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Abstract 
 

Gut microbiome product delta-valerobetaine controls host energy metabolism 
 

By Ken H. Liu 
 

 Chemical signals produced by the gut microbiome communicate with the liver to regulate 
systemic energy balance.  The research in the dissertation concerns 1) the development and 
validation of chemical analysis tools suited for identifying novel chemical signals produced by 
the microbiome and 2) identification and characterization of microbial metabolites which impact 
energy metabolism in the liver.  Chapter 1 serves as an overview of microbiome-host metabolic 
interactions and provides an experimental framework for in-depth study on this topic.  Chapter 2 
describes the optimization of a chemical analysis platform suitable for maximizing detection of 
chemicals in biological samples.  Chapter 3 uses the analytical strategy described from chapter 2 
to validate the quantification of approximately 200 metabolites and detection of 441 metabolites 
in biological samples.  Chapter 4 describes the discovery of the microbiome-derived 
mitochondrial metabolite δ-valerobetaine (VB) and the characterization of its activity on energy 
metabolism in human cells and in mice.  Chapter 5 contains brief concluding remarks and future 
avenues for exploration. 
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Chapter 1 : Introduction 
 

This chapter serves as a conceptual framework for understanding human metabolic 

diseases as a potential consequence of dysfunctional chemical communication between the 

microbiome and host.  Recent studies show rises in rates of obesity-related metabolic disorders 

are linked to changes in the intestinal microbiota as a result of changing lifestyles, dietary habits 

and/or use of antibiotics.  Nonetheless, the molecular mechanisms underlying these observations 

are not well understood.  In this introductory conceptual review, an integrative systems biology 

framework for understanding microbiome-linked mechanisms responsible for changes to human 

energy metabolism is presented.  Because mitochondrial dysfunction can cause uncoupling of 

energy expenditure with energy supply, understanding how the intestinal microbiota, and 

specifically metabolites produced by the microbiota influence mitochondrial function and hepatic 

regulation of systemic energy balance may lead to new therapeutic strategies to combat this 

epidemic. 
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1.1 - The epidemic of obesity and related metabolic diseases 

Chronic diseases related to obesity, insulin resistance and metabolic syndrome are a 

serious public health concern worldwide.  These related metabolic disorders are risk factors 

contributing to development and complicating the treatment of several diseases including cancer, 

cardiovascular disease, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, stroke, 

depression, and early death (1).  In the United States alone, over half of the population is 

considered overweight or obese (2) with associated annual costs for health care and loss of 

economic productivity estimated to be well in excess of $100 billion dollars.  Following current 

trends (3), over 80% of adults in the United States are predicted to be obese or overweight by the 

year 2030, creating a significant burden on the economy and health care system.  While 

strategies to reverse these trends have been implemented at multiple levels (e.g. socioeconomic 

interventions such as improved education and access to healthy foods, or individual diet, 

exercise, drugs or other medical interventions), the molecular mechanisms driving this epidemic 

are not entirely understood. 

At a fundamental level, obesity is characterized by an excessive accumulation of fat in 

tissues.  Fats are the primary form of energy storage in the body and exist in several forms.  

Normally, the coordinated regulation of energy metabolism drives adaptive responses to 

fluctuations in energy intake, storage, and/or expenditure.  This adaptive response provides 

metabolic flexibility and allows increases in energy intake to be coupled to increased energy 

expenditure to maintain energy balance.  These responses are uncoupled in obesity, resulting in 

increased energy storage and/or decreased energy expenditure.  The accumulation of fat is 

associated with systemic low-grade inflammation and promotes the development of insulin 

resistance and associated diseases (Figure 1.1) (4).  Understanding mechanisms underlying these 
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increases in energy intake and storage, or decreases in energy expenditure could drive the 

development of novel personalized therapeutic strategies for prevention or treatment of these 

related disorders (5). 
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Figure 1.1 Obesity and related metabolic disorders are disorders of energy balance.  Excessive 
accumulation of fats in tissues can exacerbate inflammatory processes and promote insulin 
resistance.  These metabolic syndromes are risk factors for chronic diseases contributing to over 
$100 billion in medical expenses and lost productivity. 
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1.2 - The microbiome and obesity-related metabolic disorders 

Emerging evidence links dietary interactions with the intestinal microbiota to the 

development of human metabolic disorders (6-11).  The human gut microbiome is comprised of 

over one hundred trillion bacteria, fungi, viruses, protozoa, and other microorganisms that 

inhabit the small and large intestines.  Collectively, the metabolic potential of the microbiota 

exceeds the metabolic capacity of human cells (12; 13).  Thus, the activity of these 

microorganisms resemble a hidden organ within our intestines (14), as they perform functions 

related to host nutrient metabolism, xenobiotic and drug metabolism, maintenance of the 

mucosal barrier, immunomodulation, and protection against pathogens (15; 16).   

While the normal composition and function of the typical healthy microbiota is still not 

completely defined, obesity and poor diet quality is associated with a reduction in microbial 

diversity, and altered representation of bacterial genes (17-19).  For example, obesity has been 

associated with increased carbohydrate-utilizing gram-positive Firmicutes (e.g. Lactobacilli, 

Ruminococci, Clostridia) and decreased short-chain fatty acid-producing (SCFA) gram-negative 

Bacteroidetes (e.g. Bifidobacter, Bacteroides) (19).  Other studies have shown obesity is linked 

to decreased Methanobrevibacter smithii (17) and increased Lactobacillus (20; 21).  Dietary 

changes elicit rapid changes to the composition of the intestinal microbiome.  Turnbaugh et al. 

showed that mouse gut microbiota changed in composition within 24 hours after a shift to a high-

fat, high-sugar “Western” diet from a low-fat plant-polysaccharide-based diet (22).  In humans, 

Wu et. al showed that shifting from a high-fat/low-fiber diet to a low-fat/high-fiber diet elicited 

responses to the enteric phenotype, with carbohydrate-rich diets increasing abundances of 

Prevotella and animal fat-rich diets increasing abundances of Bacteroidetes (23).  While strain-

specific effects within the same bacterial families or species can result in variable directionality 
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of associations and differences in individual bacterial families being identified from study to 

study, the majority of published work shows changes to the microbiome are associated with 

changes to metabolic health.  Whether these changes drive disease or are adaptive responses to 

disease is currently not well understood. 

Intriguingly, germ-free (GF) mice, which are born and raised without microbiota, are 

protected from diet-induced obesity and gain weight less rapidly than their colonized 

counterparts (24; 25).  This difference in weight gain occurred despite colonized mice eating 

30% less calories than GF animals and was associated with increased expression of genes 

encoding enzymes for the digestion of otherwise indigestible polysaccharides (in colonized 

animals), leading to the conclusion that microbial enzymes increase energy extraction from diet 

(24).  Studies from the same group also showed that an induction of hepatic lipogenesis and 

increased fat storage were associated with weight gain in colonized animals (25).  Another study 

showed that microbiota depletion by use of antibiotics in conventional high-fat diet-fed and 

genetically obese mice decreased adiposity and improved insulin sensitivity and glucose 

tolerance (26).  Additionally, transplantation of microbiota from obese mice or humans into GF-

mice caused recipient mice to develop obesity and insulin resistance (27; 28).  These studies 

demonstrate 1) the presence of the microbiome increases energy harvest and storage in the host 

and 2) the heritability of host traits associated with obese or lean microbiota upon 

transplantation.  Taken together, these studies show the intestinal microbiota are an internal 

environmental or endobiotic contributor to host energy balance, adiposity and fat metabolism 

(Figure 1.2) (24).  However, mechanisms explaining how the presence of the microbiome or 

specific changes to microbial composition alters host energy balance are not completely 

described.  
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Figure 1.2 The microbiome contributes to host energy balance by promoting energy harvest 
from the diet and transcriptional regulation of energy metabolism in the host.  Furthermore, 
environmental factors can increase gut barrier permeability allowing microbial products to drive 
a systemic low-grade inflammation contributing to metabolic dysfunction. 
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1.3 - Chemical communication between the microbiome and host 

Recent studies have focused on elucidating the role of microbiome-derived small 

molecule metabolites and their specific contributions to host energy metabolism and physiology 

(Figure 1.3).  Owing to their diverse genetic potential, intestinal microbes possess remarkable 

metabolic capacity for digestion and metabolism of a wide range of dietary macromolecules or 

xenobiotics, and synthesis of vitamins, hormones, and other metabolites that engage with host 

metabolism as metabolic intermediates, coenzymes, and signaling molecules (29; 30).  Most 

metabolites produced by commensal gut bacteria are considered beneficial and are used by 

microbial communities and/or host cells in the local environment of the intestinal lumen.  

Nonetheless, local interactions of microbiome-derived metabolites with enterocytes (intestinal 

epithelia), immune cells (T-cells, dendritic cells, mast cells, macrophages, etc), and the enteric 

neuroendocrine system (enterochromaffin cells, vagal nerve) can elicit systemic effects on host 

metabolism.  For example, short-chain fatty acids are used as energy substrates by host cells (31) 

and serve as signaling molecules for host membrane receptors, such as the G-protein coupled 

receptor 41/43, to regulate cellular metabolic functions (12).  SCFAs also regulate the production 

of gut hormones Glucagon-like peptide-1 (GLP-1), Peptide YY (PYY), and ghrelin, which 

suppress appetite and reduce energy intake (32-35).  In addition to SCFAs, bile acids, organic 

acids, aromatic organic acids, amino acid derivatives, indoles, methylamines, sulfur-containing 

metabolites, branched-chain fatty acids, lipopolysaccharides, hydrogen sulfide, ethanol, N-

acylamides, and conjugated linoleic acids are other classes of metabolites associated with the 

activity of the intestinal microbiota with documented roles as chemical signals exchanged 

between microbiome and host (12; 29; 36). 
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Figure 1.3 Chemical communication between the microbiome and host.  Microbial enzymes 
convert dietary or host-derived chemicals to additional metabolites that interact with host targets 
in different organ systems.  The specific interactions between gut-derived metabolites and 
specific cell populations or cellular compartments in the liver has not yet been explored.   These 
interactions can elicit changes to cellular functions and host energy metabolism. 
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Approximately 10% of circulating mammalian metabolites are linked to the presence of 

the microbiome (37), showing the presence of microbial signals in extraintestinal compartments 

and tissues.  As blood metabolome profiles are reflective of gut microbiome diversity (38), 

several microbiome-associated metabolites have been identified as potential biomarkers or risk 

factors for obesity-related diseases.  For example, high-fat diets increase circulating bacterial 

lipopolysaccharides (LPS), activating CD14 and toll-like receptor-4, leading to a systemic low-

grade inflammation associated with obesity, type 2 diabetes, and non-alcoholic fatty liver disease 

(NAFLD) (39; 40).  Dysregulation of aromatic and branched-chain amino acid (BCAA) 

metabolism was associated with hepatic steatosis and other metabolic syndrome-related 

symptoms in several human studies (41-44).  In cell and mouse studies, phenylacetic acid, a 

microbial product derived from aromatic amino acids, altered BCAA metabolism and induced 

hepatic steatosis (41).  Other studies have shown cardiovascular and fatty liver diseases are 

associated with microbial metabolism of carnitine, choline and related metabolites, leading to 

increases in circulating concentrations of trimethylamine oxide (TMAO) (45-48).  

Trimethylamine (TMA) is produced by microbial enzymes, absorbed and converted to TMAO 

by hepatic flavin monooxygenase 3 (FMO3).   TMAO is linked to pro-thrombotic, pro-

inflammatory, and pro-atherogenic mechanisms in mammals (48; 49).  These studies show 

specific interactions of host and microbiome metabolomes are associated with disease processes 

and have led to development of clinical biomarkers and therapeutic strategies targeting host-

microbiome signaling processes. 

Overall, these studies and others have demonstrated that the human metabolism is a union 

of host and microbial players.  While several circulating microbiome-associated metabolites 
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associated with disease processes have previously been identified, a recent review estimates over 

95% of metabolites from microbiome metabolomics studies have not yet been characterized (50).  

Identifying bioactive microbiome-derived metabolites, and tracing the origins of microbial 

metabolites from the gut, to absorption into the portal circulation, and distribution to target 

tissues with important metabolic functions (e.g. the liver) and cellular compartments responsible 

for energy metabolism (e.g. the mitochondria) will allow us to better understand the role of 

individual microbial metabolites in human metabolism. 
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1.4 - Gut-liver and microbiome-mitochondria axes 

Aberrant hepatic regulation of systemic energy balance and mitochondrial dysfunction 

are commonly linked to obesity-related metabolic disorders.  At an organismal level, the liver 

plays a central role in governing systemic energy balance and also acting as a metabolic and 

immunologic buffer between absorbed gut-derived metabolites and the systemic circulation.  

Similarly, at a cellular level, mitochondria govern the majority of cellular metabolism and 

bioenergetics thereby acting as an interface between environmental inputs and cellular functions 

(51).  Evolutionary evidence indicates that eukaryotic mitochondria may be descended from an 

ancient prokaryotic endosymbiont (52), suggestive of possible conserved signaling pathways 

between bacteria and host mitochondria (36; 51; 53-56).   

Microbial signaling influences transcriptional regulation of host energy metabolism in the 

liver.  Bile acids, for example, participate in an exchange between the gut and liver known as the 

enterohepatic circulation and represent one well-known example of bidirectional gut-liver 

signaling.  Hepatocytes synthesize primary bile acids (cholate and chenodeoxycholate in 

humans/cholate and muricholate in mice) from cholesterol, which are conjugated with taurine in 

mice/rats or glycine in humans (taurocholate/taurochenodeoxycholate, glycocholate or 

glycochenodeoxycholate), and secreted into the biliary tract.  Upon reaching the small intestines, 

bile acids aid in the digestion of dietary fats, cholesterol and fat-soluble vitamins.  While the 

majority of bile acids are actively reabsorbed and returned to the liver via the portal vein, a small 

percentage of host bile acids undergo microbial modifications (deconjugations, 

dehydrogenations, dehydroxylations) to produce secondary bile acids 

(deoxycholate/lithocholate), which are returned to the liver through the portal circulation (57; 

58).  Microbial metabolism of bile acids activate the Farnesyl-X-receptor (FXR) in the intestinal 
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epithelia in mice, releasing fibroblast growth factor 15/19 (FGF15/19) to the liver and decreases 

de novo bile acid biosynthesis through inhibition of Cyp7a1 (59).  FXR activation affects 

glucose, cholesterol, and lipid metabolism and appears to play a role in the development of 

obesity and NAFLD (60; 61).  Other transcriptional regulators shown to respond to the 

microbiota include cholesterol-response element-binding protein (ChREBP) (24), sterol-response 

element-binding protein (SREBP-1) (24), adenosine monophosphate dependent kinase (AMPK) 

(25), peroxisome proliferator-activated receptor gamma-alpha (PGC-1α) (62), peroxisome 

proliferator-activator receptor (PPARs) (62-64), retinoid X receptor (RXR) (65), sirtuins (SIRT) 

(66), aryl hydrocarbon receptor (AhR) (67-69), mammalian target of rapamycin (mTOR) (70), 

nuclear receptor 5A (NR5A) (71), and nuclear factor erythroid-2 related factor (Nrf2) (72; 73).  

Activation of these and other transcriptional regulators impacts cellular metabolism, 

mitochondrial morphology and function. 

Beyond the previously described interactions of SCFAs in the intestinal epithelia, the role 

of SCFAs on mitochondrial metabolism has been extensively studied (74-78).  Most SCFAs are 

cleared from the portal circulation by the liver prior to entry into the systemic circulation.  In the 

liver, acetate is converted to acetyl-CoA (79), which can be used for energy production or 

biosynthesis of cholesterol, long-chain fatty acids, and glutamine/glutamate.  In both the gut and 

liver, propionate is converted to succinyl-CoA and then glucose (75; 80).  Butyrate is oxidized in 

liver mitochondria and improves mitochondrial respiration and fatty acid oxidation in mice (56; 

81).  These and other bacteria-derived metabolites have been shown to directly target 

mitochondria in the intestinal epithelia and other tissues (31; 82; 83).  Taken together, these 

examples serve to illustrate the networks of shared metabolites connecting the microbiota to host 

energy metabolism through transcriptional and mitochondrial channels (Figure 1.4).  As our 
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understanding of how microbial metabolism impacts mitochondrial metabolism in the liver is not 

yet complete, elucidating these complex interactions with emerging integrated systems biology 

approaches may identify novel therapeutic strategies for treatment of metabolic disorders. 
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Figure 1.4 Top: Energy metabolism at the systemic level regulated by the liver and at the 
cellular level by mitochondria.  Bottom: Because the liver is central for balancing gut-derived 
input with systemic energy needs, liver mitochondria are a central interface between microbial 
metabolites and systemic energy homeostasis.  The interaction of microbiome-derived 
mitochondrial metabolites with cellular energy metabolism is not well-characterized. 
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1.5 - Multi-omic systems biology approaches for host-microbiome interactions 

Technological advances have allowed the study of intricate multi-faceted host-

microbiome networks related to human health, and especially metabolic diseases.  In particular, 

advances in next-generation sequencing, mass spectrometry, and bioinformatics (84-91) have 

expanded the systems biology toolkit to address these critical points:  

1. What microbial communities (16s rRNA sequencing (92-94)) are present that are 

associated with human metabolic health?   

2. What functional capabilities (provided by shotgun metagenomics), activities 

(metatranscriptomics), and outputs (metaproteomics, metametabolomics) does the 

microbiome provide to the host?   

3. What global host transcriptomic, proteomic, and metabolomic responses are linked to 

the functional outputs from the microbiome?  

4. What mechanisms or pathways (hypothesis-driven/or data-driven experiments in 

vitro/in vivo/etc.) account for cause and effect relationships through which functional 

outputs from the microbiome elicit host responses linked to human health or disease? 

Complementing the use of metagenomics and metatranscriptomics, which cover points 1 and 2 

described above, metabolomics provides information on the functional output of the microbiome 

and associated host responses covering points 2-4 (95; 96).  Metabolomics is focused on 

measuring the complete set of small molecule metabolites (i.e. metabolome) present in biological 

samples using nuclear magnetic resonance (NMR) or mass spectrometry.  These metabolites 

include sugars, lipids, amino acids, nucleic acids, and other secondary metabolites which provide 

both the fuel and the basic materials requiring for building and sustaining life.  In the systems 

biology paradigm, metabolites are considered an endpoint of the central dogma where 
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deoxyribonucleic acids (DNA) leads to ribonucleic acids (RNA), RNA leads to proteins, and 

proteins lead to metabolites.  Metabolites are often referred to as “closest to the phenotype,” and 

changes to metabolite concentrations in tissues often reflect upstream changes to pathways 

related to or driving disease processes.   

Human (and metazoan) metabolomes are comprised of contributions from host and 

microbial metabolism (downstream of their respective genomes, transcriptomes, and proteomes) 

on endogenous and exogenous (environmental, diet, xenobiotic) chemicals.  Recent studies show 

that fecal metabolomics provide a functional readout of the intestinal microbiota (97; 98) and 

that blood metabolomics can predict diversity of the intestinal microbiota (38).  For example, 

increased circulating hippuric acid has been identified as a biomarker of gut microbial diversity 

(99; 100).  Several other metabolites have been identified as markers of abnormal intestinal 

microbiota activity (i.e. dysbiosis) including benzoic acid (29; 101), phenylacetate (29; 102; 

103), phenylpropionate (38; 100), (ortho, meta, para)-cresol (29), para-hydroxybenzoic acid (29), 

para-hydroxyphenylpropionate (38), indoxyl sulfate (104), D-lactate (105), and D-arabinitol 

(106).  Thus, measurements of metabolites associated with the activity of bacteria, fungi, or other 

microorganisms in distinct host compartments can be used to estimate the contribution of the 

microbiota to metabolism in that tissue.  Nevertheless, the majority of mass spectral features 

detected in microbiome-metabolomics datasets are not identified, hindering efforts to 

characterize their pharmacologic and pharmacokinetic properties (50). 

The host transcriptional response to the microbiome can be measured by the use of 

microarray or RNA-sequencing (86)-based transcriptomics.  In contrast to the metabolome, 

which is typically considered closest to the phenotype, the transcriptome, or the complete set of 

RNA molecules present in a sample, is typically considered closest to the genotype.  RNA 
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molecules exist in several forms (rRNA, tRNA, mRNA, lncRNA, siRNA, shRNA), and serve 

multiple roles within cells, including catalysis, regulation of gene expression, and protein 

synthesis.  Global gene expression is governed by the activity of transcriptional regulators 

(nuclear hormone receptors (NHRs), coactivators and corepressors for NHRs, kinases, GPCRs, 

and others) that  respond to biological information about the cellular environment and state.  

Microbial small molecules, alterations to cellular state, changes in cell cycle, aging, circadian 

rhythms, and post-translational modifications can represent signals sensed by transcriptional 

regulators to alter gene expression.  Databases containing tissue and organism-specific gene 

expression profiles linked to disease, drugs/toxicants use, biological pathways, cellular 

components, metabolic processes, or transcription factors facilitate functional annotation of 

transcriptomics data and can be used for mechanistic inference of genomic targets impacted by 

the microbiota. 

Multi-omic study designs are becoming increasingly popular by offering a holistic 

perspective on the interaction of molecular networks linking the microbiome to host physiology 

(Figure 1.5).  For example, these approaches have been employed to understand how the 

microbiota are linked to host metabolism (7; 62; 64; 83; 99; 107; 108), circadian rhythms, and 

diurnal variations (109-113).  While these top-down studies have enhanced our ability to 

understand these relationships, our knowledge of microbial functions, metabolites, and pathways 

is far from complete.  The majority of genes identified in metagenomic studies are not matched 

in functional databases or do not map to known microbial genes (114).  Taken together with the 

observation that most features in microbiome-metabolomics datasets are similarly unidentified, 

this suggests that most functional relationships between the microbiome and host remain to be 

elucidated.  Thus, use of computational databases for functional annotation of -omics data 
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(which rely on prior knowledge) will miss poorly characterized pathways, genes or metabolites 

that could have important biological significance.  Ultimately, if the goal is for these insights to 

develop into novel therapeutic strategies, these hidden relationships need to be characterized and 

evaluated as druggable targets. 
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Figure 1.5 Systems biology paradigm of host-microbiome interactions.  While 10% of the 
circulating mammalian metabolome is microbial in origin (shaded gray), little is known about the 
microbial contribution to the mitochondrial metabolome (unshaded).  Many features from 
metagenomics and metabolomics datasets are poorly annotated and require detailed 
investigations to elucidate biological pathways and functions linked to individual microbial 
metabolites.  Open circles represent uncharacterized metabolites.  Colored circles represent 
characterized metabolites.  Lines connecting dots between different compartments reflect either 
transport or metabolic processes.   
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To address molecular understanding of gut-host energy regulation and to characterize 

unidentified relationships, two general experimental approaches can be taken: 1) Target-driven 

discovery aims to identify functional output (metabolites, transcripts, proteins) from the 

microbiota that specifically interacts with a known target in the host or 2) Metabolite, gene 

product, or protein-driven discovery aims to identify a novel functional output from the 

microbiota followed by efforts to elucidate cellular targets and processes that are changed by 

modifying the amount of ligand, gene product or protein in the organism.  This dissertation uses 

contemporary high-resolution mass spectrometry-based metabolomics and bioinformatics 

methods to obtain both target-driven and systems level understanding of mechanisms governing 

gut-host energy regulation.   
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Conclusion 
 

Given the rising rates of human metabolic diseases, it is of critical importance to 

understand the relationship of the microbiome with human energy metabolism.  Recent 

advancements in mass spectrometry-based metabolomics and bioinformatics tools for integration 

of multi-omic data provide approaches to better characterize the interactions between small 

molecules produced by the microbiome and host energy metabolism.  The knowledge gained 

from these studies can be used to drive the development of strategies for treatment of human 

metabolic disorders. 
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1.6 – Hypothesis 

Diet and the intestinal microbiome contribute to obesity-related metabolic disorders, 

often initiated by and exacerbated by excessive fat accumulation in tissues.  At present, the 

majority of microbiome-derived metabolites have not yet been studied in terms of their 

distribution and activity in host tissues.  While an estimated 10% of the circulating mammalian 

metabolome is associated with the activity of the microbiota (37), the contribution of the 

microbiota to the liver and liver mitochondria metabolomes (115-117) has not yet been 

completely characterized.  Because germ-free mice are protected from diet induced obesity, we 

hypothesize that uncharacterized microbiome-derived metabolites impact hepatic mitochondrial 

function and hepatic regulation of systemic energy metabolism to increase energy storage or 

decrease energy expenditure.   
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1.7 – Statement of research objectives 

The purpose of this dissertation research was to obtain an understanding of intestinal 

microbiome product(s) which control host energy metabolism.  The dissertation chapters 

described below are designed to test the above stated hypothesis.  Chapter 2 is a published 

manuscript in Journal of Occupational and Environmental Medicine that describes my work 

where I systematically evaluated several analytical methodologies to determine a metabolomics 

platform suitable for maximizing detection of known and unidentified metabolites.  Chapter 3 is 

a submitted manuscript which describes my analysis of over 700 individual analytical standards 

using the optimized methodology to establish a list of known metabolites for harmonization and 

quantification of metabolomics data, which provides the basis for identifying and quantifying 

novel microbial metabolites in study samples.  Chapter 4 is a manuscript which applies the 

foundational work established in chapters 2 and 3 to identify δ-valerobetaine (VB), a novel 

mitochondrial metabolite produced by the microbiome, and to characterize the potential 

contribution of VB to obesity, fatty liver, and human metabolic disorders. 
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Chapter 2 : Evaluating strategies for maximizing chemical detection using high-resolution 
metabolomics (HRM)  
 

This chapter (previously published in the Journal of Occupational and Environmental 

Medicine, doi: 10.1097/JOM.0000000000000773) establishes a chemical detection platform 

which maximizes the ability to detect known and unidentified metabolites, which serves as a 

foundation for the work described in chapter 3 and 4. 
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High-Resolution Metabolomics Assessment of Military Personnel: Evaluating Analytical  
 
Strategies for Chemical Detection 
 
Ken H. Liu, Douglas I. Walker, Karan Uppal, ViLinh Tran, Patricia Rohrbeck, Timothy M.  
 
Mallon, Dean P. Jones 
 
Abstract 
 
Objective: The aim of this study was to maximize detection of serum metabolites with high-

resolution metabolomics (HRM). 

Methods:  Department of Defense Serum Repository (DoDSR) samples were analyzed using 

ultra-high resolution mass spectrometry with three complementary chromatographic phases and 

four ionization modes.  Chemical coverage was evaluated by number of ions detected and 

accurate mass matches to a human metabolomics database.    

Results:  Individual HRM platforms provided accurate mass matches for up to 58% of the 

KEGG metabolite database.  Combining two analytical methods increased matches to 72%, and 

included metabolites in most major human metabolic pathways and chemical classes.  Detection 

and feature quality varied by analytical configuration. 

Conclusions:   Dual chromatography HRM with positive and negative electrospray ionization 

provides an effective generalized method for metabolic assessment of military personnel. 
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2.1 Introduction 

Military personnel can be exposed to many environmental chemicals, and analytical 

methods which target specific chemicals or small groups of chemicals are inadequate to address 

the problem (1).   High-resolution metabolomics (HRM) provides an affordable, high-throughput 

platform capable of advanced clinical chemistry measurements, environmental chemical 

surveillance and bioeffect monitoring suitable for precision medicine.  HRM relies on a 

combination of chromatography coupled to ultra-high resolution mass spectrometry and 

advanced computational approaches for spectral feature alignment, peak integration, and feature 

extraction (2-6).  With this workflow, HRM is capable of reproducibly measuring greater than 

10,000 unique spectral features (defined by a characteristic mass-to-charge ratio (m/z), retention 

time, and intensity) using small volumes of biological specimens.  The resulting chemical 

profile, often referred to as the metabolic phenotype, includes a broad range of chemical classes 

and metabolic pathways (2-4; 6-8).  A number of studies have used HRM-based approaches to 

identify metabolic changes associated with a variety of disease, clinical or exposure settings, 

including Parkinson disease (9), pulmonary tuberculosis (10), HIV-1 infection (11), age-related 

macular degeneration (12), lung transplantation (13), alcohol abuse (14), and cadmium exposure 

(15).  Furthermore, application of untargeted HRM approaches to population screening and 

clinical use provides improved capabilities for biomarker discovery and identifying unknown 

chemical exposures, with simultaneous measurements of metabolic network and pathway 

associations (16-18) for enhanced understanding of human health and disease.   

Estimates of the metabolome range from 2,000 to >100,000 metabolites from endogenous 

sources (e.g., lipids, carbohydrates, nucleotides, amino acids, metabolic intermediates, signaling 

molecules, small peptides) and exogenous dietary and environmental sources (1; 5; 19; 20).  The 
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ability to detect the very large number of chemicals is complicated by the very broad range in 

abundance of chemicals in biologic systems, which span at least eight orders of magnitude in 

human plasma (21).  Online chemical databases such as Metlin (over 240,000 entries), the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (over 17,000 entries), or the Human Metabolome 

Database (HMDB) (over 40,000 entries) facilitate efforts to obtain unequivocal chemical 

identification of spectral features obtained from HRM analysis, but do not provide such 

identification alone.  Despite this, databases provide useful resources to evaluate different 

analytical platforms, even without absolute identification.  For instance, if one assumes that 

different platforms generate the same frequency of incorrect matches, then comparison of results 

provides an estimate of which platform gives better coverage.  Similarly, the fraction of ions 

measured that do not have a match in the databases provides an estimate of the completeness of 

the databases.  While imprecise, these approaches provide ways to compare performance of 

different platforms. 

Chemicals present in the metabolome span a wide range of physicochemical properties 

(mass, polarity, abundance, lipophilicity, pKa), and numerous analytical strategies are available 

to analyze this complex mixture, including Nuclear Magnetic Resonance (NMR) or Fourier 

Transform Infrared Spectroscopy (FTIR) based methods, or mass spectrometric methods (MS) 

coupled to gas (GC), liquid chromatography (LC) or direct injection (DI) (6; 22-34).  NMR and 

FTIR-based methods provide fast quantification of high abundance metabolites with minimal 

sample processing.  Due to increased sensitivity enabling detection of low abundance chemicals, 

MS-based metabolomics provides improved capability for in-depth metabolic profiling. 

Recent advances in MS technology, such as very high mass resolution (>60,000 resolving 

power), mass accuracy (<5 ppm), and increased scan speed of ultra-high resolution mass 
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spectrometers, decreases the requirements for separation of chemicals prior to detection (35-37).  

Nonetheless, the use of liquid chromatography (LC) separation prior to MS improves chemical 

coverage, sensitivity, and quantification, especially for complex biofluid analysis (6).  

Commonly used LC strategies include reverse phase (C18) chromatography, hydrophilic 

interaction liquid chromatography (HILIC) and anion exchange (AE) chromatography.  A variety 

of ion sources are also available for ionization of analytes prior to introduction into the mass 

spectrometer, including electrospray ionization (ESI) (38; 39) and atmospheric pressure chemical 

ionization (APCI) (30).  Complementary ionization and separation approaches for metabolomics 

analyses have been applied for metabolic phenotyping studies of human populations.  Dunn et. al 

(20), Want et. al (40), Rabinowitz et. al (29), Patti et. al (41), Psychogios et. al (42) and others 

have made considerable progress demonstrating the utility of different instrumentation.  

However, direct comparison of different chromatographic/ionization platforms for HRM is not 

available.  

To identify the optimal analytical strategy for HRM profiling of serum obtained from 

military personnel, we analyzed a set of thirty non-identified serum samples obtained from the 

United States Department of Defense Serum Repository (DoDSR) with different combinations of 

HILIC, C18, or AE chromatography and ionization strategies [positive (+) and negative (-) ESI 

and APCI].  We compare the total number of reproducible ions detected, defined as m/z features 

(accurate mass mass/charge with associated retention time and ion intensity) detected with each 

configuration and matches to known chemicals in the Kyoto Encyclopedia of Genes and 

Genomes Human Metabolite database (KEGG) (43; 44).  This strategy allowed us to perform an 

estimate of metabolic coverage of known and unknown chemicals based on the total number of 

ions detected and KEGG matches from common adducts.  We followed this estimation by 
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comparing detection of representative metabolites with each HRM strategy.  This systematic 

evaluation will provide guidance on an optimal analytical configuration that could be used for 

future metabolic phenotyping studies in military personnel.  
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2.2 Methods 

Samples   

Both Emory University and the USUHS IRBs reviewed and approved the research 

protocol as non-human subjects population health surveillance.  Thirty unidentified serum 

samples (i.e., unknown source or date of collection) were obtained from the Department of 

Defense Serum Repository (DoDSR) for analysis.  The repository consists of approximately 50 

million serum samples originally collected for mandatory armed forces personnel HIV testing 

(45).  Samples were collected according to standard DoDSR protocols (45) at military treatment 

facilities, shipped at 4-8ºC and placed in long-term storage at -30ºC.  Prior to analysis, specimens 

were thawed, mixed on a vortex mixer, and 500 μL was aliquoted into separate micro centrifuge 

tubes, refrozen and shipped on dry ice to Emory University according to standard DoDSR 

protocols (45).   

Sample Preparation 

An internal standard mixture consisting of 8 stable isotope internal standards was 

prepared in LCMS grade acetonitrile (Fluka Analytical).  This mixture broadly represents 

different classes of small molecules for high-resolution metabolomics analysis.  These chemicals 

included [13C6]-D-glucose, [15N]-indole, [13C5]-L-glutamic acid, [15N]-L-tyrosine, [trimethyl-

13C3]-caffeine, [3,3-13C2]-cystine, [15N,13C5]-L-methionine, and [13C5, 15N2]-L-glutamine.  All 

internal standards were obtained from Cambridge Isotope Laboratories and >98% pure, 

according to the manufacturer’s certificate of analyses.  Accurate masses for the “M+H”, 

“M+Na”, or “M-H” adducts for each internal standard compound were used to verify the 

presence of standard in each sample.  Each sample was prepared according to Soltow et al. (6) by 

adding 130 µL of acetonitrile containing the internal standard mixture to 65 µL of serum.  
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Following mixing and incubation on ice for 30 min, precipitated proteins were pelleted with 10 

min centrifugation at 16,100 × g at 4°C.  The resulting supernatant was transferred into 

autosampler vials and maintained at 4°C for the duration of the analysis (<24 hours).  Pooled 

plasma reference samples (Qstd) and the NIST SRM 1950 certified plasma reference standard 

(46) were prepared and included at the beginning and end of every analytical run for post hoc 

quantification and standardization.   

Liquid chromatography 

Chromatographic separation was performed on a Dionex Ultimate 3000 UHPLC with a 

dual column compartment for column switching.  This setup allowed an analytical separation to 

be performed on one column, while a second column was washed and conditioned prior to the 

next injection.  For each set of analyses, a single chromatographic retention mechanism was 

employed, with the ionization polarity alternating between injections. Mobile phase A consisted 

of 2% formic acid (Sigma-Aldrich, analytical grade 27001) in LCMS grade water (Fluka 

Analytical Chromasolv LCMS grade).  Mobile phase B consisted of LCMS grade acetonitrile, 

and mobile phase C consisted of LCMS grade water.  Following each analytical injection, each 

column was washed and reconditioned at the starting mobile phase conditions for 20 min.  The 

flow rate for all analytical separations was 350 μL/min, injection volume was 10 μL and all 

samples were analyzed in triplicate to ensure analytical reproducibility.  Previous analyses with a 

10 min gradient showed the need for an extended wash period, as some late-eluting chemicals 

were not completely resolved within the 10 min runtime.  As a result, each analytical separation 

was performed for 20 minutes.   

Reverse Phase (C18) chromatography:  Higgins C18 100 × 2.1 mm (TS-1021-C185) columns 

were used for reversed phase separation.  For C18/APCI or ESI+ analysis, the initial mobile phase 
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conditions consisted of 5% A, 15% B, and 80% C for four min.  This was followed by a 10 min 

linear gradient to 5% A and 95% B, which was then held for 6 min.  For C18/APCI or ESI- 

analysis, the initial conditions were 80% A, 15% B, and 5% C for 4 min, increased to 95% B and 

5% C for 10 min, which was then held for 6 min. 

Anion Exchange (AE) chromatography:  Hamilton PRP-X110 100 × 2.1 mm (79743) columns 

were used for AE chromatography.  For AE/ESI+ and ESI- analysis, the initial mobile phase 

conditions consisted of 5% A, 50% B, and 45% C held for 2 min, increased to 50% A, and 50% 

B for min and held for 13 min. 

Hydrophilic Interaction Liquid Chromatography (HILIC):  Supelco Ascentis Express HILIC 100 

× 2.1 mm mm (53939-U) columns were used for HILIC chromatography.  For HILIC/ESI+ 

analysis, the initial mobile phase conditions consisted of 8% A, 90% B, and 2% C, held for 4 

min, increased to 50% A, 45% B, and 5% C for 10 min, and held for 6 min.  For HILIC/ESI- 

analysis, the initial mobile phase conditions consisted of 98% B, and 2% C, held for 4 min, 

increased to 5% A, 45% B, and 50% C for 10 min and held for 6 min. 

Ultra-high resolution mass spectrometry 

Mass spectral detection was performed with a Thermo Scientific Q-Exactive HF mass 

spectrometer in continuous full scan mode at 70,000 resolution (scan range 85-1,275 m/z for all 

analyses other than AE, AE scan range was 100-1,500 m/z).  This difference in mass range 

resulted in approximately 200 fewer features detected by omission of 85-100 m/z, and 500 more 

features detected due to inclusion of 1,275 to 1,500 m/z.  Ion source conditions were optimized 

for both negative and positive ionization through systematic variation of different operational 

parameters to maximize the signal intensity of a representative chemical mixture infused into the 

source at appropriate mobile phase flow rate and composition.  The automatic gain control 
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(AGC) target was set at 106 with a maximum ion injection time at 200 ms.  Positive mode 

conditions were: spray voltage, 4500 V; capillary temperature, 275°C.  Negative mode 

conditions were: spray voltage 3200 V; capillary temperature, 320°C.  For both modes, sheath 

and auxiliary gas flow rates were maintained at 45 and 5 (arbitrary units), respectively.  The S-

Lens RF level was set at 69 for both negative and positive mode. 

Data extraction and analysis 

Instrument .RAW files were converted to .CDF format and mass spectral features were 

extracted and aligned using apLCMS (2; 4) with modifications by  xMSanalyzer (3).   The 

apLCMS software includes baseline subtraction, noise filtering (based upon a feature being 

present in at least 10% of spectra), retention time alignment (30 second maximum drift allowed) 

(2).  xMSanalyzer was used with default parameter settings, and all samples met quality control 

criteria for mass alignment of internal standards, total feature detection and reproducibility of 

replicates.  To further ensure analytical reproducibility and minimize measurement variability 

(assessed by ion technical replicate CV), a feature must be detected on at least two out of three 

technical replicates and features with greater than median 50% CV for technical replicates were 

removed from subsequent analyses.  Due to the desire to identify low abundance chemicals, 

which may not be present in every individual, we did not select features based on a threshold 

fractional detection.  To estimate the number of chemicals detected in a single analysis, we 

performed tentative metabolite annotation by using the feat.batch.annotation.KEGG  function in 

xMSanalyzer using an m/z search tolerance of ±10 ppm and “M+H”, “M+Na”, “M+K”, “M-

H2O+H”, “M+ACN+H”, “M+ACN+Na”, “M+2Na-H” adducts for positive mode; “M-H”, 

“M+Cl”, “M-H2O-H”, and “M+Na-2H” adducts for negative mode.  The 10 ppm window is 

based on previous studies showing that even though most ions are within 5 ppm mass accuracy, 
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the apLCMS data extraction algorithm can result in greater differences between observed and 

exact mass (2; 4; 6).  We also annotated metabolites with a conservative approach by only 

searching for “M+H” ions in positive mode or “M-H” ions in negative mode.  In both cases, we 

minimized redundancies by eliminating duplicate KEGG Compound IDs.  We mapped unique 

chemical matches onto metabolic pathways using the KEGG mapper tool accessed at 

http://www.genome.jp/kegg/tool/map_pathway2.html.  The online BioVenn tool 

(http://www.cmbi.ru.nl/cdd/biovenn/) was used to compare unique and overlapping chemical 

matches and ions detected by different HRM strategies (47).   
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2.3 Results  

Characteristics of HRM data  

Figure 2.1 contains histograms of feature triplicate median coefficient of variation (CV), 

distribution of m/z as a function of retention time (RT), and ion detection as a function of RT for 

each mode of chromatography and ionization.  All platforms except C18/APCI+ had median CV 

< 30%, equivalent to Standard Error of the Mean (SEM) <17.4%, indicating large numbers of 

ions are detected with sufficient reproducibility for health evaluation (Figure 2.1, left panels).  

The distribution of m/z as a function of RT provides a way to visualize elution profiles.  These 

results (Figure 2.1, middle panels) show that metabolites are differentially retained depending 

on the choice of AE, C18, or HILIC chromatography and that ion elution profiles are similar for 

positive and negative ionization modes.  Histograms of ions detected as a function of RT (Figure 

2.1, right panels) show that maximal ion detection occurs during the initial wash-through 

volume, likely due to the salt content of plasma.  For both C18 and HILIC, subsequent peaks were 

also consistent with the known mixture of hydrophobic and hydrophilic metabolites in plasma. 
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Figure 2.1  High-resolution metabolomics QC showing most ions are reproducibly detected with 
median CV% less than 17.4%. 
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Total number of m/z features detected and KEGG matches for individual HRM platform  

The total number of ions detected for each analysis platform varied from 17,824 for 

C18/ESI- to 2,559 for C18/APCI+ (Figure 2.2a).  Analytical configurations using ESI detected 

more ions than configurations using APCI.  Negative ionization resulted in a greater number of 

detected ions than the comparable analyses with positive ionization, except for AE: HILIC/ESI- 

(16,777) versus HILIC/ESI+ (13,404); C18/ESI- (17,824) versus C18/ESI+ (10,722); C18/APCI- 

(7,043) versus C18/APCI+ (2,559); AE/ESI+ (9,931) versus AE/ESI- (8,182).  To estimate the 

number of ions which possibly represent known metabolites, we searched the KEGG database 

for chemical matches within 10 ppm mass accuracy corresponding to the adduct forms described 

above.  The results showed that only the configurations with relatively lower number of detected 

ions had more than 50% database matches, suggesting that many detected ions could be derived 

from uncharacterized metabolites. 

 To estimate the coverage of known metabolites provided by each configuration, we 

calculated the percentage of the KEGG chemical database (17,554 total chemicals) that could be 

matched by a single method.  The results (Figure 2.2B) showed that the best platforms 

(HILIC/ESI+ and AE/ESI+) could detect up to 58% of the KEGG chemical database.  In 

combination with the results in Figure 2.2A, indicating the majority of detected ions are not 

matched to chemicals in KEGG, these results suggest the KEGG database is incomplete in 

coverage of the human metabolome and that a single analytic platform may capture only up to 

60% of known human metabolites. 
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Figure 2.2 A. Total number of ions detected with percentage of ions matching at least one 
chemical in KEGG represented by dark portion of the bar. B. Number of chemical matches, with 
percentage of total database (17,554 chemicals) matched. 
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Dual HRM platforms increase metabolic coverage   

 To determine the extent that dual HRM strategies could improve the number of database 

matches, we examined pairwise combinations of ionizations and chromatography.   Similar total 

ion count was obtained with any paired combination of positive and negative ESI using either 

HILIC or C18 chromatography.  To determine combinations that provided the maximum number 

of database matches, we examined paired LC and ionization configurations using number of non-

overlapping and overlapping matches to the KEGG database.  The pair consisting of HILIC/ESI+ 

and C18/ESI- analysis had the highest number of chemical matches (12,712), which included 

matches to 72% of the chemicals present in the KEGG database (Figure 2.3).  A number of dual 

HRM strategies achieved greater than 70% coverage of the KEGG database.  For example, using 

HILIC chromatography with dual polarity (ESI+ and ESI-) provided 12,550 matches.  Using C18 

chromatography with ESI+ and ESI- resulted in a total of 12,454 matches.  The combination of 

C18/ESI+ with HILIC/ESI- matched to 12,271 chemicals in KEGG.  Thus, either of these dual 

HRM platforms appears to provide an effective way to increase the number of database matches 

by approximately 25% over individual HRM strategies. 
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Figure 2.3 Dual HRM platforms increase number of database matches to 72% of the KEGG 
chemical database. Matches obtained from left HRM platform (blue), right HRM platform (red), 
and both HRM methods (purple). 
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The use of ESI/APCI or C18/HILIC/AE increases ion detection for HRM   

 To determine which pair of columns provided maximal number of ions with matches to 

the KEGG database, we compared the effect of chromatography on the detection of ions 

matching at least one chemical with comparisons for positive and negative ionization completed 

separately (Figure 2.4).  Direct comparisons of ions obtained in negative mode with ions 

obtained in positive mode are not possible unless molecular ions for chemicals are identified.  

Therefore, this analysis is to compare the effect of chromatography on the ability to detect 

unique ions that could match chemicals in KEGG.  The use of different columns resulted in a 

relative increase in non-redundant ions, i.e., likely increasing the total number of chemicals 

detected.  C18/ESI- detected 3,642 ions with database matches and HILIC/ESI- detected 4,578 

ions with database matches, with only 975 of these matches being the same for the two 

platforms. Similar increases in the number of ions with at least one database match were 

observed when any two chromatographic strategies were used.  Thus, the data show that in a dual 

platform analysis, the use of two different column types improves chemical coverage. 

In comparison to the large overlap in the number of chemical matches obtained for 

HILIC/ESI+ and C18/ESI+ (68% of ions have m/z within 10 ppm), only 13% of ions with 

database match for at least one chemical were the same for HILIC/ESI+ and C18/ESI+.  These 

results show that detected ions with chemical matches are different depending on the HRM 

configuration, and that employing multiple analytical approaches can increase the detection of 

ions with chemical matches.  Furthermore, this data suggests that the chemicals detected by both 

platforms were high abundance, present in multiple adduct forms and potentially suitable for 

internal cross-validation within a dual-chromatography protocol (6).  Support for this concept 
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was provided by comparison of the signal for tyrosine in the HILIC/ESI+ and C18/ESI+ 

comparison (Figure 2.5). 
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Figure 2.4 Number of ions with database matches from paired HRM platforms. Ions detected by 
left HRM platform (blue), right HRM platform (red), and both HRM methods (purple). 
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Figure 2.5 Comparison of ion intensity for tyrosine detection by HILIC/ESI+ and C18/ESI+.  
Each dot represents the normalized peak intensity for tyrosine measured in the same 30 samples 
across two different analytical platforms. 
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HRM detects endogenous and exogenous chemicals   

Combining all eight HRM platforms results in 14,387 different database matches, 

providing up to 82% coverage of all metabolites in KEGG. KEGG matches were then classified 

based on their functional KEGG BRITE categorization (Figure 2.6).  Approximately half of 

KEGG matches did not have KEGG classifications.  Metabolites with roles in intermediary 

metabolism are termed “compounds with biological roles” and represented 3.4% of all KEGG 

matches while lipids represented a larger fraction, 12.3%.  The remaining matches were for 

chemicals derived from exogenous sources (pesticides, carcinogens, pharmaceuticals, 

phytochemical compounds, endocrine disrupting compounds, natural toxins, and metabolites 

derived from natural products).  These results show that diverse classes of chemicals could be 

detected in a single analysis, including those derived from environmental or occupational 

exposures. 
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Figure 2.6 KEGG BRITE categorization of accurate mass matches (MS1) for detected features 
by HRM.  HRM detects accurate mass matches to metabolites from a broad range of chemical  
classes.  However, approximately half of detected metabolites are not classified in KEGG. 
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Pathway Coverage   

To determine the coverage of metabolic pathways provided by dual chromatography, we 

mapped the database matches to KEGG human metabolic pathways.  Combining C18/ESI- with 

HILIC/ESI+ (Figure 2.7) analysis provided similar coverage (1246 database matches) of the 

human reference metabolic pathway in KEGG (hsa01100) as C18/ESI- with C18/ESI+ and 

HILIC/ESI- with HILIC/ESI+ (data not shown).  In previous targeted MS/MS confirmation of 

database matches to ions detected by comparable methods (3; 6; 48), we found that 60% to 80% 

of these matches are correct identifications.  Thus, the results show that a dual chromatography 

approach can provide a general assessment of metabolism, but additional confirmation is needed 

for conclusions concerning specific pathway effects in study populations. 

We performed a comparable annotation using only ions matching [M+H] (HILIC/ESI+) 

or [M-H] (C18/ESI-) adducts to determine the utility of this simpler annotation strategy.  Results 

showed 757 matches to chemicals on hsa01100 were obtained, with less overlapped detection 

between platforms (Figure 2.8).  Despite the lesser number of matches, this simpler strategy 

provided similar coverage of metabolic pathways.  Although this more conservative strategy 

includes some incorrect matches, the analysis emphasizes that combined platforms provides 

substantial metabolic coverage. 
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Figure 2.7 Dual HRM using C18/ESI- (blue) with HILIC/ESI+ (red) provides in-depth coverage 
of human metabolic pathways using multiple adducts for chemical matching. Black dots indicate 
metabolites matched with both HRM methods. 1246 metabolites are matched with this strategy. 
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Figure 2.8 Dual HRM using C18/ESI- (blue) with HILIC/ESI+ (red) provides adequate coverage 
of human metabolic pathways using conservative chemical matching strategy. Black dots 
indicate metabolites matched with both HRM methods. 757 metabolites are matched. 
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Comparison of Targeted Chemical Detection    

The information provided by the analyses above suggests that the combination of 

different polarities with different analytical columns provides optimal chemical coverage.  To 

test this specifically, we assessed each HRM configuration for its ability to detect a list of 

metabolites with confirmed identities (Figure 2.9).  [3,3-13C2]-cystine, an internal standard, was 

detected in seven of the eight platforms.  In contrast, cotinine, was only detected with positive 

ionization (177.1026 m/z) and fatty acids were better detected with negative ionization.  The 

results show that inclusion of both polarities within a dual chromatography analysis improves the 

coverage of known metabolites. 
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Figure 2.9 Representative chemical detection with eight HRM platforms. 
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2.4 Discussion 

Management of risks associated with environmental exposures and their biologic effects 

depend upon tools to detect and predict adverse effects.  Currently used clinical chemistry and 

toxicological analyses provide information about a limited number of markers, and there is an 

ongoing need to improve capabilities.  HRM provides a strategy to measure thousands of known 

and unknown chemicals to enable routine, generalized assessment of exposures and biologic 

responses.  These metabolic assessments can be used within an integrative framework for health 

evaluation in military personnel and support National Precision Medicine initiatives.  In this 

study, we sought to identify HRM configurations that could increase ion detection and chemical 

database matches, and thereby increase the likelihood of detecting the maximal number of 

known and unknown chemicals.  We evaluated different chromatographic and ionization 

strategies for analyzing serum samples from the DoDSR to identify optimal strategies for 

metabolic assessments of military personnel.   

Chromatography facilitates the analysis of complex mixtures using mass spectrometry, as 

it separates potential interfering ions from ions of interest, improving quantification and limit of 

detection.  Orthogonal dual chromatographic approaches prior to MS analysis, such as pairing 

lipophilic selectivity obtained with C18 chromatography with polar selectivity obtained from 

either AE or HILIC analysis, have been applied in previous studies.  In Soltow et al. (6), the use 

of dual AE and C18 chromatography with positive ionization on a Thermo LTQ-FT mass 

spectrometer increased overall ion detection by 23-26%, yielding a total of up to 7,000 ions per 

sample (6).  More recently, Ivanisevic et al. (26) performed a similar analysis of human plasma, 

comparing chemical detection with C18 and HILIC using positive and negative electrospray 

ionization and obtained 9,709 ions with HILIC/ESI+ and 15,263 ions with C18/ESI+.  In negative 
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mode, they obtained 8,122 ions with HILIC/ESI- and 7,742 ions with C18/ESI-.  Our HRM 

platform yielded similar numbers of m/z features detected with HILIC /ESI+ (13,404 ions) and 

C18/ESI+ (10,722) and with HILIC/ESI- (17,824) and C18/ESI-: (16,777 ions).  The Ivanisevic 

study also demonstrated that the combination of HILIC/ESI+ with C18/ESI+ increased ions with 

[M+H] chemical matches by 28%, compared to using C18/ESI+ alone.  In negative mode, the 

combination of HILIC/ESI- with C18/ESI- increased ions with [M-H] chemical matches by 43%, 

compared to using C18/ESI- alone.  Contrepois et. al (49) also compared ions detected by HILIC 

and C18 chromatography with positive and negative ESI, and found that the addition of HILIC 

chromatography to a C18 metabolomics analysis resulted in a 68% increase in ions detected with 

ESI+, and a 148% increase in ESI-.  In our study, we found that pairing HILIC chromatography 

with C18 chromatography for HRM increased detected ions with chemical matches by 99% using 

ESI-, and a 90% increase using ESI+, compared to using C18 chromatography alone.  Our 

findings are consistent with other studies evaluating combined analytical strategies for metabolic 

profiling, showing that dual chromatographic approaches increase the number of ions detected 

with non-redundant chemical matches. 

Metabolites may preferentially form positive or negative ions for detection, and may 

ionize more efficiently using either ESI or APCI.  Because producing gas phase ions from 

metabolites is critical for mass spectral detection, we also examined the use of different 

ionization strategies (ESI vs. APCI, ESI+ vs. ESI-) for increasing potential chemical coverage 

for HRM.  Previous studies have performed similar comparisons for metabolomics.  Nordström 

et al. showed that pairing ESI+ with ESI- increased unique, non-redundant ion detection by 90% 

compared to using ESI+ alone, and that the use of APCI increases unique ion detection by 20% 

compared to ESI alone (30).  Ivanisevic et al. showed that the combination of HILIC with ESI- 
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and C18 with ESI+ provided the maximum amount of biological information relating to lipid and 

central carbon metabolism (26).   Contrepois et al. also compared HILIC and C18 

chromatography with positive and negative ESI and demonstrated the use of dual 

chromatography with positive and negative ionization increased chemical detected (49).  In our 

study, we show similar increases in chemical coverage when using positive and negative 

ionization for HRM.  In contrast to our extraction with a volume of 2:1 acetonitrile to plasma and 

analysis with an acidic pH, Ivanisevic et al. extracted with a volume of 1:1 methanol/acetonitrile 

to plasma and the chromatographic gradients were buffered at basic pH; a direct comparison of 

extraction and solvent conditions, as well as column stability, will be needed to determine which 

conditions are most suitable for routine use.   

The number of database matches provides an estimate of metabolic coverage.  As 

indicated above, targeted MS/MS confirmation of database matches in our previous studies (3; 6; 

48) showed that between 60% and 80% of matches are correct identifications.  Other limitations 

to interpretation, namely that a single chemical can give rise to multiple adducts and that 

multiple chemicals have the same mass, were addressed in the experimental design.  Specifically, 

we estimated the fraction of ions with putative identification by counting all ions with matches, 

and we eliminated redundancies due to multiple adducts of the same chemical by counting 

database matches in terms of the number of KEGG IDs.  The limitations were also addressed by 

analysis of a subset of metabolites with confirmed identities (Fig 8).  Thus, despite the 

limitations of the approach, the results provide rough estimates that about half of the KEGG 

database can be captured in routine analyses and that about half of the ions detected are present 

in the KEGG database. 
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Analysis of matches only using H+ and H- forms shows that even with this 

simplification, an effective coverage of nearly 1000 metabolites is obtained.   Confirmation of 

these metabolites by MS/MS for H+ and H- forms is straightforward and, along with reference 

standardization (8), could provide a way to quantify up to 1000 metabolites in a routine and 

affordable manner.  Furthermore, this approach could allow integration of data from ultra-high 

resolution instruments and data from Q-TOF and other instruments so that data is readily 

interchangeable between different laboratories.   

Contrepois et. al noted that while chemicals may be detected by multiple analytical 

configurations, peak quality may vary based on differences in ionization or chromatography.  We 

noted in our study that different HRM strategies resulted in differential detection of 

representative chemicals.  Overall, our study results are in agreement with previous studies and 

others (22; 25; 31; 40; 50-53), as we conclude that employing dual HRM with positive and 

negative ionization and orthogonal chromatography increases chemical coverage of human 

serum metabolites and that the quality and quantification of detected chemicals may vary 

depending on HRM conditions.  Increased chemical coverage facilitates the use of non-targeted 

metabolomics pathway enrichment software i.e. mummichog, which performs metabolic pathway 

enrichment from ranked spectral features (18).   

Limitations of the Study 

The computational metabolomics methods used in the present study provide estimates of 

coverage of metabolism and detection of dietary and environmental chemicals based upon 

accurate mass matches to chemicals in the KEGG database.  A limitation is that these analyses 

do not provide absolute chemical identity for most of the ions detected.  Confirmation of 

chemical identities with tandem mass spectral (MS/MS) analysis and co-elution with authentic 
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standards has been performed for several hundred chemicals in other studies using these methods 

(9-13; 15; 17; 21; 48; 54)) and provide confidence that the conclusions reached are valid, even 

though many individual ion matches are incorrect. 

In addition to confirming chemicals with tandem mass spectrometry, future studies can 

explore combining NMR/GCMS technologies to increase chemical detection (such as performed 

by Psychogios et. al (42)), optimization of analytical gradients or the use of ion mobility MS to 

increase chemical coverage.  Additionally, application of clustering algorithms to identify 

isomers and adducts arising from a single chemical are likely to decrease chemical noise.  

Application of complementary analytical methodologies have greatly increased the confidence of 

chemical matches and reduced chemical noise and artefacts from MS analysis (24; 49; 55; 56).   
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Conclusion 

This study compared chemical coverage obtained with eight different HRM platforms.  

The results show that orthogonal chromatography and polarity for ionization (e.g., HILIC/ESI+ 

and C18/ESI-) provides the best dual chromatography platform for metabolic coverage of serum 

metabolites and also includes an extensive number of matches to dietary and environmental 

chemicals.  The results show that metabolites detected by multiple platforms can be used for 

internal validation and that little pathway information is lost by restricting analysis only to 

adducts formed by gain or loss of H+.  The results support the use of DoDSR serum samples for 

metabolic assessments of military service personnel.  Furthermore, these results show the general 

applicability of HRM for detection of known and unidentified metabolites.  Analysis of standard 

chemical libraries coupled to collection of tandem MS/MS spectra  
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Chapter 3 : Reference standardization for quantification and harmonization of large-scale 
metabolomics 
 

This chapter uses the methods established in chapter 2 and continues the development of 

a chemical detection methodology for identification and applies reference standardization for 

quantification of large numbers of metabolites.  In the previous chapter, I show approximately 

half of the metabolites detectable by HRM have not yet been identified and the need to verify 

metabolite annotations with analysis of authentic chemical standard libraries.  The research 

described in this chapter validates the detection of 428 metabolites and provides quantified 

values for 212 metabolites in human plasma.  This facilitates the identification and quantification 

of previously unidentified metabolites and provides a foundation for the research described in 

chapter 4.   
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Reference standardization for quantification and harmonization of large-scale 

metabolomics 

Ken H. Liu, Mary Nellis, Karan Uppal, Chunyu Ma, Ravneet Kaur, Yonggang Liang, ViLinh 

Tran, Douglas Walker, Dean P. Jones 

Abstract 

Reference standardization was developed to address quantification and harmonization 

challenges for high-resolution metabolomics (HRM) data collected across different studies or 

analytical methods.  RS relies on the concurrent analysis of calibrated pooled reference samples 

at pre-defined intervals and enables a single-step batch-correction and quantification for high-

throughput metabolomics.  Here, we provide quantitative measurements for approximately 200 

metabolites for each of three pooled reference materials (214 metabolites for Qstd3, 198 

metabolites for NIST1950, and 205 metabolites for CHEAR) and show that application of this 

approach for quantification supports harmonization of metabolomics data collected from 3,677 

human samples in 17 separate studies analyzed by two complementary HRM methods over a 17-

month period.  The results establish reference standardization as a method suitable for 

harmonizing large-scale metabolomics data and extending capabilities to quantify large numbers 

of known and unidentified metabolites detected by high-resolution mass spectrometry.  
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3.1 Introduction 

High-resolution metabolomics (HRM), based on the collection of spectrochemical 

profiles obtained by liquid chromatography coupled to Fourier-transform mass spectrometry 

(FTMS), detects both known and unidentified metabolites in biological samples.  These 

measurements provide extensive coverage of metabolites from endogenous metabolic pathways, 

diet, therapeutics, xenobiotics, and the microbiome and can be used for development of 

cumulative metabolomics databases suitable for personalized medicine, systems pharmacology, 

and exposome research. 

Harmonization of metabolomics data remains a challenge because of differences in study 

design, pre-analytical (sample collection, analyte stability, etc.), analytical (sample preparation, 

analytical methodology, use of internal/external reference standards, instrument drift/batch 

effects, etc.), or post-analytical (data extraction, alignment, normalization, identification, 

quantification, statistical and functional analysis) factors.  From a non-targeted metabolomics 

experiment, data are typically reported as mass-to-charge ratios (m/z) with retention times (RT) 

and associated peak intensities (which may be mathematically transformed values, or converted 

to other arbitrary units).  The translation of spectral feature peak intensities to identified 

metabolites with estimated concentrations would facilitate cross-study and cross-method 

comparisons and development of harmonized platform-agnostic cumulative metabolomics 

databases.  Although several strategies have been proposed for data normalization (1-5) and/or 

use of universally labeled isotopes to correct for matrix effects and ion suppression (6; 7), only 

half of spectral features detected by HRM correspond to previously characterized metabolites for 

which authentic standards may be available (8).  The remaining half of spectral features detected 
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by HRM are not well-annotated or characterized; many show significant associations with 

disease (9; 10).   

Reference standardization provides a practical and community-based solution for 

harmonizing data collected from non-targeted HRM studies (11; 12).  In principle, this approach 

corrects for systematic technical errors by normalizing metabolite spectral peak intensities to 

metabolite concentrations relative to a concurrently analyzed calibrated reference sample.  An 

ideal reference should exist in sufficient quantities for long-term routine use with every batch of 

samples analyzed and be representative of the biochemical composition of study samples.  In 

practice, this can be achieved for individual laboratories by creation of a pooled reference that is 

calibrated against a widely available reference, such as National Institutes of Standards and 

Technology Standard Reference Material-1950 (NIST SRM1950) (13). 

Because ion abundances detected by HRM are generally proportional to metabolite 

concentrations, these properties would enable use of the instrument response obtained for a 

metabolite with a stable, known concentration in the reference for estimating the concentration of 

the same metabolite detected in study samples.  Since most metabolites in reference materials 

(e.g. NIST1950) are stable long-term when stored at -80°C (11), this approach enables 

retrospective quantification of metabolites as additional metabolites are characterized in study 

samples provided 1) the same metabolite is identified in a concurrently analyzed reference 

sample and 2) the ratio of metabolite peak intensities between a reference and a study sample is 

consistently measured across several studies (32).  Thus, a thorough examination of reference 

“metabolomes” and extensive characterization and reporting of metabolite identifications and 

concentrations in one or more reference samples would provide a practical and scalable strategy 
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to estimate concentrations and harmonize data for large numbers of metabolites detectable by 

HRM. 

To evaluate reference standardization as a strategy for harmonizing metabolite 

measurements across multiple studies collected on the same analytical platform in our laboratory, 

concentrations of approximately 200 metabolites were measured in three plasma reference 

materials (NIST1950, Qstd3, Chear).  We tested the reproducibility of this approach by 

comparing inter-reference metabolite ratios over multiple analytical batches.  We tested 

applicability of this approach to quantify metabolites in heparin plasma from EDTA plasma, and 

also compared calculated reference values against compiled ranges in HMDB.  Finally, we tested 

use of these values to harmonize metabolomics data on representative metabolites collected from 

3,677 human plasma samples analyzed over a 17 month period across 17 different studies on two 

complementary HRM methods. 
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3.2 Methods 

Reference plasma materials:   

EDTA, Heparin, and Citrate are commonly used anticoagulants for preparation of blood 

plasma.  Two EDTA plasmas and a lithium heparin plasma prepared by NIST were used as 

reference materials for this study.  Qstd3: Pooled EDTA plasma obtained from 50 healthy donors 

purchased from Equitech-Bio (SHP45) without information on drug use or fasting status.  

CHEAR: Pooled EDTA plasma obtained from 100 adults (50 males and 50 females) purchased 

from BioreclamationIVT without information on drug use or fasting status.  NIST1950 (13; 14):  

Pooled lithium heparin plasma obtained from 100 healthy volunteers intended for use as a 

healthy reference human plasma metabolome.  Plasma was collected from fasted individuals 

with no documented drug use 72 hours prior to sample collection. 

Standards and standard curve preparation:   

Authentic chemical standards used for preparation of standard curves were from the 

commercially available Sigma Aldrich MSMLS library or individually purchased with stated 

purities of >95%.  Mixtures of these standards were prepared row-by-row into stock solutions 

and used for preparation of standard curves in saline (3 concentrations and blank) and Qstd3 (6 

concentrations and unspiked Qstd3).  In total, 730 chemical standards were analyzed for this 

study.  CHEAR and Qstd3 were analyzed with every batch and NIST1950 was analyzed every 4 

rows of chemical standard mixture analyzed. 

Sample preparation for LC-FTMS analysis:   

50 μL of sample (plasma or saline) was mixed with 100 μL of acetonitrile containing a 

mixture of 9 stable isotope internal standards (15).  Sample mixtures were incubated on ice for 

30 min, and centrifuged for 10 min at 14,000 rpm at 4°C to pellet proteins.  Supernatants were 



 

 

73 
   

transferred to autosampler vials and immediately loaded onto a chilled 4°C autosampler for 

analysis. 

Instrumental analysis:  

Five μL aliquots of sample extracts were analyzed using liquid chromatography and 

Fourier Transform high-resolution mass spectrometry (Dionex Ultimate 3000 UHPLC, HF Q-

Exactive, Thermo Scientific).  A dual pump configuration on the chromatographic system 

enabled parallel analyte separation and column flushing (16).  Sample extracts were injected and 

analyzed using hydrophilic interaction liquid chromatography (HILIC) with positive electrospray 

ionization (ESI+) and reverse phase (C18) chromatography with negative electrospray ionization 

(ESI-).  Analyte separation for HILIC was performed with a Waters XBridge BEH Amide XP 

HILIC column (2.1 mm x 50 mm, 2.6 μm particle size) and gradient elution with mobile phases 

A: water, B: acetonitrile, C: 2% formic acid.  The initial 1.5 minute period consisted of 22.5% A, 

75% B, and 2.5% C, followed by a linear increase to 75% A, 22.5% B, and 2.5% C at 4 min and 

a final hold of 1 min.  C18 chromatography was performed on an end-capped C18 column 

(Higgins Targa C18 2.1 mm x 50 mm, 3 μm particle size) with mobile phases A: water, B: 

acetonitrile, C: 10 mM ammonium acetate.  The initial 1 min period consisted of 60% A, 35% B, 

and 5% C followed by a linear increase to 0% A, 95% B, and 5% C at 3 min and held for the 

remaining 2 min.  For both methods, the mobile phase flow rate was 0.35 mL/min for the first 

minute, and increased to 0.4 mL/min for the final 4 min.  The FTMS was operated at 120k 

resolution and MS1 spectra were collected from 85-1,275 m/z.  Tune parameters for sheath gas 

were 45 for ESI+ and 30 for ESI-.  Auxiliary gas was set at 25 for ESI+ and 5 for ESI-.  Spray 

voltage was set at 3.5 kV for ESI+ and -3.0 kV for ESI-.  Ion dissociation spectra were collected 
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using parallel-reaction monitoring (PRM) mode with targeted inclusion lists for expected ions in 

HCD mode with normalized collision energy of 30%.   

Reference standardization:  

When the same metabolite is detected in a study sample (or other reference) as the 

calibrated reference, the ratio between the instrument response for a metabolite (MS1 peak 

intensity or MS2 diagnostic fragment peak intensity at a known retention time) detected in study 

samples (or other reference) to the instrument response associated with a known metabolite in a 

calibrated reference was multiplied by the metabolite concentration in the calibrated reference.  

Raw data were not normalized, autoscaled, or otherwise transformed prior to use of reference 

standardization. 

Metabolite Identification in Reference Samples: 

Spectral peaks associated with potentially formed adducts (M+H, M+Na, M+K, M+2Na-

H, M-H2O+H, etc. in ESI+; M-H, M+Cl, M+FA-H, M+CH3COO, M-H2O-H, M-2H, etc. in ESI-) 

were examined per metabolite using a ± 3 ppm mass window in xCalibur Qualbrowser software.  

When multiple adducts were detected, the most reproducible (technical replicate CV) and 

quantifiable (exhibiting the most predictable relationship between analyte concentration and peak 

intensity with an unweighted Pearson’s linear model) MS1 adduct was selected for 

quantification.  If MS1 was not sufficient to distinguish between isobaric species, a diagnostic 

MS2 fragment ion was used for quantification in the reference.  Metabolite peak intensities were 

integrated in Qualbrowser.  Metabolite retention times (RT), MS1 and MS/MS spectra obtained 

in unspiked reference samples were matched with RT and spectral information obtained from 

analysis of authentic chemical standards added to plasma or saline. 

Metabolite Quantification:  
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Method of standards addition to calibrate Qstd3 metabolite concentrations: An unweighted 

linear regression line was plotted (x-axis = metabolite concentration, y-axis = metabolite peak 

intensity) and the negative of the x-intercept was the estimated concentration of a metabolite in 

Qstd3.  When the addition of standard decreased the existing peak intensity for a metabolite or if 

no signal was observed in the reference, the metabolite was not quantified.  Qstd3 values were 

used as the reference for estimation of metabolite concentrations in CHEAR and NIST1950.  For 

30 of the 207 metabolites, this approach was not useful because a positive x-intercept was 

obtained or the calculated concentrations differed more than ten-fold of expected concentrations 

in HMDB (17); for these cases, NIST1950 values were used to calibrate Qstd3 and CHEAR.  

Unless otherwise noted, no normalization or internal standard corrections were used for 

metabolite quantification. 

Reference standardization of representative metabolites in 3,677 human plasma samples:  

The data used to evaluate reference standardization were derived from 17 studies, 

comprising 3,677 samples analyzed over a 17 month period.  These include fully de-identified 

human samples from a range of studies and were without demographic or health information.  

Thus, their comparison provides a blinded analysis in which the same instruments, methods and 

personnel analyzed the samples, but the sample collection and characteristics of the samples 

were independent of the analytical laboratory.  HRM data for the 17 studies were aligned using 

apLCMS (18; 19).  Qstd3 reference was analyzed with six technical replicates every ten samples.    

NIST1950 reference was analyzed at the beginning and end of every study.  CHEAR reference 

was used in 4 studies.  Reference standardization was performed batch-wise using Qstd3 values 

(Appendix 1) using a customized R-script. 
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3.3 Results 

We validated the detection of 441 individual chemicals on one or both of the platforms.  

Information and examples for classification as detectable, identifiable, and quantifiable is 

provided in Appendix 1 and 2.  For those detected, metabolites were identified in the reference 

material using accurate mass MS1 signal (± 3 ppm from theoretical mass for respective adduct 

form), co-elution with authentic standard within 3 s, and ion dissociation spectra (MS2/MSn) 

matching authentic standard (Figure 3.1A, B).  These criteria fulfill level 1 identification 

according to the Metabolomics Standards Initiative (20) and a level 1 confidence score according 

to Schymanski (21).  For some metabolites, concentrations in the reference were too low to 

obtain useful MS/MS spectra and additional criteria were used for quantification as described 

below.  Some metabolites with identical molecular formulas could be distinguished from one 

another by chromatographic separation or use of a diagnostic MS/MS fragment (e.g. 

valine/betaine); many were not easily distinguishable, however, and were not considered further 

for quantification.  Coeluting isobaric metabolites that could not be reported as a single entity are 

reported as mixtures (e.g. leucine/isoleucine, glucose-1-phosphate/glucose-6-phosphate) or as a 

generic isomer which encompasses all possible isomers (hexane hexol for 

galactitol/mannitol/sorbitol).  For some co-eluting metabolites (alanine, beta-alanine) where the 

major component is >85% of the total, the data are reported as the major metabolite.   

Not all identified metabolites in Qstd3 could be quantified.  An identified metabolite was 

considered quantifiable if addition of authentic standard produced an increasing linear response 

and an extrapolatable negative X-intercept with response characteristics similar to that observed 

for the pure standard in saline.   
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Figure 3.1 General workflow for metabolite identification and quantification.  Metabolites were 
identified in reference samples by A) co-elution of an authentic standard and matching MS1 and 
MS/MS spectra or at a minimum by B) co-elution of an authentic standard with matching MS1.  
Metabolites were quantified in Qstd3 reference using external calibration with a method of 
standards addition in Qstd3 reference (C). 
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Adduct selection for metabolite identification 

A single metabolite can generate multiple ions including adducts, isotopes, and source 

fragments.  Thus, selection of the most reproducibly detected spectral feature is an important 

consideration for metabolite quantification using reference standardization.  The linear response 

(Figure 3.1C) of multiple predicted adducts per standard using both HILIC/ESI+ (M+H, 

M+2Na-H, M+Na, M-H2O+H, M+K, M+2H, M+3H, M-2H2O+H, 2M+H, and 2M+ACN+H) 

and C18/ESI- (M-H, M+Cl, M+CH3CO2, M+HCO2, M-2H, 2M-3H) were evaluated.  Over 80% 

of detected chemical standards produced an increase in instrument response as M+H or M-H 

ions.  In HILIC/ESI+, some organic acids formed quantitative M+2Na-H adducts and 

carbohydrates tended to form M+Na or M+K adducts.  In C18/ESI-, carbohydrates tended to 

form quantitative M+Cl adducts.  CoA species detected in C18/ESI- were detected as M-2H ions.  

These data are helpful for annotating metabolites forming non-(+H/-H) adducts.  Overall, 

approximately one-third of metabolites in the MSMLS library were quantifiable in the reference 

samples (Figure 3.2). 
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Figure 3.2 Top: The majority (>80%) of detectable chemical standards analyzed produced 
quantitative M+H or M-H ions.  For metabolites ionizing as non M+H or M-H adducts as the 
primary form, each individual annotation should be referenced against adduct distributions 
obtained from chemical standard analysis to determine the probability of forming an alternative 
adduct.  Bottom:  Approximately one-third of detectable metabolites were quantifiable by 
method of standards addition, internal standardization, or external calibration to NIST1950 
values. 

 

 

 

 

 

 

0

100

200

300

400

M
+H

 8
3%

M
+2

Na
-H

 5
%

M
+N

a 5%
M

-H
2O

+H
 3

%
M

+K
 2

%
M

+2
H 

1%
M

-2
H2

O+
H 

<1
%

2M
-H

 <
1%

2M
+A

CN
+H

 <
1%

H
IL

IC
+ 

Li
br

ar
y 

D
et

ec
ta

bl
e 

m
et

ab
ol

ite
s

0

100

200

300

400 M-H
 88

%
M+C

l 9
%

M+C
H3C

OO 1%

M+F
A-H

 1%
M-2

H 1%
2M

-3H
 < 

1%

C
18

-
Li

br
ar

y 
D

et
ec

ta
bl

e 
m

et
ab

ol
ite

s

Quantifiable 
(142/402)

35%
Detectable 
(260/402)

65%

Quantifiable 
(123/413)

30%

Detectable 
(290/413)

70%

HILIC/ESI+ C18/ESI-



 

 

80 
   

To evaluate the reproducibility of detection of specific adducts, we calculated the relative 

standard deviations (%CV) of different inter-reference signal intensities of different ion forms 

generated by the same metabolite (Figure 3.3).  The data show that the M+Cl adduct (130% CV 

NIST:Qstd3, 74% CV NIST:CHEAR, 86% CV CHEAR:Qstd3) has more variance in quantified 

values compared to an M-H adduct (14% NIST:Qstd3, 19% CV NIST:CHEAR 10% CV 

CHEAR/Qstd3) or an M+CH3COO adduct (15% CV NIST:Qstd3, 17% CV NIST:CHEAR, 13% 

CV CHEAR:Qstd3).  Quantified values for ion forms with the lowest standard deviations in 

inter-reference metabolite ratios for the assay conditions used are provided in Appendix 1.   
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Figure 3.3 Selection of consistently detected adducts for quantification.  Evaluation of inter-
reference ion ratios of multiple ion forms shows selection of ion form used is important for 
reference standardization reproducibility.  Selection of ion forms with low inter-reference ratios 
(<20% CV) is ideal for reference standardization.  Data shown are representative of eight batches 
from the beginning to the end of the chemical validation period. 
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Inter-reference metabolite signal intensity ratios are reproducible for preferred adducts 

For clinical non-targeted metabolomics assays, reportable metabolites are recommended 

to have QC sample relative standard deviations (RSD%) < 30% (22).  An analogous metric for 

reference standardization is the RSD of inter-reference metabolite peak intensity ratios across 

several analytical batches.  Previous studies showed ratios between NIST1950 to Qstd3 peak 

signal intensities for a panel of amino acids were stable over thirteen months of routine analysis 

(11).  We calculated ratios of metabolite signal intensities between Qstd3:NIST1950, 

Qstd3:Chear, and CHEAR:NIST1950 for 8 batches spanning the 2 month period during which 

chemical standards were being analyzed.  For nine metabolites with diverse characteristics 

(Figure 3.4), 27/27 of the inter-reference CV% ratios were less than 30%, and 26/27 were less 

than 20%.  The NIST:CHEAR ratio CV% for carnitine was 24%, but the NIST:Qstd3 and 

Chear:Qstd3 ratios were less than 15%.   These results support use of RSD of inter-reference 

metabolite peak intensity ratios across analytical batches as means to evaluate the consistency of 

quantitative information for reference standardization of metabolomics data.   
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Figure 3.4 Reproducibility of inter-reference metabolite ratios for preferred adducts.  Use 
of consistently detected adducts allows measured inter-reference metabolite signal intensity 
ratios to be consistent from batch to batch and allows quantification of representative metabolites 
from different chemical classes using reference standardization.  Each data-point represents the 
ratio of metabolite peak intensities between two reference samples over eight batches collected 
over a two month time period.  The average inter-sample metabolite ratio CV was 14% for the 
data shown here. 
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Estimated concentrations of metabolites in NIST1950, Chear, Qstd3 

We used the most reproducibly detected adduct for each quantifiable metabolite to 

generate the list of detectable and identified metabolites with quantified values for NIST1950 

(198), Chear (205), and Qstd3 (214) provided in Appendix 1.  The list also includes metabolites 

that were detected, identified, and quantified in saline but not detected or quantified in reference 

samples; this information could be useful for future metabolite identification in other tissues or 

reference samples.  Overall, the list of 441 detectable metabolites provides coverage of 264 

pathways and 186 modules in KEGG.  These are organized by metabolite class including amino 

acids and derivatives, organic acids, lipids, sterols, carnitines, vitamins and cofactors, nucleotide-

related metabolites, biogenic amines, and metabolites derived from diet, xenobiotics, or other 

sources.   
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Consistency of metabolite concentrations with NIST1950 and HMDB values 

We compared the estimated metabolite concentrations obtained by reference 

standardization for NIST1950 against previously published values and expected ranges compiled 

in HMDB.  Previous studies showed metabolite quantification in plasma varies depending on the 

choice of anticoagulant (23).  NIST1950 was heparinized plasma and Qstd3 and CHEAR plasma 

are EDTA plasma.  This analysis showed that 75% of estimated amino acids concentrations were 

within ± 25% of certified reference values for NIST1950 (Figure 3.5).   
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Figure 3.5 Using non-targeted HRM methods, most (75%) amino acid metabolites in 
heparinized plasma NIST1950 could be quantified accurately (within ± 25% of published 
NIST1950 values) using EDTA plasma Qstd3 calibration and reference standardization.  15 of 
16 amino acid concentrations in NIST1950 calculated from Qstd3 values were within ± 50% of 
NIST1950 values.  Asp and Cys  not shown because NIST1950 values are not available.  Leu 
and Iso not shown because the analytical method used did not resolve the two isomers. 
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Comparison of representative metabolites in Qstd3, NIST1950 and Chear HMDB 

(Figure 3.6) showed that estimated concentrations of metabolites in NIST1950, Qstd3, and 

CHEAR were within expected HMDB ranges.  More than two-thirds of the 137 quantified 

metabolites in Qstd3 with reported blood ranges were within HMDB ranges.  Thus, these 

estimated concentrations for NIST1950, Qstd3, and CHEAR plasma extend capabilities to test 

utility of reference standardization to quantify and harmonize data from different studies.   
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Figure 3.6 Using reference standardization with either Qstd3 or NIST1950 as the reference, 80% 
of representative metabolite concentrations in reference materials detected at nM and µM 
concentrations in NIST1950 (    ), Chear (    ), or Qstd3 (   ) produced values within HMDB 
ranges (grey rectangles).  Overall, approximately two-thirds of metabolite concentrations in 
Qstd3 fell within previously published ranges in human plasma. 
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Reference Standardization for quantification and harmonization of large-scale metabolomics 

data 

For metabolomics data to be “harmonized” or comparable between studies, technical 

variation due to batch effects need to be minimized and metabolite peak intensities need to be 

converted to units that can be reproduced across studies or analytical methods.  Analytical 

workflows often consider these points independently.  For instance, data from large-scale 

metabolomics studies cannot generally be combined without adjusting for batch effects (24).  

Several strategies have been proposed to correct for batch effects based on the use of scaling 

factors, quality control samples, internal standards, or use of statistical batch effect correction 

strategies (2; 25; 26).  In this section, we tested use of reference standardization with the Qstd3 

calibrated reference plasma to perform a single step correction for systematic technical errors 

and subsequent quantification for large-scale metabolomics.  This was tested with six technical 

replicates of the Qstd3 reference at the beginning, middle, and end of every 20-sample batch.  

During the two month period analytical standards were analyzed, our data show the median drift 

in metabolite retention time was less than 8 seconds and mass spectral drift was less than 2 ppm 

using the HFQE (data not shown).  These results show that accurate mass MS1 and retention 

times for metabolites with confirmed identity and quantification in the reference, as described 

above, are sufficiently stable over time for quantification of respective metabolites in study 

samples. 

The total variance associated with metabolite measurements is the sum of biological 

variance and technical variance, with the biological variance represented by the median relative 

standard deviation (Med-RSD) of study samples and the technical variance represented by the 

mean relative standard deviation (RSD) of reference samples.  Conversion of sample metabolite 
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peak intensities to concentrations minimizes technical variation (decreased Med-RSD) so that the 

data better represent biological variation (Figure 3.7).  For example, comparing the batch 2 

methionine median peak intensity versus methionine reference standardized concentration shows 

a reduction of batch-wise median variance.  For about 10% of metabolites, however, use of 

reference standardization increased the Med-RSD by more than ten percentage points (not 

shown, perhaps reflecting non-linear responses, ion suppression or other factors affecting 

quantification by mass spectrometry).  Taken together, these data show that batch-wise reference 

standardization can be used to correct for batch effects for most metabolites in large multi-batch 

studies. 
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Figure 3.7 Application of reference standardization to 200 study samples analyzed across a 
10 batch study over a one week period.  Red dots represent Qstd3 reference samples 
superimposed over study sample box-and whisker plots depicting the range, quartiles, and 
medians of 20 study samples.  Use of batch-wise reference standardization can reduce median 
RSD (Med-RSD) for metabolite measurements across a multi-batch study – Guanidinoacetate 
peak intensity Med-RSD: 50%; reference standardized Med-RSD: 18%.  Tryptophan peak 
intensity Med-RSD: 25%; reference standardized Med-RSD: 8%.  Uric acid peak intensity Med-
RSD: 42%; reference standardized Med-RSD: 19%.  Methionine peak intensity Med-RSD: 21%; 
reference standardized Med-RSD: 12%. 

 

 

 

 

 

 

 

0 2×109 4×109 6×109 8×109

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Tryptophan

0 2×109 4×109 6×109 8×109

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Tryptophan

0 50 100 150 200

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Tryptophan

0 50 100 150 200

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Tryptophan

0 1 2 3 4

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Guanidinoacetate

0 1 2 3 4

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Guanidinoacetate

0 2×107 4×107 6×107 8×107

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Guanidinoacetate

0.0 5.0×107 1.0×108 1.5×108

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Uric acid

0.0 5.0×107 1.0×108 1.5×108

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Uric acid

0 200 400 600

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Uric acid

0 200 400 600

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Uric acid

0 2×107 4×107 6×107 8×107

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Guanidinoacetate

0 1×108 2×108 3×108 4×108

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Methionine

0 1×108 2×108 3×108 4×108

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Peak Intensity

Methionine

0 20 40 60

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Methionine

0 20 40 60

Batch 10
Batch 9
Batch 8
Batch 7
Batch 6
Batch 5
Batch 4
Batch 3
Batch 2
Batch 1

Concentration (µM)

Methionine



 

 

92 
   

To test utility of reference standardization for harmonization of metabolomics data from 

multiple studies, we calculated metabolite concentrations for 8 metabolites with diverse 

characteristics and intensities in 3,677 plasma samples across 17 separate studies analyzed with 

the same analytical methodology over a 17 month time period.  Data for each sample were 

quantified relative to concurrently analyzed Qstd3 samples using reference standardization 

(Figure 3.8).  Results showed that the distributions were more uniform for most of the 

metabolites and studies but that unique characteristics were retained.  For instance, uric acid and 

tryptophan achieved relatively normalized distributions while retinoic acid retained high skewed 

distributions.  Unique characteristics for some metabolites and studies were evident, i.e., one 

study each had very distinct distributions for bilirubin and putrescine, and caffeine showed 

highly heterogenous distribution before and after conversion to concentration values. 
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Figure 3.8 Application of reference standardization to 3,677 study samples analyzed across 17 
studies over a 17 month period.  Density histograms for 17 separate studies are shown for 
selected metabolites using raw peak intensities or reference standardized concentration decreased 
the variability of metabolite measurements (study median RSD) across studies. 
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3.4 Discussion 

Many metabolites are useful health indicators and routinely quantified in targeted mass 

spectrometry-based assays.  In contrast, non-targeted HRM methods were developed to capture 

as broad of a chemical space as possible and rely on computational methods to discover 

associations of metabolites, metabolic pathways and networks with health and disease 

phenotypes.  In this study, we expand the list of quantified metabolites to support quantification 

of 207 metabolites with Qstd3, 189 metabolites with NIST1950, and 199 metabolites with 

CHEAR pooled reference materials using the reference standardization method.  Results show 

that inter-sample metabolite peak intensity ratios for validated adducts are consistently measured 

and demonstrate the ability to provide metabolite concentrations in agreement with previously 

established NIST1950 values and HMDB reference ranges.  The analyses further show ability to 

use this approach to harmonize metabolite measurements collected over a 17 month period for 

more than 3600 individual study samples.  The results suggest a generalizable approach to use 

reference standardization to develop cumulative metabolomics databases suitable for 

personalized medicine. 

Metabolite identification remains a bottleneck in non-targeted metabolomics, and 

community-driven efforts to describe the biochemical composition of reference materials and 

detectability of chemical standard library metabolites by LC-HRMS are important to facilitate 

progress.  In this study, we analyzed over 700 analytical standards and validated the detection of 

close to 400 metabolites covering endogenous, microbiome, dietary, drug, and environmental-

exposure metabolites on a dual liquid chromatography HILIC/ESI+ and C18/ESI- HRM 

platform.  We delineated metabolites that are detected and quantifiable in three pooled plasma 

materials from those that were not confidently detected or quantifiable in the reference samples.  
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The increasing number of identified and quantified metabolites, with adduct forms and retention 

times, increases opportunity to improve interoperable metabolomics databases to support efforts 

for precision medicine.  

A limitation of reference standardization is that metabolites can only be quantified if they 

are present and quantified in the reference.  Some metabolites not detected may not be present in 

these references materials, and others will probably require complementary methods with 

improved sensitivity and/or selectivity.  Use of reference materials with a wide spectrum of 

exogenous metabolites (i.e. NIST1957/1958 SRM for organic contaminants in human serum or 

NIST968f, 971a, 972a, 1951c, 1955, 2378, 2973, 3949, 3950 for various endogenous lipids, 

nutrients, and hormones) will further enable reference standardization for metabolites that are not 

commonly detected in each individual.  Pooled reference materials suited for specific purposes 

will facilitate more targeted analyses (10; 27) and enable more global assessments of the 

spectrum of exogenous chemicals derived from food, xenobiotics, environmental and 

occupational exposures, personal care products, supplements, and drugs and their 

biotransformation products. 

NIST1950 plasma was developed as a reference material for use with metabolomics 

studies to facilitate identification and quantification of metabolites (13).  Most of the estimated 

metabolite concentrations presented in this study are consistent with previously published values 

for NIST1950 and within expected HMDB ranges.  Reference ranges for metabolite 

concentrations vary between laboratories depending on methodology.  For example, estimated 

concentrations for several lipids in the NIST1950 are outside of expected HMDB ranges.  

Previous studies have shown differences in lipid and amino acid quantification depending on the 

anticoagulant used for plasma samples (23).  Whether such differences in metabolite 
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quantification observed in this study are due to anticoagulant (NIST1950 is lithium heparin 

plasma, Chear and Qstd3 are EDTA plasma) or differences in sample preparation or analysis are 

not clear.   

Reference standardization assumes a linear relationship between analyte concentration 

and instrument response, which was validated for most of the chemicals reported here; 

exceptions were those calibrated relative to previously published NIST1950 value, where single-

point calibration was used.  For automated quantification, as used in Figure 3.8, the method uses 

single-point calibration and performs comparably to quantification relative to internal standard, 

which also involves single-point calibration (32).  By using a pooled reference material, the 

quantification is biased toward average human values and results can be expected to be less 

quantitatively reliable for relatively high and low values.  Also, if the biochemical composition 

of the reference does not reflect the study samples (different intensity range observed in 

reference versus study samples), then the estimated concentrations for study sample metabolites 

will be associated with high error and other analytical (additional QC samples, kit methods, use 

of internal standards, improved separation) or post-analytical considerations (normalization, non-

linear models, or use of other scaling factors) would be needed to address potential sources of 

error. 

Targeted methods for clinical analysis typically require <20% CV on QC samples and 

accuracies within 10% of an accepted central value.  A recent lipidomics harmonization effort 

across 31 laboratories using diverse analytical methodologies showed that less than a quarter of 

lipid species (339/1,527) identified by a single laboratory could be detected by more than 5 

laboratories in the NIST1950 SRM (14).  After filtering quantified lipids with less than 40% 

coefficient of dispersion (COD – a measure analogous to relative standard deviation), 259/339 
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(75%) of identified lipids remained.  Another interlaboratory comparison of six laboratories 

using the Biocrates AbsoluteIDQ p180 kit for targeted metabolomics analysis shows that 

approximately 80% of metabolites measured had accuracies within 20% of consensus 

interlaboratory values (28).  Similar to these values, our data show approximately 60-80% of 

identified metabolites could be quantified in the reference and applied for use in study samples.  . 

The present study shows that reference standardization can be used in an automated 

workflow to facilitate harmonization of metabolomics data collected across multiple studies.  By 

correcting for batch effects on a chemical-by-chemical basis, reference standardization facilitates 

harmonization of large-scale metabolomics studies without the trade-off of most batch 

normalization methods in which improved quality of some metabolites is offset by corruption of 

data for other metabolites.  By converting raw peak intensities to concentrations, reference 

standardization allows comparison of results obtained from multiple analytical platforms based 

upon estimates of absolute concentration.  Intra- and inter-laboratory validation and proficiency 

testing are well developed for targeted clinical assays and will need to be developed and 

implemented to enable of untargeted metabolomics to medical and other uses.   

In conclusion, reference standardization using calibrated reference samples analyzed at pre-

defined intervals with study samples provides a practical and simple method for data 

normalization and estimation of metabolite concentrations in high-throughput applications.  In 

principle, adoption of this technique could allow non-targeted metabolomics data to be 

comparable across studies and laboratories.  The approach is scalable as additional metabolites 

are characterized in other pooled reference materials, thereby expanding capabilities to 

harmonize metabolomics for clinical research and other practical applications.     
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Chapter 4: Microbiome-mitochondria cross-talk: Inhibition of mitochondrial fatty acid 
oxidation by the microbiome-derived metabolite, delta-valerobetaine 
 
 This chapter applies the validated chemical analysis platform to identify mitochondrial 

metabolites produced by the microbiome and characterization of the effects of microbial 

metabolites on mitochondrial function and cellular energy metabolism. 
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Microbiome-mitochondria cross-talk: inhibition of mitochondrial fatty acid oxidation by 

the microbial metabolite delta-valerobetaine 
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Druzak, Michael Orr, Xin Hu, Jolyn Fernandes, Mary Catherine Camacho, Sarah Hunter-Chang, 

Chunyu Ma, Trevor Darby, Gregory Tharp, Thota Ganesh, Samantha Yeligar, Karan Uppal, 

Young-Mi Go, Jessica Alvarez, Miriam Vos, Thomas Ziegler, Rheinallt Jones, Eric Ortlund, 

Andrew Neish, Dean P. Jones 

Abstract 

The intestinal microbiome is linked to an epidemic of human metabolic disorders 

involving energy metabolism.  Here, we identify the microbial-derived small molecule, δ-

valerobetaine (VB), a structural analog of the carnitine precursor γ-butyrobetaine.  VB is absent 

in germ-free mice and derived liver mitochondria but is present in conventionalized mice and 

mitochondria.  When supplemented to cells in vitro, VB decreased mitochondrial fatty acid 

oxidation by lowering intracellular carnitine.  In vivo, VB administered to fasted mice lowered 

carnitine, decreased fatty acid oxidation and exacerbated hepatic steatosis.  In addition, 

circulating VB in humans was associated with the severity of hepatic steatosis, hepatic insulin 

resistance and central adiposity.   These results show VB is a gut microbe-derived small 

molecule that participates in microbiome-mitochondrial cross talk to influence mitochondrial 

energy metabolism and can contribute to fatty liver and other metabolic disorders. 

 
 
 
 



 

 

102 
   

4.1 Introduction  

Emerging evidence links the epidemic of human metabolic disorders to changes in the 

composition and activity of the intestinal microbiota (1-6).  The intestinal microbiota possess 

remarkable metabolic functions for digestion of dietary macromolecules and synthesis of diverse 

metabolites that directly impact human metabolism (7; 8).  For example, epidemiological and 

experimental evidence show that microbial products such as lipopolysaccharide (LPS) (9; 10), 

phenylacetic acid (11), and methylamines (12-14) contribute to the development of insulin 

resistance, hepatic steatosis, and cardiovascular disease.  Metabolomic analyses of germ-free 

(GF) and colonized (C) mouse tissues reveal that approximately 10% of the circulating 

mammalian metabolome are metabolites of microbial origin (15); the majority of these are 

unidentified (16) and associated mechanisms are unknown.   

Mitochondrial dysfunction is commonly associated with human metabolic disorders.  An 

emerging paradigm is that microbiome-mitochondrial cross-talk, i.e., bi-directional 

communication between mitochondria and the microbiome, plays an important role in metabolic 

health and disease (17).  Studies show microbial metabolites directly influence host 

mitochondrial functions and metabolism (18; 19), and alterations to mitochondrial genomes 

influence the composition of the microbiome (20).  To investigate the effect of the microbiome 

on systemic mitochondrial function and to identify microbiome-derived mitochondrial 

metabolites, we performed integrated analysis of transcriptome and metabolome profiles of liver 

from germ-free (GF) and conventionalized (CV) mice.  Our analysis revealed that the 

microbiome altered hepatic gene expression related to mitochondria and lipid homeostasis.  In 

addition, the top discriminatory metabolite detected in liver and liver mitochondria of CV mice 

was δ-valerobetaine (VB).  VB is absent in GF mice and structurally resembles γ-butyrobetaine, 
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the immediate biosynthetic precursor to carnitine, which is required for mitochondrial fatty acid 

oxidation.   

To elucidate the role of VB on mitochondrial function and hepatic lipid metabolism, we 

performed dose-response experiments with VB in cultured human cell lines and mice.  These 

experiments show VB treatment decreases cellular carnitine, inhibits mitochondrial fatty acid 

oxidation and increases hepatic lipid accumulation.  The results establish VB as a link between  

the gut microbiome and mitochondrial functions related to fatty acid oxidation.  Furthermore, we 

found that circulating VB was positively correlated with central adiposity and hepatic steatosis in 

humans.  Taken together, our data show that VB participates in a microbiome-mitochondrial 

cross-talk which could be a determinant of clinical phenotypes linked to adiposity and hepatic 

steatosis.   
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4.2 Methods 

Animals 

Germ-free (GF) male and female Swiss-Webster mice (Taconic Biosciences) were raised 

in germ-free isolators and fed sterilized mouse chow (Envigo 2019S Teklad Global 19% Protein 

Extruded Rodent Diet) and sterilized water ad libitum at the Emory University Gnotobiotic 

Animal Research Facility.  Conventionalized (CV) mice were transferred to bedding from 

conventional Swiss-Webster (S) mice at three weeks of age, and maintained for 3 weeks while 

paired GF mice were maintained in germ-free isolators.  After three weeks, luminal contents 

from the cecum and colon, portal vein serum, and intact livers were collected for mitochondrial 

isolation, RNA-sequencing and metabolomics.  Data for GF and conventional C57BL6J 

(jax.org/strain/000664) mice (Jackson laboratories, identical housing as Swiss-Webster) are 

provided as indicated.   

RNA-Sequencing  

RNA-Seq analyses were conducted at the Yerkes NHP Genomics Core on GF (n = 6) and 

CV liver (n = 6). RNA was collected and extracted from PAXgene tubes using on-column DNase 

digestion as described previously (38) and assessed for integrity and quantity using an Agilent 

Bioanalyzer (Agilent Technologies) and a NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific).  Libraries were prepared using the Illumina TruSeq mRNA stranded kit. Briefly, 

500–1,000 ng of globin-depleted RNA was used for library preparation. ERCC synthetic spike-in 

controls 1 or 2 (Ambion) were added to each total RNA sample and processed in parallel. 

Amplified libraries were validated using the Agilent 4200 TapeStation and quantified using a 

Qubit fluorometer. Libraries were normalized and pooled, followed by clustering on a HiSeq 

3000/4000 flowcell using the Illumina cBot. The clustered flowcell was then sequenced on the 
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Illumina HiSeq 3000 system employing a single-end 101-cycle run, with multiplexing to achieve 

approximately 20 million reads per sample.  Gene IDs were annotated for 41,128 gene IDs 

(ENSEMBLID) and mapped to 23,568 genes (mus musculus) in DAVID.  Transcript abundance 

was estimated using htseq-count v0.6.1p1 and differential expression analyses were performed 

using DESeq2.  A combination of bioinformatics tools was used for data analysis including the 

molecular signature database (MSigDB – 

http://software.broadinstitute.org/gsea/msigdb/index.jsp) and Ingenuity Pathway Analysis. 

High-resolution metabolomics (HRM) 

Cytosolic and mitochondrial fractions from GF/CV liver (n = 12) were prepared by 

differential centrifugation (21).  Serum and fractionated cytosol and mitochondria were mixed 

with 2x volume of ice-cold acetonitrile-internal standard solution.  Liver and luminal contents 

were weighed and mixed with 10x volume of ice-cold 20% water/80% acetonitrile-internal 

standard solution.  Tissue samples were homogenized using a pellet pestle prior to the next step.  

Samples were vortexed, and placed on ice for 30 minutes prior to centrifugation at 14,000g for 

10 minutes at 4°C to precipitate proteins.  Supernatants were transferred to autosampler vials and 

stored at -70°C prior to instrumental analysis.  

Untargeted high-resolution mass spectrometric profiling was performed using a Dionex 

Ultimate 3000 UHPLC system coupled to a Thermo Scientific Velos LTQ-Orbitrap (metabolite 

identification studies), Thermo Scientific High-Field Q-Exactive (HFQE) (liver, liver 

mitochondria, liver cytosol, portal vein) or Thermo Scientific Fusion (cecum, colon, ex vivo 

incubations, isotope tracer) (22).  Briefly on the Fusion and HFQE, an LC column switching 

method using a reversed phase C18 column (Higgins Targa C18 2.1 mm x 50 mm, 3 μM particle 

size) and a HILIC column (Waters XBridge BEH Amide XP HILIC column 2.1 mm x 50 mm, 
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2.6 μM particle size) were used for the analytical separation of extracts prior to high-resolution 

mass spectrometry analysis with HILIC/ESI+ and C18/ESI- at 120k resolution while of ions 

between 85-1,275 m/z.  A similar LC column switching method 10 minute and 20 minute 

reversed phase C18 and HILIC separation methods with 10 cm columns with ESI+ was used on 

the Velos-Orbitrap for confirmation.   

Data processing, statistics, and feature selection 

Spectral features were extracted and aligned using optimized parameters for apLCMS 

(23; 24), with downstream quality control performed by xMSanalyzer (25).  Each metabolic 

feature was characterized by its m/z ratio, retention time, and peak intensity.  Statistical analysis 

was performed using R-packages limma (26) for differential expression analysis and diffexp for 

linear regression analysis in xmsPANDA (https://github.com/kuppal2/xmsPANDA).  

Differentially expressed metabolites with a raw p-value of less than 0.05 were used for pathway 

enrichment analysis in mummichog (27).  Pathway enrichment significance in mummichog was 

based permutation testing with a p < 0.05.  Metabolite names in mummichog were converted to 

KEGG IDs using http://csbg.cnb.csic.es/mbrole/conversion.jsp.   

Metabolite Identification and Quantification 

Detected metabolites were referenced against an in-house reference library established 

with authentic chemical standards and matched within 5 ppm of the confirmed mass and within 

10 s of the confirmed retention time.  Features of interest were visually inspected to ensure 

chromatographic and spectral peak quality.  When no standard was available, MS isotopic ratios 

and MS/MS spectra were referenced against online spectral libraries or in silico ion dissociation 

spectra.  Tandem MS2 spectra were collected for target features on either Thermo Scientific 

Velos-Orbitrap, High-Field Q-Exactive, or Fusion mass spectrometers using collisional induced 
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dissociation (CID) or high-energy collisional induced dissociation (HCD).  MS2 spectra were 

matched to experimental online mass spectral databases mzCloud and METLIN (28) or in silico 

predicted fragmentation patterns from metfrag (29) to identify candidate structures.  Standards 

were purchased when commercially available or synthesized as described below. 

Reference standardization (30) was used for quantification of identified metabolites.  A 

calibrated reference plasma sample analyzed concurrently with study samples is used as a single-

point calibration for serum samples.  Briefly, a 

Synthesis of d-valerobetaine and valine betaine 

d-Valerobetaine (VB) was synthesized as described previously (31).  Briefly, 5-

bromovaleric acid (Sigma-Aldrich) and 1 molar equivalent trimethylamine (20% in EtOH) were 

stirred for 24h under vacuum at room temperature.  The precipitate containing trimethylamine 

HBr salt was removed by filtration and the filtrate was evaporated under vacuum and 

recrystallized with cold isopropanol and acetonitrile.  Purity was assessed to be greater than 95% 

with proton NMR and elemental analysis.  MS: 160.1332 m/z ESI+ (MS2: 101.0597, 60.0809).  

1H NMR (Appendix 3) (400 MHz, D2O) d 3.15 (multiplet, 2H), d 2.91 (singlet, 9H), d 2.27 

(triplet, 2H), d 1.64 (quintuplet, 2H), d 1.46 (quintuplet, 2H).  Elemental analysis (as VB-HBr 

salt) was C 37%, H 8%, N 5%, Br 31%.  Valine betaine was synthesized as previously described 

(32).  L-Valine and methyl iodide were stirred for 48h in anhydrous methanol in the presence of 

excess potassium bicarbonate.  The precipitate was dried and washed with ice-cold methanol.  

MS: 160.1332 m/z ESI+ (MS2: 60.0809). 

Ex-vivo fermentation 

Cecal contents from conventional or GF mice were collected and immediately placed in 

either De Man, Rogosa, and Sharpe media (MRS broth – Oxoid, CM0359) or degassed Tryptic 
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Soy Broth (Millipore 22092) in oxygen evacuated headspace vials.  Samples were incubated at 

37°C were collected in triplicate over a 24-h time period and prepared for metabolomics analysis 

as above. 

Ex-vivo microbial metabolism assays 

 Bacteria were purchased from ATCC and/or isolated in our laboratory and were cultured 

in specified liquid media.  Samples were collected at baseline and again at 18 hours after 

incubation at 37°C.  Lactococcus lactis Subsp. cremoris (LC, ATCC 19257, ATCC 14365, 

ATCC 11602), Lactobacillus rhamnosus GG (LGG, ATCC 53103), Lactobacillus plantarum 

(LP, HA-119), Lactobacillus paracasei (HA274), Lactobacillus rhamnosus (HA-114, HA-111, 

R0011), were grown in MRS broth (Oxoid, CM0359).  Bacillus cereus was grown in brain heart 

infusion (BHI) media.  E. coli (K12) and Salmonella Typhidurium (SL1344) were grown in Luria 

Broth (LB). 

VB dose response experiments in HepG2 cells: metabolomics analysis 

HepG2 cells (ATCC) were used between passages 8-15 and grown in EMEM (ATCC) 

supplemented with 10% FBS and 0.5% Penicillin/Streptomycin (P/S).  Cells were grown to 90% 

confluence in 3.5 cm cell culture dishes and treated with experimental compounds (VB, 

meldonium, propionylcholine, carnitine) in EMEM supplemented with 0.5% FBS and 0.5% 

penicillin/streptomycin.  Cells were washed with ice cold Hank’s Buffered Salt Solution (HBSS) 

and harvested by scraping on ice using 200 µL of ice-cold 20:80 water:acetonitrile containing 9 

stable isotope internal standards and centrifuged at 14,000g for 10 minutes at 4°C.  Supernatants 

were transferred to autosampler vials and maintained at 4°C until instrumental analysis. 

VB dose response experiments in HepG2 cells: Stable Isotope Palmitate Tracer Assay 
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13C16-palmitic acid (Sigma-Aldrich 605573) was dissolved in 150 mM NaCl after heating 

to 70°C and slowly mixed with prewarmed (37°C) FFA-free BSA (Sigma-Aldrich A4602) 

solution in 150 mM NaCl with stirring to produce a 1 mM palmitate to 0.17 mM BSA ratio.  

HepG2 cells were grown in 12-well cell culture plates to 80% confluence.  Cell media was 

replaced with EMEM containing 0.5% FBS for 12 h ± VB prior to treatment with labeled 

palmitic acid.  Cells were washed twice with pre-warmed HBSS and media was replaced with 

EMEM containing 0.5% FBS, 200 µM labeled palmitate, and either vehicle, 50 µM VB, 40 µM 

etomoxir, or 50 µM carnitine.  At each time point, cells were washed once with ice cold HBSS 

and harvested by scraping on ice using 200 µL of ice-cold 20:80 water:acetonitrile containing 9 

stable isotope internal standards and centrifuged at 14,000g for 10 min at 4°C.  Supernatants 

were transferred to autosampler vials and maintained at 4°C until analysis.  Data were analyzed 

using xCalibur QuanBrowser for carnitine and labeled palmitate, palmitoyl-CoA, 

palmitoylcarnitine, acetyl-CoA, and acetylcarnitine. 

VB dose response experiments in HepG2 cells: Mitochondrial Respiration Assays 

 Oxygen consumption (OCR) was measured in the human hepatoma HepG2 cell line 

using a Seahorse XFe96 analyzer (Agilent Technologies).  For assessments of respiration linked 

to oxidation of glucose and glutamine, cells were cultured on 96-well cell culture microplates 

and treated overnight with 0, 1, 3, 10, 30, 100 µM VB in DMEM with 0.5% FBS.  Cells were 

then washed 1x with 100 µM pH 7.4 Seahorse XF DMEM (Agilent Technologies) in 0.5% FBS 

and media was replaced with XF DMEM supplemented with fuel substrates and VB or vehicle.  

The media was supplemented with 10 mM glucose, 2 mM GlutaMAX, and 1 mM pyruvate ± 

VB. 
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For assessments of fatty acid oxidation, cells were serum-starved overnight with or 

without VB.  After washing, media was replaced with Krebs Heinseleit Buffer (KHB) containing 

200 µM BSA-conjugated palmitate (Agilent Technologies) in the absence of supplemental 

glucose, GlutaMAX, pyruvate, or carnitine.  KHB was prepared from pH 7.4 sterile filtered 

water containing 111 mM NaCl, 4.7 mM KCl, 2 mM MgSO4, and 1.2 mM NaH2PO4.  VB (0, 10, 

50 µM final concentration) or etomoxir (40 µM final concentration) were added to the assay 

medium prior to assessments of oxygen consumption (OCR) and extracellular acidification rate 

(ECAR). 

To evaluate mitochondrial function, a MitoStress test kit (Agilent Technologies) was 

used with respiration assays.  Three consecutive respiration measurements were acquired every 

10 minutes for every experimental condition prior to and after injections of Oligomycin (1.5 µM 

final concentration), FCCP (1 µM final concentration), and Rotenone/Antimycin A (0.5 µM final 

concentration).  Basal respiration (OCR prior to injection of mitochondrial inhibitors), ATP 

production (difference in OCR after addition of oligomycin), maximal respiration (OCR after 

addition of FCCP) and spare capacity (difference in OCR between basal and maximal 

respiration) were calculated using the Seahorse XF Cell Mito Stress Test Report Generator  

(https://www.agilent.com/en/products/cell-analysis/cell-analysis-software/data-

analysis/seahorse-xf-cell-mito-stress-test-report-generators).   

Animal VB model 

 Animal experiments were performed under approved Emory University IACUC animal 

protocols.  For experiments with fed mice, conventional C57BL6J mice (Jackson laboratories) 

were injected IP with 200 µL saline vehicle, 200 µL 10 mM VB (10 mg/kg), or 200 µL 100 mM 

VB (100 mg/kg) once a day for one week.  For experiments in fasted conventional mice, animals 



 

 

111 
   

were treated with the same doses for three days and then fasted for 12 hours prior to sample 

collection.  At the end of each treatment period liver, heart, brain, cecal and colonic contents and 

serum were collected for mass spectrometry, histology analysis, and triglyceride quantification.   

Histology (Oil Red O) analysis  

Oil red O staining for neutral lipids was performed on 8-10 micron mouse liver sections 

prepared using a Cryostat.  Images were taken on a Nikon Eclipse 50i at 20x magnification and 

red density was quantified in ImageJ software. 

Triglyceride quantification 

Triglycerides were quantified in tissues using a triglyceride assay kit (Abcam 65336).  50 

mg of liver tissue was homogenized in 1 mL of assay buffer and diluted 100x prior to addition of 

lipase.  After 20 minutes, the triglyceride probe was added.  After incubation for 30 minutes, the 

plate was read fluorometrically (535/587 nm) and quantified using the provided standard 

calibration curve.   
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4.3 Results 

The effect of the microbiome on the mouse liver transcriptome and metabolome 

To identify the potential impact of VB on hepatic mitochondrial function, we identified 

the major liver transcriptional (Appendix 4) and metabolic pathways changed in sex-matched 

littermate CV (microbiome-replete) versus germ-free (GF) mice.  Metabolomics pathway 

analysis showed enrichment of metabolites in fatty acid oxidation pathways (p < 0.05) (Figure 

4.1A) and overrepresentation analysis (ORA) of hepatic genes induced by the microbiome 

revealed mitochondria (GO:CC, p-FDR < 10-50) (Figure 4.2A) and lipid metabolism/transport 

(Reactome, p-FDR < 10-50) (Figure 4.2B) as the top pathways changed by the microbiome.  

These included gene expression for peroxisomal and mitochondrial fatty acid metabolism (Fasn, 

Elovl, Hadh, Acad, Ech, Eci, Decr, Cpt1, Acaa1, Acsl, Gpat3, Agpat2/3, Dgat2, Acox1/2, 

Ehhadh, Acaa2), fatty acid uptake and transport (Cd36, Fatp5, Fabp), and lipoprotein export 

(Apob100, Apoe, Apoc2/3), all of which were increased in CV animals.  Gene expression related 

to fatty acid biosynthesis increased in CV liver and associated with increases in short and long-

chain acyl-CoA esters in the liver (Figure 4.1B).  Upstream analysis of transcriptional regulators 

responsible for these changes in Ingenuity Pathway Analysis (IPA) revealed PPAR-alpha as the 

top transcriptional regulator targeted by the microbiota (Figure 4.2C).  Taken together, these 

data highlight the widespread changes to hepatic mitochondrial energy metabolism and lipid 

homeostasis associated with an intact microbiome. 
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Figure 4.1 The microbiome elicits widespread changes to liver metabolism.  A) Pathway 
enrichment analysis (p < 0.05, mummichog) of differentially expressed metabolites (raw p < 
0.05) between germ-free and conventionalized mice show the microbiome alters mitochondrial 
metabolic pathways (TCA cycle), and liver metabolic pathways involved in lipid and energy 
metabolism (mitochondrial fatty acid oxidation).  B) Integration of metabolome and 
transcriptome profiles shows the microbiome is associated with changes to lipid and other energy 
producing metabolic pathways.  Red colors indicate transcripts and metabolites that were 
increased in CV animals.  Blue colors indicate transcripts and metabolites that were increased in 
GF animals. 
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Figure 4.2  Transcriptome analysis shows the microbiome impacts gene expression related 
to mitochondrial functions and lipid homeostasis.  A) Over-representation analysis using the 
Molecular Signatures Database (MSigDB – Broad Institute) shows mitochondria and related 
cellular compartments are the top GO:CC pathways impacted by the microbiome in the liver (p-
FDR < 1e-150).  B) Over-representation analysis using the Reactome database shows lipid and 
lipoprotein metabolism is the top Reactome pathway impacted by the microbiome in the liver (p-
FDR < 1e-50).  C) Upstream analysis of differentially expressed hepatic mRNA using Ingenuity 
Pathway Analysis predicts PPAR-alpha (p < 1e-10) as the top transcriptional regulator impacted 
by the microbiome.  D). Illustration of increased gene expression in CV mouse liver in 
mitochondria (left), lipid transport/uptake (middle), and lipid oxidation (right).  Red colors 
indicate transcripts and pathways that were increased in CV animals.  Blue colors indicate 
transcripts that were increased in GF animals.  The microbiome augments gene expression 
related to mitochondrial function and lipid homeostasis (uptake, export, oxidation, and 
lipogenesis). 
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Identification of the microbiome-derived mitochondrial metabolite δ-valerobetaine (VB)  

To identify discrete microbial metabolites capable of altering hepatic mitochondrial 

function and lipid metabolism, we looked for specific metabolites which were present only in 

conventionalized liver and liver mitochondria.  We observed that the top-ranked differentially 

expressed feature in both CV liver (p-FDR = 2.3e-6) and liver mitochondria (p < 0.05) was a 

metabolite with a m/z of 160.1332 and elemental composition C8H18NO2 (Figure 4.3, Figure 

4.4A).  160.1332 m/z  was detected in portal circulation (Figure 4.4B), cecal (Figure 4.4C) and 

colonic contents (not shown) obtained from CV mice but not GF.  Authentic standard co-elution 

and MS/MS experiments show the identity of 160.1332 m/z detected in the luminal contents, 

portal circulation, liver and liver mitochondria to be δ-valerobetaine (VB), and not 

propionylcholine or valine betaine (Figure 4.5).  VB was not present in the mouse diet and not 

detectable in samples collected from GF mice (Figure 4.4D).  Estimated concentrations of VB in 

conventional mice ranged from 51-90 ng/mg in the cecum (expressed as ng/mg tissue), 19-70 

ng/mg in the colon, 9-26 µM in the portal vein of CV animals, 12-31 ng/mg in the liver, and 2-10 

µM in peripheral serum. 
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Figure 4.3 Untargeted high-resolution metabolomics analysis comparing liver and liver 
mitochondria of 6 germ-free (GF) and 6 conventionalized (CV) mice reveals 160.1332 m/z 
as the top metabolite detected in liver and liver mitochondria of conventionalized mice.  A) 
Volcano-plot (depicting log2 fold-change on the x-axis and -log10 (FDR-p-value) on the y-axis) 
of germ-free (GF, blue) and conventionalized (CV, red) mouse metabolomics reveal top ranked 
differentially expressed feature (limma p-FDR < 0.05, log2Fold-change (FC)  > 2) in both A) 
liver mitochondria and B) liver was 160.1332 m/z with the elemental composition C8H18NO2.  
161.1366 m/z corresponds to a 13C isotope of 160.1332 m/z.  The data shown are a comparison of 
six GF and six conventionalized Swiss-Webster mice.   
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Figure 4.4  Ion dissociation spectra (MS/MS) analysis of 160.1332 m/z.  Extracted ion 
chromatographs of 160.1332 m/z in A) liver, B) portal vein, and C) cecal contents shows the 
absence of 160.1332 m/z in GF animals.  High-resolution FT-MS/MS analysis shows 160.1332 
m/z produces characteristic 101.0600 m/z and 60.0809 m/z fragment ions.  D) MS/MS spectra of 
160.1332 from mouse chow, GF and CV cecal contents.  GF cecal contents and mouse chow did 
not produce a characteristic 101.0600 m/z fragment ion (0.8 m peak in Figure 4.4C) and this 
signal was ten-times lower in abundance than the observed signal in conventional and CV cecal 
contents.   
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Figure 4.5  Confirmation of metabolite identity for 160.1332.  Co-elution of experimental 
samples with authentic standard shows that 160.1332 m/z observed in conventional mouse 
tissues and human plasma is δ-valerobetaine (VB).  Propionylcholine (retention time 2 minutes) 
and valine betaine (retention time 4 minutes) standards did not co-elute with the observed peak 
that is present only in CV animals (retention time 7-8 minutes in left panels and 16 minutes in 
right panels).  Additionally, MS/MS analysis can differentiate propionylcholine (no 60.0809 m/z 
fragment ion) and valine betaine (no 101.0600 m/z fragment ion) from VB.  Valerobetaine 
standard (middle right) produced a peak that co-eluted with the experimental sample (top right) 
and produced the identical MS/MS spectra as the experimental sample. 
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To determine whether microbial activity was required for intestinal production of VB in 

mice, we performed ex vivo incubations of cecal contents from conventional and GF mice 

(Figure 4.6A).  LC-MS/MS analysis of these samples show only conventional cecal contents 

produced VB whereas GF cecal contents did not.  A metabolic screen of several candidate 

commensal and pathogenic microbes shows several bacteria (LGG, E. Coli, and Salmonella 

Typhimurium (SL1344)) are able to produce VB ex vivo (Figure 4.6B).  These represent diverse 

taxa of gram positive and gram negative pathogenic and commensal bacteria.  Taken together, 

these data show intestinal production of VB requires microbial activity and therefore, the 

presence of VB in conventional animals reflects microbial production, followed by absorption 

and distribution into mouse tissues. 
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Figure 4.6  Microbial activity is required to produce VB.  A) Ex vivo incubation of cecal 
contents from GF and conventional mice shows that the microbiome is required for intestinal 
production of 160.1332 m/z.  VB peak area only increased over time in cecal contents from 
conventional mice.  VB was not present in GF mouse cecal contents and was not produced over 
time.  B) Analysis of bacterial cultures at baseline and after 18 hours of growth show several 
candidate bacteria (LGG, E. Coli, SL1344 (Salmonella Typhimurium) are able to produce VB ex 
vivo. 
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 δ-valerobetaine (VB) decreases cellular carnitine in cultured HepG2 cells 

To identify the impact of VB on mitochondrial functions and fatty acid metabolism, we 

performed a dose-response study in human HepG2 cells.  Cells were treated for 12 hours with 

VB, and changes to the intracellular metabolome caused by VB-treatment were assessed with 

metabolomics analysis.  The top metabolic pathway changed by VB-treatment was carnitine-

shuttle metabolism (Figure 4.7A).  More specifically, VB-treatment caused a dose-dependent 

decrease in cellular carnitine, short-chain and long-chain acylcarnitines (Figure 4.7B).  At 10 

µM, the lowest concentration of VB observed in the conventional mouse portal circulation, the 

observed carnitine peak intensity was half of the observed carnitine peak intensity in control 

cells.  The effect was similar to effect observed with meldonium, a competitive inhibitor of 

membrane carnitine-reuptake and inhibitor of BBOX-mediated carnitine biosynthesis (Figure 

4.7C).  Propionylcholine, an ester with the identical elemental composition as VB, did not elicit 

a carnitine-lowering effect in HepG2 cells (Figure 4.7C).  Cellular carnitine was restored by 

addition of carnitine to the cell media (Figure 4.7D).  VB treatment also decreased cellular 

carnitine in CaCo2 cells (Figure 4.7D). 
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Figure 4.7 12 hour dose response study of VB in HepG2 cells. A) Untargeted metabolomic 
profiling of HepG2 cells treated with physiologically relevant concentrations of VB (0-30 µM, n 
= 4 biological replicates) shows VB treatment alters cellular carnitine shuttle metabolism 
(pathway level significance p > 0.05).  B) VB treatment decreases cellular carnitine and 
acylcarnitines and the carnitine precursor butyrobetaine (lmreg p > 0.05).  Statistical analyses 
were performed using the lmreg function in xMSpanda.  Pearson regression coefficients are 
provided next to metabolite names (testing for association between treatment and metabolite 
abundance).  C) VB decreases cellular carnitine (n = 3 biological replicates) in a similar fashion 
as the inhibitor of carnitine biosynthesis (BBOX) and uptake (OCTN2), meldonium.  
Propionylcholine, an ester with the same molecular weight as VB, did not elicit a carnitine 
lowering effect.  Statistical analyses were performed using one-way ANOVA with Tukey’s 
multiple comparison’s test (F = 38.81, p < 0.0001).  *Indicates different from control.  Data are 
displayed as mean ± standard deviation.  D) VB-mediated loss of carnitine (n = 3 biological 
replicates) is reversible with added carnitine.  Data are displayed as mean ± standard deviation.  
E). VB treatment decreases cellular carnitine and acylcarnitines in CaCo2 cells (n = 3 biological 
replicates). 
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δ-valerobetaine (VB) decreases palmitate-dependent mitochondrial respiration in HepG2 cells 

Carnitine is required for transport of long-chain fatty acyl chains into mitochondria for 

fatty acid oxidation.  To test the effects of VB on mitochondrial function, we assessed the effects 

of VB treatment on basal respiratory rate, ATP production, spare capacity of HepG2 cells.  

Under culture conditions where cells were provided palmitate as a fuel source after overnight 

glucose, glutamine, and pyruvate deprivation, VB elicited a dose-dependent decrease in 

palmitate-dependent respiration following injection of the uncoupling agent FCCP (Figure 

4.8A).  The observed decrease in spare capacity (Figure 4.8B) for fatty acid oxidation in HepG2 

cells was similar to that observed with etomoxir, an irreversible inhibitor of CPT1.  Under 

culture conditions where glucose, glutamine, and pyruvate were present in the culture media, VB 

did not elicit major changes to the basal respiratory rate, ATP-production, spare capacity, or non-

mitochondrial respiration (Figure 4.8C, D).  This shows that the effect of VB on fatty acid 

oxidation in HepG2 cells is dependent on the availability of other fuel substrates.   
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Figure 4.8  Mitochondrial respiration after 12 hour treatment with VB in HepG2 cells.  A) 
VB elicits a concentration-dependent decrease in palmitate dependent mitochondrial respiration 
after FCCP treatment.  B) Measures of basal respiration (oxygen consumption rate (OCR) prior 
to injection of test substrates), spare respiratory capacity (maximal OCR following FCCP 
injection – basal respiration), ATP production (basal respiration OCR – OCR post-oligomycin 
treatment), and proton leak (minimum OCR after oligomycin – non-mitochondrial OCR).  VB 
treatment elicits a dose-dependent decrease in spare capacity in HepG2 cells.  C) The oxygen 
consumption rate in serum starved HepG2 cells supplemented with glucose, glutamine and 
pyruvate is not altered by VB treatment.  D) VB treatment does not elicit concentration-
dependent effects on mitochondrial respiratory parameters in cells supplemented with glucose 
and glutamine.  Each data point represents the 6-8 technical replicates ± standard error of the 
mean.  These data are representative of two independent experiments. 
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VB decreases formation of labeled acetyl-CoA production from labeled palmitic acid  

Palmitate oxidation by mitochondria requires carnitine for uptake as palmitoylcarnitine, 

and the end product of mitochondrial beta-oxidation is acetyl-CoA.  We performed a stable 

isotope tracer study to test whether added VB decreases the amount of 13C2-acetyl-CoA formed 

from 13C16-palmitate oxidation in HepG2 cells.  50 µM VB-pretreatment prior to the introduction 

of labeled palmitate decreased labeled 13C2-acetyl-CoA relative to vehicle (1h: 26%, 2h: 20%, 

4h: 25%, 8h: 24% of vehicle).  Carnitine supplementation following VB pretreatment restored 

cellular carnitine and restored the formation of labeled acetyl-CoA relative to VB pretreatment 

alone.  VB added concurrently with labeled palmitate led to a moderate decrease in formation of 

labeled acetyl-CoA compared to vehicle treated cells (1h: 70%, 2h: 70%, 4h: 65%, 8h: 82% of 

vehicle).  Etomoxir blocked formation of labeled acetyl-CoA (1h: 3%, 2h: 2%, 4h: 4%, 8h: 4% 

of vehicle).  Thus, these results VB alone is sufficient to decrease carnitine-mediated 

mitochondrial fatty acid oxidation compared to cells without added VB.  VB did not alter the 

uptake of cellular 13C16-palmitate or the formation of 13C16-palmitoyl-CoA (Figure 4.9). 
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Figure 4.9 Stable isotope tracer study to examine the immediate effect of VB treatment on 
cellular mitochondrial fatty acid oxidation.  12 hour pretreatment with VB (green) decreased 
the formation of labeled acetyl-CoA (bottom right) by approximately 75% compared to vehicle 
(blue).  Addition of carnitine back to cells pretreated with VB for 12 hours (purple) restored the 
carnitine-dependent formation of mitochondrial acetyl-CoA.  Co-treatment of VB with the 
addition of isotope-labeled palmitate (red) decreased the formation of labeled acetyl-CoA by 
approximately 25% compared to vehicle.  Data for VB, carnitine, and other metabolites are 
shown to illustrate VB treatment does not affect uptake of labeled 13C16 palmitate (top middle), 
or the conjugation of labeled palmitate to CoA (bottom middle).  VB treatment decreased 
carnitine approximately 20% after one hour (bottom left) and these changes drive decreased 
formation of labeled palmitoylcarnitine (top right) and labeled acetyl-CoA (bottom right).  Each 
data point represents the average of 3 biological replicates ± standard deviation. 
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VB decreases carnitine and decreases mitochondrial fatty acid oxidation in conventional mice 

We used conventional mice to test whether supplemental VB inhibited mitochondrial 

fatty acid oxidation in vivo.  First, we tested whether VB could deplete circulating and cellular 

carnitine in fed mice.  After one week dosing (saline, 10 mg/kg VB (200 µL of 10 mM), 100 

mg/kg VB (200 µL of 100 mM)), serum, liver, and urine were collected for mass spectrometry 

analysis.  Results show that one-week at 10 mg/kg VB decreased serum carnitine in male mice 

from 71 ± 13 µM (mean ± standard deviation) to 52 ± 6 µM and 100 mg/kg VB further 

decreased circulating carnitine to 17 ± 4 µM.  In female mice, 10 mg/kg decreased serum 

carnitine from 56 ± 11 µM (in vehicle treated mice) to 39 ± 14 µM and 100 mg/kg VB further 

decreased serum carnitine to 17 ± 4 µM (Figure 4.10A).  In fasted mice, similar decreases in 

circulating and hepatic carnitine were observed (Figure 4.11A).   

In fed mice, 10 mg/kg VB increased hepatic VB in male (2.5 fold-change) and female 

(4.7 fold-change) mice and 100 mg/kg VB increased VB in male (6.6 fold-change) and female 

(7.6 fold-change) mice compared to vehicle treatment.  In fed mice, 10 mg/kg VB decreased 

hepatic carnitine in male (0.7 fold-change [not statistically significant]) and female (0.7 fold-

change) mice and 100 mg/kg VB decreased hepatic carnitine in male (0.65 fold-change [not 

statistically significant]) and female (0.27 fold-change) mice compared to vehicle treatment 

(Figure 4.10A).  In fasted mice, 10 mg/kg VB increased hepatic VB in male (2.5 fold-change) 

and female (4.7 fold-change) mice and 100 mg/kg VB increased VB in male (6.6 fold-change) 

and female (7.6 fold-change) mice compared to vehicle treatment.  In fasted mice, 10 mg/kg VB 

decreased hepatic carnitine in male (0.5 fold-change) and female (0.4 fold-change) mice and 100 

mg/kg VB decreased hepatic carnitine in male (0.41 fold-change) and female (0.32 fold-change) 

mice compared to vehicle treatment (Figure 4.11A).  Oil Red O analysis showed a trending 
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difference in lipid accumulation with VB treatment under fed conditions (Figure 4.10B, C) but 

VB increased neutral lipid accumulation in both male and female mice after fasting (Figure 

4.11B, C).  Liver triglycerides were increased (60% in male mice and 100% in female mice) in 

fasted mice after VB treatment (Figure 4.12A).  Circulating and hepatic beta-hydroxybutyrate 

were decreased in mice treated with VB after fasting (Figure 4.12B).  Taken together, these data 

show that VB decreases circulating and hepatic carnitine, decreases hepatic fatty acid oxidation, 

causing a significant increase in hepatic triglycerides, and decrease in the formation of ketone 

bodies during fasting.  
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Figure 4.10 VB dose-response study in fed mice.  A) VB treatment increases circulating and 
hepatic VB [Kruskal-Wallis analysis to determine group-wise differences with Dunn’s multiple 
comparisons test (serum VB males – KW statistic 7.2, p = 0.0036; serum VB females – KW 
statistic 10.84, p = 0.0008; liver VB males – KW statistic 6.489, p = 0.0107; liver VB females – 
KW statistic 12.94, p < 0.0001)] and decreases circulating and hepatic carnitine in male (n = 3 
per treatment) and female mice (n = 5 vehicle, 3 10 mg/kg, 6 100 mg/kg) after 1 week 
intraperitoneal administration (serum carnitine males – KW statistic 6.489, p = 0.01; serum 
carnitine females – KW statistic 11.42, p = 0.0002; liver carnitine males – KW statistic 1.689, p 
= 0.51; liver carnitine females – KW statistic 10.98, p = 0.0004).  Control vs. 100 mg/kg was 
different for all comparisons, except for male liver carnitine (which was not significantly 
different).  B) Representative Oil Red O stains of fed mouse liver with vehicle or VB treatment.  
Scale bar represents 100 µm under 20x magnification.  C) Quantification of red pixel count in 
Oil Red O staining in fed mice (n = 5 per treatment).  Data were analyzed using a one-tailed t-
test (p = 0.16 for males, p = 0.06 for females) to test whether VB treatment increased neutral 
lipid accumulation in the liver under fed conditions.  VB treatment does not worsen or improve 
lipid accumulation in the liver under fed conditions.  
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Figure 4.11 VB dose-response study in fasted mice.  A) VB treatment increases circulating and 
hepatic VB and decreases circulating and hepatic carnitine in male (n = 8 vehicle, n = 3 10 
mg/kg, n = 8 100 mg/kg) and female mice (n = 8 vehicle, n = 3 10 mg/kg, n = 8 100 mg/kg) after 
3 days intraperitoneal administration.  Kruskal-Wallis analysis was used to determine group-wise 
differences and Dunn’s multiple comparisons test was used to identify pairwise differences – 
male serum carnitine (KW statistic 9.021, p = 0.0029); female serum carnitine (KW statistic 
10.98, p = 0.0004); male liver carnitine (KW statistic 11, p = 0.0003); female liver carnitine 
(KW statistic 10.83, p = 0.0004).  Control vs 100 mg/kg was significantly different for all 
comparisons.  B) Representative Oil Red O stains of fasted mouse liver with vehicle or VB 
treatment.  Scale bar represents 100 µm under 20x magnification.  C) Quantification of red pixel 
count in Oil Red O staining in fed mice (n = 5 per treatment).  Data were analyzed using a one-
tailed t-test (p = 0.045 for males, p = 0.018 for females) to test whether VB treatment increased 
neutral lipid accumulation in the liver under fed conditions.  VB treatment increases neutral lipid 
accumulation in the fasted state.  
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Figure 4.12 VB increases hepatic triglycerides after fasting and decreases ketone body 
formation during fasting in male and female mice.  A) VB increases liver triglycerides after 
fasting (n = 5, one-tailed t-test p < 0.05 for males and females).  B) Circulating and hepatic beta-
hydroxybutyrate are decreased during fasting after VB treatment in male and female mice.  
Kruskal-Wallis with Dunn’s multiple comparisons test was used for serum and liver analyses (n 
= 8 vehicle, n = 3 10 mg/kg, n = 5 100 mg/kg for male and female).  Male serum KW statistic 
7.864, p < 0.0085; female serum KW statistic 10.46, p < 0.0006.  Male liver KW statistic 7.864, 
p < 0.0085; female liver KW statistic 11.73, p < 0.0001.  Control vs. 100 mg/kg was significantly 
different for all comparisons. 
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VB is associated with the severity of hepatic steatosis in adolescents and with central adiposity 

in adults 

 We tested whether circulating VB is positively correlated with hepatic steatosis and 

central adiposity (visceral adipose tissue (VAT) weight) in humans.  Data from two separate 

studies was used for this analysis – one focused on identification of plasma metabolites 

associated with the severity of hepatic steatosis (mild (<33% steatosis), moderate (33-66% 

steatosis), to severe (>66% steatosis)) in adolescents (manuscript in submission) with NAFLD 

and the other re-examined a previously published dataset (33) focused on identification of 

plasma metabolites associated with body composition parameters and hepatic insulin resistance 

(HOMA-IR) in fasted, healthy adults.  The former study was from a cohort of 74 individuals 

(samples collected from 2007-2015) from the Emory University Pediatric Liver Biopsy 

Biorepository with clinically diagnosed NAFLD via liver biopsy.  The latter study was 

comprised of individuals enrolled in the Emory-Georgia Tech Center for Health Discovery and 

Well-Being (CHDWB) cohort (samples collected from 2007-2013) for whom baseline plasma 

HRM, insulin resistance and HOMA by fasting blood glucose and insulin were measured by 

HOMA-IR (34) and body composition by dual energy X-ray absorptiometry (DEXA).  In 

adolescents with clinically diagnosed NAFLD (n = 74, mean age 14, Males = 54, Females = 20), 

VB was positively correlated with severe steatosis (β = 0.345, p < 0.02).  In fasted adults (n = 

179, mean age 50 years, Males = 63, Females = 116), plasma VB was positively correlated with 

VAT (β = 3.7E+04 ± 1.1E+04, p = 0.0006), independent of age, race, and sex.  This relationship 

held when additionally controlling for total body fat (β = 1.6E+04 ± 7.2E+03, p = 0.03).  Plasma 

VB levels were significantly, positively related to HOMA-IR (β = 2.4E4 ± 8.6E3, p = 0.007), 
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independent of age, race, and sex (Figure 4.13).  Furthermore, plasma VB was positively 

correlated with age (data not shown).  

 

 

 
Figure 4.13 Clinical phenotypes associated with circulating VB. Left) Plasma VB is correlated 
with the severity of hepatic steatosis (n = 74, β = 0.345, p < 0.02) in adolescents.  Right) Plasma 
VB is correlated with increased central adiposity (n = 179, p < 0.0006), and hepatic insulin 
resistance (HOMA-IR) (p < 0.0001).   
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4.4 Discussion 

Phylogenetic and evolutionary evidence indicate that eukaryotic mitochondria are 

descended from an ancient bacterial endosymbiont (35), and there is increasing recognition of 

the holobiont – the eukaryotic host and its associated microbiome – function as the biological 

unit subject to evolutionary pressures.  The present results suggest that VB is a microbiome-

derived metabolite through which intestinal microbes communicate with the host mitochondria 

to influence collective bioenergetics.  VB regulates fatty acid oxidation through modulation of 

systemic and hepatic carnitine abundance, which decreases long-chain fatty acid transport and 

metabolism by mitochondria.  This may allow enhanced utilization of short-chain fatty acids by 

the eukaryotic host since short-chain fatty acids do not require the carnitine shuttle to be oxidized 

by host mitochondria (36).  This, in turn, could benefit members of the intestinal microbiota 

since fermentation byproducts of the microbiome need to be removed to maintain microbial 

energetics, and accumulation of which has been shown to be toxic to microbes (37).  

Additionally, evolutionarily conserved benefits of microbiome-mitochondria cross-talk could 

involve energy conservation.  In calorie-restricted states, microbial production of VB could 

promote survival of the holobiont/symbiont by functioning as a brake on host fatty acid 

oxidation, preserving collective nutritional resources.  In support of this, germ-free mice 

succumb more quickly following prolonged fasting periods compared to conventional mice (38).  

Thus, these results establish a novel molecular communication between the microbiome and 

mitochondria, which could underlie aspects of microbiome-host symbiosis. 
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A decrease in fatty acid oxidation and resultant lipid accumulation mediated by VB could 

also drive an adaptive response termed mitohormesis (39), a process by which a minor 

impairment increases gene expression of mitochondrial systems which improve metabolic 

function of mitochondria.  The comparative analysis of GF/CV mouse liver transcriptomes 

shows the microbiome, possibly due to the activity of VB, increases the expression of many 

genes for mitochondrial bioenergetic and lipid homeostasis (Figure 4.2).  In support of this, lipid 

accumulation drives activity of SIRT1, PGC-1alpha and PPAR-alpha pathways (40) which 

control carnitine homeostasis (41-43), mitochondrial bioenergetics, and lipid metabolism (44).  

Because PPAR-alpha expression declines with age (45), this adaptive response could be 

attenuated with aging and underlie the observed associations of VB with central adiposity in 

adults. 

Recent studies also show VB can be obtained from dietary sources (46-48), and recently 

published reports describe potential beneficial effects of VB on human health.  VB is produced 

by ruminant microbes in water buffalo and may contribute to increased acylcarnitines and 

nutritional value of water buffalo milk (48; 49).  Whole grain diets, which are associated with 

decreased risk of cardiometabolic disorders, type 2 diabetes, and weight gain (50), increased 

circulating VB in humans (46).  Whole grains do not contain VB but have pre-biotic effects on 

gut microbial composition (50) (e.g. increasing Bacteroidetes/Firmicutes ratio) and increases in 

Lactobacillus and Bifidobacterium.  These changes are negatively correlated with markers of 

obesity and dyslipidaemia, and suggest that microbial products (such as VB) produced by 

beneficial diets and probiotic-associated bacteria could elicit beneficial effects on human 

metabolic health.   
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VB regulation of carnitine pools could also impact health because alterations to carnitine 

homeostasis are common to metabolic disorders of humans.  Carnitine is a central regulator of 

glucose and lipid metabolism (51; 52), and previous studies show chemicals that decrease 

cellular carnitine cause mitochondrial dysfunction, decreases in hepatic fatty acid oxidation, and 

hepatic toxicities including steatosis (53-57).  Previous studies show a declines in free carnitine 

were accompanied by an accumulation of medium and long-chain acylcarnitines in muscle and 

associated with obesity in aging (58).  Furthermore, carnitine supplementation has been shown to 

be beneficial for obesity and fatty liver and increase glucose utilization in humans and mice (59-

63).  However, excessive fatty acid oxidation and the accumulation of incompletely oxidized 

acylcarnitines are also associated with obesity and insulin resistance (64).  For example, 

excessive fatty acid oxidation (and decreased glucose utilization) is observed in insulin-resistant 

heart tissues (65).  Limiting carnitine-dependent fatty acid oxidation under these conditions can 

improve metabolic flexibility by a driving an increase in glucose utilization (the Randle cycle).  

While VB was observed in brains, lungs, and hearts of conventional mice, the contribution of the 

microbial metabolite VB to extrahepatic metabolism is not currently known. 

In conclusion, the present results show that δ-valerobetaine, a structural analogue of the 

carnitine precursor γ-butyrobetaine, is a gut microbe-derived small molecule that orchestrates 

microbiome-mitochondrial cross talk to influence mitochondrial energy metabolism.  A key 

focus on prebiotic and probiotic management of VB production is needed to guide management 

of the critical microbiome-host symbiotic relationship that is needed to conquer the current 

epidemic of human metabolic disorders. 
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Chapter 5: Conclusions 
 

This dissertation focused on the identification of chemical signals produced by the gut 

microbiome that interact with targets in the liver to regulate systemic energy balance.  In this 

dissertation, I provided an introduction to the health issues of microbiome-host symbiosis.  I 

optimized (chapter 2) and validated (chapter 3) high-throughput chemical analyses for 

identifying metabolites from the microbiome with potential to impact host energy metabolism.  

In chapter 4, I identified, synthesized, and characterized a previously uncharacterized 

mitochondrial metabolite which is produced by the microbiome.  Here, in the concluding 

chapter, I summarize my findings and provide perspective for future work in this area. 
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5.1 - Summary 

 This research improves understanding of how the microbiome communicates with host 

metabolism in balancing fatty acid and energy metabolism.  I developed an experimental pipeline  

(Figure 5.1) to identify microbiome-derived metabolites and characterize their impact on host 

mitochondrial function and energy metabolism.   Development of optimized metabolite detection 

methods and extension of quantification methodology with a library of identified metabolites 

provided a foundation for the identification and quantification of unidentified metabolites.  

Application of validated methods and the ability to use mechanistic information derived from 

other systems biology layers allows hypothesis-driven experiments to provide experimental 

validation for interaction networks that are mapped out between the microbiome and host.  

Finally, use of these interaction networks aids interpretation of observed associations between 

specific microbial metabolites and clinical phenotypes.   

 

In Figure 5.2, I summarize the results from chapter 4 to provide a VB interaction 

network with liver mitochondria and hepatic energy metabolism.  Integrated analysis of liver 

transcriptomics with metabolomics with experimental results from chapter 4 shows the top 

transcriptional and metabolic pathways changing in response to the microbiome could be 

changing as a result of microbial production of VB.  As discussed in Chapter 4, symbiosis of 

microbes and host involves mutually beneficial outcomes; in the context of energy metabolism, 

VB appears to provide an important message to mitochondria to manage use of long-chain and 

short-chain fatty acids for the benefit of the symbiotic microbiome-host unit.   
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Figure 5.1 A simplified experimental pipeline for understanding interaction networks between 
the microbiome and host.  A) Identification of microbial metabolites and associated biological 
responses B) Identify the specific contribution of individual microbial metabolites to the global 
systems level response observed in host tissues C) Test for associations of microbiome-derived 
metabolites with clinical phenotypes.   
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Figure 5.2 Working model of the VB-mitochondrial interaction network.  The microbiome 
elicits major changes to the hepatic metabolome and transcriptome relating to mitochondrial 
energy metabolism and lipid metabolism.  The partial inhibition of FA oxidation elicited by the 
microbiome-derived mitochondrial metabolite VB increases hepatic lipids after fasting and could 
increase the expression of genes related to mitochondrial energy metabolism and lipid 
metabolism indirectly through activation of the transcription factor PPAR-alpha.  Preliminary 
data show that VB-treatment led to a 2-fold increase in PPRE-linked luciferase signal.  Other 
proposed mechanisms of bi-directional crosstalk with the microbiome include promoting the 
utilization of short-chain fatty acids over long-chain fatty acids in the intestinal lumen.  Previous 
studies show carnitine decreases the bile acid pool which can impact microbiome-host cross talk 
mediated by FXR in the intestinal lumen. 
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5.2 – Preliminary data and future directions 

Metabolic fate of VB 

 There are no data describing the metabolic fate of VB in the literature.  Because VB is a 

5-carbon analogue of the carnitine precursor butyrobetaine, we hypothesized that VB could be a 

precursor for a 5-carbon analogue of carnitine, homocarnitine.  A 5-carbon analogue of carnitine 

could serve as an additional carrier of acyl groups in and out of mitochondria.  To characterize 

the metabolic fate of VB, I analyzed extracts with LC-HRMS/MS from liver microsomal 

fractions (S9) incubated with VB, as well as drosophila and mice treated with VB (figure 5.3).  

My data show that 176.1281 m/z, the theoretical mass for homocarnitine, increases in a dose-

dependent manner in flies and mice and is produced by liver S9 fractions in the presence of 

alpha-ketoglutarate, iron, and ascorbate.  Ion dissociation spectra of 176.1281 m/z shows a mass 

shift of +14.0152 m/z from the 103.0395 m/z observed for carnitine to 117.0547 m/z for 

homocarnitine corresponding to the additional CH2 group.  The MS/MS spectra is characteristic 

of a 5-carbon analogue of carnitine.  However, MS/MS analysis was not sufficient to determine 

the position of the hydroxyl group either at the 3 or 4 position.  Homocarnitine is only detected 

in conventional mouse liver and is absent in GF mice.  Future work will need to be done to fully 

characterize the structure of this metabolite (e.g. use of a bioreactor to scale up S9 reactions with 

VB as a precursor), determine the enzymes responsible for production, whether it is detectable in 

humans, and to identify its biological significance. 
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Figure 5.3 Formation of a 5-carbon analogue of carnitine, homocarnitine from VB.  Left) 
Incubation of liver and kidney S9 fractions with butyrobetaine produces carnitine (162.1125 
m/z), a reaction mediated by gamma-butyrobetaine dioxygenase (BBOX1).  Incubation of liver 
and kidney S9 fractions with valerobetaine produces 176.1281 m/z.  The accurate mass and 
MS/MS spectra indicate that VB is a precursor for a 5-carbon analogue of carnitine, 
homocarnitine.  This reaction requires alpha-ketoglutarate, iron and ascorbate and does not 
proceed in the absence of these co-factors.  In drosophila and mice that were administered VB, 
we observed a dose-dependent increase in homocarnitine.  Furthermore, homocarnitine is present 
in conventionalized mice but absent in GF mice.  Further work is needed to elucidate the 
function of this 5-carbon analogue of carnitine that has not been previously reported in the 
literature. 
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Presence and activity of VB in other tissues 

 While VB was absent in GF mice, it was detected in lung, brain, and heart (data not 

shown) samples collected from conventional mice (figure 5.4).  Because each organ 

preferentially utilizes different fuel substrates, the impact of VB in cellular metabolism in these 

tissues represent an additional opportunities to improve our understanding of host-microbiome 

interactions.  Our data shows that VB decreases carnitine in brain and heart of mice.  While 

carnitine deficiencies are also linked to hypoglycemia, myopathy, and cardiomyopathy,  the 

consequences of decreased systemic carnitine and fatty acid oxidation elicited by VB are not 

currently known.  In addition to these questions, future studies should examine whether VB 

treatment increases the size of adipose depots or increases weight gain in mice. 
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Figure 5.4 Top) VB is present in liver, lung and brain of conventional (C) mice but absent in GF 
mouse tissues.  Bottom) VB treatment decreases brain and heart carnitine, but the function of VB 
in tissues other than the liver are not unknown. 
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5.3 – Conclusion 

Overall, the work presented in this dissertation establishes a chemical analysis platform 

suitable for detection of known and unidentified metabolites and provides evidence for a 

contribution of the microbiome-derived metabolite VB to mitochondrial function in the liver and 

systemic energy metabolism.  Experimental data shows VB decreases the rate of mitochondrial 

fatty acid oxidation in the liver and can increase the accumulation of hepatic fat.  Epidemiologic 

surveys show that plasma VB is moderately associated with the severity of hepatic steatosis in 

adolescents and central adiposity in adults.  Taken together, this work suggests that microbial 

production of VB may be a contributor to hepatic steatosis and the eventual development of fatty 

liver disease.  The results of this dissertation are strongly suggestive of a causative link between 

VB and the characteristic accumulation of fat in host tissues associated with hepatic steatosis and 

other obesity-related disorders.  Because of the importance of identifying novel therapeutic 

strategies to combat the epidemic of obesity-related metabolic disorders, the insights gained from 

this dissertation and future studies on this topic could drive the development of targeted therapies 

directed towards microbiome-mitochondrial signaling to improve metabolic health in humans. 

 
 



 

 
 
 
 
 
 
 

151 
   

Appendix 1 (from Chapter 3).  Validated metabolites (441) and estimated concentrations of metabolites in Qstd3 (214), NIST1950 
(198), and Chear (205) pooled plasma reference materials.  Concentrations were estimated by either (1) Reference standardization 
(RS) to calibrated (by method of standards addition) Qstd3 accurate mass MS1 (2) RS to NIST1950 published value (3) Method of 
standards addition to Qstd3 using diagnostic fragment ion (4) RS using most abundant expected metabolite in plasma (5) Relative 
peak intensities.   
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1 Glycine 120.0032 (M+2Na-H) 75 215 ± 7* 103 ± 23* 105 ± 13* 1 HMDB0000123 C00037

2 Alanine 90.0550 (M+H) 75 258 ± 17 330 ± 9 439 ± 8 1 HMDB0000161 C00041

3 Beta-alanine* 90.0550 (M+H) 75 - - - - HMDB0000056 C00099

4 Sarcosine* 90.0550 (M+H) 75 - - - - HMDB0000271 C00213

5 Serine 106.0499 (M+H) 87 99 ± 5 73 ± 6 144 ± 8 1 HMDB0000187 C00065

6 Proline 116.0706 (M+H) 65 128 ± 2 90 ± 2.4 90 ± 1.1 2 HMDB0000162 C00148

7 Valine 118.0863 (M+H) 52 159.7 ± 2 100 ± 2 124 ± 1.2 2 HMDB0000883 C00183

8 Threonine 120.0655 (M+H) 77 113 ± 4 90 ± 1 114 ± 5 1 HMDB0000167 C00188

9 Leucine 132.1018 (M+H) 48 100 - - - HMDB0000687 C00123

10 Isoleucine 132.1018 (M+H) 48 56 - - - HMDB0000172 C00407

[9,10] Leu/Iso 132.1018 (M+H) 48 156 ± 4 144 ± 3 202 ± 1 2 - -

11 Asparagine 133.0608 (M+H) 91 33.4 ± 1 9 ± 0.1 12 ± 0.3 2 HMDB0000168 C00152

12 Aspartate 134.0448 (M+H) 85 1.2 ± 0.1 1.9 ± 0.1 4.6 ± 0.02 1 HMDB0000191 C00049

13 Glutamine 147.0764 (M+H) 87 301 ± 14 147 ± 6 140 ± 3 1 HMDB0000641 C00064

14 Glutamate 146.0458 (M-H) 20 76 ± 3 89 ± 4 148 ± 5 1 HMDB0000148 C00025

15 Lysine 145.0983 (M-H) 69 123 ± 9 51 ± 2 113 ± 10 1 HMDB0000182 C00047

16 Methionine 150.0583 (M+H) 53 31.7 ± 1 23 ± 0.3 21.3 ± 1 1 HMDB0000696 C00073

17 Histidine 154.0622 (M-H) 23 60 ± 1 61 ± 1 74 ± 7 2 HMDB0000177 C00135

18 Phenylalanine 166.0863 (M+H) 48 54.8 ± 1.4 55.7 ± 1.2 60.7 ± 1.7 1 HMDB0000159 C00079

19 Tyrosine 182.0812 (M+H) 49 58.9 ± 0.9 54.3 ± 1 68.3 ± 0.54 2 HMDB0000158 C00082

20 Tryptophan 203.0826 (M-H) 26 48 ± 0.8 50.3 ± 2.4 58 ± 2.3 1 HMDB0030396 C00078

21 Arginine 173.1044 (M-H) 23 69 ± 4 78 ± 4.5 49 ± 2 1 HMDB0000517 C00062

22 Cysteine* - - - - - - HMDB0000574 C00097

23 Cystine 241.0311 (M+H) 211 87 ± 13 55 ± 4 34.2 ± 3.5 1 HMDB0000192 C00491

24 Creatine 132.0768 (M+H) 55 32 ± 2 43 ± 1 61 ± 7 2 HMDB0000064 C00300

25 Creatinine 114.0662 (M+H) 40 60 ± 2 57 ± 1 44 ± 0.3 2 HMDB0000562 C00791

26 Creatine Phosphate 212.0431 (M+H) 111 - 0.87 ± 0.15 0.12 ± 0.07 1 HMDB0001511 C02305

27 Guanidinoacetate 118.0611 (M+H) 70 1.7 ± 0.06 2.2 ± 0.08 1.5 ± 0.1 1 HMDB0000128 C00581

28 Guanidinosuccinate 176.0666 (M+H) 74 0.06 ± 0.003 0.05 ± 0.005 0.035 ± 0.003 1 HMDB0003157 C03139

29 Guanidinobutanote 146.0924 (M+H) 38 0.48 ± 0.02* 0.3 ± 0.03* 0.139 ± 0.03 1 HMDB0003464 C01035

30 Taurine 126.0219 (M+H) 63 32.4 ± 0.6 10 ± 0.3 39 ± 3 2 HMDB0000251 C00245

31 Hypotaurine 110.0270 (M+H) 77 0.9 ± 0.04* 0.4 ± 0.01 3.1 ± 0.08 1 HMDB0000965 C00519

32 Pyrogluamate (Oxoproline) 130.0499 (M+H) 40 16 ± 2 11 ± 0.4 37 ± 1 1 HMDB0000267 C01879

33 Methionine Sulfoxide 166.0532 (M+H) 88 1 ± 0.04 1 ± 0.04 1.4 ± 0.1 1 HMDB0002005 C02989

34 S-adenosylmethionine* 399.1445 (M+H) 133 - - - - HMDB0001185 C00019

35 S-adenosylhomocysteine 385.1294 (M+H) 80 0.015 ± 0.001 0.023 ± 0.005 0.01 ± 0.002 1 HMDB0000939 C00021

36 Cysteamine* 153.0515 (2M-H) 76 - - - - HMDB0002991 C01678

37 Cystathionine 223.0752 (M+H) 197 0.069 ± 0.01 0.029 ± 0.002 0.032 ± 0.003 1 HMDB0000099 C02291

38 Homocysteine* 136.0432 (M+H) 138 - - - - HMDB0000742 C00155

39 Homocystine* 269.0625 (M+H) 146 - - - - HMDB0000676 C01817

40 N-acetylcysteine* 164.0376 (M+H) 43 - - - - HMDB0001890 C06809

41 Nitrotyrosine 227.0663 (M+H) 53 - - - - HMDB0001904 -

42 Methionine sulfoximine 181.0642 (M+H) 91 - - - - HMDB0029430 C03510

43 Formyl methionyl peptide 178.0532 (M+H) 34 - - - - - -

44 Ophthalmic acid 290.1347 (M+H) 80 0.005 0.004 0.004 1 HMDB0005765 -

45 Glutathione* 308.0911 (M+H) 80 - - - - HMDB0000125 C00051

[NIST]                  
µM ± S.E.M

[Chear]                
µM ± S.E.M

[Qstd]              
µM ± S.E.M

Quantified 
byrt (sec) HMDB ID KEGG ID# Metabolite m/z (adduct)
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46 Glutathione disulfide* 613.1593 (M+H) 270 - - - - HMDB0003337 C00127
47 Asymmetric dimethylarginine (ADMA)* 203.1503 (M+H) 79 - - - - HMDB0001539 C03626
48 Symmetric dimethylarginine (SDMA)* 203.1503 (M+H) 79 - - - - HMDB0003334 -

[47,48] Dimethylarginine* 203.1503 (M+H) 79 86096714 47976032 60016920 5 - -
49 Agmatine* 131.1296 (M+H) 74 - - - - HMDB0001432 C00179
50 Carnosine 227.1139 (M+H) 107 - 0.52 ± 0.04 0.34 ± 0.05 1 HMDB0000033 C00386
51 Anserine* 241.1295 (M+H) 102 - 0.014 ± 0.002 0.087 ± 0.01 1 HMDB0000194 C01262
52 1-Methylhistidine* 170.0924 (M+H) 92 - - - - HMDB0000001 C01152
53 3-Methylhistidine* 170.0924 (M+H) 102 - - - - HMDB0000479 C01152

[52,53] Methylhistidine 170.0924 (M+H) 97 9 ± 0.8 4.6 ± 0.5 3.7 ± 0.1 4(52) - C01152
54 Histidinol 142.0975 (M+H) 74 - - - - HMDB0003431 C00860
55 Histamine 112.0869 (M+H) 74 0.015 ± 0.0007 0.01 ± 0.001* 0.02 ± 0.002 1 HMDB0000870 C00388
56 1-Methylhistamine 126.1026 (M+H) 73 - - - - HMDB0000898 C05127
57 3-Methylhistamine 126.1026 (M+H) 73 - - - - HMDB0001861 -

[56,57] Methylhistamine* 126.1026 (M+H) 73 - - - - - -
58 Urocanate 139.0502 (M+H) 38 0.24 ± 0.02 0.07 ± 0.003 0.3 ± 0.03 1 HMDB0000301 C00785
59 Thyrotropin Releasing Hormone* 361.1630 (M-H) 24 - - - - HMDB0060080 -
60 Diiodothyronine* 523.8861 (M-H) 31 - - - - HMDB0000582 -
61 (3,5)-Diiodotyrosine* 433.8744 (M+H) 47 - - - - HMDB0003474 C01060
62 Triiodothyronine* 651.7973 (M+H) 38 - - - - HMDB0000265 C02465
63 Thyroxine 775.6794 (M-H) 72 0.089 ± 0.003 0.026 ± 0.005 0.13 ± 0.015 1 HMDB0000248 C01829

[62,63] 3-Methoxytyrosine 212.0917 (M+H) 55 0.0024 ± 0.0011 0.001 ± 0.0001 0.0004 ± 0.0001 1 HMDB0001434 -
64 Tyramine 138.0913 (M+H) 31 - - - - HMDB0000306 C00483
65 Phenylethanolamine 138.0913 (M+H) 32 - - - - HMDB0001065 C02735

[64,65] Tyramine/Phenylethanolamine 138.0913 (M+H) 32 0.045 ± 0.0014* 0.032 ± 0.003* 0.036 ± 0.005* 1 - -
66 3-Methoxytyramine* 168.1018 (M+H) 30 - - - - HMDB0000022 C05587
67 4-Methoxytyramine* 168.1018 (M+H) 30 - - - - HMDB0012162 -

[66,67] Methoxytyramine (3 or 4) 168.1018 (M+H) 30 0.13 ± 0.005 0.11 ± 0.02 0.084 ± 0.006 1 - -
68 Normetanephrine* 184.0968 (M+H) 32 - - - - HMDB0000819 C05589
69 Epinephrine* 184.0968 (M+H) 32 - - - - HMDB0000068 C00788

[68,69] Epinephrine/Normetanephrine 184.0968 (M+H) 32 0.09 ± 0.02* 0.03 ± 0.008* 0.06 ± 0.01* 1 - -
70 Octopamine 154.0863 (M+H) 33 0.06 ± 0.006* 0.07 ± 0.007* 0.05 ± 0.006* 1 HMDB0004825 C04227
71 Dopamine* 154.0863 (M+H) 33 - -  - - HMDB0000073 C03758

[70,71] Octopamine/Dopamine 154.0863 (M+H) 33 0.06 ± 0.006* 0.07 ± 0.007* 0.05 ± 0.006* 1 - -
72 L-dopa* 198.0761 (M+H) 62 - - - - HMDB0000181 C00355
73 Acetylphenylalanine 208.0968 (M+H) 30 0.6 ± 0.024 0.34 ± 0.035 0.19 ± 0.1 1 HMDB0000512 C03519
74 Kynurenine 209.0921 (M+H) 50 1.07 ± 0.03 1.01 ± 0.04 1.29 ± 0.03 1 HMDB0000684 C00328
75 Hydroxykynurenine* 225.0870 (M+H) 55 - - - - HMDB0000732 C02794
76 Kynurenic acid 190.0499 (M+H) 48 0.025 ± 0.006* 0.014 ± 0.002* 0.01 ± 0.008* 1 HMDB0000715 C01717
77 Xanthurenic acid* 206.0448 (M+H) 50 - - - - HMDB0000881 C02470
78 5-Hydroxytryptophan 221.0921 (M+H) 59 - - - - HMDB0000472 C01017
79 Serotonin 177.1022 (M+H) 31 - - - - HMDB0000259 C00780
80 N-Acetylserotonin 219.1128 (M+H) 30 0.86 ± 0.08 1.02 ± 0.07 0.4 ± 0.14 1 HMDB0001238 C00978
81 5-Hydroxyindoleacetic acid 192.0657 (M+H) 31 0.017 ± 0.005* 0.067 ± 0.003 0.057 ± 0.009 1 HMDB0000763 C05635
82 Indole-3-acetaldehyde 158.0611 (M-H) 60 1 ± 0.02 0.2 ± 0.008 0.21 ± 0.01 1 HMDB0001190 C00637
83 Indoleacetate 174.0561 (M-H) 27 1.2 ± 0.12 1.3 ± 0.09 0.97 ± 0.03 1 HMDB0000197 C00954

[NIST]                  
µM ± S.E.M

[Chear]                
µM ± S.E.M

[Qstd]              
µM ± S.E.M

Quantified 
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84 Indole 3-acetamide 175.0866 (M+H) 31 - - - HMDB0029739 C02693
85 Methyl indoleacetate 190.0863 (M+H) 29 - - - - HMDB0029738 -
86 Indole propionate 190.0863 (M+H) - - - - - HMDB0002302 -

[85,86] MIA/IPA 190.0863 (M+H) 29 4.9 ± 0.4 2.8 ± 0.25 3.2 ± 0.2 4(84) - -
87 Acetyltryptophan 247.108 (M+H) 30 0.377 ± 0.016 0.333 ± 0.08 0.289 ± 0.03 1 HMDB0013713 -
88 Melatonin 233.1285 (M+H) 29 0.0002 ± 6e-5 0.00006 ± 4e-6 0.00004  ± 6e-8 1 HMDB0001389 C01598
89 N6,N6,N6-Trimethyllysine 189.1598 (M+H) 107 0.36 ± 0.01 0.35 ± 0.02 0.39 ± 0.02 1 HMDB0001325 C03793
90 Hydroxylysine 163.1077 (M+H) 145 0.32 ± 0.03 0.17 ± 0.003 0.19 ± 0.014 1 HMDB0000450 C16741
91 Acetyllysine 189.1234 (M+H) 76 0.06 ± 0.0005 0.16 ± 0.006 0.15 ± 0.01 1 HMDB0000446 C12989
92 Pipecolate 130.0863 (M+H) 61 13 ± 0.2 11 ± 0.1 8.3 ± 0.2 1 HMDB0000070 C00408
93 !-Aminoadipate 162.0761 (M+H) 74 0.05 ± 0.006* 2.1 ± 0.06* 1.6 ± 0.5 1 HMDB0000510 C00956
94 Ornithine 133.0972 (M+H) 110 98 ± 5 50 ± 2 86 ± 2 1 HMDB0000214 C00077
95 Citrulline 176.103 (M+H) 91 18 ± 1.5 10.7 ± 1.8 16.4 ± 2.9 1 HMDB0000904 C00327
96 5-Aminovaleric acid 118.0863 (M+H) 39 - - - - HMDB0003355 C00431
97 Diaminopimelate 189.0881 (M-H) 19 - 2.1 ± 0.06* 1.6 ± 0.5 1 HMDB0001370 C00666
98 Sulfinoalanine 154.0169 (M+H) 120 - - - - HMDB0000996 C00606
99 Hydroxyproline 132.0655 (M+H) 77 7 ± 0.2 8 ± 0.7 7 ± 0.1 1 HMDB0000725 C01157
100 5-Aminolevulinate 132.0655 (M+H) 45 - - - - HMDB0001149 C00430
101 N-Acetylalanine 132.0655 (M+H) 36 - - - - HMDB0000766 -
102 N-Acetylglycine 118.0499 (M+H) 37 3 ± 0.14* 2.3 ± 0.5* 1.6 ± 0.8* 1 HMDB0000532 -
103 N-Acetylleucine 174.1125 (M+H) 31 0.2 ± 0.015* 0.1 ± 0.02* 0.067 ± 0.02* 1 HMDB0011756 C02710
104 N-Acetylaspartate 174.0408 (M-H) 21 0.07 ± 0.002 0.14 ± 0.008* 0.2 ± 0.027* 1 HMDB0000812 C01042
105 N-Methyl-D-aspartate 148.0604 (M+H) 77 - - - - HMDB0002393 C12269
106 O-Acetylserine 148.0604 (M+H) 84 - - - - HMDB0003011 C00979
107 N-Acetylserine 148.0604 (M+H) 42 - - - - HMDB0002931 -
108 N-Methyl-glutamate 162.0761 (M+H) 74 - - - - HMDB0062660 C01046
109 Acetylglutamate 188.0564 (M-H) 21 0.01 ± 0.001 0.001 ± 0.0003* 0.003 ± 0.0004* 1 HMDB0001138 C00624
110 2-Aminobutyrate 104.0706 (M+H) 70 1.2 ± 0.01 1 ± 0.01 1.2 ± 0.05 4 HMDB0000452 C02356
111 GABA (4-Aminobutyrate) 104.0706 (M+H) 45 0 0 0.21 3 HMDB0000112 C00334
112 3-Aminoisobutanoate 104.0706 (M+H) 45 - - - - HMDB0003911 C05145
113 Dimethylglycine 104.0706 (M+H) - - - - - HMDB0000092 C01026
114 Acetamidobutanoate 146.0812 (M+H) 34 0.014 ± 0.001* 0.002 ± 0.001* 0.006 ± 0.003* 1 HMDB0003681 C02712
115 Acetylmethionine 190.0543 (M-H) 22 0.002 ± 0.0008* 0.006 ± 0.003* 0.022 ± 0.006* 1 HMDB0011745 C05335
116 Selenomethionine 198.0028 (M+H) 53 - - - - HMDB0003966 C00263
117 Selenocystamine 248.9409 (M+H) 74 - - - - - -
118 Homoserine 120.0655 (M+H) 77 - - - - HMDB0000719 C00022
119 1-Aminocyclopropane-1-carboxylate 102.0550 (M+H) 60 2 ± 0.2* 0.2 ± 0.04* 0.3 ± 0.1* 1 HMDB0036458 C01234
120 Norvaline 118.0863 (M+H) 52 HMDB0013716 C01826
121 Pyruvate 87.0087 (M-H) 20 57 ± 3 101 ± 1 64 ± 3 1 HMDB0000243 C00186
122 Lactate 89.0244 (M-H) 22 2404 ± 20 2633 ± 125 7506 ± 161 2 HMDB0001311 C00164
123 Acetoacetate 101.0244 (M-H) 22 281 ± 6* 324 ± 1* 239 ± 15* 1 HMDB0000060 C00164
124 2-Ketobutyric acid 101.0244 (M-H) 22 - - - - HMDB0000005 C00109
125 Citric acid 191.0197 (M-H) 19 191/268 182 1 HMDB0000094 C00158
126 Isocitric acid 191.0197 (M-H) 19 - - - - HMDB0000193 C00311
127 (Cis/Trans)-Aconitate 173.0091 (M-H) 19 7.5 ± 0.5* 124 ± 1.1 19 ± 0.24 1 HMDB0000958 C02341
128 !-Ketoglutarate (Oxoglutarate) 145.0142 (M-H) 21 19 ± 0.7 26 ± 0.5 43 ± 2 1 HMDB0000208 C00026
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129 Succinic acid 117.0193 (M-H) 21 3 ± 0.2 4.4 ± 0.2 19 ± 2 1 HMDB0000254 C00042
130 Methylmalonic acid 117.0193 (M-H) 21 - - - - HMDB0000202 C02170
131 Fumaric acid 115.0037 (M-H) 21 11 ± 0.11 5 ± 0.3 27 ± 3 1 HMDB0000134 C00122
132 Malic acid 133.0143 (M-H) 21 0.9 ± 0.1 1.8 ±  0.1 8.4 ± 0.13 1 HMDB0000156 C00149
133 !-OH-butyrate 103.0401 (M-H) 23 - - - - HMDB0000008 C05984
134 "-OH butyrate 103.0401 (M-H) 23 260 ± 16 176 ± 2 138 ± 5 2 HMDB0000357 C01089
135 Glyceric acid 105.0193 (M-H) 20 2.2 ± 0.05 2.1 ± 0.1 2.7 ± 0.2 1 HMDB0000139 C00258
136 Oxovaleric acid 115.0401 (M-H) 20 - - - - HMDB0001865 C06255
137 #-Ketoisovalerate (Ketovaline) 115.0401 (M-H) 20 - - - - HMDB0000019 C00141

[136,137] Oxovalerate/Ketoisovalerate 115.0401 (M-H) 20 5028167 4160375 2108007 5 - -
138 #-Ketoisocaproate (Ketoleucine) 129.0557 (M-H) 24 - - - - HMDB0000695 C00233
139 #-Keto-"-methyl-valerate (Ketoisoleucine) 129.0557 (M-H) 24 - - - - HMDB0000491 C03465

[139,140] Ketoleucine/Ketoisoleucine 129.0557 (M-H) 24 29279018 32075354 25674455 5 - -
141 Hydroxymethylglutarate 161.0456 (M-H) 23 2.3 ± 0.03 3.8 ± 0.1 1.5 ± 0.1 1 HMDB0000355 C03761
142 Mevalonic acid 147.0663 (M-H) 22 0.096 ± 0.008* 0.049 ± 0.007* 0.048 ± 0.02* 1 HMDB0000227 C00418
143 Sorbate 113.0597 (M+H) 30 2.6 ± 0.2* 1.3 ± 0.08 1.9 ± 0.3 1 HMDB0029581 -
144 2-Methylmaleate 129.0193 (M-H) 22 4.3 ± 0.02 28 ± 0.5 4 ± 0.04 1 HMDB0000634 C02226
145 Glutaric acid 131.0350 (M-H) 25 6 ± 0.1 6 ± 0.2* 2 ± 0.3* 1 HMDB0000661 C00489
146 Ethylmalonic acid 131.0350 (M-H) 21 - - - - HMDB0000622 -
147 Adipate 145.0506 (M-H) 25 - - - - HMDB0000448 C06104
148 Oxoadipic acid 159.0299 (M-H) 21 - - - - HMDB0000225 C00322
149 Hydroxyadipic acid 161.0455 (M-H) - - - - - HMDB0000321 C02360
150 Dehydroshikimate 171.0299 (M-H) 20 - - - - - C02652
151 Shikimic acid 173.0456 (M-H) 18 - - - - HMDB0003070 C00493
152 Suberate 173.0819 (M-H) 25 - - - - HMDB0000893 C08278
153 Azelaic acid 187.0976 (M-H) 25 0.012 ± 0.003* 0.04 ± 0.007* 0.01 ± 0.005* 1 HMDB0000784 C08261
154 Benzoate 121.0295 (M-H) 23 2.6 ± 0.3 44 ± 4* 12 ± 2* 1 HMDB0001870 C00180
155 2-Hydroxybenzoate (Salicylic acid) 137.0244 (M-H) 24 - - - - HMDB0001895 C00805
156 3-Hydroxybenzoate 137.0244 (M-H) 24 - - - - HMDB0002466 C00587
157 4-Hydroxybenzoate 137.0244 (M-H) 24 - - - - HMDB0000500 C00156

[155-157] Hydroxybenzoate 137.0244 (M-H) 24 77 ± 1 17 ± 0.2 0.3 ± 0.1 4(152) - -
158 2,4-Dihydroxybenzoate 153.0193 (M-H) 24 - - - - HMDB0029666 C00230
159 3,5-Dihydroxybenzoate 153.0193 (M-H) 24 - - - - HMDB0013677 -
160 2,6-Dihydroxybenzoate 153.0193 (M-H) 24 - - - - HMDB0013676 -
161 2,3-Dihydroxybenzoate (2-pyrocatechuate) 153.0193 (M-H) 24 - - - - HMDB0000397 C00196
162 3,4-Dihydroxybenzoate (Protocatechuic acid) 153.0193 (M-H) 24 - - - - HMDB0001856 C00230
163 2,5-Dihydroxybenzoate (Gentisic acid) 153.0193 (M-H) 24 - - - - HMDB0000152 C00628

[158-163] Dihydroxybenzoate 153.0193 (M-H) 24 1.3 ± 0.06 0.9 ± 0.05 1.1 ± 0.007 4(158) - -
164 2-Phenylacetate 135.0452 (M-H) 26 25 ± 1.4* 32 ± 2.6* 35 ± 2.3 1 HMDB0000209 C07086
165 Mandelic acid 151.0401 (M-H) 24 - - - - HMDB0000703 C01984
166 2-Methoxybenzoic acid 151.0401 (M-H) - - - - - HMDB0032604 -
167 3-Methoxybenzoic acid 151.0401 (M-H) - - - - - HMDB0032606 -
168 p-Hydroxyphenylacetic acid 151.0401 (M-H) 24 - - - - HMDB0000020 C00642
169 o-Hydroxyphenylacetic acid 151.0401 (M-H) 24 - - - - HMDB0000669 C05852
170 m-Hydroxyphenylacetic acid 151.0401 (M-H) 25 - - - 4(165) HMDB0000440 C05593
171 Vanillin 151.0401 (M-H) - - - - - HMDB0012308 C00755
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[166-171] Hydroxyphenylacetate/Methoxybenzoate 151.0401 (M-H) 25 1.5 ± 0.03* 2.3 ± 0.2* 2.2 ± 0.4* 1 - -
172 Resorscinol monoacetate 153.0546 (M+H) 30 - - - - C12064
173 Methylparaben 153.0546 (M+H) 31 - - - HMDB0032572 -
174 Dihydroxyacetophenone 153.0546 (M+H) 32 - - - - -
175 Vanillic acid 167.0350 (M-H) - - - - - HMDB0000484 C06672
176 Methylvanillate 183.0652 (M+H) 30 - - - - HMDB0240266 -
177 m-Hydroxymandelic acid 167.0350 (M-H) - - - - - HMDB0000750 -
178 p-Hydroxymandelic acid 167.0350 (M-H) - - - - - HMDB0000822 C11527
179 Homogentisate 167.0350 (M-H) 25 - - - - HMDB0000130 C00544
180 Cinnamic acid 147.0448 (M-H) 30 0.14 ± 0.02* 0.18 ± 0.018* 0.3 ± 0.035* 1 HMDB0000567 C10438
181 Coumarate 163.0401 (M-H) 25 0.5 ± 0.06* 0.45 ± 0.03* 0.6 ± 0.19* 1 HMDB0002035 C00811
182 Caffeic acid 181.0495 (M-H) 31 - - - - HMDB0001964 C01481
183 4-Ethylbenzoic acid 149.0608 (M-H) - HMDB0002097 C00156
182 Hydrocinnamic acid 149.0608 (M-H) 36 486337 298139 399234 5 HMDB0000764 C05629
183 2-Phenylpropionate 149.0608 (M-H) - - - - - HMDB0011743 -
184 Hydroxyphenyllactate 181.0506 (M-H) 23 - - - - HMDB0000755 C03672
185 Homovanillate 181.0506 (M-H) 23 - - - - HMDB0000118 C05582
186 3,4-Dihydroxyphenylpropionic acid (DHPP) 181.0506 (M-H) 23 - - - - HMDB0000423 C10447

[184-186] Hydroxyphenyllactate/Homovanillate/DHPP 181.0506 (M-H) 23 2.2 ± 0.03 1.4 ± 0.04 1 ± 0.2 4(177) - -
187 Hydroxyphenylpropionate 165.0558 (M-H) 25 0.11 ± 0.01 0.08 ± 0.01 0.18 ± 0.08 1 - -
188 Vanillylmandelate 197.0456 (M-H) 24 - - - - HMDB0000291 C05584
189 Quinic acid 191.0561 (M-H) 22 1.1 0.5 1.4 1 HMDB0003072 C06746
190 Ferulic acid 195.0652 (M-H) 30 0.15 0.006 0.002 1 HMDB0000954 C01494
191 Tartaric acid 151.0237 (M+2Na-H) 73 - - - - HMDB0000956 C00898
192 Picolinate (2-Pyridinecarboxylate) 124.0393 (M+H) 41 - - - - HMDB0002243 C10164
193 Orotate 200.9883 (M+2Na-H) 60 - - - - HMDB0000226 C00295
194 Dihydroorotate 159.0406 (M+H) 144 - - - - HMDB0000528 C00337
195 Quinolinate 166.0146 (M-H) 22 - - - - HMDB0000232 C03722
196 Salicylamide 138.0550 (M+H) 30 - - - - HMDB0015687 D01811
197 4-Aminobenzoate 138.0550 (M+H) 30 - - - - HMDB0001392 C00568
198 Anthranilate 138.0550 (M+H) 30 - - - - HMDB0001123 C00108
199 Hippurate 180.0655 (M+H) 31 3.6 ± 0.13 3.9 ± 0.13 4.9 ± 0.2 1 HMDB0000714 C01586
200 2-Methylhippurate 194.0812 (M+H) 30 - - - - HMDB0011723 -
201 3-Methylhippurate 194.0812 (M+H) 30 - - - - HMDB0013245 -
202 4-Methylhippurate 194.0812 (M+H) 30 - - - - HMDB0013292 -

[200-202] O-Methylhippurate 194.0812 (M+H) 30 - - - - HMDB0000859 -
203 Methylhippurate 194.0812 (M+H) 30 - - - - - -
204 Indoxyl sulfate 214.0169 (M+H) 42 - - - - HMDB0000682 -
205 Ethanolamine Phosphate 142.0264 (M+H) 125 6.75 ± 0.47* 0.564 ± 0.02* 4.45 ± 0.44* 1 HMDB0000224 C00346
206 Phosphoserine 186.0162 (M+H) 280 - - - - HMDB0000272 C01005
207 Phosphoenolpyruvate 166.9751 (M-H) 18 - - - - HMDB0000263 C00074
208 2-Phosphoglycerate 184.9856 (M-H) 24 - - - - HMDB0000362 -
209 3-Phosphoglycerate 184.9856 (M-H) 24 - - - - HMDB0000807 C00597

[208,209] Phosphoglycerate 184.9856 (M-H) 24 - - 3.6 ± 0.3* 4(200) -
210 Glucuronic acid 239.0138 (M+2Na-H) 75 2.6 ± 0.2* 0.93 ± 0.2* 0.8 ± 0.006* 1 HMDB0000127 C00191
211 Gluconic acid 195.051 (M-H) 20 2.5 ± 0.24 1.83 ± 0.16 3.9 ± 0.33 1 HMDB0000625 C00257
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212 Saccharic acid 209.0303 (M-H) 20 - - - 1 HMDB0000663 C00818

213 Galactarate 209.0303 (M-H) 19 - - - 1 HMDB0000639 C00879

[212,213] Tetrahydroxyhexanedioic acid (Saccharate/Galactarate) 209.0303 (M-H) 20 1.6 0.4 0.35 4 - -

214 Mercaptopyruvate 118.9808 (M-H) 20 - - - - HMDB0001368 C00957

215 Erythritol 157.0273 (M+Cl) 22 - - - - HMDB0002994 C00503

216 Threitol 157.0273 (M+Cl) 22 - - - - HMDB0004136 C16884

[215,216] Erythritol/Threitol 157.0273 (M+Cl) 22 0.34 ± 0.23* 0.8 ± 0.2* 9 ± 3* 4(206) - -

217 2-Deoxyglucose 199.0379 (M+Cl) 22 4.6 ± 0.18* 3.8 ± 0.17* 3.6 ± 0.1* 1 HMDB0062477 C00586

218 Glucosamine 180.0867 (M+H) 89 0.73 ± 0.025* 0.18 ± 0.02* 0.18 ± 0.016* 1 HMDB0001514 C00329

219 Fructosamine - - - - - - HMDB0002030 -

220 Glucosamine 6-sulfate 260.0435 (M+H) 110 - - 0.049 ± 0.01 1 HMDB0000592 C04132

221 Glucosamine 6-phosphate 260.0530 (M+H) 275 - - - - HMDB0001254 C00352

222 Arabinose 149.0455 (M-H) 22 - - - - HMDB0000646 C00259

223 Xylose 149.0455 (M-H) 22 4515736 4493538 3590622 5 HMDB0000098 C00181

224 Ribose 149.0455 (M-H) 22 - - - - HMDB0000283 C00121

225 Ribose 5-phosphate 231.0264 (M+H) 150 - - - - HMDB0001548 C00117

226 Fructose 219.0265 (M+K) 60 - - - - HMDB0000660 C02336

227 Mannose 203.0526 (M+Na) 60 - - - - HMDB0000169 C00159

228 Galactose 203.0526 (M+Na) 60 - - - - HMDB0000143 C00984

229 Glucose 215.0328 (M+Cl) 22 4560 ± 93 1156 ± 56 2603 ± 141 2 HMDB0000122 C00031

230 Hexane hexol (Mannitol/Sorbitol) 205.0683 (M+Na) 60 14 ± 0.5* 3.4 ± 0.2* 2.4 ± 0.24* 1 - -

231 Galactose 1-phosphate 261.0370 (M+H) 264 - - - - HMDB0000645 C00446

232 Glucose 6-phosphate 261.0370 (M+H) 278 - - - - HMDB0001401 C00668

233 Fructose 6-phosphate 261.0370 (M+H) 280 - - - - HMDB0000124 C00085

[231-233] Hexose (Glucose, others) phosphate (1 or 6) 261.0370 (M+H) 269 - - 0.49 ± 0.05 1 - -

234 N-Acetylglucosamine 258.0385 (M+Cl) 23 0.3 ± 0.04 0.17 ± 0.03 0.77 ± 0.07 1 HMDB0000215 C01074

235 N-Acetylneuraminate 308.0987 (M-H) 20 1.9 ± 0.08 0.88 ± 0.07 1.13 ± 0.12 1 HMDB0000230 C00140

236 Disaccharide (Lactose) 365.1054 (M+Na) 78 13.6 ± 0.018 14.3 ± 0.08 11.9 ± 0.3 1 HMDB0000186 C00243

237 Trisaccharide (Raffinose) 527.1583 (M+Na) 138 - - - HMDB0003213 C00492

238 Tetrasaccharide (Glycogen, Stachyose) 689.2111 (M+Na) 250 0.073 ± 0.02 - 0.18 ± 0.05 1 HMDB0000757 C00182

239 Putrescine 89.1073 (M+H) 73 0.16 ± 0.04* 0.2 ± 0.02 0.7 ± 0.1 1 HMDB0001414 C00134

240 N-Acetylputrescine 131.1179 (M+H) 43 1.7 ± 0.2 0.9 ± 0.04 0.66 ± 0.06* 1 HMDB0002064 C02714

241 Spermidine 146.1652 (M+H) 121 0.63 ± 0.24* 9.6 ± 3.2* 1.6 ± 2.9* 1 HMDB0001257 C00315

242 N1-acetylspermidine 245.2336 (M+H) 42

243 Benzylamine 108.0808 (M+H) 31 1.4 ± 0.1* 1.4 ± 0.4* 1.03 ± 0.09* 1 HMDB0033871 C15562

244 Aminophenol (2, 3, or 4) 110.0600 (M+H) 31 0.4 ± 0.02* 0.25 ± 0.01* 0.1 ± 0.01* 1 HMDB0001169 C02372

245 Phenethylamine 122.0964 (M+H) 31 8 ± 0.4* 14 ± 1* 11 ± 1* 1 HMDB0012275 C05332

246 Cadaverine 103.123 (M+H) 76 - - - HMDB0002322 C01672

247 Quinoline 130.0651 (M+H) 31 0.9 ± 0.09 4.3 ± 0.1 3.3 ± 0.2 1 HMDB0033731 C06413

248 2-Quinolinecarboxylic acid 174.055 (M+H) 31 0.1 ± 0.005* 0.1 ± 0.009* 0.13 ± 0.025* 1 HMDB0000842 C06325

249 Salsolinol 180.1019 (M+H) 32 0.02 ± 0.001* 0.011 ± 0.001* 0.0078 ± 0.0009* 1 HMDB0005199 C09642

250 Choline 104.1070 (M+H) 40 19 ± 1 15 ± 0.2 26 ± 1 1 HMDB0000097 C00114

251 Acetylcholine 146.1176 (M+H) 32 2.1 ± 0.12* 0.73 ± 0.04 0.89 ± 0.21 1 HMDB0000895 C01996

252 Phosphocholine 184.0733 (M+H) 160 0.03 ± 0.0008 1.1 ± 0.03 0.91 ± 0.11 1 HMDB0001565 C00588

253 Glycerophosphocholine 258.1101 (M+H) 104 2.4 ± 0.2 39 ± 0.8 46 ± 1.6 1 HMDB0000086 C00670

254 PC(10:0/10:0) 566.3816 (M+H) 38 - - - - - CA1375
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255 Betaine 118.0863 (M+H) 64 116 ± 6 62 ± 0.5 42 ± 1 1 HMDB0000043 C00719
256 Butyrobetaine 146.1176 (M+H) 66 2.52 ± 0.005 2.18 ± 0.07 2.17 ± 0.008 1 HMDB0001161 C01181
257 Valerobetaine 160.1332 (M+H) 42 1.5 ± 0.01 0.9 ± 0.02 1 ± 0.03 1 - -
258 Valine Betaine 160.1332 (M+H) - - - - - -
259 Carnitine 162.1125 (M+H) 73 48 ± 1 61 ± 1 62 ± 1 1 HMDB0000062 C00318
260 Acetylcarnitine 204.123 (M+H) 55 16.5 ± 0.48 7.8 ± 0.2 6.9 ± 0.2 1 HMDB0000201 C02571
261 Propionylcarnitine 218.1387 (M+H) 48 0.3 ± 0.002 0.29 ± 0.007 0.35 ± 0.008 2 HMDB0000824 C03017
262 Butyrylcarnitine 232.1543 (M+H) 45 0.2 ± 0.005 0.17 ± 0.002 0.14 ± 0.003 2 HMDB0002013 C02862
263 Hexanoylcarnitine 260.1857 (M+H) 42 0.1 ± 0.002 0.02 ± 0.001 0.04 ± 0.003 2 HMDB0000705 -
264 Octanoylcarnitine 288.2170 (M+H) 39 0.1 ± 0.001 0.08 ± 0.001 0.05 ± 0.001 2 HMDB0000791 C02838
265 Decanoylcarnitine 316.2483 (M+H) 39 0.1 ± 0.006 0.04 ± 0.001 0.06 ± 0.001 2 HMDB0000651 -
266 Lauroylcarnitine 344.2795 (M+H) 27 0.04 ± 0.0004 0.03 ± 0.001 0.03 ± 0.002 1 HMDB0002250 -
267 Palmitoylcarnitine 400.3421 (M+H) 36 0.1 ± 0.01 0.2 ± 0.01 0.13 ± 0.001 2 HMDB0000222 C02990
268 CoA 382.5507 (M-2H) 30 - - - - HMDB0001423 C00010
269 Acetyl-CoA 403.5556 (M-2H) 32 - - - - HMDB0001206 C00024
270 Propionyl-CoA 410.5634 (M-2H) 32 - - - - HMDB0001275 C00100
271 C4-CoA 417.5713 (M-2H) 32 - - - - HMDB0001088 C00136
272 C5:1-CoA 423.5713 (M-2H) 32 - - - - HMDB0001493 C03069
273 C5-CoA 424.5791 (M-2H) 35 - - - - HMDB0001113 C02939
274 Hexanoyl-CoA 431.5869 (M-2H) 35 - - - - HMDB0002845 C05270
275 Octanoyl-CoA 445.0260 (M-2H) 35 - - - - HMDB0001070 C01944
276 Decanoyl-CoA 459.6182 (M-2H) 35 - - - - HMDB0006404 C05274
277 Myristoyl-CoA 489.6641 (M-2H) 36 - - - - HMDB0001521 C02593
278 Palmitoyl-CoA 501.6652 (M-2H) 45 - - - - HMDB0001338 C00154
279 Vitamin A (Retinol) 269.2269 (M-H2O+H) 26 6.7 ± 0.4 8.8 ± 0.9 5.4 ± 0.25 1 HMDB0000305 C00473
280 Retinoic acid 299.2017 (M-H) 226 0.56 ± 0.025 0.95 ± 0.05 0.6 ± 0.16 1 HMDB0001852 C00777
281 Thiamine (B1) 265.1118 (M+H) 60 0.01 ± 0.002 - 0.008 ± 0.005 1 HMDB0000235 C00378
282 Thiamine Pyrophosphate 425.0444 (M+H) 294 - - - - HMDB0001372
283 Riboflavin (B2) 377.1456 (M+H) 45 0.078 ± 0.005 0.0171 ± 0.0022 0.018 ± 0.007 1 HMDB0000244 C00255
284 Nicotinate (B3) 124.0393 (M+H) 35 - - 0.05 ± 0.008 1 HMDB0001488 C00253
285 Nicotinamide (B3) 123.0553 (M+H) 37 0.41 ± 0.03 0.31 ± 0.01 1.81 ± 0.04 1 HMDB0001406 C00153
286 Pantothenic acid (B5) 220.1179 (M+H) 36 0.04 ± 0.006 0.02 ± 0.0007 0.04 ± 0.004 1 HMDB0000210 C00864
287 Pyridoxine (B6) 170.0812 (M+H) 52 0.08 ± 0.01 0.03 ± 0.002 0.055 ± 0.02 1 HMDB0000239 C00314
288 Pyridoxal (B6) 168.0655 (M+H) 39 0.11 ± 0.014 0.019 ± 0.006 0.02 ± 0.009 1 HMDB0001545 C00250
289 Biotin (B7) 245.0954 (M+H 35.4 - - - - HMDB0000030 C00120
290 Folate (B9) 442.1470 (M+H) 48 - - - - HMDB0000121 C00504
291 Dihydrofolate 444.1631 (M+H) 62 - - - - HMDB0001056
292 Tetrahydrofolate 446.1783 (M+H) - - - - - HMDB0001846
293 5-Methyltetrahydrofolate 460.1939 (M+H) - - - - - HMDB0001396
294 Vitamin B12 678.2895 (M+2H) 120 - - - - HMDB0000607 C05776
295 Methylcobalamin 673.3021 (M+H) 96 - - - - HMDB0002274
296 Adenosylcobalamin 527.2267 (M+3H) 156 - - - -
297 Vitamin C (Ascorbate) 175.024814 (M-H) 20 - - - - HMDB0000044 C00072
298 Vitamin D2 397.3465 (M+H) 27 - - - - HMDB0000900 C05441
299 Alpha-Tocopherol 431.3883 (M+H) 27 - - - -
300 Dihydrofolate 444.1631 (M+H) 52 - - - - HMDB0001056 C00415
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301 Flavin mononucleotide 457.1119 (M+H) 110 - - - - HMDB0001520
302 1-Methylnicotinamide 137.0709 (M+H) 50 0.2 ± 0.005 0.2 ± 0.004 0.2 ± 0.007 1 HMDB0000699 C02918
303 Trigonelline 138.055 (M+H) 68 5.4 ± 0.07 1.3 ± 0.05 1.3 ± 0.03 1 HMDB0000875 C01004
304 Flavin adenine dinucleotide (FAD) 786.1644 (M+H) 15 - - - - HMDB0001248 C00016
305 Nicotinamide mononucleotide 335.0639 (M+H) 133 - - - - HMDB0000229 C00455
306 NAD+ 332.5618 (M+2H) 293 - - - - HMDB0000902 C00003
307 NADPH 372.5450 (M+2H) 294 - - - - HMDB0000221 C00005
308 Pyridoxate 184.0609 (M+H) 40 0.17 0.03 0.06 1 HMDB0000017 C00847
309 Pyridoxamine 169.0972 (M+H) 75 - - - - HMDB0001431 C00534
310 Menatetrenone - Vitamin MK4 445.3101 (M+H) 27 - - - - HMDB0030017 -
311 FA 4:0 (Butyrate/Isobutyrate) 87.0451 (M-H) 20 - - - - - -
312 FA 5:0 (Valerate, Isovalerate, others) 101.0608 (M-H) 20 - - - - - -
313 FA 6:0 (Caproate, Isocaproate, others) 115.0765 (M-H) 22 - - - - - -
314 FA 7:0 129.0921 (M-H) 44 4.4 ± 0.4 5.1 ± 0.9 5.2 ± 0.5 1 HMDB0000666 -
315 FA 8:0 (Octanoate) 143.1078 (M-H) 77 110 ± 2.3 13.5 ± 0.3* 80 ± 2* 1 HMDB0000482 -
316 FA 9:0 157.1234 (M-H) 100 2 ± 0.08* 2.1 ± 0.08* 1.9 ± 0.2* 1 HMDB0000847 -
317 OH-FA10:0 187.134 (M-H) 38 0.19 ± 0.014 0.27 ± 0.004 0.33 ± 0.005 1 - -
318 FA 12:0 (Laurate) 199.1704 (M-H) 180 2.6 ± 0.09 3.3 ± 0.05 2 ± 0.2 1 HMDB0000638 -
319 OH-FA12:0 215.1653 (M-H) 59-87 0.73 ± 0.002 0.98 ± 0.03 1.1 ± 0.03 1 HMDB0002059 -
320 FA 14:0 (Myristate) 227.2017 (M-H) 220 7.6 ± 0.07 11 ± 0.13 5.4 ± 0.07 1 HMDB0000806 -
321 FA 16:1 (Palmitoleic) 253.2173 (M-H) 228 18.7 ± 0.2 21.6 ± 0.2 11 ± 0.26 1 HMDB0003229 -
322 FA 16:0 (Palmitate) 255.233 (M-H) 252 85 ± 0.5 118 ± 2.3 82 ± 0.9 1 HMDB0000220 -
323 FA 17:0 269.2486 (M-H) 266 1.98 ± 0.006 2.5 ± 0.02 2 ± 0.02 1 HMDB0002259 -
324 FA 18:3 n-3 or n-6 (Linolenic acid) 277.2173 (M-H) 223 39.9 ± 0.3 69 ± 2 47 ± 1.1 1 - -
325 FA 18:2 (Linoleic acid) 279.233 (M-H) 238 2858 ± 78 4805 ± 95 3678 ± 119 2 HMDB0000673 C01595
326 FA 18:1 (Oleic acid) 281.2486 (M-H) 258 120 ± 0.6 148 ± 1.3 101 ± 1.7 1 HMDB0000207 C00712
327 FA 18:0 (Stearic acid) 283.2643 (M-H) 282 54 ± 0.8 75 ± 1 56 ± 0.6 1 HMDB0000827 C01530
328 FA 20:0 (Arachidic acid) 311.2955 (M-H) 298 18 ± 0.7 17 ± 0.8 11 ± 0.2 2 HMDB0002212 C06425
329  FA 20:1 (Gondoic acid) 309.2799 (M-H) 290 12 ± 0.4 12 ± 0.1 10 ± 0.3 2 HMDB0002231 C16526
330 FA 20:2 (Eicosadienoic acid) 307.2642 (M-H) 272 19 ± 0.5 22 ± 0.3 17 ± 0.04 2 HMDB0005060 C16525
331 FA 20:3 (Homolinoleic acid) 305.2486 (M-H) 252 139 ± 3 265 ± 1 267 ± 3 2 HMDB0060039 -
332 FA 20:4 (Arachidonic acid) 303.2329 (M-H) 239 984 ± 17 2657 ± 22 2991 ± 61 2 HMDB0001043 C00219
333 FA 20:5 (Eicosapentaenoic acid) 301.2173 (M-H) 224 39 ± 1 108 ± 3 102 ± 2 2 HMDB0001999 C06428
334  FA 22:4 (Docosatetraenoic acid) 331.2642 (M-H) 258 25.5 ± 1 31 ± 0.2 31 ± 0.4 2 HMDB0002226 C16527
335 FA 22:5 n-3 or n-5 329.2486 (M-H) 240 58 ± 1 88 ± 2 79 ± 1 2 HMDB0039133 -
336 Docosahexaenoic acid (FA 22:6) 327.233 (M-H) 227 32 ± 0.4 63.7 ± 0.2 58 ± 1.4 1 HMDB0002183 C06429
337 Sphinganine 302.3054 (M+H) 26 0.008 ± 0.0006 0.024 ± 0.002 0.066 ± 0.0006 1 HMDB0000269 C00836
338 Sphingosine 300.2897 (M+H) 28 0.002 ± 0.0001 0.006 ± 0.0002 0.015 ± 0.0007 1 HMDB0000252 C00319
339 MG(14:0/0:0/0:0) 361.2596 (M+CH3COO) 226 0.48 ± 0.02 0.4 ± 0.01 0.33 ± 0.003 1 HMDB0011561 -
340 MG(18:1/0:0/0:0) 391.2621 (M+CH3COO) 251 4.7 ± 0.002 3.1 ± 0.01 1.4 ± 0.01 1 HMDB0011567 -
341 TG(16:0/16:0/16:0) - - - - - HMDB0005356 -
342 Methyl jasmonate 225.1485 (M+H) 28 1.6 ± 0.17 0.37 ± 0.07 1.06 ± 0.3 1 HMDB0036583 -
343 Cholesterol 369.352 (M-H2O+H) 27 1182 ± 141 1352 ± 29 1456 ± 80 1 HMDB0000067 C00187
344 Lanosterol 408.3834 (M-H2O+H) 30 - - - - HMDB0001251 C01724
345 25-hydroxycholesterol 385.3470 (M-H2O+H) 27 - - - - HMDB0006247 C15519
346 17/21-hydroxyprogesterone 331.2268 (M+H) 30 - - - - - -

[NIST]                  
µM ± S.E.M

[Chear]                
µM ± S.E.M

[Qstd]              
µM ± S.E.M

Quantified 
byrt (sec) HMDB ID KEGG ID# Metabolite m/z (adduct)
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347 Progesterone 315.2319 (M+H) 27 - - - -
348 Cortisol-21-acetate 405.2272 (M+H) 28 - - - - C02821
349 Cortexolone 347.2217 (M+H) 29.1 - - - -
350 Cortisol 363.2166 (M+H) 30 0.45 ± 0.04 0.26 ± 0.003 0.23 ± 0.023 1 HMDB0000063 C00735
351 Tetrahydrocortisol 349.2379 (M-H2O+H) 30 - - - - HMDB0000949 C05472
352 Estriol 358.0368 (M+H) 27 - - - - HMDB0000153
353 Aldosterone 361.2010 (M+H) 27 0 222106 132992
354 Adrenosterone 271.1696 (M+H) 27 - - - - HMDB0006772
355 Lithocholic acid 375.2905 (M-H) 196 0.14 ± 0.02 0.07 ± 0.02 0.244 ± 0.05 1 HMDB0000761 C03990
356 Chenodeoxycholate (CDCA) 391.2853 (M-H) 138 - - - 1 HMDB0000518 C02528
357 Deoxycholate (CDA) 391.2853 (M-H) 138 - - - 1 HMDB0000626 C04483

[356,357] CDCA/CDA 391.2853 (M-H) 138 0.27 ± 0.009 0.31 ± 0.004 0.33 ± 0.016 4 - -
358 Cholic acid 407.2803 (M-H) 90 0.12 ± 0.001 0.16 ± 0.004 0.04 ± 0.004 1 HMDB0000619 C00695
359 Glycocholate 466.3163 (M+H) 38 0.63 ± 0.01 0.71 ± 0.05 0.95 ± 0.16 1 HMDB0000138 C01921
360 Taurolithocholate 484.3090 (M+H) 42 - - - - HMDB0000722 C02592
361 Estradiol 17-alpha 271.1704 (M-H) 152 - - - - HMDB0000429 C02537
362 Urate 167.0211 (M-H) 21 254 ± 12 157 ± 10 162 ± 2 2 HMDB0000289 C00366
363 Xanthine 153.0407 (M+H) 45 0.5 ± 0.03* 0.55 ± 0.01 2.4 ± 0.1 1 HMDB0000292 C00385
364 Hypoxanthine 137.0463 (M+H) 44 4.6 ± 0.14 3.3 ± 0.12 73 ± 1.4 1 HMDB0000157 C00262
365 Purine 121.0514 (M+H) 39 - - - HMDB0001366 C15587
366 Adenine 136.0618 (M+H) 43 0.24 ± 0.06* 0.3 ± 0.03* 0.23 ± 0.04* 1 HMDB0000034 C00147
367 Adenosine 268.1041 (M+H) 44 - - 0.059 ± 0.017 1 HMDB0000050 C00212
368 Methyladenosine 282.1197 (M+H) 40 - - - HMDB0003331 C02494
369 Adenosine monophosphate 348.0704 (M+H) 148 - 0.41 ± 0.13 5.4 ± 3.6 1 HMDB0000045 C00020
370 Deoxyadenosine monophosphate 332.0760 (M+H) 122 HMDB0000905 C00360
371 Adenosine diphosphate 426.0221 (M-H) 36 - 2.4 ± 0.3 1.5 ± 0.74 1 HMDB0001341 C00008
372 Inosine 267.0735 (M-H) 24 0.8 ± 0.04 0.27 ± 0.09 5.3 ± 0.5 1 HMDB0000195 C00294
373 Inosine monophosphate 349.0549 (M+H) 186 - 0.033 ± 0.001 1.5 ± 0.36 1 HMDB0000175 C00130
374 Inosine diphosphate 427.0062 (M-H) 20 - 3.7 ± 0.38 5 ± 3.7 1 HMDB0003335 C00104
375 Guanine 152.0567 (M+H) 50 - - - HMDB0000132 C00242
376 Guanosine 284.0989 (M+H) 55 - - - HMDB0000133 C00387
377 Deoxyguanosine 268.1041 (M+H) 50 - - - HMDB0000085 C00330
378 8-Hydroxydeoxyguanosine 284.0989 (M+H) - - - - - HMDB0003333 -
379 Guanosine monophosphate 364.0653 (M+H) 256 - 0.003 ± 0.0003 0.33 ± 0.04 1 HMDB0001397 C00144
380 Thymidine 243.0975 (M+H) 37 - - - - HMDB0000273 C00214
381 Cytidine 244.0928 (M+H) 58 - - - HMDB0000089 C00475
382 Cytosine 112.0505 (M+H) 50 0.21 ± 0.02* 0.1 ± 0.01 0.05 ± 0.03* 1 HMDB0000630 C00380
383 Deoxycytidine 228.0979 (M+H) 50
384 5-Methylcytosine 126.0667 (M+H) 46 0.007 ± 0.001* 0.005 ± 0.001* 0.002 ± 0.001* 1 HMDB0002894 C02376
385 Cytidine monophosphate 324.0591 (M+H) 168 - - 1.1 ± 0.27 1 HMDB0000095 C00055
386 Cytidine diphosphocholine 245.0609 (M+2H) 297 - - 0.314 ± 0.02 1 HMDB0001413 C00307
387 2'-Deoxycytidine 5'-monophosphate 308.0642 (M+H) 147 - - - HMDB0001202 C00239
388 Uracil 113.0346 (M+H) 38 0.02 ± 0.01 0.07 ± 0.02 0.8 ± 0.1 1 HMDB0000300 C00106
389 Dihydrouracil (5, 6) 115.0502 (M+H) 38 0.4 ± 0.03* 0.4 ± 0.02* 2 ± 1* 1 HMDB0000076 C00429
390 Uridine 245.0768 (M+H) 43 5.3 ± 0.14 3.28 ± 0.11 2.96 ± 0.14 1 HMDB0000296 C00299
391 Deoxyuridine 229.0824 (M+H) 39 - - - -

[NIST]                  
µM ± S.E.M
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µM ± S.E.M
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392 Uridine-5-Monophosphate 325.0431 (M+H) 149 - - - HMDB0000288 C00105
393 Hydroxymethyluracil 143.0451 (M+H) 43 - - - -
394 Biliverdin 583.2551 (M+H) 28 6.2 ± 0.5 13.3 ± 0.32 7.7 ± 0.2 1 HMDB0001008 C00500
395 Bilirubin 585.2708 (M+H) 26 5.8 ± 0.4 1.6 ± 0.1 1.9 ± 0.02 2 HMDB0000054 C00486
396 Protoporphyrin 563.2653 (M+H) 28 - - - - HMDB0000241 C02191
397 Caffeine 195.0877 (M+H) 32 5 ± 0.2 3 ± 0.06 4.3 ± 0.3 1 HMDB0001847 C07481
398 Theophyline 181.0720 (M+H) 35 - - - - HMDB0001889 C07130
399 Paraxanthine 181.0720 (M+H) 36 - - - - HMDB0001860 C13747
400 Theobromine 181.0720 (M+H) 36 - - - - HMDB0002825 C07480
401 Dimethylxanthine 181.0720 (M+H) 36 - - - -
402 Nicotine 163.1230 (M+H) 37 0.18 ± 0.007 0.096 ± 0.012 0.13 ± 0.019 1 HMDB0001934 C00745
403 Cotinine 177.1022 (M+H) 31 - - - - HMDB0001046
404 L-Homocysteine thiolactone 118.0321 (M+H) 37 - - - - HMDB0002287 -
405 Allantoin 159.0513 (M+H) 75 - - - - HMDB0000462 C01551
406 Daidzein 255.0655 (M+H) 27 - - - -
407 Metribuzin 215.0966 (M+H) 30 - - - -
408 Malathion 331.0439 (M+H) 30 - - - -
409 Benserazide 258.1084 (M+H) 66 - - - -
410 Pirimicarb 239.1493 (M+H) 24 - - - -
411 PFOS 498.9302 (M-H) 120 - - - -
412 Chlorobenzoate 154.9905 (M-H) 20 - - - -
413 Diisopropylphthalate 251.1278 (M+H) 27 - - - -
414 Aminoethylphosphonate 126.0513 (M+H) 150 - - - - HMDB0011747 C03557
415 Aminoethyldihydrogenphosphate 142.0264 (M+H) 120 - - - -
416 Methyl beta galactoside 217.0683 (M+Na) 46 - - - - HMDB0029965 C03619
417 Glucosaminate 196.0812 (M+H) 126 - - - - C03752
418 Hydroxynicotinate 140.0342 (M+H) 40 - - - - HMDB0002658 C01020
419 Anilinesulfonate 174.0219 (M+H) 45 - - - - C00292
420 Carboxymethylcysteine 180.0325 (M+H) 81 - - - - HMDB0029415 C03727
421 Ureidopropionate 133.0608 (M+H) 40 - - - - HMDB0000026 C02642
422 Formylglycine 104.0342 (M+H) 40 - - - -
423 2-Acetamido-2-Deoxy-Beta-D-Glucosylamine 221.1132 (M+H) 81 - - - -
424 Imidazoleacetate 127.0502 (M+H) 71 - - - -
425 Diaminopropionate 105.0659 (M+H) 110 - - - -
426 Tryptamine 161.1074 (M+H) 28 0.001 ± 0.0005 0.001 ± 0.0002 0.001 ± 0.0001 1 - C00398
427 Lumichrome 243.0877 (M+H) 29 - - - - C01727
428 Tryptophanamide 204.1131 (M+H) 38 - - - - HMDB0013318 C00977
429 N-methyltryptamine 175.1230 (M+H) 29 - - - - HMDB0004370 C06213
430 Indole ethanol (Tryptophanol) 162.0914 (M+H) 30 0.030 ± 0.003 0.008 ± 0.001 0.009 ± 0.001 1 HMDB0003447 C00955
431 Trehalose 365.1065 (M+Na) 100 - - - - HMDB0000975 C01083
432 Thiopurine S-methyl ether 167.0386 (M+H) 33 - - - - HMDB0060412 C03542
433 Aminohydroxybenzoate/Hydroxyanthranilate 154.0504 (M+H) 32 - - -
434 Hydroxypyridine 96.0444 (M+H) 43 0.27 ± 0.01 0.21 ± 0.003 0.2 ± 0.01 1 HMDB0013751 C02502
435 Isopentenyladenine 204.1244 (M+H) 31 - - - - - C04083
436 Dimethylphenylenediamine 137.1073 (M+H) 31 0.36 ± 0.06 0.44 ± 0.04 0.47 ± 0.15 1 - C04203
437 Methyloxindole/Indolecarbinol 148.0757 (M+H) 29 0.06 ± 0.01 0.07 ± 0.001 0.02 ± 0.007 1 HMDB0004186 CA1325
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438 Pyrrole carboxylate 110.0247 (M-H) 20 - - - - HMDB0004230 C05942
439 Ethyl indoleacetate 204.1019 (M+H) 27 - - - - - CA1213
440 Rosamarinic acid 359.0772 (M-H) 22 - - - - HMDB0003572 C10489
441 Reichstein's substance S 345.2071 (M-H) 98 - - - - HMDB0000015 C05488

[NIST]                  
µM ± S.E.M

[Chear]                
µM ± S.E.M

[Qstd]              
µM ± S.E.M

Quantified 
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Appendix 2 (Chapter 3).  Reference for how metabolites were classified as detected, identified, or quantifiable.  Extracted ion 
chromatograms (±3 ppm of expected mass) of detected metabolites in Qstd3, CHEAR, and NIST1950 along with authentic standard 
for reference.  Metabolites were considered detected if addition of standard increased peak area.  Metabolites were identified in the 
reference if addition of standard increased an existing peak area. 
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NAD+
M+2H 332.5618 m/z

Detected not quantified

C
H
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R
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Glutamine
M+H 147.0764 m/z

Detected and quantified

Hypotaurine
M+H 110.0270 m/z

Detected and quantified

Inosine-5’-Phosphate
M+H 349.0550 m/z

Detected and quantified

Threonine
M+H 120.0655 m/z

Detected and quantified
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Purine
M+H 121.0514 m/z

Detected not quantified

N-acetylneuraminate
M+H 310.1138 m/z

Detected and quantified

Kynurenine
M+H 209.0921 m/z

Detected and quantified

Glycerate
M+2Na-H 150.9978 m/z
Detected and quantified

Glycerate
M-H 105.0193 m/z

Detected and quantified
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(DL)-Aspartate
M+H 134.0448 m/z

Detected and quantified
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N
IS
T1
95
0

St
an
da
rd

Uric acid
M+H 169.0356 m/z

Detected and quantified

Cytidine
M+H 244.0928 m/z

Detected not quantified

Serine
M+H 106.0504 m/z

Detected and quantified

Uric acid
M-H 167.0210 m/z

Detected and quantified
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Citrulline
M+H 176.1030 m/z

Detected and quantified
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Taurine
M+H 126.0219 m/z

Detected and quantified

Inosine
M+H 269.0880 m/z

Detected and quantified

GABA
M+H 104.0706 m/z

Detected and (quantified)

Nicotinate
M+H 124.0393 m/z

Detected and quantified
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Cytosine
M+H 112.0505 m/z

Detected and quantified
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Isoleucine/Leucine
M+H 132.1018 m/z

Detected and (quantified)

Beta-alanine
M+H 90.0550 m/z

Detected not quantified

N-acetylglucosamine
M+H 222.0972 m/z

Detected not quantified

Glutamate
M+H 148.0604 m/z

Detected and quantified



 

 
 
 
 
 
 
 

169 
   

 

 

Q
st
d3

Sarcosine
M+H 90.0550 m/z

Detected not quantified
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Gluconic acid

M+2Na-H 241.0297 m/z
Detected and quantified

Dihydroorotate
M+H 159.0406 m/z

Detected not quantified

Pipecolate
M+H 130.0863 m/z

Detected and quantified

Quinic acid
M+2Na-H 237.0234 m/z
Detected not quantified
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Glycine
M+2Na-H 120.0032 m/z
Detected and quantified
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Methionine
M+H 150.0583 m/z

Detected and quantified

Thymidine
M+H 243.0975 m/z

Detected not quantified

Adenine
M+H 136.0618 m/z

Detected and quantified

L-Aspartate
M+H 134.0448 m/z

Detected and quantified
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Ethanolamine Phosphate
M+H 142.0624 m/z

Detected and quantified
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Xanthine
M+H 153.0407 m/z

Detected and quantified

Cystine
M+H 241.0311 m/z

Detected and quantified

Alanine
M+H 90.0550 m/z

Detected and quantified

Dihydrofolate
M+H 444.1631 m/z

Detected not quantified
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Tryptophan
M+H 205.0972 m/z

Detected and quantified

C
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R
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Uridine monophosphate
M+H 325.0431 m/z

Detected not quantified

Uridine
M+H 245.0768 m/z

Detected and quantified

Carnosine
M+H 227.1139 m/z

Detected and quantified

Proline
M+H 116.0706 m/z

Detected and quantified

Qstd3 +
Carnosine
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Nicotinamide
M+H 123.0553 m/z

Detected and quantified
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Phenylalanine
M+H 166.0863 m/z

Detected and quantified

Malate
M+2Na-H 245.0768 m/z
Detected not quantified

Uracil
M+H 113.0346 m/z

Detected and quantified

Uracil

Uridine SF

Malate
M-H 133.0143 m/z

Detected and quantified
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Deoxycytidine monophosphate
M+H 308.0642 m/z

Detected not quantified
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Hypoxanthine
M+H 137.0463 m/z

Detected and quantified

L-DOPA
M+H 198.0761 m/z

Detected not quantified

Guanosine
M+H 284.0989 m/z

Detected not quantified

Creatine
M+H 132.0768 m/z

Detected and quantified
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Dihydrouracil
M+H 115.0502 m/z

Detected and quantified
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Lysine
M+H 147.1128 m/z

Detected and quantified

Asparagine
M+H 133.0608 m/z

Detected and quantified

Valine
M+H 118.0863 m/z

Detected and quantified

Tyrosine
M+H 182.0812 m/z

Detected and quantified
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Qstd3

Valine (M+H)
118.0863 m/z

Detected ? quantified

CHEAR NIST1950 Standard

Valine (M+H)
118.0863 – 72.0809 m/z

MS2 XIC

Valine (M+H)
118.0863 – 55.0546 m/z

MS2 XIC

Betaine (M+H)
118.0863 – 59.0733 m/z

MS2 XIC
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Guanine
M+H 152.0567 m/z

Detected not quantified
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Homoserine
M+H 120.0655 m/z

Detected not quantified

DAMP
M+H 332.0597 m/z

Detected not quantified

Tartaric acid
M+2Na-H 194.9876 m/z
Detected not quantified

Pyridoxine
M+H 170.0812 m/z

Detected and quantified

Homoserine

Threonine
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Nicotinamide mononucleotide
M+H 335.0639 m/z

Detected not quantified
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Folic acid
M+H 442.1470 m/z

Detected not quantified

2-phosphoglycerate
M+H 187.0002 m/z

Detected not quantified

Guanidinoacetate
M+H 118.0611 m/z

Detected and quantified

3-aminoisobutanoate
M+H 104.0706 m/z

Detected and (quantified)

GABA
2-aminobutyrate
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Creatinine
M+H 114.0662 m/z

Detected and quantified

C
H
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N
IS
T1
95
0

St
an
da
rd

N-acetyltryptophan
M+H 247.1060 m/z

Detected and quantified

Glucose-6-Phosphate
M+H 261.037 m/z

Detected not quantified

Diaminopimelate
M+H 191.1027 m/z

Detected not quantified

N-acetylmannosamine
M+K 260.0531 m/z

Detected and (quantified)
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Aminoadipate
M+H 162.0761 m/z

Detected and quantified

C
H
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Deoxycytidine
M+H 228.0979 m/z

Detected not quantified

Dehydroshikimate
M-H 171.0299 m/z

Detected not quantified

Bispropylamine
M+H 132.1496 m/z

Detected not quantified

Glucosamine Phosphate
M+H 260.0531 m/z

Detected and quantified
N-acetylmannosamine

M+K

Glucosamine Phosphate
M+H
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Homocysteine
M+H 136.0432 m/z

Detected not quantified
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Theophylline
M+H 181.0720 m/z

Detected and (quantified)

Trehalose
M+Na 365.1065 m/z

Detected not quantified

Betaine
M+H 118.0863 m/z

Detected and quantified

Leucine/Isoleucine
M+H 132.1018 m/z

Detected and (quantified)
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Sulfinoalanine
M+H 154.0169 m/z

Detected not quantified
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Succinylhomoserine
M+H 220.0816 m/z

Detected not quantified

Aminoethylphosphonate
M+H 126.0315 m/z

Detected not quantified

Selenomethionine
M+H 198.0028 m/z

Detected not quantified

Allantoin
M+H 159.0513 m/z

Detected not quantified

SeMet
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Glucosamine
M+H 180.0867 m/z

Detected and quantified

C
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Paraxanthine
M+H 181.072 m/z

Detected and (quantified)

Galactitol
M+Na 205.0683 m/z

Detected and (quantified)

Oxoproline (M+H)
130.0499 m/z

Detected and quantified

1-methylhistidine
M+H 170.0924 m/z

Detected and (quantified)

Qstd3 +
1-MeHis

Glu SF Gln SF
Hexane
hexol
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Pyridoxate
M+H 184.0609 m/z

Detected and quantified
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Quinolinate
M+H 168.0291 m/z

Detected not quantified

Glucuronate
M+2Na-H 239.0138 m/z
Detected and quantified

1-methyladenosine
M+H 282.1197 m/z

Detected not quantified

Caffeine
M+H 195.0877 m/z

Detected and quantified
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Deoxyuridine
M+H 229.0824 m/z

Detected not quantified
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Hydroxyproline
M+H 132.0655 m/z

Detected and quantified

4-acetamidobutanoate
M+H 146.0812 m/z

Detected and quantified

Urocanate
M+H 139.0502 m/z

Detected and quantified

Kynurenine
M+H 209.0921 m/z

Detected and quantified
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Dopamine
M+H 154.0863 m/z

Detected and (quantified)

C
H
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Putrescine
M+H 89.1073 m/z

Detected and quantified

Aminocyclopropane carboxylate
M+H 102.0550 m/z

Detected and quantified

CDP-choline
M+2H 245.0609 m/z

Detected and quantified

Phosphoserine
M+H 186.0162 m/z

Detected not quantified
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Q
st
d3

5-hydroxymethyluracil
M+H 143.0451 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Cystathionine
M+H 223.0752 m/z

Detected and quantified

Arginine
M+H 175.1190 m/z

Detected and quantified

Phosphonoacetate
M+H 140.9947 m/z

Detected not quantified

Picolinate
M+H 124.0393 m/z

Detected not quantified



 

 
 
 
 
 
 
 

188 
   

 

 

Q
st
d3

Homocystine
M+H 269.0625 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

N-methylglutamate
M+H 162.0761 m/z

Detected and (quantified)

Thyrotropin Releasing Hormone
M+H 363.1776 m/z

Detected not quantified

Ornithine
M+H 133.0972 m/z

Detected and quantified

Xanthosine
M+H 285.083 m/z

Detected not quantified

N-Me-Glu
2-aminoadipate
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Q
st
d3

CMP
M+H 324.0596 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

NMDA
M+H 148.0604 m/z

Detected not quantified

N-alpha acetylasparagine
M+H 175.0714 m/z

Detected not quantified

Galactarate
M+2Na-H 255.0086 m/z
Detected not quantified

Histidine
M+H 156.0768 m/z

Detected and quantified

Glutamate
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Q
st
d3

Agmatine
M+H 131.1296 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Glycoaldehyde dimer
2M+ACN+H 282.1181 m/z

Detected not quantified

Inosine diphosphate
M+H 429.0212 m/z

Detected and quantified

N-acetylglycine
M+H 118.0499 m/z

Detected and quantified

N-acetylaspartate
M+H 176.0554 m/z

Detected not quantified
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Q
st
d3

Deoxyguanosine MP
M+H 348.0704 m/z

Detected and (quantified)

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

SAM
399.1445 m/z

Detected not quantified

Butyrobetaine
M+H 146.1176 m/z

Detected and quantified

AMP (M+H)
348.0704 m/z

Detected and quantified

Gluconate
M+2Na-H 241.0297 m/z
Detected and quantified
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Q
st
d3

Adenosine Cyclic (2,3) 
monophosphate

M+H 330.0598 m/z
Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Cytidine cyclic MP
M+H 306.0486 m/z

Detected not quantified

Thiamine
M+H 265.1118 m/z

Detected not quantified

Methylcytosine
M+H 126.0667 m/z

Detected and quantified

min

min

min

min

Phosphocholine
M+H 184.0733 m/z

Detected and quantified
Phosphatidylcholine ISF

GlyceroPC ISF

Phosphocholine
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Q
st
d3

Trimethyllysine
M+H 189.1598 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Thymidine MP
M+H 323.0639 m/z

Detected not quantified

Aminoethyldihydrogenphosphate
M+H 142.0264 m/z

Detected and (quantified)

Acetylserine
M+H 148.0604 m/z

Detected not quantified

Carnitine
M+H 162.1125 m/z

Detected and quantified

Ethanolamine
phosphate
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Q
st
d3

Adenosine cyclic (3,5) monophosphate
M+H 330.0598 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Spermidine
M+H 146.1652 m/z

Detected not quantified

Octopamine
M+H 154.0863 m/z

Detected and (quantified)

Acetyllysine
M+H 189.1234 m/z

Detected and quantified

Nitrotyrosine
M+H 227.0663 m/z

Detected not quantified



 

 
 
 
 
 
 
 

195 
   

 

 

Q
st
d3

Pyridoxamine
M+H 169.0972 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

2-deoxyguanosine
M+H 268.1040 m/z

Detected not quantified

Deoxyuridine MP
M+H 309.0449 m/z

Detected not quantified

Xanthosine MP
M+H 365.0499 m/z

Detected not quantified

5-ALA
M+H 132.0655 m/z

Detected not quantified
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Q
st
d3

Orotic acid
M+H 200.9883 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

N-acetylmethionine
M+H 192.0689 m/z

Detected not quantified

1-methylnicotinamide
M+H 137.0709 m/z

Detected and quantified

Spermine
M+2H 102.1151 m/z

Detected not quantified

Lauroylcarnitine
M+H 344.2795 m/z

Detected and quantified
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Q
st
d3

AICAR
M+H 339.0701 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

S-adenosylhomocysteine
M+H 385.1294 m/z

Detected and quantified

Normetanephrine
M+H 184.0968 m/z

Detected and (quantified)

Homocysteine Thiolactone
M+H 118.0321 m/z

Detected not quantified

5 5 5 5 5 5
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Q
st
d3

Selenocystamine
M+H 248.9409 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

S-hexyl GSH
M+H 382.1855 m/z

Detected not quantified

Thiamine monophosphate
M+H 345.0781 m/z

Detected not quantified

Uracil 5-carboxylate
M+H 157.0244 m/z

Detected not quantified

Histamine
M+H 112.0869 m/z

Detected and quantified
Histidine SF
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Q
st
d3

Guanosine MP
M+H 364.0653 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Guanidinobutanoate
M+H 146.0924 m/z

Detected and quantified

Acetylcarnitine
M+H 204.1230 m/z

Detected and quantified

N-acetylalanine
M+H 132.0655 m/z

Detected not quantified

NAA/5-ALA
Hydroxyproline

EDTA ISF

Riboflavin
M+H 377.1456 m/z

Detected and quantified

Riboflavin

Saline blank
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Q
st
d3

Methyl beta galactoside
M+Na 217.0683 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Glutathione
M+H 308.0911 m/z

Detected not quantified

Glucosaminate
M+H 196.0816 m/z

Detected not quantified

5’-Deoxyadenosine
M+H 252.1091 m/z

Detected not quantified

2’-Deoxyadenosine
M+H 252.1091 m/z

Detected not quantified

Saline

Qstd3
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Q
st
d3

N-acetylputrescine
M+H 131.1179 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Dihydroxypteridine
M+H 165.0407 m/z

Detected not quantified

Hydroxynicotinate
M+H 140.0342 m/z

Detected not quantified

N-acetylglutamate
M+H 190.0710 m/z

Detected not quantified

N-acetyl cysteine
M+H 164.0376 m/z

Detected not quantified
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Q
st
d3

Pantothenate
M+H 220.1179 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Carboxymethyl-Cys
M+H 180.0325 m/z

Detected ? quantified

Thiamine Pyrophosphate
M+H 425.0444 m/z

Detected not quantified

Aniline sulfonate
M+H 174.0219 m/z

Detected not quantified

Histidinol (M+H)
142.0975 m/z

Detected not quantified
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Saccharate (M+2Na-H)
255.0087 m/z

Detected ? quantified

Q
st
d3

Ureidopropionate
M+H 133.0608 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

N-formylglycine
M+H 104.0342 m/z

Detected not quantified

Raffinose
M+Na 527.1583 m/z

Detected not quantified

5-aminovalerate
M+H 118.0863 m/z

Detected not quantified

Saccharate (M-H)
209.0303 m/z

Detected ? quantified

Valine
Betaine

5-AV

Saccharate (M+2Na-H)
255.0087 m/z

Detected ? quantified
Qstd3

CHEAR
NIST1950

Saccharate (M-H)
209.0303 m/z

Detected ? quantified
NIST1950

(CHEAR/Qstd3 low)

Asn
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Q
st
d3

Methoxytyrosine
M+H 212.0917 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Galacturonate/Glucuronate
M+2Na-H 239.0138 m/z

Detected and (quantified)

Imidazoleacetate
M+H 127.0504 m/z

Detected not quantified

Lactate
M+Na 365.1054 m/z

Detected and quantified

3’,5’ cyclic AMP
M+H 330.0598 m/z

Detected not quantified
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Q
st
d3

Methionine Sulfoximine
M+H 181.0641 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

3-methylhistamine
M+H 126.1026 m/z

Detected not quantified

Maleamate
M+H 116.0342 m/z

Detected not quantified

N1-acetylspermidine
M+H 245.2336 m/z

Detected not quantified

Choline
M+H 104.1070 m/z

Detected and quantified

Asn SF
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Q
st
d3

N-formylmethionine
M+H 181.0641 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

5-hydroxytryptophan
M+H 221.0921 m/z

Detected not quantified

Theobromine
M+H 181.0720 m/z

Detected and (quantified)

Acetylcholine
M+H 146.1176 m/z

Detected and quantified

Guanidinosuccinate
M+H 176.0666 m/z

Detected and quantified

Butyrobetaine
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Q
st
d3

Creatine Phosphate
M+H 212.0431 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Biliverdin
M+H 583.2551 m/z

Detected and quantified

Hydroxylysine
M+H 163.1077 m/z

Detected and quantified

Anserine
M+H 241.1295 m/z

Detected and quantified

Cysteamine
2M-H (disulfide) 153.0515 m/z

Detected not quantified
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Q
st
d3

Ophthalmic acid
M+H 290.1347 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Trigonelline
M+H 138.0550 m/z

Detected not quantified

Epinephrine
M+H 184.0968 m/z

Detected and (quantified)

Diaminopropionate
M+H 105.0659 m/z

Detected not quantified

Glycerophosphocholine
M+H 258.1101 m/z

Detected and quantified
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Q
st
d3

CoA
M-2H 382.5503 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Ribose Phosphate
M+H 231.0624 m/z

Detected not quantified

OH-kynurenine
M+H 225.0870 m/z

Detected not quantified

Stachyose
M+Na 689.2111 m/z

Detected and quantified

Vitamin B12 (Cyanocobalamin)
M+2H 678.2910 m/z

Detected not quantified

B12
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Q
st
d3

Hydroxyphenylglycine
M+H 168.0655 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Glycerol-2-Phosphate
M+H 173.0210 m/z

Detected not quantified

Glucosamine sulfate
M+H 260.0435 m/z

Detected not quantified

N-acetylserine
M+H 148.0604 m/z

Detected not quantified

Sorbate
M+H 113.0597 m/z

Detected and quantified
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Q
st
d3

Hydroxybenzoate
M+H 139.0390 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Cortisol
M+H 363.2166 m/z

Detected and quantified

Xanthenurate
M+H 206.0448 m/z

Detected not quantified

Tyramine/Phenylethanolamine
M+H 138.0913 m/z

Detected and (quantified)

Melatonin
M+H 233.1285 m/z

Detected and quantified



 

 
 
 
 
 
 
 

212 
   

 

 

Q
st
d3

Maleate
M+H 117.0182 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Nicotine
M+H 163.1230 m/z

Detected and quantified

Kynurenate
M+H 190.0499 m/z

Detected and quantified

Bilirubin
M+H 585.2708 m/z

Detected and quantified

Aniline
M+H 94.0651 m/z

Detected not quantified

Non-identified peak

Saline
(plasma area

did not increase)



 

 
 
 
 
 
 
 

213 
   

 

 

Q
st
d3

Diiodotyrosine
M+H 433.8744 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Indole acetate
M+H 176.0706 m/z

Detected and quantified

Caffeic acid
M+H 181.0495 m/z

Detected not quantified

Tryptamine
M+H 161.1074 m/z

Detected and quantified

Lumichrome
M+H 243.0877 m/z

Detected not quantified
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Q
st
d3

N-acetylphenylalanine
M+H 208.0968 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

N-methyltryptamine
M+H 175.1230 m/z

Detected and quantified

Indole ethanol
M+H 162.0914 m/z

Detected and quantified

Tryptophanamide
M+H 204.1131 m/z

Detected not quantified

Ferulate
M+H 195.0652 m/z

Detected and quantified



 

 
 
 
 
 
 
 

215 
   

 

 

Q
st
d3

Glycocholate
M+H 466.3166 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Thiopurine S-methyl ether
M+H 167.0386 m/z

Detected not quantified

OH-methylthiobutyrate
M+2Na-H 195.0062 m/z
Detected not quantified

Phenylethanolamine
M+H 138.0913 m/z

Detected and quantified

Aminohydroxybenzoate
M+H 154.0504 m/z

Detected not quantified
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Q
st
d3

OH-decanoate
M+H 189.1485 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Hydroxypyridine
M+H 96.0444 m/z

Detected and quantified

N6-Isopentenyladenine
M+H 204.1244 m/z

Detected not quantified

PC(10:0/10:0)
M+H 566.3816 m/z

Detected not quantified

Methylvanillate
M+H 183.0652 m/z

Detected not quantified
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Q
st
d3

Lipoamide
M+H 206.0668 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Indole 3-acetamide
M+H 175.0866 m/z

Detected not quantified

Hippurate
M+H 180.0655 m/z

Detected and quantified

Cortisol 21-acetate
M+H 405.2272 m/z

Detected not quantified

Diiodothyronine
M+H 525.9007 m/z

Detected not quantified
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Q
st
d3

Hydroxybenzaldehyde
M+H 123.0441 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Methoxytyramine
M+H 168.1018 m/z

Detected and quantified

Benzylamine
M+H 108.0808 m/z

Detected and quantified

Hydroxyphenylpropionate
M+H 167.0704 m/z

Detected not quantified

Hydroxyphenylpropionate
M-H 165.0558 m/z

Detected and quantified
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Q
st

d3

Quinaldic acid
M+H 174.055 m/z

Detected and quantified

C
H

EA
R

N
IS

T1
95

0
St

an
da

rd

Aminobenzoate/Anthranilate
M+H 138.0550 m/z

Detected not quantified

Aminophenol
M+H 110.0600 m/z

Detected and quantified

Serotonin
M+H 177.1022 m/z

Detected not quantified

Pterin
M-H 164.0567 m/z

Detected not quantified

See next page
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8 Serotonin or Cotinine
Qstd3: 5 µM

CHEAR: 8 µM
NIST1950: 8 µM
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Q
st
d3

2-methylmaleate
M+H 131.0339 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Azelaic acid
M+H 189.1121 m/z

Detected not quantified

Phenethylamine
M+H 122.0964 m/z

Detected and quantified

Dethiobiotin
M+H 215.1394 m/z

Detected not quantified

N-acetylserotonin
M+H 219.1128 m/z

Detected and quantified
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Q
st
d3

N-acetylleucine
M+H 174.1125 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Tetrahydrocortisol
M-H2O+H 349.2379 m/z
Detected not quantified

Dimethylphenylenediamine
M+H 137.1073 m/z

Detected and quantified

Salsolinol
M+H 180.1018 m/z

Detected and quantified

Methylindoleacetate
M+H 190.0863 m/z

Detected and Quantified

Peak here
unchanged
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Q
st
d3

Alpha-ketoglutarate
M-H 145.0142 m/z

Detected and quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Methyloxindole
M+H 148.0757 m/z

Detected and quantified

Methyladenine
M+H 150.0774 m/z

Detected not quantified

Pyridoxal
M+H 168.0655 m/z

Detected and quantified

Indoleacetaldehyde
M+H 160.0757 m/z

Detected and Quantified
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Q
st
d3

Biotin
M+H 245.0954 m/z

Detected not quantified

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

5-HIAA
M+H 192.0657 m/z

Detected and quantified

Resorscinol monoacetate
M+H 153.0546 m/z

Detected not quantified

Pyrrole carboxylate
M+H 112.0393 m/z

Detected not quantified

Pyrrole carboxylate
M-H 110.0247 m/z

Detected not Quantified

5-HIAA

Kynurenine ISF

Several metabolites
share this mass

and RT
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Q
st
d3

Hexose
M+K 219.0265 m/z

Detected and (quantified)

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Coumarate
M-H 163.0401 m/z

Detected and quantified

Coumarate
M+H 165.0546 m/z

Detected not quantified

Vitamin D2
M+H 397.3462 m/z

Detected not Quantified

Estradiol 17-alpha
M-H 271.1704 m/z

Detected not quantified
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Q
st
d3

Chenodeoxycholate/DCA
M-H 391.2853 m/z

Detected and (quantified)

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Protoporphyrin
M-H 561.2507 m/z

Detected not quantified

Heptanoate
M-H 129.0921 m/z

Detected and quantified

Lithocholate
M-H 375.2905 m/z

Detected and quantified

Chenodeoxycholate/DCA
M-H2O+H 375.2899 m/z
Detected not quantified
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Q
st
d3

FA 18:1 (Oleic)
M-H 281.2481 m/z

Detected and (quantified)

C
H
EA
R

N
IS
T1
95
0

St
an
da
rd

Rosamarinic acid
M-H 359.0772 m/z

Detected not quantified

FA 16:1 (Palmitoleic)
M-H 253.2170 m/z

Detected and quantified

FA 14:0 (Myristic)
M-H 227.2017 m/z

Detected and quantified

FA 16:0 (Palmitate)
M-H 255.2330 m/z

Detected and quantified
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Appendix 3 (Chapter 4).  1H NMR of synthesized δ-valerobetaine in D2O.  The protons are 

assigned as followed: d 3.15 (multiplet, 2H), d 2.91 (singlet, 9H), d 2.27 (triplet, 2H), d 1.64 

(quintuplet, 2H), d 1.46 (quintuplet, 2H).   
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Appendix 4 (Chapter 4).  RNAseq analysis shows the influence of the microbiome on hepatic 
gene expression.  A) Differential expression analysis using DeSeq2 revealed 2,711 transcripts 
increased in CV liver and 3,458 transcripts increased in GF liver (log2 fold-change > 1, FDR < 
0.05).  Of the 2,711 transcripts increased in CV liver, 2,508 were mapped.  Of the 3,458 
transcripts decreased in GF liver, 2,491 were mapped (MSigDB).  B) Overrepresentation 
analysis of differentially expressed genes (DeSeq2, FDR < 0.05) shows the microbiome 
influences transcriptional regulation of hepatic energy metabolism (mitochondria GO:CC and 
Reactome lipid/lipoprotein metabolism, Amino acid metabolism, TCA cycle metabolism).  
Upstream analysis with IPA software reveals PPAR-alpha as the top transcriptional regulator 
targeted by the microbiota.  C) PPAR-alpha target gene expression in mammalian liver.  
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