZT b)|Z}g′(ZT b)], J2(a) = E[Z⊗2f̃D{g(ZT a)|Z}
g′(ZT a)], µ̃1(b, α) = E[ZY {g(ZT b)} × φ1(1 − u, 1 − ∫ τU,2

0
I{ZT α(v) ≤ ZT b} dv)],

µ̃2(a, β) = E[ZY {g(ZT a)}× φ2(1−
∫ τU,1

0
I{ZT β(v) ≤ ZT a} dv, 1− u)], J̃1(b, α) =

∂µ̃1(b, α)/∂b, J̃2(a, β) = ∂µ̃2(a, β)/∂a.

For any constant d, define B(d) = {(bT , aT )T : b ∈ Rp+1, a ∈ Rp+1, infτ∈(0,τU ] ‖µ1(b)−
µ1{β0(τ)}‖ ≤ d, infτ∈(0,τU ] ‖µ2(a)−µ2{α0(τ)}‖ ≤ d}. Let D denote a function space

that contains all continuous functions mapping [0, 1] to R2p+2, and F = {c(G1−G2) :

c ∈ R, Gj ∈ D, j = 1, 2}.
The regularity conditions are:

C1. The covariate space Z is bounded, i.e., supi ‖Zi‖ < ∞.

C2. fT (t|z), fD(t|z), f̃T (t|z) and f̃D(t|z) are bounded above uniformly in t and z.

C3. (a) f̃T{g(ZT b)|Z} > 0 and f̃D{g(ZT a)|Z} > 0 for all (bT , aT )T ∈ B(d0),

where d0 is a constant; (b) E(Z⊗2) > 0; (c) infτ∈[ν1,τU,1] eigmin(J1{β0(τ)}) > 0 and

infτ∈[ν2,τU,2] eigmin(

J2{α0(τ)}) > 0 for any ν1 ∈ (0, τU,1] and ν2 ∈ (0, τU,2], where eigmin(·) denotes the

minimum eigenvalue of a matrix.

C4. (a) Each component of µ̃1{β0(τ), α0} and µ̃2{α0(τ), β0} is a Lipschitz func-

tion of τ ; (b) φ1(u, v) and φ2(u, v) are differentiable with respect to u and v, and
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furthermore, each component of E
[
ZY {g(ZT b)}× φ12(1− u, 1− ∫ τU,2

0
I{ZT α0(v) ≤

ZT b} dv)
]

and E
[
ZY {g(ZT a)} × φ21(1 −

∫ τU,1

0
I{ZT β0(v) ≤ ZT a} dv, 1 − u)

]
is

bounded uniformly in (bT , aT )T ∈ B(d0), where φ12(u, v) = ∂φ1(u, v)/∂v and φ21(u, v) =

∂φ2(u, v)/∂u; (c) w1(b, a) = E
[
ZY {g(ZT b)} × φ12(1 − u, 1 − ∫ τU,2

0
I{ZT α0(v) ≤

ZT b} dv)×I(ZT b ≥ ZT a)
]
and w2(b, a) = E

[
ZY {g(ZT a)}×φ21(1−

∫ τU,1

0
I{ZT β0(v) ≤

ZT a} dv, 1−u)×I(ZT a ≥ ZT b)
]

are differentiable with respect to b and a, and fur-

thermore, each component of w12{b, α0(τ)} and w21{β0(τ), a} is bounded uniformly

in (bT , aT )T ∈ B(d0) and τ ∈ (0, max{τU,1, τU,2}], where w12(b, a) = ∂w1(b, a)/∂a

and w21(b, a) = ∂w2(b, a)/∂b.

C5. (a) For any fixed τ , ρ(θ, τ), as a functional of θ(·) defined on D, is Gâteaux dif-

ferentiable at θ0(·) with derivative ρ′θ0
, where θ0(u) =

(
µ1{β0(u)}T , µ2{α0(u)}T

)T
;

(b) ‖ρ′θ0
(h)‖ > 0 for any h ∈ F such that supτ∈(0,1) ‖h(τ)‖ 6= 0.

2.5.2 Proof of Theorem 2.1.1

For simplicity, we assume τU,1 = τU,2 = τU . We present the proof of both theorems

based on the estimating equation (2.9), which can be adapted to the proof based on the

estimating equation (2.10) with minor modification. Let β, α, β̂ and α̂ be abbrevia-

tions for functions β(·), α(·), β̂(·) and α̂(·). With fixed α, define β̂(α, τ) and β̃(α, τ)

as the solutions for β to S(1)
n (β, α, τ) = 0 and s(1)(β, α, τ) = 0 respectively. Similarly,

with fixed β, define α̂(β, τ) and α̃(β, τ) as the solutions for α to S(2)
n (β, α, τ) = 0 and

s(2)(β, α, τ) = 0 respectively. It is easy to see that β̂(α̂, τ) = β̂(τ), α̂(β̂, τ) = α̂(τ),

β̃(α0, τ) = β0(τ) and α̃(β0, τ) = α0(τ) for τ ∈ (0, τU ].

Using the Glivenko-Cantelli Theorem (van der Vaart and Wellner 1996), we can

show

sup
τ∈(0,τU ]

‖S(k)
n (β, α, τ)− s(k)(β, α, τ)‖ p−→ 0, k = 1, 2. (2.13)
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Together with the facts that S(k)
n (β̂, α̂, τ) = 0 and s(k)(β0, α0, τ) = 0, (2.13) implies

sup
τ∈(0,τU ]

‖s(1)(β̂, α̂, τ)− s(1)(β0, α0, τ)‖ p−→ 0,

sup
τ∈(0,τU ]

‖s(2)(β̂, α̂, τ)− s(2)(β0, α0, τ)‖ p−→ 0.

Let

r =

(
b

a

)
, µ(r) =

(
µ1(b)

µ2(a)

)
and A (d) = {µ(r) : r ∈ B(d)}.

By condition C3(a)-(b), we can show that µ(·) is a 1-1 mapping from B(d0) to A (d0).

Hence, there exists an inverse function of µ(·), denoted by κ(·), mapping A (d0) to

B(d0), such that κ{µ(r)} = r for any r ∈ B(d0).

Consider the following equalities:

µ1{β̂(τ)} − µ1{β0(τ)} = µ1{β̂(α̂, τ)} − µ1{β̃(α0, τ)}

= µ1{β̂(α̂, τ)} − µ1{β̃(α̂, τ)}+ µ1{β̃(α̂, τ)} − µ1{β̃(α0, τ)},

µ2{α̂(τ)} − µ2{α0(τ)} = µ2{α̂(β̂, τ)} − µ2{α̃(β0, τ)}

= µ2{α̂(β̂, τ)} − µ2{α̃(β̂, τ)}+ µ2{α̃(β̂, τ)} − µ2{α̃(β0, τ)},

(2.14)

Following Peng and Huang (2008), we can show that supτ∈(0,τU ] ‖µ1{β̂(α̂, τ)} −
µ1{β̃(α̂, τ)}‖
= op(1) and supτ∈(0,τU ] ‖µ2{α̂(β̂, τ)} − µ2{α̃(β̂, τ)}‖ = op(1). Then (2.14) can be

rewritten as

µ1{β̂(τ)} − µ1{β0(τ)} = µ1{β̃(α̂, τ)} − µ1{β̃(α0, τ)}+ o(0,τU ](1),

µ2{α̂(τ)} − µ2{α0(τ)} = µ2{α̃(β̂, τ)} − µ2{α̃(β0, τ)}+ o(0,τU ](1),

(2.15)
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where oI(1) denotes a term that converges to 0 in probability uniformly on the interval

I.

Define

γ(τ) =

(
β(τ)

α(τ)

)
and g̃(γ, τ) =

(
β̃(α, τ)

α̃(β, τ)

)
.

Note that g̃(γ, τ) can be viewed as a functional of γ with parameter τ . We further

simplify (2.15) as

µ{γ̂(τ)} − µ{γ0(τ)} = µ{g̃(γ̂, τ)} − µ{g̃(γ0, τ)}+ o(0,τU ](1). (2.16)

Let θ(τ) = µ{γ(τ)} and ρ(θ, τ) = θ(τ)− µ
(
g̃[κ{θ(τ)}]). Then (2.16) becomes

ρ(θ̂, τ)− ρ(θ0, τ) = o(0,τU ](1). (2.17)

By viewing the parameter τ as fixed and dropping it from the notation of ρ(θ, τ) for

brevity, we have

ρ(θ̂)− ρ(θ0) = o(0,τU ](1). (2.18)

Note that ρ(θ) is a functional of θ. By Condition C5(a), ρ is Gâteaux differentiable

at θ0, that is, for any direction h ∈ F and θ0 + th ∈ D, there is a linear map ρ′θ0

such that

ρ(θ0 + th)− ρ(θ0)

t
→ ρ′θ0

(h) as t → 0. (2.19)

Let h = (θ̂ − θ0)/t. By (2.19) we have

{ρ(θ̂)− ρ(θ0)} − tρ′θ0
{(θ̂ − θ0)/t} → 0 as t → 0. (2.20)

By (2.18), (2.20), and the linearity of ρ′θ0
, we immediately have

ρ′θ0
(θ̂ − θ0) = o(0,τU ](1). (2.21)
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Since θ and θ0 are bounded on (0, τU ], by condition C5(b) and a subsequence argu-

ment, (2.21) implies

sup
u∈(0,τU ]

‖θ̂(u)− θ0(u)‖ = op(1). (2.22)

Recall that κ{θ̂(u)} = γ̂(u) and κ{θ0(u)} = γ0(u). By a Taylor expansion of

κ{θ̂(τ)} around θ0(τ) for τ ∈ [ν, τU ], together with (2.22) and condition C3(c), we

can show

sup
u∈[ν,τU ]

‖γ̂(u)− γ0(u)‖ = op(1),

which implies

sup
u∈[ν,τU ]

‖β̂(u)− β0(u)‖ = op(1),

sup
u∈[ν,τU ]

‖α̂(u)−α0(u)‖ = op(1), (2.23)

and thus complete the proof for Theorem 2.1.1.

2.5.3 Proof of Theorem 2.1.2

Having the uniform consistency of β̂(τ) and α̂(τ) on τ ∈ [ν, τU ], by following the

proof of Lemma B.1. in Peng and Huang (2008), we can show that

sup
τ∈[ν,τU ]

n1/2‖{S(k)
n (β̂, α0, τ)− S(k)

n (β0, α0, τ)} − {s(k)(β̂, α0, τ)− s(k)(β0, α0, τ)}‖ p→ 0,

and

sup
τ∈[ν,τU ]

n1/2‖{S(k)
n (β̂, α̂, τ)− S(k)

n (β̂, α0, τ)} − {s(k)(β̂, α̂, τ)− s(k)(β̂, α0, τ)}‖ p→ 0.

(2.24)
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From the above results, we get

sup
τ∈[ν,τU ]

n1/2‖{S(k)
n (β̂, α̂, τ)− S(k)

n (β0, α0, τ)} − {s(k)(β̂, α̂, τ)− s(k)(β0, α0, τ)}‖

≤ sup
τ∈[ν,τU ]

n1/2‖{S(k)
n (β̂, α0, τ)− S(k)

n (β0, α0, τ)} − {s(k)(β̂, α0, τ)− s(k)(β0, α0, τ)}‖

+ sup
τ∈[ν,τU ]

n1/2‖{S(k)
n (β̂, α̂, τ)− S(k)

n (β̂, α0, τ)} − {s(k)(β̂, α̂, τ)− s(k)(β̂, α0, τ)}‖ p→ 0.

(2.25)

Simple algebra shows that

s(1)(β̂, α̂, τ)− s(1)(β0, α0, τ) = µ1(β̂, τ)− µ1(β0, τ)−
∫ τ

0

(
[µ̃1{β̂(u), α̂} − µ̃1{β̂(u), α0}]

+ [µ̃1{β̂(u), α0} − µ̃1{β0(u), α0}]
)

du.

(2.26)

For any ν ∈ (0, τU ] and any fixed u ∈ [ν, τU ], given the uniform consistency of α̂(·)
and condition C4(b)-(c), we have

µ̃1{β̂(u), α̂} − µ̃1{β̂(u), α0}

= E
(
ZY [g{ZT β̂(u)}][φ1(1− u, 1−

∫ τU

0

I{ZT α̂(v) ≤ ZT β̂(u)} dv)

− φ1(1− u, 1−
∫ τU

0

I{ZT α0(v) ≤ ZT β̂(u)} dv)]
)

≈ E
(
ZY [g{ZT β̂(u)}]φ12(1− u, 1−

∫ τU

0

I{ZT α0(v) ≤ ZT β̂(u)} dv)

×
∫ τU

0

[I{ZT α0(v) ≤ ZT β̂(u)} − I{ZT α̂(v) ≤ ZT β̂(u)}] dv
)

=

∫ τU

0

[w1{β̂(u), α0(v)} −w1{β̂(u), α̂(v)}] dv

≈
∫ τU

0

−w12{β0(u), α0(v)}{α̂(v)−α0(v)} dv, (2.27)

where ≈ indicates that the difference converges uniformly to 0 for on [ν, τU ].
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With Taylor expansion,we can show that

µ̃1{β̂(u), α0} − µ̃1{β0(u), α0} ≈ J̃1{β0(u), α0}{β̂(u)− β0(u)}. (2.28)

and we also have

µ1{β̂(τ)} − µ1{β0(τ)} ≈ J1{β0(τ)}{β̂(τ)− β0(τ)}. (2.29)

Let ψ1(τ) = β̂(τ) − β0(τ) and ψ2(τ) = α̂(τ) − α0(τ). From (2.26),(2.27),(2.28)

and (2.29) we can see that

s(1)(β̂, α̂, τ)− s(1)(β0, α0, τ) ≈ A01(τ)ψ1(τ)−
∫ τ

0

∫ τU

0

B11(u, v)ψ2(v) dv du

−
∫ τU

0

B21(v)ψ1(v) dv, (2.30)

where A01(τ) = J1{β0(τ)}, B11(u, v) = −w12{β0(u), α0(v)} and B21(v) = J̃1{β0(v), α0}.
Similarly, we can show that

s(2)(β̂, α̂, τ)− s(2)(β0, α0, τ) ≈ A02(τ)ψ2(τ)−
∫ τ

0

∫ τU

0

B12(u, v)ψ1(v) dv du

−
∫ τU

0

B22(v)ψ2(v) dv, (2.31)

where A02(τ) = J2{α0(τ)}, B12(u, v) = −w21{β0(v), α0(u)} and B22(v) = J̃2{α0(v), β0}.
Let

ω(τ) =




s(1)(β̂, α̂, τ)− s(1)(β0, α0, τ)

s(2)(β̂, α̂, τ)− s(2)(β0, α0, τ)


 , ψ(τ) =




ψ1(τ)

ψ2(τ)


 ,
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then from (2.30) and (2.31) we have

ω(τ) ≈ A0(τ)ψ(τ)−
∫ τU

0

A1(τ, v)ψ(v) dv, (2.32)

where

A0(τ) =




A01(τ) 0

0 A02(τ)


 and A1(τ, v) =




B21(v)
∫ τ

0
B11(u, v) du

∫ τ

0
B12(u, v) du B22(v)


 ,

Let

Sn(b, a, τ) =




S(1)
n (b, a, τ)

S(2)
n (b, a, τ)


 ,

from (2.25) and (2.32) we have

−n1/2Sn(β0, α0, τ) = {A0(τ) + o[ν,τU ](1)} × n1/2ψ(τ)

−
∫ τU

0

{A1(τ, v) + o[ν,τU ](1)} × n1/2ψ(v) dv. (2.33)

Equation (2.33) can be viewed as a stochastic differential equation for n1/2ψ(τ).

Specifically, it is a Fredholm integral equation of the second kind and the solution

can be presented in the following form (Polyanin and Manzhirov, 2008):

n1/2ψ(τ) = −A0(τ)−1{n1/2Sn(β0, α0, τ)−
∫ τU

0

R(τ, v)× n1/2Sn(β0, α0, v) dv}+ o[ν,τU ](1),

(2.34)

where R(τ, v) is determined by A1(τ, v) and A0(τ), and independent of ψ(τ). The

detailed solution can be found in Polyanin and Manzhirov (2008) and thus omitted

here.

By observing (2.34) we can see that, to show the weak convergence of n1/2{β̂(τ)−
β0(τ)} and n1/2{α̂(τ)−α0(τ)}, it suffices to show the weak convergence of−n1/2Sn(β0, α0, τ).
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Let

N i(β, α, τ) =




N1i[g{ZT
i β(τ)}]

N2i[g{ZT
i α(τ)}]




and

Ki(β, α, τ) =




∫ τ

0
Yi[g{ZT

i β(u)}]× φ1(1− u, 1− ∫ τU

0
I{ZT

i α(v) ≤ ZT
i β(u)} dv) du

∫ τ

0
Yi[g{ZT

i α(u)}]× φ2(1−
∫ τU

0
I{ZT

i β(v) ≤ ZT
i α(u)} dv, 1− u) du


 .

First we note that {ZiN i(β0, α0, τ), τ ∈ (0, τU ]} is a VC-class (van der Vaart and

Wellner 1996), and Ki(β0, α0, τ) is Lipschitz in τ . It then follows that
{

Zi{N i(β0, α0, τ)−
Ki(β0, α0, τ)}, τ ∈ (0, τU ]

}
is a Donsker class by the permanence properties. By

the Donsker theorem, −n1/2Sn(β0, α0, τ) converges weakly to a Gaussian process,

namely G(τ), with mean 0 and covariance Σ(s, t) for s, t ∈ (0, τU ], where Σ(s, t) =

E{ιj(s)ιj(t)
T} with ιj(τ) = Zj{N j(β0, α0, τ)−Kj(β0, α0, τ)}, τ ∈ (0, τU ]. By this

fact, coupled with (2.34) and condition C3(a), we can see that n1/2{β̂(τ) − β0(τ)}
converges weakly to a Guassian process for τ ∈ [ν1, τU ], and n1/2{α̂(τ)−α0(τ)} also

converges weakly to a Guassian process for τ ∈ [ν2, τU ], where 0 < ν1, ν2 < τU .
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2.6 Convergence Criteria

2.6.1 Convergence Criteria for Computing Algorithms

In this section we provide detailed convergence criteria which is shared by the two

algorithms A and B proposed in Section 2.1. First, we set the maximum num-

ber of iterations, denoted by M0, and the tolerance level, denoted by tol. At the

m–th iteration (m ≥ 1), define d
[m]
β,q = 1

τU,1−ν1

∫ τU,1

ν1
[β[m+1](q)

(τ) − β[m](q)

(τ)] dτ and

d̃
[m]
β,q = 1

τU,1−ν1

∫ τU,1

ν1
[β[m+1](q)

(τ)−β[m−1](q)

(τ)] dτ for q = 0, · · · , p, recalling that β(0)(τ)

is the intercept and β(q)(τ) is the coefficient corresponding to the q–th element of

Z̃ for q = 1, · · · , p. Let d
[m]
β = maxq{abs(d

[m]
β,q )} and d̃

[m]
β = maxq{abs(d̃

[m]
β,q )}, where

abs(·) stands for the absolute value function. We also define d
[m]
α and d̃

[m]
α in the

similar fashion. At the end of Step A2 (B2) of the m–th iteration, we carry out the

following steps:

Step 0. Compare m with M0. If m < M0 then continue to the next step, otherwise

stop and claim non-convergence.

Step 1. If max{d[m]
β , d

[m]
α } < tol, then announce convergence. Let β̂(τ) = β̂

[m+1]
(τ)

for τ ∈ (0, τU,1] and α̂(τ) = α̂[m+1](τ) for τ ∈ (0, τU,2] and stop. Otherwise continue

to the next step.

Step 2. If max{d̃[m]
β , d̃

[m]
α } < tol, then announce convergence. Let β̂(τ) = {β̂[m+1]

(τ)+

β̂
[m−1]

(τ)}/2 for τ ∈ (0, τU,1] and α̂(τ) = {α̂[m+1](τ) + α̂[m−1](τ)}/2 for τ ∈ (0, τU,2]

and stop. Otherwise continue to Step A3 (B3).

In the simulation studies and data analysis reported in Sections 2.2 and 2.3, we

chose M0 = 10 and tol = 10−2.
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Chapter 3

Quantile Regression for Doubly

Censored Data with Known Left

Censoring Times
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3.1 Quantile Regression Procedures

3.1.1 Data and Model

Let T denote the event time of interest, L be the left censoring time, U be the right

censoring time, and Z̃ be the p×1 vector of recorded covariates. Define Z = (1, Z̃
T
)T

and X = max{L, min(T, U)}. The censoring indicator δ is defined as

δ =





1, if L < T ≤ U ;

2, if T ≤ L;

3, if T > U.

We assume that (L,U) ⊥ T given Z. The observed data consists of n i.i.d. replicates

of (X, δ,Z, L), denoted by {(Xi, δi, Zi, Li)}n
i=1.

Define the conditional τ–th quantile of T given Z by QT (τ |Z) = inf{t : FT (t|Z) ≥
τ}, where FT (t|Z) = Pr(T ≤ t|Z). We consider the quantile regression model taking

the form,

QT (τ |Z) = g{ZT β0(τ)}, τ ∈ (0, 1), (3.1)

where g(·) is a known monotone link function, and β0(τ) is a vector of unknown

coefficients representing covariate effects on QT (τ |Z).

3.1.2 Estimation Procedure

To estimate β0(τ) in model (3.1), our basic idea is to determine an appropriate mar-

tingale process which allows us to construct an unbiased stochastic integral estimating

equation by using Peng and Huang (2008)’s technique.

Following this line, we consider M(t) = N(t)− ∫ t

0
R(u) dΛT (u|Z), where N(t) =

I(X ≤ t, δ = 1), R(t) = I(L < t ≤ X), and ΛT (t|Z) denotes the cumulative hazard

function of T given Z. Let Ni(t), Ri(t), ΛT (t|Zi), and Mi(t) be sample analogues
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of N(t), R(t), ΛT (t|Z), and M(t). Denote the filtration σ{Ni(u), Ri(u+), Zi : i =

1, · · · , n; 0 ≤ u ≤ t} by Ft. Provided (Li, Ui) ⊥ Ti given Zi,

E[dNi(t)|Ft−] = Pr[t ≤ Ti < t + dt, Ri(t) = 1|Ft−]

= Ri(t)Pr[t ≤ Ti < t + dt | Ti ≥ t, Li < t, Ui ≥ t,Zi] = Ri(t)dΛT (t|Zi).

This shows that Mi(t) is a martingale (Fleming and Harrington 1991) and

E{Mi(t)|Zi} = 0,∀t ≥ 0. (3.2)

Under model (3.1), which implies ΛT (g{ZT
i β0(τ)}|Zi) = − log(1− τ), it follows that

Mi[g{ZT
i β0(τ)}] = Ni[g{ZT

i β0(τ)}]−
∫ τ

0

I[Li < g{ZT
i β0(v)} ≤ Xi] dH(v)

from a use of variable transformation within the integral, where H(x) = − log(1−x).

This equality and (3.2) naturally lead to an estimating equation for β0(·) given by

n1/2Sn(β, τ) = 0, (3.3)

where

Sn(β, τ) =
1

n

n∑
i=1

Zi

(
Ni[g{ZT β(τ)}]−

∫ τ

0

I[Li < g{ZT β(v)} ≤ Xi] dH(v)

)
.

It is easy to see that E{Sn(β0, τ)} = 0. With all Li = 0, equation (3.3) reduces to

Peng and Huang (2008)’s estimating equation for randomly right censored data.

The stochastic integral representation of Sn(β, τ) suggests a grid-based procedure

to obtain an estimator of β0(·) based on equation (3.3). Specifically, define the

estimator β̂(τ) as a right-continuous step function that jumps only on a prespecified

grid, GLn = {0 = τ0 < τ1 < · · · < τLn = τU < 1}, where τU is a prespecified constant
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subject to certain theoretical constraint. Because the definition of QT (·|Z0) and

model (3.1) imply g{ZT β0(0)} = 0, we always set g{ZT β̂(0)} = 0. We propose to

obtain β̂(τj) (j = 1, · · · , Ln) by sequentially solving the following equation for β(τj):

n−
1
2

n∑
i=1

Zi(Ni[g{ZT β(τj)}]−
j−1∑

k=1

I[Li < g{ZT β̂(τk)} ≤ Xi]

× {H(τk+1)−H(τk)}) = 0. (3.4)

Note that equation (3.4) is a monotone estimating equation (Fygenson and Ritov,

1994), and the left hand side of (3.4) equals 2n−
1
2 times the gradient of the following

L1–type convex function,

lj(h) =
n∑

i=1

|I(δi = 1)g−1(Xi)− hT I(δi = 1)Zi|+ |R∗ − hT
n∑

l=1

{−I(δl = 1)Z l}|

+ |R∗ − hT
n∑

r=1

(2Zr

j−1∑

k=1

I[Lr < g{ZT
r β̂(τk)} ≤ Xr]× {H(τk+1)−H(τk)})|,

(3.5)

where R∗ is a very large number. As a result, β̂(τj) can be alternatively obtained

as the minimizer of lj(h). This L1–minimization problem can be readily solved, for

example, by using the Barrodale-Roberts algorithm (Barrodale and Roberts, 1974)

implemented in standard statistical software, such as l1fit() function in S-PLUS and

rq() function in R.

3.1.3 Asymptotic Results

Asymptotic studies of the proposed estimator are facilitated by the stochastic integral

representation of our estimating function. We introduce necessary notation before

stating the regularity conditions and theorems.

Let FX(·|Z) and F̄X(·|Z) be the distribution function and survival function of
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X given Z, respectively. Define F̃X,δ(t|Z) = Pr(X ≤ t, δ = 1|Z) and F̄X,L(t|Z) =

Pr(X ≥ t, L ≥ t|Z). Let fT (·|Z), fX(·|Z), f̄X(·|Z), f̃X,δ(·|Z), f̄X,L(·|Z) and g′(·)
denote the first order derivatives of FT (·|Z), FX(·|Z), F̄X(·|Z), F̃X,δ(·|Z), F̄X,L(·|Z)

and g(·), respectively. Let ‖GLn‖ = max{|τj − τj−1|, j = 1, . . . , Ln}.
Define µ(b) = E[ZN{g(ZT b)}], B(b) = E[Z⊗2f̃X,δ{g(ZT b)|Z}g′(ZT b)], vn(b) =

n−1
∑n

i=1 ZiNi{g(ZT
i b)} − µ(b), µ̃(b) = E[ZI{L < g(ZT b) ≤ X}],

J(b) = E[Z⊗2(f̄X{g(ZT b)|Z} −f̄X,L{g(ZT b)|Z})g′(ZT b)], and ṽn(b) = n−1
∑n

i=1 ZiI{Li <

g(ZT
i b) ≤ Xi} − µ̃(b).

The regularity conditions include:

C1. The covariate space Z is bounded, i.e., supi‖Zi‖ < ∞.

C2. (a) Each component of E(ZN [g{ZT β0(τ)}]) is a Lipschitz function of τ ; (b)

f̃X,δ(t|Z) and fX(t|z) are bounded above uniformly in t and z.

C3. (a) f̃X,δ{g(ZT b)|Z} > 0 for all b ∈ B(d0); (b) E(Z⊗2) > 0; (c) each component

of J(b)B(b)−1 is uniformly bounded in b ∈ B(d0), where B(d0) is a neighborhood

containing {β0(τ), τ ∈ (0, τU)}, defined as B(d0) = {b ∈ Rp : infτ∈(0,τU ]‖µ(b) −
µ(β0(τ))‖ ≤ d0}.
C4. infτ∈[ν,τU ]eigminB(β0(τ)) > 0 for any ν ∈ (0, τU), where eigmin(·) denotes the

minimal eigenvalue of a matrix.

We establish the uniform consistency and weak convergence of β̂(τ) stated in the

following theorems.

Theorem 3.1.1. Assuming conditions C1-C4 hold and limn→∞ ‖GLn‖ = 0, then

supτ∈[ν,τU ]‖β̂(τ)− β0(τ)‖ →p 0, where 0 < ν < τU .

Theorem 3.1.2. Assuming conditions C1-C4 hold and limn→∞ n1/2‖GLn‖ = 0, then

n1/2{β̂(τ) − β0(τ)} converges weakly to a Gaussian process for τ ∈ [ν, τU ], where

0 < ν < τU .

The regularity conditions and the proofs of Theorems 3.1.1 and 3.1.2 bear similar-

ity with those in Peng and Huang (2008). Specifically, providing E{Sn(β0, τ)} = 0
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and µ{β̂(0)} = 0 shown in Section 3.1.2, we can establish the uniform consistency

of the proposed estimator by straightforwardly adapting the arguments in Peng and

Huang (2008, Web Appendices). The proof of Theorem 3.1.1 is thus omitted. We

sketch the proof of Theorem 3.1.2 in Section 3.7, which provides more concrete infor-

mation on the asymptotic distribution of n1/2{β̂(·)− β0(·)}.
We would also like to remark that the regularity condition C4 is the crucial con-

straint that ensures the identifiability of {β0(τ), τ ∈ (0, τU ]}. In the simple one-sample

case, this condition is equivalent to

fT [g{β0(τ)}] · Pr[L < g{β0(τ)} ≤ U ] > 0,∀τ ∈ (ν, τU ],

for any ν ∈ (0, τU). Assuming fT (·) is bounded away from 0, this condition fur-

ther reduces to Pr{L < QT (τ) ≤ U} > 0,∀τ ∈ (ν, τU ], implying τU ≤ FT (U+) and

ν ≥ FT (L−). Here and hereafter, for a random variable Y , we use Y + and Y − to

denote the upper bound and the lower bound of its support respectively. This re-

quirement concurs with Chang and Yang (1987)’s identifiability condition proposed

for estimating the distribution function of doubly censored data in the one-sample

case. Since ν > 0 can be chosen arbitrarily, it implies L− ≤ T−. In the general regres-

sion setting, however, C4 only renders implicit conditions on L and τU to guarantee

the identifiability of β0(·).

3.1.4 Inferences

For inferences on β0(·), we propose resampling-based approaches, given the complex-

ity in the asymptotic distribution of β̂(·) shown in the proof of Theorem 3.1.2.

More specifically, to estimate the variance of β̂(τ), we perturb the objective func-

tion (3.5) by ξ1, · · · , ξn, a set of i.i.d. variates from a nonnegative known distribution
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with mean 1 and variance 1, for example, Exp(1). The resulting objective function is

l̃j(h) =
n∑

i=1

|ξiI(δi = 1)g−1(Xi)− hT ξiI(δi = 1)Zi|+ |R∗ − hT
n∑

l=1

{−ξlI(δl = 1)Z l}|

+|R∗ − hT
n∑

r=1

(2ξrZr

j−1∑

k=1

I[Lr ≤ g{ZT
r β∗(τk)} ≤ Xr]× {H(τk+1)−H(τk)})|(3.6)

for j = 1, · · · , Ln, where β∗(τj) is defined as the minimizer of l̃j(h) and can be

obtained sequentially using the same procedure as that taken to compute β̂(τj). For

a fixed τ∗, we can approximate the variance of β̂(τ∗) by repeatedly generating the

variates set {ξ1, · · · , ξn} for B times and obtaining the corresponding {β∗k(τ∗)}B
k=1.

The confidence interval for β0(τ∗) can be constructed using {β∗k(τ∗)}B
k=1 based on a

normal approximation.

Second-stage inferences can also be conducted. First, we consider the general

hypothesis H0 : ψ{β0(τ)} = r0(τ), τ ∈ [l, u], where ψ(·) is a known function and

r0(τ) is a hypothesized value for ψ{β0(τ)}. Let ψ(x) = x(q) and r0(τ) = 0, where u(l)

denotes the l–th component of vector u and 2 ≤ q ≤ p+1. Testing H0 is equivalent to

assess whether the effect of Z(q) is significant for τ ∈ [l, u]. One natural test may take

the form, Γ = n1/2
∫ u

l
{ψ{β̂(v)} − r0(v)}Θ(v) dv, where Θ(·) is a nonnegative weight

function. It can be shown that the limit distribution of Γ under H0 is a mean zero

normal distribution, which may be approximated using the empirical distribution of

Γ∗ = n1/2
∫ u

l
[ψ{β∗(v)} − ψ{β̂(v)}]Θ(v) dv given the observed data.

Another second-stage hypothesis of interest is given by H̃0 : ψ̃{β(τ)} = η0, τ ∈
[l, u], where ψ̃(·) is a known function and η0 is an unspecified constant. With ψ̃(x) =

x(q), H̃0 depicts the scenario where the effect of Z(q) is constant over τ ∈ [l, u]. To

test H̃0, one may adopt the test statistic Γ̃ = n1/2
∫ u

l
{ψ̃{β̂(v)} − ρ̂}Θ̃(v) dv, where

Θ̃(·) is a nonconstant weight function and ρ̂ =
∫ u

l
ψ̃{β̂(v)} dv/(u− l). We can show

that the distribution of Γ̃ under H̃0 is equivalent to the conditional distribution of

Γ̃∗ = n1/2
∫ u

l
([ψ̃{β∗(v)}− ψ̃{β̂(v)}]− (ρ∗− ρ̂))Θ̃(v) dv given the observed data, where
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ρ∗ is ρ̂ with β̂(·) replaced by β∗(·).Therefore, we may reject H̃0 when Γ̃ is greater

than the (1− α/2)th quantile or less than the (α/2)th empirical quantile of Γ̃∗.

A useful by-product of the hypothesis testing for H̃0 is ρ̂ in the special case with

ψ̃(x) = x(q) and Θ̃(v) = 1, denoted by η̂. Let η0 =
∫ u

l
β

(q)
0 (v)dv. This quantity may

be interpreted as the average quantile effect of Z(q) across τ ∈ [l, u]. We can show

that η̂ may be a consistent estimator of η0. The asymptotic distribution of n1/2(η̂−η0)

may be approximated by the empirical distribution of η∗ =
∫ u

l
{β∗(q)(v)− β̂

(q)
(v)}dv

given the observed data. Inference on η0 may be made accordingly.

3.2 A Conditional Version of Quantile Regression

As pointed out in Section 3.1.3, certain conditions are required for the identifiability

of β0(τ) and may not be satisfied in some real datasets, for example, when L− > T−.

It is of practical interest to propose some remedies when data fail to identify some

part of β0(·), most likely to be β0(τ) with small or large τ . In the presence of only

random right censoring, one practical solution is to adaptively imposing an upper

bound, τU , on the τ -range in which β0(τ) is estimated (Peng and Huang, 2008).

This action has little impact on the estimation because the estimating equations for

{β0(τ), 0 < τ < τU} stand alone without involving estimates for β0(τ) with τ > τU .

Dealing with the identifiability issue in the double censoring case is more challeng-

ing because non-identifiability can occur on both tails of regression quantiles. One

perceivable difficulty in view of equation (3.3) is that the sequential procedure pre-

sented in Section 3.1.2 would fail to estimate {β0(τ) : τ ∈ [τL, τU ]}, which, say, are

identifiable with available data, without any good estimate for β0(τ) with τ < τL,

which may be not be identifiable.

When the identifiability of the lower tail of β0(·) is precluded by doubly censored
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data, we propose a conditional version of model (3.1), which takes the form,

QT (τ |Z, T > t0) = g{ZT α0(τ)}+ t0, τ ∈ (0, 1), (3.7)

where QT (τ |Z, T > t0) = inf{t ≥ t0 : Pr(T ≤ t|Z, T > t0) ≥ τ}, and t0 > 0 is a

prespecified constant subject to certain theoretical and practical constraints. A more

detailed discussion on how to choose t0 is relegated to the end of this section. In

model (3.7), the unknown coefficients in α0(τ) represent the effects of covariates on

the τ -th conditional quantile of T provided T > t0.

The reasoning for adopting this conditional version of quantile regression is similar

to that for estimating a conditional survival function of left truncated and right

censored data when the unconditional one is not identifiable (Tsai et al., 1987). Model

(3.7) essentially imposes a lower bound of t0 for regression quantiles. As elaborated

later, doing so helps circumvent the difficulty associated with non-identifiable lower

tail of β0(τ) at the cost of estimating a quantity which may slightly deviate from the

primary interest.

Model (3.7) necessitates a different estimation procedure from that of the uncon-

ditional model (3.1). Estimating equation (3.3) can not be directly borrowed without

modification. The critical step in the adaptation of equation (3.3) is to identify an ana-

logue of M(t) when model (3.7) is assumed instead of model (3.1). Along this line, we

propose a natural substitute of M(t), given by M̌(t) = Ň(t)− ∫ t

0
Ř(u) dΛT (u|Z, T >

t0), where Ň(t) = I(t0 < X ≤ t, δ = 1), Ř(t) = I(t0 ∨ L < t ≤ X), and

ΛT (u|Z, T > t0) is the cumulative hazard function of T conditional on Z and T > t0,

namely, − log Pr(T > t|Z, T > t0). Here ∨ is the maximum operator. Note that M̌(t)

resembles the standard martingale for T truncated by t0 ∨ L except for the condi-

tional hazard function involved. The use of the conditional hazard dΛT (u|Z, T > t0)

in place of dΛT (u|Z) in M̌(t) is in tune with the assumed conditional model (3.7).
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There are two key facts that need to be verified before we adapt the estimation

procedure in Section 3.1.2. First, we need to show E{M̌(t)|Z} = 0 for ∀t ≥ t0.

To this end, standard arguments based on martingale however may not be directly

applicable, and we instead prove this by examining the connection between M(t)

and M̌(t). A detailed proof is provided in Section 3.7. Secondly, we need to have

g{ZT α0(0)} = 0 as the boundary condition. Like in the unconditional case, this

easily follows from the definition of QT (τ |Z, T > t0), and model assumption (3.7).

The estimating equation, motivated by E{M̌(g{ZT α(τ)} + t0)|Z} = 0, is then

given by

n1/2Šn(α, τ) = 0, (3.8)

where

Šn(α, τ) =
n∑

i=1

Zi

(
Ňi[g{ZT

i α(τ)}+ t0]−
∫ τ

0

Ři[g{ZT
i α(v)}+ t0]dH(v)

)
,

where Ňi(·) and Ři(·) are sample analogues of Ň(·) and Ř(·).
An estimator of α0(τ), denoted by α̂(·), can be easily obtained based on equation

(3.8) by slightly modifying the algorithm presented in Section 3.1.2. The key is to

note that Šn(α, τ) can be rewritten as

Šn(α, τ) =
1

n

n∑
i=1

Z∗
i

{
N∗

i [g{Z∗
i
T α(τ)}]−

∫ τ

0

I(L∗i < g{Z∗
i
T α(v)} ≤ X∗

i ) dH(v)

}
,

where Z∗
i = ZiI(Xi > t0), X∗

i = Xi− t0, L∗i = Li− t0, and N∗
i (t) = I(X∗

i ≤ t, δ = 1).

This shows that we can simply replace Xi, Li, Zi in the proposed estimation procedure

for β0(τ) by X∗
i , L∗i , and Z∗

i respectively to compute α̂(τ). The same strategy can

be used to adapt the resampling-based procedures in Section 3.1.4 to make inferences

on α0(τ).

The analogy in estimating equation also suggests the similarity in asymptotic
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studies between the unconditional and conditional cases. Specifically, under regularity

conditions C1
′
–C4

′
, which are C1–C4 defined based on transformed data (X∗, δ, Z∗,

L∗), we have the following theorems:

Theorem 3.2.1. Assuming conditions C1
′
-C4

′
hold and limn→∞ ‖GLn‖ = 0, then

supτ∈[ν,τU ]‖α̂(τ)−α0(τ)‖ →p 0,

where 0 < ν < τU .

Theorem 3.2.2. Assuming conditions C1
′
-C4

′
hold and limn→∞ ‖n1/2GLn‖ = 0, then

n1/2‖α̂(τ) − α0(τ)‖ converges weakly to a Gaussian process for τ ∈ [ν, τU ], where

0 < ν < τU .

Similar to the unconditional case, the regularity condition C4
′
is concerned with

the identifiability of {α0(τ) : τ ∈ (0, τU)} and implicitly impose the theoretical

requirement on t0 and τU . In the one-sample case, it becomes

fT [g{β0(τ)}+ t0] · Pr[L < g{β0(τ)}+ t0 ≤ U ] > 0,∀τ ∈ (ν, τU ]

for ν ∈ (0, τU). It is easy to see that, with t0 chosen to be greater than L−,

L < g{β0(τ)} + t0 would hold with a positive probability and thus the above con-

dition would only impose constraints on τU . This finding in the one-sample case is

suggestive of the diminished identifiability issue with the lower tail of α0(·) when the

conditional version of quantile regression model is adopted. In practice, t0 may be

chosen as a constant which is greater than the observed lower bound of L and also

produces converged estimates for model (3.7) with τ close to 0. The final selection of

τ may be further adjusted according to the scientific interest regarding the quantity

QT (τ |Z, T > t0), thereby yielding more meaningful conditional inference.
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3.3 Extension to Handle Left Truncation

In this section, we present an extension to scenarios where left truncation is present,

as frequently occurs in observational studies. Following the notation in Section

3.1.1, when X is subject to left truncation by event time A, the observed data in-

clude n i.i.d. replicates of (X ′, L′, A′, δ′, Z), denoted by {(X ′, L′, A′, δ′, Z)}n
i=1, where

{X ′, L′, A′, δ′, Z ′} follows the conditional distribution of {X,L, A, δ,Z} given X ≥ A.

It is assumed that (L,U,A) is independent of T given Z. Such data can be referred

to as doubly censored data with left truncation. With all Li = 0, the data reduce to

the usual left truncated right censored data.

Adopting the same idea for doubly censored data studied in the previous sec-

tions, we construct an estimating equation for model (3.1) by utilizing the martingale

structure associated with the observed truncated data described above. In the current

setting, we define the at-risk process as R′(t) = I(L′ ∨ A′ < t ≤ X ′), and can show

that M ′(t) = N(t)− ∫ t

0
R′(s)dΛT (s) is a martingale process. By this fact, only minor

changes to equation (3.3) may be needed in order to accommodate the presence of

left truncation. The proposed estimating equation for β0(·) is given by

n1/2Kn(β, τ) = 0, (3.9)

where

Kn(β, τ) =n−1

n∑
i=1

Zi

(
Ni[g{Zᵀ

i β(τ)}]−
∫ τ

0

I[L′i ∨ A′
i < g{Zᵀ

i β(v)} ≤ X ′
i] dH(v)

)
.

The estimation and inference procedures can be developed based on equation (3.9)

similarly to those described in Section 3.1. Following the same reasoning, one may es-

timate α0(·) in model (3.7) by solving the equation, n1/2Ǩn(α, τ) = 0, with Ǩn(α, τ) =
∑n

i=1 Zi

(
Ňi[g{Zᵀ

i α(τ)}+ t0]−
∫ τ

0
Ř′

i[g{Zᵀ
i α(v)}+ t0]dH(v)

)
, where Ř′

i(t) = I(L′ ∨
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A′ ∨ t0 < t ≤ X ′). Theoretical justifications for these extensions are expected to be

very similar to those for the doubly censoring setting discussed in Section 3.2.

3.4 Simulation Studies

We studied the finite-sample performance of the proposed methods through Monte-

Carlo simulations. We first generated event times from an AFT model with i.i.d.

errors:

log T = b1Z1 + b2Z2 + ε,

where ε followed the extreme value distribution. The covariates Z1 and Z2 were

generated from Unif(0, 1) and Bernoulli(0.5) respectively. We obtained the right

censoring time U and left censoring time L by generating U and L respectively from

Unif(0.1 · I(Z2 = 1), cu) and Unif(0, cl) ·W until L ≤ U with Z2 fixed, where W was

a Bernoulli(1 − p0) variate. It is easy to show that under this set-up, both model

(3.1) and model (3.7) hold with g(·) = exp(·), β0(τ) = α0(τ) = {Qε(τ), b1, b2}T . By

setting p0 = 0.2, L had a probability mass of 0.2 at zero and rendered a scenario

that the lower tail of β0(·) was identifiable. In this case, model (3.1) was considered.

Choosing b1 = 0, b2 = −0.5, cl = 0.5, cu = 3.8 resulted in 20% right censoring and

20% left censoring. With p0 = 0, we studied model (3.7) with t0 = 0.16. We set

p0 = 0, b1 = 0, b2 = −1.0, cl = 0.3, cu = 4.5. The resulting proportions of right

censoring and left censoring are 15% and 20% respectively. Under each configuration,

we generated 1000 data sets of sample size n = 200. We set B = 200 in the resampling

procedures with {ζi}B
i=1 generated from Exp(1). An equally spaced grid on τ with

size 0.01 was adopted when estimating β0(·) or α0(·). We also carried out tests on

the overall significance and the constant effect hypotheses for each covariate. In the

latter test we adopted the weight function Θ(v) = I{v ≥ (l + u)/2}. We set l = 0.1

and u = 0.7.
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Table 3.1 presents the results from estimating model (3.1) and model (3.7) in the

AFT model setting. We report absolute values of biases (Bias), empirical standard

deviations (EmpSD), and average estimated resampling-based standard deviations

(AvgSD) of β̂(τ) and α̂(τ), and coverage rates of 95% Wald confidence intervals of

β0(τ) and α0(τ) with τ = 0.1, 0.3, 0.5 and 0.7. It is observed from Table 3.1 that

in either unconditional or conditional case, biases are small, the resampling-based

standard deviation estimates agree well with the empirical ones, and the coverage

rates are in general close to the nominal level.

Table 3.1: Simulation Results under AFT Models. Bias: absolute biases; AvgSD:
average estimated resampling-based standard deviations; EmpSD: empirical standard
deviations; Cov95: coverage rates of 95% Wald confidence intervals.

Unconditional Case Conditional Case
b1=0, b2=−0.5 b1=0, b2=−1

τ Bias AvgSD EmpSD Cov95 Bias AvgSD EmpSD Cov95

0.1 β̂0 0.07 0.93 0.96 0.87 α̂0 0.02 0.77 0.72 0.90

β̂1 0.01 1.36 1.49 0.89 α̂1 0.06 1.18 1.15 0.92

β̂2 0.00 0.92 0.86 0.92 α̂2 0.01 0.75 0.66 0.95

0.3 β̂0 0.04 0.55 0.49 0.94 α̂0 0.02 0.41 0.38 0.94

β̂1 0.03 0.82 0.77 0.95 α̂1 0.04 0.66 0.61 0.95

β̂2 0.02 0.51 0.43 0.97 α̂2 0.02 0.39 0.36 0.96

0.5 β̂0 0.01 0.35 0.31 0.96 α̂0 0.01 0.31 0.28 0.95

β̂1 0.03 0.55 0.50 0.95 α̂1 0.02 0.49 0.45 0.96

β̂2 0.01 0.32 0.29 0.95 α̂2 0.01 0.29 0.27 0.95

0.7 β̂0 0.01 0.28 0.24 0.96 α̂0 0.03 0.28 0.26 0.95

β̂1 0.02 0.43 0.39 0.96 α̂1 0.02 0.43 0.39 0.96

β̂2 0.00 0.25 0.23 0.95 α̂2 0.01 0.25 0.23 0.96

Table 3.2 presents the hypothesis testing results. The empirical rejection rates

(ERR) for both tests at level 0.05 are reported, together with the estimated average

effects (AvgEst), empirical standard deviations of the average effects, and average

resampling-based standard deviation estimates of the average effects. We see that

the type I errors are close to the nominal level 0.05. The estimated average covariate

effects of Z1 and Z2 are close to the true values. The resampling-based standard
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deviation estimates for the average covariate effect estimates agree well with the

empirical standard deviations.

Table 3.2: Simulation Results on Hypothesis Testing and Second-Stage Inference un-
der AFT Models. ERR: empirical rejection rates; AvgEst: estimated average effects;
AvgSD: average estimated resampling-based standard deviations; EmpSD: empirical
standard deviations.

Unconditional Case
b1=0, b2=−0.5

H0: β(τ) = 0, l ≤ τ ≤ u H0: β(τ) = η0, l ≤ τ ≤ u

ERR AvgEst AvgSD EmpSD ERR

β̂0 0.60 −0.82 0.40 0.39 0.89

β̂1 0.07 −0.03 0.60 0.63 0.05

β̂2 0.29 −0.49 0.37 0.34 0.04
Conditional Case

b1=0, b2=−1
H0: α(τ) = 0, l ≤ τ ≤ u H0: α(τ) = η0, l ≤ τ ≤ u

ERR AvgEst AvgSD EmpSD ERR
α̂0 0.76 −0.79 0.31 0.30 0.96
α̂1 0.06 −0.03 0.49 0.49 0.05
α̂2 0.93 −1.01 0.30 0.29 0.03

In addition to the AFT setting, we considered a log linear model with heteroscedas-

tic errors. That is, event times were generated from the model:

log T = b1Z1 + b2Z2ξ + ε,

where Z1 followed Unif(0, 1), Z2 followed Bernoulli(0.5), and ξ followed Exp(1).

The right censoring time U and left censoring time L were generated in the same

way as in the AFT setting. We considered two different configurations: (a) ε was a

N(0, 1) variate, p0 = 0.2, b1 = 0, b2 = −1.5, cl = 0.7, cu = 4.8; (b) ε was an extreme

value variate, p0 = 0, t0 = 0.03, b1 = 0, b2 = −4.5, cl = 0.05, cu = 4.0. One can

verify that model (3.1) holds under configuration (a) with g(·) = exp(·) and β0(τ) =

{β0(τ), β1(τ), β2(τ)}T , where β0(τ) = Qε(τ), β1(τ) = 0, and β2(τ) = Qb2ξ+ε(τ)−β0(τ).

Under configuration (b), model (3.7) was satisfied with g(·) = exp(·), α0(τ) = Qε(τ) =
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log{− log(1 − τ)}, α1(τ) = 0, and α2(τ) = log[Qexp(b2ξ+ε)(1 − Pr{exp(b2ξ + ε) >

t0}(1 − τ)) − t0] − α0(τ). Here, for a random variable Y , QY (τ) denotes its τ–th

quantile. Note that unlike in the AFT settings, the effects of Z2 were not constant

and took a complicated analytic form. We approximated the true coefficients for Z2

by using bootstrapping. In (a), there were 25% right censoring and 20% left censoring.

In (b), the rates of right censoring and left censoring were 15% and 25% respectively.

Tables 3.3–3.4 present estimation results and hypothesis testing results under the

heteroscedastic setting . We can see that in the presence of varying covariate effects,

our proposed method also performs well. In both unconditional and conditional cases,

the regression quantile estimates are virtually unbiased with standard deviations ac-

curately estimated the proposed resampling method. The estimates for average effects

also have small biases with estimated standard deviations agreeing well with empiri-

cal ones. The proposed test for the overall significance and the test for the constancy

of covariate effect appear to have the right sizes and also reasonable power.

Table 3.3: Simulation Results under Log-Linear Models with Heteroscedastic Errors.
Bias: absolute biases; AvgSD: average estimated resampling-based standard devia-
tions; EmpSD: empirical standard deviations; Cov95: coverage rates of 95% Wald
confidence intervals.

Unconditional Case Conditional Case
b1=0, b2=−1.5 b1=0, b2=−4.5

τ Bias AvgSD EmpSD Cov95 Bias AvgSD EmpSD Cov95

0.1 β̂0 0.06 0.64 0.60 0.91 α̂0 0.05 0.71 0.62 0.94

β̂1 0.05 1.11 1.09 0.91 α̂1 0.01 1.15 1.04 0.94

β̂2 0.09 1.09 1.02 0.85 α̂2 0.02 0.82 0.75 0.94

0.3 β̂0 0.04 0.41 0.37 0.94 α̂0 0.01 0.40 0.36 0.95

β̂1 0.02 0.70 0.63 0.95 α̂1 0.01 0.67 0.62 0.95

β̂2 0.00 0.65 0.53 0.95 α̂2 0.01 0.49 0.44 0.95

0.5 β̂0 0.01 0.33 0.31 0.94 α̂0 0.01 0.32 0.28 0.96

β̂1 0.00 0.56 0.52 0.95 α̂1 0.03 0.54 0.49 0.95

β̂2 0.01 0.42 0.37 0.95 α̂2 0.00 0.39 0.36 0.95

0.7 β̂0 0.02 0.32 0.29 0.96 α̂0 0.03 0.30 0.27 0.95

β̂1 0.00 0.53 0.49 0.95 α̂1 0.02 0.51 0.46 0.96

β̂2 0.02 0.35 0.31 0.96 α̂2 0.01 0.36 0.33 0.95
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Table 3.4: Simulation Results on Hypothesis Testing and Second-Stage Inference un-
der Log-Linear Models with Heteroscedastic Errors. ERR: empirical rejection rates;
AvgEst: estimated average effects; AvgSD: average estimated resampling-based stan-
dard deviations; EmpSD: empirical standard deviations.

Unconditional Case
b1=0, b2=−1.5

H0: β(τ) = 0, l ≤ τ ≤ u H0: β(τ) = η0, l ≤ τ ≤ u

ERR AvgEst AvgSD EmpSD ERR

β̂0 0.17 −0.32 0.32 0.31 0.90

β̂1 0.06 0.00 0.54 0.53 0.03

β̂2 0.96 −1.50 0.45 0.42 0.23
Conditional Case

b1=0, b2=-4.5
H0: α(τ) = 0, l ≤ τ ≤ u H0: α(τ) = η0, l ≤ τ ≤ u

ERR AvgEst AvgSD EmpSD ERR
α̂0 0.79 −0.79 0.30 0.28 0.98
α̂1 0.05 −0.02 0.50 0.48 0.04
α̂2 0.99 −1.66 0.37 0.36 0.14

We also evaluated the performance of our method in doubly censored data with

left truncation. The set-ups and true parameter values were chosen to be the same

as for the conditional model investigated before, except that we now imposed an

additional left truncation time, A, which was generated from Unif(0, 0.5) for the

AFT model case and Unif(0, 0.03) for the heteroscedastic model case. The resulting

truncation portions were around 15% for both cases. t0 was still set to be 0.16 and

0.03 respectively. Tables 3.5 and 3.6 present simulation results for the left truncation

scenario. It can be seen that our method also performs well under this setting.

Simulations were also conducted to compare our approach with a naive approach

that simply discards all left-censored subjects. Data were generated from the same

configurations as the unconditional cases in Table 3.1 and Table 3.2. We evaluated

the estimation of model (3.1). Figure 3.1 displays the mean estimated coefficients

from the proposed approach and those from the naive approach along with the true

coefficients. This figure shows that the proposed estimators are virtually unbiased

while the naive approach can produce substantial biases particularly in the estimation
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of non-zero coefficients. This finding shows that it is important to account for double

censoring arising from practical situations.

Table 3.5: Simulation Results on Parameter Estimation for Doubly Censored Data
with Left Truncation. Bias: absolute biases; AvgSD: average estimated resampling-
based standard deviations; EmpSD: empirical standard deviations; Cov95: coverage
rates of 95% Wald confidence intervals.

AFT Case Heteroscedastic Case
b1=0, b2=−0.5 b1=0, b2=−1

τ Bias AvgSD EmpSD Cov95 Bias AvgSD EmpSD Cov95
0.1 α̂0 0.06 0.62 0.57 0.92 α̂0 0.01 0.59 0.55 0.92

α̂1 0.02 0.95 0.91 0.93 α̂1 0.01 0.96 0.89 0.94
α̂2 0.05 0.61 0.54 0.95 α̂2 0.06 0.66 0.59 0.95

0.3 α̂0 0.02 0.29 0.26 0.95 α̂0 0.01 0.36 0.34 0.94
α̂1 0.00 0.45 0.43 0.96 α̂1 0.02 0.59 0.56 0.95
α̂2 0.00 0.28 0.27 0.96 α̂2 0.03 0.41 0.40 0.94

0.5 α̂0 0.00 0.20 0.20 0.94 α̂0 0.01 0.29 0.28 0.95
α̂1 0.00 0.32 0.31 0.95 α̂1 0.01 0.49 0.46 0.95
α̂2 0.00 0.19 0.19 0.95 α̂2 0.03 0.35 0.34 0.93

0.7 α̂0 0.01 0.18 0.16 0.95 α̂0 0.03 0.28 0.25 0.95
α̂1 0.00 0.28 0.27 0.95 α̂1 0.01 0.47 0.42 0.96
α̂2 0.01 0.16 0.16 0.95 α̂2 0.02 0.33 0.31 0.95

3.5 The CFFPR Data Example

We apply the proposed quantile regression method to the CFFPR data discussed

in Section 2.1. Cystic Fibrosis (CF) is one of the most common and life-shortening

genetic disorders affecting the lungs and digestive systems of about 30,000 children

and adults in the United States and 70,000 worldwide (Cystic Fibrosis Foundation

2010). Pseudomonas aeruginosa (PA), the predominant bacterial pathogen infecting

80% of CF patients under age 18, accelerates decline in lung function (Kosorok et

al. 2001) and serves as an important predictor of mortality in CF (Retsch-Bogart et

al. 2008). In our analysis, we used the CFFPR data collected during 1986-2005 to

investigate the association between onset ages of the first detected PA infection and

several risk factors in CF patients diagnosed by age 10. Similar data were analyzed
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Table 3.6: Simulation Results on Hypothesis Testing and Second-Stage Inference for
Doubly Censored Data with Left Truncation. ERR: empirical rejection rates; AvgEst:
estimated average effects; AvgSD: average estimated resampling-based standard de-
viations; EmpSD: empirical standard deviations.

AFT Case
b1=0, b2=−1

H0: β(τ) = 0, l ≤ τ ≤ u H0: β(τ) = η0, l ≤ τ ≤ u

ERR AvgEst AvgSD EmpSD ERR
α̂0 0.97 −0.81 0.22 0.22 0.99
α̂1 0.05 −0.00 0.36 0.35 0.05
α̂2 0.98 −1.00 0.22 0.22 0.05

Heteroscedastic Case
b1=0, b2=−4.5

H0: α(τ) = 0, l ≤ τ ≤ u H0: α(τ) = η0, l ≤ τ ≤ u

ERR AvgEst AvgSD EmpSD ERR
α̂0 0.87 −0.78 0.26 0.26 0.99
α̂1 0.06 −0.02 0.43 0.44 0.04
α̂2 0.99 −1.46 0.32 0.31 0.13

by Lai et al. (2004) under the Cox model and Yan et al. (2009) based on temporal

process regression.

In the CFFPR, a patient’s age at the first PA infection, which is the event time

of interest T , is subject to both left and right censoring. Among 12,818 CF patients

diagnosed between 1986 and 2000, 3,343 (26.1%) patients had PA infection at study

entry (i.e. T is left censored by the patient’s age at the first CFFPR record L) and

2,213 (17.3%) patients had no PA infection documented by December 2005 (i.e. T is

right censored by age at the last follow-up before the cut-off date U). To avoid the

complication with delayed entry, we restricted the study population to subjects who

were diagnosed before age 10 years during 1986–2000 and alive at age 10 years. The

first restriction was imposed because the first 10 years were known to have greatest

potential to take advantage of early diagnosis (Campbell and White, 2005; Grosse

et al., 2006). The second restriction was imposed to avoid left truncation due to

mortality prior to CF diagnosis. Since the mortality rate before age 10 years was

very low, about 1.5% (Grosse et al., 2006), we expect excluding patients who died
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Figure 3.1: Comparison among True coefficients (Bold Solid Lines), Mean Estimated
Coefficients from the Proposed Method (Solid Lines), and Mean Estimated Coeffi-
cients from the Naive Approach (Dotted Lines).

before age 10 years would only result in a small deviation from the general young CF

population. The restricted sample contains 11,179 patients with 23.7% left censoring

and 16.2% right censoring.

We applied the proposed quantile regression method to this doubly-censored re-

stricted CFFPR sample. Since the support of left censoring time L in this dataset

appears to have a lower bound approaching 0, suggesting the lower tail identifiabil-

ity, we fit the data with the unconditional model (3.1), choosing g(·) as the identity

function. The same set of covariates examined in Yan et al. (2009) was considered,

including gender (1 for females and 0 for males), diagnosis mode (denoted by “fac-

tor”) and diagnosis year (denoted by “dx”). Diagnosis mode was defined according

to common clinical practices that identify CF prior to 2005, which includes four cat-

egories: diagnosis at birth due to meconium ileus (MI), diagnosis shortly after birth

by neonatal/prenatal screening (SCR), diagnosis at variable ages because of family
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history (FH), and diagnosis at variable ages from various symptoms (SYMP) other

than MI (Lai et al., 2004; Yan et al., 2009). Diagnosis year was classified into three

periods, i.e., 1986-1989 (dx86), 1990-1993 (dx90), and 1994-2000 (dx94), that coin-

cided with the major therapeutic breakthroughs in CF, which are, Pulmozyme in

1994 (Fuchs et al. 1994; Ramsey and Dorkin 1994) and TOBI in 1999 (Ramsey et al.

1999). Boy patients who were diagnosed between 1986 and 1989 (dx86) by symptoms

other than MI (SYMP) was chosen as the reference comparison group.

Figure 3.2 displays the proposed coefficient estimates for β0(τ) in bold solid lines

along with their 95% pointwise Wald confidence intervals in bold dashed lines for

τ ∈ [l, u] with l=0.10 and u=0.65. The naive estimates obtained from the subset

excluding left-censored observations and the corresponding 95% confidence intervals

are plotted in dot-dash lines and dotted lines respectively. The estimates for β0(τ)

with τ close to 0 (not shown), though exhibiting rather large variability, are all

converged solutions to the L1–minimization problem (3.5). This further suggests

that the lower tail identifiability of regression quantiles may be of little concern in

this example. As shown in Figure 3.2 (panel A), with all observations included in

the analysis, the estimated intercept indicates that about 10% of male patients with

CF diagnosed during 1986-1989 by SYMP acquired their first PA infection by age 2

years and approximately 65% of them had their first PA infection by age 9 years.

With regard to the gender effect (Figure 3.2, panel B), the regression coefficient

exhibited a cross-over pattern, that is, it is first positive and then flips the sign around

τ = 0.35. This indicates that girls acquired their first PA infection earlier than boys

except for patients below 35% quantiles among each gender. More importantly, the

gender difference is more pronounced at larger τ ’s, which correspond to patients who

acquired first PA infection at older ages. Similarly, many other covariates show non-

constant effects across the quantile range of 0.1 to 0.65. For example, the effect of

”FH diagnosis” (Figure 3.2, panel D) increases with τ , while the coefficient estimates
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for both “diagnosis 1990-1993” and “diagnosis 1994-2000”(Figure 3.2, panel F and G)

decrease with τ . Such varying effects would not have been identified by traditional

Cox regression or classic linear regression that only models the mean.

Our result on the beneficial effect of “FH diagnosis” (i.e., later first PA infection

compared to the “SYMP diagnosis”) appears to be new. This effect would have been

masked by an opposite effect if left-censored cases were excluded from the analysis.

Panel D of Figure 3.2 shows that even the pointwise 95% confidence intervals do not

overlap across the entire range of τ , leading to an erroneous conclusion on the effect of

“FH diagnosis”. Substantial discrepancy is also noted on the magnitude of the regres-

sion estimates of covariates “MI diagnosis” (panel C), “diagnosis 1990-1993” (panel

F) and “diagnosis 1994-2000” (panel G) between the proposed method and the naive

method. These systematic differences are also observed in our simulation studies, and

provide strong evidence to support the importance of appropriately accommodating

left censored observations when investigating PA infections in CF.

Formal tests on the significance of covariate effects were performed based on the

average quantile effects across τ ranging from 0.10 to 0.65. The delaying effect of

FH diagnosis and the accelerating effects of more recent diagnosis cohorts (1990-1993

and 1994-2000) on first PA infections observed in Figure 3.2 (panels D, F, and G)

are confirmed by very significant p-values, which are all < 0.001. We paid particular

attention to testing the gender effect due to its cross-over pattern as shown in Figure

3.2, and assessed the aggregated gender effect in two τ−intervals:τ ∈ [0.1, 0.35) and

τ ∈ [0.35, 0.65]. Our test is significant in neither interval, with both p-values around

0.2 (data not shown).

In the view of rather monotone patterns of the coefficients for these covariates,

we conducted the proposed constancy tests using the weight function Θ̃(t) = I[t <

(l + u)/2]. These analyses show that the effects of gender, FH, dx90 and dx94 may

vary across τ , and the corresponding p-values are 0.01, 0.001, < 0.001, and < 0.001
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Figure 3.2: Coefficient Estimates (Bold Solid Lines) and 95% Pointwise Confidence
Intervals (Bold Dashed Lines) from the Proposed Method, in Contrast with Coefficient
Estimates (Dot-Dash Lines) and 95% Pointwise Confidence Intervals (Dotted Lines)
from the Naive Method.
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respectively, confirming the visual trends illustrated in Figure 3.2. These results have

some interesting clinical implications. The earlier acquisition of first PA infections

in females with CF reported repeatedly in the literature (Lai et al., 2004; Yan et al.,

2009) is not uniform across the entire female population; this gender effect is smaller

among CF patients who are subject to high risk versus low risk of PA infection.

The association between more recent diagnosis cohorts and shorter times to first

PA infection may be explained by the increased culture frequency in these patients,

which may shorten the time to detecting PA infection in patients with late onsets

of PA infection in a greater extent, as compared to those who experienced first PA

infections at young ages. This may be because patients in the latter group tended to

have frequent sick visits in early life, which may offset the benefit of frequent cultures

in the detection of PA infection.

3.6 Remarks

In this chapter we propose a quantile regression method for doubly censored data with

known left censoring times. The stochastic integration presentation of the proposed

estimating equation facilitates asymptotic studies and entails computationally simple

implementations. A useful solution to handle the unique identifiability issue with

doubly censored regression quantiles is proposed based on conditional inference. We

also present an adaptation of our method to settings where left truncation is present.

The double censoring mechanism, (L,U) ⊥ C given Z, is adopted in this work

and thus both L and U are allowed to depend on Z. In addition, we require L be

always observed here, which is often true in registry study settings, as exemplified

by the CFFPR data. Such additional information on left censoring time contributes

to identifying an appropriate martingale for constructing estimating equations. How

to relax the assumption on known L merits future research, and we conduct further
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investigation in the next chapter.
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3.7 Proofs

3.7.1 Proof of Theorem 3.1.2

Following the proof of Lemma B.1. in Peng and Huang (2008) we can show that

supτ∈(0,τU ]‖n−1/2

n∑
i=1

Zi{Ni(exp{Zᵀ
i β̂(τ)})−Ni(exp{Zᵀ

i β0(τ)})}

− n1/2(µ{β̂(τ)} − µ{β0(τ)})‖ →p 0. (3.10)

and

supτ∈(0,τU ]‖n−1/2

n∑
i=1

Zi{I(Li < exp{Zᵀ
i β̂(τ)} ≤ Xi)− I(Li < exp{Zᵀ

i β0(τ)} ≤ Xi)}

− n1/2(µ̃{β̂(τ)} − µ̃{β0(τ)})‖ →p 0. (3.11)

(3.10) and (3.11) together with the uniform convergence of µ{β̂(τ)} for τ ∈ (0, τU ]

imply a stochastic differential equation as mentioned in Peng and Huang (2008):

−n1/2Sn(β0, τ) =n1/2[µ{β̂(τ)} − µ{β0(τ)}]

−
∫ τ

0

[J{β0(u)}B{β0(u)}−1 + o(0,τU ](1)]

× n1/2[µ{β̂(τ)} − µ{β0(τ)}] dH(u) + o(0,τU ](1).

Using the production integration theory (Gill and Johansen, 1990; Andersen et al.,

1998), we have

n1/2[µ{β̂(τ)} − µ{β0(τ)}] = φ{−n1/2Sn(β0, τ)}+ o(0,τU ](1), (3.12)

where φ is a linear operator. By the Donsker theorem, −n1/2Sn(β0, τ) converges

weakly to a tight Gaussian process G(τ) for τ ∈ (0, τU ]. Hence n1/2[µ{β̂(τ)} −
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µ{β0(τ)}] converges weakly to φ{G(τ)} which is also a Gaussian process. Using

Taylor expansions we immediately have n1/2{β̂(τ)− β0(τ)} converges weakly to the

Gaussian process B{β0(τ)}−1φ{G(τ)} for τ ∈ [ν, τU ], where the lower limit ν ensures

B{β0(τ)}−1 is uniformly bounded.

3.7.2 Justification for E{M̌(t)|Z} = 0

From the arguments in the unconditional case we know that

E{N(t)|Z} =

∫ t

0

I(L < u ≤ X)λ(u|Z) du

=

∫ t

0

I(u ≤ X)λ(u|Z) du−
∫ t

0

I(u ≤ L)λ(u|Z) du

= ΛT (t ∧X|Z)− ΛT (t ∧ L|Z).

Hence, for t > t0, we have

E{N(t)−N(t0)|Z} = {ΛT (t ∧X|Z)− ΛT (t0 ∧X|Z)}

− {ΛT (t ∧ L|Z)− ΛT (t0 ∧ L|Z)}. (3.13)

On the other hand, we have

ΛT (t ∧X|Z)− ΛT (t0 ∧X|Z)

= I(X > t0){ΛT (t ∧X|Z)− ΛT (t0|Z)}

= I(X > t0)[− log{1− Pr(T ≤ t ∧X|Z)}

+ log{1− Pr(t ≤ t0|Z)}]

= I(X > t0)[− log{1− Pr(T ≤ t ∧X|Z)− Pr(T ≤ t0|Z)

1− Pr(T ≤ t0|Z)
}]

= I(X > t0)[− log{1− Pr(T ≤ t ∧X|T > t0, Z)}]

= I(X > t0)ΛT (t ∧X|T > t0, Z). (3.14)
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Similarly we can show that

ΛT (t ∧ L|Z)− ΛT (t0 ∧ L|Z) = I(L > t0)ΛT (t ∧ L|T > t0, Z). (3.15)

Plugging (3.14) and (3.15) into (3.13), we have

E{N(t)−N(t0)|Z} =I(X > t0)ΛT (t ∧X|T > t0, Z)

− I(L > t0)ΛT (t ∧ L|T > t0, Z)

=

∫ t

0

{I(X > t0)I(u ≤ X)− I(L > t0)I(u ≤ L)}

× λT (u|T > t0, Z) du

=

∫ t

0

{L < u ≤ X}λT (u|T > t0, Z) du

=

∫ τ

0

I(L < F−1
T (v|T > t0, Zi) ≤ X) dH(v). (3.16)

From (3.13) and (3.16) we immediately have E{M̌(t)|Z} = 0.



76

Chapter 4

Quantile Regression for Doubly

Censored Data
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4.1 Quantile Regression Procedures

4.1.1 Data and Model

The structure of the data we study in this chapter is very similar to that in Chap-

ter 1, with the only distinction that the left censoring time may not be observed

here, while it is always known in Chapter 1. More specifically, the data consists of

(X, δ,Z), where X = max{L, min(T, U)}, with L and U denoting the left and right

censoring times respectively, δ = I(L < T ≤ U) + 2I(T ≤ L) + 3I(T > U), and

Z = (1, Z(1), Z(2), · · · , Z(p))T is the covariate vector. We observe n i.i.d. replicates of

(X, δ,Z), denoted by {Xi, δi, Zi}n
i=1.

We consider the quantile regression model

QT (τ |Z) = g{ZT β0(τ)}, τ ∈ (0, 1), (4.1)

where QT (τ |Z) = inf{t : Pr(T ≤ t|Z) ≥ τ}, g(·) is a known monotone link function,

and β0(τ) is a vector of unknown coefficients.

4.1.2 Estimation Procedure

For any random variable W , define FW (t) = Pr(W ≤ t). In the one sample setting,

Turnbull (1974) suggested a self-consistent estimator for FT (t), which can essentially

be solved from the following estimating equation:

FT (t) =
1

n

n∑
i=1

{
I(Xi ≤ t, δi = 1) + I(Xi ≤ t, δi = 2) + I(Xi > t, δi = 2)

FT (t)

FT (Xi)

+ I(Xi ≤ t, δi = 3)
FT (t)− FT (Xi)

1− FT (Xi)

}
.

(4.2)

To see the self-consistency of equation (4.2), it is equivalent to show E(φ) = 0,
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where φ is defined as follows:

φ ≡ {I(X ≤ t)− FT (t)}I(δ = 1) + {I(X ≤ t) + I(X > t) · FT (t)

FT (X)
− FT (t)}I(δ = 2)

+ {I(X ≤ t) · FT (t)− FT (X)

1− FT (X)
− FT (t)}I(δ = 3)

= {I(T ≤ t)− FT (t)} (4.3)

+
{
I(L ≤ t) + I(L > t) · FT (t)

FT (L)
− I(T ≤ t)

}
I(T ≤ L) (4.4)

+
{
I(U ≤ t) · FT (t)− FT (U)

1− FT (U)
− I(T ≤ t)

}
I(T > U). (4.5)

For simplicity, we denote the expressions in (4.3), (4.4) and (4.5) by φ1, φ2 and

φ3, respectively. It is obvious that E(φ1) = 0, and we also have:

E(φ2) = E
{
E

[
I(L ≤ t) + I(L > t) · FT (t)

FT (L)
− I(T ≤ t)

]
I(T ≤ L)|L}

= E
{
E

[
I(L ≤ t)I(T ≤ L) + I(L > t) · FT (t)

FT (L)
· I(T ≤ L)

− {I(L ≤ t)I(T ≤ L) + I(L > t)I(T ≤ t)}|L]}

= E
[
I(L ≤ t)FT (L) + I(L > t)FT (t)− {I(L ≤ t)FT (L) + I(L > t)FT (t)}]

= 0,

E(φ3) = E
{
E

[
I(U ≤ t) · FT (t)− FT (U)

1− FT (U)
− I(T ≤ t)

]
I(T > U)|U}

= E
{
E

[
I(U ≤ t) · FT (t)− FT (U)

1− FT (U)
· I(T > U)− I(U < T ≤ t)|U]}

= E
[
I(U ≤ t) · {FT (t)− FT (U)} − I(U ≤ t) · {FT (t)− FT (U)}]

= 0.

Thus we have justified the estimating equation (4.2).

Let T̃ = g−1(T ), X̃ = g−1(X), Ñ(t) = I(X̃ ≤ t, δ = 1), L̃(t) = I(X̃ ≤ t, δ = 2)

and R̃(t) = I(X̃ ≤ t, δ = 3). We can easily obtain an estimating equation for FT̃ (t)
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from (4.2). Further, we can rewrite it as a stochastic integral:

FT̃ (t) =
1

n

n∑
i=1

{
Ñi(t) + L̃i(t) +

∫ ∞

t

FT̃ (t)

FT̃ (u)
dL̃i(u) + R̃i(t)

∫ t

0

FT̃ (t)− FT̃ (u)

1− FT̃ (u)
dR̃i(u)

}
.

(4.6)

Assuming the continuity of FT̃ (u) and applying integral by parts to the right hand

side of (4.6), we have

FT̃ (t) =
1

n

n∑
i=1

{
Ñi(t) + FT̃ (t)L̃i(∞) + FT̃ (t)

∫ ∞

t

L̃i(u)

{FT̃ (u)}2
dFT̃ (u)

+ (1− FT̃ (t))

∫ t

0

R̃i(u)

{1− FT̃ (u)}2
dFT̃ (u). (4.7)

The above equation can easily accommodate covariates and thus naturally extend to

the regression setting under model (4.1). With t replaced by Ziβ(τ), equation (4.7)

can be adapted to be an estimating equation for the regression coefficient β0(·):

n1/2Sn(β, τ) = 0, (4.8)

where

Sn(β, τ) =
1

n

n∑
i=1

Zi

[
Ñi{ZT

i β(τ)}+ τL̃i(∞) + τ

∫ 1

τ

L̃i{ZT
i β(τ)}
u2

du

+ (1− τ)

∫ τ

0

R̃i{ZT
i β(τ)}

(1− u)2
du− τ

]
.

The proposed estimating equation (4.8) bears similar spirits with that of Lin et al.

(2012) in the self-consistency property, but distinguishes itself by the stochastic inte-

gral representation. This new formulation of the self-consistent estimating equation

offers two major advantages. First, it evokes a clearly-defined estimation procedure,

which is discussed in details in Section 4.1.3. More importantly, it may greatly fa-

cilitate understanding of the large sample properties, as can be seen in the work of
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Peng and Huang (2008) and Peng (2011) on the random right censoring case. Note

that under the random right censorship, equation (4.8) reduces to the one proposed

in Peng (2011), which renders an estimator closely related to that of Portnoy (2003),

the special case of Lin et al. (2012) under the right censoring setting.

4.1.3 Computing Algorithm

The estimating equation (4.8), unlike the one in the previous chapter, does not allow

for a sequential estimation procedure. Instead, it suggests an iterative algorithm,

which is commonly adopted for self-consistent estimators. The procedure is described

below:

Step 0. Choose the initial value β̂
(0)

(τ), τ ∈ (0, 1]. Set m = 0.

Step 1. Solve S∗
n(β̂

(m+1)
; β̂

(m)
, τ) = 0 for β̂

(m+1)
(τ), τ ∈ (0, 1], where

S∗
n(β; b, τ) =

1

n

n∑
i=1

Zi

[
Ñi{ZT

i β(τ)}+ τL̃i(∞) + τ

∫ 1

τ

L̃i{ZT
i b(τ)}
u2

du

+ (1− τ)

∫ τ

0

R̃i{ZT
i b(τ)}

(1− u)2
du− τ

]
.

(4.9)

Step 2. Let m = m + 1. Repeat Step 1 until certain convergence criteria are met.

At Step 0, we may obtain the initial estimate by ignoring left censoring and fitting

model (4.1) using existing quantile regression methods which assume right censoring

only, for example, Peng and Huang (2008)’s method.

At Step 1, we may assume β̂(τ) to be a cadlag function that jumps only on a

prespecified grid, GLn = {0 = τ0 < τ1 < · · · < τLn < τLn+1 = 1}. According to model

(4.1), we may set g{ZT
i β̂

(m+1)
(τ0)} = 0, and obtain β̂

(m+1)
(τj) for j = 1, · · · , Ln,
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which is the minimizer of the L1−type convex function

lj(h) =
n∑

i=1

|I(δi = 1)g−1(Xi)− I(δi = 1)hT Zi|+ |R∗ − hT
n∑

l=1

−I(δl = 1)Z l|

+
∣∣∣R∗ − hT

n∑
r=1

2Zr

{
τjL̃i(∞) + τj

Ln∑

k=j

L̃r{ZT
r β̂

(m)
(τk)}

( 1

τk

− 1

τk+1

)

+ (1− τj)

j−1∑

k=0

R̃r{ZT
r β̂

(m)
(τk)}

( 1

1− τk+1

− 1

τk

)
− τj

}∣∣∣,

(4.10)

where R∗ is a very large number.

Due to censoring on both the lower and upper tails of T , we anticipate that β0(τ)

may be unidentifiable for lower and higher τ ’s, and therefore, β̂(τ) may not be stably

estimated for certain τ ranges, say, τ(0, τL) and (τU , 1), where 0 < τL < τU < 1. We

can obtain reasonable approximates for τL and τU based on the rationale that, given

a fine grid GL, β̂(τj) and β̂(τj+1) are expected to be close in the identifiable region for

β̂(·). For example, we may set τL to be the smallest j such that ‖β̂(τj+1)−β̂(τj)‖ < d,

and set τU to be the largest j such that ‖β̂(τj)−β̂(τj−1)‖ < d, where d is a pre-specified

positive constant. The choice of d can be quite flexible as long as we avoid values

that are too small (e.g., less than 10−2) or too large (e.g., greater than 102). We set

d = 1 in our numerical studies.

Despite the fact that β0(τ) may only be estimable for τ ∈ [τL, τU ], the whole

process of β̂(τ) for τ ∈ (0, 1) is needed in the iterative procedure. Having decided

the values of τL and τU , we may employ a simple solution for this difficulty, which

shares the spirit of the Last-Observation-Carried-Forward (LOCF) approach. More

specifically, we can impute β̂(τ) with β̂(τL) for τ ∈ (0, τL) and β̂(τU) for τ ∈ (τU , 1)

at Step 1, and carry the imputed β̂(·) over to Step 2.
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4.1.4 Inferences

To make inference on β0(τ), we utilize the bootstrap approach (Efron, 1979). First

we generate B data sets from boostrapping the original data set, and then estimate

β0(τ) for each of these data sets. We denote the resulting estimates by {β̂∗b(τ)}B
b=1.

For each fixed τ , we may approximate the variance of β̂(τ) using the sample variance

of {β̂∗b(τ)}B
b=1, and then construct confidence intervals by normal approximation.

It is often of practical interest to conduct hypothesis testing on the covariate

effects. Denote the coefficient corresponding to Z(q) by β
(q)
0 (τ) for q = 1, · · · , p. Here

we provide the procedures for performing two important tests on β
(q)
0 (τ).

The first test concerns the overall significance of β
(q)
0 (τ) across τ ∈ [l, u], where

l and u are pre-specified constants satisfying τL < l < u < τU . We may for-

mulate this test as H0 : β
(q)
0 (τ) = 0, τ ∈ [l, u]. A test statistic can be given

by η̂q =
∫ u

l
β̂(q)(v)Θ(v)dv/(u − l), where Θ(v) is a non-negative weight function

and can be properly chosen to emphasize the departure from H0. Define η∗q =
∫ u

l
β̂∗(q)(v)Θ(v)dv/(u − l). It can be shown that, under H0, the limiting distri-

bution of η̂q is a normal distribution with mean 0. The standard error, namely

SEq, can be approximated from the bootstrap realizations {η∗b,q}B
b=1, where η∗b,q =

∫ u

l
β∗

(q)

b (v)Θ(v)dv/(u − l). Subsequently, we may reject H0 at α level if |η̂q/SEq| >

Z1−α/2, where Z1−α/2 denotes the Z score for the 1− α/2 percentile point.

To assess the constancy of β
(q)
0 (τ) over [l, u], we may formulate the test as H̃0 :

β
(q)
0 (τ) = ρ0, τ ∈ [l, u], where ρ0 is an unknown constant. To test H̃0, we may adopt

the test statistic Γ̃ =
∫ u

l
{β̂(q)(v) − η̂q}Θ̃(v) dv/(u − l), where Θ̃(v) is a non-negative

weight function. Under the observed data, we can approximate the distribution of Γ̃

by {Γ̃∗b}B
b=1 obtained from the bootstrapped sample, where Γ̃∗b = n1/2

∫ u

l
{β̂∗(q)

b (v) −
η∗b,q}Θ̃(v) dv/(u− l). This fact naturally leads to a Wald-type of percentile-based test

for H̃0, the rejection of which indicating varying covariate effect for Z(q).
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4.2 Numerical Studies

4.2.1 Simulation Studies

We assessed the finite-sample performance of the proposed method through Monte-

Carlo simulations. First we considered a linear model with i.i.d errors, following Lin

et al. (2012):

T = b1Z1 + ε,

where ε ∼ N(0, 1), Z1 ∼ Unif(0, 1), and ε and Z1 are independent. For the censoring

mechanism, we considered two cases: (I) the censoring times are unconditionally

independent with the survival time, and (II) the censoring times are dependent on the

covariates, and conditionally independent with the survival time given the covariates.

More specifically, in case (I) we set L ∼ Unif(−7, 3) and U ∼ L+Unif(4.5, 11.5). In

case (II) we set L ∼ Exp(4Z1 + 4) and U ∼ L + Unif(1.5, 8). For both case (I) and

case (II), we set b1 = 5, which leads to 20% right censoring and 10% left censoring.

We also examined our method under an AFT model with heteroscedastic errors:

log(T ) = b1Z1 + b2Z2ξ + ε,

where ε follows the extreme distribution, Z1 follows Unif(0, 1), Z2 follows Bernoulli(0.5),

and ξ follows Exp(1). L was generated from Unif(0, 0.25), and U was generated from

L + Unif(0.1 · I(Z2 = 1), 4.5). Under this set-up, namely case (III), model (1) holds

with g(·) = exp(·) and β0(τ) = {β(0)
0 (τ), β

(1)
0 (τ), β

(2)
0 (τ)}T , where β

(0)
0 (τ) = Qε(τ),

β
(1)
0 (τ) = b1, and β

(2)
0 (τ) = Qb2ξ+ε(τ) − β

(0)
0 (τ). We set b1 = 0 and b2 = −0.5 to

maintain 15% left censoring and 15% right censoring.

Under each scenario, we generated 1000 data sets of sample size n = 200 and

adopted an equally spaced grid of τ of size 0.01. For the estimation, the convergence

rates are 100%, 98.7% and 99.8% for cases (I), (II) and (III) respectively, reached after
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4, 7.7 and 4.7 iterations on average. We set B = 200 in the bootstrap procedure.

Results for cases (I) and (II) are summarized in Table 4.1, and results for case (III)

are presented in Table 4.2. In both tables, we report the biases (Bias), empirical stan-

dard deviations (EmpSD), average estimated standard deviations from resampling

(AvgSD) for β̂(τ), and coverage rates of 95% confidence intervals of β0(τ) using nor-

mal approximation, with τ ranging from 0.2 to 0.8. It can be seen that the estimation

and inference procedures perform well. The biases are small, the resampling-based

standard error estimates generally agree well with the empirical ones, and the cov-

erage rates are close to the nominal level of 95%. Our results for cases (I) and (II)

agree well with that reported in Lin et al. (2012).

Table 4.1: Simulation Results under Models with Constant Covariate Effects. Bias:
absolute biases; EmpSD: empirical standard deviations; AvgSD: average estimated
resampling-based standard deviations; Cov95: coverage rates of 95% Wald confidence
intervals.

Case I

β̂(0) β̂(1)

τ Bias EmpSD AvgSD Cov95 Bias EmpSD AvgSD Cov95
0.2 0.000 0.246 0.266 0.939 0.012 0.425 0.453 0.948
0.3 0.017 0.218 0.238 0.938 -0.010 0.377 0.413 0.946
0.4 0.011 0.205 0.224 0.947 -0.003 0.357 0.391 0.953
0.5 0.018 0.202 0.217 0.943 -0.020 0.359 0.385 0.944
0.6 0.008 0.202 0.218 0.947 -0.004 0.362 0.392 0.948
0.7 0.009 0.219 0.229 0.934 -0.001 0.393 0.413 0.939
0.8 0.008 0.229 0.248 0.935 -0.006 0.421 0.452 0.941

Case II

β̂(0) β̂(1)

τ Bias EmpSD AvgSD Cov95 Bias EmpSD AvgSD Cov95
0.2 -0.024 0.305 0.381 0.958 0.037 0.503 0.587 0.956
0.3 0.002 0.231 0.267 0.947 0.010 0.404 0.456 0.952
0.4 -0.002 0.198 0.220 0.943 0.014 0.364 0.394 0.954
0.5 -0.002 0.188 0.205 0.949 0.013 0.356 0.381 0.942
0.6 0.000 0.190 0.203 0.942 0.005 0.361 0.383 0.942
0.7 0.000 0.196 0.210 0.937 0.015 0.376 0.405 0.948
0.8 0.005 0.216 0.231 0.943 0.000 0.420 0.454 0.943
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Table 4.2: Simulation Results under Model with Varying Covariate Effects. Bias:
absolute biases; EmpSD: empirical standard deviations; AvgSD: average estimated
resampling-based standard deviations; Cov95: coverage rates of 95% Wald confidence
intervals.

Case III

β̂(0)

τ Bias EmpSD AvgSD Cov95
0.2 -0.018 0.456 0.464 0.951
0.3 -0.012 0.317 0.333 0.935
0.4 0.000 0.265 0.289 0.954
0.5 -0.005 0.234 0.261 0.958
0.6 -0.007 0.219 0.250 0.959
0.7 -0.001 0.220 0.244 0.948
0.8 -0.004 0.222 0.256 0.954

β̂(1)

τ Bias EmpSD AvgSD Cov95
0.2 0.021 0.700 0.724 0.959
0.3 0.005 0.499 0.525 0.951
0.4 -0.004 0.420 0.452 0.949
0.5 -0.004 0.365 0.413 0.957
0.6 0.003 0.344 0.392 0.962
0.7 -0.001 0.344 0.383 0.957
0.8 0.005 0.349 0.399 0.962

β̂(2)

τ Bias EmpSD AvgSD Cov95
0.2 -0.008 0.369 0.421 0.959
0.3 0.010 0.279 0.306 0.961
0.4 0.003 0.237 0.258 0.949
0.5 0.011 0.220 0.235 0.948
0.6 0.007 0.211 0.223 0.946
0.7 0.006 0.204 0.219 0.954
0.8 -0.001 0.203 0.227 0.957
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4.2.2 Data Analysis

In this section we apply the proposed methods to the CFFPR study, with the same

objective as in Chapter 3, that is, we investigate the association between onset ages

of the first detected PA infection and several risk factors in young CF patients who

were diagnosed by age 10 years. The same set of covariates were considered: gender,

diagnosis mode and diagnosis year. Diagnosis mode was classified into four cate-

gories: diagnosis at birth due to meconium ileus (MI), diagnosis shortly after birth

by neonatal/prenatal screening (SCR), diagnosis at variable ages because of family

history (FH), and diagnosis at variable ages from various symptoms (SYMP) other

than MI. Diagnosis year was categorized into three periods, 1986-1989 (dx86), 1990-

1993 (dx90), and 1994-2000 (dx94). The reference group was chosen to be boy patients

diagnosed with SYMP between 1986 and 1989. The analyzed sample contains 11,179

patients, among whom 23.7% were left censored and 16.2% right censored.

We fit model (4.1) using the identity link. Unlike in Chapter 3, here we do not

utilize the information on L, although it is always observed in the CFFPR study.

By the proposed methods we were able to obtain β̂(τ) for τ ∈ [0.2, 0.9]. Figure

4.1 depicts β̂(τ) in bold lines and their 95% Wald confidence intervals in shades

for τ ∈ [0.2, 0.75]. The naive estimates from Peng and Huang (2008)’s approach,

ignoring all left censored observations, are plotted in dotted lines in the same figure.

The obvious departure displayed by the naive estimates from the proposed estimates

suggests the importance of properly handling left censoring. The estimated intercept

(Figure 4.1, panel A) indicates that about 20% of boy patients with CF diagnosed

during 1986-1989 by SYMP acquired their first PA infection by age 2 years and

approximately 75% of them had their first PA infection by age 11 years.

From Figure 4.1 we observe that, the gender effect (panel A) and the effect of

“dx90” (panel G) appear to be always negative for τ ∈ [0.2, 0.75]. The effects of MI

diagnosis (panel C) and “dx94” (panel F) are also negative for most of the quantile
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Figure 4.1: Coefficient Estimates (Bold Solid Lines) and 95% Pointwise Confidence
Intervals (Shaded Areas) from the Proposed Method, in Contrast with Naive Coeffi-
cient Estimates Ignoring Left Censored Observations (Dotted Lines).

range. In contrast, the effects of FH diagnosis and SCR diagnosis (panels D and

E) seem to be always positive for τ ∈ [0.2, 0.75]. In addition, we can see that the

effects of gender, MI diagnosis, “dx90” and “dx94” exhibit non-constant patterns

with increasing magnitudes at higher τs.

We conducted formal tests on the significance of the covariates based on the aver-

age quantile effects over τ ∈ [0.2, 0.75]. These tests confirmed the accelerating effects

of female gender, MI diagnosis, “dx90” and “dx94” (p-values=0.03, 0.01, 0.01, and

< 0.001, respectively), and the delaying effect of SCR diagnosis (p-value=0.04). The
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effect of FH diagnosis is marginally significant with a p-value of 0.06. These results

indicate that, girl patients, newer diagnosis cohorts (patients diagnosed between 1994

and 2000, or between 1990 and 1993), and patients diagnosed by MI tend to ac-

quire their first PA infection earlier, while the situation may be opposite for patients

diagnosed by FH and SCR.

The varying patterns of the effects of gender, MI diagnosis, “dx90” and “dx94”

were also confirmed by statistical tests (all p-values< 0.01). The delaying effects of

these covariates are even more pronounced at higher quantiles, which correspond to

patients who acquired their first PA infection at older ages. Such inhomogeneity in

the covariate effects across quantiles would not have been captured by a traditional

AFT model or Cox model.

In Figure 4.2, we plotted the estimated quantiles of age at first PA infection (in

bold lines) along with the 95% Wald confidence intervals (in shades) for 7 subgroups

of patients. Panel A corresponds to the reference group, boy patients who were

diagnosed by SYMP between 1986 and 1989. Panels B through G represent groups

that differed from the reference group by each covariate: gender (panel B), diagnosis

mode (panels B, C, D), and diagnosis year (panels E, F). Also shown in Figure 4.2

are the estimated quantiles from Chang and Yang (1987)’s nonparametric method (in

dot-dash lines), given that all covariates are binary. We observe that, the estimates

from the proposed methods are generally close to those from Chang and Yang (1987)’s

method, which suggests the validity of our model.
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Figure 4.2: Estimated Quantiles of Age at First PA infection (Bold Solid Lines) and
95% Pointwise Confidence Intervals (Shaded Areas) from the Proposed Method, in
Contrast with Estimated Quantiles from Chang and Yang (1987) (Dot-Dash Lines).
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Chapter 5

Summary and Future Work
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5.1 Summary

In this dissertation we investigated two complex censoring schemes, dependent cen-

soring and double censoring. We developed quantile regression methods which can

accommodate these complications.

We first studied survival data subject to dependent censoring, focusing on the

scenario where the marginal quantiles of survival outcome is of interest. We proposed

unbiased estimating equations with efficient and stable algorithms, and established

uniform consistency and weak convergence of the proposed estimators based on the-

ory in empirical processes and stochastic differential equations. We conducted exten-

sive simulation studies, which demonstrated satisfactory performance of the proposed

quantile regression procedure with moderate sample size. We applied the proposed

method to the WASID study to demonstrate its practical utility.

We then developed a new quantile regression method for doubly censored data

with known left censoring times (while the right censoring times may not always be

observable). We also proposed conditional inference to address the special identifia-

bility issues attached to the double censoring setting. The conditional inference can

be easily adapted to handle left truncation. The proposed inference procedures well

utilize the embedded martingale structure, which facilitates the establishment of the

asymptotic properties for the proposed estimators. In addition, our methods can be

conveniently implemented in standard software. Simulation studies show satisfac-

tory finite-sample performance of our method. An application to the CFFPR data

revealed interesting scientific findings.

We further considered a more challenging double censoring problem, where the

random left censoring times are not required to be always observed. As there is no

clear martingale structure attached to this scenario, we developed a self-consistent

estimating equation along with an efficient iterative algorithm. Our simulation studies

suggest the validity of the proposed procedure. We also conducted data analysis for
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the CFFPR study using this new method.

5.2 Future Work

We plan to complete the ongoing work on doubly censored data in the near future.

First, we will establish the asymptotic properties, including uniform consistency and

weak convergence, of the proposed estimators. We will further polish our algorithm

to accommodate potential identifiability issues arising from double censoring, and

conduct additional simulation studies to test the new proposals. Finally, we plan to

apply the proposed methods to data sets other than the CFFPR data.

In what follows we describe some possible topics for future work. One direction

is to extend our work on dependent censoring to more complicated scenarios with a

mixture of competing risks and semi-competing risks. For example, in the WASID

study, multiple events were of interest. The primary endpoint is a terminating end-

point, since the follow-up of a patient would be stopped if any single component of

the primary endpoint was observed. A secondary event is nonfatal myocardial infarc-

tion, which is a nonterminating event since its occurrence did not prevent subsequent

observations of other events. This poses a scenario consisting of both competing risks

and semi-competing risks, which is often encountered in other biomedical studies.

It would be very desirable to develop sensible quantile regression methods for such

a general case while properly disentangling the complex censoring relationship and

handling the dependence among the multiple events.

It is also worthwhile to notice that, in both projects presented in this proposal, we

employed a grid-based estimation procedure, for which sufficiently small grid size is

warranted for nice asymptotic properties. It may be interesting to develop a grid-free

approach, following Huang (2010) for example. This may also merit future research.
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