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Abstract

Model-Based Statistical Methods for Public Health Surveillance Subject to
Imperfect Observations

By Shannon K. McClintock

We examine statistical modeling issues in three areas of public health surveillance:
estimation of vaccination coverage, linking local observations and remotely sensed
covariates, and adjustment for zero inflation due to underreporting.

When the proportion of the vaccinated population is an unknown value less than
100%, we explore application of logistic growth models, namely the standard logistic
growth model and a reparameterization naturally constraining vaccination coverage
parameter estimates. We compare the performance of three methods of estimation for
each model (nonlinear least squares, maximum likelihood estimation, and Bayesian
estimation).

Buruli ulcer is a neglected tropical disease affecting Australia and West Africa. We
examine both on-site local water characteristics and broad scale remotely sensed
environmental attributes with respect to the presence of the causative pathogen, My-
cobacterium ulcerans. Our findings support hypotheses regarding conditions suitable
for M. ulcerans growth, but diverge from other published results regarding the distri-
bution of and factors related to Buruli ulcer disease. In addition, our findings suggest
locations of reported cases and pathogen presence need not coincide, supporting the
notion that human interaction with the environment plays a role in transmission.

In Buruli ulcer surveillance, districts which do not report cases are programmati-
cally treated as districts without cases but are not actually confirmed as disease-free
districts. Moreover, there is substantial reason to believe that some non-reporting
districts actually have cases; consequently, our data are subject to ‘false’ zeros. We
evaluate the performance of the zero inflated Poisson model in the presence of false
zeros, as well as propose a hierarchical zero inflated Poisson model with the ability
to estimate an observation’s conditional probability of being a false zero given that a
zero was observed.
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Chapter 1

Introduction

1.1 Overview

The World Health Organization (WHO) defines public health surveillance as “an

ongoing, systematic collection, analysis and interpretation of health-related data es-

sential to the planning, implementation, and evaluation of public health practice,”[1].

This scientific discipline is necessary to reduce the spread of disease as well as to

maintain healthy populations. By its nature and broad scope, surveillance data can

be challenging to collect; furthermore, the data available may not always be able to

directly answer the question of public health importance for which it was collected.

Motivated by challenges in modeling vaccination coverage and monitoring of neglected

tropical diseases, we present a general framework for statistical methodologies appli-

cable to unique niches in public health surveillance.

1.2 Vaccination Coverage

Vaccination has a dual role of protecting an individual from vaccine preventable

diseases as well as reducing rates of vaccine preventable diseases in a community. In

addition, vaccination status is often used as a marker of a child’s health status and
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adequacy of care [2]. Estimation of coverage is useful for monitoring and evaluation

of vaccination programs, determining if the population coverage necessary for disease

elimination has been achieved, and assessing the health services available to children

in a community. Much of the vaccination literature assesses vaccination coverage

at specific age intervals [2, 3]. However, simple point estimation of the proportion

of children covered at specific age intervals does not provide a flexible framework for

additional inference that may be useful for the public health researcher. The proposed

research seeks to develop methods that provide accurate and reliable estimates of

vaccination coverage as a function of age.

1.3 Neglected Tropical Diseases

Neglected tropical diseases (NTDs) are diseases that have been mostly eliminated

from developed nations yet still persist in developing countries, often affecting the

poorest populations. Of the 14 NTDs identified by the World Health Organization,

most can be treated, eliminated, and prevented [4]. Research on NTDs frequently in-

volves the intersection of a wide range of technologies: from high-tech remote sensing,

to mid-tech on the ground surveillance with mobile phones or surveys with PDAs,

to low-tech paper data collection forms. Linking all of the data through statistical

models is important, challenging, and offers an opportunity to aid in surveillance,

treatment, and control efforts. Buruli ulcer is a neglected tropical skin disease caused

by Mycobacterium ulcerans (MU) and is highly endemic in West Africa. We focus on

evaluating associations with environmental predictors specific to the presence of the

pathogen that causes Buruli ulcer, M. uclerans.
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1.4 Surveillance of NTDs

Surveillance data on NTDs from developing nations can have several limitations. Of-

ten within disease notification and reporting systems, case reports are submitted and

confirmation that non-reporting areas are actually disease-free is not obtained. While

this may be a reliable system in developed nations monitoring high profile diseases,

for monitoring of NTDs in developing nations there may be substantial reason to

believe that cases are present in non-reporting areas. This creates ‘false zeros’ in

surveillance data. We seek to determine the impact of false zeros on estimation of the

mean rate of cases, and to determine if it is possible to distinguish false zeros from

true zeros.
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Chapter 2

Constraining Parameter Estimates

in a Logistic Growth Model

2.1 Overview

The United States Agency for International Development (USAID) began implement-

ing Demographic and Health Surveys (DHS) to collect data in the areas of popula-

tion, health, and nutrition from women aged 15-49 in 1984. To date, the nationally

administered household surveys have been performed in more than 50 countries [5].

One specific focus of the DHS is the timing, completeness, and drop out rates for chil-

dren’s immunizations [5]. Nine childhood vaccinations are recommended by the World

Health Organization (WHO) for African countries: one for tuberculosis at birth, four

for polio (birth, 6, 10, and 14 weeks), three for DPT (6, 10, and 14 weeks), and one

for measles at 9 months [6]. While timely administration of vaccines is paramount

to the efficacy of vaccination, often vaccinations do not adhere to the recommended

schedule. We are interested in assessing the coverage of the the combined diphtheria,

pertussis, and tetanus vaccine (DPT) via the 2003 Kenya Demographic and Health

Survey (DHS).
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The DHS asks mothers for vaccination information for all children under the age

of 5. Whether or not a child was vaccinated and date of vaccination can be gathered

by either the child’s official vaccination card or maternal recall [7]. The preferred

source of data is the vaccination card; however, often the card is not available (lost or

never obtained), or information on the card is difficult to decipher [3]. Maternal recall

is thought to be reliable for younger children, though as children get older mothers

may have forgotten the child’s vaccination history. An assessment of DHS surveys

conducted worldwide from 1993-2003 found that 50.1% of children had a health card

and showed it to the interviewer [6], and a summary report of 28 DHS studies from

1990 to 1994 found that card retention rates varied from 35.1% (Bolivia) to 87.8%

(Rwanda) [3]. The 2003 Kenya DHS reports that 60% of children had available

vaccination cards [7].

2.2 Introduction

Vaccination has a dual role of protecting an individual from diseases as well as re-

ducing rates of vaccine preventable diseases in a community. In addition, vaccination

status is often used as a marker of a child’s health status and adequacy of care. Esti-

mation of vaccination coverage, i.e. the proportion of individuals vaccinated, is useful

for monitoring and evaluation of vaccination programs, determining if the population

coverage necessary for disease elimination has been achieved, and assessing the health

services available to children in a community. Much of vaccination literature assesses

vaccination coverage at specific age intervals [2, 3]. However, simple point estima-

tion of the proportion of children covered at specific age intervals does not provide a

flexible framework for additional inference that may be useful for the public health

researcher.

Several researchers have proposed the use of survival analysis techniques to model

5



time to vaccination in order to assess the timeliness of vaccination as well as the

proportion of a population vaccinated [8, 9, 10, 11, 12, 13]. Such studies model

the cumulative probability of vaccination as one minus the Kaplan-Meier survival

function, and children included in the study who had not yet been vaccinated at the

time of the interview are considered to be right-censored observations. Furthermore,

comparisons of vaccination rates in different subgroups of the population can be

implemented through either the log-rank test for Kaplan-Meier survival curves or

through a Cox proportional hazards model.

While survival analysis methods are useful for estimating the timeliness of vacci-

nation, in many cases they are not suited to accurately estimate vaccination coverage

because this is generally provided by empirical estimates of the tail end of the “in-

verse” Kaplan-Meier curve. Some authors note that this tail end of the curve is

generally estimated by fewer observations and can be statistically unstable. Hence,

this is an indirect approach to estimating vaccination coverage at a certain age, and

caution is recommended when interpreting this estimate [8].

Another limitation of existing survival analysis methods to estimate vaccination

coverage is that they utilize exact information on the date of birth and date of vac-

cination of the child. While developed nations are often able to collect such data

through vaccination cards, card retention rates can vary greatly. A summary report

of 28 Demographic and Health Surveys (DHS) studies from 1990 to 1994 found card

retention rates varying from 35.1% (Bolivia) to 87.8% (Rwanda) [3]. In such surveys,

whether or not a child was vaccinated and date of vaccination can be gathered by

either the child’s official vaccination card or maternal recall [7]. If a vaccination card

is not available (lost or never obtained), mothers may verbally indicate if a child has

been vaccinated or not. Restricting analysis to only children who retain health cards

could severely bias vaccination coverage estimates. Overall vaccination coverage may

be underestimated as children who do not have health cards but were nevertheless
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vaccinated would be excluded from the analysis. On the other hand, limiting analysis

to children who retain health cards could also overestimate vaccination coverage as

this could exclude individuals who did not have access to a health clinic from the

analysis.

Therefore, instead of modeling time to vaccination, another option is to model

the probability of a child receiving vaccination (indicated either by maternal recall

or vaccination card) as a function of the child’s age at the time of the interview.

This allows inclusion of all children regardless of whether or not they retained a

vaccination card. However, standard models for binary outcomes, such as logistic

or probit regression, estimate the probability of response on the full range from 0-

100% [14]. Without modification, these models cannot be used directly to estimate

a probability of response with an asymptote less than one, which is the case with

vaccination coverage.

We propose two versions of the three parameter nonlinear logistic growth model to

estimate vaccination coverage. In addition to directly estimating coverage, this model

also provides estimates of median vaccination age and characterizes the time elapsed

for vaccination uptake in a population. Section 2.3 introduces the model, Section 2.4

discusses various methods of estimation, and Section 2.5 provides simulation results

comparing approaches. Lastly, Section 2.6 applies the model to the Kenya 2003

DHS to estimate coverage of the combined diphtheria, pertussis, and tetanus (DPT)

vaccination. We conclude with a discussion in Section 2.7.

2.3 The Logistic Model

Throughout the 20th century a wide range of scientific disciplines have embraced var-

ious versions of the logistic model to estimate sigmoidal non-linear functions. Specific

applications of the logistic growth model include ecologic population growth models,
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bioassay (quantal or quantitative), and epidemiologic risk models. These applications

share the characteristic that an upper bound for specific quantities may be unknown.

Academic literature on population growth models dates back to the early 19th

century. Discussion in this realm began when the Reverend Thomas Robert Malthus

(1766-1834) introduced the notion that human population growth may be limited by

its natural resources. In 1838 the Belgian professor of mathematics Pierre Verhulst

introduced a differential equation to model this population growth with a carrying

capacity

dN

d t
= rN

(
K −N
K

)
(2.1)

where N is the population, r is the growth rate, and K is the carry capacity [15].

This original formulation is usually considered too simple to model real life processes,

and nowadays partial differential equations are often used in the field of ecology for

population growth models.

In 1920,“vital” statisticians Pearl and Reed presented a population growth model

for studying the population of the United States [16]. They analyzed census data

recorded from 1790 to 1910, comparing the results from polynomial models to the

population growth model. They described a general model

y =
beax

1 + ceax
(2.2)

and chose to use a form of that model

y =
b

e−ax + c
(2.3)

to estimate the US population for a given future year as well as the “carrying capacity”

of the United States, or asymptotic population ceiling as time goes to infinity. Of

(2.2), the authors note that the curve starts at 0 when x = −∞, asymptotes to a
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constant k when x = +∞, has a point of inflection, and varies continuously from 0

to the asymptotic constant k when x ∈ (−∞,+∞). Pearl and Reed used an ad-hoc

method to estimate parameters, and suggested that further publications would focus

on parameter estimation. In 1922, they published a follow-up article with properties

of the growth model and its relationship to the differential equation presented by

Verhulst [17]. Pearl (1927) formally dubbed models of form (2.2) as “logistic” in a

tribute to the name Verhulst originally prescribed. In this publication, Pearl describes

in depth how the logistic model can be used to describe growth in populations, from

bacteria to human.

Joseph Berkson suggested a related yet slightly different form of the logistic func-

tion in 1944 for the analysis of quantal response bioassay data where the response is

the proportion p affected out of n exposed [18]. In 1953, Berkson presented the the

logistic function as the logistic regression model statisticians recognize today [19].

P = 1−Q =
1

1 + e−(α+βx)
, logit(P ) = ln

(
P

Q

)
= α + βx (2.4)

These bioassay problems typically involved exposing animals to a variety of doses

and observing a dichotomous response. Berkson proposed obtaining parameter esti-

mates by minimizing the “logit χ2” quantity

χ2(logit) =
∑

npq(l − l̂)2 (2.5)

where l = ln(p/q) and l̂ = ln(p̂/q̂), due to the limited computing abilities at the time.

Nowadays, parameter estimates are typically obtained by the iteratively re-weighted

least squares, or otherwise known as Fisher’s scoring algorithm [14].

In reviewing applications of the logistic regression model, Berkson discusses that

some assumptions may be unreasonable. Specifically, he notes that it is necessary to

have an infinitely large dose x in order for P to achieve 100% response; similarly, a dose
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of zero is necessary for P = 0. Berkson states that these assumptions are unrealistic

because in reality an animal would not need an infinitely large dose to achieve 100%

response; rather, there would be a threshold dose at which 100% response would be

achieved.

Similar to Berkson’s logistic function (2.4), Oliver (1964) discusses methods of

estimating the logistic growth function, parameterized as

y =
k

1 + b exp(−at)
(2.6)

Of Berkson’s logistic function (2.4), Oliver notes “the implication is that, over time,

almost every member of the population eventually receives the characteristic,” [20].

Oliver’s parameterization allows for a limiting value of the response of interest, k,

and he advocates use of a least squares method for parameter estimation.

Rodbard and Frazier (1975) discuss various models appropriate for data from

radioimmunoassays [21]. From the Fourth International Biometrics Congress in Han-

nover 1970, they use Finney’s proposed four parameter logistic model to analyze such

data. Radioimmunoassay (RIA) is a procedure used to measure existing antigens in

a system without invoking responses from an actual living organism or tissue. It is

carried out by mixing known quantities of radioactive antigen to antibodies, adding

unlabeled antigen to the solution, and measuring the displaced labeled antigen. RIA

essentially creates a dose-response problem in which the concentration of bound anti-

gen is a nonlinear function of the initial quantities of antigen and antibody in the

system.

y =
a− d

1 + (X/c)b
+ d (2.7)

In this equation, the response y is the count of bound antigens and the predictor

X is the dose, or quantity of unlabeled antigen. The parameters a, b, c, and d have the

following interpretations: a is the estimated response when X = 0, d is the response
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when X =∞, c is the value of dose that gives a response at (a+ d)/2 (also known as

effective dose 50 or ED50), and b shapes the slope at the center of the curve. Rodbard

and Frazier note that Newton-Rhapson, Gauss-Newton, and Marquardt-Levenberg

are all acceptable methods by which to obtain parameter esimtates. However, they

also note that due to the nonlinearity of the model and the interdependence among

the parameters convergence may be difficult to achieve. Various parameterizations

of the logistic growth model have been considered for radiogland and other related

assays, and Ratkowsky and Reedy (1986) discuss these parameterizations as well as

guidelines for choosing the appropriate parameterization [22].

While all of the previously described models take slightly different forms, they

can all be re-parameterized by changing the asymptote from a constant (one) to an

estimable parameter or by changing the explanatory variable x to log(x) in order

to relate back to one another. In the applications of Verlhust, Pearl and Reed,

and Rodbard and Frazier, the upper bound of the logistic curve is an unknown yet

estimable quantity where the outcome of interest y takes on continuous values greater

than zero, and the explanatory variable is often time. In the applications of Berkson,

the upper bound of the logistic curve is fixed and known at 1, the outcome of interest

takes on either dichotomous 0/1 outcomes (or count outcomes of responses out of

number of trials), and the explanatory variable is dosage. To analyze vaccination data,

we would like to estimate an unknown upper bound less than one (the asymptotic

vaccination coverage) where the outcome of interest (whether or not vaccinated) is

dichotomous, as a function of age.

For our application, we begin with a version of the three parameter logistic growth

model presented by Pinheiro and Bates [23]

Pr(Yi = 1) =
φ1

1 + exp
(
− (xi−φ2)

φ3

) . (2.8)
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Figure 2.1: Shape of the nonlinear logistic model given φ1 = 0.7, φ2 = 5, and varying
φ3.

The outcome Yi is dichotomous, and Yi = 1 indicates that the child was vaccinated

by the time of the interview; the covariate xi is age. The parameter φ1 represents the

limiting proportion of the population vaccinated, φ2 is the age at which probability

of vaccination reaches 1
2
φ1, and φ3 characterizes the rate of vaccination and estimates

the age elapsed between the probability reaching 1
2
φ1 and ≈ 3

4
φ1. Figure 2.1 displays

the shape of the nonlinear logistic curve.

As φ1 represents a proportion, it should logically be constrained within the inter-

val (0, 1). However, imposing constraints on a parameter estimate is a challenging

task. Therefore, we also examine a reparameterized version of Model (2.8) inherently

constraining the numerator, i.e.

Pr(Yi = 1) =

1
1+exp(−λ)

1 + exp
(
− (xi−φ2)

φ3

) . (2.9)
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While λ can take on any values in (−∞,+∞), the numerator is coerced to stay in

(0, 1) through reparameterization. From Model (2.9), estimates of φ̂1 can be recovered

by φ̂1 = 1

1+exp(−λ̂) . Asymptotic confidence intervals for φ1 can be created by first

calculating asymptotic confidence intervals for λ via λ̂±z1−α
2
∗SE(λ̂) resulting in the

interval (λ̂L, λ̂U). Then apply the transformation
(

1

1+exp(−λ̂L)
, 1

1+exp(−λ̂U )

)
to create a

confidence interval for φ1.

The similarities between the logistic function proposed by Berkson and the three

parameter logistic growth model proposed should be noted. In regular logistic regres-

sion with one predictor we have

Pr(Y = 1) =
eβ0+β1x

1 + eβ0+β1x
=

1

1 + e−(β0+β1x)
(2.10)

and in the three parameter logistic growth model we have

Pr(Y = 1) =
φ1

1 + e
−(x−φ2)

φ3

=
φ1

1 + e
−
(
−φ2
φ3

+ x
φ3

)

Therefore, these models are equivalent when φ1 = 1 if we let

β0 = −φ2

φ3

and β1 =
1

φ3

, or φ2 = −β0
β1

and φ3 =
1

β1
.

2.4 Methods of Estimation

Due to the difficulty of estimating constrained parameters we consider several methods

of estimation for Models (2.8) and (2.9). We evaluate these in terms of bias, coverage,

ability to enforce parameter constraints, and ability to accommodate additional data

artifacts such as survey weights or random effects.
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2.4.1 Nonlinear least squares

To obtain parameter estimates in Models (2.8) or (2.9), one approach is to use non-

linear least squares, i.e., minimizing
∑
i

Yi − φ1

1 + exp
(
− (xi−φ2)

φ3

)
2

or

∑
i

Yi − 1
1+exp(−λ)

1 + exp
(
− (xi−φ2)

φ3

)
2

. Even though Yi is binary in our models and is not

normally distributed, the nonlinear least-squares estimates are consistent as long as

Models (1) and (2) are correctly specified. Estimation by nonlinear least squares is

attractive as it can be performed by either the nls or nlme functions in R, which can

incorporate survey weights or random effects.

2.4.2 Maximum Likelihood Estimation

Maximum likelihood estimation allows for appropriate treatment of the binary out-

come. Here, we consider Yi ∼ Bern(pi), where pi =
φ1

1 + exp
(
−(xi−φ2)

φ3

) under Model

(2.8) or pi =

1
1+exp(−λ)

1 + exp
(
−(xi−φ2)

φ3

) under Model (2.9). Letting θ = (φ1, φ2, φ3), the log

likelihood function for Model (1) is:

log L(θ) =
n∑
i=1

log
[
pyii (1− pi)1−yi

]
=

n∑
i=1

log

 φ1

1 + exp
(
− (xi−φ2)

φ3

)
yi1− φ1

1 + exp
(
− (xi−φ2)

φ3

)
1−yi

=
n∑
i=1

yi log φ1 − log

{
1 + exp

(
−(xi − φ2)

φ3

)}
+ (1− yi) log

{
1 + exp

(
−(xi − φ2)

φ3

)
− φ1

}
. (2.11)

Appendix A contains details of the likelihood for Model and (2) and the asymptotic

distribution of parameter estimates for both Models (2.8) and (2.9). The optim func-
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tion in R can be used to obtain maximum likelihood estimates by different estimation

algorithms. We explore the default algorithm, Nelder-Mead, as well as L-BFGS-B,

a version of the Broyden-Fletcher-Goldfarb-Shanno algorithm which allows box con-

straints to restrict parameter estimates [24, 25]. Hence, for Model (2.8) the estimate

of φ1 can be analytically constrained in (0, 1). Both algorithms require user input of

the negative log likelihood as well as starting values for the estimation routine. Both

also obtain standard error estimates of parameters by the square root of the diagonal

of the inverse of the Hessian matrix. For the L-BFGS-B algorithm, users must specify

a lower bound and upper bound for the box constraints for all estimated parameters.

2.4.3 Bayesian Estimation

We also consider a Bayesian framework for estimating parameters in Models (2.8) and

(2.9) based on the likelihoods in Equation (2.11) and in Appendix A [26]. Inference

is obtained by sampling from the joint posterior distribution of the parameters using

Markov Chain Monte Carlo implemented in WinBUGS 1.4. We define parameter

estimates as the posterior median and credible sets from associated 2.5 and 97.5 per-

centiles. Estimates and credible sets for φ1 from Model (2.9) can be obtained directly

from MCMC samples by transformation of the sampled λ’s, with φ1 = 1
1+exp(−λ) .

Care must be taken in choosing appropriate prior distributions for the parameters.

In general, the priors should conform to the the plausible range of values which the

parameter may take. Similarly, prior distributions of parameters may be specifically

chosen to impose constraints on parameter estimates and credible sets. For Model

(2.8) it is clear that 0 < φ1 < 1, and an example of an appropriate uninformative prior

is φ1 ∼ Unif(0, 1). For Model (2.9), λ can reasonably take on values in (−∞,+∞);

however, an uninformative prior for λ does not necessarily correlate to an uninforma-

tive distribution for the parameter of interest φ1. For example, a uniform distribution

for λ implies a heavy-tailed U-shaped distribution for φ1, whereas a standard normal

15



logistic distribution for λ corresponds to a uniform distribution for φ1. Lastly, for

either Model (2.8) or (2.9) the plausible values for φ2 and φ3 will vary depending on

the application. Nevertheless, the prior distributions should still reflect that these

are strictly positive quantities in our application of vaccination studies.

2.5 Simulation

To assess and compare performance of the different models and estimation approaches,

we perform a simulation study.

2.5.1 Details

We set the true values of the parameters as φ1 = 0.70, φ2 = 5.0, and φ3 = 1.5; for

Model (2.9), this yields λ = 0.85. We generate 500 simulations of sample size 350

where age is X ∼ Unif(0.1,15). For each of the nonlinear least squares, Nelder-Mead,

and L-BFGS-S algortihms the starting values for the algorithm are the true parameter

values. The results from the L-BFGS-S algorithm are only presented for Model (2.8)

since Model (2.9) results are nearly identical to those from the Nelder-Mead algorithm.

The box constraints imposed on the L-BFGS-S algorithm are 0.01 ≤ φ1 ≤ 0.99,

0.10 ≤ φ2 ≤ 100, and 0.10 ≤ φ3 ≤ 100.

For Bayesian estimation, we implement MCMC for each simulation using 3 chains,

each with different starting values, for 5,000 iterations. The first 1,000 iterations were

discarded for burn-in. For Model (2.8) the prior distributions for the parameters were

φ1 ∼ Unif(0.01, 0.99), φ2 ∼ Unif(0.1, 20), and φ3 ∼ Unif(0.1, 7). For Model (2.9), the

prior distribution for λ is standard logistic, and priors for φ2 and φ3 are the same as for

Model (2.8). Convergence of each iteration for the Bayesian method was verified by

the Gelman and Rubin statistic R̂, which compares the variance of the between- and

within-variances of each chain [26]. Each scalar estimator is said to have converged
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Bias Coverage Mean Length
λ φ1 φ2 φ3 λ φ1 φ2 φ3 λ φ1 φ2 φ3

Model (1)
NLS - 0.003 0.059 -0.005 - 94.4 92.8 94.0 - 0.17 1.89 1.63
NELDER-MEAD - 0.002 0.032 0.006 - 94.8 94.4 93.2 - 0.18 2.04 1.35
L-BFGS-S - 0.002 0.032 0.006 - 94.8 94.4 93.0 - 0.18 2.04 1.35
BAYES - 0.013 0.139 0.175 - 95.4 95.8 91.8 - 0.20 2.39 1.76
Model (2)
NLS 0.030 0.003 0.059 -0.005 93.4 93.4 92.8 94.0 0.98 0.17 1.89 1.63
NELDER-MEAD 0.022 0.002 0.032 0.006 94.4 94.4 94.4 93.0 0.89 0.18 2.04 1.35
BAYES 0.074 0.013 0.140 0.175 95.0 95.0 95.6 91.4 1.21 0.20 2.40 1.76

Table 2.1: Summary of simulation results displaying the bias of the parameter esti-
mates, the coverage of the confidence intervals/credible sets, and mean length of the
confidence intervals/credible sets.

if R̂ ≈ 1.

2.5.2 Results

Results from the 500 simulations of two different models with three different methods

of estimation are presented in Table 2.1 and Appendix B (Figures B.1 - B.4). Using

Model (2.8), no point estimates of φ1 > 1 are obtained under this simulation design; as

a consequence, Nelder-Mead and L-BFGS-S results are nearly identical. The Bayesian

approach exhibits the greatest bias for all parameters, but also provides slightly better

coverage for φ1 and φ2, though not for φ3. The Bayesian method has slightly longer

mean credible set length compared the confidence interval length of the other methods.

However, NLS, Nelder-Mead, and L-BFGS-S each generate confidence intervals whose

upper bounds exceed 1.

Model (2.9) results are very similar to Model (2.8) results. However, with the

re-parameterization of the numerator in (2.9) confidence intervals based on NLS or

MLE no longer fall outside (0, 1). While bias and mean confidence interval length are

nearly identical between Model (2.8) and Model (2.9), the coverage of Model (2.9) is

marginally worse than Model (2.8).

The simulations reveal rare yet plausible data patterns which result in NLS and

MLE estimates far removed from the true values and extremely wide confidence inter-
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λ̂ φ̂1 φ̂2 φ̂3

Model (1)
NLS - - 0.99 (0.56, 1.41) 8.89 (5.16, 12.62) 3.45 (1.54, 5.36)
NELDER-MEAD - - 0.93 (0.61, 1.24) 8.39 (5.41, 11.36) 3.04 (1.59, 4 4.49)
L-BFGS-S - - 0.93 (0.61, 1.24) 8.39 (5.41, 11.36) 3.04 (1.59, 4.49)
BAYES - - 0.89 (0.70, 0.98) 7.99 (6.07, 9.29) 2.94 (1.98, 4.07)
Model (2)
NLS 4.29 (-27.31, 35.89) 0.99 (0.00, 1.00) 8.89 (5.16, 12.62) 3.45 (1.54, 5.36)
NELDER-MEAD 2.54 (-2.10, 7.19) 0.93 (0.11, 1.00) 8.39 (5.42, 11.35) 3.04 (1.60, 4.48)
BAYES 2.05 (0.84, 4.78) 0.89 (0.70, 0.99) 7.98 (6.14, 9.50) 2.96 (2.00, 4.08)

Table 2.2: Summary of erratic simulation: point estimates and 95% confidence inter-
vals/credible sets.

vals. Such situations appear to be due to the pattern of reported outcomes observed

in older ages. While all realizations are in accord with the underlying model, at times

too few outcomes occur at given age ranges to allow reliable estimation of the upper

asymptote corresponding to vaccination coverage (our parameter of primary interest).

The Bayesian approach exhibits considerably more stability and is less sensitive to

these situations. To see this in more detail, Table 2.2 provides results from such a

simulation. In this case, Model (2.8) yields estimates of φ1 much greater than the true

value of 0.7, and confidence intervals for NLS, Nelder-Mead, and L-BFGS-S exceed

one. The Nelder-Mead and L-BFGS-S algorithms produce the same parameter esti-

mates and confidence intervals because the parameter estimates were well within the

specified box constraints of the L-BFGS-S algorithm. In Model (2.9), again estimates

of φ1 are much greater than the true value of 0.7, and the confidence intervals for

NLS and Nelder-Mead are quite large. This implies that the reparameterization of

Model (2.8) could affect the stability of parameter estimates in Model (2.9). On the

other hand, Bayesian estimates of all parameters for both Models (2.8) and (2.9) are

closer to the true parameter value with tighter credible sets compared to point esti-

mates and confidence intervals from nonlinear least squares and maximum likelihood

estimation.
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DPT1 DPT2 DPT3
Entry Value N (%) N (%) N (%)
No 0 881 (16.2) 1323 (24.4) 1930 (35.6)
Vacc. date on card 1 2580 (47.5) 2396 (44.1) 2157 (39.7)
Vacc. marked on card 1 20 (0.4) 20 (0.4) 18 (0.3)
Reported by mother 1 1949 (35.9) 1689 (31.1) 1323 (24.4)

Table 2.3: Summary of 2003 Kenya DHS DPT outcomes.

2.6 Application to Kenya 2003 DHS

Both Models (2.8) and (2.9) are applied to the 2003 Kenya DHS data set. The

DHS asks mothers for vaccination information for all children under the age of 5.

Our main outcomes of interest are whether or not a child was vaccinated with the

diphtheria, pertussis, and tetanus vaccine series denoted by DPT1, DPT2, and DPT3,

respectively, which are recommended at 6, 10, and 14 weeks [6]. Vaccination can

be verified by the vaccination card or by maternal recall. The 2003 Kenya DHS

reports that 60% of children had vaccination cards available [7]. Table 2.3 displays

the unweighted sample frequencies of the response to the questionnaire.

All children who have a vaccination date on card, marked on card without a date,

or reported by mother are considered to have been vaccinated by the date of the

interview. Children for whom “No” is reported are considered unvaccinated by the

date of the interview. For the independent variable we use the age of the child in

months at the time of the interview as all dates recorded in the DHS data set are

recorded in Century Month Code (CMC). It should be noted that this data set does

not provide mother or household ID’s, therefore, we are possibly ignoring correlated

outcomes in children raised by the same mother or in the same household. Lastly,

the DHS data are survey data based on a cluster design with associated sampling

weights. For this analysis, we ignore the sampling weights and use this data set as an

illustration of the methods described; therefore, the vaccination coverage estimates

presented may not be representative of true population coverage estimates.
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We analyze coverage of DPT1, DPT2, and DPT3 from the 2003 Kenya DHS

data set by nonlinear least squares, maximum likelihood estimation, and Bayesian

estimation for both Models (2.8) and (2.9) (Table 3). With the exception of nonlinear

least squares in estimating φ3, all produce very similar point estimates as well as

similar confidence intervals/credible sets. Confidence intervals are slightly wider for

DPT3 parameter estimates compared to DPT1 and DPT2, which reflects greater

uncertainty associated with DPT3 due to fewer individuals being vaccinated compared

to the other two vaccinations. Parameter estimates show highest coverage for DPT1,

then DPT2, and lastly DPT3. The median vaccination age varies, as expected, but

are all slightly higher than the WHO targeted vaccination ages of 1.5, 2.5, and 3.5

months. The time elapsed between which 50% and 75% of the vaccination coverage

has been achieved is greatest for DPT3.

2.7 Discussion

Due to difficulties in estimating constrained parameters in logistic growth models,

we compared two model formulations with three methods of estimation. In general,

Model (2.9) is preferred to Model (2.8) since the reparameterization ensures that

estimates of φ1 are within its logical constraints. Nonlinear least squares provides

estimates based on an inappropriate error model and may not be robust to all sit-

uations, and yields parameter estimates in the Kenya data application which differ

slightly from both maximum likelihood and Bayesian estimates. In our simulations,

all methods exhibited similar parameter coverage rates, with the exception of φ3 for

which the Bayesian setting yielded slightly lower coverage.

Although both maximum likelihood and Bayesian estimation appropriately ac-

count for the binary nature of the outcome, MLE inference is based on the asymptotic

distribution of parameter estimates whereas Bayesian inference is based on samples
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λ̂ φ̂1 φ̂2 φ̂3

Model 1, DPT1
NLS - 0.8723 (0.8629,0.8817) 1.7666 (1.6356,1.8975) 0.5445 (0.4236,0.6654)
NELDER-MEAD - 0.8725 (0.8632,0.8819) 1.8109 (1.6320,1.9897) 0.5337 (0.3842,0.6832)
L-BFGS-S - 0.8725 (0.8632,0.8819) 1.8111 (1.6323,1.9900) 0.5338 (0.3843,0.6832)
BAYES - 0.8730 (0.8633,0.8820) 1.8125 (1.6389,2.0040) 0.5518 (0.4132,0.7304)
Model 2, DPT1
NLS 1.9212 (1.8370,2.0054) 0.8723 (0.8626,0.8814) 1.7666 (1.6356,1.8975) 0.5445 (0.4236,0.6654)
NELDER-MEAD 1.9233 (1.8393,2.0072) 0.8725 (0.8629,0.8816) 1.8114 (1.6325,1.9904) 0.5339 (0.3844,0.6835)
BAYES 1.9270 (1.8380,2.0055) 0.8729 (0.8627,0.8814) 1.8150 (1.6425,2.0030) 0.5531 (0.4159,0.7330)
Model 1, DPT2
NLS - 0.8068 (0.7958,0.8178) 2.8911 (2.7152,3.0670) 0.6086 (0.4497,0.7675)
NELDER-MEAD - 0.8060 (0.7949,0.8172) 2.8971 (2.6913,3.1028) 0.5019 (0.3543,0.6494)
L-BFGS-S - 0.8060 (0.7949,0.8172) 2.8974 (2.6916,3.1031) 0.5016 (0.3542,0.6491)
BAYES - 0.8060 (0.7947,0.8172) 2.9080 (2.6969,3.1416) 0.5200 (0.3877,0.6947)
Model 2, DPT2
NLS 1.4292 (1.3587,1.4998) 0.8068 (0.7955,0.8175) 2.8911 (2.7152,3.0670) 0.6086 (0.4497,0.7675)
NELDER-MEAD 1.4244 (1.3531,1.4958) 0.8060 (0.7946,0.8169) 2.8980 (2.6921,3.1038) 0.5019 (0.3543,0.6496)
BAYES 1.4260 (1.3560,1.5010) 0.8063 (0.7951,0.8178) 2.9125 (2.7125,3.1360) 0.5206 (0.3916,0.7125)
Model 1, DPT3
NLS - 0.7089 (0.6961,0.7218) 4.3102 (4.0079,4.6125) 1.0150 (0.7544,1.2755)
NELDER-MEAD - 0.7072 (0.6939,0.7205) 4.3106 (3.9952,4.6260) 0.8017 (0.5880,1.0154)
L-BFGS-S - 0.7072 (0.6939,0.7205) 4.3115 (3.9960,4.6270) 0.8018 (0.5881,1.0155)
BAYES - 0.7077 (0.6942,0.7198) 4.3250 (4.0289,4.6350) 0.8218 (0.6291,1.0640)
Model 2, DPT3
NLS 0.8901 (0.8278,0.9525) 0.7089 (0.6959,0.7216) 4.3102 (4.0079,4.6125) 1.0150 (0.7544,1.2755)
NELDER-MEAD 0.8819 (0.8177,0.9461) 0.7072 (0.6938,0.7203) 4.3120 (3.9965,4.6275) 0.8016 (0.5880,1.0153)
BAYES 0.8839 (0.8191,0.9458) 0.7076 (0.6940,0.7203) 4.3230 (4.0150,4.6485) 0.8189 (0.6346,1.0545)

Table 2.4: Point estimates and 95% confidence intervals/credible sets for DPT1,
DPT2, and DPT3 coverage from the 2003 Kenya DHS based on Models (2.8) and
(2.9) with four methods of estimation: (1) nonlinear least squares, (2) Nelder-Mead,
(3) L-BFGS-S, (4) Bayesian estimates.
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from the posterior distribution of the parameters. In general, Bayesian estimates

exhibited greater bias and longer credible set length compared to confidence inter-

val length. For the main parameter of interest, φ1, Bayesian estimation maintained

good coverage across simulations, and though the bias was noticeably greater than

the other methods, it is still virtually negligible on the scale of which the parameter

is being estimated (1 percentage point). The tradeoff between bias and precision is a

common consideration in statistical estimation, and especially in terms of Bayesian

inference [27]. We view the Bayesian framework as attractive in its ability to naturally

restrict parameter estimates through prior distributions, its inference which does not

depend on asymptotic rates of convergence, and its stability in the infrequent but not

entirely rare data settings yielding unstable MLEs observed in our simulation despite

the greater bias and longer credible set length.

Each of the methods of parameter estimation considered above encountered sim-

ulated data sets which resulted in numerical convergence issues. For Model (2.8),

nonlinear least squares and maximum likelihood optimization by the Nelder-Mead

algorithm do not inherently constrain φ1 such that 0 < φ1 < 1, and numerical com-

putational errors in these estimation routines are encountered frequently resulting

in wide confidence intervals for these data sets. While the BFGS box-constrained

algorithm can appropriately constrain parameter estimates, numerical errors during

estimation are still encountered; furthermore, the estimation algorithm can remain on

the edge of the user specified bounds, resulting in multiple simulations with similar

and unrealistic parameter estimates on the edge of the bounds. Lastly, WinBUGS

occasionally encountered numerical instability in the MCMC algorithm. All estima-

tion methods discussed require certain user based input such as starting points for

estimation routines, box constraint boundaries on parameters, and prior distributions

for parameters. Changing such inputs could occasionally overcome errors in estima-

tion routines and facilitate convergence, although such adjustments are difficult to
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automate to guarantee convergence.

Both models explored have the flexibility to accommodate extensions of interest.

Certain covariates, such as maternal education or rural versus urban, are thought

to directly impact vaccination coverage. To accommodate these effects, the analysis

could be performed stratified on such covariates, or they could be taken into account

directly by introducing new parameters in the three parameter logistic growth model.

Covariates can be easily included in the model to affect the asymptote, inflection

point, or slope.

While the DHS data represent survey data based on a cluster design with weights,

we estimate the unweighted sample vaccination coverage rather than the weighted

population representative coverage. Of the methods of estimation explored, only

nonlinear least squares can incorporate the survey weights in a straightforward man-

ner within the analysis. In order to appropriately take sampling into account with

maximum likelihood estimation, the negative log likelihood needs to be optimized ad-

justing for the survey weights, which falls outside the scope of many general purpose

optimization routines (e.g., optim function in R). To account for the survey design

in the maximum likelihood or Bayesian framework, future work will explore both

model-based and design-based approaches. In a model-based approach, one could

take into account the clusters of individuals by estimating a random effect for each

cluster. In a design-based approach, one could utilize resampling techniques. This

would provide more accurate estimates of the population vaccination coverage from

data obtained by a complex sampling design, as opposed to a simple random sample.

We defined the outcome of the model as whether or not a child was vaccinated as

indicated by either vaccination card or maternal recall. As maternal recall is imper-

fect, it is possible that outcomes indicated by maternal recall could be misclassified.

Various studies have shown mixed results on the validity of maternal recall; while

some show that maternal recall tends to be in agreement with vaccination history
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[11, 28, 29, 30, 31], others suggest substantial discordance [32, 33, 34]. These results

are country and vaccination specific, and therefore efforts should be made to verify

the validity of maternal recall before utilizing the proposed modeling method. Fu-

ture research should assess the effect of misclassification of the outcome on parameter

estimates.

The results demonstrate that the nonlinear logistic model can be used to estimate

a logistic asymptote less than 1.0 when the outcome of interest is binary. Specifically,

we used this model to estimate vaccination coverage, an application where the pri-

mary interest is this unknown asymptote. Moreover, this model also estimates two

other meaningful parameters in this setting, which represent the median vaccination

age among those vaccinated and characterize the rate of vaccination uptake. This

model is most applicable to vaccination research in which respondents are unable

to estimate age at the time of vaccination, and utilizes data more generally available

than that required for standard approaches based on survival analysis methods. Some

additional analytic complications remain including incorporation of survey weights,

adjustment for mismeasured covariates, and further reducing sensitivity to particular

data patterns. Even with these challenges, the logistic model enables researchers to

base inference regarding vaccination coverage on all respondents regardless of whether

or not they retained their vaccination cards, hereby eliminating possible bias due to

only analyzing complete data cases.
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Chapter 3

Linking Remotely Sensed Data to

Local Observations

3.1 Introduction

Buruli ulcer (BU) is a potentially debilitating skin disease caused by infection with

Mycobacterium ulcerans. The disease often begins as a painless nodule and if left

untreated can ulcerate, resulting in permanent scarring and disability [35]. Details of

clinical symptoms, diagnosis, and treatment are reviewed elsewhere [35, 36, 37]. BU

cases have been reported in at least 31 countries spread across Africa, Asia, Australia,

and Latin America, demonstrating increasing prevalence and expanding geographic

distribution during the past century [37]. Endemic in areas of sub-Saharan Africa,

countries in West Africa including Benin, Côte d’Ivoire, and Ghana have the highest

burden of the disease [38]. Accurate surveillance data reflecting the true disease

incidence in West Africa remains elusive due to local variations in aspects such as

case confirmation, access to care, diagnosis, and reporting practices.

While it is known that M. ulcerans causes BU, the exact mode of transmission is

still unknown. Although many vectors and reservoirs of the disease have been hypoth-
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esized, none have been conclusively identified [39, 40, 41, 42, 43, 44, 45, 37, 46, 47].

An extensive review of the ecology and transmission of BU is provided by Merritt

et al. (2010) [47]. Epidemiological studies have found BU incidence to be associ-

ated with water exposure through swimming, domestic water-related activities, and

proximity to water [48, 49, 39, 50, 35, 51, 37, 52, 46]. Such studies generally support

transmission via environmental contact through an open skin lesion or scratching

such a lesion [37, 47]. Furthermore, many studies suggest that BU is associated with

disturbed environments, such as deforested areas and farmlands [37, 53, 54, 55]. An

environmental pathogen with a distribution in nature thought to be greater than

that of the disease, M. ulcerans ’ existence appears independent of human interac-

tion [56]. Studies have verified the presence of M. ulcerans DNA in many areas of

aquatic systems including suspended material in water, detritus, biofilm, and aquatic

insects [57, 41, 58, 45, 46, 59, 56]. M. ulcerans DNA has also been found among

many aquatic invertebrates collected from 27 aquatic habitats of both endemic and

non-endemic communities of Ghana [46, 56].

A small number of studies undertaken in Ghana, Côte d’Ivoire, and Benin have

examined the geographical patterns of BU disease endemic areas taking into account

landscape and environmental factors [53, 60, 55, 54]. Positive associations with BU

incidence were found with mean arsenic content of soil, proximity to gold mining sites,

irrigated rice crops area, agriculture, forest, and wetness index variability. Negative

associations with BU were found with dam surface area, urban land cover, and mean

elevation. One study also reported geographic clusters of communities with higher

than expected and lower than expected disease prevalence [54].

Although these studies of BU incidence and prevalence have provided important

information for understanding geographic and environmental associations with human

disease, similar studies evaluating the factors driving pathogen distribution in the en-

vironment have not been conducted. This study sought to investigate the spatial
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distribution of M. ulcerans among aquatic habitats in Ghana and identify environ-

mental characteristics associated with the presence of M. ulcerans. We hypothesized

that the presence of M. ulcerans was associated with both broad scale environmental

features as well as highly localized characteristics of aquatic systems. At the most

localized level, we measured several physical and chemical properties of the aquatic

systems themselves. For broad scale environmental features, we used remotely sensed

observations to infer landscape and land use/land cover properties among the same

aquatic systems. Finally, as an initial test of local similarity between the geographic

distribution of the pathogen and disease, we assessed the association of M. ulcerans

presence and the Buruli ulcer disease reporting history of the local community.

3.2 Methods

3.2.1 Study Area

A total of 98 aquatic habitats were sampled from water bodies routinely used by

communities in five regions of Ghana: Greater Accra (N = 24), Eastern (N =

5), Ashanti (N = 34), Central (N = 5), and Volta (N = 30) (Figure 3.1). Due

to geographic proximity, the sites sampled in the Eastern and Central regions of

Ghana are henceforth classified with the Greater Accra and Ashanti sites, respectively.

Aquatic environmental sampling was performed in Greater Accra and Ashanti in

the summers of 2005-2007 with 9-11 sites sampled each year, with the exception of

Ashanti in 2006 during which 20 sites were sampled; sampling took place on a single

date in each village. All community sites were randomly selected within region, and

the water bodies were located within or near (<200m) the villages. Sampled water

bodies were selected based on discussions with community leaders with regards to

daily and frequent domestic water use. Different aquatic habitats were sampled to

include streams, rivers, wetlands, ponds, and reservoirs, and were classified as lentic
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(still) or lotic (flowing).
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Figure 3.1: Locations of sampled aquatic habitats in the Ashanti, Greater Accra, and
Volta regions of Ghana. Administrative districts that reported cases from 2004-07
are shaded in gray. Red symbols indicate M. ulcerans positive sites, whereas blue
symbols indicate M. ulcerans negative sites. Triangles represent sites that reported
cases 2004-07, and circles represent sites with no reported cases 2004-07.

The BU surveillance data of the sampled communities were obtained from the

Ghana Health Services National Buruli ulcer Control Programme. As validation

surveys have found BU cases in communities where no case reporting occurred [47],

it is possible (indeed probable) that at least some non-reporting communities have

cases. Therefore, we consider disease reporting history at two levels. Community level

reporting is defined as the presence of reported BU cases in the sampled communities

from 2004-2007. In contrast, district level reporting is defined based on whether the

sampled community is located within a district that reported BU cases in the same
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years.

3.2.2 Detection of M. ulcerans

Sample collection and subsequent laboratory processing for detection of M. ulcerans

followed a strict protocol. Macrophyte (i.e., aquatic plants) biofilm and suspended

material in the water were collected via standardized environmental sampling to iden-

tify the presence of M. ulcerans in the aquatic habitats. At each water body, one

detrital biofilm sample as well as macrophyte biofilm samples from the two most

dominant living macrophyte type were collected (N=3). Macrophyte biofilm samples

consisted of 1-5 specimens depending on the plant type. The submerged portion of

each plant sample was placed into a Ziploc bag with 100 ml of pre-filtered, bottled

water. Once sealed, plants were rubbed within the bag to dislodge and suspend any

epiphytic material. Approximately 10 ml of the resulting liquid suspension and a

small portion of plant material were preserved with 100% ethanol for polymerase

chain reaction (PCR) analysis. To assess suspended material in the open water col-

umn for M. ulcerans, a composite water sample (∼12 L) was collected from random

open water areas within the water body at the mid-water column depth. From the

composite, five 100-200 ml sub-samples were filtered through a 1.6 micron fiberglass

filter followed by a 0.2 micron nitrocellulose filter (Whatman Inc). Filters were sealed

in aluminum foil packets for subsequent laboratory analysis.

All samples were processed at the University of Tennessee, Knoxville, Tennessee.

Mycobacterium ulcerans DNA was detected by a tiered PCR based detection method

in which DNA was subjected first to amplification of the enoyl reductase (ER) do-

main. ER-PCR positive samples were further evaluated by variable number tandem

repeat (VNTR) analysis to differentiate M. ulcerans from other mycolactone produc-

ing mycobacteria. Detailed methods of DNA detection are discussed by Williamson

et al. (2008) [56]. If any of the environmental samples contained M. ulcerans DNA

29



then the corresponding aquatic site was identified as M. ulcerans positive.

3.2.3 Water Characteristics

A variety of physical and chemical properties were evaluated for each aquatic habi-

tat. One-liter water samples were collected to evaluate the water’s physicochemical

characteristics (Table 3.1). Several parameters (e.g., dissolved oxygen, temperature,

conductivity) were measured in situ using a YSI 6600 Data Sonde (Yellow Springs

Instruments, Inc., OH). Water samples were stored on ice and then frozen until analy-

sis at the Environmental Chemistry Division of the Water Research Institute, Ghana

using established and standard water quality methods [56].

3.2.4 Remotely Sensed Covariates

Land use/land cover (LULC) was inferred from dry season 2000 and 2002 Landsat

ETM+ imagery with 30 m resolution (Figure 3.2), obtained from the University of

Maryland Global Land Cover Facility [61]. Details of the geoprocessing techniques

appear in Wagner et al. 2008 [54]. Easily distinguished LULC categories includ-

ing agriculture, forest, shrubland, urban, water, and wetlands were summarized in

0.1, 0.5, 1.0, and 5 km circular buffers around the water bodies. LULC covariates

included the percent of pixels characterized by an LULC type within the specified

buffer distance, as well as by a presence/absence indicator corresponding to specific

LULC types within the buffer.
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Figure 3.2: Land use/land cover derived from LandsatETM+ imagery. Land use/land
cover was summarized in 0.1, 0.5, 1.0, and 5 km circular buffers around the sampled
sites, represented by black dots.

A digital elevation model (DEM) was derived from NASA Shuttle Radar To-

pographic Mission (SRTM) (2000) data with a 3 arc second (90m) resolution at a

WRS-2 unfilled finished A processing level (Figure 3.3), obtained from the University

of Maryland Global Land cover Facility. The DEM gaps were filled and compound

topographic index, or wetness index, was calculated using the following equation [62]:

WI =
ln((FA+ 1.0) ∗ 90m)

slope + 0.0001
. (3.1)

The minimum, maximum, mean, and standard deviation of the wetness index for

buffer diameter sizes of 0.5, 1.0, and 5 km were also calculated as an approximate

measure of potential land surface moisture content and its spatial variability. Lastly,

site-specific values of elevation were extracted. All environmental covariates were

calculated and extracted in ArcGIS 9.3.1 (ESRI Inc., Redlands, CA).
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Figure 3.3: Wetness index provided by the digital elevation model derived from NASA
SRTM data. Green dots represent sampled sites.

3.3 Statistical Analysis

Ripley’s K function [63] was used to test for the presence and scale of any patterns

of spatial clustering of M. ulcerans positive sites relative to negative sites using the

splancs package in R [64]. Geographic regions were assessed separately for clustering

patterns, and the distances at which clustering patterns were evaluated were approxi-

mately one-third of the distances separating the two furthest sites in each region. The

square-root transformation of the K function was employed to linearize the function

and stabilize the variance. The expectation of the transformed function minus the

distance at which it is evaluated was 0 under the null hypothesis of complete spatial

randomness. Estimated functions greater than zero implied global spatial clustering,

whereas estimated functions less than 0 implied global spatial dispersion. We cal-

culated the differences between the transformed K functions that summarized the

spatial distribution of M. ulcerans positive and negative sites (case-control K func-
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tion) and assessed significance via Monte Carlo simulation (999 simulations).

To investigate location and significance of individual clusters of M. ulcerans pos-

itive sites, we calculated Kulldorff’s Bernoulli spatial scan statistic using circular

windows for the Ashanti and Accra areas separately [65]. The statistical significance

of potential clusters was evaluated through Monte Carlo hypothesis testing (999 sim-

ulations) in SaTScan 8.0 [66] at the 0.05 significance level.

Logistic regression was used to identify variables associated with the presence of M.

ulcerans among the aquatic sites using SAS software version 9.2 (SAS Institute Inc.,

Cary, NC). Most of the physicochemical water characteristics were log transformed

due to highly skewed distributions. Both percent LULC within buffers as well as

indicators of LULC classes’ presence were considered for model selection. Model

selection was based on Akaike’s Information Criterion (AIC), an information-theoretic

approach for selecting a best model from a set of candidate models [67]. AIC was

adjusted for small sample size (AICc) because of the low ratio of the sample size

to the number of parameters. The model with the lowest AICc was regarded as

the best fitting model of those considered. Due to the high degree of correlation

among LULC variables as well as water variables, a set of candidate variables were

identified for model building. Only one LULC covariate at each buffer distance which

resulted in the greatest reduction of AICc was considered in model selection, and

only uncorrelated water quality covariates (ρ < 0.3) with the greatest reduction in

AICc were considered in model selection. Region interactions were considered with

each candidate covariate. We focused on five best-fitting models constructed using

five sets of candidate covariates, namely: (1) water, (2) LULC, (3) DEM (terrain),

(4) LULC+DEM (landscape), (5) all sets of covariates (overall).

Model fit was assessed by a variety of methods for the final model constructed

from all sets of covariates. Standardized residuals were used to check for the presence

of outliers, and observations were evaluated to identify those with high leverage [14].
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In addition, the residuals from the Greater Accra and Ashanti regions were assessed

separately for spatial autocorrelation by the empirical semivariogram using the geoR

package in R. The semivariogram estimated variability between distinct pairs of sites

as a function of the distance h between them. Simulation envelopes (999) were con-

structed by Monte Carlo simulation in order to test the null hypothesis of spatial

independence among the residuals: if all points fall within the envelopes then the null

hypothesis of spatial independence is not rejected [68].

In addition to assessments of associations between M. ulcerans presence and en-

vironmental attributes, we also explored the association between reported BU cases

and M. ulcerans presence. The unadjusted association was tested by Pearson’s chi-

square test at the 0.05 significance level. The association adjusted for environmental

covariates was assessed by entering the BU reporting history variables individually

into the best fitting logistic regression model. We required one of two conditions to

include BU reporting history in our model. First, if the updated model’s AICc was

at least 2 units smaller than that of the best fitting model then the BU reporting

history variable improved model fit and was included. Second, if the AICc of the

updated model remained within 2 units from the AICc of the best fitting model then

the updated model was considered competitive with the best fitting model [67].

3.4 Results

No cases of BU have been reported from the Volta region, and environmental

sampling did not detect M. ulcerans in this region (N = 30). For the present study,

data from the Volta region were excluded from further analyses in order to investigate

factors relating to variation in M. ulcerans presence.

A higher proportion of aquatic habitats tested positive for M. ulcerans in the
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Characteristic Greater Accra (N = 29) Ashanti (N = 39)
General n(%)

M. ulcerans present 10 (34%) 26 (67%)
Community level reporting 14 (48%) 23 (59%)
District level reporting 20 (69%) 37 (95%)
Lentic aquatic system (still) 22 (76%) 13 (33%)

Water Covariates Median (Min, Max)
Calcium (mg/L)* 19.6 (2.0, 94.2) 11.6 (3.6, 24.4)
Calcium hardness as CaCO3 (mg/l)* 44.1 (0.0, 231.0) 24.0 (1.3, 56.1)
Carbon trioxide (mg/L)* 109.0 (1.2, 449.0) 41.5 (12.2, 151.0)
Chlorine (mg/L)* 28.8 (3.0, 647.0) 9.9 (3.0, 69.5)
Chlorophyll (mg/L)* 11.0 (4.5, 76.1) 8.7 (0.3, 125.7)
Color apparent (Hz)* 35.0 (1.2, 500.0) 30.0 (5.0, 180.0)
Dissolved oxygen percent saturation 35.0 (0.2, 134.8) 56.6 (0.3, 90.3)
Field specific conductivity (µS/cm)* 266.2 (67.0, 2601.4) 116.0 (39.0, 696.3)
Field temperature (Celcius) 26.5 (24.3, 32.0) 24.2 (23.2, 27.8)
Field turbidity (NTU)* 17.1 (0.1, 331.5) 34.4 (0.0, 353.7)
Iron (mg/L)* 1.2 (0.0, 7.2) 2.5 (0.2, 7.4)
Magnesium (mg/L)* 7.8 (2.0, 86.9) 5.9 (3.0, 15.1)
Manganese (mg/L)* 0.1 (0.0, 3.0) 0.0 (0.0, 0.3)
Nitrate (mg/L)* 0.4 (0.0, 2.8) 1.0 (0.0, 21.0)
Nitrogen dioxide (mg/L)* 0.0 (0.0, 0.6) 0.0 (0.0, 0.1)
Nitrogen/phosphate ratio* 7.2 (6.3, 8.7) 6.7 (5.5, 7.6)
Oxidation-reduction potential 84.8 (-184.5, 146.8) 64.5 (-188.1, 168.9)
pH 7.2 (6.3, 8.7) 6.7 (5.5, 7.6)
Phosphate (mg/L)* 0.1 (0.0, 1.0) 0.1 (0.0, 0.5)
Sulfate (mg/L)* 10.0 (0.2, 68.6) 5.2 (0.5, 29.2)
Suspended solids (mg/L)* 33.0 (8.0, 451.0) 12.0 (2.0, 64.0)
Total alkalinity as CaCO3 (mg/l)* 90.0 (1.0, 368.0) 34.0 (10.0, 124.0)
Total dissolved solids (mg/L)* 138.0 (37.2, 1172.0) 62.0 (22.0, 188.0)
Total nitrogen* 0.4 (0.0, 2.8) 1.0 (0.0, 21.0)

Terrain Covariates Median (Min, Max)
Elevation 46.0 (15.0, 152.0) 175.0 (100.0, 378.0)
Wetness at site 4.7 (3.0, 12.1) 4.9 (2.7, 10.8)
Average wetness (500m) 5.7 (4.8, 6.3) 4.8 (4.0, 5.6)
Average wetness (1km) 5.4 (4.5, 6.3) 4.7 (4.0, 5.4)
Average wetness (5km) 5.2 (4.5, 6.7) 4.5 (3.8, 5.4)
Standard deviation wetness (500m) 1.9 (1.0, 3.1) 1.9 (0.8, 2.8)
Standard deviation wetness (1km) 1.9 (1.4, 3.3) 1.8 (1.2, 2.9)
Standard deviation wetness (5km) 1.8 (1.7, 4.3) 1.8 (1.6, 1.9)

Table 3.1: Descriptive statistics of environmental attributes in regions exhibiting
M. ulcerans presence. Starred variables were natural log transformed for statistical
analysis.
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Ashanti sites (66%, N = 39) than in the Greater Accra region (34%, N = 29) (Table

3.1). Physical and chemical properties of water from sites varied by region. Ashanti

sites were at a higher elevation than Accra sites, which were located closer to the coast

(median elevation for Accra=46 meters above sea level, Ashanti=175 m). Both Accra

and Ashanti had similar at-site median wetness index, however the average wetness

index within buffers around the sites was greater in Accra than Ashanti. Both regions

exhibit similar average wetness index variability within buffers around the site.

The six predominant LULC types observed included: agriculture, urban, water,

forest, wetland, and shrubland. The majority of sites in the Greater Accra region

had agriculture and shrubland present within the buffers, whereas fewer Ashanti sites

contained these land cover types (Figure 3.4). Wetlands were present within buffers

around the Greater Accra sites, but not at all in Ashanti sites. Both regions exhibited

similar patterns for presence of urban and forested areas. At 30 m resolution, the

percentages of water and wetlands in all buffers around aquatic sites were very low

for both Greater Accra and Ashanti and therefore were not considered for the model

selection process.

The spatial distribution of M. ulcerans positive and negative aquatic sites was

assessed for both clustering patterns and individual clusters of positive sites. The

difference between the transformedK functions showed no significant global clustering

of M. ulcerans positive sites relative to negative ones for either the Greater Accra or

Ashanti regions (Figure 3.5). Moreover, Kulldorff’s spatial scan statistic found no

significant spatial clusters of M. ulcerans positive aquatic habitats.

Logistic regression identified factors associated with M. ulcerans from the distinct

sets of covariates (Table 3.2). The AICc of the models ranged from 55.0 to 96.1,

with the best fit achieved by combining covariates from all sets. This model with

the lowest AICc contained seven main effects: (1) region, (2) elevation, (3) wetness

index at the site, (4) standard deviation of wetness index within 500 m of the site,
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Figure 3.4: Land cover within buffers around aquatic habitats in the Greater Accra
and Ashanti regions. Bars display the percent of sites with the feature present within
each buffer.
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Figure 3.5: Ripley’s case-control K-function for Greater Accra (a) and Ashanti (b).
Clustering patterns for Greater Accra were assessed up to 15 km, and for Ashanti 45
km. Shown in the solid horizontal line, the expected value of this function is 0 under
the assumption of complete spatial randomness. The bold line shows the observed
difference between the transformed K functions of the positive and negative sites, and
the dashed lines show the theoretical confidence bounds calculated by Monte Carlo
simulation.
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Water LULC Terrain Landscape All
AICc (df) 86.4 (6) 84.1 (4) 72.1 (7) 58.4 (9) 55.0 (11)
Parameter estimate (SE)
General

Intercept -2.30 (1.65) 2.15 (0.94) -9.28 (3.75) -19.04 (8.03) -32.97 (14.72)
Accra 3.28 (2.29) -2.37 (0.84) 15.91 (4.60) 27.19 (9.53) 44.17 (17.47)

Terrain
Elevation 0.05 (0.02) 0.10 (0.04) 0.12 (0.05)
Accra × Elevation -0.05 (0.02) -0.09 (0.04) -0.10 (0.05)
Wetness -0.35 (0.16) -0.52 (0.23) -0.91 (0.41)
STD(Wetness500m) 2.36 (1.25) 3.65 (2.13) 4.77 (3.75)
Accra×STD(Wetness500m) -5.13 (1.71) -7.00 (2.76) -8.67 (4.67)

LULC
I(Urban100m) 1.72 (0.88) 5.53 (2.01) 6.25 (2.47)
I(Forest1km) -1.86 (0.90) -2.06 (1.44) -3.01 (1.63)

Water
Log(CA hardness) 1.38 (0.56) 4.33 (1.97)
Accra × Log(CA hardness) -1.51 (0.70) -4.41 (2.05)
DO -0.02 (0.01)
Log(NO3) 0.21 (0.14)

Table 3.2: Best fitting model results from five categories of covariates presented in
columns sorted by descending AICc, with the smallest AICc indicating the best fit.

(5) indicator for urban land cover within 100 m of the site, (6) indicator for forest

land cover within 1 km of the site, and (7) log of calcium water hardness. This model

also contained three interaction terms with region: elevation, standard deviation of

wetness index within 500m of the site, and calcium water hardness.

The best fitting model showed that the odds of M. ulcerans presence increased as

elevation increased (within the relatively modest range of elevations considered), with

a more pronounced elevation effect in Ashanti than Greater Accra. As the wetness

index at the site increased, the odds of M. ulcerans presence decreased. As the stan-

dard deviation of the wetness index within 500 m of the site increased, the odds of

M. ulcerans decreased in Accra but increased in Ashanti. Sites that had urban land

cover present within 100 m but did not exhibit forest within 1 km had the highest

odds of M. ulcerans presence. This is followed by (in order of highest to lowest) ur-

ban/forested, and then non-urban/non-forested, and lastly non-urban/forested areas

had the lowest odds of M. ulcerans presence (Figure 3.6). Mycobacterium ulcerans
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Figure 3.6: Depiction of results from best fitting model for land use / land cover. Land
cover representing most disturbed areas are associated with a higher probability of
M. ulcerans presence compared to land cover representing least disturbed areas.

presence was weakly negatively associated with water calcium hardness in Accra and

strongly positively associated with calcium water hardness in Ashanti.

The best fitting land use/land cover, terrain, and landscape models reflected sim-

ilar results to the model described above. The landscape model which included all

remotely sensed covariates improved model fit when compared to the LULC or terrain

model alone. The best fitting water model contained two additional variables that

did not improve the fit of the final model: dissolved oxygen percent saturation (DO)

and log of nitrate (NO3). For both Greater Accra and Ashanti, the presence of M.

ulcerans had a negative association with DO and a positive association with NO3.

Diagnostics of the overall model best fitting model revealed no outliers in the stan-

dardized deviance residuals, and no observations with high leverage were identified.

In addition, the empirical semivariogram of the residuals showed no evidence of sig-

nificant spatial autocorrelation in either Greater Accra or Ashanti after adjusting for

environmental covariates (Figure 3.7). Ashanti had lower semivariance estimates than

Accra, reflecting the lower overall variance in the residuals. Three sites in Ashanti

and six sites in Greater Accra indicate locations of poor model fit such that the ob-

served outcome (M. ulcerans presence/absence) was not in accord with the predicted

probability from the best fitting model (Figure 3.8).

Lastly, we observed variation in case reporting among the two regions. Ninety-

five percent of sites in Ashanti were located within a district that reported cases,
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Figure 3.7: Empirical semivariogram of residuals for the Greater Accra (a) and
Ashanti (b) regions. Circles display the observed semivariance at distance h and
dashed lines indicate Monte Carlo simulation envelopes.

whereas 59% of the Ashanti communities actually reported cases. Sixty-nine percent

of sites in Greater Accra were located within a district that reported cases, and

48% of communities actually reported cases. There was no significant association

between M. ulcerans presence and district level reporting (p=0.06) or community level

reporting (p=0.80). When added to the overall best fitting model, both community

level reporting and district level reporting increased AICc by approximately 3 units.

Therefore, neither summary of case reporting appreciably improved model fit nor

explained variation in the presence of M. ulcerans after adjusting for environmental

covariates.

3.5 Discussion

This is the first study to evaluate environmental factors associated with M. ulcer-

ans in its natural habitat on such a broad scale. In the Greater Accra and Ashanti
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regions, no significant evidence of local or global clustering of aquatic habitats with

M. ulcerans was present, suggesting the growth of M. ulcerans may be dependent

on the local environment and may exist in isolated pockets. The best fitting model

of those considered included elements from both on-the-ground highly localized mea-

surements and broad scale remotely sensed features, indicating that characteristics

of local aquatic systems, general land use/land cover, and topographic features were

all associated with the presence of M. ulcerans. Some of these results concur with

laboratory results or speculation on M. ulcerans growth, whereas other results di-

verge from published literature. We explore these agreements and discrepancies for

the distinct models below.

3.5.1 Water Variables

The best fitting model relating the presence of M. ulcerans to physical and chemical

properties of water contains dissolved oxygen percent saturation, nitrate, and calcium

water hardness. Low oxygen and increased nutrients are known indicators of eutrophic

aquatic conditions that were hypothesized to be related to M. ulcerans populations

dynamics [37, 69, 47], which was later confirmed through laboratory studies [70, 45].

The relationship between water hardness and M. ulcerans has not been discussed

previously in published literature. Water hardness quantifies the mineral content in

water, and can be measured in terms of calcium or magnesium (primary components),

or total hardness (which includes other ions). The hardness of an aquatic system is

influenced naturally by the underlying geology of the system: as water passes through

soil and rock it collects minerals which are deposited in the aquatic system. However,

human activity on the watershed can also influence hardness. For example, drainage

from mining sites can contribute a variety of minerals to an aquatic system, increasing

its hardness.

Our model indicated a weak negative association between M. ulcerans and water
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hardness in Greater Accra sites, and a strong positive association with water hard-

ness sites located in the Ashanti region. The interaction effect of water hardness and

region could possibly be explained by the distinct underlying geological processes in

the two regions as well as by differences in human activities. The sites sampled in the

Greater Accra region are near the coast in which agriculture dominates the economy;

sites sampled in the Ashanti region practice agriculture as well but are also located

in prospective gold mining regions [71]. While Ashanti sites tend to have lower water

hardness than sites in Accra, high values of water hardness in Ashanti could be a

result of run-off from mines reflecting a disturbed environment and underlying water

chemistry conditions potentially creating an environment which is conducive to M.

ulcerans. Greater Accra sites, which tend to have higher values of water hardness,

could inhibit M. ulcerans growth due to more complex and indirect effects of water

hardness on other components of water quality such as pH and ion balance. Water

hardness tends to be positively correlated with pH; sites with high water hardness

could have pH values outside the optimal range for growth and survival of aquatic

organisms. Furthermore, the Greater Accra region was characterized by higher con-

ductivity, related to higher salt concentrations of those sites near the coast. The

interactions between underlying geology, proximity to the ocean, and water table ex-

change with surface waters is complex. Evaluation of specific water quality conditions

that may enhance the presence and size of M. ulcerans populations in different regions

should be studied.

Certain aquatic factors commonly discussed in the literature with M. ulcerans

such as temperature and waterbody flow did not contribute to our final model. All

but one of the sampled aquatic habitats were below the optimal laboratory growing

temperature of 30-33◦C [72], suggesting environmental temperatures for population

survival or growth may differ from laboratory conditions. Furthermore, BU disease

occurrence has been associated with both still and moving waterbodies [49, 39, 73,
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74, 50, 35, 51, 52]. However, the site classification of lentic versus lotic waterbodies

did not improve model fit and therefore provided no insights into suitable aquatic

conditions for M. ulcerans across the sites.

3.5.2 Land Use/Land Cover Variables

We chose to consider indicators for the presence of specific LULC categories within

a buffer in addition to the percentage observed for two reasons. First, the percent

LULC may not have a linear relationship with the log odds of M. ulcerans presence

and the true relationship may be difficult to ascertain. Second, given the short buffer

distances examined combined with the relatively coarse resolution of the satellite data,

indicators of LULC presence provide a more robust measure than class percentages,

reducing the potential impact of misclassification. Taken together, we find the LULC

presence indicators provide additional flexibility in estimation and interpretation of

observed associations within the data than the use of LULC percentages alone.

We identified two fine scale (<1km) LULC variables (as indicators of presence/absence)

associated with M. ulcerans. Sites with more disturbed environments (urbanized, non-

forested) were more likely to have M. ulcerans present compared to less disturbed

environments (forested, non-urbanized). These results are in accordance with current

literature indicating disturbed environments provide conditions suitable for M. ulcer-

ans growth by affecting the physiochemical properties of water [73, 37, 53, 47]. For

example, deforestation depletes riparian cover which may increase the temperature

in aquatic systems to a degree necessary for M. ulcerans growth. Furthermore, ur-

banization can result in increased sedimentation in aquatic systems, attenuating UV

penetration, and facilitating favorable conditions for M. ulcerans growth [37, 47].
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3.5.3 Terrain Variables

Elevation, wetness index at the site, and variability of the wetness index in the vicinity

of the site were found to be associated with M. ulcerans presence. Wetness index

indicates the capacity for potential water pooling based on the slope and flow direction

of the DEM, with higher values indicating higher potential for pooling. Our study

found a negative association between M. ulcerans presence and wetness index at the

site and a positive association with elevation. Areas of high wetness index or low

elevation areas may be more prone to flooding or fast moving water that could wash

out the natural habitat for M. ulcerans.

Wetness index variability had differing effects in the two regions. The positive

association between wetness index variability and M. ulcerans presence in the Ashanti

region could be attributed to variable wetness patterns enhancing conditions suitable

for M. ulcerans. However, the negative association between M. ulcerans and wetness

index variability in the Accra sites could be due to the sites’ proximity to the coastline:

conductivity measurements indicate that Greater Accra sites were saltier. If salt

inhibits M. ulcerans growth, this could happen throughout the year in low lying sites

during the dry season when the salinity of surface waters increase, but could change

during the wet seasons when the landscape floods and water bodies are ‘diluted’,

perhaps providing more suitable conditions for M. ulcerans.

3.5.4 Overall Model

The best fitting overall model contained elements from each category of covariates,

which included ground-based measurements up to remotely sensed data. The residu-

als showed no evidence of spatial autocorrelation, indicating that a more sophisticated

model taking into account the spatial locations of the sites was not necessary for our

analysis. It is noteworthy that the semivariance of the residuals in Accra was greater

than the semivariance in Ashanti, which indicated larger variability in the residuals
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of sites located in Greater Accra compared to Ashanti. The map of the predicted

probability of M. ulcerans presence suggests more discordance between model predic-

tion and observed outcomes in Greater Accra compared to Ashanti. Such discordant

sites provide an opportunity for further investigation at specific spatial locations. My-

cobacterium ulcerans negative sites with a high predicted probability of being positive

could be re-sampled to verify the negative result, and M. ulcerans positive sites with

a low predicted probability of being positive could be re-examined for unobserved

covariates that may explain positive results.

3.5.5 Comparing Environmental Associations with M. ulcer-

ans and Buruli ulcer

While M. ulcerans is the causative agent of Buruli ulcer, it is unclear whether we

should expect similarities between environmental correlates of M. ulcerans presence

and those of Buruli ulcer incidence and/or prevalence at a broad scale of observation.

Our best-fitting overall model measuring associations with M. ulcerans presence con-

tains similarities to and differences from published associations between comparable

landscape covariates and reported cases of Buruli ulcer. In addition to differences

in data quality and availability between disease surveillance and pathogen testing,

simple presence of the pathogen in the environment may inhibit our ability to detect

measurable local increases in reported cases. For example, certain environmental fac-

tors may provide suitable habitats for M. ulcerans in addition to being collocated with

high human activity areas, thus possibly increasing exposure. Conversely, other envi-

ronmental conditions associated with M. ulcerans presence may not promote human

interaction with the environment, thus limiting exposure to the pathogen. Moreover,

some of the variables associated with BU prevalence in other settings are defined on

a broader geographic scale than our variables associated with M. ulcerans. Whereas

coarse spatial BU disease patterns may be identifiable on a large geographic scale due

47



to human behavior and broad environmental characteristics, fine scale geographic

characteristics are likely more relevant to understanding the local ecology of M. ul-

cerans.

As specific examples, forest land cover and urbanization were shown to be posi-

tively and negatively associated with BU prevalence in Benin, respectively [55, 54].

Our results suggest associations with M. ulcerans in the opposite direction, showing

negative associations with forest land cover and positive associations with urban land

cover. A study in Côte d’Ivoire also demonstrated proximity to forest to be associated

with higher BU incidence [60]. With respect to M. ulcerans, an argument can be made

for forested areas both inhibiting and promoting M. ulcerans growth: forested areas

with marshy ecosystems could act as a reservoir for the pathogen, however, lower tem-

peratures due to riparian cover may not be conducive to M. ulcerans growth. Lastly,

urbanization resulting in environmental disturbance may provide conditions suitable

for M. ulcerans ; nevertheless, activities occurring in such areas like the availability of

pumped water may limit exposure to the pathogen.

As another example, our observed positive association between M. ulcerans pres-

ence and elevation differs from two different studies conducted in Benin showing

negative associations between BU prevalence and altitude [54, 75]. In contrast, our

measured associations between M. ulcerans and wetness index variability generally

agree in direction with those observed with reported cases of BU. Many studies have

implicated flooding as a risk factor for BU [49, 73, 76, 77, 37, 54], whereas low el-

evation areas with variable wetness patterns that could be prone to flooding could

wash out the natural habitat for M. uclerans. Local variations and direction of effects

demonstrate the need for additional focal studies.
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3.5.6 Associations with Reported Buruli ulcer Cases

We investigated whether adding the presence of reported BU cases at the district or

community level improved fit in our model. We did not find a significant unadjusted

or adjusted association between M. ulcerans presence and either district level or

community level case reporting history. If the case reporting history of villages is

accurate, then the insignificance of these variables may suggest that M. ulcerans

existence in nature is independent of human interaction [56]. The lack of association

between M. ulcerans presence and case reporting could also signify that locations

of reported BU cases are not limited to locations of M. ulcerans presence, implying

a more complicated connection than simple collocation and suggesting that human

behavior (particularly interaction with the environment) plays a role in transmission

that has yet to be defined.

While continuing to improve in detail and accuracy, it is important to recognize

that centralized case reports of Buruli ulcer represent a different type of data with

accompanying challenges than the systematic testing of water bodies for M. ulcerans

presence. Buruli ulcer surveillance involves a coordinated effort across institutions and

treatment centers, relying on a variety of personnel from community health workers

to district health officers. In Ghana, the surveillance system consists of both active

and passive surveillance. Nevertheless, cases can be underreported for a variety of

reasons including lack of awareness, stigma, costs associated with treatment, and

proximity to health centers [78, 79]. We utilized two levels of case reporting in order

to safeguard against potential misclassification of the villages’ reporting status. The

broader level of district case reporting may capture non-reporting communities that

actually have cases; however, it may also incorrectly classify communities without BU

cases. The narrower level of community reporting may not capture all communities

with cases due to non- or delayed reporting. It should also be noted that locations

of reported disease may not be the same as where disease acquisition occurred -
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this could happen because an individual traveled for leisure or seasonal work, became

infected while away, and then presented symptoms in their hometown. Therefore, it is

possible that no associations were observed with case reporting due to the difficulty in

correctly ascertaining a village’s case reporting history or to the difficulty in correctly

identifying the location of disease acquisition.

3.5.7 Limitations

Due to cost and time, sampling of each water body was performed only on a single

day. The study systems are highly synergistic and hypereutrophic, meaning that they

are nutrient rich and often subject to periods of excessive plant and other biomass

growth and decay. This results in variability in the physiochemical properties of wa-

ter throughout seasons or years which we were unable to capture in order to assess

how it can affect M. ulcerans. Further, many of the sites were riverine wetlands that

experience dynamic flooding and drying periods throughout the year. The ability

to detect M. ulcerans could be sensitive to such weather events as natural habitats

could be washed out. The fluctuations in water flow resulting from heavy and sporadic

rainfalls render difficult categorization of a water body as lentic or lotic at a single

point in time. Moreover, temperature of the aquatic site was assessed through point

measurements whereas continuous temperature measurements are preferable to accu-

rately quantify temperature. It is likely there were fine resolution temporal changes

which occurred prior to sampling at some locations that we were unable to identify.

For example, lack of precipitation data at the local scale inhibited our ability to ad-

dress factors (e.g., rainfall and flooding) influencing temporal changes. Moreover, the

complexities of the interactions between various components of water and their effect

on aquatic ecosystems were difficult to disassemble and analyze separately. Temporal

studies of both BU and M. ulcerans environmental distribution are needed.

We examined remotely sensed environmental covariates in buffers at relatively
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short distances (<5 km) under the assumption that the presence of M. ulcerans was

highly dependent on the immediate surrounding environment. Note that groundtruthing

of the LULC data was not performed as part of this study due to limited resources. To

minimize the potential effect of misclassification, we used easily distinguished LULC

categories. Small bodies of water could not be identified by the satellite imagery due

to the coarse resolution, and therefore this LULC class could not be statistically ana-

lyzed in relation to M. ulcerans presence. It should be noted that the coarse resolution

of the DEM data could underestimate the wetness variability in buffers surrounding

sites. This study could be improved by the use of ground-truthed, high-resolution

satellite imagery. Lastly, the dates of the satellite imagery (2000) did not coincide

with the dates of our study time period (2005-2007). Therefore, there is a possibil-

ity that natural landscapes were urbanized, converted to agricultural practices, or

stripped for mining during this time period which could affect our study results.

Our results are based on the presence or absence of M. ulcerans DNA as detected

by PCR from suspended material in water and plant biofilm of environmental samples.

This analysis focused on M. ulcerans positive water bodies, and did not consider other

potential vectors or reservoirs of M. ulcerans such as aquatic insects or mammals. In

addition, the number of positive samples and the DNA abundance were not quantified.

The number of M. ulcerans positive samples could possibly be underestimated due

to PCR inhibitors, though previous results suggest that detection methods employed

were effective in eliminating PCR inhibitors [56].

3.6 Conclusion

The majority of findings of this study support previously posed hypotheses on the re-

lationship between M. ulcerans, specific water conditions, and land use. Furthermore,

we identified new associations between M. ulcerans, water hardness, and elevation.
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Our research also demonstrated complex regional interactions limiting the ability to

identify a specific set of universal factors which may be indicative of high risk envi-

ronments for M. ulcerans. Covariates without regional interactions could potentially

be used to create maps to identify areas suitable for M. ulcerans, whereas those with

regional interactions merit further investigation into the underlying cause of the in-

teraction. Continuous remotely sensed data (widely available) may be augmented

by a well-planned water sampling strategy (much more time and resource intensive)

to collect data for the creation of such maps. Furthermore, environmental sampling

should be conducted over extended time periods (e.g., monthly for multiple years) as

temporal changes in M. ulcerans and associated environmental conditions are needed

to elucidate M. ulcerans ecology and BU transmission. As it appears that M. ulcer-

ans is present in isolated pockets in the environment, we recommend utilizing high

resolution remotely sensed data in targeted areas to better quantify these associations.

In contrast to other published research in which suitable habitats corresponded

directly to disease risk [80, 68], areas suitable for M. ulcerans do not necessarily cor-

relate to areas at high risk for acquiring Buruli ulcer as human interaction with the

environment likely plays an important yet undefined role in disease acquisition. Loca-

tions of reported BU cases may differ from M. ulcerans positive locations. Identifying

such discordant sites where M. ulcerans is present but no BU cases are reported or ar-

eas reporting BU cases with no local presence of the pathogen could help to elucidate

human behaviors associated with disease acquisition. Moreover, future studies should

include temporal aspects of pathogen detection and abundance along with identified

or hypothesized environmental covariates. This could help identify environmental lag

times necessary to detect M. ulcerans in specific habitats, much like modeling the ef-

fect of short term ambient air pollution on hospitalization due to cardiac or pulmonary

disease or long term climate patterns that precede cholera outbreaks [81, 82, 83].

While few epidemiological studies have focused on the locations and environmental
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associations of BU disease, there have been no studies assessing the same for M.

ulcerans. Knowledge of the ecology of M. ulcerans is crucial to understanding where

the pathogen resides in the environment and factors which affect its growth. These

details can highlight specific geographical areas in need of active disease surveillance,

as well as provide insight into possible local modes of transmission. We found highly

localized factors up to large-scale characterizations of environmental features were

associated with the presence of M. ulcerans, and found no evidence of geographic

clustering of M. ulcerans presence in neighboring aquatic systems. This research

provides insights into conditions suitable for M. ulcerans growth and a basis for

future research into the underlying ecology of the pathogen that causes Buruli ulcer

disease.
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Chapter 4

Assessments of and Modifications

to Techniques Utilized for Data

with False Zero Inflation

4.1 Overview

We are interested in formulating a statistical model to appropriately model cases of

Buruli ulcer (BU) in Ghana. Buruli ulcer is a neglected tropical skin disease caused by

the environmental pathogen Mycobacterium ulcerans (MU). Although many modes

of transmission have been hypothesized, none have been conclusively identified (see

discussion in Section 3.1). Our data are from the National Buruli ulcer Control Pro-

gram (NBUCP) of Ghana, and represent Buruli ulcer case summaries from the 2008

district-level reports. Administratively, Ghana is divided into regions, and regions

are subdivided into districts. In 2008, there were ten regions in Ghana comprised of

138 districts. Six of these ten regions reported BU cases. These six reporting regions

were comprised of 89 districts: Ashanti (21), Brong Ahafo (19), Central (13), Eastern

(17), Greater Accra (6), and Western (13) (Figure 4.1). A notable feature of our data
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is the substantial number of non-reports - 58/89 or 65% of the districts do not report

BU cases. Programmatically, the NBUCP considers non-reports as reports of zero

cases. While many of these non-reports represent the true absence of cases, there is

reason to believe that some of these non-reporting districts are not truly disease-free.

In the 31 reporting districts, the case counts range from 1 to 173, and the rate of

cases per 10,000 individuals ranges from 0.01 to 16 (Figure 4.2).

Northern

Volta

Brong Ahafo

Ashanti

Western

Eastern

Upper West

Central

Upper East

Greater Accra

0 62,000 124,00031,000
Kilometers4

Legend
Regions reporting BU

Figure 4.1: Six of ten regions in Ghana report cases of BU (2008)
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Figure 4.2: District counts of BU cases (2008). There are six regions affected by BU,
comprised of 89 districts: Ashanti (21), Brong Ahafo (19), Central (13), Eastern (17),
Greater Accra (6), and Western (13).

BU cases can be underreported at the individual level for a variety of reasons,

including lack of awareness, stigma, costs associated with treatment, and proximity

to health centers [78, 79]. Cases can also be subject to non-reporting at the district

level. The NBUCP is a small office with four employees located on the southern coast

of Ghana in the capital, Accra. Disease Control Officers (DCOs) at the district level

are responsible for summarizing case reports within their district and forwarding this

information to the regional office and then on to the NBUCP. The DCOs are often

temporary 1-2 year assignments mandated by the national service requirements of

Ghana. While many DCOs process and report cases in timely and accurate manner,

some DCOs may not acclimate to the their position within the time frame of their

temporary assignment, nor may they feel invested in their position. This could result
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in incomplete reporting. Moreover, as a neglected tropical disease competing with

other high profile public health interests such as HIV/AIDs or tuberculosis, BU re-

porting may be low on the public health totem pole. The NBUCP lacks both the

manpower and the resources to ensure accurate reporting from each DCO. It is also

possible that the carbon copies of the BU case reports get misplaced or lost on the

way to the capital, Accra. The most important consequence from all of this is that

programmatically the NBUCP considers no reports of BU cases as reports of zero BU

cases, and districts with no reports do not receive training in early case detection or

case management.

The data we have received from the NBUCP only includes case counts from report-

ing districts, and it is assumed that non-reporting districts have zero cases. However,

it is highly likely that some non-reporting districts are actually false zeros - districts

which have BU cases that were not reported. It is our goal to develop statistical

methodology to differentiate non-reporting districts are truly disease-free and non-

reporting districts which are likely to have cases in order to make recommendations

for allocation of resources.

As we observe a substantial number of non-reports that are considered to be

reports of zero cases, we can consider our data to be zero-inflated. A plethora of

statistical models have been proposed to model zero-inflated count data, including

zero-inflated Poisson (ZIP) models and hurdle models [84]. Typically, zero-inflated

models are used for scenarios in which the excess zeros arise by some mechanism gen-

erating true zeros. For example, in a manufacturing process monitoring the number

of defects on a device, a near-perfect process would result in many instances of zero

defects being present. However, zero inflation may also be generated by false zeros

- observations in which counts are truly present but not observed. This could occur

in ecological monitoring or disease surveillance. Although ZIP models are currently

being utilized to model data with false zero inflation, to our knowledge the perfor-
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Outcome Structural Zeros Random Zeros
Number of disease le-
sions on a plant [84]

A plant may have no lesions be-
cause it is resistant to disease

A plant may have no lesions be-
cause no spores have landed on it

Number of times a
subject used medical
services in the past
year [94]

A patient may avoid doctors A patient chooses not to visit doc-
tors by chance

Number of animals in
an area [98]

A species may be absent in a habi-
tat because the habitat is unsuit-
able

A species may be absent in a habi-
tat by chance due to the ecologi-
cal dispersal process

A species may be recorded as ab-
sent in a habitat by chance due to
sampling or observer error

Number cases of
dengue fever in Rio de
Janeiro [99]

Cases may be absent due to the
mosquito vector being absent

Cases may be absent due to an in-
dividuals immunologic resistance
by chance

Cases may be recorded absent due
to underreporting

Table 4.1: Examples of traditional approach to zero inflated data with structural and
random zeros. In the circumstance of imperfect detection, zeros can also be thought
of as true and false zeros. Examples of false zeros are in red, whereas all other zeros
may be considered as true zeros.

mance of ZIP models has not been evaluated for data which contain false zeros. In

this last chapter we review the traditional ZIP model, discuss the application of ZIP

models to data subject to false zeros, and propose a hierarchical zero-inflated model

that accommodates false zeros with the ability to differentiate between true and false

zeros.

4.2 Traditional ZIP Models

Excess zeros are said to be present in data when the observed frequency of zeros

greatly exceeds the number expected given the distributional assumptions on the data.
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Data with excess zeros can arise in many applications including industrial [85, 86],

ecological [87, 88, 89, 90], horticultural, [91, 92, 93] and medical [94, 95, 96]. Excess

zeros are classically described as structural versus random zeros. A structural zero

occurs in situations where it is impossible to observe a response, whereas random zeros

occur by chance according to the probability distribution describing the observation

process [97]. Table 4.1 provides examples of the classical framework for zero inflated

models, along with true and false zeros.

The most commonly utilized models for data with excess zeros are zero-inflated

models and hurdle models [84]. Zero-inflated models are a mixture of a point mass at

zero and a standard distribution for count data such as Poisson or negative binomial.

A zero-inflated model utilizing a Poisson distribution is known as the zero-inflated

Poisson (ZIP) model. Similarly, a hurdle model is a mixture of a point mass at a

certain observation(s) and a truncated distribution for the remaining observations.

A hurdle model often compared to ZIP model considers a point mass at zero, and a

truncated Poisson distribution for the remaining observations. Hurdle models con-

sider all zeros together, whereas zero inflated models should be able to partition

the zeros into structural and random zeros. Other zero-inflated models account for

overdispersion by modeling the count data with the negative binomial or generalized

Poisson distributions [100, 98, 96, 84, 101].

A zero-inflated distribution is defined by

Pr(Y = 0|p, θ) = p+ (1− p)f(0|θ)

Pr(Y = y|p, θ) = (1− p)f(y|θ), y > 0 (4.1)

for some parametric distribution f(y|θ), such as the Poisson distribution, where

f(y|θ) =
θy exp(−θ)

y!
.

The zero-inflated distribution can be thought of as a joint distribution involving
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a latent random variable Z that indicates if the zero is a structural zero. In this situ-

ation, let p = Pr(Z = 1), which indicates the overall probability that an observation

is an structural zero. The joint distribution of Y and Z is

Pr(Y = 0, Z = 1|p, θ) = p

Pr(Y = y, Z = 0|p, θ) = (1− p)f(y|θ).

(4.2)

Conditionally,

Pr(Y = 0|Z = 1) = 1

Pr(Y = y|Z = 0, p, θ) = f(y|θ)

Pr(Z = 1|Y = y > 0) = 0 (4.3)

More interestingly, we can calculate the probability that a zero is a structural zero

given that we observe a zero:

Pr(Z = 1|Y = 0, p, θ) =
Pr(Z = 1

⋂
Y = 0|p, θ)

Pr(Y = 0)

=
p

p+ (1− p)f(0|θ)
. (4.4)

Using the latent variable approach, the full data likelihood for the model takes the

form

L(p, θ;Y, Z) =
n∏
i=1

Pr(Yi = yi|Zi = Zi)P (Zi = zi)

=
n∏
i=1

pzii ((1− pi)f(yi|θi))1−zi

=
∏
yi>0

(1− pi)f(yi|θi)
∏
yi=0

pzii ((1− pi)f(0|θi))1−zi . (4.5)
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The observed data likelihood is

L(p, θ;Y, Z) =
n∏
i=1

piI(yi = 0) + (1− pi)f(yi|θi). (4.6)

Furthermore, the parameters p and λ can be modeled as linear functions of covariates.

It is natural to model these two parameters in terms of their canonical links [85].

log(λ) = Xβ

logit(p) = Wα (4.7)

Here, β and α represent parameter vectors associated with the rate of case counts and

with the probability of being a structural zero, respectively. The sets of covariates

W and X could be the same or they could be different. As Lambert noted, in some

circumstances it may make sense that p and λ are functionally related [85]. That is,

the same covariates may affect both p and λ, and rather than estimating two separate

sets of coefficients for both the p model and the λ model, we can estimate one set

of coefficients of which the other is a linear function. This makes sense as covariates

that are associated with a higher Poisson mean would likely also be associated with

a lower probability of zeros. In this circumstance,

log(λ) = Xβ

logit(p) = τXβ (4.8)

This is designated as the ZIP(τ) model.

In the first presentation of the ZIP and ZIP(τ) models, maximum likelihood es-

timates of parameters were obtained by the EM algorithm [85]. The performance of

the ZIP and ZIP(τ) models was evaluated through simulation to explore conformance

with asymptotic theory based on finite samples. Simulations showed some conver-
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gence issues for the ZIP(τ) model, but in general found MLE’s to be approximately

normally distributed for large sample sizes. Extensions to zero-inflated models within

the maximum likelihood estimation framework include bivariate normally distributed

random effects in the λ and p model compartments for longitudinal data [94], nested

random effects for clustered data [102], and multivariate ZIP models [103].

Alternatively, many researchers are turning to Bayesian estimation for zero-inflated

models. Ghosh et al. (2006) present a fully Bayesian approach to ZIP models with

Markov Chain Monte Carlo (MCMC) simulation-based methods implemented through

Gibbs sampling in WinBUGS [86]. Simulation results showed Bayesian estimation

to be competitive with maximum likelihood estimation estimation, with improved

small-sample performance. Moreover, Bayesian estimation performed better when

the probability of observing a zero in the outcome Y was close to one. In general, a

Bayesian approach to ZIP models allows for incorporation of prior information, facili-

tates estimation of functions of parameters, and reduces small-sample bias compared

to maximum likelihood estimation.

Bayesian estimation of zero-inflated models has been developed for many appli-

cations. Dagne (2004) utilized independent normally distributed random effects in λ

and p to analyze longitudinally correlated count data [104]. Neelon et al. (2010) dis-

cussed Bayesian longitudinal data analysis utilizing bivariate normal random effects

in λ and p models for three types of zero-inflated models. Both Xue-Dong (2009) and

Dagne (2010) presented a semi-parametric framework for longitudinal data analysis

with random effects and a non-parametric component to model the effect of time or

time-varying covariates [105, 91].

Extensions have also been made for the analysis of spatially correlated zero-

inflated count data. Agarwal et al. (2002) employed a spatial Bayesian hierarchical

model with a conditional autoregressive (CAR) prior distributions on random effects

[87]. The CAR random effect was initially proposed by Clayton and Kaldor (1987)
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[106]; Besag et al. utilized a fully Bayes implementation of the CAR prior [107]. This

prior is constructed such that the effects ψi are Gaussian with the conditional prior

mean of any spatial random effect defined as a weighted average of its neighboring

effects ψj, j 6= i.

ψi|ψj 6=i ∼ N

(∑
j 6=i cijψj∑
j 6=i cij

,
1

νCAR

∑
j 6=i

cij

)
, i = 1, . . . , N (4.9)

Here, cij is a variable defining the neighborhood structure of the spatial data. Typi-

cally, cij = 1 if site j neighbors site i, and cij = 0 otherwise. However, other weighting

options are available [108]. In specifying the variance of the prior distribution of the

spatial random effect, νCAR is a hyperparameter for the conditional variance of ψi

given other ψj, j 6= i [26]. Agarwal et al. consider a CAR spatial random effect in the

λ model, but forgo the CAR spatial random effect in the p model due to unstable

model fitting. Argarwal et al. also discuss informative prior specification and issues

of posterior propriety. The authors utilized an adjusted Gibbs sampler to perform

posterior sampling for parameters. Gschlöbßl and Czado (2008) discuss the use of

CAR random effects to account for overdispersion in various types of zero-inflated

models [100].

The traditional framework of the zero-inflated model is well-equipped to handle

the situation in which data are comprised of structural and random zeros which arise

from natural processes and both the structural and random zeros can be considered

as true zeros. However, zero-inflated models are currently being applied to processes

which contain false zeros. We do not believe the existing framework of ZIP models is

appropriate for such circumstances, as detailed in Section 4.3.
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4.3 ZIP Models Applied to Processes with Imper-

fect Detection

Recently, data with excess zeros have been described in processes with imperfect

detection such as ecological monitoring or disease surveillance. Imperfect detection

occurs when data accuracy cannot be corroborated, resulting in false negative re-

ports. This means that the item of interest was present, but unobserved, which

happens often in animal surveillance. Martin et al. (2005) provide a nice overview of

simple applications of zero-inflated models in ecology [98]. There is also there is a

large body of literature on more complex models incorporating imperfect detection

processes. This literature includes different types of zero-inflated models, and focuses

on modeling heterogeneity in detection probability to explain the zeros in the data

[109, 110, 111, 112, 113]. The foundation of such models is repeated measures in

which specific sites are monitored multiple times for a species’ presence.

Although multiple site observations are common in ecological studies, a few stud-

ies in ecology have utilized zero-inflated models in the absence of repeated measures.

Flores et al. modeled tropical saplings density using the spatial ZIP model with CAR

random effects in λ, and Kuhnert et al. modeled bird density with ZIP models in-

corporating expert opinion in prior distributions [88, 92]. These authors note the

distinction between true and false zeros, and correspondingly describe the different

sources of error in the observation process by which false zeros can arise [88, 98, 92].

They also claim that in general, true zeros can be structural or random, whereas false

zeros arise from sampling mechanisms and can be considered as random zeros (Table

4.1). While we agree that false zeros can arise from observer error, we do not agree

that false zeros should be considered as random zeros in the zero-inflated modeling

framework.

In disease surveillance it is more common to obtain cross-sectional data that rep-
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resent a snap-shot of disease occurrence at a specific time rather than repeated obser-

vations. While some disease surveillance scenarios many not have reason to suspect

false zeros, in monitoring of neglected disease there should be cause for concern. For

Buruli ulcer district-level reports, we would reasonably expect to observe case counts

where cases are present, true zeros where districts truly are BU-free, and false zeros

where districts truly have BU but do not report any cases. This is akin to ecology’s

vision of true and false zeros.

However, these types of zeros do not align easily with the concepts of structural

and random zeros which traditionally consider a zero arising from reporting error as a

random zero. We argue that a false zero should be considered a type of structural zero.

However, since in general structural zeros refer to situations in which it is impossible

to observe an outcome, we propose a more precise terminology. We can consider

distributional zeros as zeros that can arise from the distribution under consideration

with reasonable probability (formerly random zeros). Excess zeros are zeros that

cannot reasonably arise from the distribution under consideration (formerly structural

zeros). Distributional zeros are a type of true zero, whereas excess zeros can be

generated by true or false zeros. We will use this framework to model cases of Buruli

ulcer. Table 4.2 provides examples of our new conceptual framework.
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A correctly observed zero where the disease is truly absent can be a
distributional true zero. This could represent a location which is disease
susceptible, i.e., the pathogen is present in the environment, but cases do
not occur.

A correctly observed zero where the disease is truly absent can also
be an excess true zero. This could represent a location which is not
susceptible to the disease, i.e., the pathogen is absent in the environment,
and therefore it is impossible for cases to occur.

An incorrectly observed zero where cases are truly present but are
not reported is an excess false zero. This is an observation that should
follow the distribution at hand, e.g. Poisson, but is incorrectly observed as
a zero.

Definitions

In literature review, we have found only one application of ZIP models to disease

surveillance with suspicion of false zeros. Fenandes et al. modeled cases of dengue fever

in Brazil using a spatio-temporal ZIP model for 156 districts over 77 time points in

which epidemiologists suspected a large amount of underreporting [99]. They utilized

Equation 4.4 to estimate the probability than a non-reporting observation actually

had cases present. They assert that if this probability estimate has a high standard

error for a specific observation, then this might indicate districts “which are suspicious

of having under-reporting.” This is the extent to which they assess false zeros.

In the subsequent sections, we develop a hierarchical model for our new conceptual

framework for zero-inflated models, describe estimation of the probability that an

observation is a false zero, and provide simulations to evaluate the performance of

both traditional ZIP models and our new hierarchical ZIP model in the presence of

false zeros.
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Distributional Zeros Excess Zeros

True True False
The
idea

An event could hap-
pen, but does not.

It is impossible for the
event to occur, so it
does not.

The event does hap-
pen, but it is not mon-
itored.

Animal A habitat is suitable
for an animal, but no
species are present due
to random dispersal
process. That is, the
animal could be there
but is not.

A species is absent in
a habitat because the
habitat is unsuitable.
That is, the animal is
not observed because
the animal is not and
could not be there.

A species is present in
a habitat, but the an-
imals are not identi-
fied. This results from
observer or sampling
error.

Disease Population is sus-
ceptible as pathogen
and/or vector is
present in the envi-
ronment, but no cases
occur. This could be
due to immunologic
resistance or because
transmission does not
occur. That is, the
disease could be there
but is not.

Population is not
susceptible to disease
because the vector
and/or pathogen is
not present in the
environment. That is,
the disease is not and
could not be there.

Cases of disease are
truly present, but no
cases are reported.
This results from
reporting error.

Table 4.2: Examples of new approach to zero inflated data subject to imperfect
detection with excess and distributional zeros. Here, excess zeros can be thought of
as true or false zeros. Examples of false excess zeros are in red and true excess zeros
are in blue, whereas all distributional zeros may be considered as true zeros.
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4.4 Hierarchical Zero-Inflated Models

Accurate reporting of Buruli ulcer cases can be thought of as a multi-layer hierarchical

process. First, the environmental pathogen that causes Burul ulcer, M. ulcerans, must

be present in the environment. Second, given that MU is present in the environment,

there must be circumstances related to transmission conditions under which it is

possible to acquire Buruli ulcer. For example, these circumstances could be related

to human interaction with the environment such as agricultural practices. Third,

given that transmission is possible, Buruli ulcer cases may or may not occur for

reasons such as an individual’s disease susceptibility. Fourth, given that cases of the

disease do occur, these cases must be accurately reported to the NBUCP. After all of

the above conditions have been satisfied, we see our final data.

MU in environment

↓
BU transmission possible

↓
BU cases occur

↓
Cases reported

↓
Our data

Data Process

We can model this process as a hierarchical model involving four latent random

variables. The first three indicate the underlying, unobserved truth about the state

of three processes.

ZMU =

 1 MU present in environment

0 MU absent in environment

68



ZBU =

 1 BU transmission is possible

0 BU transmission is not possible

ZREP =

 1 Reporting occurs at the district level

0 Reporting does not occur at the district level

The variables ZMU , ZBU , and ZREP are unobserved latent random variables that

indicate MU presence, BU transmission, and reporting occurrence. These latent

random variables describe the unknown, unobserved, but true state of the system.

ZMU = 1 means that M. ulcerans is present in the environment, and ZBU = 1 implies

that conditions for Buruli ulcer transmission were satisfied. ZREP = 1 implies that

all cases were reported, and ZREP = 0 means that no cases were reported.

In addition to the these three latent random variables, we can utilize one last

latent random variable, YTRUE, to model the true but unobserved distribution of case

counts. YTRUE can be modeled by a Poisson distribution, where our observed outcome

YOBS equals YTRUE if and only if ZREP = 1. Note that in using a Poisson distribution

to model case counts once conditions for transmission have been satisfied, we could

still observe a distributional true zero with a certain probability. For example, if we

were modeling a random variable Y with a Poisson distribution where λ = 3, then

Pr(Y = 0|λ = 3) = exp(−3) = 0.05.

The probabilities associated with an event in each of the three latent random

variables ZMU , ZBU , and ZREP could be modeled as a generalized linear function of

covariates using the logit link function. Also, the intensity of BU cases (λ) may be
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modeled as a generalized linear function of covariates using the log link function.

logit(pMU) = XMUβMU

logit(pBU) = XBUβBU

log(λ) = XCASESβCASES

logit(pREP ) = XREPβREP (4.10)

The variables XMU , XBU , and XREP represent sets of covariate matrices that

may be associated with the latent random variables indicating MU presence, BU

transmission, and reporting occurrence. XCASES represents a set of covariates that

may be related to mean case intensity once conditions for disease transmission have

been satisfied.

In modeling the probability of reporting, we could also chose other functions. For

instance, if there was reason to believe that the probability of reporting never reached

100% and plateaued at a certain percent less than 100, it could be appropriate to

model this probability using the nonlinear logistic growth model discussed in Section

2.3. Moreover, it is also a reasonable scenario that the probability of reporting could

also depend on the unobserved, true case counts, YTRUE, as districts with fewer cases

may be less likely to report than districts with a substantial number of cases.

Equations 4.11 and 4.12 and below display two versions of our hierarchical mod-

eling framework. In Model 4.11, YTRUE is explicitly modeled, and YOBS and ZREP
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are conditioned on YTRUE. In Model 4.12 YTRUE is not explicitly modeled.

YOBS|ZMU , ZBU , YTRUE, ZREP , XMU , XBU , XREP , XCASES ∼ Poisson(λ× ZREP )

ZREP |ZMU , ZBU , YTRUE, XMU , XBU , XREP , XCASES ∼ Bernoulli(pREP × I(YTRUE > 0))

YTRUE|ZMU , ZBU , XMU , XBU , XCASES ∼ Poisson(λ× ZMU)

ZBU |ZMU , XMU , XBU ∼ Bernoulli(pBU × ZMU)

ZMU |XMU ∼ Bernoulli(pMU) (4.11)

YOBS|ZMU , ZBUZREP , XMU , XBU , XREP , XCASES ∼ Poisson(λ× ZREP )

ZREP |ZMU , ZBU , XMU , XBU , XREP ∼ Bernoulli(pREP × ZBU)

ZBU |ZMU , XMU , XBU ∼ Bernoulli(pBU × ZMU)

ZMU |XMU ∼ Bernoulli(pMU) (4.12)

We present both Model 4.11 and Model 4.12 for multiple reasons. Model 4.11 is the

model that best represents the actual data reporting process. In 4.11, I(YTRUE > 0)

indicates that cases are truly present, and therefore the occurrence of reporting is

conditioned on the event that cases are truly present. This mirrors reality as we

actually only observe case reports for districts that have cases, and we do not receive

reports of zero cases from disease-free districts. This model also allows for ZREP to

be conditioned on YTRUE in another manner as well. It could be considered that

reporting occurrence may also depend on the actual value of YTRUE (in addition to

conditioning on the indicator that YTRUE > 0). For example, we could assume that

logit(pREP ) = XREPβREP + αYTRUE. This implies that the probability of reporting

occurrence is positively associated with YTRUE, meaning that a larger number of

cases would be more likely to be reported compared to a smaller number of cases.

Lastly, the observed number of cases, YOBS, depends on the actual value of YTRUE
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and whether or not reporting occurred, ZREP .

Model 4.11 has four latent random variables with multiple conditioning arguments,

and therefore it is likely to be challenging to fit and observe convergence. For these

reasons, we present Model 4.12 as a relatively simpler alternative in that it ignores

the underlying distribution of YTRUE. Here, ZREP is conditioned on the possibility

that cases are present (ZMU = 1, ZBU = 1), as opposed to explicitly conditioning

on cases being truly present (YTRUE > 0). YOBS is then conditioned on reporting

occurrence. Model 4.12 is justifiable as a sufficient alternative to Model 4.11 in that

at this point in time, it is not an objective to estimate the true, but unobserved, case

counts in non-reporting districts. While this is a logical extension of this research, for

now we seek to determine the impact of false zeros on λ and the ability of the models

to differentiate non-reporting districts as true zeros and false zeros.

In both Models 4.11 and 4.12 we have side-stepped the issue of whether or not

true zeros should be subject to reporting occurrence, ZREP . That is, if a district does

not report cases because it truly has no cases, should we consider whether or not

these true zeros are accurately reported? It is a sticky point, but ultimately has no

effect on either YTRUE or YOBS. If YTRUE = 0 because ZMU = 0, ZBU = 0, or due

to chance by the Poisson distribution, then regardless of whether or not ZREP = 0

or ZREP = 1, YOBS = 0 still. Therefore, the effect of ZREP is only relevant when

Ytrue > 0, and does not have an effect on our observed outcome when YTRUE = 0.

Again, this also mirrors the real reporting process as only case counts are actually

reported, and not reports of zero cases.

Also, note that in this framework we are modeling the occurrence of reporting at

the district level and not underreporting, or the possibility that individual cases may

not be reported to the district to begin with. While this is an important and relevant

consideration, here we are addressing the fact that no reports of BU at the district

level are considered to be reports of zero cases.
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This model assumes the underlying distribution of persons at risk to be homoge-

nous. Note, however, that we could consider the scenario of heterogenous population

distribution and model YTRUE ∼ Poisson(λ× n× ZBU).

The observed data likelihood for Model 4.11 is

L(p, θ;Y, Z) =
n∏
i=1

{I(yi = 0) [(1− piMU)

+ piMU(1− piBU)

+ piMUpiBUfi(0)

+piMUpiBU(1− fi(0))(1− piREP )]

+ I(yi > 0) [piMUpiBUf(yi)piREP ]}

=
n∏
i=1

{I(yi = 0) [1− piMUpiBUpiREP (1− fi(0))]

+ I(yi > 0)piMUpiBUf(yi)piREP}. (4.13)

Because of the conditioning argument on YTRUE in Model 4.11, zeros and case

counts contribute separately to this likelihood. The contribution given by observed

zeros is the complement of the probability of observing a reported case count, and

the contribution from a case count is the probability that we observed a reported case

count.

The observed data likelihood for Model 4.12 is

L(p, θ;Y, Z) =
n∏
i=1

{I(yi = 0) [1− piMUpiBUpiREP ] + piMUpiBUpiREPf(yi)}. (4.14)

This likelihood looks more similar to the likelihood for by the traditional ZIP model

in Equation 4.6 because we are not conditioning on YTRUE. The presentation of

this likelihood is based on the complements of elements in the traditional ZIP model

since in the ZIP model Z = 1 implied a zero event, whereas in Model 4.11 and 4.12
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ZMU = 1, ZBU = 1, and ZREP = 1 implies a non-zero event.

For the sake of simplicity and generalizability there are some shorthand notations

listed above that should be clarified. The expression fi(0) indicates the probability

that we observe zero cases under some distributional function f for the ith observation,

which depends on the parameters βCASES related to case intensity. For the model

at hand, f is the Poisson distribution with mean λ, which is a function of βCASES

such that log(λ) = βCASESXCASES. Therefore, fi(0) = Pr(YiTRUE = 0|βCASES) =

λ0i exp(−λi)
0!

= exp(−λi) = exp(− exp(XiCASESβCASES)).

Moreover, the probabilities associated with ZMU , ZBU , and ZREP are also modeled

as generalized linear functions of covariates using the logit link function. They could

be expressed as, for example, piMU = Pr(ZiMU = 1|βMU) =
exp(XiMUβMU)

1 + exp(XiMUβMU)
. For

the sake of shorthand notation, these probabilities are simply referred to as piMU ,

piBU , and piREP , but it should be expressly noted that each of these probabilities

depend on the parameters βMU , βBU , and βREP (as well as their associated covariate

values).

These models can be related back to the framework discussed in Section 4.3 re-

garding ZIP models for data subject to false zeros. Each type of data we could

observe including case counts, distributional true zeros, excess true zeros, and excess

false zeros can be represented by some combination of the latent random variables in

the different model compartments (Table 4.3).

If Table 4.3 is re-organized as in Table 4.4 below, it more naturally follows our

hierarchical framework and clearly illuminates the five types of data that we may

observe in this framework. Note that we do not consider the effect of reporting on

true zeros, i.e. we do not consider reported true zeros and non-reported true zeros,

but rather just the event of a true zero.

We can express the five types of data provided by the hierarchical framework in

terms of the events that must occur in the true underlying process that generates
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Model compartment Data type ZMU ZBU YTRUE ZREP
Poisson distn case count + + + +

distributional zero + + −
Excess zeros true zero −

true zero + −
false zero + + + −

Table 4.3: Hierarchical zero-inflated model related back to ZIP framework incorpo-
rating false zeros. For the latent random variables, a plus indicates that the event
occurred and a minus indicates that it did not. For YTRUE, the unobserved true num-
ber of cases, a plus indicates that YTRUE > 0 whereas a minus indicates YTRUE = 0.

Data type ZMU ZBU YTRUE ZREP
1. excess true zero −
2. excess true zero + −
3. distributional true zero + + −
4. excess false zero + + + −
5. case count + + + +

Table 4.4: Five types of data observed in the hierarchical zero-inflated Poisson frame-
work. For the latent random variables, a plus indicates that the event occurred and
a minus indicates that it did not. For YTRUE, the unobserved true number of cases,
a plus indicates that YTRUE > 0 whereas a minus indicates YTRUE = 0.
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cases of BU. First, we observe an excess true zero when MU is absent in the environ-

ment, and therefore BU transmission cannot occur. Second, we can observe another

type of excess true zero when MU is present in the environment, but conditions are

not suitable for BU transmission. Third, we can observe a distributional true zero

when MU is present in the environment, conditions are suitable for BU transmission,

but due to random variation cases do not occur. Fourth, we can observe an excess

false zero when MU is present in the environment, conditions are suitable for BU

transmission, BU cases do occur, but reporting does not occur. Fifth and lastly, we

can observe cases of BU when MU is present in the environment, conditions are suit-

able for BU transmission, BU cases do occur, and reporting occurs. We can write

these event in terms of the latent random variables ZMU , ZBU , YTRUE, and ZREP ,
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and we can also identify the probability associated with each type of data.

1. Excess true zero (associated with MU)

ZMU = 0

with probability (1− pMU)

2. Excess true zero (associated with BU)

ZMU = 1
⋂

ZBU = 0

with probability pMU × (1− pBU)

3. Distributional true zero

ZMU = 1
⋂

ZBU = 1
⋂

Ytrue = 0

with probability pMU × pBU × f(0)

4. Excess false zero

ZMU = 1
⋂

ZBU = 1
⋂

Ytrue > 0
⋂

ZREP = 0

with probability pMU × pBU × (1− f(0))× (1− pREP )

5. Non-zero count outcome

ZMU = 1
⋂

ZBU = 1
⋂

Ytrue > 0
⋂

ZREP = 1

with probability pMU × pBU × (1− f(0))× pREP

The same shorthand notation that applied to the observed data likelihoods in 4.13

and 4.14 also applies here.

Recall that with the standard ZIP model we can calculate the probability that an

observed zero is an excess zero (Equation 4.4), which does not distinguish between

true and false zeros. With the modified hierarchical ZIP framework, we can now

calculate the conditional probability that an observed zero is an excess false zero. As

noted above, we can observe zeros in four different cases. Only case 4 represents a

false zero. Therefore, the conditional probability of a false zero given that a zero is
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observed is the probability of a false zero divided by the sum of the probabilities of

all of the ways of observing a zero.

Pri(false zero|obs zero) (4.15)

=
Pri(false zero

⋂
obs zero)

Pri(obs zero)

=
Pri(4)

Pri(1) + Pri(2) + Pri(3) + Pri(4)

=
piMUpiBU(1− fi(0))(1− piREP )

(1− piMU) + piMU(1− piBU) + piMUpiBUfi(0) + piMUpiBU(1− fi(0))(1− piREP )

=
piMUpiBU(1− fi(0))(1− piREP )

1− piMUpiBUpiREP (1− fi(0))

The sum of of the probabilities of all of the ways to observe a zero in the denomi-

nator simplifies to the complement of the probability that a reported case count was

observed, as in the observed data likelihood in 4.13.

Implementation of these models and estimation of their parameters is relatively

straightforward using Bayesian analysis in WinBUGS. We can obtain estimates of the

posterior distribution of ZMU , ZBU , YTRUE, ZREP , β’s, and Pr(false zero|obs zero)

based on careful stipulations of the prior distributions of the parameters combined

with the model likelihood and the observed data.

4.5 Assessment of Model Fit

There are a variety of methods to assess model fit in Bayesian analysis. These meth-

ods can fall into the category of model fit, model comparison, and model checking

[96]. In order to compare the fit of models between naive and more informative mod-

els, we focus on the deviance information criterion (DIC). As models with increased

complexity generally provide a better fit, this Bayesian information criterion adds a

penalty for increased model complexity. The DIC estimates the effective number of

parameters in a Bayesian hierarchical model in order to appropriately penalize for
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additional model complexity.

pD = D(θ)− D̂(θ)

= E[D(θ)|y]−D[E(θ)|y] (4.16)

DIC = D(θ) + pD

= D(θ) +D(θ)− D̂(θ)

= 2D(θ)− D̂(θ)

= 2E[D(θ)|y]−D[E(θ)|y] (4.17)

The deviance, D(θ), is an overall measure of model fit and is calculated by twice the

negative log likelihood of the model. pD is the estimate of the effective number of

parameters and represents the model’s complexity. DIC is the difference in twice the

posterior mean of the deviance and the deviance evaluated at the posterior mean of

the parameters. Generally, if two models differ in DIC by more than 3, the model

with the smaller DIC provides a better fit [114].

WinBUGS does not provide an estimate of DIC for models such as those presented

in this research. While an estimate of the deviance, D(θ), is provided by WinBUGS,

D̂(θ) is not. This can be calculated in R by evaluating the deviance at the posterior

mean of the random variables. For this work, we calculate the observed deviance

(and hence the observed DIC) based on the observed data likelihood presented in

equations 4.13 and 4.14.

4.6 Simulations

The objectives of the following simulations are multi-fold. First, we evaluate the

performance of the traditional ZIP model, both in the presence and absence of false
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zeros. Second, we evaluate the performance of the newly proposed hierarchical ZIP

models in the presence of false zeros. We evaluate these two objectives considering

both a mild and extreme relationship between reporting occurrence and YTRUE. In

the mild (or weak) relationship between YTRUE and Pr(reporting), fewer cases are

less likely to be reported and more likely to be false zeros in YOBS, the observed

outcome. In the extreme (or strong) relationship between YTRUE and Pr(reporting),

fewer cases are much less likely to be reported and much more likely to be false

zeros in YOBS. For all simulations, we focus on the ability of the models to accurately

estimate β0CASES and β1CASES, which are parameters defining the mean case intensity.

For the traditional ZIP model, we qualitatively examine the ability of the model to

distinguish between true distributional zeros and true excess zeros. For the new

hierarchical ZIP models, we quantitatively and qualitatively examine the ability of

the model to distinguish between excess true zeros and excess false zeros.

4.6.1 Generating the Data

For the following simulations we consider the scenario in which there is one dichoto-

mous covariate associated with each of ZMU , ZBU , YTRUE, and ZREP . See Appendix

C for details on how parameter values were chosen for the scenario representing a

mild relationship between reporting occurrence and YTRUE. Once those parameters

were established, alternative for values β0REP and β2REP were chosen to represent the

more extreme relationship. In addition to representing a more extreme association,

the parameter values were also selected such that the number of observed false zeros

would be the similar between the mild association and the extreme association with

YTRUE and reporting. The parameter values used for simulating the data are in Table

4.5. Figure 4.3 shows the association between YTRUE and the probability of reporting

for both mild and extreme scenarios, with covariate adjustment.
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Parameter β0CASES β1CASES β0MU β1MU β0BU β1BU β0REP β1REP β2REP
Mild 1.1 1.1 0.8 0.2 0.4 1.4 0.6 -1.2 0.15
Extreme 1.1 1.1 0.8 0.2 0.4 1.4 -3.0 -1.2 1.0

Table 4.5: Parameter values chosen for simulation. The scenario representing a mild
relationship between YTRUE and reporting occurrence has the exact same parameter
values as the scenario representing a more extreme relationship between YTRUE and
reporting occurrence, with the exception of β0REP and β2REP .
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Figure 4.3: Depiction of how the probability of reporting occurrence varies with
the covariate XREP and with the number of true cases for both mild and extreme
scenarios. This probability is displayed for the range of the observed simulated data.

The data generation steps are as follows:

1. Set all parameter values (β0MU , β1MU , β0BU , β1BU , β0CASES, β1CASES, β0REP ,

β1REP , and β2REP ).

2. Generate covariates XMU , XBU , XCASES, and XREP following Bern(0.5). These
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are covariates that are associated with MU presence, BU presence, case intensity,

and whether or not reporting occurs. These covariates remain fixed for each

iteration.

3. Calculate Pr(ZiMU = 1) and Pr(ZiBU = 1) which remain fixed for each itera-

tion, but depend on the ith observation’s covariates. This is the probability of

the ith observation having MU present, and the probability of the ith observa-

tion having BU present.

piMU =
exp(β0MU + β1MUXiMU)

1 + exp(β0MU + β1MUXiMU)

piBU =
exp(β0BU + β1BUXiBU)

1 + exp(β0BU + β1BUXiBU)

4. Calculate λi, the mean rate of cases for the ith observation.

λi = exp(β0CASES + β1CASESXiCASES)

5. Begin simulation loop. The following quantities will vary with each iteration of

the simulation.

(a) Generate the latent random variables ZiMU and ZiBU . These latent ran-

dom variables are unobserved, but represent if the ith observation has MU

present and if the ith observation has BU present.

ZiMU ∼ Bern(piMU)

ZiBU ∼ Bern(piBU × ZiMU)

(b) Generate the true number of observed cases YiTRUE. This quantity is

unobserved.

YiTRUE ∼ Poisson(λi × ZiBU)

(c) Calculate Pr(ZiREP = 1) for both mild and extreme scenarios. This

is the probability of the ith observation reporting BU cases.

piREP =
exp(β0REP + β1REPXiREP + β2REPYiTRUE)

1 + exp(β0REP + β1REPXiREP + β2REPYiTRUE)
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(d) Generate the latent random variable ZiREP for both mild and extreme

scenarios. This is the unobserved latent random variable indicating if

reporting occurred.

ZiREP ∼ Bern(piREP × I(YiTRUE > 0))

6. Calculate the observed number of cases YiOBS for both mild and extreme

scenarios.

YiOBS = YiTRUE × ZiREP

We created and saved one master data set with 100 randomly simulated data real-

izations containing 100 observations. This same master data set is used to evaluate

the models enumerated below. The master data set retains YTRUE, YOBS (mild), and

YOBS (extreme).

4.6.2 Models Evaluated

All models are run in WinBUGS. Prior distributions only need to be specified for the

β parameters. These prior distributions were set to be noninformative by a normal

distribution with mean zero and a variance of 10 or 100, depending on the model.

Each iteration in the simulation is run with 3 chains, with a burnin of 1000, and a

thinning rate of 5. A total of 3000 MCMC samples are retained for which to base

posterior inference. See Appendix D for the associated WinBUGS implementation

code for each model.

I The naive traditional ZIP model.

This model is representative of the current yet naive implementations of the

traditional ZIP model. For this model, we include the covariate XCASES in

the Poisson model for the case counts. We also include XMU and XBU in the

model for the probability of an excess zero. This mimics current practice in that

investigators may hypothesize that variables relating to either MU presence or
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BU transmission settings may be associated with excess zeros. The latent random

variable Z indicates if an observation is an excess zero or not. This model takes

as inputs n, YOBS, XCASES, XMU , and XBU . The prior distributions specified

for all β’s are N(0, 100).

Yi|Zi ∼ Poisson(λi(1− Zi))

Zi ∼ Bernoulli(piEXCESS)

log(λi) = β0CASES + β1CASESXiCASES

logit(piEXCESS) = β0 + β1XiMU + β2XiBU (4.18)

We run this model on both YTRUE and YOBS in order to assess the effect of

false zero inflation on parameter estimation and distinguishing distributional

and excess zeros.

II The almost fully specified hierarchical ZIP model. This model utilizes the

hierarchical zero-inflated model presented in Section 4.4 defined by Model 4.12.

Here, we model the distribution of YOBS, but ignore the underlying distribution

of YTRUE. This model also does not condition on the value of YTRUE. This

implementation includes covariates at each hierarchical level to model λ, pMU ,

pBU , pREP . This model takes as inputs n, YOBS, XMU , XBU , XCASES, and XREP .
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The prior distributions specified for all β’s are N(0, 10).

YiOBS|ZiMU , ZiBU , ZiREP , XiMU , XiBU , XiREP , XiCASES ∼ Poisson(λi × ZiREP )

ZiREP |ZiMU , ZiBU , XiMU , XiBU , XiREP ∼ Bernoulli(piREP × ZiBU)

ZiBU |ZiMU , XiMU , XiBU ∼ Bernoulli(piBU × ZiMU)

ZiMU |XiMU ∼ Bernoulli(piMU)

logit(piMU) = β0MU + β1MUXiMU

logit(piBU) = β0BU + β1BUXiBU

log(λi) = β0CASES + β1CASESXiCASES

logit(piREP ) = β0REP + β1REPXiREP (4.19)

III The fully specified hierarchical ZIP model. This model utilizes the hierar-

chical zero-inflated model defined in Section 4.4 defined by Model 4.11. Here, we

explicitly model the distribution of YTRUE, and condition both ZREP and YOBS

on the value of YTRUE. This model has covariates at each level to model λ, pMU ,

pBU , pREP , and expresses the probability of reporting as a function of YTRUE.

This model takes as inputs n, YOBS, XMU , XBU , XCASES, and XREP . The prior
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distributions specified for all β’s are N(0, 100).

YiOBS|ZiMU , ZiBU , ZiREP , XiMU , XiBU , XiREP , XiCASES, YiTRUE

∼ Poisson(λi × ZiREP )

ZiREP |ZiMU , ZiBU , XiMU , XiBU , XiREP , XiCASES, YiTRUE

∼ Bernoulli(piREP × I(YiTRUE > 0))

YiTRUE|ZiMU , ZiBU , XiMU , XiBU , XiCASES ∼ Poisson(λi × ZiBU)

ZiBU |ZiMU , XiMU , XiBU ∼ Bernoulli(piBU × ZiMU)

ZiMU |XiMU ∼ Bernoulli(piMU)

logit(piMU) = β0MU + β1MUXiMU

logit(piBU) = β0BU + β1BUXiBU

log(λi) = β0CASES + β1CASESXiCASES

logit(piREP ) = β0REP + β1REPXiREP + β2REPYiTRUE (4.20)

4.6.3 Simulation Results

Table 4.6 provides a summary of the simulated data. Data realizations are summa-

rized in terms of the median value observed and the range across the 100 simulated

data sets. The three columns correspond to the true outcome, the observed outcome

with a mild false zero relationship with reporting, and the observed outcome with

an extreme false zero relationship with reporting. The first five rows correspond to

the five types of observed data described in Section 4.4. The summaries of first three

observation types (correspondingly, the first three rows in the table) are the same

between YTRUE, YOBS (mild), and YOBS (extreme) by design. The remaining rows

differ between the outcomes. In the unobserved true outcome, we do not observe
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Summary YTRUE YOBS (mild) YOBS (extreme)
Med. (Range) Med. (Range) Med. (Range)

No. excess true zeros (MU) 29 (19, 40) 29 (19, 40) 29 (19, 40)
No. excess true zeros (BU) 20 (8, 31) 20 (8, 31) 20 (8, 31)
No. distributional true zeros 1 (0, 4) 1 (0, 4) 1 (0, 4)
No. excess false zeros 0 (0, 0) 15 (6, 21) 15 (10, 23)
No. non-zero observed count outcomes 50 (38, 64) 34 (26, 46) 33 (25, 46)
Total no. observed zeros 50 (36, 52) 66 (54, 74) 67 (54, 75)
Conditional proportion of false zeros 0 (0, 0) 0.23 (0.10, 0.37) 0.24 (0.14, 0.34)
Non-zero count data 5 (1, 20) 6 (1, 20) 8 (1, 20)

Table 4.6: Summary of simulated data with two different false zero generation pro-
cesses (mild and extreme).

any false zeros. In the observed outcomes, there is a similar number of false zeros

and conditional proportion of false zeros. The median of the non-zero observed count

data is higher in the data realizations created by more extreme false zero generation

because in this scenario lower case counts (YTRUE) are more likely to be false zeros

in YOBS.

The objectives of the simulations are (1) determine each model’s ability to estimate

true parameter values, (2) assess the traditional ZIP model’s ability to correctly

distinguish distributional zeros, and (3) assess the hierarchical ZIP model’s ability to

correctly distinguish false zeros.

Model I results (assessing the effect of false zero inflation on parameter

estimates)

Table 4.7 provides results from the traditional ZIP model using the unobserved true

outcome and two versions of an observed outcome subject to false zero inflation. For

the Poisson part of the model, we know the true values of β0CASES and β1CASES

based on values we used to generate the simulated data. Using the true outcome,

β0CASES is slightly underestimated and β1CASES is slightly overestimated. When

there is a mild relationship between the true outcome and reporting occurrence in

the observed outcome, the estimates of β0CASES and β1CASES are similar to those
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Model Parameters
YTRUE YOBS (mild) YOBS (extreme)

A B C D A B C D A B C D
β0CASES (1.1) 1.05 0.13 0.94 0 1.08 0.17 0.96 0 1.35 0.17 0.70 0
β1CASES (1.1) 1.14 0.15 0.93 0 1.14 0.19 0.94 0 0.87 0.19 0.73 0
β0P 0.36 0.36 N/A 0.80 0.93 0.36 N/A 0.23 1.03 0.39 N/A 0.20
β1p (MU) -0.11 0.50 N/A 0.94 -0.09 0.47 N/A 0.95 -0.21 0.48 N/A 0.94
β2p (BU) -0.80 0.46 N/A 0.59 -0.58 0.45 N/A 0.76 -0.52 0.43 N/A 0.79

Model Performance
YTRUE YOBS (mild) YOBS (extreme)

x sd L U x sd L U x sd L U
DIC 353.99 23.24 297.3 429.58 286.9 26.12 234.88 349.87 284.14 26.41 221.55 367.52
pD 5.05 0.05 4.92 5.16 5.03 0.05 4.91 5.14 5.06 0.08 4.9 5.66

No. R̂ > 1.1 15.1 3.97 7 27 13.82 5.75 3 27 12.73 18 1 184

Table 4.7: Simulation results on the traditional ZIP model (4.18) comparing the effect
of knowing YTRUE vs YOBS. A=mean over all simulations of parameter point estimate,
B=standard deviation over all simulations of parameter point estimate, C=coverage
of parameter over all simulations, D=percent of simulations in which the credible
set contained 0 (no effect), x=the mean of the statistics over all simulations, sd=the
standard deviation of the statistic over all simulation, L=the lowest observed statistic
over all simulations (lower), U=the highest observed statistic over all simulations
(upper).

for the true outcome. However, when there is an extreme relationship between the

true outcome and reporting occurrence in the observed outcome, β0CASES is more

severely overestimated and β1CASES is more severely underestimated. This means

that the model is estimating that the baseline mean rate of cases is higher than

the true baseline rate of cases (baseline meaning when XCASES=0). Moreover, the

effect of XCASES is underestimated. The coverage for these parameters approximately

reaches the 95% nominal level for the true outcome and the observed outcome with

a mild relationship between YTRUE and reporting occurrence. However, the coverage

for these parameters is poor (70% and 73%, respectively) for the observed outcome

with an extreme relationship between YTRUE and reporting occurrence. Lastly, all

credible sets for these two parameters were quite specific for all three outcomes, and

none contained the null value of zero demonstrating no effect.

The true values of β0P , β1p, β2p are not known because we did not use this model to

simulate our data. Consequently, we do not calculate coverage for these parameters.
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Nevertheless, since the covariates XMU and XBU are actually associated with the

probability of being a zero in the data generation, it is reasonable to expect that

estimates for these covariates would be non-zero. However, model results show that

many credible sets were wide and contained the null value of zero, indicating no

significant effect of XMU or XBU on the probability of an excess zero.

On average over the simulations, it actually appears that the traditional ZIP model

fits the data best when the outcome is subject to an extreme false zero generation

mechanism, as evaluated by the observed DIC. This may be counterintuitive. How-

ever, this outcome has more zeros and less low values (1, 2, etc.) in the observed

count outcomes than the other two models. Therefore, this data may have a clearer

separation in the Poisson model and the zero model, lending it to a better fit. The

estimated number of effective parameters is similar between the the three outcomes,

as it should be.

We also monitored each statistical node for convergence by Gelman and Rubin’s

R̂ statistic. The number of R̂ > 1.1 indicates the number of nodes monitored in

which R̂ > 1.1 out of 419 nodes monitored for Model 4.18. Each outcome has some

chains in which R̂ > 1.1, indicating that the chains might not have converged yet.

Although on average this occurs less frequently when using the outcome subject to

false zero inflation with the extreme relationship between YTRUE and reporting, there

is more variability in the number of nodes with R̂ > 1.1 and wider range compared

to the other outcomes. This is an indication that chains may need to be run longer

to achieve more stable convergence.

Model I results (distinguishing types of zeros)

We qualitatively assessed the ability traditional ZIP model to distinguish between

excess and distributional true zeros. Only 75% of the data realizations contain distri-

butional zeros. For each ‘zero observation’ we estimate the Pr(excess zero|obs zero)
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as given in equation 4.4. For distributional zeros, we would hope for the conditional

probability of an excess zero given that a zero was observed to be low. Each data

realization takes on 7-8 unique values of Pr(excess zero|obs zero). This is because this

probability is calculated based on three dichotomous covariates, and 23 = 8 possible

covariate combinations.

Figure 4.4 displays a visualization of this data. The length of the vertical lines is

determined by the number of zeros in the data realization. Plots (b) and (c) show

results from data realizations subject to false zero inflation, so these data realizations

have more zeros present in the observed data. Within one data realization, the

Pr(excess zero|obs zero) is ordered from highest to lowest. This order of Pr(excess

zero|obs zero) is plotted on the y-axis such that observations at the top represent

the largest conditional probability. The colors of the plot represent the truth behind

the simulated data, which is not a model input. Light blue points represent excess

zeros, and dark blue points represent distributional zeros. In the presence of ties with

multiple observations having the same order of Pr(excess zero|obs zero), the dark blue

distributional zeros are plotted on the bottom of that sequence. The x-axis is ordered

by data realization and therefore has no meaningful ordering.

In Figure 4.4, it does appear that distributional zeros have a lower ordered con-

ditional probability of being an excess zero. Nevertheless, it is noteworthy that the

distributional zeros do not consistently have the lowest order of Pr(excess zero|obs

zero). Plot (c) perhaps demonstrates a slightly wider spread in the order of the

probability of excess zeros among the distributional zeros compared to plot (b).

Model II and III results (parameter estimates)

Tables 4.8 and 4.9 show results from the almost fully specified and the fully specified

hierarchical ZIP models. Table 4.8 shows results when the outcome is subject to

false zero inflation with a mild relationship between YTRUE and reporting. Table 4.9
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Figure 4.4: This figure shows the distribution of Pr(excess zero|obs zero) in the excess
zeros (light blue) and the distributional zeros (navy blue) with respect to their ranked
order.
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Model Parameters (mild)
Model 4.19 Model 4.20

A B C D A B C D
β0CASES (1.1) 1.09 0.16 0.96 0.00 1.21 0.12 0.92 0.00
β1CASES (1.1) 1.13 0.18 0.95 0.00 1.00 0.15 0.93 0.00
β0MU (0.8) 2.02 0.69 0.99 0.94 5.46 0.12 0.00 0.00
β1MU (0.2) 1.02 0.79 0.99 0.98 1.52 0.08 1.00 1.00
β0BU (0.4) 1.26 0.93 0.99 0.99 5.16 0.20 0.01 0.01
β1BU (1.4) 1.65 0.62 1.00 0.84 1.67 0.20 1.00 1.00
β0REP (0.6) 1.97 0.52 0.98 0.92 -0.89 0.69 0.36 0.73
β1REP (-1.2) -0.48 0.97 0.99 0.90 -0.59 0.47 0.69 0.77
β2REP (0.15) N/A N/A N/A N/A 0.07 0.09 0.84 0.87

Model Performance (mild)
Model 4.19 Model 4.20

x sd L U x sd L U
DIC 284.23 26.32 233.65 351.41 284.1 26.35 236.95 355.27
pD 4.37 0.74 2.23 5.65 3.89 3.42 -2.54 16.72

No. R̂ > 1.1 31.12 21.84 4 141 14.14 26.21 2 233

Table 4.8: Simulation results comparing Model 4.19 (the almost fully specified hierar-
chical ZIP model) to Model 4.20 (the fully specified hierarchical ZIP model condition-
ing on YTRUE > 0). The outcome here is the observed Y subject to false zero inflation
with a mild relationship between YTRUE and reporting. A=mean over all simulations
of parameter point estimate, B=standard deviation over all simulations of parameter
point estimate, C=coverage of parameter over all simulations, D=percent of simula-
tions in which the credible set contained 0 (no effect), x=the mean of the statistics
over all simulations, sd=the standard deviation of the statistic over all simulation,
L=the lowest observed statistic over all simulations (lower), U=the highest observed
statistic over all simulations (upper).
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shows results when the outcome is subject to false zero inflation with an extreme

relationship between YTRUE and reporting.

In comparing the almost fully specified and the fully specified hierarchical ZIP

models where the outcome is subject to false zero inflation with a mild relationship

between YTRUE and reporting (Table 4.8), it appears that the almost fully specified

hierarchical ZIP model performs better. The estimates of β0CASES and β1CASES

exhibit greater bias and slightly lower coverage in the fully specified hierarchical ZIP

model.

Similar to model evaluation with the traditional ZIP model, we cannot compare

parameter estimates in MU, BU, and reporting from the almost fully specified hier-

archical ZIP model to the true values because the data were generated by the fully

specified hierarchical ZIP model. However, when using Model 4.19 the majority of

the credible sets do contain both the true parameter value as well as the null value of

zero. We can fairly compare the true parameter values to the models’ point estimates

with the fully specified hierarchical ZIP model. This model exhibits extreme bias in

the parameter estimates for MU and BU effects. The intercepts have virtually no

coverage and all credible sets contain the null value of zero. The covariate effects

have 100% coverage and no credible sets contain the null value of zero.

With regards to the reporting covariates, the fully specified hierarchical ZIP model

incorrectly specifies the direction of the intercept whereas the almost fully specified

correctly specifies the direction of the intercept. The fully specified hierarchical ZIP

model exhibits slight bias but reasonable estimates of β2REP , the parameter defining

the relationship between YTRUE and reporting. The credible sets for this parame-

ter do have good coverage; however, 87% also contain zero indicating no significant

relationship between YTRUE and reporting.

The DIC estimates show similar model fit between the almost fully specified and

the fully specified hierarchical ZIP models where the outcome is subject to false zero
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Model Parameters (extreme)
Model 4.19 Model 4.20

A B C D A B C D
β0CASES (1.1) 1.35 0.17 0.66 0.01 1.45 0.10 0.35 0.00
β1CASES (1.1) 0.87 0.19 0.71 0.00 0.77 0.12 0.43 0.00
β0MU (0.8) 1.72 0.69 1.00 0.98 5.46 0.08 0.00 0.00
β1MU (0.2) 1.18 0.82 0.98 0.98 1.52 0.08 1.00 1.00
β0BU (0.4) 1.33 0.89 0.99 1.00 5.14 0.15 0.00 0.00
β1BU (1.4) 1.57 0.61 1.00 0.88 1.73 0.19 1.00 1.00
β0REP (-3.0) 1.96 0.49 0.99 0.93 -2.93 0.96 1.00 0.04
β1REP (-1.2) -0.28 0.91 1.00 0.96 -0.46 0.54 0.75 0.88
β2REP (1.0) N/A N/A N/A N/A 0.33 0.12 0.06 0.11

Model Performance (extreme)
Model 4.19 Model 4.20

x sd L U x sd L U
DIC 281.72 26.62 215.59 365.51 273.08 26.54 215.37 351.46
pD 4.08 0.96 1.51 5.76 13.26 3.86 5.37 23.65

No. R̂ > 1.1 29.61 47.09 4.00 405.00 12.40 9.00 1.00 66.00

Table 4.9: Simulation results comparing Model 4.19 (the almost fully specified hierar-
chical ZIP model) to Model 4.20 (the fully specified hierarchical ZIP model condition-
ing on YTRUE > 0). The outcome here is the observed Y subject to false zero inflation
with an extreme relationship between YTRUE and reporting. A=mean over all sim-
ulations of parameter point estimate, B=standard deviation over all simulations of
parameter point estimate, C=coverage of parameter over all simulations, D=percent
of simulations in which the credible set contained 0 (no effect), x=the mean of the
statistics over all simulations, sd=the standard deviation of the statistic over all sim-
ulation, L=the lowest observed statistic over all simulations (lower), U=the highest
observed statistic over all simulations (upper).

inflation with a mild relationship between YTRUE and reporting. However, in the fully

specified hierarchical ZIP model the estimate of the number of effective parameters

is low and attains negative values. Though counterintuitive, it is possible for this to

occur in practice when the posterior distribution for a parameter is asymmetric [114].

The number of R̂ > 1.1 indicates the number of nodes monitored in which R̂ > 1.1

out of 910 nodes monitored for Model 4.19 or 1111 nodes for Model 4.20. Both models

have statistical nodes in which convergence was not achieved as assessed by Gelman

and Rubin’s R̂ statistic.

94



In comparing the almost fully specified and the fully specified hierarchical ZIP

models where the outcome is subject to false zero inflation with a extreme rela-

tionship between YTRUE and reporting (Table 4.9), it appears that the almost fully

specified hierarchical ZIP model performs better again. Both models exhibit bias in

the estimates of β0CASES and β1CASES, but this bias is greater in the fully specified

hierarchical ZIP model. Moreover, though coverage of these true parameter values is

poor for both models, coverage is worse in the fully specified hierarchical ZIP model.

In examining parameter estimates related to MU and BU in the almost fully spec-

ified hierarchical ZIP model, again the majority of the credible sets do contain both

the true parameter value as well as the null value of zero. For the fully specified hier-

archical ZIP model, we can fairly compare the true parameter values to the models’

point estimates. Again, this model exhibits extreme bias in the parameter estimates

for MU and BU effects. The intercepts have poor coverage and all credible sets con-

tain the null value of zero, and the covariate effects have 100% coverage and again no

credible sets contain the null value of zero.

With regards to the reporting covariates, this time the almost fully specified hier-

archical ZIP model incorrectly specifies the direction of the intercept whereas the fully

specified hierarchical ZIP model correctly specifies the direction of the intercept with

minimal bias and 100% coverage. In this more extreme scenario, the fully specified

hierarchical ZIP model exhibits greater bias in β2REP with poor coverage (6%).

For this more extreme scenario, the DIC estimates show slightly better model fit

for the fully specified hierarchical ZIP models. Moreover, the estimate of the number

of effective parameters no longer attains negative values. Even though model 4.20

estimates only one additional parameter compared to model 4.19, the estimate of

the number of effective parameters differs by quite a bit (4 compared to 13). The

number of R̂ > 1.1 indicates the number of nodes monitored in which R̂ > 1.1 out

of 910 nodes monitored for Model 4.19 or 1111 nodes for Model 4.20. Both models
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have statistical nodes in which convergence was not achieved as assessed by Gelman

and Rubin’s R̂ statistic, but this time it occurs more frequently in the almost fully

specified hierarchical ZIP model.

Model II and III results (identifying false zeros)

In addition to evaluating the ability of the models to accurately estimate parameter

values, we are also very interested in the models’ capability to distinguish between

true and false zeros. Towards this end, we summarized the distribution of the estimate

of Pr(false zero|obs zero) for all zero observations within each data realization. Figure

4.5 displays the distribution of Pr(false zero|obs zero) within six data realizations for

the ‘mild’ scenario under the almost fully specified model. From data realization

to data realization, the range of Pr(false zero|obs 0) varies quite a bit. One range

observed was 0.05 to 0.3, and another range observed was 0.1 to 0.7. When considering

the distribution of Pr(false zero|obs zero) for the ‘extreme’ scenario, again we observe

similar variability from data realization to data realization within approximately the

same range. For either the mild or extreme scenario in the fully specified hierarchical

ZIP model, the Pr(false zero|obs zero) falls within a much tighter range that is also

much closer to one. Across all data realizations, the number of unique values for the

Pr(false zero|obs 0) ranges from 14-16. This is because this probability is calculated

based on 4 dichotomous covariates, and 24 = 16 possible covariate combinations.

We utilized the unknown truth from the data realizations to assess model per-

formance. Within each data realization, we compared the distribution of Pr(false

zero|obs zero) among false zero observations to true zero observations by Wilcoxon

rank-sum tests because of the sample size, the sometimes skewed distribution of the

probability, and the fact on that this quantity takes on 16 discrete values. Figure

4.6 displays the distribution of the difference in medians (median among false zero

observations minus median among true zero observations) and the distribution of the
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Figure 4.5: Example of the distribution of Pr(false zero|obs zero) estimated for each
zero observation within six different data realizations for the almost fully specified
hierarchical ZIP model 4.19 in the ‘mild’ scenario.
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Model Scenario Mean Diff Range % Diff > 0 %p < 0.05 %p < 0.05|Diff > 0
4.19 Mild 0.03 (-0.04, 0.16) 76 23 23

Extreme -0.01 (-0.09, 0.10) 39 8 5
4.20 Mild 0.02 (-0.04, 0.14) 65 12 10

Extreme -5.1×10−5 (-0.06, 0.03) 55 23 14

Table 4.10: Results comparing the distribution of Pr(false zero|obs zero) among true
zeros and false zeros for both mild and extreme false zero generation scenarios under
the almost fully specified (4.19) and fully specified models (4.20).

p-value from the Wilcoxon rank-sum test for the almost fully specified hierarchical

model for both mild and extreme false zero scenarios, Figure 4.7 does the same for

the fully specified hierarchical model, and Table 4.10 presents the numeric results.

These results suggest that Model 4.19 (the almost fully specified hierarchical ZIP

model) has promise to detect false zeros. In 76% of data realizations the difference

in median Pr(false zero|obs zero) among the false zero observations and the true zero

observations was greater than zero. In 23% of data realizations the p-value from the

Wilcoxon rank-sum test is less than 0.05, indicating a significant difference in the

distribution of Pr(false zero|obs zero) among the false zero observations and the true

zero observations. For the same model, model performance is worse in the scenario

representing the more extreme relationship between YTRUE and reporting compared to

the scenario representing the mild relationship between YTRUE and reporting. In the

more extreme scenario, fewer differences in medians were greater than zero, and fewer

Wilcoxon p-values were less than 0.05. Moreover, three of the significant Wilcoxon

p-values corresponded to situations where the difference in medians was less than

zero, suggesting the distribution of Pr(false zero|obs zero) was lower among true zero

observations compared to false zero observations.

Figure 4.7 displays the same results for the fully specified hierarchical ZIP model

(4.20). For this model, the distribution of the difference in medians is more symmetric

for the mild scenario, and more skewed left for the extreme scenario. In the mild

scenario we observe less median differences greater than zero and fewer significant
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Wilxocon p-values compared to Model 4.19. In the extreme scenario, only 14 out of 23

significant p-values correspond to the desired directionality of the test. These results

indicate that the almost fully specified hierarchical ZIP model is most promising to

distinguish false zeros from true zeros in the mild false zero generation scenario.

The difference in medians and the results of the Wilcoxon rank-sum test demon-

strate promise in Model 4.19 to detect false zeros with the mild false zero scenario;

however, accurately identifying the false zeros is a different story. Figure 4.8 displays

a visualization of this data. Within one data realization, the estimate of Pr(false

zero|obs zero) is ordered from highest to lowest. This order is plotted on the y-axis

such that observations at the top represent the largest value observed. Blue points

represent true zeros, and red points represent false zeros. In the presence of ties with

multiple observations having the same order of Pr(false zero|obs zero), the red false

zeros were plotted on top of that sequence.

The x-axis represents a different ordering based on a summary value from that

data realization. In the Data Realization plot, the x-axis is randomly ordered as the

ordering is given by the sequence of the data realizations. In the subsequent plots the

x-axis is ordered by meaningful values. For example, in the Wilcoxon p-value plot,

the x-axis is ordered by the p-value from the Wilcoxon-rank sum test assessing if the

distribution of Pr(false zero|obs zero) among true zeros is the same as the distribution

of Pr(false zero|obs zero) among false zeros.

The Data Realization plot and the Number of Zeros plot show no pattern in the

distribution of the order Pr(false zero|obs zero) among the false zeros. However, in

the remaining four plots, slight clumping of the false zeros is visible. In the Wilcoxon

p-value plot, there appears to be red clumping of false zeros in the upper left hand

corner, such that data realizations with more significant p-values tend to have a lot

of highly ordered Pr(false zero|obs zero) among the false zeros. In the other plots,

there appears to be slight clumping of red false zeros in the upper right hand corner
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Figure 4.6: Wilcoxon rank-sum test results comparing the distribution of Pr(false
zero|obs zero) in the false zeros compared to the distribution of Pr(false zero|obs
zero) in the true zeros from 100 data realizations with the almost fully specified
hierarchical ZIP model (4.19).
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Figure 4.7: Wilcoxon rank-sum test results comparing the distribution of Pr(false
zero|obs zero) in the false zeros compared to the distribution of Pr(false zero|obs
zero) in the true zeros from 100 data realizations with the fully specified hierarchical
ZIP model (4.20).
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of the plots such that larger values for the x-axis quantity tend to have more false

zeros with Pr(false zero|obs zero) near the top of the order.

The data visualization in Figure 4.8 shows that false zeros do not consistently

take on the highest Pr(false zero|obs zero). Rather, a false zero(s) can be observed in

each set of covariate combinations, and so within each discrete bin of Pr(false zero|obs

zero) there may be both false zeros and true zeros. More work needs to be explored

on accurately identifying false zero observations.
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Figure 4.8: The distribution of Pr(false zero|obs zero) in the true zeros (blue) and the
false zeros (red) with respect to their ranked order for the mild false zero generation
scenario under the almost fully specified hierarchical ZIP model (4.19).
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4.7 Back to the Motivating Data

4.7.1 Details on the Available Data

Annual case report summaries of Buruli ulcer for 2008 were obtained from the Na-

tional Buruli Ulcer Control Programme of Ghana.

We obtained population data from the USAID Population Explorer1. The USAID

Population Explorer was developed for the International Agency for International De-

velopment’s Famine Early Warning System Network by Kimetrica. Its primary data

source is Landscan, a high-resolution population dataset produced by Oak Ridge Na-

tional Laboratory, under a US Department of Defense contract. The website consists

of a world map to which one can add pre-loaded administrative boundaries. District

administrative boundaries from the year 2000 are available for Ghana. Population

estimates for the additional split districts that existed in Ghana in 2007 can be ob-

tained by using the free-hand draw shape tool to represent new the newly formed

districts. Then the website can estimate the population for that free-hand shape rep-

resenting a district that did not exist in 2000, the year corresponding to the mapped

districts on the website. So for districts that were split after 2000, we can still obtain

rough population estimates using this tool. The USAID Population Explorer also

provides three other variables for each district: total area (km2), population density

(population/total area), and the most populated km2.

There are two districts in particular in which there is reason to doubt the popula-

tion estimates. These districts are Adansi North and Obuasi Municipality within the

Ashanti region. In 2000, only Adansi North district existed; Obuasi Municipality was

carved out of Adansi North in 2003. Of Obuasi Municipality, www.ghanadistricts.com

states, “The population of the Municipality is estimated at 205,000 using the 2000

Housing and Population Census as a base and applying a 4% annual growth rate.”

1http://www.populationexplorer.com/
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Adansi North Obuasi Municipal
Population Explorer 2007 estimate 235,103 25,052
www.ghanadistricts.com 2000 estimate 92,834 205,000

Table 4.11: Discrepancy in population estimates by two sources.

Of Adansi North, the same website states, “The district population stands at about

92,834 people as at the year 2000 when the last census was conducted, with a growth

rate of 2.6% per annum.” Moreover, “Migration is a major challenge in the district.

This is because the main occupation in the district is agriculture and therefore those

who are not interested in agriculture, especially the youth, migrate to nearby Obuasi

Municipality where gold is being mined to seek for employment.” The population es-

timates of these districts provided by the website is not consistent with those provided

by the Population Explorer (Table 4.11).

The consensus reached by the Emory BU group is that district lines have not been

drawn accurately. The district of Obuasi Municipality should contain the township

of Obuasi and have the higher population. However, it does not. To move forward

we must assign the geographic area called Obuasi Municipality the lower population

estimate because that geographic region does appear to be sparsely populated. Note

that this does bring into question reporting issues: If district lines are not drawn

accurately, where would district cases actually get reported to?

4.7.2 Data We Would Like to Obtain

We would like to obtain covariates related to the presence of MU, BU, or reporting in

order to implement the real data analysis. Table 4.12 shows a partial listing of such

covariates. Currently, we have none of the environmental covariates. Although we

used similar covariates in Chapter 3, the remotely sensed surfaces that we obtained

did not cover the entire six regions of Ghana that reported BU cases. Rather, the

surfaces only covered the extent of the sites tested for M. ulcerans. For human activity,
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we have the population density provided by the Population Explorer. For reporting

covariates, the distance of each district’s centroid to major cities would be easy to

calculate in a GIS such as ArcMap.

4.8 Conclusion/Discussion

We assessed the performance of the the traditional ZIP model in the presence of false

zeros. We showed that in some scenarios parameters corresponding to the rate of cases

can be biased. We qualitatively showed that the traditional ZIP model adequately

distinguishes between distributional and excess zeros.

We proposed a hierarchical ZIP model with the capacity to estimate the con-

ditional probability that an observed zero was a false zero. Due to computational

challenges with latent random variables, we evaluated two versions of this model that

we called ‘almost fully specified’ and ‘fully specified’. Although the ‘fully specified’

model is a more accurate representation of our data, the ‘almost fully specified’ model

tends to perform better. In most scenarios, the parameters corresponding to the rate

of cases can be biased, with more extreme bias when there is a more extreme associa-

tion between the underlying unknown true outcome and the probability of reporting.

Even though the model can estimate the conditional probability that an observed zero

is a false zero, this only showed promise in actually distinguishing between false and

true zeros for a mild association between the underlying unknown true outcome and

the probability of reporting. We qualitatively showed that the model needs further

development to better make prediction-specific results.

4.9 Future Directions

There are many future directions for this model. One, we would like to perform

simulations with data subject to false zeros incorporating a spatial random effect as
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XMU XBU XREP

Environmental
Land use/land cover (urban, forested, cropland, indica-
tors of deforestation - this can be an indicator of habitat,
economy, or accessibility)

√ √ √

NDVI vegetation index. This could indicate habitat or
accessibility.

√ √

Elevation (might be related to MU habitat, and can af-
fect accessibility.)

√ √

Wetness index
√ √

Hydrology (can affect habitat, transmission, and water
barriers could affect accessibility)

√ √ √

Rainfall (flooding might influence MU, transmission,
and reporting)

√ √ √

Temperature (climate might affect BU)
√

Human Activity
Primary economy of district (agriculture, gold mining)

√ √

Types of crops in a district (rice, maize, casava)
√ √

Population density (less populated areas may not get
BU as it is a rare event, but also less populated areas
may not have good reporting)

√ √

Reporting
Indicators of urban/rural (ease of access)

√

Amount of ‘paved’ roads (ease of access)
√

Number of health clinics (may facilitate reporting)
√

Distance to either Accra or Kumasi
√

Table 4.12: Covariates that may be associated with the presence of MU, BU trans-
mission, or reporting. It is feasible for some covariates to be associated with more
than one of these categories, as indicated by the check marks.
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presented by Agarwal et al. [87]. This could spatially smooth parameter estimates

and maybe even better highlight observations with a high conditional probability

of being a false zero. Furthermore, we would like to explore incorporating multiple

years of surveillance data, rather than just one year. This could involve incorporating

elements from repeated measures ecological analysis presented in much research by

Royle [113], or a latent temporal process as utilized by Fernandes [99]. Moreover, more

work needs to be done to make prediction-specific results in order to better identify

false zero observations. Lastly, we would like to obtain more data from Ghana in

order to perform a more thorough data analysis.
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Chapter 5

Conclusion

We presented model-based statistical methods to analyze data from three arenas

of public health: modeling vaccination coverage, utilizing remotely sensed data to

augment disease surveillance in remote locations, and addressing non-reporting in

surveillance of neglected tropical diseases. All three topics described have the common

theme that in public health surveillance, the data we want is not the data that we get.

In monitoring vaccination coverage, we do not always obtain the age of vaccination

among vaccinated children. In making inferences on the presence of neglected tropical

disease and the corresponding disease causing pathogens, we can utilize remotely

sensed satellite imagery to augment analysis on surveillance in remote locations. In

surveillance of neglected tropical diseases, resources are often not available to confirm

that non-reporting areas are actually disease-free. We proposed new statistical models

to overcome these limitations in our data. We found that although such models

present some challenges, they are ready to be used in practice. Moreover, these

models show promise for even more future development.
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Appendix A

Likelihood-based approach to

non-linear logistic growth model

Model (2.8): The outcome Yi is binary (0 or 1) where

P (Yi = 1) =
φ1

1 + exp{−(xi − φ2)/φ3}

We can write the likelihood as:

L(φ) =
n∏
i=1

pyii (1− pi)1−yi

log L(θ) =
n∑
i=1

log
[
pyii (1− pi)1−yi

]
=

n∑
i=1

log

 φ1

1 + exp
(
− (xi−φ2)

φ3

)
yi1− φ1

1 + exp
(
− (xi−φ2)

φ3

)
1−yi

=
n∑
i=1

yi log φ1 − log

{
1 + exp

(
−(xi − φ2)

φ3

)}
+ (1− yi) log

{
1 + exp

(
−(xi − φ2)

φ3

)
− φ1

}
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Let θ = (φ1, φ2, φ3)

Using the following substitutions:

ai =
(xi − φ2)

φ3

bi = 1 + e−ai − φ1

ci = 1 + e−ai

The asymptotic distribution of θ̂ = (φ̂1, φ̂2, φ̂3) is
√
n(θ̂ − θ) → N3 (0, {nIn(θ)}−1)

where

In(θ) =
1

n


∑n

i=1
1

φ1bi

∑n
i=1−

e−ai
φ3bici

∑n
i=1 −aie−ai

φ3bici∑n
i=1

φ1e−2ai

φ23bic
2
i

∑n
i=1

−φ1aie−2ai

φ23bic
2
i∑n

i=1
φ1a2ie−2ai

φ23bic
2
i



Model (2.9): The outcome Yi is binary (0 or 1) where

P (Yi = 1) =

1
1+exp(−λ)

1 + exp
(
− (xi−φ2)

φ3

)
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We can write the likelihood as:

L(φ) =
n∏
i=1

pyii (1− pi)1−yi

log L(φ) =
n∑
i=1

log pyii (1− pi)1−yi

=
n∑
i=1

log

 1
1+exp(−λ)

1 + exp
(
− (xi−φ2)

φ3

)
yi1−

1
1+exp(−λ)

1 + exp
(
− (xi−φ2)

φ3

)
1−yi

=
n∑
i=1

−yi log (1 + exp(−λ)) + (1− yi) log

(
1 + exp

(
−(xi − φ2)

φ3

)
− 1

1 + exp(−λ)

)
− log

(
1 + exp

(
−(xi − φ2)

φ3

))

Let θ = (λ, φ2, φ3)

Using the following substitutions:

g = e−λ

h =
1

1 + g

ai =
−(xi − φ2)

φ3

bi = 1 + eai − h

ci = 1 + eai

The asymptotic distribution of θ̂ = (λ̂, φ̂2, φ̂3) is
√
n(θ̂ − θ) → N3 (0, {nIn(θ)}−1)

where

In(θ) =
1

n


∑n

i=1
g2

ci(1+g)3

[
1 + 1

bi(1+g)

] ∑n
i=1−

geai
φ3bici(1+g)2

∑n
i=1

gaieai
φ3bici(1+g)2∑n

i=1
he2ai

φ23bic
2
i

∑n
i=1−

haie2ai

φ23bic
2
i∑n

i=1
ha2ie2ai

φ23bic
2
i

.
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Appendix B

Figures for logistic growth model

results
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Figure B.1: Histograms of φ̂ for Model (2.8). The solid black line is the true value of
the parameter, and the dashed black line is the mean value of the parameter estimates
over the 500 simulations.
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Figure B.2: Confidence intervals/credible sets of φ̂ for Model (2.8). The solid black
line is the true value of the parameter.
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Figure B.3: Histograms of λ̂ and φ̂ for Model (2.9). The solid black line is the true
value of the parameter, and the dashed black line is the mean value of the parameter
estimates over the 500 simulations.
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Figure B.4: Confidence intervals/credible sets of λ̂ and φ̂ for Model (2.9). The solid
black line is the true value of the parameter. The confidence interval for one simulation
extends beyond the displayed range for λ in NLS and Nelder-Mead.
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Figure B.5: Point estimates and 95% confidence intervals/credible sets for DPT1,
DPT2, and DPT3 coverage from the 2003 Kenya DHS. The four lines in decreasing
gray scale indicate: (1) nonlinear least squares, (2) Nelder-Mead, (3) L-BFGS-S, (4)
Bayesian estimates. L-BFGS-S was not used for Model (2.9) as it would produce the
same results as the Nelder-Mead algorithm.
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Appendix C

Selection of parameter values for

hierarchical ZIP data generation

Here we describe in detail how parameter values were chosen by which to generate

the data. Parameters were chosen first for the data realization process where false

zero generation was only mildly related to YTRUE. Afterwards, alternate values of

β0REP and β2REP were selected to mimic the original data realization process, but to

also have a more extreme relationship between false zero generation and YTRUE.

Great care was taken to ensure appropriate parameter values for all β’s. Our goal

was to closely mimic our actual data set, which had 31 out of 89 districts report

cases of Buruli ulcer, representing 35% of the data which had non-zero observations.

Therefore, we decided to simulate a sample size of n = 100 and ensure that after all

of the steps of the hierarchial process had been completed that we would have on

average 35 non-zero observations.

We achieved this by performing a brief simulation over different values of β’s to

identify optimal combinations of β’s that would provide our desired end result. We

considered a sample size of 100 where the covariates XMU , XBU , XCASES, and XREP ,

were fixed at the same values throughout the entire simulation with Pr(XMU = 1) =
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Variable Rationale Values Considered
β0MU > 0 in order to have baseline Pr(ZMU = 1) >

0.5
0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0

β1MU > 0 so that the covariate XMU is associated
with higher Pr(ZMU = 1)

0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0

β0BU > 0 in order to have baseline Pr(ZBU = 1) >
0.5

0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0

β1BU > 0 so that the covariate XBU is associated
with higher Pr(ZBU = 1)

0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0

β0CASES Baseline rate of cases is 3 log(3)
β1CASES Rate of cases when XREP = 1 is 9 (RR=3) log(3)
β0REP > 0 in order to have baseline Pr(ZREP =

1) > 0.5
0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0

β1REP < 0 so that the covariate XREP is associated
with lower Pr(ZREP = 1)

-2, -1.6, -1.4, -1.2, -0.8,
-0.4

β2REP > 0 so that more cases are associated with
higher Pr(ZREP = 1)

0.05, 0.10, 0.15, 0.20,
0.25, 0.30

Table C.1: Candidate values considered for each covariate in the modified hierarchical
ZIP model.

0.5, Pr(XBU = 1) = 0.5, Pr(XCASES = 1) = 0.5, and Pr(XREP = 1) = 0.5. We

considered a set of candidate values for each of the parameters (Table C.1). For

each combination of parameter values, 100 simulations of the data were performed in

which we recorded the total number of ZMU = 1, ZBU = 1,and ZREP = 1, in order

to represent the number of MU+ sites, the number of BU+ sites, and the number

of reporting+ sites for those parameter values. A six number summary of the 100

repetitions was recorded to represent the minimum, first quartile, median, mean,

third quartile, and maximum of the number of MU+ sites, the number of BU+ sites,

and the number of reporting+ sites for those parameter value combinations. We then

made restrictions on the summary numbers in order to narrow down the combinations

of parameter values (Table C.2). After the restrictions in Table C.2 were satisfied, this

narrowed it down to less than 100 suitable parameter value combinations. After that,

arbitrary restrictions were made such that β0MU 6= β1MU , β0BU 6= β1BU , and β1MU 6=

β1BU in order to have varied effect sizes, which resulted in 17 possible parameter value
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Minimum number of MU+ districts > 60
Maximum number of MU+ districts < 80
1st quartile of BU+ districts > 40
3rd quartile of BU+ districts < 60
Median number of Rep+ districts = 35

Table C.2: Restrictions made on model summary in order to identify appropriate
candidate parameter values.

No. MU+ No. BU+ No. Rep+
β0MU β1MU β0BU β1BU β0REP β1REP β2REP Min Med Max Min Med Max Min Med Max

1 0.2 1.2 0.6 2.0 0.4 -1.2 0.15 61 68.0 78 44 54 65 25 35 46
2 0.2 1.2 0.8 1.8 0.2 -1.2 0.15 62 68.0 78 44 57 68 25 35 47
3 0.2 1.4 0.2 0.6 1.2 -1.2 0.15 61 69.5 79 29 44 59 20 35 48
4 0.2 1.4 0.2 1.6 0.6 -1.2 0.15 61 71.0 79 42 50 60 27 35 45
5 0.2 1.4 0.4 1.2 0.6 -1.2 0.15 61 70.0 79 37 50 65 24 35 45
6 0.2 1.4 0.4 2.0 0.4 -1.2 0.15 62 71.0 79 40 54 63 24 35 45
7 0.2 1.4 0.6 0.8 0.6 -1.2 0.15 61 70.0 79 40 49 63 23 35 45
8 0.2 1.4 0.8 0.4 0.6 -1.2 0.15 61 70.0 78 38 51 60 21 35 45
9 0.2 1.6 0.8 0.2 0.6 -1.2 0.15 61 71.0 79 38 51 61 25 35 48

10 0.2 1.6 0.8 1.0 0.4 -1.2 0.15 62 71.5 79 44 55 65 26 35 47
11 0.2 1.6 1.0 0.4 0.4 -1.2 0.15 62 71.0 79 35 54 66 23 35 48
12 0.2 1.8 0.4 1.0 0.6 -1.2 0.15 61 71.0 79 37 50 61 25 35 44
13 0.2 1.8 0.6 1.6 0.2 -1.2 0.15 63 74.0 79 47 57 67 25 35 45
14 0.4 1.0 0.2 1.4 0.8 -1.2 0.15 62 71.0 79 36 49 60 23 35 46
15 0.4 1.0 0.8 2.0 0.2 -1.2 0.15 61 70.0 79 46 57 67 22 35 45
16 0.4 1.2 0.8 0.4 0.6 -1.2 0.15 61 71.0 79 41 52 64 24 35 47
17 0.8 0.2 0.4 1.4 0.6 -1.2 0.15 61 70.0 79 41 52 63 23 35 49

Table C.3: Combinations of parameter values that provide appropriate summary
results.

combinations (Table C.3). From these 17 combinations, we chose line 17 for our true

parameter values because both the effects β1MU and β1BU are relatively small when

compared to the values in the other candidate sets. Smaller effect sizes better mirror

processes that may occur in reality.

For these candidate values on line 17, we repeated the simulation 1000 times to

verify the ranges observed, holding the covariates X fixed. We also generated a new

set of covariates for each simulation to assess the sensitivity of the number reporting

to the covariate values. Moreover, we calculated the marginal proportion of false zeros

in the data set as well as the conditional proportion of false zeros in the data set. A

false zero is defined as when YiTRUE > 0 and ZiREP = 0. The marginal proportion

of false zeros is calculated as the number of false zeros in the data set divided by the
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Min. 1st Qu. Median Mean 3rd Qu. Max.
Fixed No. MU+ 59 68 70 70.8 74 82
Covariates No. BU+ 37 48 51 51.3 55 64

No. Rep+ 22 32 34 34.1 37 46
Marginal prop. false zeros 0.09 0.13 0.15 0.16 0.17 0.23
Conditional prop. false zeros 0.13 0.21 0.23 0.24 0.27 0.35

Random No. MU+ 57 68 71 71.2 74 83
Covariates No. BU+ 35 48 52 51.7 55 69

No. Rep+ 20 32 35 34.7 38 51
Marginal prop. false zeros 0.05 0.13 0.15 0.16 0.18 0.27
Conditional prop. false zeros 0.07 0.20 0.24 0.24 0.28 0.45

Table C.4: Final assessment of parameter values to ensure appropriate data.

total number of observations,

∑n
i=1 I(false zero)

n
. The conditional proportion of false

zeros is calculated as

∑n
i=1 I(false zero)∑n
i=1 I(YiOBS = 0)

, the total number of false zeros divided by

the total number of observed zeros. The simulation results do not appear to be too

sensitive to the covariate values as they show similar values for when the covariates

X are fixed for the entire simulation and for when the covariates X are random for

each simulation (Table C.4).

We can summarize each data set in terms of the five types of observations defined

in Section 4.4. For example, in the first 20 data sets generated, Table C.5 shows the

distribution of the types of observations, as well as the conditional proportion of false

zeros.
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Excess
true
zero
(MU)

Excess
true
zero
(BU)

Distn’l
true
zero

Excess
false
zero

Observed
case
count

Cond.
prop.
false
zero

1 28 13 3 15 41 0.25
2 27 26 1 14 32 0.21
3 25 18 3 19 35 0.29
4 28 22 3 11 36 0.17
5 33 20 4 20 23 0.26
6 29 15 1 12 43 0.21
7 28 21 0 19 32 0.28
8 25 12 4 17 42 0.29
9 26 25 0 15 34 0.23
10 29 20 1 17 33 0.25
11 35 16 2 15 32 0.22
12 28 18 3 17 34 0.26
13 33 26 1 8 32 0.12
14 30 21 1 14 34 0.21
15 26 19 3 10 42 0.17
16 18 21 0 18 43 0.32
17 35 20 0 10 35 0.15
18 27 18 2 14 39 0.23
19 25 23 3 9 40 0.15
20 32 17 2 16 33 0.24

Table C.5: Summary of 20 randomly generated data sets that shows the distribution
of each of the five types of observations defined in 4.4, as well as the conditional
proportion of false zeros out of all observed zeros. Each row is a different data set,
and the numbers in each column represent the number of observations out of 100 that
fell in that category.
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Appendix D

WinBUGS code for ZIP Models

WinBUGS code for the naive traditional ZIP model, Model 4.18.

model{

for (i in 1:n){

Y.obs[i]~dpois(mu.obs[i])

Z.excess[i]~dbern(p.excess[i])

mu.obs[i] <- (1-Z.excess[i])*lambda[i]

log(lambda[i]) <- b0.cases + b1.cases*x.cases[i]

logit(p.excess[i]) <- b0.p + b1.p.mu*x.mu[i] + b2.p.bu*x.bu[i]

#the probability that an observation takes that specific

#value given Poisson(lambda)

f[i]<- exp( -lambda[i] + Y.obs[i]*log(lambda[i]) - loggam(Y.obs[i]+1) )

#log likelihood

ll[i]<-log( p.excess[i]*equals(Y.obs[i],0) + (1-p.excess[i])*f[i] )

#the probability of a distributional zero under a Poisson distribution

#for count data

f.0[i]<-exp(-lambda[i])

#the conditional probability of observing an excess zero given

#that a zero was observed

p.0.cond[i]<- p.excess[i]/(p.excess[i]+(1-p.excess[i])*f.0[i])

}

b0.cases ~ dnorm(0.0,1.0E-2)

b1.cases ~ dnorm(0.0,1.0E-2)

b0.p ~ dnorm(0.0,1.0E-2)

b1.p.mu ~ dnorm(0.0,1.0E-2)

b2.p.bu ~ dnorm(0.0,1.0E-2)

lambda0<-exp(b0.cases)

lambda1<-exp(b0.cases + b1.cases)

my.dev<- -2*sum(ll[1:n])
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}

WinBUGS code for almost fully specified hierarchical ZIP model, Model 4.19.

model{

for (i in 1:n){

#the distribution of Z.MU is not conditioned on anything

Z.MU[i]~dbern(p.MU[i])

#the latent random variable Z.BU is conditioned on Z.MU

p.BU.Z[i]<-p.BU[i]*Z.MU[i]

Z.BU[i]~dbern(p.BU.Z[i])

#the latent random variable Z.REP is conditioned on Z.BU

p.REP.Z[i]<-p.REP[i]*Z.BU[i]

Z.REP[i]~dbern(p.REP.Z[i])

#the observed Y follows a Poisson distribution conditioned on Z.REP

mu.obs[i] <- lambda[i]*Z.REP[i]

Y.obs[i]~dpois(mu.obs[i])

log(lambda[i]) <- b0.cases + b1.cases*x.cases[i]

logit(p.MU[i]) <- b0.mu + b1.mu*x.mu[i]

logit(p.BU[i]) <- b0.bu + b1.bu*x.bu[i]

logit(p.REP[i]) <- b0.rep + b1.rep*x.rep[i]

#probability of excess true zero (MU)

p.f1[i] <- 1 - p.MU[i]

#probability of excess true zero (BU)

p.f2[i] <- p.MU[i] * (1 - p.BU[i])

#probability of zero under Poisson distribution

f.0[i] <- exp(-lambda[i])

#probability of distributional true zero

p.f3[i] <- p.MU[i] * p.BU[i] * f.0[i]

#probability of excess false zero

p.f4[i] <- p.MU[i] * p.BU[i] * (1 - f.0[i]) * (1-p.REP[i])

#conditional probability of false zero given that a zero was observed

p.false.zero[i] <- p.f4[i]/(p.f1[i] + p.f2[i] + p.f3[i] + p.f4[i])

#the probability that an observation takes that specific value

#given Poisson(lambda)

f[i]<- exp( -lambda[i] + Y.obs[i]*log(lambda[i]) - loggam(Y.obs[i]+1) )

p.all[i] <- p.MU[i] * p.BU[i] * p.REP[i]

#log likelihood

ll[i]<-log( equals(Y.obs[i],0)*(1 - p.all[i]) + p.all[i]*f[i] )

}
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b0.cases ~ dnorm(0.0,1.0E-2)

b0.mu ~ dnorm(0.0,1.0E-2)

b0.bu ~ dnorm(0.0,1.0E-2)

b0.rep ~ dnorm(0.0,1.0E-2)

b1.cases ~ dnorm(0.0,1.0E-2)

b1.mu ~ dnorm(0.0,1.0E-2)

b1.bu ~ dnorm(0.0,1.0E-2)

b1.rep ~ dnorm(0.0,1.0E-2)

my.dev<- -2*sum(ll[1:n])

}

WinBUGS code for the fully hierarchical ZIP model, Model 4.20.

model{

for (i in 1:n){

#the distribution of Z.MU is not conditioned on anything

Z.MU[i]~dbern(p.MU[i])

#the latent random variable Z.BU is conditioned on Z.MU

p.BU.Z[i]<-p.BU[i]*Z.MU[i]

Z.BU[i]~dbern(p.BU.Z[i])

#the unobserved true Y follows a Poisson distribution conditioned on Z.BU

mu.true[i] <- lambda[i]*Z.BU[i]

Y.true[i]~dpois(mu.true[i])

#the latent random variable Z.REP is conditioned on Y.true>0

#This creates an indictor such that I.Ytrue=1 when Y.true>0

#equals(arg1,arg2)=1 when arg1=arg2

I.Ytrue[i] <- 1 - equals(Y.true[i],0)

p.REP.Z[i]<-p.REP[i]*I.Ytrue[i]

Z.REP[i]~dbern(p.REP.Z[i])

#the observed Y follows a Poisson distribution conditioned on Z.REP

mu.obs[i] <- lambda[i]*Z.REP[i]

Y.obs[i]~dpois(mu.obs[i])

log(lambda[i]) <- b0.cases + b1.cases*x.cases[i]

logit(p.MU[i]) <- b0.mu + b1.mu*x.mu[i]

logit(p.BU[i]) <- b0.bu + b1.bu*x.bu[i]

logit(p.REP[i])<- b0.rep + b1.rep*x.rep[i] + b2.rep*Y.true[i]

#probability of excess true zero (MU)

p.f1[i] <- 1 - p.MU[i]
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#probability of excess true zero (BU)

p.f2[i] <- p.MU[i] * (1 - p.BU[i])

#probability of zero under Poisson distribution

f.0[i] <- exp(-lambda[i])

#probability of distributional true zero

p.f3[i] <- p.MU[i] * p.BU[i] * f.0[i]

#probability of excess false zero

p.f4[i] <- p.MU[i] * p.BU[i] * (1 - f.0[i]) * (1-p.REP[i])

#conditional probability of false zero given that a zero was observed

p.false.zero[i] <- p.f4[i]/(p.f1[i] + p.f2[i] + p.f3[i] + p.f4[i])

#the probability that an observation takes that specific value

#given Poisson(lambda)

f[i]<- exp( -lambda[i] + Y.obs[i]*log(lambda[i]) - loggam(Y.obs[i]+1) )

p.all[i] <- p.MU[i] * p.BU[i] * p.REP[i]

#log likelihood

ll[i]<-log( equals(Y.obs[i],0)*(1 - p.all[i]*(1-f.0[i]))

+ (1-equals(Y.obs[i],0))*p.all[i]*f[i] )

}

b0.cases ~ dnorm(0.0,1.0E-2)

b1.cases ~ dnorm(0.0,1.0E-2)

b0.mu ~ dnorm(0.0,1.0E-2)

b1.mu ~ dnorm(0.0,1.0E-2)

b0.bu ~ dnorm(0.0,1.0E-2)

b1.bu ~ dnorm(0.0,1.0E-2)

b0.rep ~ dnorm(0.0,1.0E-2)

b1.rep ~ dnorm(0.0,1.0E-2)

b2.rep ~ dnorm(0.0,1.0E-2)

my.dev<- -2*sum(ll[1:n])

}
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