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Abstract 

 

Addressing gaps in the age-specific evidence used for United States air pollution policy 
 
 

By Heather Strosnider 
 

 

Introduction 

Substantial and consistent evidence supports the conclusion that short-term exposure to ambient 
concentrations of ozone and fine particulate matter (PM2.5) is associated with increases in 
mortality and morbidity; however, the evidence for morbidity outcomes in populations under 65 
is limited. This gap is due to the lack of a centralized, readily accessible database of emergency 
department (ED) visits and hospitalizations for populations under 65 for air pollution 
epidemiology. To address this gap, we leveraged the infrastructure of the Centers for Disease 
Control and Prevention National Environmental Public Health Tracking Program to gather data 
for respiratory ED visits and conducted a multi-county study. 

Methods 

We requested daily, county-level data aggregated by respiratory outcome, age group, and sex 
from thirty states. We conducted a descriptive analysis of respiratory ED visits to evaluate 
annual and daily rates. Then, we conducted a two-stage multi-county analysis of the association 
between short-term exposure to ambient ozone and PM2.5 and respiratory ED visits for each 
age-outcome group. Lastly, we evaluated the between county heterogeneity of the results from 
our two-stage analysis and explored the contribution of various county-level covariates to that 
heterogeneity for the association between PM2.5 and asthma among children. 

Results 

Seventeen states submitted the requested data, resulting in a database of almost 50 million 
respiratory ED visits covering over 40% of the United States population. The median rate of ED 
visits per 10,000 population per year for all respiratory ED visits combined was 410 with an 
interquartile range of 276. We observed variation in the rates by state, county, outcome, age 
group, and sex. Ozone and PM2.5 were associated with respiratory ED visits among all ages with 
variation in magnitude by age group and outcome. State, region, and percent of population 
without health insurance explained 50% of the between-county heterogeneity for the association 
between PM2.5 and asthma among children.  

Conclusion 

Our work addresses an important gap in air pollution epidemiology for respiratory morbidity for 
populations under 65 and suggests that effect estimates from multi-city studies of populations 
over 65 may not be transportable to younger age groups. 
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Chapter 1 - Introduction 
 

Substantial and consistent evidence supports the conclusion that short-term exposure to ambient 

concentrations of ozone and fine particulate matter (PM2.5) is associated with increases in 

mortality and morbidity [1, 2]. In their 2013 Integrated Science Assessment (ISA), the U.S. 

Environmental Protection Agency (EPA) determined ozone to have a causal relationship with 

respiratory health effects and a likely causal relationship with cardiovascular health effects and 

non-accidental and cardiopulmonary-related mortality [2]. Ozone also has a suggestive causal 

relationship with central nervous system effects such as alterations in neurotransmitters, motor 

activity, short and long-term memory, sleep patterns, and histological signs of 

neurodegeneration. EPA concluded in their 2009 ISA for particulate matter (the update to which 

is currently under review) that PM2.5 has a causal relationship with cardiovascular health effects 

and mortality and a likely causal relationship with respiratory health effects [1]. PM10-2.5 and 

ultrafine particles have a suggestive causal relationship with cardiovascular health effects, 

respiratory health effects, and mortality. EPA’s causal determinations are based on results from 

controlled human exposure, toxicological, and epidemiological studies reviewed as part of the 

process for setting national air pollution policy. While the depth of published literature is 

substantial, evidence is limited or inconsistent for some pollutants and health effects, such as the 

relationship between asthma and PM2.5 among children and the relationship between respiratory 

infections and ozone. Further, questions remain regarding the shape of the concentration 

response (C-R) functions, the potential for health effects at lower concentrations, the effects of 

multi-pollutant exposures, and the protection of sensitive sub-populations. 
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Ozone is not directly emitted into the atmosphere. It is a secondary air pollutant generated by a 

reaction between ultraviolet radiation from the sun and precursor pollutants from anthropogenic 

and natural sources [2]. In the stratosphere, naturally occurring ozone plays a beneficial role by 

absorbing ultraviolet radiation from the Sun. Tropospheric or ground-level ozone is harmful to 

living organisms and the environment. Precursor pollutants include carbon monoxide (CO), 

nitrogen oxides (NOx), and volatile organic compounds (VOCs) largely generated from the 

combustion of fossil fuels. Temporal and spatial variation in ozone levels are influenced by 

concentration of precursor pollutant sources, meteorological patterns, and topography. However, 

ozone molecules have an atmospheric lifetime of a few weeks and, as such, are transported 

regionally and globally. As a secondary pollutant, ozone is more spatially homogeneous than 

other primary pollutants. Ambient concentration of ozone in the US has been declining since the 

implementation of the NOx State Implementation Plan Call rule in 2003 and the subsequent 

reduction of NOx emissions. Regionally, concentrations tend to be highest in the southwest, 

particularly southern California, and in the mid-Atlantic extending to the Atlanta metro area. 

Ozone levels are typically higher during the warm season, which varies regionally. Ozone itself 

reacts with NO and therefore levels are lower in urban areas where NO sources are concentrated 

and higher in neighboring suburban areas. In urban areas, ozone exhibits a strong diurnal pattern 

and varies spatially though the degree of spatial variability is different between urban areas. 

Ozone levels in rural areas are uniform and more persistent.  

 

Whereas ozone is a specific chemical compound, particulate matter (PM) is a mixture of 

chemically and physically diverse particles and liquid droplets of varying sizes [1]. PM can 

include anions (sulfate, nitrate), cations (ammonium, sodium, potassium), trace elements, total 
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carbon (organic, elemental), gaseous pollutants (CO, NO2, SO2, O3), and biologic components. 

PM is classified according to its aerodynamic diameter. Fine particulate matter (PM2.5) refers to 

those particles with a mean aerodynamic diameter less than or equal to 2.5 micrograms per 

meter. Such particles are of greater concern in regards to health, because of their ability to 

penetrate the lungs and their tendency to contain components with higher toxicity. Both finer and 

courser particles are more readily exhaled and thus do not penetrate the lungs as well. Standards 

for PM were established first for total suspended particles in 1971 and then transitioned to PM10 

in 1987. PM2.5 was first regulated in 1997 after health effects were observed in areas meeting the 

PM10 standard. Ambient concentrations of PM2.5 have since declined. Regional differences have 

also declined though levels are higher in southern California and major urban areas, especially in 

the east. Over 24 hours, PM2.5 peaks twice corresponding to morning and evening rush hour. 

PM2.5 is spatially more homogeneous than smaller or larger PM or other primary pollutants due 

to the formation of secondary PM2.5, a longer atmospheric lifetime, and increased 

transportability. PM2.5 and ozone are correlated with positive correlation in the summer and 

negative correlation in the winter. 

 

Both natural and anthropogenic sources contribute to PM2.5. Primary PM2.5 is directly emitted 

into the atmosphere and is largely generated by the combustion of fossil fuels. Secondary PM2.5 

is formed within the atmosphere through the transformation of gaseous pollutants such as sulfur 

oxides, nitrogen oxides, and volatile organic compounds. PM2.5 varies chemically and physically 

over both time and space due to differences in meteorology, sources, and topography. While over 

fifty chemical components can contribute to PM2.5, fewer than five typically account for the 

majority of the total mass [3]. Organic carbon, sulfate, and nitrate contribute the most to total 
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PM2.5 mass, almost 40% [3, 4]. These components are emitted by multiple sources and are 

associated with secondary PM2.5. The major source categories of primary PM2.5 are metal 

industry, crustal/soil particles, motor vehicle traffic, steel industry, coal combustion, oil 

combustion, salt particles, and biomass burning [4]. Motor vehicle traffic accounts for more than 

30% of PM2.5 mass. While traffic and soil sources are more geographically ubiquitous, other 

sources are geographically concentrated: steel and metal processing in industrialized cities, 

biomass burning in northwest, residual oil combustion in northeast cities and cities with major 

seaports, and coal combustion in Ohio River Valley [4]. Elemental carbon, a tracer for traffic-

related PM, shows less seasonal variation but is typically higher in west coast and lower 

northeast [3]. Organic carbon is highest in the west where it peaks in the fall and winter and in 

the southeast where it peaks in the spring and fall. Sulfate is higher in the east and has greater 

seasonal variation than other components with peaks in the summer. Nitrate is highest in the 

winter across the US with highest levels in California.  

 

Under the Clean Air Act, EPA is required to set national primary and secondary ambient air 

quality standards that are protective of public health and welfare for common air pollutants [5]. 

National Ambient Air Quality Standards (NAAQS) have been set by EPA for six criteria air 

pollutants: particulate matter, ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and 

lead. States are required to comply the standards and provide an enforceable state 

implementation plan. Standards are developed and periodically reviewed based on the latest 

science in peer-reviewed literature about each pollutant and its impact on public health and 

welfare. EPA’s process includes an ISA, a risk/exposure assessment (REA), and a policy 

assessment (PA). An ISA synthesizes and evaluates the policy-relevant scientific evidence 
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including information on exposure, physiological mechanisms, toxicology, and epidemiology 

including information on reported C-R relationships with consideration of effects on susceptible 

populations [1, 2]. In an ISA, EPA evaluates the evidence of the relationship between each 

pollutant and various health outcomes and makes a causal judgement. When selecting studies to 

include in an ISA, EPA considers the quality, adequacy, and comparability of the study 

population, statistical methods, air quality data, and effect measurements used. Information from 

the ISA is used in development of the REA which is a quantitative assessment of pollutant 

exposure and the associated risks to human health or the environment based on current air 

quality levels, current standards, and proposed standards [6, 7]. Human health risk assessments 

require an estimate of the C-R relationship as well as data on ambient air pollutant 

concentrations, baseline rates of health effects, and the population. A C-R function is generally 

estimated from one or more epidemiologic studies used in the ISA. Specifically, the beta of a 

time-series or case-crossover regression analysis can be transformed to provide an estimate of 

the number of increased health effects per short-term increase in air pollution concentration. 

Such risk assessments typically focus on ED visits, hospitalizations, or deaths because of data 

availability. 

 

Robust epidemiologic evidence and, subsequently, C-R functions exist for mortality among all 

ages and for hospitalizations among adults 65 and older due in large part to the availability of 

national vital statistics data and Medicare data. These data have enabled many multi-city 

analyses, which have been instrumental in setting the current NAAQS [8-15]. Estimates from 

multi-city studies provide strong evidence for determining causality between air pollution and 

health, for evaluating potential health benefits of proposed policies across a large portion of the 
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US, and for establishing ambient concentration standards that provide adequate protection for the 

US population. In selecting C-R functions for a REA, estimates of effect from multi-city studies 

are preferred because they (1) use the same study design over each city making city results 

comparable, (2) have more statistical power and provide effect estimates with relatively greater 

precision, (3) leverage the statistical power from data across all cities to detect an effect in any 

given city, and (4) avoid the problem of publication bias [6].  

 

The evidence base for morbidity outcomes for US populations not covered by Medicare (i.e., 

<65 years) often come from single-city studies or international multi-city studies [16-21]. No 

single US study of respiratory or cardiovascular ED visits or hospitalizations among people 

under 65 covers more than a few cities or counties. This is because a national data source with 

the necessary data elements is not readily available and many states only recently began 

centralizing data for ED visits. The labor-intensive process for accessing, assembling, and 

managing hospital ED data from multiple states has deterred the execution of such studies. While 

informative, single-city studies have limitations for national policy setting due to between-city 

differences in air pollution composition and population characteristics as well as differences in 

study methodology. These differences make it difficult to synthesize results from single-city 

studies and resolve inconsistencies in evidence they produce. Further, they limit the ability of 

EPA to conduct human health risk assessments. For the current ozone and PM standards, EPA 

conducted national-scale mortality risk assessments using results from multi-city studies. For 

morbidity outcomes, EPA conducted similar risk assessments for hospital admissions among all 

ages in only 12 cities for ozone and 15 cities for PM where epidemiologic study results and 

necessary data were available. For respiratory related ED visits among all ages, their assessment 
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was only conducted in Atlanta and New York City, indicating a strong need for a multi-city 

study. 

 

Among the outcomes not covered by a multi-city study, respiratory ED visits among people 

under 65 are an important health outcome. The majority of all respiratory ED visits occur among 

people under 65 [22]. Further, respiratory ED visits are more common among people under 65 

than respiratory hospitalizations, cardiovascular ED visits, or cardiovascular hospitalizations. 

Diseases of the respiratory system (ICD-9-CM codes 460-519) are the primary diagnosis for 

approximately 10% of all ED visits annually, ranking as the third highest disease category. 

Multiple specific respiratory diseases such as acute upper respiratory infection (AURI) (ICD-9-

CM 460, 461, 463-466), asthma (ICD-9-CM 493), and pneumonia (ICD-9-CM 480-486) rank in 

the top twenty primary diagnoses for people under 65. Diseases of the circulatory system (ICD-

9-CM codes 390-459) are the primary diagnosis for 4.7 million (3.4%) ED visits annually. 

Circulatory system diseases in the top twenty primary diagnoses include heart disease (excluding 

ischemic), ischemic heart disease, essential hypertension (ICD-9-CM 401), and cerebrovascular 

disease for people 65 and over. No circulatory system diseases appear in the top twenty for 

people under 65. The top twenty primary diagnoses for emergency or unscheduled 

hospitalizations includes circulatory diseases of heart disease (excluding ischemic), ischemic 

heart disease, and cerebrovascular disease and respiratory diseases of pneumonia and chronic or 

unspecified bronchitis. These are conditions typically observed in older adults, with the 

exception of pneumonia hospitalizations, which is also common among young children. 
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Respiratory ED visits are often due to either exacerbations of chronic respiratory diseases, such 

as asthma or chronic obstructive pulmonary disease (COPD), or a worsening of respiratory 

symptoms associated with respiratory infections. AURI is the second highest primary diagnosis 

and asthma is the sixteenth representing 4% and 1.5% of ED visits each year [22]. 

Approximately 10% of ED patients report having asthma with hypertension as the only chronic 

disease found more frequently among ED patients. Five percent of ED patients report having 

COPD. Specific respiratory diseases in the top 20 primary diagnoses for ED visits vary by age. 

Children younger than 15 years of age are frequently diagnosed with AURI, acute pharyngitis 

(462), asthma, influenza (487, 488), and pneumonia. Individuals 15 to 64 years are diagnosed 

with AURI, acute pharyngitis, asthma, and chronic and unspecified bronchitis (490, 491) while 

adults 65 years and older are diagnosed with AURI, chronic and unspecified bronchitis, and 

pneumonia. 

 

The primary route of exposure for air pollution is inhalation. Air pollution is absorbed via the 

respiratory tract (RT) with uptake dependent upon: (1) the morphology and physiochemical 

properties of the RT; (2) the route, volume, and frequency of breathing; and (3) the 

physicochemical properties of the pollutant(s) [1, 2]. For example, larger surface to volume ratio 

in smaller lungs (i.e. children versus adults) reduces distal penetration. Additionally, increased 

breathing in terms of frequency and volume, like during exercise, can increase distal penetration. 

The extracellular lining fluid (ELF) of the RT is a complex mixture of phospholipids, proteins, 

and antioxidants, which can vary though the RT and from person to person. It is the first barrier 

against air pollution through both its ability to react and transform an air pollutant and its 
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thickness. The physicochemical properties of a pollutant and the specific mixture of the ELF 

influences how the pollutant moves and interacts with the RT. 

 

Ozone is highly reactive, has low water solubility, and is a gas at physiological temperature [2]. 

These characteristics influence its movement and absorption in the RT.  Ozone reaches the 

underlying tissue of the RT by diffusing through the ELF. Ozone absorption gradually decreases 

with distal progression into the RT resulting in the greatest proportion, as much as half, absorbed 

in the URT. The ELF is thicker in the nasal cavity than the rest of the RT to the point where its 

thickness prevents ozone from reaching the underlying tissue. Ozone also reacts with the soluble 

ELF components to form range of secondary oxidation products, which tend to limit the tissue 

dose and distal penetration of ozone itself. Ozone and ELF components have different reaction 

rates and the formed secondary products have different reactivity. As substrates in the ELF are 

depleted, the amount of ozone reaching the underlying tissue increases. Ozone not absorbed or 

transformed in the URT penetrates further into the RT. Ozone dose to the lung tissue is greatest 

at the junction of the conducting airway and the gas exchange region known as the cetriacinar 

region. 

 

Uncertainty remains regarding the mechanism(s) by which ozone leads to adverse health 

outcomes [2]. However, it is clear that exposure to ozone leads to decreased pulmonary function, 

airways inflammation, and increased bronchial reactivity. Evidence implicates the initiation of 

numerous cellular responses by the secondary oxidation products. These products can activate 

the neural reflexes, which can lead to decrements in pulmonary function. They can also alter the 

epithelial barrier function leading to increased permeability and potentially allergic sensitization 
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and airway hyper-responsiveness. They can modify innate or adaptive immunity that may lead to 

AHR and immune system dysfunction. Secondary oxidation products can also lead to 

sensitization of the bronchial smooth muscle and airways remodeling. They also directly 

initiation inflammation.  

 

In addition to the previously described factors, the movement and absorption of PM specifically 

is further complicated by variability in PM size, shape, and composition [1]. Particles are 

exhaled or deposited in the RT predominately via diffusion, impaction, and sedimentation. Size 

of the particle also plays an important role. The primary mechanism for deposition is diffusive 

for particles <0.1 µm, aerodynamic and diffusive for particles 0.1 to 1 µm, and aerodynamic for 

particles >1 µm. Aerodynamic processes lead to deposition by impaction and sedimentation. 

Mid-range particles from 0.1 to 1.0 µm are subject to the least deposition. Where particles are 

deposited is highly variable, even for particles of the same size. Like ozone, the nasal passages 

acts a first line of defense, especially for larger particles where 100% are deposited in the nose. 

Where a particle is deposited determines how long the particles are retained and how they are 

cleared. Poorly soluble particles deposited in the tracheobronchial region are cleared in 24 to 48 

hours via the mucociliary escalator while those deposited in the alveolar regions take months to 

years to clear via macrophage phagocytosis and migration to terminal bronchioles. Soluble 

particles can be absorbed through the epithelium either by dissolving on the RT surface or within 

phagolysomes depending on their size, shape, and composition. Absorbed particles are retained 

in the lungs or enter the bloodstream and distribute systemically.  
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Like ozone, the specific mechanisms and pathways leading from exposure to adverse health 

effects is unresolved [1]. Broadly, deposited particles can initiate pathways for cellular injury 

and inflammation. One possible mechanism may be initiation of these pathways by reactive 

oxygen species (ROS) for which PM is either a direct source or the stimulation for cellular 

production of ROS. Additional specific components of soluble PM may directly initiate 

pathways for cellular injury and inflammation by disrupting receptors or enzymes. The cellular 

injury or inflammation can lead to airway hyperresponsiveness, airway remodeling, allergic 

immune responses, impaired host defense and infections, progression of pre-existing lung 

disease, and DNA damage. 

 

EPA concludes in its most recent integrated science assessments that current evidence from 

toxicological, controlled human exposure, and epidemiological studies indicates a positive 

association between short-term exposure to ozone and to PM2.5 and respiratory ED visits [1, 2]. 

Fewer epidemiological studies have evaluated the effects of air pollutants on ED visits compared 

to hospitalizations. EPA reviewed eight ED studies in their 2013 ISA for ozone and five ED 

studies for 2009 PM. Overall, these studies indicate a positive association with ED visits for all 

respiratory outcomes combined as well as specific respiratory outcomes including asthma, 

COPD, and respiratory infections. However, the consistency, magnitude, and precision of 

estimated effects vary between studies for specific pollutants, outcomes, and age groups. Studies 

completed more recently contribute to the evidence base providing effect estimates across 

multiple age groups.   
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Strong epidemiologic evidence of a positive association between ozone and all respiratory ED 

visits among all ages is provided by several Atlanta studies [17, 20, 23, 24]. These studies 

consistently observed a larger magnitude of association during the warm season. Peel et al 

evaluated the associations for multiple respiratory diseases using a 3-day moving average lag and 

found significant positive associations with all respiratory outcomes combined and upper 

respiratory infections [17]. Associations with asthma, pneumonia, and COPD were elevated but 

consistent with the null. The Atlanta based studies along with studies in New York and Seattle 

provide evidence of a positive association between ozone and asthma ED visits among all ages, 

again with strongest associations seen in warm season [16, 25]. The Seattle study found effects 

of higher magnitude in children younger than 18 compared to adults 18 and older [16]. Similarly, 

a study in Alberta, Canada found stronger associations between ozone and asthma ED visits 

among the age groups 5 to 14 and 15 to 44 compared with all other age groups [21]. A seven-city 

study in Canada found positive associations between COPD ED visits and ozone, again with 

strongest associations seen in warm season, but no association for respiratory infection ED visits 

at the lags evaluated (lags 0, 1, or 2) [26].  

 

Relatively large studies conducted since EPA’s ISA provide further evidence to support a 

positive association between ozone and respiratory ED visits. A study of asthma ED visits in 

three US cities found positive associations with ozone among age groups under 40 but not age 

groups 40 and older with the strongest associations among 5-18 age group [27]. The largest study 

to date evaluated multiple respiratory ED visits among multiple age groups in California [28]. 

Significant, positive associations were observed for all ages for all respiratory diseases, ARI, and 

asthma and a slight association for pneumonia and COPD. The associations varied by age group 



13 
 

with the strongest magnitude frequently observed for children 0 to 4 and adults 19 to 64. An 

Indianapolis study of asthma ED visits found positive associations with ozone during the warm 

season for the 5-17 age group but not for other age groups [29]. In St. Louis, ozone was 

associated with respiratory and asthma/wheeze ED visits among all ages but not with pneumonia 

or COPD.[30] In Atlanta, ozone was associated with pneumonia and upper respiratory infection 

ED visits among children 0 to 4 but not with bronchiolitis/bronchitis [31].   

 

Evidence of an association between PM2.5
 and respiratory ED visits is less substantiated. As with 

ozone, however, strong evidence of the respiratory effects of PM2.5 was generated from Atlanta-

based studies [17, 24].  These studies found an elevated but consistent with the null association 

between PM2.5 and all respiratory diseases combined. Peel et al found similar elevated but non-

significant associations between PM2.5 and the specific diseases of upper respiratory infections, 

asthma, pneumonia, and COPD. Similar null associations were observed in Spokane, 

Washington for respiratory diseases combined, asthma, or COPD in all ages [19]. In contrast, 

two studies in New York City found significant, positive associations between PM2.5 and asthma 

among all ages but not children [25, 32]. 

 

Recent studies provide more contrasting results with a null association observed in Indianapolis, 

Indiana but a positive association in St. Louis, Missouri for asthma ED visits in all ages [29, 30]. 

Null associations were also observed in St. Louis for all respiratory diseases combined, 

pneumonia, and COPD. Positive associations were observed in Atlanta for asthma and upper 

respiratory infection among children [31, 33]. Two additional large studies also observed strong 

association between PM2.5 and asthma among children [27, 34]. The three-city study did not 
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found any association for asthma among adults [27]. The large California study found positive 

associations for not only asthma among adults but also for all respiratory diseases, ARI, and 

COPD with the strongest effects generally observed for children 5 to 18 and adults 19 to 64 [34]. 

Conversely, a seven-city Canadian study found positive association between PM2.5 and asthma 

ED visits during the warm season and no association with COPD or respiratory infection [26]. 

 

The studies conducted since EPA’s current ISA for ozone add to the evidence supporting an 

association between ozone and respiratory ED visits, specifically asthma ED visits among 

children. Single-city studies evaluating the effects of PM2.5 continue to find conflicting results. 

However, two small US multi-city studies provide strong evidence of an association between 

PM2.5 and asthma ED visits especially among children [27, 34]. These findings are consistent 

with two recent studies in Atlanta [31, 33]. For both pollutants, the evidence base is still lacking 

a nationally relevant multi-city study of respiratory ED visits covering all age groups and 

multiple outcomes. It is difficult to reconcile, qualitatively or quantitatively, the disparate results 

of these studies for reasons previously stated including methodological differences and potential 

publication bias. Further, differences in the estimated effects from these studies could be due to 

between city differences in factors that modify the relationship between pollutant and outcome. 

Population, pollutant, and community characteristics have been shown to be effect modifiers for 

mortality and morbidity outcomes in 65 and older population and may partially explain the 

heterogeneity seen for respiratory ED visits [35, 36]. Understanding which factors increase or 

decrease susceptibility is important in ensuring adequate protection of sensitive populations. 

Large, multi-city studies that analyze each city using the same model provide an opportunity to 

evaluate remaining risk heterogeneity. 
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Effect modification in epidemiological studies can be evaluated by comparing effect estimates 

for sub-populations within a study provided sufficient number of cases are available for each 

sub-population. A common approach is to examine how study or city variables explain between 

study or city risk heterogeneity. While useful, this type of evaluations are challenged by high 

correlation between potential factors and a lack of data for key factors. Evaluations for mortality 

and for hospitalizations among adults 65 and older have identified potential factors that increase 

risk, but heterogeneity often remains [35, 36]. Still some factors identified may help explain the 

disparate results between studies of respiratory ED visits and should be evaluated. 

 

For the association between ozone and mortality, Bell et al found higher relative rates in 

communities with higher percent of population African American, unemployed, and taking 

public transportation [35].  However, significant heterogeneity remained and only percent taking 

public transportation was robust to inclusion of other city variables. For the association between 

PM2.5 and hospitalizations among adults 65 and older, Bell et al found significant heterogeneity 

across seasons and regions for cardiovascular hospitalizations but season only for respiratory 

hospitalizations [36]. Bell et al also conducted meta-analyses evaluating the results across 

multiple studies [37, 38]. For ozone, studies provided strong evidence of higher risks among 

older populations and communities with lower employment and weak evidence of higher risks 

among non-white populations and communities with lower education and higher poverty [38]. 

One study reviewed found higher risk for non-white populations for asthma and pneumonia ED 

room admissions and higher risk for whites for COPD [39].  
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For PM2.5, strong evidence indicated higher risks of death in older populations [37]. Weak or 

suggestive evidence indicated higher risks among women and communities with lower 

educational level, lower income level, and lower employment. Few studies evaluated 

associations of PM2.5 by race. Two recent studies evaluated risk heterogeneity by county 

urbanization [40, 41]. Among adults 65 and older, researchers found higher magnitude 

associations between PM2.5 and cardiovascular hospitalization in urban counties and respiratory 

hospitalizations in rural counties [40]. In New York, New Jersey, and Connecticut counties, 

researchers found a higher magnitude association between ozone and mortality in rural counties 

[41]. They also found the magnitude of the association increased as poverty or population 

density decreased or the percent of population 65 and older increased.  

 

Project Proposal 

 

The lack of strong evidence for the associations between ozone and PM2.5 and respiratory ED 

visits includes a clear need for multi-city or county study. To conduct such a study, data 

accessibility must be addressed. The Centers for Disease Control and Prevention’s National 

Environmental Public Health Tracking Program (Tracking Program) is uniquely positioned to 

produce nationally relevant estimates of the short-term association between ambient ozone and 

PM2.5 and respiratory morbidity for all age groups. The Tracking Program and its partners have 

built the Tracking Network, a web-based, distributed surveillance system of secure and public 

portals at federal, state, and local levels. Through the Tracking Network infrastructure, the 

Tracking Program can process, share, and publish health, environmental, and exposure data. 

Utilizing this infrastructure, the Tracking Program and its partners can pool data from multiple 

states and conduct a county level analysis on the associations between daily air pollution 
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concentrations and ED visits respiratory related outcomes including asthma, pediatric asthma, 

and COPD. Results from such an analysis would be extremely useful in clarifying the impact of 

ozone and PM2.5 on ED visits for respiratory outcomes.  

 

To build a national database, we will submit a data request for respiratory ED data to both 

tracking and non-tracking states where ED data are centralized and readily available. State health 

department or data organization staff will extract data for ED visits with a primary diagnosis of 

respiratory disease, based on International Classification of Diseases, 9th Revision, Clinical 

Modification (ICD-9-CM) codes 460 – 519, from state inpatient and outpatient databases 

according to instructions provided in the data request. To increase the number of accepted data 

requests, data will be aggregated by date of admission, county of residence, sex, age group 

(children 0 to less than 19 years, adults 19 to less than 65 years, and older adults 65 years and 

over), and disease group (Table 1-1). 

 

Traditionally, data from air pollution monitors are used to capture daily concentrations for 

studying the effects of air pollution on health. These monitors are part of various air monitoring 

networks maintained by EPA, state, and local agencies for regulatory purposes. Data on air 

pollution concentrations are necessary to ensure compliance with regulations, to evaluate policies 

and track progress, and to extend our understanding of air pollution. While the monitoring data 

offer the most accurate measurement of air pollution at the monitor location, gaps exist in the 

data. Monitors cover at most 20% of all US counties. Temporal gaps exist because monitors may 

sample once every three or six days, depending on the pollutant. Ozone monitors typically only 

operate during local ozone season, which is generally May through September with variation 
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across the US. These spatial gaps, along with population density, has resulted in most studies 

typically conducted in urban cities or counties. The temporal and spatial gaps in air monitoring 

data limit the data’s applicability to public health surveillance and research.  

 

To address the gap, EPA and its partners developed modeled data from a Bayesian space-time 

downscaling (DS) fusion modeling approach, as part of an interagency agreement between CDC 

and EPA [42]. This approach fuses available monitoring data and Community Multi-Scale Air 

Quality Model (CMAQ) model data in non-monitored areas. CMAQ combines meteorological, 

emission, and air chemistry-transport models to predict gridded, hourly concentration and 

deposition values for several pollutants including PM2.5 and ozone. The fusion of monitoring and 

modeled data addresses temporal and spatial gaps in the air monitoring data and adjusts for any 

calibration bias in the CMAQ data. The process involves downscaling the gridded CMAQ data 

to the point-level air monitoring data using a linear regression with bias coefficients that vary in 

time and space under a Bayesian framework [43]. This process statistically addresses the 

“change of support” problem due to the spatial misalignment between the monitoring and 

CMAQ data. 

 

The DS model provides predictions of daily maximum 8-hour average ozone concentrations in 

parts per billion ozone and daily 24-hour average PM2.5 at census-tract centroids for the 

contiguous US. These data should be used with caution and an understanding of the potential 

measurement error or bias introduced by either the original input data or the modeling process 

itself. However, the nature of ozone and PM2.5 make them more suitable candidates for modeling 

than other air pollutants. Ozone is a secondary pollutant, generated by a reaction between 
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ultraviolet radiation from the sun and precursor pollutants such as those emitted by the 

combustion of fossil fuels. PM2.5 is both primary and secondary pollutant generated by the 

transformation of primary pollutants such as sulfur oxides, nitrogen oxides, and volatile organic 

compounds. Because of the formation process, secondary pollutants are more spatially smoothed 

than primary pollutants. For example, measurements from two monitors remain correlated over 

much larger distances for ozone and PM2.5 compared to other pollutants like sulfur oxides, 

nitrogen oxides, and volatile organic compounds [44]. When developing these models, a 

common method is to build the model using a subset of the air monitoring data and then use the 

remaining data for calibrating and validating the model. For ozone, this modeling approach 

outperformed two alternatives, a Bayesian melding method and ordinary kriging, providing 

better-calibrated predications and predictive intervals with better empirical coverage [45]. 

Additional improvements are gained when modeling ozone and PM2.5 together using a bivariate 

model to exploit the natural correlation between the pollutants [46]. As such, the DS model is a 

reasonable solution to the temporal and spatial gaps in available air pollution data and will be our 

choice of air pollution data for this work. 

 

Historically, several epidemiologic study types including cross-sectional, cohort, and time-series 

have been used to evaluate the association between air pollution concentrations and adverse 

health outcomes [47-50]. Today, cross-sectional studies are challenged methodologically by the 

relatively low levels of air pollution exposure experienced in the US. Cohort studies are typically 

expensive and currently difficult financially to establish. While early time-series studies were 

challenged methodologically, time-series analyses are now frequently used to evaluate the 

association between air pollution concentrations and adverse health outcomes [47]. The 
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abundance of time-series analyses is due to (1) the statistical and computational advancements 

since the 1990s; (2) the availability of health outcome data, including vital statistics and 

Medicare data; and (3) the ease with which results can be incorporated into the regulatory 

process.  

 

A time-series analysis assesses the association between day-to-day fluctuations in air pollution 

concentrations and day-to-day fluctuations in a health outcome in a single, geographically 

defined population such as a city or county. These analyses are implemented as regression 

models linking daily counts of the health outcome and daily concentrations of air pollution. 

Generally, administrative or vital statistics databases provide the daily counts of a health 

outcome by county or ZIP code. Outcomes are typically assumed to follow an overdispersed 

Poisson distribution given that the daily count within a county is relatively small in comparison 

to the size of the population at risk and it varies substantially. Air pollution concentration data, as 

discussed above, are either observational from monitoring sites or modeled using a variety of 

input data and statistical techniques. These data are either point level or grid based and must be 

assigned to the areal unit represented in the health outcome data. Several sources of potential 

measurement error exist including instrument imprecision in the monitoring data and calibration 

bias in the modeled data. Another source includes spatial error introduced by assigning one or 

more point or grid concentration levels to a larger areal unit. In both cases, several studies have 

shown that a population-weighted approach produces a robust metric for time-series analyses 

especially for spatially homogenous air pollutants such as ozone and PM2.5 [51-53]. Lastly, while 

city or county air pollution metrics are not measures of personal exposure, they are relevant 
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metrics for air pollution policy and can produce robust and unbiased results for ozone and PM2.5 

[52]. 

 

Generalized linear models (GLM) and generalized additive models (GAM) are two types of 

regression models are frequently used in time-series analyses. GLM assumes a linear relationship 

between daily counts of a health outcome and air pollution concentration while GAM allows for 

non-linear relationship. As such GLM use parametric splines, while GAM uses nonparametric 

splines for estimating the short-term associations. Additionally they used different statistical 

methodology to generate that estimate. Results from these models, using the same data and 

similar specifications, can vary but still produce the same conclusion [20, 54]. The degree to 

which the results vary may relate to both model specifications and characteristics of the data 

such as the degree of adjustment for confounding factors and the unknown underlying nonlinear 

functions of time, weather, and seasonality [47, 54].  

 

When conducting time-series analyses, the researcher must specify the lag relationship between 

the outcome and air pollution to be modeled. Substantial evidence indicates that air pollution on 

a single day can lead to adverse health outcomes on the same day and several days following 

(ISA Ozone, ISA PM). This effect can be modeled either by investigating single lag days one at 

a time, by averaging air pollution over multiple days, or by including multiple lag days in the 

same model (a distributed lag). Which single lag day best captures the effect can vary by 

outcome, pollutant, and even city [55]. Further, a single lag day or even 2 or 3 day average may 

underestimate the total effect of air pollution on a single day. A challenge in the distributed lag 
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approach is adjusting for the high correlation between day-to-day air pollution concentrations, 

which can be done by putting constraints on the distributed lag [56]. 

 

Time-series analyses require control of potential confounding by factors that vary on similar 

timescales as the pollution or health outcome [47, 57]. Because this method compares daily 

fluctuations in air pollution within a county, the population serves as its own control as it moves 

through time and thus individual level confounders do not need additional control. Potential 

confounders that may need controlled include population characteristics that fluctuate over short 

time periods, weather, day of the week, holidays, and seasonal or long-term trends in pollution or 

health outcomes. The inclusion of a spline function on time is a common approach to control for 

potential confounding by unmeasured factors that vary gradually over time. In this way, the 

model controls for long-term trends related to changes in population size, characteristics, health 

status, and health care access and short-term trends related to seasonality and influenza 

epidemics. Decisions must be made regarding how much control to exert on time [58]. By 

increasing the number of knots or degrees of freedom on the spline function, the research can 

increase the flexibility of the function and the control of time. However, too much flexibility can 

mask the daily fluctuations of interest. These models also include variables for temperature or 

humidity to control for the confounding effects of weather. Here, two decisions must be made: 

which variables to include and how much control to exert. A comprehensive sensitivity analysis 

of the association between PM10 and mortality supports that inclusion of smooth functions of 

current-day and average temperature and dew point from the past few days to control for weather 

effects [59]. The applicability of these results to other pollutants and outcomes is uncertain. 

Lastly, researchers must also consider confounding of the association between the outcome and 
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the air pollutant of interest by other pollutants. Air pollutants tend to be highly correlated both 

spatially and temporally. This is especially true if the pollutants are generated by the same source 

or if one is a pre-cursor to another. The inclusion of other pollutants in the model can produce 

adjusted estimates of the association for the pollutant. 

 

An alternative, yet similar, approach to a time-series analysis is a case-cross over analysis where 

a case, or single ED visit, serves as its own control [60]. While a time-series analysis requires 

control of confounders through model specifications, a case-cross over analysis controls 

confounders by comparing air pollution levels on the day of a case or ED visit to air pollution 

levels on a reference day near in time to the case day and typically matched on factors such as 

day of the week. Under certain model specifications, these approaches are nearly equivalent [60]. 

In choosing between time-series and case-cross over analysis, researchers may consider the 

attributes of both the available data and the specific association under investigation. 

Additionally, researchers may use the approach not selected for the primary analysis as a 

sensitivity analysis [20]. 

 

With all these modeling decisions, building the right model can be challenging. The available 

modeling techniques and specifications have various pros and cons, which must be weighed 

against the characteristics of the data and the association under investigation. Traditional GLM 

or GAM evaluation techniques, such as evaluating the Akaike information criteria and residual 

diagnostics, but not without limitations. For example, these techniques are not helpful in setting 

the level of control for any smoothed parameters. A common approach is to a priori select a 
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model based on expert opinion and then to conduct a sensitivity analysis evaluating the 

robustness of a model’s results to alternative model specifications.  

 

Synthesizing the results of multiple time-series analyses, either quantitatively or qualitatively, is 

necessary to gain a more complete understanding of the relationship between air pollution and 

health. It is also an important part of process for establishing and evaluating air pollution 

policies. This synthetization of published, independent time-series analyses is challenged by the 

spectrum of model specifications used by different researchers. Further, the results of this 

process are subject to publication bias as single analyses with negative results are less likely to 

be published. The power of multi-city studies comes from pooling results of city or county 

specific time-series analyses conducted using the same methodology. Researchers first conduct a 

time-series analysis using daily, county level data to fit a log-linear regression for each city or 

county and then used a statistical approach to pool the rate ratio (RR) of mortality or morbidity 

associated with specific pollutants. This two-stage approach was used by investigators at John 

Hopkins University to obtain national effect estimates of air pollution on mortality across 

multiple cities and has been replicated by researchers to investigate additional health outcomes 

and pollutants [8-14, 61]. It has been formally evaluated as a result of the scrutiny these studies 

received having influenced air pollutions standards and found to be robust to spectrum of model 

specifications, specifically for mortality [54, 57, 59]. Pooling results for outcomes with greater 

city or county variability, such as asthma ED visits, may require slightly different model 

specifications or pooling techniques.  
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Multiple meta-analysis techniques are available to pool results, either from independent time-

series analyses or as stage two of a multi-city analysis. A meta-analysis mathematically 

combines the effect estimates from single cities and provides an overall effect estimate with 

increased precision. A simple fixed effect model is a weighted average of estimated effects with 

inverse-variance as the weights. This model assumes effect of air pollution on respiratory ED 

visits is the same in every county, which is arguably hard to justify. A random effect model is 

essentially a two-level random intercept model and allows for the assumption that the effect is 

not the same in every county. Here the county-specific effect is a random variable with a mean 

and a variance. With this approach, it is difficult to obtain an unbiased estimate of that variance. 

A Bayesian approach, similar to the one used by JHU, can produce a better estimate of the true 

overall effect estimate, accounting for within-city statistical error and for heterogeneity of the 

true effect estimates between counties. 

 

We will use the two-stage approach to generate nationally relevant effect estimates of the 

associations between short-term exposure to ozone and PM2.5 and respiratory ED visits. In stage 

one, we will conduct county-specific time-series analyses to evaluate the short-term association 

between each air pollutant and respiratory ED visits for each combination of disease group (all 

respiratory, asthma, pediatric asthma, and COPD), age group (all ages, children 0 to <19, adults 

19 to <65, and older adults 65+) and air pollutant (ozone and PM2.5). Our outcome variable will 

be daily number of ED visits as the outcome variable (Yt). We will assume Yt follows an 

overdispersed Poisson distribution given that the daily number respiratory ED visits within a 

county are relatively rare in comparison to the size of the population at risk and it varies 

substantially. We will also assume the relationship between number of ED visits and unit 
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increase in air pollution to be multiplicative and non-linear. Therefore, we will fit Poisson 

generalized linear models (GLM), accounting for overdispersion (equation 1). 

 

Equation 1:   

𝑌𝑌𝑡𝑡~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇𝜇𝑡𝑡) 

log(𝑦𝑦𝑡𝑡) =  𝛽𝛽0 +  �𝛽𝛽𝑡𝑡−𝑘𝑘

6

𝑘𝑘=0

𝑋𝑋𝑡𝑡−𝑘𝑘 + 𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 +  𝜖𝜖 

𝜖𝜖 ~ 𝑁𝑁(0,𝜎𝜎2) 

 

where: 𝑦𝑦𝑡𝑡 = number of ED visits on day t, 𝑋𝑋𝑡𝑡−𝑘𝑘 = air pollution levels on day t-k 

 

We will model an unconstrained distributed lag for lag days 0 through 6 to capture the 

cumulative association of exposures over the past week. For each set of county results, we will 

sum each 𝛽𝛽𝑡𝑡−𝑘𝑘 for lag days 0 through 6 to obtain the cumulative effect estimate for county i (�̂�𝛽𝑖𝑖) 

and calculate the variance (𝜎𝜎�𝑖𝑖2) by summing the variance for each 𝛽𝛽𝑡𝑡−𝑘𝑘 and the covariance of 

each pair of 𝛽𝛽𝑡𝑡−𝑘𝑘. �̂�𝛽𝑖𝑖 corresponds to change in daily number of ED visits per unit increase in air 

pollution on the log scale. The exponent of �̂�𝛽𝑖𝑖 can be interpreted as a RR because the population 

is essentially considered constant. We will include: (1) non-linear functions of one or more 

variables for temperature or humidity as natural cubic splines with 3 degrees of freedom; (2) a 

non-linear function of calendar date as a natural cubic spline with 8 degrees of freedom per year 

of county data; and (3) indicator variables for day of week and for holidays. We will fit single-
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pollutant models for ozone and PM2.5 and two-pollutant models with both. We will conduct 

sensitivity analyses to evaluate the robustness and stability of our effect estimates. 

 

In stage two, we will use a two-level Bayesian hierarchical model to pool �̂�𝛽𝑖𝑖 across all counties 

for each air pollutant, age group, and disease group to produce a national estimate of effect 

(Equation 2) [61, 62].  

Equation 2: 

�̂�𝛽𝑖𝑖 ~ 𝑁𝑁(𝜃𝜃𝑖𝑖, 𝜖𝜖𝑖𝑖)   

𝜃𝜃𝑖𝑖  ~ 𝑁𝑁(𝜇𝜇, 𝜏𝜏2)  

𝜖𝜖𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎�𝑖𝑖2)   

�̂�𝛽𝑖𝑖 = estimated effect from county i 

𝜃𝜃𝑖𝑖 = unobserved true effect in county i 

𝜖𝜖𝑖𝑖  = county-specific random deviation that is independent across counties 

𝜇𝜇 = overall pooled effect 

𝜏𝜏2 = between-county heterogeneity  

𝜎𝜎�𝑖𝑖2 = estimated county-specific variance 

We assume �̂�𝛽𝑖𝑖 to be a combination of the county-specific unobserved true effect (𝜃𝜃𝑖𝑖) and county-

specific random error (𝜖𝜖𝑖𝑖) that is independent across all counties and is normally distributed with 

a mean of zero and a county-specific variance. In using a Bayesian approach to pool the 

observed county-specific effect estimates, we assume that 𝜃𝜃𝑖𝑖 varies between counties following a 
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normal distribution with a mean μ and variance of τ2. μ and τ2 are random variables for which 

we use non-informative priors. This approach provides us with an unbiased estimate of τ2 that 

represents the between-county heterogeneity.  Subsequently, we will add various county level 

covariates for factors that may modify the effect and therefore explain the between-county 

heterogeneity. Potential covariates include urbanization, region, primary care access, and 

population demographics. The resulting information could be used to target at-risk populations 

and to ensure adequate protection of vulnerable populations. 
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Table 1-1: Respiratory Emergency Department Data Requested from State Health 
Departments 

Temporal Scale and 
Scope 

Daily, all years available between 2001 and 2012  

Spatial Scale County 

Age Group 0-<19 

19-<65 

65+ 

Sex Male, female, unknown 

Outcomes 1 = Asthma (ICD-9 code 493) 

5 = COPD (ICD-9 codes 491, 492, 496) 

6 = Acute respiratory infections (ICD-9 codes 460 – 466.0*) 

7 = Pneumonia (ICD-9 codes 480 – 486) 

8 = All other respiratory outcomes (ICD-9 codes 460-519 not 
included in 1, 5, 6, or 7) 

• 466 excluding 466.0 

• 467-479 

• 487-490 

• 494-495 

• 497-519 

*note this is 466.0 not 466 
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Chapter 2 - Environmental public health tracking of respiratory emergency department 
visits 
 

Abstract 

 

Problem/Condition: Respiratory diseases are a frequent cause of emergency department (ED) 

visits in the United States (US). These visits are often precipitated by exacerbations of chronic 

respiratory diseases or a worsening of respiratory symptoms associated with respiratory 

infections. Exacerbations or worsening of symptoms can be triggered by exposure to indoor and 

outdoor environmental factors such as air pollution, pollen, pet dander, and environmental 

tobacco smoke. The prevention of respiratory ED visits is a target of public health interventions, 

including both individual and community interventions, aimed at reducing exposure to 

environmental triggers. Effective interventions require scientific evidence of the association 

between specific triggers and respiratory ED visits as well as an understanding of the individual 

or community factors that increase susceptibility to ensure adequate protection of sensitive 

populations. Surveillance of respiratory ED visits across all ages in the US is limited spatially 

and temporally by the lack of a readily accessible, centralized database of respiratory ED visits 

with the necessary data elements. The routine collection and analysis of such data are needed to 

generate evidence to inform public health interventions.  

 

Reporting Period: 2000 to 2014 

 

Description of System: Since 2002, CDC’s National Environmental Public Health Tracking 

Program has collaborated with federal, state, and local partners to gather standardized 
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environmental health data by creating national data standards, collecting available data, and 

disseminating data for the development of public health actions. The National Environmental 

Public Health Tracking Network (i.e., the tracking network) collects data provided by national, 

state, and local partners and includes 23 health outcomes, exposures, and environmental hazards. 

Utilizing the tracking network, CDC received daily, county-level data for respiratory (ICD-9-CM 

codes 460-519) ED visits from seventeen states. State health department or data organization 

staff exacted data from state-based outpatient and inpatient databases and aggregated data by 

day, county of residence, age group, sex, and disease group.  

 

Results: Part 1: The median of the rates of respiratory ED visits per 10,000 population per year 

across all counties (median rate) was 410 (IQR: 276). Approximately 43% of these visits were 

for acute respiratory infection (excluding pneumonia), which was 3.5 to 6 times more frequent 

then visits for pneumonia, asthma, and chronic obstructive pulmonary disease (COPD). Median 

rates varied by age and sex, with males having higher rates of respiratory ED visits among 

children 0 to 18 and adults 65 and over, and females having higher rates among adults 19 to 64. 

The median of the rates per 100,000 population per day (median daily rate) across all counties 

for all respiratory ED visits combined and for each specific disease group followed similar 

seasonal patterns, with the highest rates in the winter dropping steadily to the lowest rates in the 

summer and rising again in the fall. Median daily rates of asthma peaked in September whereas 

the other diseases peaked in February. The seasonal patterns of some diseases varied slightly by 

age and sex group. Part 2: The median of the age-adjusted rates per 10,000 population per year 

(median age-adjusted rate) by state ranged from 236 (IQR: 211) in Colorado (CO) to 661 (IQR: 

249) in Maine (ME). The median age-adjusted rate of all respiratory ED visits was lower in 
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counties that were urban and in the West and had lower percent of population living in poverty, 

lower percent of population identifying as black, and fewer hospitals and urgent care centers. 

Median age-adjusted rates were lower in counties with higher percent of population identifying 

as Hispanic, higher percent of population without health insurance, and more primary care 

physicians and pulmonologists. The observed patterns by age, sex, state, and county 

characteristics varied by specific respiratory disease. 

 

Interpretation: 

The rate of respiratory ED visits and the specific respiratory disease identified as the primary 

diagnosis differs by sex and age group. The rate of respiratory ED visits varies by county. State 

contributes heavily to the county level variation in the rate of respiratory ED visits for each 

disease while the contribution of the county characteristics varied by disease. These county 

characteristics alone do not explain the observed variation in county rates. Data at a finer 

temporal and spatial scale can inform interventions aimed at preventing respiratory ED visits. 

 

Public Health Actions: 

These data can be linked with datasets for various environmental, social, and policy factors to 

provide evidence to inform public health interventions and are especially important for 

addressing gaps in the current understanding of the association between respiratory ED visits and 

air pollution. More investigation is needed to understand the factors driving county variation in 

respiratory ED visits. Any investigation should evaluate specific respiratory diseases by age and 

sex as the drivers may differ. 
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Introduction 

 

Diseases of the respiratory system (ICD-9-CM codes 460-519) are the primary diagnosis for 

approximately 10% of emergency department (ED) visits annually in the United States (US), 

ranking as the third highest disease category [22]. These visits are often due to either 

exacerbations of chronic respiratory diseases, such as asthma or chronic obstructive pulmonary 

disease (COPD), or a worsening of respiratory symptoms associated with respiratory infections. 

Approximately 10% of ED patients report having asthma, making it the second most common 

chronic disease reported by ED patients [22]. Five percent of patients report having COPD. 

Specific respiratory diseases in the top 20 primary diagnoses for ED visits vary by age [22]. 

Children younger than 15 years of age are frequently diagnosed with acute upper respiratory 

infection (ICD-9-CM: 460, 461, 463-466), acute pharyngitis (ICD-9-CM: 462), asthma (ICD-9-

CM: 493), influenza (ICD-9-CM: 487, 488), and pneumonia (ICD-9-CM: 480-486). Individuals 

15 to 64 years are diagnosed with acute upper respiratory infection, acute pharyngitis, asthma, 

and chronic and unspecified bronchitis (ICD-9-CM: 490, 491) while adults 65 years and older 

are diagnosed with acute upper respiratory infection, chronic and unspecified bronchitis, and 

pneumonia. Primary diagnoses also differ by age and sex; for example, the rate of ED visits for 

asthma is higher among males in children under 15, but among individuals age 15 to 64 years it 

is higher for females [22]. Variation in the rate of respiratory ED visits by age and sex largely 

reflects the variation in disease prevalence [63-65].  

 

Exposure to indoor and outdoor environmental factors including air pollution, aeroallergens, and 

environmental tobacco smoke can trigger exacerbations leading to respiratory ED visits. Air 
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pollutants including ozone, fine particulate matter, nitrogen dioxide, and carbon monoxide have 

been positively associated with respiratory ED visits in various age groups [17, 20, 24, 27, 31, 

66]. Respiratory ED visits, largely asthma ED visits specifically, have been associated with 

exposure to pollen [66-68] and to indoor allergens such as dust mites, pet dander, and mold [69, 

70]. Weather, including high temperatures and humidity, has also been linked to increases in 

asthma ED visits and other respiratory ED visits [71-73]. Increases in asthma ED visits have also 

been linked to thunderstorms, potentially due to increased exposure to pollen following a storm 

[74, 75].  

 

The prevention of respiratory ED visits by reducing exposure to environmental triggers is an 

important part of public health interventions. At the individual level, avoidance of environmental 

triggers is an important part of disease management to reduce negative health outcomes and 

improve quality of life [76-78]. Community level interventions to reduce respiratory ED visits 

include efforts to prevent or mitigate exposure to ambient air pollution. Effective air pollution 

policy requires scientific evidence of the association between specific pollutants and health 

outcomes as well as an understanding of which factors increase susceptibility to ensure adequate 

protection of sensitive populations [1, 2]. Much of the evidence used to develop national air 

pollution standards is limited to studies of mortality or of morbidity outcomes among adults 65 

years of age or older. The available evidence for respiratory ED visits among persons younger 

than 65 is largely limited to studies of asthma specifically within a limited number of cities. The 

generalizability of such evidence to other respiratory outcomes and other cities or the nation as a 

whole is not well characterized.  
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Cities and counties vary in their composition of individual and community factors that increase 

the risk of respiratory ED visits. In addition to age and sex, other individual factors such as low 

socio-economic status (SES), poor health literacy, smoking, and obesity are associated with ED 

visits for respiratory infections, asthma, and COPD [64, 79-84]. Rates of ED visits for asthma 

and COPD are higher among black persons [63, 85]. For individuals with chronic respiratory 

diseases, like asthma and COPD, poor adherence to a management plan can increase the risk of 

exacerbations and ED visits [86]. Counties with high racial segregation, low SES, poor primary 

care access, and rural status are more likely to have increased rates of asthma ED visits among 

children enrolled in Medicaid [87]. County level socioeconomic factors and primary care access 

have also been associated with ED use in general and could influence rates of ED visits for 

respiratory diseases [88, 89]. These factors not only influence risk of respiratory ED visits but 

they may also increase individual susceptibility to the effects of air pollution [37, 38]. 

 

Continued surveillance and research are needed to increase the evidence base and available data 

necessary for effective public health interventions for reducing respiratory ED visits. As such, 

the Centers for Disease Control and Prevention’s (CDC) National Environmental Public Health 

Tracking Program (Tracking Program) requested data on daily, county level counts of respiratory 

ED visits from thirty state health departments. The motivation for collecting these data is to 

provide evidence to inform public health interventions and specifically to address gaps in the 

current understanding of the association between respiratory ED visits and air pollution. 

Seventeen states were able to meet the data request and submitted between three and twelve 

years of data for 2000 to 2014. This report summarizes daily, county level counts of nearly 50 

million respiratory ED visits from those seventeen states and describes the data by sex, age 
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group, and disease group to provide additional insight on the variation of respiratory ED visits by 

demographics, season, and geography. 

 

Methods 

 

Data for ED visits with a primary diagnosis of respiratory disease, based on International 

Classification of Diseases, 9th Revision (ICD-9) codes 460 – 519, were extracted from state 

inpatient and outpatient databases according to instructions provided in the data request. Data 

were aggregated by date of admission, county of residence, sex, age group (children 0 to less 

than 19 years, adults 19 to less than 65 years, and older adults 65 years and over), and disease 

group (acute upper respiratory infection (ARI) (460 – 466.0) [in this analysis acute bronchitis 

and bronchiolitis are included as upper respiratory infections] , asthma (493), COPD (491, 492, 

or 496), pneumonia (480 – 486), and all other respiratory outcomes with ICD-9 codes 460 – 519 

not included in the previous four disease groups).  

 

Part 1: Rates by year and rates by day 

Rates of respiratory ED visits were calculated per year and per day for each county by age group, 

sex, and disease group. First, the rate of ED visits per 10,000 population per year was calculated 

by county using the bridged-race Vintage 2016 postcensal estimates by single-year age group 

from CDC’s National Center for Health Statistics (NCHS) as the denominator. Stratified rates 

per 10,000 population per year were calculated by disease group, including all respiratory 

diseases, age group, and, sex. The median and interquartile range (IQR) of county average rates 

were calculated by disease group, age group, and sex. Second, to view daily fluctuations in ED 
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visits, the rate of ED visits per 100,000 population per day was calculated by day of the year and 

by county using the NCHS data as the denominator. Average rates were calculated for all 

respiratory ED visits and for each specific disease by age group and sex. The median and IQR of 

the county average rates by day of the year were calculated by month, disease group, age group, 

and sex. 

 

Part 2: Rates by year and county characteristics 

The age-adjusted rate of ED visits per 10,000 population per year was calculated by county using 

the NCHS population data where the case count was greater than 15. Age-adjusted was 

implemented using the three age groups in the ED data (children 0 to <19, adults 19 to <65, and 

older adults 65 and older) and the NCHS population data. The median and IQR of the county 

age-adjusted rates were calculated for each disease group by state and by several county level 

factors previously found to be associated with respiratory diseases or adverse outcomes [63, 81, 

87-91]. The county level factors included (1) urbanization, (2) geographic region, (3) percent of 

population living in poverty, (4) percent of population identifying as black or African American, 

(5) percent of population identifying as Hispanic, (6) percent of population without health 

insurance, (7) number of hospitals per 100,000 population, (8) number of urgent care centers, (9) 

number of primary care physicians per 100,000 population, and (10) number of pulmonologists 

per 100,000 population. Counties were categorized by urbanization using NCHS’s 2013 urban-

rural classification scheme consisting of four metropolitan categories (large central metropolitan, 

large fringe metropolitan, medium metropolitan, and small metropolitan) and two 

nonmetropolitan categories (micropolitan and noncore) [92]. Geographic region was assigned 

using the U.S. Census Bureau designations of Northeast, South, Midwest, and West. The percent 
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of population living in poverty was calculated using U.S. Census Bureau, Small Area Income 

and Poverty Estimates. The percent of population black and percent of population Hispanic was 

calculated using NCHS’s bridged-race Vintage 2016 postcensal estimates. The percent of 

population without health insurance was calculated using the U.S. Census Bureau, Small Area 

Health Insurance Estimates. The number of hospitals and number of urgent care centers were 

calculated using the Homeland Infrastructure Foundation – Level Data 2017-05-19. Hospitals 

were excluded if they were specific to cancer, psychiatric, addiction, substance abuse, maternity, 

orthopedic, or rehabilitation. The number of primary care physicians and number of 

pulmonologist were calculated using the Health Resources and Services Administration Area 

Health Resources File (AHRF) 2016-2017 Release. For each continuous measure, counties were 

grouped based on tertile classification scheme.  

 

Results  

 

Part 1 

Variation in county level rates per year by age and sex  

Across all counties and years, the median of the rates of ED visits per 10,000 population per year 

(median rate) for all respiratory ED visits combined was 410 (IQR: 276) (Table 2-1A). By 

disease group, the median rate for ARI at 178 (IQR: 138) was 3.5 to 6 times higher than the 

median rates for pneumonia, asthma, and COPD. By age group, the median rate for all 

respiratory ED visits combined was 301 (IQR: 231) for adults, 455 (IQR: 301) for older adults, 

and 611 (IQR: 481) for children (Table 2-1A). For children and adults, the disease group with the 

highest median rate was ARI while the disease group with the highest median rate for older 
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adults was pneumonia. The median rates for ARI and asthma decreased by age group while the 

median rates for COPD increased. The median rate of pneumonia among older adults was 3 

times the rate among children and almost 5 times the rate among adults. By sex, the median rate 

was slightly higher among females compared to males overall and for ARI and asthma (Table 2-

1A). Rates for COPD and pneumonia were nearly equivalent for females and males. By age 

group and sex, males had slightly higher median rates of respiratory ED visits among children 

and older adults but females had a much higher rate among adults (Table 2-1B). Females had 

higher median rates for ARI than males across all age groups. Among adults, females had higher 

median rates than males across all disease groups. The median rate for asthma was higher for 

males among children and higher for females among adults and older adults. Median rates for 

COPD and pneumonia were higher in females among adults and higher in males among older 

adults. Males also had higher median rates for pneumonia among children. 

 

Variation in county level rates per day by age and sex 

The median of the rates of respiratory ED visits per 100,000 population per day (median daily 

rate) exhibited a seasonal pattern with the highest rates in the winter dropping steadily to the 

lowest rates in the summer and rising again in the fall (Figure 2-1). For all respiratory ED visits 

combined, ARI, COPD, and pneumonia, the median daily rates peaked in February while asthma 

median daily rates peaked in September (Table 2-2). By age group and sex, ARI shows a 

pronounced season pattern among children (Figure 2-1). Male children, female children, and 

female adults show a similar seasonal pattern for asthma with flat rates from January to May, a 

drop in June, and a sharp increase between August and September (Figure 2-1). This pattern, 
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which was particularly pronounced among male children, differed from the pattern for other age-

sex groups and other diseases.  

 

Part 2 

Variation in county level rates per year by state and county characteristics  

For all respiratory ED visits combined, the median rate by state ranged from 236 (IQR: 211) in 

Colorado (CO) to 661 (IQR: 249) in Maine (ME) (Table 2-3). CO had the lowest median rate for 

ARI and pneumonia while UT had the lowest median rate for asthma and COPD. Across all 

outcomes, COPD had the greatest variation by state followed by asthma (Figure 2-2). ME had 

the highest median rate for ARI and was among the highest for asthma, COPD, and pneumonia. 

Massachusetts (MA) had the highest median rate for asthma while Illinois (IL) had the highest 

for both COPD and pneumonia.  

 

The median rate for all respiratory ED visits combined was lowest in the urban counties 

classified as large fringe metro followed by large central metro counties (Table 2-4; Figure 2-3). 

The rates were highest in rural micropolitan and small metro counties. The median rates for ARI 

followed a similar pattern. The median rate for asthma was highest in large central metro 

counties, consistent across less urban counties and micropolitan counties, and lowest in noncore 

counties. Median rates for COPD and pneumonia generally increased from the most urban to the 

most rural counties. Except for asthma, micropoliatan counties had the highest rates. The median 

rate for all respiratory ED visits combined ranged from 300 (IQR: 196) in West counties to 449 

(IQR: 300) in Midwest counties. West counties also had the lowest rates for ARI, COPD, and 

pneumonia. The lowest rates for asthma were in both West and Midwest counties. Counties in 
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the South had the highest rates of ARI while counties in the Northeast had the highest rates for 

the other outcomes. 

 

The median rate for all respiratory ED visits combined increased from 340 (IQR: 205) in the first 

tertile of percent of population living in poverty to 476 (IQR: 307) in the third tertile. The 

median rate increased as poverty increased for ARI and asthma and to a lesser extend for COPD. 

Rates remained consistent for pneumonia. The median rates exhibited the same pattern for 

percent of the population identifying as black. The median rates for all respiratory ED visits 

combined, ARI, COPD, and pneumonia decreased as the percent of population Hispanic 

increased whereas rates for asthma increased. For all respiratory ED visits combined, COPD, and 

pneumonia, median rates decreased as percent of population without health insurance increased. 

Rates of ARI were highest in the second tertile and rates for asthma did not vary. For all 

outcomes, median rates were lowest in counties with the fewest hospitals and lowest in counties 

with the most urgent care centers. Rates were highest in the second tertile for number of 

physicians or pulmonologists but were lowest in the third tertile representing counties with the 

greatest number of doctors. For asthma, however, rates were lowest in the counties with the 

fewest physicians or pulmonologists.  

 

Discussion 

 

Data were analyzed for 47.1 million respiratory ED visits from seventeen states and used to 

evaluate the occurrence of respiratory ED visits by age, sex, state, and county level 

characteristics. The results are consistent with previous analyses or surveillance efforts, where 



50 
 

available, and offer new information useful for actions aimed at reducing respiratory ED visits. 

These results provide a comprehensive view of annual and daily rates of ED visits for specific 

respiratory diseases and elucidate specific age and sex trends that can inform future 

interventions. Further, previous analyses were often limited spatially either to a specific 

jurisdiction or were based on a national survey. These results include all respiratory ED visits in 

seventeen states at the county level and reveal important spatial variation that should be further 

examined. 

 

 

Part 1 

Overall, males and females had similar rates for all respiratory ED visits per 10,000 population 

per year among children and older adults (Table 2-1). Conversely, the rate for adult females 

under 65 was approximately 1.5 times more than the rate for adult males (Table 2-1). While 

these findings align with the male and female rates of ED visits for any reason or diagnosis [22], 

this analysis of more spatially and temporally resolved data provides additional insight on 

different patterns by sex and age for specific respiratory diseases. First, females experienced 

higher rates of ED visits for ARI across all three age groups and adult females had almost twice 

the rate over adult males. Second, the biggest difference in rates between males and females for 

each age group was observed for asthma ED visits. Rates of asthma ED visits were higher among 

males in children and higher among females in adults and older adults, corresponding to the 

change in higher male prevalence in childhood and higher female prevalence in adulthood [93]. 

Last, differences were also observed between males and females for each specific respiratory 

disease, which warrant further investigation. While the rate for all respiratory ED visits was 
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similar between males and females in adults 65 and older, females had higher rates of ED visits 

for ARI and asthma and males had higher rates of ED visits for COPD and pneumonia. This 

information highlights the important respiratory diseases for specific sex and age groups and can 

be used to further investigate or target specific at-risk populations. 

 

Rates of ED visits in general are highest in the spring and similar in winter, summer, and fall. 

Overall, the rate of respiratory ED visits per 100,000 population per day exhibited seasonal 

variation with higher rates in the winter and lower rates in the summer (Table 2-2; Figure 2-1). 

Reports have shown that asthma ED visits peak in September and that the peak varies by age 

with the fall peak strongest among children [94, 95]. This analysis shows that the seasonal 

pattern of asthma varies not only by age but also by sex. The greatest fall peak was observed 

among male children and adult females under 65 showed trends similar to children. The seasonal 

variation appeared stronger for the infectious outcomes of ARI and pneumonia and weakest for 

COPD. In general, the pattern of daily fluctuations was similar between sex and age groups with 

the greater seasonal variation observed for children. Variation in daily and seasonal patterns 

provide further insight into the observed differences by sex and age groups. Future analyses 

should evaluate the spatial variation in seasonal patterns in both respiratory ED visits and 

potential risk factors such as air pollution and weather. 

 

Part 2 

This is the first analysis evaluating county level rates for respiratory ED visits. For all disease 

groups, county rates per 10,000 population per year increased two-fold between the 25th and 75th 

percentile. Rates of COPD had the greatest differences between the 25th and 75th percentile with 
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the greatest variation observed among adults and among females. Large variation was also 

observed for asthma among older adults, for ARI among adults, and for pneumonia among older 

adult males. This variation could be due to differences or challenges in diagnostics or to 

differences in county characteristics such as respiratory disease prevalence, socio-economic 

status, health literacy, or health care access. Strong variation in county rates was found by state 

indicating that the variation by county may be partially explained by factors that vary state to 

state such as health care policies (Table 2-3; Figure 2-2). These results emphasize the role of 

place as a social determinant of health and illustrate the importance of spatially resolved data for 

guiding public health actions. 

 

Variation in county age-adjusted rates per 10,000 population per year was observed by several of 

the county characteristics evaluated with different patterns for specific respiratory disease (Table 

2-4; Figure 2-3). For context, the rate of ED visits for any reason is typically higher in non-

metropolitan statistical areas, highest in the Midwest and lowest in the West, and twice as high 

among persons identifying as black versus white or Hispanic [22]. However, the largest source of 

payment (34.9%) is Medicaid or equivalent program. In this analysis, the rates of respiratory ED 

visits were also highest in the Midwest and lowest in the West. Rates for asthma, COPD, and 

pneumonia were highest in the Northeast, corresponding to previous publication showing highest 

rates of asthma in the Northeast [64]. Rates of ARI were highest in the South. Rates for all 

outcomes except asthma were highest in rural micropolitan counties but rates varied within 

categories of urban and rural. For all outcomes rates were higher in rural micropolitan counties 

compare to rural noncore counties. Rate were lower in large fringe or large central metro 

counties compared to medium and small metro counties. Rates of asthma ED visits exhibited a 
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different pattern from the other outcomes with the highest rates in the most urban counties and 

lowest rates in the most rural counties. Rates for all outcomes except pneumonia increased as 

percent of population living in poverty and percent of population identifying as black increased. 

While this may contribute to the urban-rural variation for asthma, a recent analysis showed 

higher rates of asthma ED visits and hospitalizations among children in urban areas after 

adjusting for race, ethnicity, and poverty [96]. Rates of asthma prevalence and ED use are 

generally lower among Hispanic persons, except Puerto Ricans, yet this analysis shows are 

increase in asthma ED rates as percent of population identifying as Hispanic increases.  

 

Interpreting variation in ED rates is complicated by differences in ED utilization driven by 

multiple factors that influence when or if someone seeks treatment or is able to seek treatment. 

Medicare, Medicaid, or Children’s Health Insurance Program (or state equivalent) is the largest 

source of payment with only about 15% of ED visits for people without insurance [22]. Several 

studies have shown higher rates of ED utilization among individuals on such public insurance 

largely driven by barriers to health care [97, 98]. Another study showed higher rates of ED 

utilization because of recent changes in insurance status specifically among those adults recently 

changing from uninsured to insured by Medicaid [99]. In California, rates of ED visits higher in 

counties with poorer residents and at the same income level, rates were higher in counties with 

more insured and more highly education residents [89]. Among children enrolled in Medicaid, 

living in poor, urban areas did not increase the risk of asthma prevalence but did increase the risk 

of asthma ED visit or hospitalization [96]. Another study found asthma ED visits among 

asthmatic children enrolled in Medicaid increased as the number of primary care physicians and 

hospital beds increased but decreased as the number of pulmonary physicians increased [87]. In 
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this analysis, rates decreased as insurance coverage decreased, increased as number of hospitals 

increased, and decreased as number of urgent care centers decreased. For both number of 

primary care and pulmonology physicians rates were highest in the second tertile and lowest in 

the third tertile representing the highest number of physicians.  

 

Limitations 

 

While the results are nationally relevant, they are based only on data from seventeen states. 

However, the overall rates by sex, age group, and disease are comparable to rates generated 

using national surveys. Classification of specific respiratory disease groups based on primary 

diagnosis and ICD-9-CM codes could potentially lead to misclassification. Additionally, asthma 

and COPD are diseases consisting of heterogeneous phenotypes including some of which may 

overlap [100]. Only three states were able to provide data for residents visiting ED visits outside 

of their state. Including these cases is important for border counties where the nearest ED may be 

in the neighboring state. The years of data provided for each state varied and ranged from one to 

fourteen. Temporal trends could influence the county annual mean rate depending on the years of 

data available. While patterns were observed by comparing median county rates, the range of 

county rates overlapped across categories for each county characteristic analyzed. Additional 

analyses are needed to determine which factors result in rates that are statistically different and 

how they potentially interact with consideration to how they are correlated. Additional factors 

may contribute to the variation in county annual mean rates and should be further investigated in 

order to effectively prevent respiratory ED visits. 
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Conclusion 

 

This report provides the first nationally relevant review of county level rates of respiratory 

emergency department visits and provides insight into the variation of these rates by specific 

disease group, age, sex, and county level characteristics. Further investigation is needed to 

identify causes of county variation in rates and such analysis should evaluate differences 

between respiratory disease, age, and sex. These data can be linked with datasets for various 

environmental and social factors to provide evidence to inform public health interventions. 

Future efforts include linking these data to daily concentrations of air pollutants to examine the 

association between short-term air pollution exposure and respiratory ED visits and to address an 

important gap in the evidence of this association for people under the age of 65. These data and 

the results of the air pollution analysis will be used to calculate the morbidity benefits associated 

with reductions in air pollution concentration. These morbidity benefits will be disseminated via 

the tracking network. Future efforts may also include the collection of additional daily ED data 

for diseases with possible environmental etiology to support additional analyses and data 

dissemination. 
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Table 2-1: Median and interquartile range (IQR) of county rate per 10,000 population per 
year by outcome, age, and sex 

A. Median (IQR) of county rate per 10,000 population per year 
Age Sex All ARI Asthma COPD Pneumonia 

All All 410 (276) 178 (138) 40 (27) 30 (26) 50 (30) 
0-<19 All 610 (481) 369 (301) 60 (40) * 47 (33) 
19-<65 All 301 (231) 125 (112) 37 (28) 22 (21) 29 (19) 

65+ All 455 (301) 57 (47) 22 (18) 112 (89) 137 (109) 
All Female 446 (312) 199 (161) 46 (33) 32 (28) 49 (31) 
All Male 371 (238) 155 (113) 35 (24) 28 (24) 50 (32) 

       
       

B. Median (IQR) of county rate per 10,000 population per year 
Age Sex All ARI Asthma COPD Pneumonia 
0-<19 Female 599 (476) 377 (319) 50 (36) * 42 (32) 

  Male 625 (480) 367 (291) 70 (49) * 51 (35) 
19-<65 Female 374 (297) 165 (152) 49 (38) 24 (26) 30 (21) 
  Male 227 (165) 87 (76) 23 (19) 19 (18) 28 (18) 

65+ Female 448 (294) 63 (54) 27 (23) 102 (84) 126 (97) 
  Male 464 (309) 49 (42) 15 (14) 122 (94) 148 (126) 

 

Table 2-2: Median and interquartile range (IQR) of county rate per 10,000 population per 
month by outcome, age, and sex 

  All ARI Asthma COPD Pneumonia 
Total 10.7 (8.8) 4.6 (4.6) 1.0 (1.4) 0.7 (1.2) 1.2 (1.4) 
January 13.6 (10.1) 6.0 (5.3) 1.1 (1.4) 0.8 (1.2) 1.6 (1.5) 
February 15.2 (11.2)* 6.7 (6.0) 1.2 (1.4) 0.9 (1.2) 1.8 (1.6) 
March 13.3 (9.7) 5.7 (5.1) 1.1 (1.3) 0.8 (1.2) 1.6 (1.5) 
April 10.9 (7.7) 4.5 (4.0) 1.1 (1.3) 0.7 (1.2) 1.3 (1.4) 
May 9.9 (7.1) 4.2 (3.8) 1.1 (1.3) 0.7 (1.1) 1.2 (1.2) 
June 8.0 (5.8) 3.3 (3.0) 0.8 (1.4) 0.6 (1.2) 1.0 (1.1) 
July 7.0 (5.2) 2.9 (2.7) 0.7 (1.2) 0.6 (1.1) 0.8 (1.1) 
August 7.4 (5.7) 3.1 (3.0) 0.9 (1.2) 0.6 (1.1) 0.8 (1.0) 
September 10.5 (8.2) 4.6 (4.4) 1.3 (1.5) 0.7 (1.1) 1.0 (1.1) 
October 11.3 (8.4) 4.9 (4.4) 1.3 (1.4) 0.7 (1.1) 1.2 (1.3) 
November 12.1 (9.1) 5.5 (4.9) 1.2 (1.4) 0.7 (1.1) 1.3 (1.3) 
December 13.6 (11.0) 6.1 (5.7) 1.1 (1.4) 0.8 (1.2) 1.5 (1.5) 

 

*Bold = highest median rate; bold and italic = lowest median rate 
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Table 2-3: Median and interquartile range (IQR) of age-adjusted rates per 10,000 
population per year 

State Counties 
Years 

Covered All ARI Asthma COPD Pneumonia 
CA 58 2006 - 2013 365 (151) 156 (75) 45 (22) 25 (18) 52 (23) 
CO 64 2013 236 (211) 108 (122) 27 (15) 15 (16) 23 (17) 
FL 67 2005 - 2014 543 (268) 273 (165) 54 (24) 38 (21) 53 (18) 
IL 102 2009 - 2014 625 (249) 239 (120) 46 (25) 52 (27) 73 (31) 
IA 13 2005 - 2012  465 (243) 208 (193) 41 (8) 32 (18) 57 (8) 
LA 64 2010 - 2012 429 (367) 183 (217) 37 (27) 32 (18) 54 (34) 
ME 16 2001 - 2011 661 (249) 283 (101) 60 (25) 48 (20) 70 (28) 
MA 14 2002 - 2012 494 (162) 205 (108) 76 (39) 32 (9) 67 (21) 
MN 87 2007 - 2013 310 (153) 115 (69) 29 (14) 21 (11) 49 (17) 
MO 115 2001 - 2012 410 (222) 211 (147) 32 (21) 24 (17) 36 (17) 
NH 10 2000 - 2009 544 (191) 265 (129) 59 (10) 33 (8) 59 (6) 
NM 33 2010 - 2013 362 (271) 166 (153) 39 (26) 22 (16) 35 (17) 
NY 62 2005 - 2013 395 (155) 163 (88) 49 (21) 36 (17) 49 (17) 
NC 100 2008 - 2014 337 (186) 151 (94) 45 (29) 28 (17) 35 (18) 
SC 46 2000 - 2013 613 (233) 267 (94) 67 (31) 34 (13) 61 (25) 
UT 29 2001 - 2013 263 (174) 115 (61) 23 (13) 11 (10) 47 (26) 
VT 14 2003 - 2012 359 (136) 153 (83) 36 (8) 29 (18) 61 (10) 

 

*Bold = highest median rate; bold and italic = lowest median rate 
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Table 2-4: Median and interquartile range (IQR) of age-adjusted rates per 10,000 
population per year 

 Category Counties All ARI Asthma COPD Pneumonia 

Urban 

Large Central 
Metro 31 406 (150) 174 (93) 61 (36) 18 (11) 43 (10) 

Large Fringe 
Metro 111 346 (193) 155 (92) 42 (20) 25 (18) 44 (22) 

Medium Metro 147 415 (206) 185 (82) 46 (24) 28 (19) 47 (22) 
Small Metro 102 450 (292) 201 (166) 44 (25) 29 (24) 48 (27) 
Micropolitan 187 453 (318) 208 (166) 45 (31) 33 (26) 54 (31) 
Noncore 316 411 (330) 194 (171) 38 (27) 32 (25) 52 (33) 

Region 

Midwest 317 449 (300) 194 (155) 36 (22) 28 (25) 50 (32) 
Northeast 116 430 (205) 204 (114) 53 (27) 36 (16) 56 (18) 
South 277 448 (300) 208 (162) 49 (30) 32 (19) 48 (27) 
West 184 300 (196) 144 (102) 37 (23) 19 (18) 42 (28) 

% living below 
poverty 

[3.65, 12.91] 298 340 (205) 145 (102) 36 (22) 24 (18) 48 (22) 
(12.91, 17.45] 298 437 (275) 204 (142) 44 (25) 32 (24) 50 (30) 
(17.45, 47.5] 298 476 (307) 218 (154) 49 (34) 33 (23) 49 (33) 

% black 
[0.24, 1.24] 298 363 (286) 164 (142) 32 (24) 27 (24) 48 (32) 
(1.24, 8.13] 298 410 (245) 181 (139) 41 (21) 29 (22) 50 (26) 
(8.13, 73.1] 298 454 (295) 211 (150) 54 (31) 31 (20) 49 (26) 

% Hispanic 
[0.56, 2.12] 298 475 (323) 213 (164) 40 (28) 33 (26) 55 (40) 
(2.12, 6.18] 298 409 (291) 179 (157) 44 (26) 31 (21) 50 (26) 
(6.18, 81.1] 298 374 (228) 166 (113) 45 (28) 25 (18) 44 (22) 

% w/out health 
insurance 

[4.9, 13.95] 298 432 (292) 174 (142) 42 (26) 33 (27) 56 (30) 
(13.95, 19.4] 297 418 (262) 200 (137) 43 (26) 28 (20) 44 (26) 
(19.4, 36] 299 401 (299) 183 (159) 42 (29) 29 (18) 45 (26) 

# hospitals per 
10K 

[0 ,1.55] 299 335 (196) 146 (107) 38 (24) 24 (17) 41 (24) 
(1.55, 3.93] 298 469 (268) 211 (135) 47 (27) 33 (20) 53 (24) 
(3.93, 71.6] 297 458 (347) 208 (180) 40 (27) 33 (27) 55 (35) 

# urgent care 
centers per 

10K 

0 487 429 (332) 194 (174) 40 (27) 33 (25) 52 (34) 
[0.1,1.66] 133 431 (192) 189 (115) 53 (27) 30 (17) 50 (20) 
(1.66, 2.76] 133 400 (227) 175 (100) 45 (21) 25 (15) 44 (22) 
(2.76, 44.4] 134 364 (228) 168 (126) 39 (27) 27 (20) 42 (26) 

# PC 
physicians per 

10K 

[0, 42.1] 299 402 (276) 178 (142) 38 (25) 32 (24) 48 (32) 
(42.1, 68.8] 297 467 (298) 213 (147) 45 (30) 33 (22) 52 (28) 
(68.8, 353] 298 378 (231) 166 (124) 45 (29) 26 (17) 47 (22) 

# 
Pulmonologists 

per 10K 

0 529 408 (315) 183 (165) 38 (26) 31 (25) 50 (36) 
[0.3,2.03] 120 421 (215) 187 (116) 47 (25) 31 (17) 53 (22) 
(2.03, 3.55] 117 435 (243) 195 (138) 49 (27) 30 (16) 49 (20) 
(3.55,34.6] 118 401 (229) 176 (130) 51 (30) 26 (15) 44 (21) 

*Bold = highest median rate; bold and italic = lowest median rate 
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Figure 2-1: Median county rate per 100,000 population per day 
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Figure 2-2: Median and interquartile range (IQR) of age-adjusted rates per 10,000 
population per year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Figure 2-3: Median and interquartile range (IQR) of age-adjusted rates per 10,000 
population per year 
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Chapter 3 - Age-specific associations between ambient air pollution concentrations and 
respiratory emergency department visits in the United States 
 

Abstract 

Background 

While associations between air pollution and respiratory morbidity for adults 65 and older are 

well-documented in the United States, evidence is limited for people under 65.  To address this 

gap, the Centers for Disease Control and Prevention’s National Environmental Public Health 

Tracking Program collected emergency department (ED) data from 17 states and generated the 

first nationally-relevant effect estimates for respiratory ED visits for all ages. 

 

Methods 

With 47.4 million respiratory ED visits, data included 894 U.S. counties for 2001–2012 (with 3 

to 12 years per county). County-specific time-series analyses using quasi-Poisson log-linear 

models were conducted to estimate associations between air pollution and respiratory ED visits 

among children 0-<19, adults 19-<65, and adults 65 and older. We used ozone and fine 

particulate matter (PM2.5) concentration estimates from a Bayesian space-time downscaling 

fusion model. Overall health effect estimates were generated using a Bayesian approach to pool 

the county effect estimates. 

 

Results 

The association between PM2.5 and respiratory ED visits was elevated among children, slightly 

elevated among adults <65, and consistent with the null among adults 65 and older. Associations 

between PM2.5 and asthma were elevated and similar among all age groups. PM2.5 was 
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associated with ARI among children and to a lesser extent ARI and pneumonia among adults 

<65. In contrast, the association between ozone and respiratory ED visits was elevated among 

both adult groups but not among children. However, the association among children was 

sensitive to choice of temporal control. Asthma and ozone were associated among adults <65 and 

slightly among children. Associations were elevated for ARI and COPD among both adult 

groups. Associations were elevated for pneumonia among all age groups. 

 

Conclusions and Relevance 

Ozone and PM2.5 were associated with respiratory ED visits among all ages with variation in 

magnitude and strength of the evidence by age group and outcome. These results address a gap 

in the evidence used to ensure adequate public health protection under national air pollution 

policy.  
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Introduction 

 

Substantial and consistent evidence supports the conclusion that short-term exposure to ambient 

ozone and fine particulate matter (PM2.5) is associated with increases in mortality and morbidity 

[1,2]. Robust evidence exists for mortality and for hospitalizations among adults 65 and older 

due to the availability of national vital statistics data and Medicare data. These data have enabled 

many multi-city analyses, which have been instrumental in setting National Ambient Air Quality 

Standards (NAAQS) for the Clean Air Act [3-10]. Estimates from multi-city studies provide 

strong evidence for determining causality between air pollution and health, for evaluating 

potential health benefits of proposed policies across the United States (US), and for establishing 

ambient air quality standards that provide adequate protection for the US population.  

 

Because national datasets are lacking, the evidence base for morbidity outcomes for populations 

not covered by Medicare (i.e., <65 years) often come from single-city studies [11-14]. This is 

particularly important for respiratory emergency department (ED) visits since the vast majority 

are from people under age 65 [15]. Collectively, the evidence from single-city studies indicates 

positive associations between air pollution and ED visits for all respiratory diseases combined, 

and for asthma, chronic obstructive pulmonary disease (COPD), and respiratory infections [9,16-

21]. While informative, these studies have limitations with respect to nationwide generalizability 

due to between-city differences in air pollution composition and population characteristics as 

well as differences in study methodology. For the current ozone and particulate matter (PM) 

standards, the Environmental Protection Agency (EPA) conducted national-scale mortality risk 

assessments using results from multi-city studies [22,23]. For morbidity outcomes, EPA 
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conducted similar risk assessments for hospital admissions among all ages in only 12 cities for 

ozone and 15 cities for PM where epidemiologic study results and necessary data were available. 

For respiratory related ED visits among all ages, their assessment was only conducted in Atlanta 

and New York City, indicating a strong need for a multi-city study.  

 

In response to a Pew Commission report, the Centers for Disease Control and Prevention’s 

(CDC) National Environmental Public Health Tracking Program (Tracking Program) was 

launched to integrate health, exposure, and environmental hazard data to inform environmental 

health programs and policies [24]. The National Environmental Public Health Tracking Network 

(Tracking Network) is a web-based system with components at national, state, and local levels 

(ephtracking.cdc.gov). It is used to collect, integrate, analyze, and disseminate health and 

environmental data that drive actions to improve the health of communities. We invited 30 states 

known to have ED data centralized within their state to participate in the project. Using the 

Tracking Network, we collected daily, county respiratory ED data for all ages from 17 states 

representing 45% of the US population (138.5 million individuals). We used these data to 

perform the first nationally relevant study to estimate associations between ozone and PM2.5 and 

respiratory ED visits among all ages in the US.  

 

Methods 

 

We obtained data for daily, county ED visits with a primary diagnosis of respiratory disease, 

based on International Classification of Diseases, 9th Revision (ICD-9) codes 460 – 519, from 17 

states (California, Colorado, Florida, Illinois, Iowa, Louisiana, Maine, Massachusetts, 
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Minnesota, Missouri, New Hampshire, New Mexico, New York, North Carolina, South Carolina, 

Utah, and Vermont) for 2000 through 2014 with 3 to 13 years per state (data availability varied 

by state).  We created 19 age-specific outcomes by aggregating the data into four age groups by 

five outcome groups, excluding COPD among children. The age groups included all ages 

combined, children 0 to less than 19 years (children), adults 19 to less than 65 years (adults), and 

adults 65 years and older (older adults). The outcome groups included all respiratory outcomes 

combined (460 – 519), acute respiratory infection (ARI) including upper respiratory infections, 

bronchitis, and bronchiolitis (460 – 466.0), asthma (493), chronic obstructive pulmonary disease 

(COPD) (491, 492, or 496), and pneumonia (480 – 486). 

 

For ambient air pollution concentrations, we used data from the Bayesian space-time 

downscaling (DS) fusion modeling approach, developed by the U.S. Environmental Protection 

Agency (EPA) and its partners [25]. Predictions of daily maximum 8-hr average ozone 

concentrations in parts per billion ozone and daily 24-hr average PM2.5 from the DS model were 

generated at census-tract centroids for the contiguous US as part of an interagency agreement 

between CDC and EPA. The Downscaler model development process and validation of results 

have been published previously [25-27]. For this study, we generated daily, population-weighted 

county-level estimates of ozone and PM2.5, for years 2001 through 2012 [28-29]. Daily, county-

level estimates of maximum temperature and dew point temperature in degrees Fahrenheit (°F) 

were generated from the North American Land Data Assimilation System (NLDAS) model [30]. 

We converted predictions from NLDAS model from a grid resolution of 14-km X 14-km to 

county using a previously cited geo-imputation approach [31]. We used SAS v9.3, Python v3.3.2 

and ArcGIS 9.3 for preparing the environmental datasets.  
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We used a two-stage model to obtain nationally relevant estimates of short-term associations 

between ozone and PM2.5 and respiratory ED visits. In the first stage, we fit time-series models 

(n = 17880) for each combination of county (n = 894) and age-specific outcome (n = 20). To 

minimize issues with model convergence, we excluded those counties where more than 90% of 

days had zero ED visits for a given age-specific outcome (n = 5575). We modeled an 

unconstrained distributed lag for lag days 0 through 6 to capture the cumulative association of 

exposures over the past week using a Poisson log-linear model that accounted for overdispersion. 

We fit single-pollutant models for ozone and PM2.5 and two-pollutant models with both. We 

included: (1) non-linear functions of same day maximum temperature, same day maximum dew 

point temperature, and previous six-day average maximum temperature as natural cubic splines 

with 3 degrees of freedom; (2) a non-linear function of calendar date as a natural cubic spline 

with 8 degrees of freedom per year of county data; and (3) indicator variables for day of week 

and for holidays. For the second stage, two-level Bayesian hierarchical models with non-

informative priors were fit to combine county-specific effect estimates for each age-specific 

outcome to obtain nationally relevant effect estimates for ozone and PM2.5 [32]. We evaluated 

the sensitivity of our results by running the models with various degrees of freedom on calendar 

date (6, 8, 10, and 12 per year) and with three combinations of weather variables:  1) 

temperature, 2) temperature and dew point temperature, and 3) temperature, dew point 

temperature, and previous six-day average temperature. We also ran the models with lag day –1 

(pollution on the following day) as a negative control exposure to estimate the association with 

ozone and PM2.5 on the day after the ED visit [33]. All models were implemented using R 

statistical software (version 3.3.2; R Foundation for Statistical Computing). 
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Results 

 

Our analysis included 38.4 million respiratory ED visits from 869 counties including 480 non-

metropolitan counties (Table 3-1) [34]. Children and adults had approximately 16 million visits 

each while older adults had about 6 million visits. The mean daily rates of respiratory ED visits 

per 10,000 people was 1.20 for all ages combined, 1.94 for children, 0.91 for adults, and 1.37 for 

older adults. Rates of ARI and asthma were highest among children, while the rates for COPD 

and pneumonia were highest among older adults (Figure 3-1). We calculated the interquartile 

range (IQR) of each pollutant for each county for the specific years of data used in that county’s 

time-series analysis. The 869 county-specific IQR for daily 8-hour maximum ozone varied from 

8.0 parts per billion (ppb) to 34.0 ppb with a mean IQR of 16.54 ppb (Figure 3-2). For 24-hour 

average PM2.5 levels, the mean county IQR was 5.26 micrograms per cubic meter (µg/m3) and 

ranged from 1.9 to 9.8 µg/m3.  

 

We observed statistically significant positive associations between ozone and all respiratory ED 

visits combined in both single and two-pollutant models for all age groups, except for children in 

the two-pollutant model where the association estimate was null (Figure 3-3). The rate ratios 

(RRs) shown indicate the increase in rate of ED visits for a 20 ppb increase in ozone 

concentration on lag days 0 through 6.  In the two-pollutant models, the association between all 

respiratory ED visits and ozone was strongest among adults and elevated for older adults. In 

contrast, PM2.5 was associated with all respiratory ED visits in both single and two-pollutant 

models for all ages combined, children, and adults and consistent with the null among older 

adults (Figure 3-4). The RRs shown indicate the increase in rate of ED visits for a 10 µg/m3 



80 
 

increase in PM2.5 concentration on lag days 0 through 6. The RRs between all respiratory ED 

visits combined and PM2.5 was higher among children than adults.  

 

For both pollutants, the associations with specific outcomes varied in significance and magnitude 

by age group. For ozone, we observed significant and positive associations with asthma, ARI, 

COPD, and pneumonia among all ages combined in both single-pollutant and two-pollutant 

models (Figure 3-3). For adults, we also observed significant, positive associations between 

ozone and all four outcomes. Ozone was associated with ARI, COPD, and pneumonia among 

older adults but was consistent with the null for asthma. For children, ozone was only associated 

with pneumonia and, to a lesser extent, asthma. The highest magnitude RR for ozone was asthma 

among adults followed by ARI among older adults and pneumonia among adults. For PM2.5 and 

all ages combined, we observed positive, significant associations for asthma and ARI in single 

and two-pollutant models and pneumonia in single-pollutant models (Figure 3-4). In contrast to 

our ozone results, we observed an association between PM2.5 and ARI among children and an 

elevated RR for asthma among children but no association for pneumonia. PM2.5 was associated 

with ARI, asthma, and pneumonia among adults and with asthma only among older adults. The 

highest RR observed was for asthma among children followed by the RRs for asthma among 

adults and older adults. We found little evidence of an association between PM2.5 and COPD 

among any age group in either single or two-pollutant models. 

 

In our sensitivity analyses, the RR increased slightly as the number of degrees of freedom per 

year of data increased for ozone; association estimates for PM2.5 changed little (Figure 3-5). It is 

notable that, for children, many RRs for ozone increase in magnitude from a negative or null 
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association to positive association as we increase temporal control (Figure 3-5 A and B). The RR 

for ozone and ARI among children was 1.000 (95% CI: 0.993, 1.007) with the a priori 8 degrees 

of freedom, but was 1.015 (95% CI: 1.010, 1.023) with 12 degrees of freedom. Further, the RR 

for ozone and asthma among children was only slightly elevated with 8 degrees of freedom but 

increased in magnitude and was statistically significant with 10 and 12 degrees of freedom. We 

choose 8 degrees of freedom a priori based on work completed by previous multi-city studies 

which generally used 6 to 8 degrees of freedom per year and generally found their effect 

estimates to be robust to the degrees of freedom used [3-5,9]. Previous Atlanta-based studies of 

respiratory ED visits or hospitalizations among all ages or children have generally used 12 

degrees of freedom [12,14]. It is plausible that the most valid degree of temporal control may 

vary by outcome and age group in relation to the degree of seasonality. Given the strong 

seasonality of respiratory ED visits among children especially, the necessary degree of control 

may be higher than what is needed for outcomes and age groups studied by previous multi-city 

studies. An alternative approach would be to allow the degrees of freedom to vary by outcome 

and age group, and possibly county, using a fit criterion, such as the Akaike Information 

Criterion (AIC) [Katsouyanni]. For the three combinations of weather variables we evaluated, 

our results fluctuated slightly for ozone but were robust for PM2.5 with overlapping 95% credible 

intervals (Figure 3-6). The associations observed between ozone or PM2.5 concentrations on lag 

day -1 (the following day’s pollution) and ED visits for asthma, COPD, and pneumonia were 

consistent with the null supporting our model specifications (Figure 3-7). 
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Discussion  

 

Our nationally relevant study, based on nearly 40 million respiratory ED visits representing all 

ages, addresses an important gap in air pollution epidemiology and is a valuable reference for 

future national air pollution policy risk assessments. Our results support the EPA’s determination 

of a likely causal relationship between PM2.5 and respiratory effects and a causal relationship 

between ozone and respiratory effects [1,2]. However, our results highlight important variation 

in magnitude across age groups, outcomes, and pollutants. PM2.5 and respiratory ED visits were 

strongly associated among children, moderately associated among adults, and not associated 

among older adults. While the associations with PM2.5 were elevated and similar among all age 

groups for asthma, they varied by age group for ARI and pneumonia. Conversely, ozone was 

strongly associated with respiratory ED visits among both adult groups. The association among 

children was elevated with increased temporal control, though the magnitude remained lower 

than both adult groups. The association between ozone and asthma varied by age group with the 

highest magnitude among adults. Associations varied by age group for ARI but were similar 

across age groups for COPD and pneumonia. These findings indicate that multi-city studies of 

populations over 65 may not be a good proxy of acute respiratory impacts on younger age 

groups, and that reliance on such studies could underestimate population respiratory health 

impacts of PM2.5 or ozone that were stronger in our study for younger age groups.  

 

Few single-city studies have estimated associations of ozone or PM2.5 across different age 

groups for ED visits or hospitalizations. Those that have looked specifically at asthma and 

generally found a greater impact on children [11,16,35]. We observed stronger associations for 
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PM2.5 on asthma among children compared to adults and older adults, and a stronger association 

for ozone on asthma among adults and older adults compared to children. Based on the few 

studies evaluating hospital admissions and ED visits for respiratory outcomes, EPA found 

consistent evidence of positive associations for asthma and COPD [2]. While EPA found strong 

toxicological evidence supporting an association between ozone and respiratory infections and 

pneumonia, the epidemiologic evidence was inconsistent. We observed positive associations 

between ozone and ARI, asthma, COPD, and pneumonia for all age groups with the only 

exceptions being ARI among children and asthma among older adults after adjusting for PM2.5. 

In our results, the greatest ozone association observed was for asthma among adults younger than 

65, an age group previously not included in other multi-city studies of morbidity. For PM2.5, 

EPA’s review of available studies produced stronger and more consistent evidence for COPD 

and respiratory infections effects than for asthma effects including both ED visits and 

hospitalizations. In contrast, we observed significant, positive associations between PM2.5 and 

asthma across all age groups and between PM2.5 and acute respiratory infections for children and 

adults. Pneumonia was associated with PM2.5 among adults only while COPD was not associated 

with PM2.5 in any age group analyzed. These disparate results could be due to differences in 

study methodology or between city differences in air pollution composition, exposure patterns, 

choice of environmental data, or population characteristics. Additionally, the diagnosis of asthma 

in children under five is difficult and could result in more outcome measurement error when 

included in the analysis.  

 

The differences in magnitude across associations of outcomes, age groups, and pollutants are 

consistent with differences in disease pathology, respiratory tract physiology, pollutant 
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chemistry, exposure patterns, or a combination thereof. The specific respiratory diseases leading 

to ED visits varies by age group with ARI, asthma, and pneumonia prominent in children; 

asthma and COPD in adults; and COPD and pneumonia in older adults [15]. The pathology of 

these diseases and their impact on the respiratory tract also varies by age. Small airway 

obstruction related to COPD is often observed in the smallest airways, where gas exchange 

occurs, compared to a more proximal location among individuals with asthma [36]. Similarly, 

among those with asthma, hyperresponsiveness tends to be more proximally located in younger 

individuals versus more peripherally located in older individuals [36]. Age also influences 

respiratory tract morphology, breathing patterns, physiochemical properties of the extracellular 

lining fluid, immunologic responses, and mechanical properties of the lung [1,2,36]. These 

differences can influence not only disease pathology but also pollutant uptake, dose, and effect 

on the respiratory tract. The impact of these differences on our results is further complicated by 

the differing physiochemical properties of ozone and PM2.5 [1,2]. For example, ozone is a gas 

that can penetrate deep into the lower respiratory tract with more distal penetration in larger 

lungs [2]. Conversely, evidence suggests that children may receive a larger dose of particulate 

matter in the lower respiratory tract compared to adults [1]. Together, these differences lend 

biological plausibility to our results. 

 

Limitations  

 

Although our statistical model is well established and has been evaluated extensively [32,37-40], 

model misspecification is nevertheless a concern. Our county time-series analyses could be 

biased by an unmeasured or inadequately modeled predictor or confounder if that confounder 

fluctuates over time in a manner similar to ozone or PM2.5. Our sensitivity analyses, which 
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include modeling time trend and meteorology in various ways and estimating associations with a 

negative control exposure, suggest that such a bias is unlikely [33]. One possible exception is the 

results for ozone and ARI and asthma among children, which were sensitive to the number of 

degrees of freedom included in the time control. Classification of specific respiratory diseases 

based on primary diagnosis and ICD-9 codes could potentially lead to misclassification. Such 

misclassification would not affect the results for all respiratory diseases combined. While county 

air pollution metrics are not measures of personal exposure, they are relevant metrics for air 

pollution policy and can produce robust and unbiased results for ozone and PM2.5 that tend to be 

more spatially homogenous than other air pollutants [41]. Modeled air pollution data may 

introduce additional measurement error into our analyses; however, evaluation of the 

Downscaler model has shown it to be a reasonable solution to the temporal and spatial gaps in 

available air pollution data [26,27]. While our study provides estimates to inform national 

environmental health policy by combining the local estimates, we average across the local 

variation in the short-term associations between air pollution and respiratory ED visits that 

exists.  

 

Conclusion 

 

Both ozone and PM2.5 were associated with respiratory ED visits among all ages combined, and 

we observed variation in the magnitude of these associations across age, respiratory outcome, 

and pollutant. Our results provide the first nationally comprehensive risk estimates for ARI, 

asthma, COPD, pneumonia, and all respiratory outcomes combined for children, adults younger 

than 65, older adults, and all ages combined. Prior to our study, US multi-city estimates were 

only available for mortality or for morbidity among older adults due to limitations in nationally 
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standardized and accessible health data. Such gaps in available data, and consequently our gaps 

in understanding of the relationship between health and environmental hazards, were the primary 

motivation for the creation of CDC’s Tracking Network. By examining associations with ozone 

and PM2.5 for people of all ages across hundreds of counties in the US, we address a key gap in 

the evidence used to inform national ambient air pollution policy. 
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Table 3-1: Overall mean and variance of county level mean daily counts and rates per 
10,000 population of respiratory emergency department visits for counties analyzed by 
outcome and age group 

Outcome 
Age 

Group ED Visits Counties 

Mean     
Daily 
Count 

Variance 
Daily 
Count 

Mean    
Daily 
Rate 

Variance 
Daily 
Rate 

All All 39,975,411 869 17.26 2383.55 1.20 0.313 

All 0-<19 16,096,443 836 7.34 523.19 1.94 0.914 

All 19-<65 16,398,438 836 7.50 400.90 0.91 0.206 

All 65+ 5,884,333 789 2.78 51.35 1.37 0.296 

ARI All 18,169,816 836 8.13 498.03 0.57 0.090 

ARI 0-<19 9,534,546 812 4.48 189.91 1.22 0.400 

ARI 19-<65 7,176,147 774 3.49 68.61 0.42 0.058 

ARI 65+ 701,212 419 0.61 1.16 0.21 0.014 

Asthma All 5,761,712 691 3.10 100.70 0.14 0.005 

Asthma 0-<19 2,265,810 517 1.64 22.15 0.23 0.014 

Asthma 19-<65 2,717,781 594 1.76 30.87 0.13 0.004 

Asthma 65+ 379,423 206 0.68 1.65 0.09 0.002 

COPD All 2,385,148 678 1.32 7.19 0.10 0.003 

COPD 0-<19 NA NA NA NA NA NA 

COPD 19-<65 896,808 506 0.69 1.43 0.08 0.002 

COPD 65+ 1,342,479 571 0.88 2.96 0.38 0.027 

Pneumonia All 4,659,863 749 2.31 35.25 0.16 0.004 

Pneumonia 0-<19 1,294,844 467 1.04 6.02 0.16 0.005 

Pneumonia 19-<65 1,425,621 566 0.97 4.55 0.09 0.001 

Pneumonia 65+ 1,660,353 589 1.04 5.27 0.46 0.036 
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Figure 3-1: Distribution of county level means for daily rate of respiratory emergency 
department visits per 10,000 population 
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Figure 3-2: Distribution of county level interquartile ranges for daily 8-hour maximum 
ozone and 24-hour average PM2.5 
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Figure 3-3: Rate ratio & 95% credible interval for a 20 parts per billion increase in daily 8-hour 
maximum ozone from an unconstrained, distributed lag model (lags 0 – 6) (unadjusted and PM2.5 

adjusted) 
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Figure 3-4: Rate ratio & 95% credible interval for a 10 microgram per cubic meter 
increase in 24-hour average PM2.5 from an unconstrained, distributed lag model (lags 0 – 
6) (unadjusted and ozone adjusted) 
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Sensitivity Analysis 

Figure 3-5: Evaluation of different degrees of freedom per year as alternative specifications 
for control of temporal trend (8 degrees of freedom per year were selected a priori for the 
primary analysis.) 

 

A: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 20 ppb 
increase in 8-hour ozone 
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B: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 20 ppb 
increase in 8-hour ozone, adjusted for PM2.5 
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C: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 10 µg/m3 
increase in 24 hour PM2.5 
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D: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 10 µg/m3 
increase in 24 hour PM2.5, adjusted for ozone 
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Figure 3-6: Evaluation of the effect of different variables to control for weather 

Three combinations of weather variables analyzed: 1) same day maximum temperature, 2) same 
day maximum temperature and same day maximum dew point temperature, and 3) same day 
maximum temperature, same day maximum dew point temperature, and previous six-day 
average temperature. Combination 3 was used in the primary analysis. 

A: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 20 ppb 
increase in 8-hour ozone 
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B: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 20 ppb 
increase in 8-hour ozone, adjusted for PM2.5 
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C: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 10 µg/m3 
increase in 24 hour PM2.5 
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D: RR & 95% CI from an unconstrained, distributed lag model (lags 0 – 6) for a 10 µg/m3 
increase in 24 hour PM2.5, adjusted for ozone 
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Figure 3-7: Evaluation of associations between respiratory ED visits and air pollution the 
day after the ED visit as a negative control exposure 

 

A: RR & 95% CI for a 20 ppb increase in 8-hour ozone the day after an ED visit and the 
same day plus week before an ED visit (adjusted for PM2.5) 

 

B: RR & 95% CI for a 10 µg/m3 increase in 24 hour PM2.5 the day after an ED visit and the 
same day plus week before (adjusted for ozone) 
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Chapter 4 - Heterogeneity in the short-term association between fine particulate matter 
and asthma emergency department visits among children 
 

Abstract 
 

Introduction 

Substantial evidence indicates a positive association between short-term exposure to fine 

particulate matter (PM2.5) and asthma emergency department (ED) visits among children. 

However, results from single city studies vary potentially due to methodological differences or 

between city differences in the air pollution mixture, exposure patterns, or underlying 

population. We observed between-county heterogeneity for this association as well as for other 

age groups, diseases, and pollutants in our recent multi-city study of respiratory ED visits across 

all ages. We applied the same methodology to each county and therefore, in this analysis, 

explored the potential contribution of various county-level covariates to the between-county 

heterogeneity. 

 

Methods 

We previously generated 114 county-specific regression coefficients (β), which represent the 

association of PM2.5 on asthma ED visits among children less than 19 years in each county. 

Here, we use a Bayesian hierarchical regression model to pool the county-specific βs from our 

two pollutant models with various county-level covariates included in the model. We then 

visualized the change in heterogeneity as measured by a mean estimate of τ2 and its 95% 

posterior interval (PI). We also visualized the impact of those covariates on the overall rate ratio 

(RR) and its 95% credible interval (CI). We evaluated county-level covariates related to county 
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demographics, socioeconomic status, and health care access as well as state, region, and 

urbanization.  

 

 

Results 

While each of the 12 covariates included resulted in at least a 25% decrease in heterogeneity, 

only state resulted in a 95% PI that did not overlap with the 95% PI for τ2 when no covariate was 

included in the model. Percent of the population without health insurance and region reduced 

heterogeneity by 50%. We also observed small differences in the RR across levels of the 

covariates for a 10 µg/m3 increase in PM2.5 with mostly overlapping 95% CI. Most notable was 

a decrease in RRs as percent of population without health insurance and the number of urgent 

care centers per 100,000 population increased. We observed significant, positive associations for 

eight out of the twelve states analyzed and observed the highest RR in the Northeast and the 

Midwest.  

 

Conclusion 

The strong results by state indicate the importance of a state-level or spatial covariate as a major 

driver for the between-county heterogeneity. Future analysis should explore the combined effect 

of these variables with consideration to their correlation and any spatial correlation in both the 

effect estimates and covariates. Pooling county-specific effect estimates using a meta-regression 

versus meta-analysis technique provides one method for exploring between-county heterogeneity 

in the association between air pollution and adverse health effects. 
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Introduction 
 

Over fifty years of epidemiologic studies provide extensive evidence of the association between 

short-term exposure to ambient air pollutants and adverse health outcomes [1-7]. These studies 

are instrumental in setting national air pollution policy by providing evidence to establish 

causality between specific pollutants and outcomes and to quantify the association for risk 

assessments. While the depth of published literature is substantial, questions remain regarding 

the shape of the concentration response (C-R) functions, the potential for health effects at lower 

concentrations, the effects of multi-pollutant exposures, and the protection of sensitive sub-

populations [8, 9]. Further, evidence is limited for some pollutants and health effects, such as the 

relationship between asthma and fine particulate matter (PM2.5) among children. Uncertainty 

remains in part due to disparate results between individual studies which are largely time-series 

analyses in a single, geographically defined population such as a city (or county) [7, 10-16]. The 

heterogeneity could be due to methodological differences between studies, differences in the air 

pollution mixture or exposure patterns, or differences in the underlying population with regards 

to factors that modify the effect of air pollution on health [17].   

 

Generally, air pollution time-series analyses are conducted using readily available hospital or 

vital statistics data and air monitoring data where sufficient information is not available for 

stratified analyses. An alternative approach is to examine how city variables explain between city 

risk heterogeneity. While this approach is limited regarding the evaluation of multiple, 

independent analyses, it is a natural extension of studies which cover multiple cities or counties 

[18-21]. These studies statistically pool the results of multiple, city (or county) specific time-

series analyses conducted using the same methodology. They have more statistical power than 
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single city studies resulting in effect estimates with relatively greater precision and they avoid 

the problem of publication bias [22]. Meta-analysis techniques can be used to generate an overall 

effect estimate and to recover shrunken, and arguably better, estimates of individual city effects 

[23]. Heterogeneity of the individual city effects is accounted for in the heterogeneity variance of 

the mean estimate of effect. Exploring the shrunken individual county effects and pooling the 

effects by different factors using meta-regression techniques can be used to evaluate possible 

sources of the heterogeneity. 

 

Few studies have evaluated potential sources of heterogeneity in the association between PM2.5 

and asthma ED visits among children specifically. Evidence more broadly suggests a number of 

potential individual or community factors that increase individual susceptibility or health care 

utilization. Effect modification of the association between PM2.5 and asthma morbidity among 

children by neighborhood socioeconomic status (SES) was observed in California and Atlanta 

but not in New York City [24-26]. Another study in Atlanta found a higher risk for asthma ED 

visits associated with PM2.5 among children who were born prematurely and to African 

American mothers [27]. Other studies suggest that race, ethnicity, sex, and insurance coverage 

do not modify the relationship between particulate matter and asthma morbidity [14, 28, 29]. A 

study in Seoul, Korea observed effect modification between asthma ED visits and coarse 

particulate matter by patient history of allergic rhinitis or atopic dermatitis [30]. Evidence also 

suggests that individual or community levels factors may alter exposure to ambient air pollution 

including use of air conditioning, home ventilation, and activity patterns [31-33]. Additionally, 

the composition of PM2.5 itself can vary between cities [34, 35]. PM2.5 is a complex mixture of 

chemically and physically diverse particles and liquid droplets, which varies spatially in relation 
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to variation in meteorology, sources, and topography [8].  Studies have shown variation in the 

association between PM2.5 and respiratory morbidity by region of the United States but not by 

county urbanization [14, 36-38]. A study in California observed effect modification of the 

association between PM2.5 and asthma morbidity among children by residential exposure to 

traffic pollution [29]. 

 

In a previous analysis, we used a two-stage approach to generate nationally relevant effect 

estimates for the short-term associations between ozone and PM2.5 and respiratory emergency 

department (ED) visits (chapter 2). First, we conducted county time-series analyses to estimate 

the short-term associations between ozone and PM2.5 and respiratory ED visits within each 

county. We evaluated the associations for each pollutant by outcome group: all respiratory 

outcomes combined (International Classification of Diseases, 9th Revision, Clinical 

Modification [ICD-9-CM]: 460 – 519), acute respiratory infection (ARI) including upper 

respiratory infections, bronchitis, and bronchiolitis (460 – 466.0), asthma (493), chronic 

obstructive pulmonary disease (COPD) (491, 492, or 496), and pneumonia (480 – 486). We also 

evaluated these associations by age group (all ages combined, children 0 to less than 19 years, 

adults 19 to less than 65 years, and adults 65 years and older). Then, we pooled the county-

specific βs by age and outcome group using a two-level Bayesian hierarchical model with non-

informative priors to obtain nationally relevant effect estimates. While we found a significant, 

positive association between asthma and PM2.5 for all age groups, we observed the highest 

between-county heterogeneity as measured by τ2 for this association among older adults and 

among children (Figure 4-1). Because children are not included in other multi-city studies in the 

United States, we seek to evaluate heterogeneity in the association between PM2.5 and asthma 
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ED visits among children and which, if any, county level factors contribute to the between-

county heterogeneity.  

 

 

Methods 
 

In stage one of our previous analysis we generated county-specific effect estimates (βs) with 

standard errors for ozone and PM2.5. Our health data included daily counts of ED visits with a 

primary diagnosis of respiratory disease, based on International Classification of Diseases, 9th 

Revision (ICD-9) codes 460 – 519, from 894 counties in 17 states. We used ozone and PM2.5 

data from a Bayesian space-time downscaling (DS) fusion modeling approach, developed by the 

U.S. Environmental Protection Agency (EPA) and its partners [39]. We modeled an 

unconstrained distributed lag for lag days 0 through 6 to capture the cumulative association of 

exposures over the past week using a Poisson log-linear model that accounted for overdispersion. 

We fit single-pollutant and two-pollutant models controlling for long-term and seasonal trends, 

same day maximum temperature, same day maximum dew point temperature, previous six-day 

average maximum temperature, day of the week, and holidays.  

 

The βs from each county-specific model is an estimated effect of air pollution in the county 

analyzed. From stage one, we have 114 county-specific βs which are exponentiated to generate 

the rate ratio (RR) indicating the increase in rate of ED visits per unit increase in PM2.5 

concentration on lag days 0 through 6 (Figure 4-2). We assume β to be a combination of the 

county-specific unobserved true effect and county-specific random error that is independent 

across all counties and is normally distributed with a mean of zero and a county-specific 
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variance. Here, we used a Bayesian hierarchical regression model to pool the county-specific βs 

from our two pollutant models with various county-level covariates: 

 

�̂�𝛽𝑖𝑖 =  𝛼𝛼0 +  𝛼𝛼1Χ𝑖𝑖 +  𝜂𝜂𝑖𝑖 +  𝜖𝜖𝑖𝑖  

𝜖𝜖𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎�𝑖𝑖2)   

𝜂𝜂𝑖𝑖  ~ 𝑁𝑁(0, 𝜏𝜏2  )  

Priors: 

𝜏𝜏2~ 𝐼𝐼𝑃𝑃𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺0, 𝑏𝑏0), where 𝐺𝐺0, 𝑏𝑏0 are small (e.g. 0.01) 

 where, 

�̂�𝛽𝑖𝑖 = estimated effect for county i from our previous analysis 

𝛼𝛼0 = intercept log relative risk 

𝛼𝛼1 = change in log relative risk per unit increase Χ𝑖𝑖 

Χ𝑖𝑖 = county-specific covariate that explains the unobserved true log relative risk 

𝜂𝜂𝑖𝑖  = random effect describing the county-specific deviation from the distribution mean 

𝜏𝜏2 = residual between county heterogeneity  

𝜖𝜖𝑖𝑖  = county-specific random deviation that is independent across counties 

𝜎𝜎�𝑖𝑖2 = variance for county i from our previous analysis 

In using this approach to pool the observed county-specific effect estimates, we assume that (1) 

the unobserved true effect varies between counties; (2) it’s a combination of a intercept log 
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relative risk, change in log relative risk per unit increase in county-specific covariate, and a 

random effect; and (3) τ2 is a random variable for which we use non-informative priors. This 

approach provides us with an unbiased estimate of τ2 that represents the between-county 

heterogeneity. To evaluate heterogeneity, we fit models with various county-level variables as Χ𝑖𝑖 

(e.g., county poverty level). We evaluated eight continuous variables as both a continuous 

variable in our model (Table 4-1) and a categorical variable based on tertiles (Table 4-2). We 

also evaluated four categorical variables (Table 4-3). Analyses were conducted using R statistical 

software (version 3.4.3; R Foundation for Statistical Computing) and the R-INLA package [40]. 

 

Results  
 

Of the twelve covariates analyzed, inclusion of state, percent without health insurance as a 

continuous variable, and US Census region in the model resulted in a 50% decrease in the 

between county heterogeneity (Figure 4-3). The remaining seven continuous variables (Table 4-

1) when included as a continuous variable in the model and EPA region resulted in at least a 25% 

decrease in the between county heterogeneity (Figure 4-3). Urbanization and percent of 

population without health insurance as a categorical variable also resulted in a slight decrease 

while inclusion of the eight continuous variables as categorical variables (Table 4-2) increased 

between county heterogeneity. Inclusion of state produced the largest decrease with posterior 

interval (PI) that do not overlap the PI for the national estimate of 𝜏𝜏2. All other PI for 𝜏𝜏2 

overlapped with the PI for the national estimate of 𝜏𝜏2.  

 

We also observed differences in the rate ratios (RR) and 95% credible intervals (CI) for a 10 

µg/m3 increase in PM2.5 between counties as grouped based on these variables. We observed 
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small differences in the mean estimates for the RRs with overlapping 95% CIs for a 10 µg/m3 

increase in PM2.5 between counties at the 20th percentile and counties at the 80th percentile for 

most of the eight continuous variables (Figure 4-4). The greatest difference in the mean estimate 

for RR was for percent without health insurance where we observed a higher RR in counties with 

fewer percent of the population without health insurance. While the CI for each estimate 

overlapped, the RR for counties with higher percent of the population without health insurance 

was consistent with the null. We also observed a difference in the RR for counties grouped by 

number of urgent care centers per 100,000 population where counties with a greater density of 

centers also had a RR consistent with the null. In evaluating these variables by tertile, we 

observed more variation but mostly overlapping CIs (Figure 4-5). The largest variation was again 

observed by percent uninsured and number of urgent care centers per 100,000 population. The 

counties with the lowest density of urgent care centers and the lowest percent of population 

without health insurance had RRs slightly elevated above the overall RR generated from the 

model without any covariates. The RRs decreased as the percent uninsured and the number of 

urgent care centers per 100,000 population increased. As either continuous or categorical, we 

observed slightly higher RRs as the number of primary care physicians per 100,000 population 

and number of pulmonologist per 100,000 population increased and slightly lower RRs as the 

number of hospitals per 100,000 population increased. Similarly, the RRs increased as percent of 

the population identifying as black increased and decreased as percent of the population 

identifying as Hispanic increased. The RRs showed little variation by percent of population 

living in poverty.   
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The greatest variation in the RRs was observed by the categorical variables of state, EPA region, 

and Census region (Figures 4-5 A, B, and C). This variation follows a similar pattern across all 

three variables as ordered from the US west coast to east coast. The RR was highest in NY 

followed by MO and MN and lowest in NH, FL, CA, and SC. We observed significant positive 

RRs in every state except NH, NC, SC, and UT where the RR was consistent with the null and in 

FL were the RR was negative. Following the same pattern, we observed significant positive 

associations in EPA regions 1, 2, 5, 7, and 9. The highest RRs were observed in EPA regions 2 

and 7 overlapping with NY, MO, and IA. Similarly, RRs were elevated and significant in the 

Northeast and Midwest. EPA region 4 and Census region South both contained the same states of 

FL, NC, and SC. In these regions, the RRs were negative but consistent with the null. By 

urbanization, RRs were significant and positive in the most urban counties categorized as large 

central metro counties (Figure 4-5 D). The RRs generally decreased as urbanization decreased, 

though the results for both large fringe metro counties and the group of medium metro, small 

metro, and micropolitan counties were consistent with the null.  

 

Discussion 
 

From our original analysis, we had 114 county-specific effect estimates generated based on 1.8 

million asthma ED visits among children. Overall, we found a significant, positive association 

between asthma ED visits among children and PM2.5 and observed between county 

heterogeneity. In this analysis, we were able to reduce heterogeneity by 50% with the inclusion 

of either state, percent of population without health insurance, or Census region in our Bayesian 

hierarchical regression model. While state, Census region, and EPA region reduce the between 

county heterogeneity, they do not offer a specific explanation for the heterogeneity. Either state-
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specific covariates or factors that vary spatially may contribute to the reduction in heterogeneity. 

These variables may capture the effect of multiple county specific covariates, which could be 

explored by including more than one covariate in our model.  

 

We observed a reduction in heterogeneity by percent of population without health insurance and 

a decrease in the RR for the association between PM2.5 and asthma as the percent without health 

insurance increased. As either a continuous or categorical variable, we observed a significant, 

positive RR in the counties with the lowest percent of population without health insurance while 

the RR in the counties with the highest percent was consistent with the null. This finding indicate 

that counties with high percent of population without health insurance do not experience an 

increase in asthma ED visits among children as PM2.5 increases. It is possible that children 

without health insurance experience an exacerbation of their asthma symptoms but not seek care 

in an emergency department. Overall, only about 15% of ED visits in general are made by 

individuals without health insurance [41]. Public insurance including Medicare, Medicaid, or 

Children’s Health Insurance Program is the largest source of payment for ED visits followed by 

private insurance. Studies have shown increased ED utilization by children with asthma on 

Medicaid versus private insurance [42, 43]. Medicaid is implemented at a state level and 

therefore variation in implementation could partially explain the reduction in heterogeneity by 

state as a covariate. Other county or state variation in health care could contribute to the 

heterogeneity. We also observed a decrease in the RR as the number of urgent care centers 

increased. Urgent care centers may be providing care for patients that otherwise would have 

visited an emergency department. However, urgent care centers tend to be in urban areas with 

higher income levels and private insurance coverage, which suggest possible interaction between 
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these factors [44]. Additionally, in California, the risk of asthma ED visits among asthmatic 

children on Medicaid decreased as number of pulmonologists increased and increased as the 

number of primary care doctors and hospitals increased [45]. Evidence suggests that a future 

analysis should explore potential interaction between type of insurance, duration of coverage, 

poverty, and measures of health care access.  

 

One possible explanation of the regional variation in effect from an air pollution perspective 

could be the regional variation in PM2.5 driven by variation in sources, meteorology, and 

topography [8]. PM2.5 is a mixture of chemically and physically diverse particles and liquid 

droplets of anions, cation, trace elements, total carbon, gaseous pollutants, and biologic 

components. While motor vehicle traffic is a large and ubiquitous source of primary PM2.5, other 

sources are more geographically concentrated [35]. Residual oil combustion is a prominent 

source in northeast cities and cities with major seaports while coal combustion is prominent in 

the mid-Atlantic and biomass burning in the northwest [35]. Speciated PM2.5 data shows higher 

concentrations of sulfate in the east and higher concentrations of nitrate, organic carbon, and 

elemental carbon in the west [34]. Other multi-city studies investigating respiratory hospital 

admissions among person 65 and older found little or no heterogeneity in risk but did find 

variation in the associations with individual PM components, specifically positive associations 

with organic carbon and elemental carbon [20, 46, 47]. In Peng et al, sulfate resulted in the 

second highest percent increase in respiratory emergency hospital admissions among persons 65 

and older though the effect was not significant. Another multi-city study found that sulfur, but 

not other species including organic carbon and elemental carbon, was associated with respiratory 

related mortality [21]. The applicability of results for respiratory hospital admissions among 
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persons 65 and older and respiratory mortality to asthma ED visits among children is limited. 

Further, speciated PM2.5 data are temporally and spatially sparse. However, these studies suggest 

that additional analysis with speciated PM2.5 data may be warranted.  

 

Limitations 
 

In this analysis, we assumed that the county effect estimates were independent and identically 

distributed. These factors could be further explored assuming a spatial relationship between the 

county effect estimates or otherwise adjusting for region. Additionally, we assumed that the 

relationship between each factor and the RR was the same in every county. It may be that the 

importance of each factor varies by region or state and may explain some within region or state 

heterogeneity. Lastly, there are other factors that were not considered in this analysis largely due 

to the lack of data. For example, a study of respiratory mortality and PM2.5 in 75 cities found 

higher effects in areas where people smoked more or had two or more drinks a day [21]. The 

portion of outdoor PM infiltrating indoors is influenced by building ventilation and use of air 

conditioning, which vary both regionally and seasonally [31, 33, 48]. Future analyses could 

evaluate surrogates for these factors or evaluate their effects for a subset of counties where 

necessary data are available. Future analyses could also evaluate the contribution of multiple 

factors simultaneously and potential interaction with consideration to correlation between 

factors. 
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Conclusion 
 

Pooling county-specific effect estimates using a meta-regression versus meta-analysis technique, 

as implemented here, provides one method for exploring between county heterogeneity in the 

association between air pollution and adverse health effects. This analysis explores sources of the 

heterogeneity for the association between PM2.5 and asthma among children but can be applied 

to additional pollutants, outcomes, and age groups. In this analysis, the spatial variables of US 

Census region and state largely accounted for the between county heterogeneity in the 

association. Across all three variables, we observed effect estimates of higher magnitude 

corresponding to the Northeast and Midwest compared to the West and to the South, where the 

effect estimate was consistent with the null. Additionally, the percent of population uninsured 

partially explained the heterogeneity where counties with higher percent uninsured had lower RR 

than counties with lower percent uninsured. While the other variables analyzed only slightly 

reduced heterogeneity, the magnitude of the effect estimates did vary by measures of minority 

population, socioeconomic status, and health care access. Most notable was a decline in the 

effect estimate as the number of urgent care centers increased. The combined effect of these 

variables on the heterogeneity should be explored by including multiple covariates in the model 

with consideration to their correlation and any spatial correlation in both the effect estimates and 

covariates. Further analysis is needed to understand the reasons for the heterogeneity in the effect 

estimates. 
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Table 4-1: Description of covariates included in analysis 

Covariate Data Source Processing 20th% Median 80th% 

Percent of 
population living 
in poverty 

Census Bureau: 
Model-based Small 
Area Income & 
Poverty Estimates 
(SAIPE) for Counties 
and State.  

Mean percent for years 
of health data analyzed 
for each county 

9.7 13.5 17.1 

Percent of 
population without 
health insurance 

Census Bureau: Small 
Area Health Insurance 
Estimates (SAHIE).  

Mean percent for years 
of health data analyzed 
for each county 

11.2 16.2 20.3 

Percent of 
population 
identifying as 
black or African 
American 

CDC NCHS bridged-
race Vintage 2016 
postcensal estimates 
by single-year age 
group  

Mean percent for years 
of health data analyzed 
for each county 

4.2 10.5 21.3 

Percent of 
population 
identifying as 
Hispanic 

CDC NCHS bridged-
race Vintage 2016 
postcensal estimates 
by single-year age 
group  

Mean percent for years 
of health data analyzed 
for each county 

4.2 10.1 25.8 

Number of 
primary care 
physicians per 
100,000 
population 

HHS HRSA Area 
Health Resources File 
(AHRF) 2016-2017 
Release. American 
Medical Association 
Physician Masterfiles 

Sum doctors for 
“Phys,Primary Care, 
Hsp Resident 2010” 
(f1467610) and 
“Phys,Primary Care, 
Patient Care 2010” 
(f1467510); 
Calculatenumber per 
10,000 population 

538 831 1108 

Number of 
pulmonologists 
per 100,000 
population 

HHS HRSA Area 
Health Resources File 
(AHRF) 2016-2017 
Release. American 
Medical Association 
Physician Masterfiles 

Select “Pulmonary Dis, 
Total Patn Care 2010” 
(f1111510); 
Calculatenumber per 
10,000 population 

15 31 45 

Number of 
hospitals per 
100,000 
population 

Homeland 
Infrastructure 
Foundation – Level 
Data. Published: 2017-
05-19 

Excluded hospitals that 
were limited to cancer, 
psychiatric, addiction, 
substance abuse, 
maternity, orthopedic, 
or rehabilitation; 
Calculated number per 
10,000 population 

9 14 19 

Number of urgent 
care centers per 
100,000 
population 

Homeland 
Infrastructure 
Foundation – Level 
Data. Published: 2009-
07-17 

Calculated number per 
10,000 population 7 16 26 
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Table 4-2: Rate Ratio (RR) & 95% Credible Interval (CI) for asthma ED visits among 
children and 10 ug/m3 increase in PM2.5 for all counties analyzed in counties at the 20th 
percentile versus counties at the 80th percentile for each covariate 

 
RR (CI) 

 

Covariate 20th% 80th% Tau2 (PI)* 
Percent of population living in 
poverty 

1.044 (1.00, 1.088) 1.042 (0.998, 
1.086) 

0.023 (0.013, 
0.043) 

Percent of population without 
health insurance 

1.079 (1.039, 
1.121) 

1.019 (0.98, 1.058) 0.012 (0.006, 
0.026) 

Percent of population 
identifying as black or African 
American 

1.032 (1.011, 
1.054) 

1.05 (1.028, 1.072) 0.021 (0.011, 
0.040) 

Percent of population 
identifying as Hispanic 

1.06 (1.037, 1.083) 1.036 (1.013, 
1.058) 

0.020 (0.010, 
0.038) 

Number of primary care 
physicians per 100,000 
population 

1.024 (0.989, 1.06) 1.052 (1.016, 
1.089) 

0.020 (0.010, 
0.038) 

Number of pulmonologists per 
100,000 population 

1.029 (1.005, 
1.054) 

1.047 (1.023, 
1.072) 

0.021 (0.012, 
0.040) 

Number of hospitals per 
100,000 population 

1.048 (1.011, 
1.085) 

1.037 (1.001, 
1.074) 

0.023 (0.013, 
0.042) 

Number of urgent care centers 
per 100,000 population 

1.064 (1.039, 1.09) 1.017 (0.993, 
1.042) 

0.018 (0.009, 
0.035) 

  RR (CI) Tau2 (PI)* 
National 1.042 (1.057, 1.027) 0.033 (0.022, 

0.054) 
* Tau-squared and its Posterior Interval (PI) is scaled by 1000 for visualization 
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Table 4-3: Rate Ratio (RR) & 95% Credible Interval (CI) for asthma ED visits among 
children and 10 ug/m3 increase in PM2.5 in counties categorized has low (intercept), 
medium, and high for each continuous variable 

Covariate  Tertile RR (CI) Tau2 (PI)** 

Percent of population living in 
poverty 

[4.79,11.5]* 1.048 (1.022, 1.074) 0.039 (0.026, 
0.062) (11.5,15.2] 1.040 (0.979, 1.104) 

(15.2,29.1] 1.039 (0.979, 1.102) 

Percent of population without 
health insurance 

[5.09,13.2]* 1.077 (1.053, 1.10) 0.030 (0.020, 
0.047) (13.2,18.5] 1.071 (1.016, 1.128) 

(18.5,32.6] 0.997 (0.947, 1.048) 

Percent of population 
identifying as black or 
African American 

[0.776,6.32]* 1.028 (1.003, 1.054) 0.039 (0.026, 
0.061) (6.32,14.2] 1.051 (0.990, 1.115) 

(14.2,62.5] 1.047 (0.986, 1.111) 

Percent of population 
identifying as Hispanic 

[1.42,6.35]* 1.065 (1.036, 1.094) 0.038 (0.026, 
0.060) (6.35,18.4] 1.040 (0.975, 1.109) 

(18.4,62.8] 1.031 (0.969, 1.097) 

Number of primary care 
physicians per 100,000 
population 

[237,712]* 1.020 (0.996, 1.046) 0.037 (0.025, 
0.058) (712,973] 1.035 (0.975, 1.097) 

(973,2290] 1.070 (1.009, 1.133) 

Number of pulmonologists 
per 100,000 population 

[0,22.4]* 1.023 (0.998, 1.048) 0.038 (0.026, 
0.060) (22.4,37.4] 1.042 (0.981, 1.106) 

(37.4,143] 1.060 (1.000, 1.124) 

Number of hospitals per 
100,000 population 

[0,10.8] 1.052 (1.026, 1.078) 0.039 (0.026, 
0.061) (10.8,16] 1.034 (0.975, 1.096) 

(16,36.5] 1.042 (0.981, 1.107) 

Number of urgent care centers 
per 100,000 population 

[0,10.2]* 1.075 (1.052, 1.098) 0.035 (0.024, 
0.055) (10.2,21.8] 1.032 (0.978, 1.088) 

(21.8,48.2] 1.014 (0.959, 1.071) 

National 
 

1.042 (1.027, 1.057 ) 0.033 (0.022, 
0.054) 

* Intercept ** Tau-squared and its Posterior Interval (PI)  is scaled by 1000 for visualization 
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Table 4-4: Rate Ratio (RR) & 95% Credible Interval (CI) for asthma ED visits among 
children and 10 ug/m3 increase in PM2.5 for counties categorized by each covariate 

 Covariate States Counties RR (CI) Tau2 (PI)** 
National 12 114 1.042  ( 1.027, 1.057 ) 0.033 (0.022, 

0.054) 
State States Counties   0.006 (0.003, 

0.014) California (CA)* 1 27 1.013 (1.001, 1.025) 
Florida (FL) 1 15 0.946 (0.906, 0.987) 
Illinois (IL) 1 7 1.055 (1.005, 1.107) 
Iowa (IA) 1 4 1.079 (1.003, 1.16) 
Massachusetts (MA) 1 8 1.055 (1.011, 1.101) 
Minnesota (MN) 1 3 1.095 (1.013, 1.183) 
Missouri (MO) 1 9 1.113 (1.07, 1.157) 
New Hampshire (NH) 1 2 0.926 (0.807, 1.062) 
New York (NY) 1 17 1.128 (1.092, 1.166) 
North Carolina (NC) 1 4 1.043 (0.953, 1.141) 
South Carolina (SC) 1 12 1.014 (0.961, 1.070) 
Utah (UT) 1 6 1.038 (0.995, 1.082) 
EPA Region States Counties   0.018 (0.011, 

0.030) 1 (NH, ME) 2 10 1.048 (1.004, 1.094) 
2 (NY) 1 17 1.128 (1.091, 1.167) 
3 0 0 na 
4 (FL, NC, SC) 3 31 0.974 (0.938, 1.012) 
5 (IL, MN) 2 10 1.064 (1.016, 1.114) 
6 0 0 na 
7 (IA, MO) 2 13 1.100  (1.066, 1.152) 
8 (UT) 1 6 1.038 (0.994, 1.084) 
9 (CA)* 1 27 1.013 (1.001, 1.026) 
10 0 0 na 
Census Region States Counties   0.016 (0.010, 

0.029) Midwest  (IL, IA, MN, MO) 4 23 1.092 (1.049, 1.137) 
Northeast (MA, NH, NY) 3 27 1.103 (1.061, 1.144) 
South (FL, NC, SC) 3 31 0.975 (0.935,  1.017 ) 
West (CA, UT)* 2 33 1.018 (1.004, 1.033) 
Urbanization Category States Counties   0.026 (0.016, 

0.046) Large Central Metro* 9 29 1.051 (1.026, 1.076) 
Large Fringe Metro 10 35 1.051 (0.989, 1.115) 
Medium Metro 11 40 1.028 (0.971, 1.088) 
Small Metro 5 9 
Micropolitan or Noncore 1 1 

* Intercept ** Tau-squared and its Posterior Interval (PI)  is scaled by 1000 for visualization  
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Figure 4-1: Heterogeneity (Tau2 and 95% PI) in the association between ozone 
and PM 2.5 and respiratory ED visits by outcome and age group 

 

* Tau-squared and its Posterior Interval (PI)  is scaled by 1000 for visualization 

 

Figure 4-2: Pooled and county-specific Rate Ratio (RR) & 95% Credible 
Interval (CI) for asthma ED visits among children and 10 ug/m3 increase in 
PM 2.5  
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Figure 4-3 Tau2 and 95% Posterior Interval by asthma ED visits among 
children and PM 2.5 for overall model (National) and models containing each 
covariate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Tau-squared and its Posterior Interval (PI)  is scaled by 1000 for visualization 
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Figure 4-4: Rate Ratio (RR) & 95% Credible Interval (CI) for asthma ED visits 
among children and 10 ug/m3 increase in PM 2.5 for all counties analyzed 
(National) and in counties at the 20th percentile versus counties at the 80th 
percentile for each covariate 
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Figure 4-5: Rate Ratio (RR) & 95% Credible Interval (CI) for asthma ED visits 
among children and 10 ug/m3 increase in PM 2.5 for all counties analyzed 
(National) and in PM2.5 in counties categorized has low (intercept), medium, 
and high for each continuous variable 
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Figure 4-6: Rate Ratio (RR) & 95% Credible Interval (CI) for asthma ED visits 
among children and 10 ug/m3 increase in PM 2.5 for counties analyzed (National) 
and counties categorized by each covariate 

 

*Figures A, B, and C are orientated west to east from left to right. 
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Chapter 5 - Conclusion 
 

In this work, we address an important gap in the epidemiologic evidence regarding the short-

term association between air pollution and respiratory morbidity among persons younger than 

65. This gap existed because of the lack of a central, readily accessible database with the 

necessary data elements for respiratory ED visits among people younger than 65. Leveraging the 

infrastructure and partnerships of CDC’s Tracking Program, we were able to obtain daily, county 

level ED data from 17 states. The inclusion of specific date of the health event, a necessary 

element for air pollution research on acute health effects, in the data request increases the 

sensitivity of the dataset. In working with the Tracking Program’s partners, we were able to 

construct a data request that provided the data necessary for our analyses and minimized any data 

sharing concerns from most states. Further, daily, county level data from 17 states (902 counties) 

amounted to 18 million rows of data representing 48.3 million respiratory ED visits. The 

Tracking Program infrastructure provided us a systematic and manageable approach for data 

extraction from the original database, transportation to CDC, validation, and storage. Lastly, the 

computing time for conducting time-series analyses on this volume of data was reduced from 

over 150 days on a single computer to less than five using CDC’s high performance computing 

Linux cluster. Analyses such as this will be easier with continued computational advancements 

and the adoption of electronic health records, provided that data sharing issues are also 

addressed. 

 

Diseases of the respiratory system are the primary diagnosis for approximately 10% (over 14 

million) of all ED visits annually. The vast majority of these ED visits are for persons under 65 
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with the highest rate among children less than 19. By outcome, rates for ARI and asthma were 

highest among children while rates for COPD and pneumonia were highest among adults 65 and 

older. The rate of respiratory ED visits varied considerably between counties and appears to be 

driven in part by state and region. We observed minor variation in county rates by county 

urbanization, minority population, poverty, and measures of health care access. However, no 

clear explanation of this variation was identified. Further analysis is needed to identify 

statistically significant spatial trends and to better elucidate the reason for such variation in 

county rates. 

 

We found significant, positive associations between both ozone and PM2.5 with respiratory ED 

visits among all ages combined. Our results support the EPA’s causal determinations and 

highlight important variation in magnitude across age groups, outcomes, and pollutants. PM2.5 

was associated with asthma among all age groups, ARI among children and adults 65 and older, 

and pneumonia among adults 65 and older. Ozone was associated with asthma among adults 65 

and older and children, ARI and chronic obstructive pulmonary disease (COPD) among adults 

under 65 and adults 65 and older, and pneumonia among all age groups. Our analysis is the first 

nationally relevant, multi-city study to include respiratory morbidity across all age groups. Our 

results suggest that multi-city studies of populations over 65 may not be a good proxy of acute 

respiratory impacts on younger age groups, and that reliance on such studies could underestimate 

population respiratory health impacts of PM2.5 or ozone that were stronger in our study for 

younger age groups. 
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We observed between county heterogeneity in our county specific effect estimates with greater 

heterogeneity in results for children versus adults, PM2.5 versus ozone, and asthma versus the 

other outcomes. The highest heterogeneity was observed for the association between PM2.5 and 

asthma among children. This heterogeneity was largely explained by the spatial variables of US 

Census region, EPA region, and state. Further analysis is needed to understand what factors are 

driving this regional heterogeneity in the association between asthma ED visits among children 

and PM2.5. While the other variables analyzed did not explain much heterogeneity, we did 

observe variation in the effect estimates by measures of minority population, socioeconomic 

status, and health care access. The effect estimates decreased as the percent of population 

uninsured and the number of urgent care centers increased.  

Establishing effective air pollution policy and control requires an understanding of the impact of 

air pollution across all age groups and especially among sensitive subpopulations. This work 

begins to address an important gap in air pollution epidemiology for respiratory morbidity 

among persons under 65. 
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