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Abstract 
 

Developing Advanced PM2.5 Exposure Models in Lima, Peru 

 

By Bryan N. Vu 

 

 

 

Background: There is convincing evidence of adverse health effects induced by 

exposure to PM2.5 in the growing body of literature. Lima’s topography and aging 

vehicular fleet results in severe air pollution with limited amounts of monitors to 

effectively quantify measurements for epidemiologic studies.  

 

Objectives: We propose to develop a high-performance satellite-driving exposure model 

to estimate daily PM2.5 concentrations at a 1 km spatial resolution in Lima, Peru from 

2010 to 2016 using a combination of ground measurements, aerosol optical depth (AOD), 

meteorological fields, parameters from atmospheric chemical transport models, and land 

use variables. 

 

Methods: Parameters from the Weather Research and Forecasting model coupled with 

Chemistry (WRF-CHEM) and the European Centre for Medium-Range Weather 

Forecasts (ECMWF) were evaluated against ground monitoring stations from Weather 

Underground as well as ground PM2.5 measurements from the DIGESA and SENAMHI 

sites in Lima, Peru. A random forest model was used to gap-fill non-random missing 

satellite AOD data due to cloud cover to enhance spatial coverage and quality. Both a 

linear mixed effects model and a random forest model was used to fit AOD, WRF-

CHEM, ECMWF, and land use parameters against ground measurements from 16 

monitoring stations with available data between 2014 to 2016. Both models were then 

used to predict daily PM2.5 concentrations from 2010 to 2016. 

 

Results: The model fitting R2 for the LME model was 0.63 and random forest model was 

0.73. The overall cross-validation (CV) R2 value and (RMSE) for the linear mixed effects 

model and random forest model was 0.58 (7.08 μg/m3) and 0.73 (5.66 μg/m3), 

respectively. The intercept and slope of the LME model was 0 and 1, compared to -2 and 

1 from the random forest model, suggesting that the random forest underestimates PM2.5 

compared to the LME model. Nonetheless, the random forest model performed better 

based on no change between model fitting R2 and CV R2. 

 

Conclusions: Our prediction model allows for construction of long-term historical daily 

PM2.5 levels to support fundamental and imperative epidemiological studies that will 

likely impact governmental policies on air pollution in Lima, Peru. 
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1. Introduction 

1.1 PM2.5 and Health Impacts 

The World Health Organization (WHO) establishes that joint exposure to 

household and ambient air pollutants, including particulate matter, contributes to 7 

million global deaths in 2012 [2].  Ambient air pollutants, including PM2.5 (fine particles 

with aerodynamic diameter of 2.5 µm or less), are emitted from a large variety of sources 

such as power plants, gasoline and diesel vehicles, wood burning, smelters, as well as 

natural sources including sea spray aerosols and wind-blown dust particles [5,17]. 

Epidemiologic studies have linked exposure to PM2.5 with increased adverse health 

outcomes including asthma, cardiovascular diseases, type-2 diabetes, and obesity among 

adults and children [1, 3]. Results from a study conducted by Mirabelli et al. on the 

association between outdoor PM2.5 in the United States and asthma symptoms in the 

previous 14 days among adults with active asthma, show a 3.4% increase in symptom 

prevalence among adults with active asthma for every 1 µg /m3 increase in PM2.5 
[1].   

Additionally, a meta-analysis of cohort studies conducted by Liu et al. showed significant 

increases in wheezing, coughing, and lower respiratory illness among children exposed to 

more than 25 µg/m3 of PM2.5 compared to children exposed to less than 25 µg/m3 of 

PM2.5. Increasing numbers of studies such as these, indicate that exposure to ambient 

PM2.5 is significantly associated with the development of respiratory diseases among not 

only adults, but also children from North America, Europe, and Asia [8]. Conversely, 

there is a substantially limited number of air pollution studies conducted in South 

America where pollution levels far exceeds those of Europe and North America. 
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1.2 PM2.5 in Lima, Peru 

Lima, the capitol of Peru, is the third most populous city in the Americas 

according to a 2015 census survey, and is the second most polluted city in the Americas 

according to the WHO [18, 6]. Lima’s air pollution problem stems from an aging fleet of 

public transportation in urban areas and the widespread use of indoor biomass stoves in 

rural areas [6, 10]. In 1991, the Lima government eliminated fare regulations and barriers to 

entry, creating an oversupply of aging minibuses.  The citizen’s group, Lima Como 

Vamos, reports that the average age of Lima’s buses exceeds 20 years, far more than the 

average age of the bus fleet in Sao Paulo in Brazil at 4.2 years. Due to the densely 

populated urbanization of Lima, the resulting traffic congestion leads to particulate matter 

levels that exceed the WHO’s standards, currently set at 10 μg/m3 annual mean and 25 

μg/m3 24-hour mean [20], by more than 200% [11].  Moreover, while only 34% of the total 

population in Peru use solid fuel, 13% of the urban population and over 95% of the rural 

population rely on biomass fuel for cooking and heating [10]. This creates high volumes of 

air pollution not only in urban areas but also in the mountainous rural areas as well. As a 

result, the rise in air pollution not only affect those living in Lima, but also the workers 

living in the rural communities on the outskirts of the city, whose average commute trip 

is between 90 to 180 minutes [11]. Yet, there is a limited number of studies on the effects 

of air pollution on health risks in Lima, especially on ambient air pollution outside the 

home. Accordingly, due to the known health risks associated with PM2.5 exposure and the 

high volume of air pollution in Lima, more studies are needed to assess the effects of 

PM2.5 in order to curtail Lima’s air pollution problems and propose new policies to 

improve air quality standards.  
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1.3 Limitations of Air Pollution Studies and Ground Measurements 

To date, many studies have been conducted on the association between health 

outcomes and traffic-related air pollution. However, these studies have been cross-

sectional in design with exposure measured as the distance from household to highway, 

or small cohort study designs that relied on a limited number of ground PM2.5 

measurements to infer correlation [12, 13]. One of the main limitations of the cross-

sectional design with distance as a stand-in for exposure is the assumption that 

participants live at the address on the questionnaire. Additionally, in small cohort study 

designs, estimating exposures of PM2.5 in a given population is traditionally done by 

assigning measurements of a central ground monitor to people living within a certain 

distance from it, from a few kilometers to tens of kilometers [4]. This method often leads 

to misclassification of exposure due to spatial misalignment and results in bias estimates 

of the health risks [4]. Furthermore, utilizing air-monitoring data presents many other 

limitations. Air quality monitoring networks are designed and implemented to focus on 

acquiring measurements of pollutants in highly populated areas. As a result, the monitor 

networks are usually densely concentrated in one area or region, and often omitted from 

rural and mountainous regions [21]. Additionally, air monitors usually collect samples 

once every three to four days due to time constraints and costs in collecting and analyzing 

the samples [21].  Due to these limitations, the biggest challenge in utilizing air quality 

monitors in health studies is obtaining an accurate and precise estimate of PM2.5 

concentrations through space and time. Since epidemiologic studies of PM2.5 require 

long-term historical and accurate exposure data, relying on ground monitor 

measurements may not be the best suitable option. 
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1.4 Remote Sensing Techniques 

 Remote sensing techniques have proved useful in estimating ground PM2.5 

concentration due to its ability to provide comprehensive spatial and temporal coverage, 

making it a suitable supplement for PM2.5 ground monitors [14]. Satellite sensors provide 

aerosol optical depth (AOD), a dimensionless measure between zero and one, of the 

aerosols such as smoke, particles, and dust distributed within a column of air from the 

Earth’s surface to the top of the atmosphere [19]. Lower AOD values around 0.01 

corresponds to a clean atmosphere while AOD values above 0.35 corresponds to a hazy 

environment [19]. AOD can be used to estimate ground PM2.5 concentrations with broad 

spatial coverage, expanding the ground monitoring networks into the rural areas where 

ground measurements are lacking [15]. Most commonly used AOD products include those 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle 

Imaging SpectroRadiometer (MISR) aboard the Earth observing System (EOS) satellites 

named Terra and Aqua launched by the National Aeronautics and Space Administration 

(NASA) in 1999 and 2002, respectively [16]. AOD retrieved using the visible and near-IR 

bands is sensitive to aerosols with a size range of 0.1 to 2.0 µm, similar to the size of 

PM2.5 
[16]. Furthermore, a Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm has been applied on satellite retrieved AOD to achieve stronger 

correlations with PM2.5. The MAIAC algorithm uses time-series analysis and image-

based processing techniques to make aerosol retrievals and atmospheric corrections over 

both dark vegetated land and brighter range of surfaces [4].  

Remote sensing techniques have proved successful in studies conducted by Liu et 

al. in China and the United States [14, 15]. Liu et al. compared model fit in a two-stage 

modeling technique with and without AOD [15]. Their results indicate that the AOD 
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model has higher predicting power compared to the non-AOD model, R2 (0.79) for AOD 

compared to R2 (0.48) for non-AOD model [15]. Furthermore, a study on estimating PM2.5 

concentrations in Southeastern United States using MAIAC AOD also proved successful 

[4]. In that study, Hu et al. also used a two-stage spatial statistical modeling approach to fit 

meteorological fields, land use parameters, and MAIAC AOD to ground observations [4]. 

Hu et al. achieved a model fitting R2 of 0.83 with a mean prediction error of 1.89 µg/m3, 

and a cross validation R2 of 0.67 and mean prediction error of 2.54 µg/m3, indication that 

MAIAC AOD can be used to estimate PM2.5 concentrations. Finally, Ma et al. conducted 

a study to estimate PM2.5 concentrations in China while also using satellite AOD as the 

primary predictor. Their national-scale geographically weighted regression model 

achieved a cross validation R2 of 0.64, which also attests to the ability of AOD as an 

important predictor of PM2.5 
[14]. Furthermore, all the studies listed above found that the 

correlation between PM2.5 and satellite AOD, derived from advanced statistical models 

including generalized linear regression and generalized additive modeling, can be greatly 

improved when land use and meteorological parameters are included [14,15].  

To date, remote sensing techniques have not been utilized in air pollution research 

in Lima, Peru due to insufficient ground monitoring data to correlate and validate model 

results. However, in recent years, the Dirección General de Salud Ambiental e Inocuidad 

Alimentaria (DIGESA) stations from the Ministry of Health, and the Servicio Nacional 

de Meteorología e Hidrología del Perú (SENAMHI) stations from the Ministry of 

Environment have begun collecting daily concentrations of PM2.5 in Lima, Peru. 

Although the data quality is sparse, this presents an opportunity to implementing satellite 

remote sensing techniques in estimating ground-level PM2.5 in a region with critically 
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high levels of air pollution couple with a limited number of epidemiological studies on its 

impact on health risks. 

1.5 Study objectives 

 The goal of this project is to build a PM2.5 exposure model to estimate daily PM2.5 

concentrations at 1km spatial resolution in Lima for year 2010 to 2016. This exposure 

model is derived from satellite AOD data, simulation data from chemical transport 

models (CTMs), meteorological fields from a forecast model, and land use parameters. 
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2. Data and Methods 

2.1 Study Area 

 The study region is Lima City, the Capital of Peru spanning from -11.57o North to 

-12.52o South and -77.20o West to -76.62o East. The study region was divided into 2970 

one kilometer-squared pixels. A 10km buffer around the study region was implemented 

to ensure accuracy of MAIAC AOD as well as any other parameters that need to be 

interpolated from coarser resolutions down to the desired 1km squared grid cells. The 

added buffer will also allow for better estimation of PM2.5 concentrations near the outer 

boundaries of the study area. With the 10km buffer, the total number of pixels increased 

to 5959 during the model development and training period.  Figure 1 shows the map of 

Lima’s borders along with pixels within the study domain and the 10km buffer pixels. 

2.2 Datasets and Processing 

2.2.1 Ground Data  

 There are six DIGESA stations and ten SENAMHI stations that recorded PM2.5 

measurements in Lima, Peru. Data availability for DIGESA stations include monthly 

mean measurements for PM2.5 from 2001 to 2005 and a daily average measurement every 

4 days starting from 2007 to 2016. However, there were many missing data from the 

DIGESA network, often months at a time. In total, the six DIGESA sites contributed 

1,120 daily observations from 2010 to 2016. Table 1 shows the number of observations 

for each monitoring station in the DIGESA network from 2010 to 2016. SENAMHI 

stations recorded daily mean measurements of PM2.5 from 2014 to 2016. Table 2 shows 

the number of observations for each monitoring station in the SENAMHI network from 

2010 to 2016. The ten SENAMHI sites contributed 7,363 daily observations from 2014 to 

2016. Additionally, data from 15 mobile air quality monitors located in Pampas de San 
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Juan de Miraflores were provide by William Checkley from Johns Hopkins University. 

These monitors provided weekly estimates from November 2011 to March 2013, and 

were extrapolated to the daily level by giving the six preceding days the same 

concentration as the measured value on the seventh day. Due to the dense location of 

these 15 monitors, spanning six grid cells in the southern region of the study domain, an 

average of each pixel was calculated if more than one monitor fell within a certain pixel. 

In total, Checkley sites provided an additional 2,265 daily observations to the model 

fitting dataset. Table 3 shows the numbering of each Checkley site and the monitors used 

to compose the average for that site along with the total number of observations each site 

contributed to the model fitting dataset. Figure 2 shows the location of each monitor 

station in relation to the study domain. Finally, results of a time series analysis of each 

station to assess monthly and yearly trends of PM2.5 in µg/m3 for both monitoring 

networks can be seen in Figure 3.  

2.2.2 Satellite Remote Sensing Data 

 Satellite aerosol optical depth (AOD) at 1km spatial resolution retrieved from 

MODIS (Moderate Resolution Imaging Spectroradiometer) aboard NASA’s Terra and 

Aqua satellites operating since 1999 and 2002, respectively, is calculated through a 

MAIAC (Multi-Angle Implementation of Atmospheric Correction) algorithm [16]. The 

MAIAC algorithm accomplishes atmospheric correction by first gridding the data to a 

fixed 1 km grid and accumulating of up to 16 days of measurements [16]. Using a time 

series analysis, the pixels are grouped and the surface bidirectional reflectance 

distribution function (BRDF) and aerosol parameters over both dark vegetated surfaces 

and bright surfaces is derived [16]. Furthermore, the MAIAC algorithm has been shown to 
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be the most accurate algorithm when compared to aerosol optical thickness (AOT) from 

the Aerosol Robotic Network (AERONET) stations [16]. AERONET is a system of sun-

photometers established by NASA in conjunction with other partnerships to measure 

atmospheric aerosol properties [7]. MAIAC AOD in Lima was compared to AOD 

measurements from ARICA, the nearest AERONET site to Lima to assess validity and 

accuracy. Subsequently, MAIAC AOD was gap-filled through a random forest method 

discussed in Bi et al. [23]. Finally, MAIAC AOD was linked to each grid cell through a 

one-to-one spatial link as both were in 1km spatial resolution. Figure 4 shows the annual 

average gap-filled AOD in the study domain from 2010 to 2016. Additionally, Figure 5 

shows monthly mean gap-filled AOD for 2010, 2012, 2014, 2015, and 2016. 

2.2.3 Chemical Transport Model Data 

SENAMHI produces WRF-CHEM (Weather Research and Forecast with 

Chemistry) simulations for air quality forecasts in Lima at 5 km spatial resolution. WRF-

CHEM is a next generation CTM (atmospheric chemical transport model) developed by 

NOAA (National Oceanic and Atmospheric Administration) and NCAR (National Center 

for Atmospheric Research) [24]. CTMs simultaneously simulates the emission, turbulent 

mixing, transport, transformation, and fate of trace gasses and aerosols using a 

combination of meteorological fields, topography data and emission modules based on 

measurements of emission factors and ambient concentrations [24]. WRF-CHEM data 

outputs were packaged in monthly files with 26 vertical levels in the atmosphere every 6 

hours (00:00, 06:00, 12:00 and 18:00 UTC). Parameters including in each WRF-CHEM 

files include: surface pressure, temperature, u- and v- wind components, simulated PM2.5, 

and planetary boundary layer height (PBL, a measure of earth’s lower atmosphere where 
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surface radiative forces causes turbulent mixing of chemicals) in HDF format. WRF-

CHEM HDF files were processed through Interactive Data Language (IDL) to extract 

daily averaged measurements of parameters of interests at layer 0 (the lowest layer in the 

26 vertical levels of the atmosphere). Parameters of interest including pressure, PBL, 

PM2.5 aerosol dry mass, precipitation, temperature, and both wind components (u and v) 

were each extracted and analyzed for monthly, seasonal and yearly trends from 2010 to 

2016 and for vertical level 0, 4, 9, 14, 19 and 24. For the purpose of modeling PM2.5, only 

parameters in vertical level 0 were used as it was the level closest to earth’s surface. 

Furthermore, due to the coarseness of the data at 5km spatial resolution, interpolation to 1 

km spatial resolution using an inverse distance weighting method in statistical software R 

was used to create a smoother surface of the WRF-CHEM parameters. Figure 6 shows 

the contrast of temperature before and after interpolation on April 1 2015. Table 4 shows 

the correlations between ground measurements of PM2.5 and WRF-CHEM simulated 

PM2.5 for all SENAMHI stations, with N representing the number of days with available 

data between 2014 and 2016. Figure 7 shows the yearly average simulated PM2.5 in 

µg/m3 from the WRF-CHEM output. Figure 8 shows a comparison between daily, 

monthly mean, and yearly mean PBL height in meters from WRF-CHEM in vertical layer 

0. a sample of the monthly and yearly average of the parameters produced by WRF-

CHEM. Figures 9, 10, and 11 shows the monthly average concentrations of PM2.5 in 

µg/m3 in 2014 for vertical layers 0, 4, and 9, respectively. Figure 12 shows the time-

series comparison of three ground monitors from the SENAMHI sites with the WRF-

CHEM simulated PM2.5 in µg/m3 from 2014 to 2016. 
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2.2.4 Forecast Model  

 Data from the ECMWF (European Centre for Medium-Range Weather Forecasts) 

was used to compare and supplement the output from WRF-CHEM simulations. 

ECMWF is an independent intergovernmental organization with membership from 34 

countries [25]. ECMWF was established in 1975 to produce numerical weather forecasts 

and currently archives the data freely for public use [25]. Data for 28 parameters including 

dew point, temperature, wind and pressure was downloaded from the ECMWF archive 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/) in HDF format at the 

highest resolution available, 12.5km. Extraction of parameters to daily values was done 

using IDL, and interpolated to 1km spatial resolution using inverse distance weighting in 

statistical software R.  Figure 13 shows the contrast of temperature before and after 

interpolation on April 1 2015. Additionally, a daily average was calculated for each 

variable and a time series analysis to assess monthly, seasonal and yearly trends was 

performed. As part of the cross validation process, a correlation analysis was performed 

on temperature, wind and pressure between WRF-CHEM and ECMWF. Furthermore, 

temperature and dew point from ECMWF was used to calculate relative humidity through 

an equation from University of Miami’s Rosenstiel School of Marine & Atmospheric 

Science (http://andrew.rsmas.miami.edu/bmcnoldy/Humidity.html). ECMWF’s 

parameters including temperature and calculated relative humidity was used in the 

process of gap-filling the MAIAC AOD data as mentioned in Bi et al. [23].  

2.2.5 Miscellaneous Data 

2.2.5.1 Elevation 

 Elevation information for the study region was downloaded from EARTHDATA 

(https://search.earthdata.nasa.gov/search). Advanced Spaceborne Thermal Emission and 

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://andrew.rsmas.miami.edu/bmcnoldy/Humidity.html
https://search.earthdata.nasa.gov/search
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Reflection Radiometer Global Digital Elevation Map (ASTER GDEM) is a satellite 

image product released through the joint collaboration between the Ministry of Economy, 

Trade, and Industry (METI) of Japan and the United States National Aeronautics and 

Space Administration (NASA) on October 17, 2011 [22]. ASTER GDEM data for Lima 

was downloaded as four Geo TIFF segments and was compiled in ArcGIS. After 

compilation, ASTER GDEM data was converted from a raster to points, where each point 

represents a 1km pixel with the elevation height in meters as an attribute. Finally, the 

elevation shapefile was clipped and spatially joined to the grid cells in the study domain. 

Figure 14 shows the map of the elevation of Lima, Peru by 1km pixels. 

2.2.5.2 Population Density 

 The Oak Ridge National Laboratory produces yearly global ambient population 

distribution data using the LandScan algorithm comprising of spatial data and imagery 

analysis technologies along with a multi-variable dasymetric modeling approach to 

disaggregate census counts within an administrative boundary. Yearly LandScan data 

was downloaded for years 2010 to 2016 through the LandScan website 

(http://wms.cartographic.com.proxy.library.emory.edu/landscan/portal.aspx) as raster 

files and processed using ArcGIS. Each annual LandScan raster file was converted from 

raster to point in GIS and clipped to the size of the study region including the 10 km 

buffer. Each clipped LandScan shapefile was then spatially joined (point to point) to the 

study region. Subsequently, population density was calculated by dividing the total 

number of people within each pixel by the area of each pixel. Figure 15 shows Lima’s 

population density in 2010.  

http://wms.cartographic.com.proxy.library.emory.edu/landscan/portal.aspx
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2.2.5.3 Meteorology 

 Ground meteorological data was downloaded from the Weather Underground 

website for four personal weather stations along with one airport station. Table 5 contains 

the information and data availability of each weather station. Historical data for each 

station was retrieved through a dropdown menu on the Weather Underground website 

(https://www.wunderground.com/personal-weather-

station/dashboard?ID=STATIONID#history). Data processing to convert HTML format 

to comma delimited was done in statistical software R. Meteorological data was used to 

correlate ground PM2.5 observations from SENAMHI stations, MAIAC AOD and 

parameters from both WRF-CHEM and ECMWF. For PM2.5 ground observations, each 

ground PM2.5 monitor was linked to the closest weather station. For satellite remote 

sensing data, the nine pixels in a 3x3 km square area that was closest to a weather station 

was averaged for comparison. Both WRF-CHEM and ECMWF data were processed in 

the same manner for correlation analyses. 

2.2.5.4 Land Use Information 

 Land use parameters were taken from GlobeLand30, a 30-meter Global Land 

Cover Dataset. GlobeLand30 is a product from the National High Technology Research 

and Development Program of China from the Ministry of Science and Technology of 

China. Furthermore, it is a 30-meter spatial resolution mapping-product for 2010 derived 

from remote sensing images through Landsat images downloaded from the U.S. 

Geological Survey and through the HJ-1 satellite images retrieved from the China Centre 

For Resources Satellite Data and Application. The land use parameters contained within 

the product consisted of 10 categories: cultivated land, forest, grassland, shrubland, 

https://www.wunderground.com/personal-weather-station/dashboard?ID=STATIONID#history
https://www.wunderground.com/personal-weather-station/dashboard?ID=STATIONID#history
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wetland, water bodies, tundra, artificial surfaces (urban areas), bareland, and permanent 

snow and ice. The major land use parameter to be used for the modeling PM2.5 is percent 

urbanization, which was calculated by first conducting an unsupervised reclassification of 

the land use parameters in ArcGIS from ten categories down to four categories (open 

shrubland, bare/sparse vegetation, water bodies, and artificial/urban areas). Afterwards, 

the land use product was overlaid and spatially joined to the 1x1 km study domain to 

calculate the percent of urbanization by dividing the area of artificial areas by the entire 

area of each 1 km pixel. Figure 16 shows the map of the land use categories after 

reclassification, and Figure 17 shows the maps of percent urbanization for each pixel. 

2.2.5.5 NDVI Data 

 Normalized difference vegetation index (NDVI) is a MODIS vegetation index 

product produced at 16-day intervals. It provides consistent spatial and temporal 

comparisons of vegetation canopy greenness, and effectively characterizes the global 

range of vegetation states and processes. The vegetation indices are retrieved from daily, 

atmosphere-corrected, bidirectional blue, red, and near-infrared surface reflectance based 

on a MODIS-specific composition methods [28]. Low quality pixels from the surface 

reflectance resulting from water, clouds, heavy aerosols, and cloud shadows are first 

removed and the remaining good-quality pixels are used to calculate an NDVI value that 

best represent the composition period [28]. NDVI data at 500 meter spatial resolution was 

downloaded from the Level-1 and Atmosphere Archive & Distribution System 

Distributed Active Archive Center (LAADS DAAC - 

https://ladsweb.modaps.eosdis.nasa.gov/search/) for years 2010 to 2016 in HDF format. 

IDL was used to extract 16-day interval data within the latitude and longitude range of 
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the study domain and further processing was conducted in R statistical software. Since 

NDVI data has 16-day intervals, each 15 days preceding the day with measured NDVI 

was given the same NDVI values. Finally, daily NDVI values were merged with the 

study domain through the use of R software. Figure 18 shows an example map of NDVI 

values on the 361st day of 2016. 

2.2.5.6 Road Network Data 

 Road Network Data was downloaded as an ArcGIS-ready shapefile from the 

OpenStreetMap project through Geofabrik (http://download.geofabrik.de/south-

america/peru.html). Geofrabrik is a consulting and software development firm based in 

Karlsruhe, Germany that specializes in OpenStreetMap services. The OpenStreetMap 

project is a free mapping and data service built by volunteers. The road network map was 

clipped to the area of the study region in ArcGIS and reclassified into three classes:  

motorways, primary and trunk roads, and secondary and tertiary roads. For each road 

network class, a distance was calculated between each study domain pixel to the nearest 

segment of road based on class. Figure 19 shows the road network for primary and trunk 

roads with the correspondence nearest distance in meters. 

2.2.5.7 Cloud Fraction Data 

 Cloud fraction data, fraction of clouds covering each pixel, was used in the 

MAIAC AOD gap-filling processes. Daily data for cloud fraction at 5km spatial 

resolution was downloaded from the Level-1 and Atmosphere Archive & Distribution 

System Distributed Active Archive Center (LAADS DAAC - 

https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MOD06_L2--6) for 2010 to 2016 

http://download.geofabrik.de/south-america/peru.html
http://download.geofabrik.de/south-america/peru.html
https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MOD06_L2--6
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and processed through IDL. Processes of how cloud fraction data was used in gap-filling 

MAIAC AOD is described through Bi et al. [23]. 

2.3 Modeling Approach 

2.3.1 LME Model 

 A linear mixed effects (LME) model was used to fit predictors to 8,491 PM2.5 

ground observations (6,410 observations from SENAMHI stations and 2,081 

observations from the Checkley sites). The LME model includes a month-specific 

random intercepts and slopes for relative humidity and PBL (both of which are time-

varying variables) to account for the temporally varying relationship between PM2.5 and 

humidity and between PM2.5 and vertical mixing height. Furthermore, the LME model 

also includes a day-specific random intercept and slope for AOD to account for the 

temporally varying relationship between PM2.5 and AOD. The LME model allows 

incorporation of both fixed-effects terms and random-effects terms to account for 

different parameters. The fixed-effects affect parameters such as population density, 

elevation, road distance and NDVI, which are mostly static over time. In contrast, the 

random-effects affects parameters that are associated with certain sampling procedures 

and contribute to the covariance structure of the data. Due to small sample size compared 

to the number of parameters, all parameters used in the model were centered and scaled 

to allow model convergence. This performance-driven LME model can account for the 

day-to-day variability in the PM2.5-AOD relationship by generating a daily AOD slope 

for each monitoring site on each day. Furthermore, the model can also account for the 

month-to-month variability in the PM2.5-relative humidity and PM2.5-PBL relationship by 

generating a monthly relative humidity and monthly PBL slope for each monitoring site 

for each month. Equation 1 shows the model structure of the LME model. 
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(1) 

 

PM2.5,st = [μ + (μ′Month,μ′Day)] + (β1 + β1′Day)AODst + (β2 + β2′Month)RHst  

+ (β3 + β3′Month)PBLst + β4PMs + β5Wind_Us + β6Wind_Vs + β7Temps + β8NDVIs 

+ β9SPs + β10ALs + β11LCCs + β12SSRDs + β13Dist_3s + β14Elevs + β15Pops 

+ β16Perurbs + ε 

where PM2.5,st is the measured PM2.5 concentration in µg/m3 at site s on day t; 

μ + (μ′Month,μ′Day) are the fixed and random intercepts; (β1 + β1′Day)AOD is the day-specific 

fixed and random effects of MAIAC gap-filled AOD; (β2 + β2′Month)RH is the month-

specific fixed and random effects of interpolated ECMWF relative humidity (in percent); 

(β3 + β3′Month)PBL is the month-specific fixed and random effects of interpolated 

ECMWF planetary boundary layer height (vertical mixing depth) in meters; PM is the 

interpolated WRF-CHEM simulated PM2.5 concentrations in µg/m3; Wind_U is the 

interpolated ECMWF wind-u component; Wind_V is the interpolated ECMWF wind-v 

component; Temp is the interpolated WRF-CHEM temperature in Kelvins; NDVI is the 

normalized difference vegetation index; SP is the interpolated ECMWF surface pressure 

in pascal; AL is interpolated ECMWF albedo (unitless); LCC is interpolated ECMWF low 

cloud cover in percent; SSRD is interpolated ECMWF surface solar radiation downwards 

(in J/m2); Dist_3 is the distance (in meters) to the nearest secondary/tertiary road; Elev is 

the elevation (in meters); Pop is the population density (number of people per kilometer 

square); and Perurb is the percent urbanization.  
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2.3.2 Random Forest Model 

 A random forest model was also used to fit predictors to the same dataset used for 

the linear mixed effects model. A random forest model is comprised of a set of decision 

trees constructed from the best split for each node among a subset of predictors randomly 

chosen at that node [26]. The two main parameters in a random forest model is mtry and 

ntree, which stands for the number of predictors sampled for splitting at each node and the 

number of trees grown, respectively. Algorithm for the random forest model works by 

first drawing ntree bootstrap-samples from the model fitting dataset [26]. Subsequently, the 

algorithm grows an unpruned classification or regression tree with mtry of predictors 

randomly sampled for each bootstrap-sample and the best split is consequently chosen at 

each node [26,27]. Predictions are then made by aggregating the predictions of ntree trees 

(e.g., a simple majority vote for classification and average for regression) [27]. In a 

random forest model, the error rate is calculated using predictions of “out-of-bag” 

samples, which are the data samples not in the bootstrap sample [27]. Comparison of 

results with different settings of mtry and ntree, was conducted to achieve the best 

prediction accuracy. Variables used in the random forest model is the same as those used 

in the LME model, with mtry set at 6 and ntree at 1000. 

2.3.3 Cross Validation and Predictions 

 A 10-fold cross-validation (CV) process was carried out on both the LME and 

random forest model in the same manner to validate the prediction results from both 

models. The model fitting dataset consisting of 8,491 ground observations were randomly 

divided into 10 segments or subsets with each segment containing 10% of the data. Nine 

of the segments were used as a training dataset set to fit the model and the remaining 

segment is used as a testing dataset to make predictions. This process is repeated 10 
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times, each time dividing the dataset at different intervals to ensure that the segments are 

not repeated. After the 10th repetition, the total number of predictions based on the testing 

dataset is combined into one dataset and is equal to the original number of ground 

observations. A correlation between the predictions and the original ground observations 

is conducted to produce a CV R2. After cross-validation, daily datasets consisting of the 

set of variables used in the LME and random forest models except for ground 

measurements were created to make predictions. Predictions were made using the predict 

function in statistical software R using both models on the same daily datasets. Once 

predictions were made, daily files were aggregated to the monthly and yearly level for 

mapping using ArcGIS. 
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3. Results 

3.1 Descriptive Statistics 

 PM2.5 concentrations from the DIGESA network were found to be unreliable, 

reducing the model fitting R2 when included in the model, and were consequently omitted 

from all analyses. Histograms of all the predictors used in the modeling approach can be 

seen in Figure 20. Most of the parameters including albedo, planetary boundary layer 

height, AOD, NDVI, simulated PM2.5, surface solar radiation, temperature, and both wind 

components are unimodal and log linearly distributed. Relative humidity and surface 

pressure is bimodal, suggesting that the distribution of the monitors may play a role in the 

distribution of these parameters. Parameters including elevation, road distance, percent 

urbanization, and population density are not normally distributed due to the likely 

nonrandom placement of the ground monitors, especially the lack of spatial distribution 

as a direct result of the clustered Checkley sites. The overall mean PM2.5 concentration in 

µg/m3 of each monitor site within their respective network is shown in Table 6. The mean 

PM2.5 concentration for all combined sites used in the modeling dataset was 23.6 µg/m3. 

There is no distinctive secular trends in PM2.5, both on the yearly and seasonal level. For 

most of the SENAMHI stations, PM2.5 levels tend to start low in months January while 

rising during the months of May to September and then dip slightly down again during 

November and December. Nonetheless, this is only a suggestive indication and not all 

monitors follow this trend. The Checkley monitors show a slightly different trend, with 

PM2.5 concentrations peaking around April and decreasing during the months between 

Jun and October before slightly increasing during November and December. These trends 

may be due to the fact that Checkley monitors are only located in the southern part of 

Lima, where trends in temperature, winds, and other predictors of PM2.5 may be different 
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compared to the SENAMHI stations which are located in the central region of Lima. 

Furthermore, trends for Checkley monitors are only available from late 2011 to early 

2013 while trends for SENAMHI are observed from 2014 to 2016, so a fair and 

continuous comparison of seasonal and yearly trends may not be conducted between the 

two monitor networks.  

3.2 Model Fitting and Validation 

 The model described in Equation 1 is the linear mixed effects model used to fit 

predictors of PM2.5 to ground observations from both the SENAMHI and Checkley sites. 

AOD was allowed to have daily random effects while relative humidity and planetary 

boundary layer height is expected to vary but not significantly through the month and as a 

result was set on the random effects at the monthly level. Overall, the regression R2 for 

the LME model was 0.63 and the cross-validation (CV) R2 and RMSE is 0.58 and 7.08 

µg/m3, respectively. Figure 21 shows a density plot of the correlations between predicted 

and measured PM2.5 values from the cross-validation of the LME model. Table 7 shows 

the beta coefficients, standard error, degrees of freedom, t-value, and p-value for each 

parameter. All predictors except wind U-component, temperature, NDVI, and relative 

humidity, were highly significant. Wind U-component and temperature were parameters 

from the WRF-CHEM simulation, and were not highly correlated with the ground 

observations from Weather Underground. Therefore, insignificance of these parameters 

were expected. NDVI is the normalized vegetative index, categorizing the vegetative 

canopy of the particular area from negative one with no vegetative canopy to one with 

full vegetative canopy. Since air monitors are centrally placed in urban environments, 
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with NDVI staying constant over time, it is therefore expected that NDVI would not be a 

significant predictor of PM2.5 in the LME model.  

 A random forest model was used to fit predictors of PM2.5 to ground observations 

from both the SENAMHI and Checkley sites. The random forest model was specified 

with a nodesize of 6, maxnode of 2048, mtry of 6 and the ntree at 1000. The “out of bag” R2 

from the random forest model using the entire dataset is 0.73 with an RMSE of 5.61 

µg/m3, with a cross-validation (CV) R2 and RMSE of 0.73 and 5.66 µg/m3, respectively. 

Figure 22 shows a density plot of the correlations between predicted and measured PM2.5 

values from the cross-validation of the random forest model. Table 8 shows the name of 

each predictor along with the importance, or percent increase in MSE. Although random 

forest is a “black-box” machine learning method, the importance output is a measure of 

parameter predictive power based on a permutation test [26]. Under the null hypothesis in 

a random forest model, each predictor variable is not important; the permutation test 

rearranges the values of that variable to detect any degradation in prediction accuracy [26]. 

The higher the importance or percent increase in MSE, the higher the predictive accuracy 

for that variable [27]. The random forest model indicates that temperature, albedo, and 

surface solar radiation are the most important predictors of PM2.5. This is in direct 

contrast to the LME model, which indicates that temperature is not a good predictor of 

PM2.5. This is a result of the random forest method compartmentalizing and categorizing 

temperature and not analyzing this variable as a continuous variable. The random forest 

model also indicates that percent urbanization, elevation, and residential road distance 

has the least predictive accuracy of PM2.5. This is in direct conjunction with the 

histograms shown in Figure 20, which indicates that these parameters are not normally 
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distributed and likely led to inconsistencies in compartmentalizing and categorizing these 

variables. Figure 23 and 24 shows the time series between estimated PM2.5 concentrations 

using the random forest model and ground PM2.5 observations from each monitor 

aggregated to the monthly mean in 2012 for the Checkley sites and 2015 for the 

SENAMHI sites, respectively. Figure 25 shows a map of the mean concentration of each 

monitor station in the study domain next to the mean estimated concentration of each 

monitor from the cross-validation results. 

3.3 Prediction of PM2.5 Concentrations 

 Due to time constraints, prediction maps of PM2.5 based on the LME model have 

not been finished and are not included at this time. When completed, these figures will be 

inserted in the appendix. The predicted annual mean PM2.5 concentrations in µg/m3 using 

the random forest model are shown in Figure 26. Figure 27 shows the monthly mean 

PM2.5 concentrations in µg/m3 of 2015 using the random forest model. Due to data 

availability from WRF-CHEM along with available days with MAIAC gap-filled AOD 

(some days are missing AOT values due to cloud cover), daily predictions of PM2.5 

started on the 61st day of 2010 or March 2 2010. The last day of predictions is on the 

366th day of 2016 of December 31 2016. Mean PM2.5 concentrations range from 14.62 to 

44.32 µg/m3. Predictions from the random forest model show that concentrations of 

PM2.5 are lowest near the coast, and in and around the urban centers of Lima, while 

gradually rising with elevation up in the mountains. The annual prediction maps suggest 

that PM2.5 concentrations at lowest in the valleys and urban areas while highest in the 

mountains and remote areas of Lima, Peru. 
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4. Discussion and Conclusion 

The LME model achieved decent fit of the ground monitor data with an R2 of 0.63 

while the random forest model achieved better fit with an R2 of 0.73. The CV R2 from 

both models (0.58 for LME model and 0.73 for random forest model) suggest that 

overfitting is not likely a serious issue. Due to time constraints, predictions of the LME 

model have not been mapped and comparison of PM2.5 spatial distribution from both 

models cannot be completed at this time. Nonetheless, important or significant variables 

are not consistent between the two models, which warrants further investigation into the 

accuracy of each model’s algorithm. Additionally, the slope and intercept of the LME 

model does show a better-fitted line with an intercept at nearly zero and a slope of one 

compared to the intercept of negative two and a slope of one from the random forest 

model. Although the LME model achieved a better intercept and slope in the fit between 

estimated PM2.5 and measured PM2.5 concentrations in the cross-validation dataset, the 

drop between model fitting and cross-validation R2 (from 0.63 to 0.58) indicates that the 

model may not be accurately estimating PM2.5. Conversely, while the intercept and slope 

for the fit between estimated and measured PM2.5 concentrations of the random forest’s 

cross-validation dataset is not as perfect as the LME model, the model fitting R2 value 

does not differ from the cross-validation R2. Furthermore, results of the slopes and 

intercepts between the two models indicate that the random forest underestimates PM2.5 

levels more compared to the LME model. 

One of the limitations for these models is the uneven distribution of the ground 

monitors across Lima, Peru. All monitors were located around the urbanized city with no 

monitors near the rural areas and up in the Andes Mountains. The 15 Checkley monitors 
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were clustered all within a few kilometers of each other in the southern region of the 

study domain, affecting their predictive capabilities on the rest of the study domain. 

Furthermore, many of the ground monitors for both DIGESA and SENAMHI lack daily 

measurements, influencing the temporal distribution of PM2.5 ground measurements in 

the model fitting dataset. Additionally, the Checkley ground measurements was collected 

only from late 2011 to early 2013 while the SENAMHI data was collected from mid-

2014 through 2016, which impacts model predictive abilities. Although many of the 

ground monitors also recorded PM10 (particulate matter with aerodynamic diameter of 10 

µm), due to time constraints, PM10 measurements cannot be converted to PM2.5 

measurements to maximize ground observations in the model fitting process.  

Future research should focus on converting PM10 to PM2.5 from both the 

SENAMHI and DIGESA monitors to maximize ground observations and bridge the gap 

between SENAMHI and Checkley datasets both spatially and temporally. Furthermore, 

intuition dictates that PM2.5 concentrations should be highest in urbanized areas due to 

vehicular and factory emissions. However, our prediction maps indicate that PM2.5 is 

lowest in urbanized areas and highest in the remote mountainous areas, warranting 

further investigation into this issue. A possibility might be population density or elevation 

driving the increase in PM2.5 from low areas to high areas since mean measurements of 

the ground monitors also contains this pattern (as seen in Figure 25). Another possible 

solution may be to determine the mean planetary boundary height near the base of the 

Andes Mountains and restrict the study domain to this area.  
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6. Tables and Figures 

Figure 1. Maps of study domain and pixel categorization. 

 

Table 1. Data availability of DIGESA monitors. 

  

Table 2. Data availability of SENAMHI monitors. 

 

 

CALLAO AUXILIADORA LUZMILA UNANUE LA REPUBLICA LINCE

2010 31 38 44 46 0 0

2011 14 3 15 18 0 0

2012 17 13 23 28 0 0

2013 40 37 26 54 9 0

2014 23 51 32 45 21 173

2015 18 52 15 44 22 34

2016 9 41 27 36 21 0

Total 152 235 182 271 73 207

DIGESA STATIONS
YEAR

ATE SBJ CDM STA VMT HCH SJL SMP CRB PPD

2014 90 92 59 31 29 258 240 269 251 251

2015 263 293 300 341 158 344 361 304 312 327

2016 264 283 265 325 275 202 274 298 286 318

Total 617 668 624 697 462 804 875 871 849 896

YEAR
SENAMHI STATIONS
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Table 3. Data availability of Checkley sites. 

 

Figure 2. Map of study domain with location of network monitors. 

 

 

 

 

 

 

 

 

 

 

Site Monitor N

Check_2 A2520, A2613, A2653, A2770 369

Check_7 A2760 455

Check_8 A2612 313

Check_9 A2210, A2497, A2628, A2723, A2977, P101 481

Check_10 A2715 313

Check_11 A2686, A2821 334
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Figure 3. Time series of PM2.5 concentrations in µg/m3 at each monitoring station.  
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Figure 4. Mean annual gap-filled MAIAC AOD. 
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Figure 5. Monthly mean AOD for 2010, 2012, 2014, 2015, and 2016. 
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Figure 6. Maps of temperature (in Fahrenheit) on April 1 2015 before and after 

interpolation. 

 
 

Table 4. Correlations between ground PM2.5 measurements and simulated PM2.5 from 

WRF-CHEM by SENAMHI station from 2014 to 2016. 

 

Station PM2.5 N

ATE 0.01 321

SBJ 0.23 356

CDM 0.22 301

Station 0.23 310

VMT 0.09 141

HCH 0.21 542

SJL 0.32 535

SMP 0.21 515

CRB 0.15 498

PPD 0.18 523
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Figure 7. Yearly average simulated PM2.5 in µg/m3 from WRF-CHEM in vertical layer 0. 

 

 

 

Figure 8. Average planetary boundary layer height in meters for 2014 at vertical layer 0. 
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Figure 9. Monthly average concentrations of PM2.5 in µg/m3 in 2014 for vertical layer 0. 

 

Figure 10. Monthly average concentrations of PM2.5 in µg/m3 in 2014 for vertical layer 4. 

 

Figure 11. Monthly average concentrations of PM2.5 in µg/m3 in 2014 for vertical layer 9. 
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Figure 12. Time series a SENAMHI station located in the low-, middle-, and high- 

regions of corresponding WRF-CHEM PM2.5 values in µg/m3

 
Figure 13. Maps of 2-Meter temperature (in Fahrenheit) of ECMWF data on April 1 2015 

before and after interpolation.  
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Figure 14. Elevation of study domain in meters. 

 

Figure 15. Lima’s population density (number of people per square kilometer) in 2010. 
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Table 5. Names of Weather Underground station and code for each personal weather 

station located within the study domain with their operational start and end date. 

 
 

Figure 16. Map of reclassified land use categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station Start Date End Date

Jorge Chaves Int. (Airport) May 30 1995 Present

Miraflores (ILIMALIM7) April 25 2013 Present

Miraflores (ILIMAMIR3) February 23 2012 Present

Santiago de Surco (ILIMALIM15) February 27 2016 Present

El Remanso, La Molina (ILIMALIM12) April 28 2015 Present
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Figure 17. Map of percent urbanization calculated from reclassification of land use 

categories. 

 
 

Figure 18. Map of NDVI values for December 26th 2016. 
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Figure 19. Map of primary and trunk roads with corresponding distance values in meters 

of each pixel to the nearest road segment. 
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Figure 20. Histogram of each predictor used in both the LME and Random Forest Model. 
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Table 6. Average PM2.5 in µg/m3 at each monitor station in the model fitting dataset. 

 

 

Figure 21. Density plot of correlations between predicted and measured PM2.5 values 

from the cross-validation of the LME model. 

 

 

 

 

 

 

 

 

 

Monitor Average PM2.5

Check_2 18.1

Check_7 19.8

Check_8 18.8

Check_9 19.9

Check_10 19.5

Check_11 16.8

ATE 38.3

CDM 15.2

CRB 28.0

HCH 30.9

PPD 32.8

SBJ 18.2

SJL 31.1

SMP 17.2

STA 29.0

VMT 24.4
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Table 7. All variables used in LME model along with beta values, standard error, degrees 

of freedom, t-values, and p-values. 

 

 

 

Figure 22. Density plot of correlations between predicted and measured PM2.5 values 

from the cross-validation of the Random Forest model. 

 

 

 

 

 

 

 

Variables Beta-Coefficients Std.Error   DF    t-value p-value

(Intercept)    24.84 0.87 8099 28.44 0.00

I(cent_AOT)     0.94 0.17 8099 5.65 0.00

I(cent_pm25)    2.08 0.16 8099 13.18 0.00

I(cent_u10)    -0.33 0.18 8099 -1.85 0.06

I(cent_v10)   -1.32 0.14 8099 -9.51 0.00

I(cent_temp)  -0.16 0.22 8099 -0.73 0.47

I(cent_NDVI)  -0.10 0.09 8099 -1.18 0.24

I(cent_int_rh) -1.20 0.77 8099 -1.55 0.12

I(cent_blh)    2.55 0.20 8099 12.69 0.00

I(cent_sp)    -0.96 0.24 8099 -4.05 0.00

I(cent_al)    -1.51 0.17 8099 -8.81 0.00

I(cent_lcc)    -1.06 0.23 8099 -4.63 0.00

I(cent_ssrd)  -1.22 0.17 8099 -7.39 0.00

I(cent_dist3)  -0.69 0.10 8099 -6.85 0.00

I(cent_Elev)   3.99 0.21 8099 18.62 0.00

I(cent_pop)   -1.90 0.10 8099 -18.16 0.00

I(cent_perurb)  0.77 0.10 8099 7.30 0.00
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Table 8. All variables used in Random Forest model along with importance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PBL (56)

Surf. Solar Radiation 

Downwards (72)

Albedo (78) Cat3 Road Dist (25)

Low Cloud Cover % (58) Population Density (58)

Wind_U (59) % Urbanization (26)

Wind_V (51) Elevation (30)

PM25 (57) RH (50) AOT550 (68)

Temperature (80) Surface Pressure (55) NDVI (62)

Parameters (Importance)

WRF ECM Misc
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Figure 23. Time-series comparing predicted PM2.5 using the random forest model and 

ground PM2.5 concentrations in µg/m3 for each Checkley monitor in 2012 starting from 

top left to right: Check_2, Check_7, Check_8, Check_9, Check_10, and Check_11. 
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Figure 24. Time-series comparing predicted PM2.5 using the random forest model and 

ground PM2.5 concentrations in µg/m3 in 2015 for each monitor starting from top left to 

right: ATE, CDM, CRB, HCH, PPD, SBJ, SJL, SMP, STA, and VMT.
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Figure 25. Maps comparing the mean concentration of each monitor station in the study 

domain on the left, to the mean estimated concentration in µg/m3of each monitor from the 

cross-validation results on the right.  
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Figure 26. Annual prediction maps of PM2.5 concentrations in µg/m3 using the random 

forest model. 

 

Figure 27. Monthly prediction maps of PM2.5 concentrations in µg/m3 for 2015 using the 

random forest model. 
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