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Abstract

On estimating the spatial distribution of Yersinia pestis in the United States
using a wide-ranging sentinel species and spatial statistics with sampling considerations

By Ian David Buller

Plague is a highly consequential disease caused by the bacterium Yersinia pestis that infects
multiple mammal host species, including humans providing a concern for public health and
conservation. However, the precise locations where the disease is transmitted within the
United States remain unknown and uncertain. While human cases are rare in the United
States, plague is maintained within small mammal populations, namely wild rodents, and
their flea vectors; therefore, plague surveillance systems typically focus on monitoring an-
imal species, but are often faced with administrative, logistical, and biological challenges.
In collaboration with plague surveillance agencies, I aim to: 1) identify sources of data
uncertainties and bias in plague surveillance systems, 2) predict the spatial distribution of
enzootic plague in the western United States, and 3) evaluate the association between en-
zootic plague and historical human plague cases in the United States. I collate an extensive
set of human, animal, and environmental information and discuss the quality of these data.
I develop an ecological niche modeling method that uses climatological variables and coyote
(Canis latrans) specimens tested for exposure to Y. pestis to predict the spatial distribution
of enzootic plague in California and the western United States, even in areas that have not
historically been monitored for plague activity. I identify areas of the United States that
are sensitive to some types of data uncertainty and bias, including positional uncertainty in
the sampling location of coyote specimens and sampling effort bias of agencies that monitor
plague activity. Finally, I use a spatial statistical framework, integrated nested Laplace
approximation, to estimate historical human plague risk across the western United States
and demonstrate that enzootic plague is positively associated with human plague risk at
the county level (relative risk: 1.20; 95% credibility interval: 1.16 – 1.24). I work closely
with plague surveillance agencies, so my results will have immediate impact on plague
surveillance such as prioritizing future laboratory testing. I close by proposing future di-
rections, including tangible advancements to the developed method to test biogeographical
hypotheses and applications to other disease systems and fields of science.
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1 Introduction

“Surgeon General W. X. Van Reypen of the navy is an authority on the bubonic plague. In
discussing the probability of its reaching San Francisco he says: ‘The climatic conditions of
the United States preclude the possibility of the plague ever getting within this country...’”

- San Francisco Call on March 7, 1900 (1 )

“Bubonic plague has appeared at widely separated spots throughout the world, and, while it
has not attained the proportions of an epidemic anywhere except certain places in the

Orient, it is entirely possible for it to become as endemic as the influenza did during the
past two years.”

- Sacramento Union on June 20, 1920 (2 )

Emerging and re-emerging infectious diseases (EIDs) increasingly burden global public

health, threaten species conservation, and negatively impact local and global economies (3 ,

4 ). The majority of EIDs originate from animals (5 ) and these diseases are called zoonoses.

Zoonoses are of particular concern because humans are often accidental hosts that are naive

to infection and experience extreme pathology. Notable EID outbreaks were observed in

humans including the 1993 Sin Nombre virus (Hantavirus) outbreak (6 ) and the 2003 severe

acute respiratory syndrome coronavirus outbreak (7 ), but also in animal species such as,

for example, bird die-offs due to West Nile virus (8 ) and loss of entire prairie dog (Cynomys

spp.) colonies due to bubonic plague (9 ). Zoonoses are maintained in non-human reservoir

species, which presents a challenge for control and eradication programs, especially if a

zoonosis has multiple reservoir species or is transmitted by an insect vector (10 ). Public

health and conservation efforts focus on disease burden reduction or local eradication based

on an understanding of the ecological conditions favorable for transmission.

Zoonoses are originally infectious diseases of animals, including wildlife, and are gener-

ally environmentally mediated. Climate and landscape combine to create a heterogeneous

scattering of ecosystems within which hosts, vectors, and their pathogens can thrive. Op-

timal environmental combinations promote survivorship and ecological fitness of a species

(a.k.a., a “fundamental abiotic ecological niche”) whereby a species can survive without

immigration of individuals from another population (11 ). Geographic areas characterized

by an optimal combination of environmental conditions for a pathogen define an ecological
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niche where a pathogen can maintain itself inside its hosts (12 ). Enzootic areas occur if

transmission is ongoing in regions of the ecological niche (13 ). An epizootic (i.e., disease

outbreak within an animal population) event can arise in enzootic areas when host demo-

graphic changes amplify pathogen transmission (14 , 15 ), a pathogen experiences changes

(e.g., increased transmissibility or virulence) due to a genetic change (16 ), or a pathogen

spreads to a highly susceptible host species (17 ). Much scientific attention has focused on

the conditions leading up to an epizootic event, but understanding the locations of enzootic

transmission is a primary step in forecasting epizootic events. Statistical tools commonly

used in ecology are available to study the ecological niche of diseases (12 , 13 , 18–20 ) and

they rely on rich disease surveillance data.

However, surveillance for zoonoses often is challenging, especially in large-scale adminis-

trative settings where such systems are necessary for setting and monitoring public health

policies but constrained by annual operating budgets. Zoonoses are particularly challenging

to monitor because of the limited opportunity to observe the disease before transmission

to a human host occurs (21 ). For example, animal hosts can be cryptic, highly susceptible

to infection, or difficult to collect. Large-scale administrative surveillance systems provide

an opportunity to explore the development of targeted statistical analysis and data science

tools in order to take full advantage of their surveillance data, and meet mandated respon-

sibilities, budgetary constraints, and regulations governing data sharing and reporting (22–

26 ). A promising combination for enhanced disease surveillance involves traditional disease

surveillance systems (i.e., clinical and laboratory data) and big data resources (i.e., digital

data products) (27 ). In the Big Data Era, mapping diseases has becoming an increasingly

powerful and available tool for infectious disease surveillance (28 ). Maps of infectious dis-

eases can inform disease control programs by identifying areas for additional surveillance,

anticipating disease control resource needs, and strategically deploying prevention in at-

risk locations. For example, control efforts for diseases transmitted human to human by

mosquitoes, such as malaria, have had great success monitoring areas with disease (29 , 30 )

because an established sophisticated surveillance network provides accurate identification

of areas of high human incidence and prevalence. Maps can also predict high-risk areas for

spillover events of zoonoses where environmental conditions can cause an epizootic event in
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an enzootic area.

In this dissertation, I take a particular look at Yersinia pestis, the causative agent of

the zoonotic disease plague. By applying an ecological niche modeling framework, I make

informed predictions of the spatial distribution of enzootic plague in the western United

States (Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New

Mexico, North Dakota, Oklahoma, Oregon, Texas, Utah, South Dakota, Washington, and

Wyoming). I specifically collaborate with a state health department (California Department

of Public Health) and a national agency (U.S. Department of Agriculture) for their expertise

and source of plague surveillance data. I implement spatial statistical methods to improve

plague surveillance by making use of multiple types of data at multiple spatial scales. I begin

this chapter with a brief background on plague and then introduce the specific research aims

of the dissertation.

1.1 Yersinia pestis: Plague

Plague is caused by the gram-negative bacterium Yersinia pestis. Y. pestis is a generalist

pathogen, found in over 200 species of mammals. Infection has been reported in rodents,

lagomorphs, ungulates, carnivores, insectivores, hydraxes, primates, and marsupials with

varying levels of susceptibility (31 ). Humans are highly susceptible to infection when ex-

posed to plague bacteria. Plague manifests in humans in three forms: 1) Bubonic plague

(about 85% of cases) where patients develop a painful swelling of lymph nodes; 2) Sep-

ticemic plague (about 10% of cases) where infection spreads through the bloodstream to

other organs; and 3) Pneumonic plague (about 5% of cases) where infection starts in the

lungs from aerosol exposure to infected droplets or where untreated bubonic or septicemic

forms spread to the lungs (32 ). Mortality is high (40%-70%) for bubonic plague and usually

fatal for pneumonic and septicemic cases without prompt antibiotic treatment, primarily

streptomycin (16% mortality with treatment) (33 ).

Transmission of plague is complex, involving various exposure pathways and routes. The

primary transmission route for plague is believed to be arthropod vector-borne, through

fleas (31 ). Fleas live on the outside of mammals and birds (ectoparasite) and survive

by feeding on the blood of their hosts (hematophagous). Contemporary human cases are

3



likely contracted via a bite from an infected flea that has previously fed on a rodent (34–

36 ). Humans can encounter infected fleas from interactions with rodents and domesticated

animals that have had contact with rodents and their fleas. Rabbits, cats, and dogs can

harbor infected rodent fleas and can bring these vectors into close contact with humans

(37 , 38 ). If a flea bloodmeal from an infectious host contains plague bacilli, the bacilli

multiply and form a synthesized biofilm that can block the proventriculus of the flea (39 ).

The proventriculus is the first organ after the esophagus where food is ground into fine

particles and acts as a valve regulating the flow of food into the midgut where digestion

and absorption occur. Blocking the proventriculus starves the flea host, which seeks more

bloodmeals during which plague bacilli can be regurgitated into the animal host transmitting

plague (39 ). Plague can be transmitted by unblocked flea species (40 ), but blockage can

increase a flea species’ transmissibility of plague (41 ).

In North America, Oropsylla montana and Xenopsylla cheopis are primary flea vectors

of plague from rodents to humans (a.k.a., “bridging vector”). Both species can become

infectious immediately after feeding on an infected host, experience lower mortality from

infection than other species, and remain infectious for many weeks (40 , 41 ). Oropsylla

montana is almost exclusively found on ground squirrel species in the genus Spermophilus

while X. cheopis is found on rat species of the genus Rattus and predominantly found in sub-

tropical/tropical climates. These and other flea species are responsible for transmission of Y.

pestis within animal populations (42 ). Over 200 flea species are known to carry Y. pestis,

including Xenopsylla brasiliensis, X. astia, Nosopsyllus fasciatus, and poorly understood

“wild rodent fleas” (43–45 ). Over 85% of these fleas specifically feed on rodents and about

23% are found in North America (46 ).

In addition to vector-borne transmission, human infection can occur directly from an-

other infected host through inhalation, ingestion, or soft-tissue absorption of Y. pestis (31 ,

47 , 48 ). Infectious respiratory droplets can be passed between humans during the pneu-

monic form of plague (43 ); however, this mode of transmission is rare in the United States

with the most recent confirmed case of pneumonic human-to-human plague occurring in

1924 (one potential case was observed in Colorado in 2014 (48 )). Domesticated animals, in

particular Felis catus, succumb to plague infection, express respiratory symptoms, and can
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transmit plague pneumonically to humans (37 , 48 , 49 ). Consuming infected animal meat

from guinea pigs and camels has also lead to human cases worldwide (50–54 ). Finally, di-

rect contact with animals, including dead carcasses handled during hunting and butchering,

can transmit plague to humans (55 , 56 ).

Human plague cases have often been linked to a nearby recent or on-going epizootic

plague event (57 ). Climate and landscape define the environmental conditions suitable for

both epizootic and enzootic Y. pestis transmission but linking these as factors contributing

to human plague risk is complex (58–74 ). In general, human cases have likely occurred

in a major enzootic area (i.e., enzootic foci) of plague when environmental conditions were

favorable for an epizootic event; however, the full extent of enzootic foci of plague is not

fully known across the entire western United States (see Map 3.1 in 75 ). In addition, the

mechanism by which Y. pestis persists in enzootic foci is not completely known. The bac-

terium is likely maintained in a sylvatic cycle of rodent-to-rodent transmission via fleabites

between rodent populations (see reviews by 76 , 77 ). Soils contaminated with Y. pestis may

be another mechanism by which plague can persist in the environment between epizootic

periods. Eisen and colleagues (78 ) found Y. pestis can survive 24 days in soil, and, although

rare (1 out of 103 individuals), a susceptible animal host can become infected from exposure

to contaminated soil (79 ). An amoeba (Dictyostelium discoideum) has demonstrated ability

to be an environmental reservoir for Y. pestis (80 ) and may play a role in the persistence

of plague in underground burrowed habitats of communal rodent species and their fleas.

Human plague cases in the United States since plague became enzootic (∼1950s) were

likely from contact with an infected mammal or its fleas. Since 1950, human plague cases

have primarily occurred in the southwestern United States (i.e., Arizona, Colorado, New

Mexico, and Utah). An effort led by the U.S. Centers for Disease Control and Prevention

(CDC) estimated areas of high human plague risk in the southwestern United States (71–

73 ). Between 1957 and 2004, over 92% of human cases with a discernible site of exposure

and route of transmission (n = 165 of 180 cases from a total of 346 cases) were from

direct exposure to a wild animal or its fleas (72 ). Data used in Eisen and colleagues’ (72 )

report account for over 66% of human plague cases in the western United States used in

this dissertation (1950–2017; Unpublished data courtesy of Ken Gage at the CDC) and
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similar characteristics were found in a review of by Kugeler and colleagues (33 ). While

risk of infection is small, plague is a high-consequence disease, for which risk mapping can

be beneficial to determine areas of enhanced surveillance and targeted prevention. Human

cases of plague have occurred in 13 western United States, but case numbers are small,

which presents data limitations that challenge the prediction of high-risk areas.

Non-human plague information is also limited which challenges estimates of where Y.

pestis is enzootic in the United States. Temperature can affect transmission efficiency and

survivorship of fleas (63 , 81 , 82 ) and seasonal climate explains flea population patterns

(83 , 84 ). Therefore, the spatial distribution and ecology of plague vector species are likely

important determinants of plague (85 ), but data are spatially limited and spatially biased

by sampling effort (86 ). Because Y. pestis is a generalist pathogen, identifying a single

mammal species to monitor for human plague transmission has proved challenging, unlike

monitoring deer mice for Hantavirus or crow die-off events for West Nile Virus (8 , 47 ,

87 , 88 ). Holt and colleagues (89 ) restricted their prediction using rodent plague data to

California. Maher and colleagues (85 ) used multiple animal species across the United States,

but their predictions were limited by the unavailability of absence information (i.e., where

plague was tested but not observed). Walsh and Haseeb (90 ) used a small sample (n = 66)

of plague-positive deer mice (Peromyscus maniculatus), which are non-essential hosts for the

plague lifecycle and likely only indicate epizootic conditions (91–94 ). Domesticated pets

and coyotes (Canis latrans) are used to monitor epizootic plague activity in New Mexico

and Arizona (57 , 95 ), respectively, but not enzootic plague. Here, I use an extensive set

of location and disease status information of coyotes that act as a wide-ranging sentinel

species for sylvatic plague across the western United States.

1.2 Dissertation aims

In this dissertation, I aim to make extended use of available surveillance data to understand

two things. First, where is plague transmission occurring and being maintained within a

sylvatic cycle in the United States? What information do we need and how do we sample

these data to predict and understand the spatial distribution of enzootic plague? Second,

what is the connection between enzootic plague and human plague risk? Are humans at

6



increased risk of Y. pestis infection in enzootic plague areas compared to non-enzootic

plague areas?

I designed the subsequent chapters to achieve my research aims. In Chapter 2, I collate

the various sources of data used in the dissertation and discuss potential data uncertainties

and biases. I account for these sources of sampling uncertainties and biases in subsequent

analyses to produce robust predictions for the spatial distribution of enzootic plague and

human plague risk. In Chapter 3, I propose a method that adapts a spatial statistic to

estimate associations between Y. pestis occurrence and environmental variables. The pro-

posed method accounts for sampling effort bias and can predict enzootic locations of plague

even into areas with no historical sampling. In Chapter 4, I examine the impact of location

uncertainty on my proposed coyote-based plague surveillance tools of coyote-based plague

surveillance. I identify areas of my predicted spatial distribution of enzootic plague that

are sensitive to not knowing the true location where coyotes were collected. Chapter 5

examines the variation in sampling effort from multiple sources of sampling data of admin-

istrative plague surveillance systems. When I adjust my predictions by sampling effort, I

create a conservative estimate of the spatial distribution of enzootic plague in the western

United States. In Chapter 6, I investigate the association between human plague cases in

the United States and my predictions from Chapter 5. I find the spatial distribution of

enzootic plague can explain a portion of why human cases have occurred in the western

United States, but epizootic conditions likely better explain local human risk (57 , 59 , 95 ).
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2 Surveillance data for Yersinia pestis in the United States

“Just as you write in part in order to figure out what you trying to say you are in the
business of revealing your thoughts to yourself, even persuading yourself, on the way to

persuade others, so you do statistics not just to learn from data, but also to learn what you
can learn from data, and to decide how to gather future data to help resolve key

uncertainties.”

- “Ethics in statistical practice and communication: Five recommendations”
in Significance by Andrew Gelman, Ph.D. (96 )

2.1 Introduction

Effective zoonotic disease surveillance relies on rich data from observational studies and lab-

oratory analyses, building on dedicated efforts by data collectors, including public health

scientists, field biologists, laboratory technicians, and medical professionals. Animal reser-

voirs must be sampled, processed, and tested and human cases must be admitted, diagnosed,

and treated, before a public health scientist can detect patterns in the disease. However,

surveillance can be imperfect and faces challenges for zoonoses caused by pathogens trans-

mitted directly or indirectly from animal to human hosts, especially if infected animal hosts

are difficult to observe or if there is limited opportunity to observe the disease until after

transmission to human hosts occurs (21 ). Linking various data sources may help overcome

imperfect data collection by informing reasons for missingness, accounting for confounding

factors, or identifying potential biases in the data collection.

This dissertation proposes analytic methods to predict the risk of a rare, deadly zoonotic

infectious disease in humans using a combination of environmental variables and the location

and disease exposure status of a wildlife host species. Here, I collate various sources of

secondary data to explore the spatial distribution of enzootic Yersinia pestis, the pathogen

causing plague, in the United States. Data used in the dissertation do not involve primary

data collection (i.e., collected by investigator) because of the availability of secondary data

(i.e., collected by various public health, biological, and climatological agencies). While

pooling secondary data is an advantage for zoonotic disease surveillance studies, one must
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take into consideration specific quality issues as outlined in this chapter. Sources of potential

uncertainty and bias are different in each dataset, and I carefully catalog the sources,

features, and motivations for the various data sources supporting the methods and analyses

in subsequent chapters. The chapter begins with a listing of multiple sources of data used

in my analysis in the dissertation (Figure 1), which includes human case data, animal case

data, and environmental data. The dissertation primarily focuses on coyote (Canis latrans

Say, 1823) data from ongoing plague surveillance systems for the aim of predicting where

Y. pestis is being maintained in the western United States by cycling between animal hosts.

The second part of the chapter discusses the quality, uncertainty, and potential biases of

the data.

2.2 Cataloging data sources

From a One Health perspective (97–100 ), the dynamics of a pathogen occur at the inter-

section of humans, animals, and the environment. Understanding the dynamics of plague

requires analyses that are data-intensive for every actor at this intersection. It is important

to catalog data sources because data from multiple sources are often collected for differing

purposes. To focus the discussion, I carefully describe and review my sources for human

data, animal data, and environmental data.

2.2.1 Human data

Plague is a Category A infectious disease caused by the bacterium Y. pestis and human

cases are reportable to the World Health Organization (WHO), U.S. Centers for Disease

Control and Prevention (CDC), and state health authorities. Plague is potentially deadly

and can be used as a biological weapon (101 ). The WHO case definition of plague is found

in Panel 1. Diagnostic tests for Y. pestis are found in Panel 2. Human plague surveillance is

conducted by local, state, and federal health agencies and human plague cases are rare in the

United States (33 ). Epidemiological investigations seek to identify the source of infection

and exposure locations in order to minimize risk of additional cases. I use human-plague

case data and human population data in Chapter 6 to predict the relative risk of plague in

humans across counties of the western United States (1950–2017).
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State health departments The CDC receives aggregated human plague case data from

state health departments on an annual basis. Data are reported monthly at the county

level to protect the privacy of cases. Since its introduction in 1900, Y. pestis has infected

1,045 people in the United States (1900–2017; Table 1 and Figure 2a). Plague arrived in

California in 1900 and quickly jumped from commensal rats into native rodent populations;

it spread eastward and stopped approximately at the 100th Meridian, which passes through

the middle of Kansas (102 ). Human cases before the 1930s typically concentrated in port

cities (e.g., San Francisco, CA and Los Angeles, CA), but by 1950, plague became locally

enzootic in the western United States and human cases occurred primarily in the country’s

interior. Since 1950, human plague cases have occurred in 13 western states (521 total

cases), but over 80% of these cases have occurred in the Four Corners states (Arizona,

Colorado, New Mexico, and Utah; Figure 2b; (32 , 33 , 103 )). Since 2000, there have been

an average of 6 cases per year (less than 1 death per year on average). The majority of

human plague cases occur April through September. Cases reported between the October

and February “Off-Season” have been linked to rabbit-hunting season (104 ). Since 1983, 26

human plague cases have been reported in California, primarily in mountainous and foothill

areas of the Sierra Nevada, Cascades, and Transverse mountain ranges (unpublished data,

California Department of Public Health).

United States Census Bureau Every 10 years, the U.S. Census Bureau conducts a

count to determine the number of people living in the United States. Socio-demographic

data associated with each household are recorded. Additionally, since 2005, the U.S. Cen-

sus Bureau conducts the American Community Survey (ACS) which collects additional

information about 3.5 million households in the United States each year. In 2010, the

ACS replaced the (decennial) long form of the United States census for high-resolution geo-

graphic information about the United States population. The human population density of

the western United States in 2010 appears in Figure 3a and the percent change in human

population of the western United States (1950–2010) appears in Figure 3b.
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2.2.2 Animal data

Surveillance systems of high consequence pathogens are important because human treatment

often relies on early case detection, but when human infections are rare it can be challenging

to predict and monitor high-risk areas. Plague is a potentially deadly zoonotic pathogen,

an infectious disease of animal origin where Y. pestis is maintained by rodent communities

and their fleas. While rare in humans, plague infections are usually linked to epizootics, or

outbreaks of plague in rodents (57 ), which supports the use of animal case data to inform

human plague dynamics.

Animal-based surveillance for plague focuses on rodent species because plague is primar-

ily a disease of rodents. Epizootics are more readily detected in rodent species that are

highly susceptible to plague. For example, prairie dogs (Cynomys spp.) suffer dramatic

die-off events caused by plague marked by up to 98% mortality of an affected population

(105 , 106 ). Active surveillance of rodent populations and their fleas is conducted in the

United States (107 ), typically in plague enzootic regions and focusing on areas of high pub-

lic health concern such as recreational areas with historical plague activity (108 ). Enhanced

environmental surveillance generally occurs in response to a reported human plague case.

However, human disease is rare (i.e., typically low risk), so active rodent plague surveillance

is intermittent. Active rodent plague surveillance is costly and frequently yields few positive

detections (107 , 109–111 ), so it is not implemented systematically across or within states.

Instead, animal-based plague surveillance systems monitor animal species that can act as

a sentinel of plague in rodents. Coyotes are often used as a sentinel species of plague in the

United States (95 , 112–116 ) (but see 91 , 117 , and Panel 3). Plague-positive coyote loca-

tions are associated ecologically with plague-positive rodent species locations in California

(89 ) and coyote plague cases are temporally associated with human plague cases between

1974 and 1998 in Arizona (95 ). Coyotes are carnivores that scavenge carcasses and prey

on potentially infectious rodents, and typically survive plague infection (109 ). In response

to exposure to Y. pestis, surviving coyotes develop long-lasting antibodies (91 , 112 , 118 );

via this immunological evidence, coyotes effectively act as wide-ranging indicators of plague

activity. For coyote specimens used in this dissertation, whole blood is collected in the
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field on strips of filter paper, called “Nobuto strips,” allowed to dry, and then transported

to a laboratory where the dried strips are eluted and tested for plague antibodies (119 ).

Diagnostic tests for Y. pestis appear in Panel 2. A positive test result indicates that the

coyote was exposed to and developed an antibody response to Y. pestis. The antibody titer

is also recorded where high antibody titer (1:256 or greater) is assumed to indicate recent

plague exposure (95 ).

In this dissertation, I use coyote-plague case data (Chapters 3-5) and historical coyote

observation records (Chapter 5) to estimate the ecological niche of plague in coyotes and

predict its enzootic spatial distribution in California and the western United States. A

“niche” is the range of biotic and abiotic factors and interactions that permit a population

of a species to persist in a given habitat (e.g., collection of resources) without immigration

from another population, and outside of these habitats with permissive factors a species

faces extinction (111 ). A range of agencies conducts animal-based plague surveillance using

multiple animal species. A review by Bevins and colleagues (107 ) found that multiple state

health departments, research universities, the CDC, and the U.S. Department of Agriculture

(USDA) monitor plague. This dissertation collaborated with three of these agencies. An

overview of each agency and their data sources are detailed below.

United States Department of Agriculture In 2005, the USDA Animal and Plant

Health Inspection Service (APHIS) National Wildlife Disease Program (NWDP) began

conducting continuous animal-based plague surveillance across the United States, including

Alaska. Collected blood samples were sent to the CDC for screening using passive hemag-

glutination (Panel 2) until 2016, at which point the USDA developed a novel screening test

for Y. pestis exposure (120 ). Between 2005 and 2010, the USDA tested over 25,000 samples

for plague from more than 70 species primarily from taxonomic groups with previously doc-

umented Y. pestis exposure (107 ). Of these, coyotes had the highest average seroprevalence

(107 ), consequently I focus on the coyote data.

In this dissertation, I use data from a 13-year (2005–2017) plague-surveillance system

conducted by the USDA. Over 28,000 coyotes were screened for Y. pestis exposure. Plague

antibodies were detected in 12.7% of coyotes in 15 plague enzootic states (n = 3, 665) across
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all 13 years of surveillance. In order to protect landowner privacy, county-level USDA coyote

sampling appears in Figure 4 and counties with at least one coyote observed with plague

antibodies appear in Figure 5. I do not present crude rates of seropositive coyotes across

the western United States in order to avoid problematic interpretation. The reported rate

of positive tests does not necessarily reflect the true prevalence of plague due to the nature

of wildlife sampling for plague as defined below.

California Department of Public Health Since 1900, the California Department of

Public Health (CDPH) has recorded the geographic location of animals screened for plague

exposure by CDPH and local California health department partners. A current, digitized

database includes data beginning in 1983. The CDPH conducts active surveillance of plague

in rodent populations across California, including repeat sampling in plague enzootic areas

(Figure 6) with priority given to higher risk locations such as heavily used campgrounds and

other outdoor recreational areas (108 ). The CDPH typically conducts enhanced rodent and

flea surveillance in response to and in the vicinity of any observed human plague cases to

ascertain the potential source of human plague exposure. Passive surveillance occurs when

the public or recreational area staff reports animals (primarily rodent carcasses) that are

suspect for plague infection. The CDPH will test these specimens, and their fleas, for Y.

pestis (108 ). Additionally, in conjunction with livestock and wildlife damage management

(i.e., depredation) activities conducted by USDA APHIS Wildlife Services (WS), coyotes

are sampled and tested for plague by the CDPH.

The CDPH uses coyote observations as surrogates for rodent surveillance in regions of

California with lower resources or access. Coyote data are also retrospectively analyzed to

corroborate regional increases in plague activity. For example, coyote-plague surveillance is

either used to confirm what has been seen in rodent-plague surveillance or as an indicator

for plague activity in areas not captured by rodent-plague surveillance. Between 1983 and

2015, the CDPH tested 8,119 coyotes for Y. pestis antibodies via the CDPH Vector-Borne

Disease Laboratories (Table 2). Confirmation of Y. pestis exposure is made by direct

florescent antibody (FA) test (Panel 2). In order to protect landowner privacy, county-level

CDPH coyote sampling appears in Figure 7a and counties with at least one coyote observed
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with plague antibodies appear in Figure 7b. Similar to the USDA plague data, I do not

present crude rates of coyotes that tested positive for plague antibodies across California.

Other state health departments State health departments partner with the CDC to

monitor plague in wildlife. Animals are sampled using active and passive surveillance in

response to a suspicious animal or nearby human plague case. State health departments

send blood samples to the CDC in Fort Collins, Colorado for laboratory testing using

either passive hemagglutination assay, F-1 inhibition test, FA test, or bacterial culture

(Panel 2). Test results are recorded in a massive, paper-based archive of animal-based plague

surveillance in North America maintained by the CDC National Center for Emerging and

Zoonotic Infectious Disease Division of Vector-Borne Diseases Bacterial Diseases Branch. A

digitization effort by Maher and colleagues (85 ) geocoded 3,777 occurrence points between

1998 and 2008 that included generic or specific reference to host species for 75 mammal taxa,

primarily C. latrans (n = 2, 516; 67% of samples). County-level state health department

coyote sampling appear in Figure 8. I use these data in Chapter 5 to externally validate

the predicted spatial distribution of enzootic plague in the western United States.

Museum collections I collated locations of coyotes observed in the United States to

determine the background coyote population. These data are an approximation of coyote

habitat preference. When compared to coyote-based plague surveillance data, these data

help account for sampling effort of coyote-based plague surveillance systems in the analysis

in Chapter 6. Coyotes are observed by individuals including university principal inves-

tigators, biologists, citizen scientists, and conservation agencies that record observations

in databases maintained by various museums and government agencies. Here, I assemble

coyote observations across the United States from three main databases: 1) United States

Geological Survey–Biodiversity Information Serving Our Nation (121 ), 2) Global Biodiver-

sity Information Facility (122 ), and 3) VertNet (123 ). Across the United States, 13,972

unique coyote occurrences were reported (Table 3 and Figure 9). These coyotes are not

necessarily tested for plague antibodies but are included in my analysis because they have

accompanying location information.
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2.2.3 Environmental data

I use environmental data in Chapter 3, Chapter 4, and Chapter 5 to estimate the ecological

niche of plague in coyotes and predict its enzootic spatial distribution in California and

the western United States. An ecological niche manifests within a “predictor space” (or

“environmental space” or “state space”), which includes climatological variables such as

temperature and precipitation (124 ).

PRISM Climate Group Oregon State University has created a climatological data

product using a network of ground measurements. The measurements are used in a Pa-

rameter elevation Regression on Independent Slopes Model (PRISM) statistical mapping

system that follows a weighted regression framework relying on digital elevation models

(DEM; 125 ). I use 30-year average normals (1981–2010) at a 2.5 arcminute (∼4 kilometer

by 4 kilometer; ∼16 square kilometers) resolution for the western United States. A list

of variables I use in the analysis appears in Table 4. I chose the PRISM data because

the temporal range overlapped with CDPH plague surveillance (1983–2015) and PRISM

is the official climatological data of the USDA. Data are available from the PRISM portal

(http://prism.oregonstate.edu) or via the prism package (126 ) in the statistical software

R (127 ).

National Aeronautics and Space Administration The National Aeronautics and

Space Administration Shuttle Radar Topology Mission (NASA-SRTM) provides Digital

Terrain Elevation Data for the entire world (128 ). The data are freely available through

the U.S. Geological Survey via the National Map Seamless Data Distribution System (https:

//www.usgs.gov/core-science-systems/ngp/tnm-delivery) or via the raster package (129 )

in the statistical software R (127 ). In order to examine sampling uncertainty of CDPH

coyote-based plague surveillance I aggregate the elevation of California from a resolution of

90 m to a 4 km resolution and record the variability in elevation within each 16 km2 grid

cell. I use this layer to categorize coyotes in Chapter 4.
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2.3 Cataloging data quality

Data I use in this dissertation are from various sources and are collected for differing pur-

poses using differing methods. Drawing the best inference requires an understanding of the

strengths and weaknesses of each dataset for the purposes of my dissertation.

2.3.1 Quality of human data

Assessing the uncertainties and biases of human data is challenging due to the small num-

bers of human cases each year. I focus on the more numerous animal cases to provide

insight on local human risk in this dissertation, but it is important to note data quality

issues of human data. Human plague case data in this dissertation are generally considered

exhaustive, but the spatial resolution of available data leads to important analytical con-

siderations. The vast majority of human plague cases has been captured by United States

human disease surveillance systems because plague symptoms are severe. There is evidence

of asymptomatic human plague cases outside the United States (130 , 131 ), which suggests

the possibility, albeit small, of unreported human cases in the United States. Additionally,

plague is a rare disease and cases are likely identifiable to the probable site of exposure

at the sub-county level. Therefore, I sought finer spatial resolution data from the CDC

and state health department collaborators, but they are ultimately unavailable due to data

privacy reasons. Counties, especially in the western United States, can represent large areas

(e.g., 610 counties in United States are larger than the state of Rhode Island by area; 132 ).

This presents a challenge for information aggregation.

State health departments Uncertainty arises about the location, source, and transmis-

sion pathway of exposure during epidemiological investigations. Some human cases may

not be from residents of counties but are imported (see 133 ) and information about the

source or transmission pathway of human cases is not available for all cases. Nearly 17%

(38 of 224) of plague cases in New Mexico (1960–2003) were not exposed near their homes

(73 ) and the site of exposure was not determined for about 9% (30 of 356 cases) of human

plague cases in the southwestern United States (1957-2004; 72 ).

In Chapter 6, I assess how well my prediction of where Y. pestis is located in the en-
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vironment on an annual average explains where human cases were located in the western

United States (1950–2017). I propose analytic adjustments to the predicted relative risk of

human plague for these uncertainties in various ways. I expand the inclusion criteria for

plague cases to the county-of-exposure instead of near a person’s home, which allows for a

larger sample size and captures a greater activity space of where a human may have been

exposed to Y. pestis. Also, I assume all cases were exposed from a vector (flea or mammal;

wildlife or domesticated animal) in an area suitable for plague transmission. There has only

been one documented human-to-human transmission event in the United States since 1924

(48 ).

United States Census Bureau There are known uncertainties associated with the

United States census data, as recently reviewed by Spielman and colleagues (134 ). Both

the decennial long form and American Community Survey are sample surveys and have

accompanying sampling error. Three main sources of sampling error are 1) sample size, 2)

heterogeneity of the population being measured, and 3) response rate (135 ). Additionally,

uncertainty from the geographic resolution of census estimates increases as resolution in-

creases, especially in sparsely populated areas. Sampled areas are pooled across multiple

years (typically five years) to counteract this source of uncertainty. The ACS has larger

margins of error than the 2000 long-form estimate (on average 75 times larger; 136 ), where

about 25% of this increase is due to the decrease in sample size from the long-form census

to ACS (137 ). This uncertainty is heterogeneous across the country and is the subject of

ongoing research (134 ). The U.S. Census Bureau has made great efforts to reduce bias in

both forms of the census, so the estimates are, on average, reasonable approximations of

the United States population. However, the estimates are based on the sampling design and

implementation and I do not consider this source of uncertainty in the dissertation because

available disease mapping techniques do not account for this margin of error.

2.3.2 Quality of animal data

Wildlife disease surveillance often consists of multiple sources of uncertainty and potential

sampling biases because large-scale administrative wildlife disease surveillance systems aim

22



for three broad, but non-mutually exclusive goals: 1) to fulfill administrative mandates, 2) to

remain within budgetary constraints, and 3) to contribute to wider scientific knowledge. For

coyote-based plague surveillance, these goals converge because agencies aim to optimize the

detection of plague cases (i.e., number of cases) by adaptively deciding where surveillance

operations (i.e., which coyotes to sample and test from depredation efforts) should occur

while staying within budget. Budget limitations influence the sampling design employed for

surveillance by first meeting administrative goals (e.g., protect public health by focusing on

high risk areas) in the most scientifically rigorous manner possible (e.g., balanced random

sampling across entire study region), then, where feasible, by meeting scientific goals (e.g.,

gain insight into comprehensive plague dynamics in wildlife throughout a study region) that

may be outside of the initial administrative purview. Because I link multiple coyote-based

plague surveillance datasets from different agencies, it is important to catalog and consider

the differing administrative motivations and constraints. For example, coyotes sampled by

the USDA are drawn from coyotes managed on agricultural land for the purpose of livestock

harassment abatement or other reasons. Therefore, sampling is not designed specifically for

plague detection. In contrast, coyote sampling by state health departments and testing by

the CDC (not the coyotes submitted by the USDA 2005–2016) mainly occurs in human

populated areas for the purpose of protecting human health. Therefore, applying these

data to the examination of broader questions must be accompanied by an understanding

of the underlying motivation of data collection in order to account or adjust for potential

statistical biases and uncertainties. As outlined in the Chapter 3, accurate analysis will

require statistical modeling of both the observation process and the underlying population

of the hosts and the pathogen. These priorities drive the methodology development in this

dissertation.

This dissertation aims to extract improved value of information from coyote-based plague

surveillance in the United States. While data collection methods of large-scale administra-

tive surveillance systems of plague are not statistically perfect, it is important to recognize

that the data are not absent of scientific information. The complex and heterogeneous data

provide opportunities to identify the potential sources of statistical biases and uncertain-

ties that may affect this and other zoonotic disease surveillance systems. Identifying these

23



biases and uncertainties allows statistical modeling of the observational process, which is of

interest to disease surveillance agencies in order to inform current and future operational

decisions. Additionally, “bias” is not necessarily used as a negative statement but rather as

a term that reflects the error from the focused nature of data collection to meet administra-

tive mandates. This investigation of plague in the United States requires analytic methods

that describe and understand both the underlying ecology of plague as well as the realities

of a multi-source coyote-based data collection process. The elements of this framework

are not novel, but new analytic methods acknowledge the importance of accounting for

the observation process of data collection when examining the underlying disease process.

A simple example is the expansion of inverse probability weighting (138 ) in observational

health studies (139 ). Methodological analogs can be found in ecology and environmental

health, too (140–143 ). Subsequent chapters draw from these varied examples in order to

model the observational process of coyote-based plague and assess the effect of some, but

not all, potential sources of biases and uncertainties on the prediction of the underlying

wildlife plague system.

Drawing from the statistical literature, phrases such as “imperfect sampling” are used

to reflect variations from simple random sampling, a data collection method that would

be infeasible to conduct at a large spatial scale (i.e., statewide). Also, an example of an

imperfect sampling method is “preferential sampling,” which is used here to reflect data

collection driven by multiple priorities described above (Figure 10). Using preferentially

sampled coyote-based plague surveillance by the USDA as an example, higher frequency of

human-coyote or livestock-coyote interactions increase the chance the USDA will be tasked

with managing those individuals. Therefore, the coyotes screened for plague are not evenly

spatially distributed in a study region nor are they uniformly sampled from the population

of coyotes at risk for plague. Additionally, not all coyotes are tested for plague exposure.

Plague is a relatively rare disease of high consequence and surveillance is costly, monetarily

and politically. While detecting fewer cases is generally considered ideal (i.e., less disease),

surveillance systems with low detection may generate skepticism (i.e., potentially missing

the disease when truly present) or fiscal concerns. Therefore, agencies may have criteria to

prioritize or inform which coyotes to test to optimize detection.
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Coyote natural history, ecology, and immunological response to Y. pestis add uncertainty

around the location of disease exposure. The exact location and time of plague exposure by

an individual coyote is not discernible because of the potentially large home range size of

individual coyotes (144 , 145 ) and laboratory testing of plague relies on antibodies that may

be lifelong and not from a recent plague exposure. Indeed, coyotes can maintain low levels

of plague antibodies for long periods (118 , 146 ). The sampling location of a coyote is often

not precisely identifiable in the field especially for historical observations before the Global

Positioning System became readily accessible by public health agencies. The relationship

between the sampling location and the exposure location of a coyote observation is neither

known nor explored in this dissertation.

Potential reinfection adds uncertainty to the location and time of exposure of a coyote.

Epizootic events (i.e., disease outbreak in animal populations) are infrequent with inter-

epizootic periods ranging from a little over 12 months (147 ) to 50 years (148 ). In the

United States, black-tailed prairie dog (Cynomys ludivicianus) die-offs caused by plague

appear to follow the 3-7 year El Niño Southern Oscillation (149 ). The average lifespan

of a coyote in the wild is 6–8 years (13.5 max; 150 ) so an adult coyote will likely survive

beyond an inter-epizootic period and has the potential to be reinfected with plague or be

exposed during enzootic periods. Investigating this source of observation uncertainty is not

addressed in this dissertation, but methods developed in the dissertation could feasibly be

extended to this question in future work.

Knowledge of the background population of the wildlife species helps to more accurately

determine spatial distribution of a disease in wildlife, but determining the size of a wildlife

population has its own challenges. Preferential sampling of coyotes across the United States

can lead to spatial statistical bias where areas of higher human population density (151 )

or park visitations (152 ) may lead to more human-coyote interactions and more recorded

coyote observations. Human development influences coyote population ranges, activity,

and density (153–156 ), but the direction of these relationships is not clear and may be

confounded by factors such as the study region or health status of individual coyotes (157 ).

The identification and correction for sources of statistical biases and uncertainties in

wildlife disease surveillance is an active area of study (158 , 159 ). However, plague surveil-
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lance involving coyotes has been neglected by some public health agencies because of its

statistical biases and uncertainties in addition to the high cost of surveillance for a low prior-

ity infectious disease. This dissertation uses four sources of coyote data and each has various

nuances that require careful consideration before linking data sources for my analyses.

United States Department of Agriculture Not all coyotes managed by USDA APHIS

WS are tested for Y. pestis antibodies. USDA plague testing primarily occurs in regions

with previously documented plague activity. The vast majority (99.6%) of tested coyotes

(2005–2017) was observed in states with previously documented plague activity and plague

was not detected outside of known plague enzootic states (n = 136 tested coyotes outside

western states). In 2016 alone, the USDA managed 70,719 total coyotes of which 2,449 were

sampled and ultimately 1,130 were screened for Y. pestis antibodies (160 ). However, there

is little risk of sampling an individual multiple times during the analysis because the vast

majority of samples is taken after the USDA has euthanized a coyote (160 ).

I conducted a geocoding effort for specimens without latitude and longitude coordinates

using location descriptions, county data, and base maps. There were 1,480 coyotes with

missing or erroneous coordinates (5.1% of coyotes). I geocoded 915, but excluded 565 from

my analysis due to a lack of location information (Table 5). Over 95% of excluded coyotes

were located in one county (Yakima County, Washington) and I exclude only two plague-

positive coyotes from my analysis because they had an indeterminate location (Table 5).

California Department of Public Health The majority of coyotes provided by USDA

APHIS WS to CDPH are tested by the CDPH Vector-Borne Disease Laboratories. The

CDPH prioritizes testing for specimens in areas with historical plague observations or in

regions of California with lower resources or access in order to optimize the detection of

Y. pestis with limited laboratory resources. However, various efforts to test coyotes in his-

torically untested areas of California have been conducted when resources were available.

The vast majority of coyotes did not have precise accompanying sampling location infor-

mation. I geocoded specimens without latitude and longitude coordinates recorded in the

field using location descriptions, county data, and base maps. I was unable to locate 2%
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of tested coyotes (n = 164) below the county-level and I ignored these specimens in my

analysis (Table 5). The effect of uncertainty in recorded location of coyote observations on

the prediction of the spatial distribution of enzootic Y. pestis is the focus of Chapter 4.

Due to ecological, immunological, and observational factors, the CDPH considers coyote-

plague surveillance as a regional (and trailing) indicator of rodent-plague. The large home

range size, long-term immunity, frequent opportunities for repeat exposures to plague create

uncertainty in the location of plague. Determining the true location and time of plague

exposure based on ecological, immunological, and observational factors is outside the scope

of this dissertation but is an active area of investigation by the USDA.

Other state health departments State health departments partner with the CDC to

monitor plague in wildlife, including coyotes. Plague-positive coyote location data are pro-

vided by Maher and colleagues (85 ) containing 93.8% of coyote locations from the original

analysis (n = 2, 360). All specimens in this dataset are seropositive since seronegative spec-

imens were not digitized. Additionally, data for coyotes tested before 1998 are maintained

by the CDC in Fort Collins, Colorado, but were not digitized. Specimens tested since 2008

are digitized and maintained by the CDC in Fort Collins, Colorado, but were unobtainable

at the time of analysis. While Maher and colleagues (85 ) used a statistical method that

can draw inference from only seropositive cases, adjustments for sampling effort are limited

without digitized seronegative coyotes. Methods using both positive and negative data are

generally preferred to positive-only analyses when data are available (161–164 ).

A consideration when using state health department coyote data for external validation

when predicting the spatial distribution of enzootic plague in the western United States is

the mismatch in the main objective of the coyote-plague surveillance between the USDA

(i.e., opportunistic plague analysis of coyotes handled/euthanized for non-disease related

reasons) and state health departments (i.e., public health). Coyotes used to train the

prediction models later in the dissertation (USDA data) were not sampled in the exact same

manner as the coyotes used to test the prediction (CDC data), which may lead to poorer

validation statistics if the climate is dissimilar between rural and urban areas of the western

United States. However, at the spatial scale of my analysis climate is similar between rural
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and urban areas of the western United States and evaluation data must be independent of

the calibration data, including being collected by independent means and protocols (12 ).

Thus using CDC coyote data for external validation is a thorough and rigorous evaluation

of the prediction using USDA coyote data. There are duplicates between the state health

department data (1998–2008) and the USDA data (2005–2017) because the CDC tested

coyotes for the USDA until 2012 (n = 552 duplicates within n = 2, 360 total seropositive

coyotes tested by the CDC). Complete metadata are not available from the CDC, which

makes it challenging to identify duplicates. I consider duplicate coyote records between the

CDC and the USDA as coyotes with exact spatial coordinates using the sp package (165 ,

166 ) in the statistical software R (127 ). This is not a perfect duplicate detection method

because there is a risk of excluding coyotes that may not truly be duplicates (false-positive

error). However, the method is conservative because I maximize the chance that the state

health department data and the USDA data are independent.

Museum collections Biodiversity databases improve data access and availability for

investigations of species distributions; however, these data are often spatially biased. Sam-

pling effort, spatial scale, type of data collected, and data storage protocols distort large-

scale biodiversity patterns (167–169 ). Not all organisms are observed, of those that are

observed not all are recorded, and of those recorded not all have accompanying geolocation

information. Not all organisms are systematically observed a priori and sampling effort

is unbalanced, both spatially and by species, for many reasons including the difficulty of

observing a cryptic species (19 , 170 ).

This dissertation focuses on one species common throughout the United States and with

an expansive species home range. Not all coyote records in the databases have coordinates

and I did not conduct a geocoding effort for coyotes with missing coordinates. However,

coyote records with coordinates pass quality control measures conducted by the repository

to ensure accurate geolocation information. Additionally, observations are not restricted to

the present study period (1983–2017) and include historical coyote occurrences (early 1900s)

in order to capture as many records as possible to balance animal-based plague surveillance

sampling effort. Coyotes are found across the majority of North America (171 ) and are not
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homogeneously distributed within their species home range. Coyote habitat preferences or

individual coyote home range information are better indicators of where coyotes reside than

species home range, but are unavailable for the spatial extent of my analysis.

2.3.3 Quality of environmental data

The environmental data sources I use in this dissertation are data products with their

own uncertainties and biases. Because the scientific community frequently use these open

sources, great efforts, both internally and externally via peer-review, have been made to

validate these data products as well as to assess their statistical biases and measure their

uncertainties. A non-exhaustive review of the known biases and uncertainties of these data

sources is included below.

PRISM Climate Group The Oregon State PRISM data products have been extensively

peer-reviewed (125 , 172–175 ). PRISM develops local climate-elevation regression functions

for each DEM grid cell, while weighting stations on their similarity to the target grid cell

(172 , 176 ). The regressions can account for 1) spatially varying elevation relationships, 2)

effectiveness of terrain as barriers, 3) terrain-induced climate transitions, cold air drainage,

and inversions, and 4) coastal effects (177 ).

However, PRISM does have a few uncertainties and limitations. The DEMs rely on

the accuracy of the underlying elevation data taken from the Defense Mapping Agency at

one-degree resolution. PRISM has an accuracy of 130 m circular error with 90% probabil-

ity. Additionally, long-term datasets such as the ones used in the analysis use all weather

stations in the network to calculate the data surface regardless of known systematic sam-

pling bias such as time of observation. Daily readings may occur in the afternoons (higher

temperatures) or the mornings (lower temperatures) leading to observation bias. PRISM

data products at smaller temporal resolution adjust for this bias, but the annual average

normals I use in my analysis do not.

National Aeronautics and Space Administration NASA-SRTM has collected data

from 80% of all land on the Earth. Here, I use these data for the state of California,
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which was collected by NASA-SRTM at least once if not multiple times over the course

of the mission. The NASA-SRTM targeted a vertical accuracy of 16 m absolute error at

90% confidence (178 ) and a Linear Error 90 equivalent to the root mean squared error of

9.73 meters. This target was successfully achieved (179 ), although there is some evidence

more recent elevation data are more accurate than NASA-SRTM in extremely mountainous

regions (e.g., the Himalayas; 180 ). This level of uncertainty is not a large concern because

the data are aggregated from a 90 m to a 4 km resolution.

2.4 Summary

Zoonotic disease surveillance is challenging and requires careful curation of multiple, hetero-

geneous data sources of various information and varying quality. This effort involves close

collaborations with multiple U.S. government agencies at both the state and federal level.

Beyond data sharing relationships, these collaborations are essential to understand the in-

tricacies and context of real-world zoonotic disease surveillance systems. By collaborating

with federal and state agencies that monitor plague activity I enhance the interpretation of

my results by re-evaluating the analytical constraints, important considerations about data

privacy, and policy implications. Throughout this dissertation, a balance is struck between

data openness and privacy. Efforts were made for data and method transparency while be-

ing considerate of how each collaborating agency is mandated, especially if the aims appear

tangential from the original scope of data collection. Unless otherwise specified, the data I

use in this dissertation are available through data usage agreements with each collaborating

agency.
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2.6 Appendices

2.6.1 Appendix A: Panels

Panel 1: World Health Organization case definition for plague surveillance
Disease characterized by rapid onset of fever, chills, headache, severe malaise, prostration, with
– Bubonic form: extreme painful swelling of lymph nodes (buboes)
– Pneumonic form: cough with blood-stained sputum, chest pain, difficult breathing
Note: Both forms can progress to a septicemic form with toxemia. Sepsis without evident buboes rarely occurs.

Laboratory criteria for diagnosis
– Isolation of Yersinia pestis in cultures from buboes, blood, cerebrospinal fluid or sputum or
– Passive hemagglutination (PHA) test, demonstrating an at least fourfold change in antibody titer, specific for

F1 antigen of Y. pestis, as determined by the hemagglutination inhibition test (HI) in paired sera.

Case classification
– Suspected: A case compatible with the clinical description. May or may not be supported by laboratory finding

of Gram stain negative bipolar coccobacilli in clinical material (bubo aspirate, sputum, tissue, blood).
– Probable: A suspected case with Positive direct fluorescent antibody (FA) test for Y. pestis in clinical specimen;

or passive hemagglutination test, with antibody titer of at least 1:10, specific for the F1 antigen of Y. pestis as
determined by the hemagglutination inhibition test (HI); or epidemiological link with a confirmed case.

– Confirmed: A suspected or probable case that is laboratory-confirmed.
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Panel 2: Diagnostic tests for Yersinia pestis in wildlife
The following are four of the recognized diagnostic tests for Yersinia pestis infection
Passive hemagglutination Assay (PHA) & F1-inhibitation (PHI) test
– Antigen-antibody reactivity is visible qualitatively using F1 antigen coated on glutaraldehyde-fixed sheep red

blood cells as a sensitizing antigen. If serum reacts positively, a PHI test is run to verify the specificity of the
PHA test that calculates the titer.

– Positive Test: At least fourfold change in antibody titer, specific for F1 antigen of Y. pestis.
– Strength: Sensitive and generally reproducible.
– Limitations: Relies on unstable reagent, interpretation is subjective, and prone to nonspecific reactivity of

natural antibodies.
– More detailed procedures found in (181 ).

F1 Luminex Plague Assay (F1-LPA)
– Semi-automated bead-based flow cytometric assay, specific for the F1 antigen of Y. pestis.
– Positive Test: With a baseline background noise of 250 mean fluorescent intensity (MFI), a Signal to Noise

Ratio (S/N) ≥ 10 (or ≥ 2,500 MFI) is considered a positive test.
– Strength: More sensitive (x64) than PHA-PHI, fewer false negative results.
– Limitation: Has not been assessed for human tissue.
– More detailed procedures found in (120 ).

Fluorescent Antibody (FA)
– Smears of suspected tissue are prepared with plague antiserum and examined via fluorescent microscopy.
– Positive Test: Smear brightly fluoresce as “apple green-colored hollow rods” (Or less brightly if conducting a

fluorescence inhibition test).
– Strength: Quick assay and requires a small amount of test material.
– Limitations: Sensitive with fresh tissue samples, not optimized for field collection.
– More detailed procedures found in (182 , 183 ).

Bacterial Culture
– Suspected tissue samples are suspended in blood agar and examined for growth daily for at least 7-10 days.
– Positive Test: Bacterial growth appears, typically a “stalactite”-type pattern or colonies about 4-7 mm in

diameter.
– Strength: The gold-standard assay.
– Limitation: Time intensive. Y. pestis is slow growing.
– More detailed procedures found in (182 ).
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Panel 3: Considerations for coyotes as a sentinel species for plague activity
Coyotes (Canis latrans) have been used as a sentinel species of plague (Yersinia pestis) activity in rodent
populations of North America (95 , 112–116 ), but there are limitations for focusing on coyote-based plague
surveillance data. I outline some notable limitations below:

• Coyotes are a wide-ranging species (144 , 145 , 171 ) and effectively sample a broad variety of habitats in
which plague occurs and thus sample a considerable extent of the ecological niche of plague (85 ). However,
coyotes are not observed homogeneously across North America (Chapter 5) and other species may be
better indicators of plague activity in some habitats (e.g., rodent species for alpine regions of California).
Therefore, without rodent data, I am estimating a the fundamental ecological niche of plague in coyotes,
which I am considering as an approximation for the entire fundamental ecological niche of plague.

• The location where an individual coyote was truly exposed to Y. pestis is unknown and challenging to
discern (91 , 117 ). Coyotes are mobile, encountering many rodents across their expansive individual home
range (144 , 145 , 184 ) and whose plague antibodies can last for many months (91 , 112 , 118 ). Reinfection
of coyotes is also probable and so a coyote can only indicate its most recent plague exposure. Rodent
species have smaller individual home range sizes (185 ) and are the gold standard indicator of current or
recent plague activity (108 ).

• Coyote specimens are not collected evenly across the United States and instead are collected
opportunistically (107 ). Coyotes tested for plague exposure are primarily collected in conjunction with
ongoing livestock/wildlife damage management operations conducted by the U.S. Department of
Agriculture Animal and Plant Health Inspection Service Wildlife Services. Agricultural and urban areas
may be more sampled for plague than other land-use types and their respective habitats. Including other
species monitored for plague activity may help overcome this potential spatial sampling effort bias.
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2.6.2 Appendix B: Tables

Table 1: Human plague cases in United States by state of exposure (1900–2017). (Unpublished
data from Ken Gage, Ph.D. at the U.S. Centers for Disease Control and Prevention, Fort Collins,
Colorado).

State Number of Human Cases
Total Pre-1950 Post-1949 Post-1983

Arizona 68 0 68 27
California 492 441 48 26
Colorado 67 0 67 50
Florida 10 10 0 0
Idaho 5 1 4 3
Illinois* 1 0 1 1
Louisiana 51 51 0 0
Maryland* 1 0 1 0
Michigan 1 1 0 0
Montana 2 0 2 2
Nevada 6 0 6 3
New Mexico 283 3 280 140
Oklahoma 2 0 2 2
Oregon 19 1 18 9
Texas 35 31 4 3
Utah 16 1 15 10
Washington 9 8 1 1
Wyoming 5 0 5 3
Unknown 2 1 1 1
Total 1,045 522 523 281

*Laboratory Acquired
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Table 2: Summary of Canis latrans testing for antibodies against Yersinia pestis by California
Department of Public Health (CPDH; 1983-2015), U.S. Department of Agriculture (USDA; 2005-
2017) and U.S. Centers for Disease Control and Prevention (CDC; 1998-2008).

Agency Plague Result Count Tested Count With Location Prevalence
CDPH Positive 705 704 8.8%

Negative 7,414 7,251
USDA Positive 3,665 3,648 13.0%

Negative 25,082 24,381
CDC Positive 2,516 2,360

Negative Not digitized Not digitized
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Table 3: Sources of independent coyote observations in the United States
Database Coyote Observations
Angelo State Natural History Collections 100
California Academy of Sciences 59
California State University, Long Beach 2
Chicago Academy of Sciences 11
Cornell University Lab of Ornithology 42
Cornell University Museum of Vertebrates 36
Denver Museum of Nature & Science 83
Fort Hays Sternberg Museum of Natural History 70
Florida Museum of Natural History 120
Humboldt State University 1
iNaturalist.org 4,485
Illinois State University 3
James R. Slater Museum of Natural History 78
Louisiana State University Museum of Natural Science 43
Michigan State University Museum 91
Museum of Cultural and Natural History–Central Michigan University 4
Museum of Comparative Zoology, Harvard University 4
Museum of Southwestern Biology 458
Museum of Texas Tech University 250
Museum of Vertebrate Zoology 987
Natural History Museum of Geneva 3
Natural History Museum of Los Angeles County 166
naturgucker.de 11
New Mexico Museum of Natural History and Science 1
National Museum of Natural History, Smithsonian Institution 1
National Parks Service 207
Natural History Museum of Utah 186
New York State Museum 528
North Carolina Museum of Natural Sciences 86
Northern Michigan University 5
The Ohio State University Borror Lab of Bioacoustics 139
The Ohio State University Museum of Biological Diversity 363
Royal Ontario Museum 46
Sam Noble Oklahoma Museum of Natural History 556
Santa Barbara Museum of Natural History 37
Tall Timbers Research Station and Land Conservancy 1
Texas A&M University Biodiversity Research and Teaching Collections 44
United States Geological Survey (USGS) 30
USGS Western Ecological Research Center San Diego Field Station 2,899
University of Alaska Museum of the North 93
University of Arizona Museum of Natural History 31
University of California–Los Angeles Dickey Collection 48
University of California–Santa Barbara Marine Science Institute 62
University of Colorado Museum of Natural History 1
University of Kansas Biodiversity Institute 676
University of Michigan Museum of Zoology 257
University of Texas at El Paso Biodiversity Collections 409
University of Washington Burke Museum 90
University of Wyoming Museum of Vertebrates 9
Yale University Peabody Museum 59
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Table 4: Oregon State University Parameter elevation Regression on Independent Slopes Model
(PRISM) 30-Year Average Annual Normals (1981–2010). Modeled using a combination of a digital
elevation model (DEM) and climatologically-aided interpolation (CAI)*. Variables are modeled
at 30 arcseconds (∼800 meters) resolution and aggregated to 2.5 arcminutes (∼4 kilometers). See
(125 ) for more details. .

Variable Units Derivation

Precipitation millimeters (mm) Modeled; Summing monthly averages (rain + melted
snow)

Maximum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Temperature °Celsius (°C) Derived; Average of Maximum Temperature and
Minimum Temperature

Minimum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Dewpoint Temperature °Celsius (°C) Modeled; CAI used minimum temperature as the
predictor grid

Maximum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
maximum temperature as the predictor grids

Minimum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
minimum temperature as the predictor grids

*Accuracy of these data is based on the original specification of the Defense Mapping Agency (DMA) one-degree
digital elevation models (DEM). The stated accuracy of the original DEMs is 130-meter circular error with 90%
probability. Datasets use all weather stations, regardless of time of observation.
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Table 5: Missingness of coyote specimens by U.S. Department of Agriculture (USDA; 2005–2017)
and California Department of Public Health (CDPH; 1983-2015). Specimens are considered missing
if textual geographic location information is unavailable or indiscernible to geocode. Fewer than
2.5% of specimens are missing and ignored in the analysis.

State Missing Total
Arizona 33 3,097
California* 164 8,199
Colorado 3 2,161
Idaho 1 576
Kansas 2 240
Montana 43 6,272
Nebraska 5 586
New Mexico 42 5,998
Nevada 9 3,269
Oklahoma 12 1,177
Oregon 3 543
South Dakota 5 521
Texas 16 1,084
Utah 3 487
Washington† 540 590
Wyoming 0 1,224

*Missing specimens are located in 28 counties (∼48% of counties in California). Over 30% of missing specimens are
located in Santa Clara County, California and San Luis Obispo County, California.
†All missing specimens are located in Yakima County, Washington.
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2.6.3 Appendix C: Figures

Figure 1: Data layers of dissertation and their sources. Data are structured from point locations
to polygons and raster grids. Four layers are predicted (black color) using data layers (grey color).
Arrows represent the layers involved for each predicted layer.
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Figure 2: (a) Human plague cases in contiguous United States since introduction (1900-2017).
The early period (1900–1930) contained outbreaks in port cities (e.g., San Francisco, CA and Los
Angeles, CA), but by 1950, plague became locally enzootic in the western United States and human
cases occurred in the country interior only. (b) Human plague cases in western United States (1950-
2017) by county of exposure. Plague spread from California to Kansas by the 1940s (86 ). Since 1950,
human plague cases have occurred in 13 western states (521 total cases) where over 80% of these
cases have occurred in the Four Corner States (Arizona, Colorado, New Mexico, and Utah;(32 , 33 ,
103 )). Data are unpublished and courtesy of Kenneth Gage, Ph.D. at the U.S. Centers for Disease
Control and Prevention, Fort Collins, Colorado.
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(a) (b)

Figure 3: (a) Human population density of the western United States (2010) per square kilometer
by county (132 ). (b) Percent change of human population in the western United States 1950 to
2010 by county (132 , 186 ). Counties without 1950 census data (n = 3) are given earliest population
estimate. Broomfield County, Colorado was created in 2001 from Boulder County, Colorado but
existed as a town since 1961 (n = 4, 535 people; 187 ). Cibola County, New Mexico was created in
1981 from Valencia County, New Mexico and its first census was in 1990 (n = 23, 794 people; 188 ).
La Paz County, Arizona was created in 1983 from Yuma County, Arizona and its first census was in
1990 (n = 13, 844 people; 188 ).
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Figure 4: Number of coyotes tested by U.S. Department of Agriculture Animal and Plant
Health Inspection Service National Wildlife Disease Program for antibodies against Yersinia pestis
(2005–2017). Sampling is heterogeneous across the United States, primarily in historic plague en-
zootic areas. Data for coyotes from California are managed by the California Department of Public
Health and are not included with these data.
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Figure 5: Results of coyotes tested by U.S. Department of Agriculture Animal and Plant
Health Inspection Service National Wildlife Disease Program for antibodies against Yersinia pestis
(2005–2017). A coyote with plague antibodies is not observed in every county sampled. Counties
with a coyote that tested plague-positive are found throughout the western region of the United
States. A figure of crude rates is not included.
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Figure 6: Plague-enzootic regions of California. Area primarily based on rodent plague surveillance
and historical knowledge by California Department of Public Health. Area bounded by a minimum
elevation of 4,000 feet. See (108 ) for more details.
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(a) (b)

Figure 7: (a) Number of coyotes tested by California Department of Public Health (CDPH)
for antibodies against Yersinia pestis (1983–2015). Sampling is heterogeneous across the state of
California, primarily in historic plague enzootic areas and areas of high concern. Limited sampling
in the Mojave and Sonoran Deserts. (b) Results of coyotes tested by CDPH for antibodies against
Y. pestis (1983–2015). A coyote with plague antibodies is not observed in every county sampled.
Only 2% of observations are unable to be geolocated and are ignored in the analysis.
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Figure 8: Number of coyotes sampled by state health departments and tested by the U.S. Centers
for Disease Control and Prevention for antibodies against Yersinia pestis (1998–2008). All coyotes
in this data set tested positive for plague antibodies because coyotes that tested negative were not
electronically available. See (85 ) for more details. Possible duplicate coyote specimens between the
USDA and the CDC were removed from the CDC data and are not presented here.
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Figure 9: Number of coyote observations with geolocation information collated by various bio-
diversity repositories (1900–2017). These coyotes were not tested for antibodies against Yersinia
pestis. Coyotes are found throughout the United States, including Alaska, with higher observations
recorded in Southern California and the western United States, in general. See (121–123 ) for more
details.
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Figure 10: The sources of coyote specimens used in the dissertation as well as their sampling strat-
egy. Coyotes tested for the presence of Yersinia pestis antibodies are not collected from the field
randomly. Instead, coyotes are primarily collected from ongoing livestock or wildlife damage man-
agement activities (i.e., opportunistic sampling) by the U.S. Department of Agriculture Animal and
Plant Health Inspection Service Wildlife Services (WS). In addition, only a subset of these collected
specimens are tested for plague, namely from plague enzootic areas (i.e., preferential sampling) of
the western United States. The coyotes tested by the California Department of Public Health are
collected by WS in California. The coyotes tested by the U.S. Centers for Disease Control and
Prevention are submitted by state health departments.
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3 Examining spatial patterns in principal component space
to identify suitable habitat for enzootic plague transmis-
sion in California, U.S.A.

“Nature’s dice are always loaded; that in her heaps and rubbish are concealed sure and
useful results.”

- Nature by Ralph Waldo Emerson (189 )

3.1 Introduction

Emerging infectious diseases (EIDs) are a significant threat to public health (190 ). About

60% of EIDs originate in animals (a.k.a., zoonotic diseases) (5 , 191 ), primarily from wildlife

(5 , 192 ). Early detection of spillover events into human populations is essential for timely

response (193 ), yet these events are rare (194 ) and can be difficult to monitor (159 ),

creating challenges for zoonotic disease surveillance systems. The presence of known ani-

mal reservoir hosts that can act as potential sources of infection that increases the chance

of observing a zoonotic disease outbreak in human populations (195 ). Knowledge of the

geographic distribution of reservoir hosts can enhance zoonotic disease surveillance via iden-

tifying areas where humans interact with these hosts. This chapter outlines a novel method

to use the geographic distribution of infection within an animal host to define areas of higher

human risk (see Chapter 6).

Plague is a zoonotic infectious disease caused by the gram-negative bacterium Yersinia

pestis. Humans are highly susceptible to infection and can experience severe symptoms.

Mortality is high (40%–90%) for plague without prompt antibiotic treatment (16% mortality

with treatment; 33 ). The most common route of transmission to humans in the United

States is via the bite of an infected rodent flea (33 ). Plague arrived in California in 1900 and

quickly established in native rodent populations, and then spread eastward to approximately

the 100th Meridian by 1960 (102 ). Human plague risk has been estimated for select regions

of the United States using human case location information, frequency of infections, and

environmental factors (59 , 71–73 ). However, the vast majority of human cases since 1960
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was acquired via fleabite or direct contact with an infectious animal, with only one case via

human-to-human transmission documented in the United States since 1924 (48 ). Human

plague infections frequently are linked to recent or ongoing epizootic events (i.e., disease

outbreak in animal populations; 57 ). Therefore, geographic surveillance of zoonotic disease

activity provides a strategy for identifying areas that present a high risk for human exposure.

Since human disease data are sparse, wildlife disease data have been used to predict

the potential spatial distribution of plague in parts of the United States (70 , 85 , 89 ,

90 ). Previous investigations employed spatial statistical methods that used the location of

wildlife plague cases and environmental factors to predict the potential spatial distribution

of plague. These ecological niche models (ENMs) increasingly have been used to identify

the environmental conditions associated with the occurrence of a pathogen and then pre-

dict the spatial distribution of pathogens and their hosts (20 ), especially arthropod vector

host species. ENMs are appealing for estimating disease risk as a way to circumvent data

limitations of surveillance systems where information about cases (positives, presences) is

available, but controls (negatives, absences) are lacking (12 ). When data are available,

methods using both case and control data are mostly preferred to case-only analyses (162–

164 ) because sampling effort can be accounted for in the predictions (161 ).

Here, this chapter develops and evaluates an analytic strategy using a set of both case

and control data of coyotes (Canis latrans Say, 1823) screened for exposure to plague,

coupled with long-term, landscape-level climatological variables (Figure 11). This approach

uses dimension reduction (via principal component analysis) of the climate variables to

identify signature patterns associated with high enzootic plague risk. More specifically, my

proposed method adapts a spatial cluster algorithm originally designed for spatial cancer

epidemiology to identify spatial clusters of climate signatures within the principal component

space. My proposed method offers a mechanism of environmental interpolation (19 ) to

predict areas of disease occurrence that match statistically the environmental conditions

where a disease was observed, even in areas not historically sampled or from which data

were unavailable. Statistical inference can be drawn from the resulting prediction regarding

the spatial distribution of sylvatic plague (i.e., cycling in rodent populations) for California

via a species (coyotes) which is not a reservoir but functions as a wide-ranging sentinel for
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plague activity. Regions presenting conditions conducive to the enzootic maintenance (i.e.,

endemicy) of plague are likely the location of human and animal exposure to Y. pestis-

carrying hosts and vectors (94 , 196 ). I compare the results of my proposed method to

previous predictions of plague risk in California (89 ). Definitions for key terms in this

chapter appear in Panel 4.

3.2 Data and methods

3.2.1 Wildlife disease data

Beginning in 1983 the California Department of Public Health (CDPH) Vector-Borne Dis-

ease Section digitized information for multiple animal species during animal-based plague

surveillance across California. In addition to active plague surveillance of rodents and epi-

demiological investigations in response to human plague cases, the CDPH conducts passive

surveillance of plague in non-rodent species, primarily coyotes (108 ). The CDPH uses coy-

ote observations as sentinels for rodent-based surveillance in regions of California with lower

access or resources as well as to corroborate regional increases in plague activity indicated

by rodent plague surveillance data (but see Panel 5). Between 1983 and 2015, the CDPH

screened 8,119 coyote blood samples for Y. pestis antibodies. An individual is considered a

case if it tests positive for plague exposure (i.e., seropositive) and is considered a control if

it tests negative for plague exposure (i.e., seronegative) via direct florescent antibody (FA)

tests (182 , 183 ).

The CDPH tests coyote specimens for plague in conjunction with the U.S. Department of

Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) Wildlife Services

(WS). Therefore, specimens are collected for purposes other than disease surveillance (e.g.,

livestock and wildlife damage management) in predominantly agricultural/rural areas of

California. Additionally, blood samples are not collected from all coyotes taken during

livestock/wildlife damage management operations. Instead, WS specialists are requested

to collect coyote blood samples from areas of suspected plague risk (e.g., historical case

locations; 107 ).

The vast majority of coyotes do not have precise accompanying sampling location in-
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formation. I geocode specimens without geographic coordinates recorded in the field using

location descriptions provided by the collector, county data, and base maps. Not all tested

specimens have an identifiable location below the county level. I am unable to identify the

location of 164 coyotes (2% of tested coyotes, n = 1 seropositive) and I ignore these spec-

imens in subsequent analysis. Of all 7,955 coyotes with location information, about 8.8%

(n = 704) are seropositive for plague exposure in California. Figure 12a presents county-

level CDPH coyote sampling and the counties with at least one coyote observed with plague

antibodies appears in Figure 12b. I present data at the county level to protect landowner

privacy.

3.2.2 Environmental data processing

Extrinsic, abiotic factors influence environmentally-mediated infectious diseases, such as

vector-borne diseases. These factors can directly affect the rate of transmission between

hosts or indirectly affect either pathogen-host interactions, the population dynamics (e.g.,

survival) of hosts, or both (20 ). Abiotic factors include temperature and humidity at

long-term temporal scales and at various spatial scales. Although the relationship between

plague and climate is complex (58 ), past studies have established links between Y. pestis

occurrence and climate factors (70 , 85 , 89 , 90 ).

To summarize climatic variation across the western United States, I employ the Oregon

State University PRISM (Parameter elevation Regression on Independent Slopes Model)

statistical mapping system. PRISM follows a weighted regression framework that relies on

digital elevation models built from a network of ground measurements (125 ). I select the

30-year average normals (1981–2010) at a 2.5 arcminute (∼4 kilometer by ∼4 kilometer;

∼16 square kilometers) resolution. The variables used in my analysis appear in Table 6.

The temporal range of the data mostly overlap with CDPH plague surveillance (1983–2015).

I obtain PRISM data via the prism package (126 ) in the statistical software R (127 ).

Environmental data sets often contain many different measurements, some highly corre-

lated (e.g., elevation and precipitation), so I avoid collinearity by reducing the number of

variables in my proposed method by conducting a principal component analysis (PCA). A

PCA transforms multiple predictors into a set of linearly uncorrelated variables called prin-
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cipal components. I range standardize PRISM variables using the Gower metric (197 ) as

the inputs in the PCA analysis because PRISM variables are measured on different scales.

The first two principal components (PC1 and PC2) of the PRISM variables account for

over 96% of the total variance across the United States (Table 7) and I use PC1 and PC2

as the environmental covariates for my analysis (Figure 13). I use the RStoolbox package

(198 ) in the statistical software R (127 ) to perform a PCA.

3.2.3 Spatial analysis in the principal component space

ENMs provide key information in the study of relationships between species and factors that

support or limit the existence or fitness (i.e., survivorship, fecundity) of a species. These

factors are then located in a geographical area of interest to assess where a species may

occur. Habitat is difficult to define, but here I consider the combination of environmental

characteristics that describe a particular location (199 ). Certain species are better adapted

to and have higher fitness in certain habitats (200 ). The response of a species to the

combination of abiotic conditions (e.g., climate) is called a fundamental ecological niche

(201 , 202 ). Biotic influences on a species fitness (e.g., competition) limit the fundamental

ecological niche of a species into a smaller realized ecological niche (201 , 203 ). The concept

of the ecological niche is an intensely debated but foundational principle in ecology (11 ,

201 , 204 ). Here, I use the Grinnellian definition of an ecological niche (11 ) represented by

an n-dimensional hypervolume (201 , 205 ) of only abiotic variables.

Once a species’ ecological niche is determined based on ecological data (e.g., environmen-

tal measurements related to case-control locations), a set of other areas where the species

niche are located is often predicted. This predicted spatial distribution can be interpreted

as locations where a species may already exist but were not previously observed or could

potentially exist if introduced to these areas (i.e., invasion or emergence). However, this

method of prediction can be controversial because there could be non-ecological factors lim-

iting the spatial distribution of a species (e.g., a geographic boundary; 12 ). This limitation

is not concerning for subsequent analysis because plague has been endemic in California

since the 1930s (102 ).

A common consideration across both epidemiology and ecology studies that aim to pre-
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dict the spatial distribution of a disease (species) is to account for the underlying population

dispersion by comparing the seropositive case (presence) locations to the at-risk seroneg-

ative control (absence) locations. Logistic regression or other forms of generalized liner

models (206 ) are standard statistical approaches for these studies. However, a nonpara-

metric approach is often more appropriate to capture the nonlinear relationships between

disease (species) occurrence and environmental variables (207 ). I propose a flexible, robust,

nonparametric approach for environmental interpolation that uses both case and control lo-

cation information in the form of a nonparametric multiplicative regression (NPMR; 208 ,

209 ).

Here, I propose a geographical epidemiology model as an ENM in order to predict the

risk of a pathogen across an area of interest. Detecting disease clusters is a foundational

exercise in spatial epidemiology and the development of cluster detection methods remains

an active area of biostatistical and epidemiological research (210 ). A tool for describing

spatial variations in disease risk is using a relative risk surface (211–216 ) (i.e., the ra-

tio of estimated spatial density of cases to that of controls) to interpolate (predict) the

risk of disease across an area of interest. These approaches typically treat the observed

point locations of cases and controls as realizations of spatial Poisson processes. The

kernel-based estimation of relative risk by Kelsall & Diggle (211 , 212 ) is expanded to

include predictors because predicting risk solely on spatial interpolation is prone to sam-

pling bias effects and may predict low risk for areas with no data (20 ). Environmental

interpolation is an alternative approach to predict disease risk (19 ) because it incorpo-

rates the background heterogeneity of environmental variables into the prediction. The

spatial distribution of a species is an environmental interpolation using its ecological niche.

Spatial interpolation, the relative risk surface Consider two sets of n bivariate

mutually independent observations X1, X2, ..., Xn and Y1, Y2, ..., Yn drawn from unknown

spatial densities f and g, respectively, each arising as a partial realization of a Poisson

process at a location i across the study area. These observations are made in geographical

space and represent coordinates of disease-positive case (presence) and disease-negative
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control (absence) locations, respectively.

Using kernel smoothing, the unknown density surfaces f and g can be estimated by f̂

and ĝ, respectively, given by:

f̂(z) =
1

n

n∑
i=1

h−2
i K

(
z −Xi

hi

)

ĝ(z) =
1

n

n∑
i=1

h−2
i K

(
z − Yi
hi

)
,

where K is a kernel function and hi is the smoothing parameter (bandwidth) for the ith

observation. It is generally accepted that the choice of kernel function is not as critical

(217 ) as the value of the smoothing parameter so the kernel is typically a radially symmetric

probability density function (212 ). The smoothing parameter must be chosen more carefully

because its value can have a large effect on the resulting estimate and is discussed in further

detail below. Of note, the same smoothing parameter is used for both density surfaces of

cases and controls in order to provide a fair comparison for the log relative risk surface

(218 ). The relative risk surface (215 , 216 ) is calculated by:

ρ(z) =
f(z)

g(z)
,

but estimated nonparametrically by their respective kernel estimates. In practice, the esti-

mate is often stabilized by symmetrizing the two densities (211 , 212 ) and I define the log

relative risk surface as:

ρ̂(z) = ln

(
f̂(z)

ĝ(z)

)
.

The Grinnellian definition of an ecological niche (11 , 201 , 205 ) can be interpreted as

areas in “predictor space” (a.k.a., “environmental space” of n-dimension environmental pre-

dictors) that are more optimal for a species fitness than other areas, or relative clustering.

Of interest is the determination of where disease-positive case (presence) locations and

disease-negative control (absence) locations appear to be more clustered in the log relative

risk surface than expected under spatial constant risk. When identifying significantly differ-
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ent fluctuations in the log relative risk surface it is often desirable to discern whether or not

a given peak (or valley) in the estimated relative risk surface represents significantly height-

ened (lowered) risk or arises by random variation. Originally proposed by Kelsall & Diggle

(212 ) and expanded in Waller (218 ), this can be approached as a two-tailed hypothesis test

because areas with significantly high and low log relative risk are of interest.

H0 : ρ(z) = 0

HA : ρ(z) 6= 0

Pointwise significance levels can be calculated for the log relative risk surface ρ using

Monte Carlo (MC) permutations for fixed bandwidth risk surfaces comparing the observed

log relative risk surface to one corresponding to a null hypothesis of uniform risk (212 ). How-

ever, this approach is computationally expensive and prone to overestimating risk hotspots

in areas with little to no data (219 ). An alternative framework uses asymptotic normality

of a kernel density estimate (220 ) and asymptotic approximations for the variances of the

risk surfaces, which are then interpretable with respect to a standard normal distribution.

This framework is incorporated for risk surfaces (fixed: 219 ; adaptive: 221 ) and is both

computationally less expensive and more stable in areas with sparse data than the MC

method. Only local test statistics are calculated, because a good global test statistic with

an asymptotic normality framework is currently unavailable (see 219 , 221 , for more de-

tails). Here, two-tailed asymptotic tolerances are calculated at two significance levels (α =

0.05 & α = 0.01).

My proposed approach involves three steps: 1) data rearrangement and dimension re-

duction, 2) spatial cluster detection of the ecological niche within the principal component

predictor space, and 3) back-transformation and prediction of the detected ecological niche

in geographic space. First, instead of calculating relative clustering of cases and controls by

their geospatial positions, I calculate the relative clustering of cases and controls by their

position in a combination of predetermined principal components (i.e., instead of longitude

and latitude, arrange by PC1 and PC2). After rearranging case locations and control loca-

tions by their predictor values, I estimate the relative risk of cases and controls using the
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Kelsall & Diggle (211 , 212 ) method to determine areas of “predictor space” that are more

likely to observe a case versus more likely to observe a control. The relative risk clustering of

“cases” is the ecological niche of the disease in predictor space. All pixels in the geographic

study region correspond to locations in predictor space. Once the ecological niche of the

disease is identified by the clustering of high relative risk within predictor space, I identify

all pixels falling within the significantly elevated relative risk surface in predictor space

and back transform to their respective location in geographic space. The spatial clustering

in predictor space identifies all other areas where this ecological niche may be located in

geographic space (but may not have been previously monitored). This rearrangement is

possible because spatially-defined predictor data are available for areas for which prediction

is desired. After arranging the prediction data set by the same principal components used

to identify the ecological niche of a disease, the locations of the prediction data set that

fall within the relative clustering of cases are more likely to have the ecological conditions

for the disease than the locations of the prediction data set that fall within the relative

clustering of controls. My proposed approach is summarized in Figure 14.

I conduct model performance and statistical inference on the predicted spatial distri-

bution of plague in California. Predictive model performance is evaluated by n-fold cross-

validation. Controls are randomly undersampled to balance plague prevalence (0.5) of each

iteration. I calculate the average Area Under the Receiver Operating Characteristic Curve

(AUC) and a 95% confidence interval across iterations (222 ) as well as a precision-recall

curve (223 ) to evaluate the prediction. I draw statistical inference from the log relative

risk and significance level surfaces when predicted into geographic space by determining

associations between predicted values and the PRISM 30-year climate annual average nor-

mals across the study region. After values are resampled at each spatial pixel (i.e., grid

cell), I estimate smooth univariate trends using generalized additive models (224 ) for both

the predicted log relative risk and significance level values. Additionally, I compare the

difference in mean PRISM values between suitable and unsuitable habitat using two-tailed

Student’s t-tests.
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Important considerations There are two primary considerations for my proposed method.

First, choosing the smoothing parameter hi is a central issue for kernel density estimation

because it has a large influence on the estimation (225 ). The smoothing parameter (band-

width) controls how much averaging is occurring in predictor space. If the bandwidth is

small, the density estimator function will be under smoothed with high variability, but if

the bandwidth is large, the density estimator function will be over smoothed likely not rep-

resentative of the true pattern in the data. Finding an optimal bandwidth size is desirable

for kernel density estimation-based models. In predictor space, an ecological niche appears

as a convex shape (12 ). A smaller smoothing parameter is more likely able to detect small

changes in the shape (i.e., edges) of an ecological niche but creates a statistically uneven

surface that may lead to the main body of the ecological niche to be inaccurately detected.

On the contrary, a large smoothing parameter will detect the main body of the ecological

niche but will not be as precise around the edges.

My proposed method approaches this crucial issue in multiple ways. Cases and controls

may have differing sample sizes, especially for rare diseases where disease-negative controls

are observed in higher frequency than cases. However, the same smoothing parameter is

used for the density surfaces of cases and controls in order to avoid variations in the spatial

flexibility of the relative risk surface due solely to different levels of smoothness induced

by different bandwidths (211 , 212 , 218 ). The smoothing parameter can be fixed (211 ,

212 ) or adaptive (226 ) and can be chosen by expert judgment (statistical and ecological) or

computationally using various methods (211 , 212 , 227–229 ). Here, I use a fixed-bandwidth

kernel density estimator for the log relative risk surface with a smoothing parameter chosen

with the maximal smoothing principle (229 ). The utility of an adaptive-bandwidth kernel

density estimator for ecological niche modeling represents a promising area for future study.

Additionally, I conduct a sensitivity analysis comparing the smoothing parameter chosen

via the maximal smoothing principle (hi = 0.052 coefficient units) to a value half (0.026

coefficient units) and a value double (0.104 coefficient units) the chosen value.

Second, my proposed method adjusts for edge effects within the principal component

predictor space. First, I use an adjusted density estimator (212 , 230 ) to correct for edge

effects. Second, in predictor space, the spatial density surfaces for cases (f(z)) and controls
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(g(z)) extend beyond areas of predictor space where observations are located, area A. Here,

ratio of f(z) and g(z) is of interest only in the area A because the log relative risk surface

outside of area A tends to be distorted by edge effects. I use a conservative edge correction

that limits my analysis within the area A. More specifically, I calculate a concave hull

around the observed data in predictor space (area A) with a very small buffer (∼1/10

bandwidth) to include all observed data within the area A. Any relative risk estimates

outside of area A are labeled as “sparse data” and are translated to locations of the study

area presenting environmental conditions where no observation data are recorded. This

conservative method may exclude habitats around the edges of area A that may be in the

ecological niche of a disease.

3.3 Results

Statistically significant relative clustering of seronegative coyotes (controls; n = 7251) and

seropositive coyotes (cases; n = 704) by the CDPH (1983–2015) was detected using the

kernel-density estimation based approach in predictor space (bandwidth = 0.052 coefficient

units). The estimated intensity surfaces of cases and controls in predictor space appear in

Figure 15 and calculated asymptotic tolerances in Figure 16 reveal evidence of statistically

significant relative clustering of cases and controls.

Spatial interpolation of the estimated log relative risk (Figure 17) and significance level

surfaces (Figure 18) revealed spatial patterns of plague occurrence in California. Positive log

relative risk (cases) was predicted in the Sierra Nevada, Transverse Ranges, and Peninsular

Ranges as well as locations within the Klamath Mountains, Cascade Range, and Modoc

Plateau. Negative log relative risk (controls) was predicted in the Coastal Ranges, Central

Valley, and desert regions, including the Mojave, Sonoran, and Colorado Deserts. Sparse

data were available for a large portion of eastern California, especially the Basin and Range

regions, and coastal areas of the Channel Islands and Humboldt County as well as high

alpine zones of the Sierra Nevada. Areas my proposed method deemed too similar to

distinguish between plague-suitable habitat and plague-unsuitable habitat were predicted

in mountainous regions as well as the central coastline, the western Mojave Desert, and

regions of the Klamath Mountains(Figure 18). The prediction of log relative risk across
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California had an average Area Under the Receiver Operating Characteristic Curve (AUC)

of 0.846 (95% CI: 0.825–0.867) and an acceptable precision-recall curve after a 25-fold cross-

validation (Figure 19). Areas of California with sparse observation data were predicted when

my proposed method was expanded beyond the area of predictor space with observations

(Figure 20). After back-transformation, additional geographic areas of California with log

relative risk values (Figure 21) and significance level values (Figure 22) were predicted,

namely the eastern Sierra Nevada, Mojave Desert, and coastal regions. The model could

not predict into the Sonoran Desert and Death Valley.

The ecological niche in predictor space was generally the same across the three smoothing

parameters with a greater smoothing parameter value associated with a smoother surface

and a smaller smoothing parameter value with a more heterogeneous surface (Figure 23).

The average AUC of the log relative risk in California did not vary significantly across

the three smoothing parameters where all 95% confidence intervals contained the average

scores (Figure 25). However, an increase in the smoothing parameter corresponded to a

reduction in the areas predicted as insignificantly different between plague-suitable and

plague-unsuitable habitat as the smoothing parameter increased in value (Figure 24). The

Sierra Valley flipped from plague-unsuitable to plague-suitable habitat as the smoothing

parameter value increased.

Univariate relationships between the predictions and PRISM variables showed a strong

relationship with temperature variables. Positive log relative risk (cases) was associated

with lower temperatures (maximum, minimum, average, and dew point) while negative log

relative risk (controls) was associated with higher temperatures and extremely low temper-

atures (Figure 26). Precipitation had a cyclical relationship with the predicted log relative

risk. Lower temperatures were associated with statistically low significance level values

(p-value < 0.025) of the log relative risk surface (Figure 27). On average, the areas of Cal-

ifornia with a statistically low significance level value (p-value < 0.025) were about eight

degrees Celsius cooler, had about 125 millimeters more precipitation, and about seven hec-

topascal fewer maximum vapor pressure deficit than areas of California with a statistically

high significance level value (p-value > 0.975; Figure 28).
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3.4 Discussion

My results illustrate the value of the spatial nonparametric ENM for predicting the spatial

distribution of a zoonotic pathogen (Y. pestis) in an sentinel species across an endemic re-

gion. My proposed method accounted for spatial variations in sampling effort by the CDPH

by moderating the spatial patterns of case (presence) locations by the spatial patterns of

control (absence) locations within a predictor space of principal components of climate vari-

ables. After a thorough search of the relevant literature, this represents the first analysis

of the ecological niche of plague in coyotes using both case and control data. Presence-

only (case-only) ENMs have been employed to predict the spatial distribution of Y. pestis

in California by using plague-positive animals (including coyotes) (85 , 89 ), human plague

cases (70 ), and flea vectors without known infection status (86 ). Hoar and colleagues (116 )

conducted a spatial cluster analysis of plague-positive coyotes irrespective of climatic vari-

ables. None of these studies accounted for sampling effort, which was accounted for in the

present analysis by using control locations.

My results are in line with Holt and colleagues (89 ) who used plague-positive rodent

locations collected by the CDPH with a presence-only ENM where plague-suitable habitat

was predicted in the Sierra Nevada, Transverse Ranges, and Peninsular Ranges. However,

unlike Holt and colleagues (89 ), my results showed no statistically significant plague-suitable

habitat in the Southern Coast Ranges suggesting a potential limitation of using only coy-

otes to predict plague-suitable habitat. Sampling design affects wildlife disease surveillance

(159 ) and differences between these two analyses may be an artifact of the different sam-

pling design of rodents and coyotes – rodents are actively monitored in high consequence or

historically observed areas whereas coyotes are passively monitored in conjunction with live-

stock/wildlife damage management operations (108 ). My analysis also identified areas of

California with sparse observation data (e.g., Mojave Desert) and predicted plague-suitable

habitat in these areas. Holt and colleagues (89 ) neither identified these areas nor discussed

this data limitation in their analysis. Although these data-sparse locations were not fre-

quently predicted as plague-suitable habitat, the areas that were (e.g., Mono County) and

that have high human plague exposure risk (e.g., campsites) can be targets for additional

66



plague surveillance.

The relationship between climatic variables and the occurrence of Y. pestis predicted by

my proposed method in California is consistent with previous studies. The best candidate

models in the Holt and colleagues (89 ) analysis contained two temperature variables (max-

imum temperature of warmest month and temperature annual range). Plague outbreaks

in animals (57 , 149 , 231 ) and humans (60 , 62 ) have been linked to milder temperatures

associated with lower winter rodent mortality (232 ), higher flea vector survivorship (63 ),

and higher flea transmission rate (81 , 82 ). Positive log relative risk values predicted across

California with my proposed method were associated with milder temperatures. Addition-

ally, low local significance level values (i.e., plague-suitable habitat) were associated with

milder temperatures variable values (about 8°Celsius lower on average across the state) and

high local significance level values (i.e., plague-unsuitable habitat) were associated with

high temperatures. Precipitation has a more complex and temporally varying relationship

with plague (58–60 , 64 ) likely by influencing the reproductive rate of rodent hosts (232–

235 ). Results revealed a sinusoidal pattern between the predicted log relative risk values

and precipitation across California where many precipitation values were associated with

a positive log relative risk value, although no precipitation value was associated with low

significance level values (plague-suitable habitat). In addition, high local p-values (i.e.,

plague-unsuitable habitat) were associated with extreme values of precipitation, especially

in exceedingly dry climates (i.e., deserts). However, the average precipitation variable and

the cross-sectional design was not designed to detect the annual or inter-annual precipitation

variations associated with plague occurrence.

A nonparametric modeling approach is attractive in order to capture the nonlinear, com-

plex relationships between disease occurrence and environmental variables (207 ). This is

the first adaptation of a log relative risk function within the predictor space of a NPMR.

NPMR has been used as an ENM (208 , 236 ), but this is the first application of the Kel-

sall & Diggle (211 , 212 ) method as an ENM. One main advance of this method is that the

output is more readily interpretable than presence-only species distribution models. For ex-

ample, the “logistic” output in MaxEnt (237 ), a common presence-only species distribution

model, requires major assumptions to predict the probability of presence in a study region
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(238 , 239 ) whereas the relative risk output from my proposed method does not require

the same questionable assumptions. Another advance is the identification of statistically

significant areas of predictor space (i.e., suitable and unsuitable habitat), which is selected

via statistical inference rather than by an ad hoc selection of commission error cutoff. My

proposed method is flexible, but conservative for areas of sparse data. Additionally, the

predictions are robust as evident by cross-validation and a sensitivity analysis of the choice

of smoothing parameter value. The cross-validation statistics are also within range of the

training-test split cross-validation employed by Holt and colleagues (89 ). My proposed

method requires few computational resources, which when paired with a large sample size

(using both case and control data) allowed for k-fold cross-validation even for the relatively

large environmental data set of 16 km2 pixels across the state of California. Methods using

both case and control data can account for sampling effort in the predictions (161 ), which

addresses a major criticism of presence-only ENMs (240–242 ).

There are notable limitations to my proposed method, and it remains under development

and evaluation. My proposed method is flexible for and sensitive to the choice of environ-

mental variables used in my analysis. While this is not unique to the method (243 ), it is

important to choose biologically relevant variables that are standardized. Multicollinearity

of climatic variables is a common concern for ENMs as well as for my proposed method. Be-

cause my proposed method is designed for a two-dimensional predictor space, a dimension

reduction technique (i.e., PCA) is employed instead of choosing two PRISM variables. My

proposed method is limited to two variables (dimensions), but nonparametric multiplicative

regression methods can be easily extended to many dimensions (208 ) and future studies

can extend this method to more than two dimensions for applications in which more than

two variables are necessary. Lastly, the log relative risk function is a pairwise comparison

of case and control data; therefore, my proposed method cannot compare more than two

groups. For analyses that assess ecological niche overlap between more than two groups

(e.g., three or more species), further extension is required.

There were notable limitations for the plague prediction results. The analyses are a

cross-sectional study design to predict the spatial distribution of endemic plague in Cal-

ifornia. These predictions used 30-year climate annual averages to account for climate
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variability across recent time (1981–2010). Here, only abiotic climate variables were used

for the analyses. Disease transmission and ecological niches are likely limited by both biotic

and abiotic factors (20 ). Past studies of plague in California have primarily focused on

climatic variables (85 , 89 ), but future studies could incorporate biotic variables into the

principal component analysis. Coyote ecology and immunological response to Y. pestis add

uncertainty around the location of disease exposure. The exact location and time of plague

exposure by an individual coyote is not discernible because of the large home range size

of coyotes (144 , 145 ) and laboratory testing of plague relies on antibodies that may be

lifelong and not from a recent plague exposure. Indeed, evidence suggests that coyotes can

maintain low levels of plague antibodies for long periods (146 ). Future studies can assess

the effect of this type of uncertainty on the ecological niche of plague in coyotes.

Predicting the spatial distribution of plague solely relying on coyote observations is not

recommended because of the problem of scale (244 ) in ecological analyses (Panel 5). The

scale of the pathogen within a host, scale of the flea vector, scale of the transmission between

hosts, scale of the coyote host behavior, scale of the habitat, scale of surveillance, and scale

of the environmental variables in my analysis are not commonly aligned. Further, ENMs

translate from geographic space to predictor space and back to geographic space, so the

scale of the ecological niche and the spatial distribution of a disease are likely dissimilar.

Plague transmission occurs in close proximity and likely happens within a 2.5 arcminute

pixel of the principal components, but because a coyote can range larger than the size of a

pixel, a coyote can be exposed to Y. pestis in one pixel but be observed in another. This is

problematic in areas where neighboring pixel values (and habitat) are dissimilar because a

plague occurrence would be observed in the incorrect grid cell for the ENM analysis.

One area of California can demonstrate the problem of scale for coyote plague surveil-

lance: the Sierra Valley in Plumas and Sierra counties. The Sierra Valley is surrounded by

mountains ranging up to 1 kilometer higher than the valley floor and thus have different

climates. Coyote plague surveillance was conducted frequently in the agricultural areas

of the valley floor where livestock damage management was conducted by WS. Seroposi-

tive coyotes were likely exposed to Y. pestis in the mountainous regions but were observed

by CDPH surveillance on the valley floor. The mountainous regions have a climate that
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matches other areas of the state with observed seropositive coyotes. The habitat of the val-

ley floor is similar enough to the habitat of the surrounding mountainous regions that my

proposed approach with a large smoothing parameter predicted the valley floor is plague-

suitable habitat, but as the edges of the ecological niche were more refined with a smaller

smoothing parameter a model predicted the valley floor was not plague-suitable habitat.

Additional rodent plague surveillance is warranted in this area to confirm plague absence

in the Sierra Valley because rodents are more localized within a pixel of my proposed anal-

ysis and can provide a more precise measurement of plague occurrence. Similarly, areas

to target rodent plague surveillance are zones my proposed method could not distinguish

between plague-suitable habitat or plague-unsuitable habitat. Further investigation of the

problem of scale is favorable to more precisely identify high risk areas of Y. pestis exposure.

There are further enhancements for my proposed method that are of future interest.

First, while my analysis is limited to a fixed-bandwidth kernel density estimator for the

log relative risk surface, the utility of adaptive-bandwidth kernel density estimators is of

interest as well. A sensitivity analysis of the smoothing parameter revealed the prediction

using a fixed bandwidth was robust. A fixed bandwidth can perform poorly with highly

spatially heterogeneous observations which an adaptive bandwidth can overcome (226 ), but

this is yet to be tested in predictor space on estimating an ecological niche. Second, sample

size considerations have not been examined here and future sensitivity analyses could assess

the robustness of the predictions based on sample size. Third, investigations on how and

where an ecological niche may change or shift through time, especially in the face of global

climate change, is a foundation of biogeography (245 , 246 ). Spatio-temporal log relative

risk estimation is available in geographic space and its application in predictor space is an

attractive avenue of investigation.

Effective zoonotic disease surveillance relies on rich data from observational studies and

laboratory analyses. This chapter provides an additional ecological niche modeling approach

for analysis in circumstances where the researcher has both case (presence) and control (ab-

sence) data available. The present study was conducted in collaboration with the CDPH

and the predicted spatial distribution of endemic plague in California will have immedi-

ate impact on state-wide plague surveillance. The predictions can inform ongoing rodent
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surveillance locations, better define future coyote-based plague surveillance decisions, and

identify a seropositive coyote that may have ranged into plague-unsuitable habitat areas.

Extensions to my proposed method to allow for the different sampling intensities associated

with other species (i.e., rodents) remains of interest. My proposed method also has poten-

tial to fill gaps in spatially heterogeneous sampling of other diseases collected by large-scale

administrative surveillance systems.

My proposed method is extended and applied to two large data settings: the state

of California (Chapter 4) and the western United States (Chapter 5). The basic structure

defined and assessed generally above is used to customize analyses for both of these chapters.

In Chapter 4, I use my proposed method to assess how the predicted ecological niche of

Y. pestis in coyotes is affected by a type of data uncertainty. In Chapter 5, I use my

proposed method to predict where the ecological niche of Y. pestis in coyotes is located

in the western United States while accounting for sampling effort by coyote-based plague

surveillance agencies. While not directly used in Chapter 6, I examine if the predicted

spatial distribution of enzootic plague from Chapter 5 explains where human plague cases

have occurred in the United States (1950–2017) in Chapter 6.
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3.6 Appendices

3.6.1 Appendix A: Panels

Panel 4: Definition of key terms
The following are definitions used for key terms in this chapters:

Ecological niche model: A type of statistical method that estimates the distribution of a species in a space
comprised of environmental dimensions. The spatial distribution of an estimated niche can then be
predicted in geographic space. See (12 , 247 ).

Enzootic: Period of low incidence, but maintenance, of a disease in an animal population.

Epizootic: Period of high incidence of a disease in an animal population.

Fundamental ecological niche: The response of a species to the combination of abiotic conditions (201 ).

Geographic space: Area relative to its position on earth (i.e., longitude and latitude).

Habitat: The combination of environmental characteristics that describe a particular location (199 ).

Predictor space: Area relative to its position among dimensions of variables. If the dimensions are
environmental variables, this can be referred to as “environmental space.”

Realized ecological niche: The response of a species to a combination of abiotic and biotic conditions (201 ).

Suitable habitat: Area in which a species (or disease) can potentially or does occur.

Sylvatic: The occurrence and transmission of a disease within wildlife populations.

Unsuitable habitat: Area in which a species (or disease) can not potentially or does not occur.

Zoonotic: The occurrence and transmission of a disease from animal populations to human populations.
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Panel 5: Considerations for coyotes as a sentinel species for plague activity
Coyotes (Canis latrans) have been used as a sentinel species of plague (Yersinia pestis) activity in rodent
populations of North America (95 , 112–116 ), but there are limitations for focusing on coyote-based plague
surveillance data. I outline some notable limitations below:

• Coyotes are a wide-ranging species (144 , 145 , 171 ) and effectively sample a broad variety of habitats in
which plague occurs and thus sample a considerable extent of the ecological niche of plague (85 ). However,
coyotes are not observed homogeneously across North America (Chapter 5) and other species may be
better indicators of plague activity in some habitats (e.g., rodent species for alpine regions of California).
Therefore, without rodent data, I am estimating a the fundamental ecological niche of plague in coyotes,
which I am considering as an approximation for the entire fundamental ecological niche of plague.

• The location where an individual coyote was truly exposed to Y. pestis is unknown and challenging to
discern (91 , 117 ). Coyotes are mobile, encountering many rodents across their expansive individual home
range (144 , 145 , 184 ) and whose plague antibodies can last for many months (91 , 112 , 118 ). Reinfection
of coyotes is also probable and so a coyote can only indicate its most recent plague exposure. Rodent
species have smaller individual home range sizes (185 ) and are the gold standard indicator of current or
recent plague activity (108 ).

• Coyote specimens are not collected evenly across the United States and instead are collected
opportunistically (107 ). Coyotes tested for plague exposure are primarily collected in conjunction with
ongoing livestock/wildlife damage management operations conducted by the U.S. Department of
Agriculture Animal and Plant Health Inspection Service Wildlife Services. Agricultural and urban areas
may be more sampled for plague than other land-use types and their respective habitats. Including other
species monitored for plague activity may help overcome this potential spatial sampling effort bias.
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3.6.2 Appendix B: Tables

Table 6: Oregon State University Parameter elevation Regression on Independent Slopes Model
(PRISM) 30-Year Average Annual Normals (1981–2010). Modeled using a combination of a digital
elevation model (DEM) and climatologically-aided interpolation (CAI)*. Variables were modeled
at 30 arcseconds (∼800 m) resolution and aggregated to 2.5 arcminutes (∼4 km). See (125 ) for
more details. .

Variable Units Derivation

Precipitation millimeters (mm) Modeled; Summing monthly averages (rain + melted
snow)

Maximum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Temperature °Celsius (°C) Derived; Average of Maximum Temperature and
Minimum Temperature

Minimum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Dewpoint Temperature °Celsius (°C) Modeled; CAI used minimum temperature as the
predictor grid

Maximum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
maximum temperature as the predictor grids

Minimum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
minimum temperature as the predictor grids

*Accuracy of these data is based on the original specification of the Defense Mapping Agency one-degree DEMs.
The stated accuracy of the original DEMs is 130-meter circular error with 90% probability. Data sets use all
weather stations, regardless of time of observation.
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Table 7: Summary of principal component analysis of Oregon State University Parameter elevation
Regression on Independent Slopes Model (PRISM) 30-Year Average Annual Normals (1981–2010)
at a 2.5 arcminute (∼4 km) resolution. Variables were range standardized using the Gower metric
(197 ).

Statistic Variable Principal Component
PC1 PC2 PC3

Standard Deviation 0.326 0.170 0.058
Proportion of Variance 0.756 0.205 0.024
Cumulative Proportion of Variance 0.756 0.962 0.985
Loadings Precipitation 0.063 0.342 0.549

Maximum Temperature 0.485 -0.208 -0.290
Mean Temperature 0.519 -0.064 0.015

Minimum Temperature 0.477 0.088 0.314
Mean Dewpoint Temperature 0.446 0.532 -0.101

Maximum Vapor Pressure Deficit 0.243 -0.533 -0.229
Minimum Vapor Pressure Deficit 0.073 -0.510 0.673
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3.6.3 Appendix C: Figures

Figure 11: Data layers of proposed method and their sources. Data are structured as point
locations and raster grids. Data layers (grey color) are used as inputs for the proposed method to
predict the spatial distribution of Yersinia pestis in California (black color). The arrow represents
the layers involved for the predicted layer.
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(a) (b)

Figure 12: (a) Number of coyotes tested by California Department of Public Health (CDPH)
for antibodies against Yersinia pestis (1983–2015). Sampling is heterogeneous across the state of
California, primarily in historic plague endemic areas and areas of high concern. Limited sampling
in the Mojave and Sonoran Deserts. (b) Results of coyotes tested by the CDPH for antibodies
against Yersinia pestis (1983–2015). A coyote with plague antibodies was not observed in every
county sampled. Only 2% of observations were unable to be geolocated and ignored in subsequent
analysis.
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Figure 13: First two principal components of a principal component analysis of Oregon State
University Parameter Elevation Regression on Independent Slopes Model 30-year average annual
normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the Western United States and
presented for California. Variables were range standardized using the Gower metric (197 ).
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Figure 14: Ecological niche modeling approach adapting the Kelsall & Diggle (211 , 212 ) method
into a non-parametric multiplicative regression (208 , 209 ). The Kelsall & Diggle (211 , 212 ) method
is employed in “predictor space” instead of geographic space (i.e., latitude and longitude) to detect
statistically significant clustering of environmental variables for cases and control information. The
significant clusters of cases (i.e., ecological niche of disease) can be back-transformed to geographic
space to identify areas that have similar environmental values within the significant clusters – a
version of environmental interpolation (19 ).
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Figure 15: Estimated intensity surface in predictor space of coyotes that tested negative for plague
antibodies (controls) and tested positive for plague antibodies (cases) by the California Department
of Public Health (CDPH; 1983–2015). Predictor space is comprised of the first two principal com-
ponents of a principal component analysis of seven range-standardized (197 ) Oregon State Univer-
sity Parameter Elevation Regression on Independent Slopes Model 30-year average annual normals
(1981–2010) at a 2.5 arcminute (∼4 km) resolution of the Western United States. The bandwidth
(0.052 coefficient units) was chosen using the maximal smoothing principle (229 ). The dashed grey
line is the entire extent of predictor space of California and the solid grey line is the extent of pre-
dictor space that CDPH has sampled with coyote specimens. The area outside of the solid grey line
is habitat that has not been sampled by CDPH.
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Figure 16: Estimated log relative risk surface in predictor space of coyotes comparing areas that
tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (CDPH; 1983–2015) using the proposed method.
Calculated asymptotic tolerances at given two-tailed significance levels (α = 0.05 & α = 0.01) are
included (219 , 221 ). Color pertains to log relative risk values where positive log relative risk (more
likely cases) are in red and negative log relative risk (more likely controls) with greyer coloring
closer to the null log relative risk value (zero). Predictor space is comprised of the first two princi-
pal components of a principal component analysis of seven range-standardized (197 ) Oregon State
University Parameter Elevation Regression on Independent Slopes Model 30-year average annual
normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the Western United States. The
bandwidth (0.052 coefficient units) was chosen using the maximal smoothing principle (229 ). The
dashed grey line is the entire extent of predictor space of California and the thin solid black line is
the extent of predictor space that CDPH has sampled with coyote specimens. The area outside of
the solid grey line is habitat that has not been sampled by CDPH.
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Figure 17: Areas of California predicted with log relative risk surface in predictor space of coyotes
that tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (CDPH; 1983–2015) using the proposed method.
Color pertains to log relative risk values where positive log relative risk (more likely suitable habitat
for plague transmission) are in red and negative log relative risk (more likely unsuitable habitat for
plague transmission) with greyer coloring closer to the null log relative risk value (zero). The areas
in yellow correspond to habitat that was not sampled by CDPH.
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Figure 18: Areas of California predicted with log relative risk surface in predictor space of coyotes
that tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (CDPH; 1983–2015) using the proposed method.
Color pertains to calculated asymptotic tolerances (219 , 221 ) at given two-tailed significance levels
(α = 0.05 & α = 0.01). Warmer-colored areas are more likely suitable habitat for plague transmission
and cooler-colored areas are more likely unsuitable habitat for plague transmission with greyer-
colored areas statistically indistinguishable. The areas in yellow correspond to habitat that was not
sampled by CDPH.
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Figure 19: Results of 25-fold cross-validation of the estimated log relative risk surface in predictor
space of coyotes that tested negative for plague antibodies (controls) and tested positive for plague
antibodies (cases) by the California Department of Public Health (1983–2015) using my proposed
method. Iterations were balanced (prevalence = 0.5) by randomly undersampling control locations
used for in each fold for cross-validation. Results are robust with a high average Area Under the
Receiver Operating Characteristic Curve (AUC) of 0.846 (95% CI: 0.825–0.867) and an acceptable
precision-recall curve.
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Figure 20: Estimated log relative risk surface in predictor space of coyotes comparing areas that
tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases) by
the California Department of Public Health (CDPH; 1983–2015) using the proposed method. The
log relative risk surface was predicted into habitat of California that was not sampled by CDPH.
Calculated asymptotic tolerances at given two-tailed significance levels (α = 0.05 & α = 0.01) are
included (219 , 221 ). Color pertains to log relative risk values where positive log relative risk (more
likely cases) are in red and negative log relative risk (more likely controls) with greyer coloring
closer to the null log relative risk value (zero). The areas in yellow coloring correspond to habitat
with sparse data and statistically dissimilar from sampled habitat. Predictor space is comprised of
the first two principal components of a principal component analysis of seven range-standardized
(197 ) Oregon State University Parameter Elevation Regression on Independent Slopes Model 30-
year average annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the Western
United States. The bandwidth (0.052 coefficient units) was chosen using the maximal smoothing
principle (229 ). The dashed grey line is the entire extent of predictor space of California and the
thin solid black line is the extent of predictor space that CDPH has sampled with coyote specimens.
The area outside of the solid grey line is habitat that has not been sampled by CDPH.
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Figure 22: Areas of California predicted with log relative risk surface in predictor space of coyotes
that tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (CDPH; 1983–2015) using the proposed method. The
prediction was extended to areas of California that CDPH had not been previously sampled. Color
pertains to calculated asymptotic tolerances (219 , 221 ) at given two-tailed significance levels (α =
0.05 & α = 0.01). Warmer-colored areas are more likely suitable habitat for plague transmission and
cooler-colored areas are more likely unsuitable habitat for plague transmission with greyer-colored
areas statistically indistinguishable. The areas in yellow coloring correspond to habitat with sparse
data and statistically dissimilar from sampled habitat.
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Figure 23: Comparison of bandwidth selection on the log relative risk surface in predictor space of
coyotes that tested negative for plague antibodies (controls) and tested positive for plague antibod-
ies (cases) by the California Department of Public Health (1983–2015) using the proposed method.
Predictor space was comprised of the first two principal components (PC1 & PC2) of a principal
component analysis of seven range-standardized (197 ) Oregon State University Parameter Elevation
Regression on Independent Slopes Model 30-year average annual normals (1981-2010) at a 2.5 ar-
cminute (∼4 km) resolution of the Western United States. Choice of bandwidth is highly influential
of the log relative risk surface with larger bandwidths smoothing the log relative risk surface, which
reduces the detection of local maximums (minimums), but smaller bandwidths cannot estimate the
log relative risk surface in areas with sparse data.
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Figure 24: Comparison of bandwidth selection on the predicted area of California with a log rel-
ative risk surface in predictor space of coyotes that tested negative for plague antibodies (controls)
and tested positive for plague antibodies (cases) by the California Department of Public Health
(1983–2015) using the proposed method. Color pertains to calculated asymptotic tolerances (219 ,
221 ) at given two-tailed significance levels (α = 0.05 & α = 0.01). Warmer-colored areas are more
likely suitable habitat for plague transmission and cooler-colored areas are more likely unsuitable
habitat for plague transmission with greyer-colored areas statistically indistinguishable. The areas
in yellow coloring correspond to habitat with sparse data. The prediction is robust across band-
width selection with a notable reduction in habitats the log relative risk surface cannot statistically
distinguish as suitable (unsuitable) for plague transmission. The Sierra Valley changes designation
with choice of bandwidth suggesting rodent plague surveillance is required in this area and not rely
solely on coyote plague surveillance.
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Figure 25: Results of 25-fold cross-validation of a bandwidth selection comparison for the log
relative risk surface in predictor space of coyotes that tested negative for plague antibodies (controls)
and tested positive for plague antibodies (cases) by the California Department of Public Health
(1983–2015) using the proposed method. Iterations were balanced (prevalence = 0.5) by randomly
undersampling control locations used for in each fold for cross-validation. The prediction is robust
across bandwidth selection with similar Area Under the Receiver Operating Characteristic Curve
(AUC) across bandwidths.
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Figure 26: Univariate associations between each Oregon State University Parameter Elevation
Regression on Independent Slopes Model 30-year average annual normal variable (1981–2010) at a
2.5 arcminute (∼4 km) resolution and the predicted log relative risk value for California. Values were
resampled from each grid cell in California and a smoothed generalized additive model (224 ) trend
was estimated (red-colored) with a 95% confidence interval (blue-colored). The null log relative
risk value (zero) is included as a black dashed line for reference with trend values above the null
value suggest plague-suitable conditions while trend values below the null value suggest plague-
unsuitable conditions. Beyond a cyclical pattern of precipitation, plague-suitable habitat appears to
be associated with cooler temperatures (average annual maximum, minimum and mean temperature
as well as dew point temperature) and mid-range vapor pressure deficit values (i.e., not too dry and
not too humid).
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Figure 27: Univariate associations between each Oregon State University Parameter Elevation
Regression on Independent Slopes Model 30-year average annual normal variable (1981–2010) at a
2.5 arcminute (∼4 km) resolution and the predicted two-tailed asymptotic p-values (219 , 221 ) of
the log relative risk surface for California. Values were resampled from each grid cell in California
and a smoothed generalized additive model (224 ) trend was estimated (red-colored) with a 95%
confidence interval (blue-colored). The two-tailed 95% significance levels are included as a black
dashed line for reference with trend values below the lower significance level value (0.025) value
suggest plague-suitable conditions while trend values above the upper significance level value (0.975)
value suggest plague-unsuitable conditions. Plague-suitable habitat appears to be associated with
cooler temperatures (average annual maximum, minimum and mean temperature as well as dew
point temperature), but not cold temperatures. Plague-unsuitable habitat appears to be associated
with higher average annual temperature values as well as precipitation and humidity values at both
extremes, but not as strong of an association as the temperature variables.

97



0 1000 2000 3000 4000

0.
00

00
0.

00
10

Difference in means 115.70 (0.95 CI: 100.67 - 130.72)

precipitation (millimeter)

de
ns

ity

5 10 15 20 25 30

0.
00

0.
15

0.
30

Difference in means 7.86 (0.95 CI: 7.78 - 7.94)

temperature maximum (degrees Celsius)

de
ns

ity

0 5 10 15 20 25

0.
00

0.
15

0.
30

Difference in means 7.81 (0.95 CI: 7.74 - 7.88)

temperature mean (degrees Celsius)

de
ns

ity

-5 0 5 10 15

0.
00

0.
15

0.
30

Difference in means 7.76 (0.95 CI: 7.69 - 7.84)

temperature minimum (degrees Celsius)

de
ns

ity

-10 -5 0 5 10

0.
00

0.
15

0.
30

Difference in means 7.62 (0.95 CI: 7.56 - 7.69)

dew point temperature (degrees Celsius)

de
ns

ity

0 10 20 30 40

0.
00

0.
15

Difference in means 7.05 (0.95 CI: 6.92 - 7.18)

maximum vapor pressure deficit (hectopascal)

de
ns

ity

0 5 10

0.
0

0.
2

0.
4

Difference in means 1.13 (0.95 CI: 1.08 - 1.18)

minimum vapor pressure deficit (hectopascal)

de
ns

ity

plague-suitable habitat
plague-unsuitable habitat
all habitat (reference)

Figure 28: Univariate densities of areas in California predicted plague-suitable and plague-
unsuitable with accompanying t-test difference in mean calculations. Plague-suitable habitat is
defined as areas with a predicted asymptotic p-value (219 , 221 ) of the log relative risk surface below
the two-tailed 0.95 significance level value (red-colored). Plague-unsuitable habitat is defined as areas
with a predicted asymptotic p-value (219 , 221 ) of the log relative risk surface above the two-tailed
0.95 significance level value (blue-colored). Values were resampled from each grid cell in California.
All areas of California (black-colored) are provided for reference. All environmental variables had
a statistically significant (two-tailed t-test α = 0.05) difference in means between plague-suitable
and plague-unsuitable habitat. Plague-suitable habitat appears to be, on average, associated with
more precipitation, cooler temperatures, and more humid conditions than plague-unsuitable habitat
across California.
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4 Monte Carlo assessment of the effect of positional uncer-
tainty in animal-based plague surveillance: A case study
in California, U.S.A.

“Thus we never see the true state of our condition till it is illustrated to us by its
contraries, nor know how to value what we enjoy, but by the want of it.”

- Robinson Crusoe in The Life and Adventures of Robinson Crusoe
by Daniel Defoe (248 )

4.1 Introduction

Knowledge of locations of animal hosts that can act as potential sources of disease may

enhance zoonotic disease surveillance by identifying areas of potential human contact and

exposure. Effective surveillance for diseases in wildlife relies on rich data from observational

studies, but a common problem with these data is any uncertainty about where sampling

occurred. Uncertainty can arise from error associated with data collection, collation, and

digitization (249 ). Positional uncertainty in the sampling location of a specimen can also

arise during the process of geocoding whereby textual descriptions of locations recorded

in the field are interpreted retrospectively as an XY coordinate pair that may differ sub-

stantially from the true sampling location (250 ). During geocoding, positional uncertainty

can occur for many reasons including, for example, nonspecific textual information (i.e.,

named places with large geographical extents), mistakes during data digitization, or poor

reference data (251 , 252 ). No consensus has been reached about the degree to which po-

sitional uncertainty affects biogeographical analyses. Ecological niche models (ENMs) and

species distribution models (SDMs) are common tools in biogeography used to predict the

spatial distribution of a species by associating species occurrences and environmental vari-

ables (12 ). Some studies have found that positional uncertainty has a substantial impact

on ENM predictions and performance (250 , 253–257 ). Other studies found that the im-

pact was negligible or was mediated by other ecological factors or statistical artifacts (249 ,

258–262 ).

In the present study, positional uncertainty in sampling location is defined as the discrep-

ancy between the true sampling location and geocoded sampling location based on textual
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descriptions from field collections. In an ecological niche modeling framework, positional

uncertainty in sampling location manifests as covariate misclassification because the asso-

ciations between presences (cases) and absences (controls) are dependent on the associated

covariates in the analysis. In the research setting defined in the preceding chapters, variation

in an observation’s geocoded sampling location can result in an observation being assigned

different climate covariate values than those associated with the true sampling location if

the two locations are positioned in different raster cells (251 , 263 ). In geographic space,

this error can be represented as an area of uncertainty with the geocoded sampling location

at its center (Figure 29). Translated into predictor space, the degree of this error can vary

from negligible to substantial dependent on the spatial autocorrelation of predictor values

(Figure 29). The impact of positional uncertainty in sampling location on ENM predictions

is likely greater in a pixel with a spatial neighborhood (i.e., the queen first-order surround-

ing pixels) with heterogeneous environmental variables (e.g., Sierra Nevada) than in areas

with homogeneous environmental variables (e.g., Central Valley, California; 253 , 254 , 263 ).

Positional uncertainty in sampling location can be detected and quantified using various

techniques. Data cleaning methods can identify observations with positional uncertainty

resulting from erroneous digitization (264 ). During the geocoding process, the positional

uncertainty of each sampling location can be quantified and then used to categorize ob-

servations by their degree of error (252 ). Once categorized, some studies omitted highly

uncertain observations from ENM analysis (252 , 265 ), but this practice can lead to small

sample sizes that in turn can reduce model performance and introduce statistical bias into

the analysis (249 , 266–268 ). Other techniques used a Monte Carlo simulation framework

that perturbs XY coordinate pairs by defined probability densities based on an understand-

ing of the spatial nature of the error (269 ). Variation in results based on the perturbed

data sets provides assessments of the impact of positional uncertainty on predictions (253 ,

254 ). However, errors in spatial data sets, including positional uncertainty, often cannot be

characterized by a single accuracy metric because they are dependent on the spatial scale

of analysis (i.e., more variation when pixels become smaller; 270 ).

While the impact of positional uncertainty in sampling location has been compared for

ENMs using real and simulated species occurrence data (249 , 253 , 254 , 259 ), the present
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study aims to assess its impact on the proposed ENM method developed in Chapter 3 for a

zoonotic disease. The proposed method uses case (presence) and control (absence) locations

of coyotes (Canis latrans Say, 1823) tested for antibodies against Yersinia pestis, a gram-

negative bacterium that causes plague. While human cases are rare in the United States,

humans are highly susceptible to Y. pestis infection and can experience severe symptoms

(33 ). The most common route of transmission of Y. pestis to humans in the United States

is via the bite of an infected rodent flea (33 ) and human plague cases are frequently linked

to recent or ongoing epizootics (i.e., disease outbreaks in animal populations; 57 ). Plague

surveillance systems in the United States commonly monitor rodents and rodent predators,

namely coyotes, to detect regions where plague is active or recently cycling (107 ). Coyotes

are not a reservoir host but function as a wide-ranging sentinel species for plague activity

because coyotes are mobile rodent predators that tolerate a Y. pestis infection and maintain

long-lasting antibodies (91 , 109 , 112 , 118 , 146 , and see Panel 6). This leads to another

source of positional uncertainty. The plague exposure location for an individual coyote

(Figure 29) is largely unknown and likely different from the sampling location, which can

lead to misclassification error in covariate values. However, I do not address this source

of error in the present analysis and assume the exposure location and sampling location of

each coyote are the same.

Here, I assess the effect of the positional uncertainty in sampling location on the predic-

tion of the ecological niche and spatial distribution of enzootic plague in California using

coyotes tested for Y. pestis exposure. Enzootic plague foci are areas where a sylvatic cycle

(i.e., rodent-to-rodent transmission) is persistently maintaining Y. pestis in the environment

at low-levels (31 ). Some reported coyote locations are more precise than others, especially

locations with nonspecific textual information or older observations without readily avail-

able Global Positioning System technology. I chose to assess this level of uncertainty in

sampling location by categorizing coyotes by their level of positional uncertainty in sam-

pling location using an adaptation of Wieczorek and colleagues (252 ) guidelines. The effect

of positional uncertainty in sampling location on estimates of the ecological niche of plague

in coyotes is tested by stratifying the analysis this categorization as well as perturbing

each coyote by the size of their positional uncertainty in a Monte Carlo simulation based
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analysis (Figure 30). My approach assesses a source of data uncertainty that is of concern

to a state-level plague surveillance system and demonstrates that positional uncertainty of

coyote sampling locations may have spatially varying impact on my prediction of the spatial

distribution of enzootic plague.

4.2 Data and methods

4.2.1 Surveillance data and classification of positional uncertainty

The California Department of Public Health (CDPH) Vector-Borne Disease Section has

digitized coyote-based plague surveillance data across California beginning in 1983. The

CDPH conducts passive surveillance of coyotes as sentinels for rodent plague activity to fill

surveillance gaps in in regions of California having fewer resources as well as corroborate

regional increases in plague activity indicated by rodent plague surveillance data (108 ).

The CDPH tests coyote specimens for plague in conjunction with the U.S. Department

of Agriculture Animal and Plant Health Inspection Service Wildlife Services depredation

operations in predominantly agricultural/rural areas of suspected plague risk (i.e., plague

enzootic regions) (107 ). If a direct florescent antibody test (182 , 183 ) concluded the

presence of Y. pestis antibodies (seropositive), a coyote was considered a case, and if the

test concluded the absence of Y. pestis antibodies (seronegative), a coyote was considered

a control. Between 1983 and 2015, the CDPH screened 8,119 coyote blood samples for Y.

pestis antibodies.

The precise sampling location was not recorded for the vast majority of coyote obser-

vations. I geocoded specimens without geographic coordinates using location descriptions

provided by the collector, county data, and base maps. For example (toy examples), some

coyotes were sampled near roads some distance from a nearby town (i.e., “U.S. Interstate

- 5, 2 miles south of Redding, CA”) or sampled on private property described by a certain

distance away from a town with a cardinal heading (i.e., “5 miles northwest of Redding,

CA”) or sampled at exact addresses (i.e., a U.S. Forest Service campground). I was unable

to locate two percent of tested coyotes (n = 164 total; n = 1 case) below the county-level

and I ignore these specimens in my analysis. Of the 7,955 coyotes with geolocation informa-
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tion, about 8.8% (n = 704 total) were seropositive. Figure 31a presents county-level CDPH

coyote sampling and Figure 31b the counties with at least one coyote observed with plague

antibodies (data are presented at the county-level to protect landowner privacy).

To assess the impact of uncertainty in recorded geolocation of coyote observations on the

prediction of the spatial distribution of enzootic Y. pestis, each coyote is categorized by my

confidence level in identifying its described sampling location (“Geocode Confidence Level”

or GCL; Table 8). Reference towns varied by size and distances varied. Greater uncertainty

is introduced with larger distances and the increasing size of the reference points (e.g.,

campground, small town, large city) recorded by collectors. Therefore, I developed the

criteria in Table 9 to estimate the degree of positional uncertainty in sampling location

of each coyote. These criteria are an adaptation of guidelines developed by Wieczorek

and colleagues (252 ). Instead of a continuous metric of sampling uncertainty, I categorize

coyotes based on the environmental data used in the analysis (2.5 arcminutes) because the

analysis is conducted in predictor space and the positional uncertainty in sampling location

here is a type of mismatch error of assigning the incorrect PC values to a coyote (see 251 ,

263 ). If the uncertainty around the sampling location of a coyote fell within a ∼ 12.5 km2

area (or within one PRISM raster cell), then a coyote is classified under GCL 1 or “Best

Data.” If the uncertainty around the sampling location of a coyote fell within a ∼ 113 km2

area (or within a queen neighborhood of a PRISM raster cell), then a coyote is classified

under GCL 2 or “Good Data.” If the uncertainty around the sampling location of a coyote

fell outside of a ∼ 113 km2 area (or outside of a queen neighborhood of a PRISM raster

cell), then a coyote is classified under GCL 3 or “Poor Data.” If a coyote did not have a

discernible sampling location, then it was classified under GCL 4 or “No Data.”

Additionally, my categorization penalizes coyotes geocoded in areas of California with

excessive variation in elevation. Areas with large changes in elevation likely have multi-

ple habitat types compared to areas with less variation in elevation, which may lead to a

mismatch in environmental variables between my estimated geocode and the true sampling

location. Therefore, it is more important to accurately estimate the precise sampling loca-

tion of these coyotes for the analyses. However, because the exact sampling location is not

known for every coyote, the location of coyotes geocoded in areas with excessive variation
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in elevation are categorized at one lower confidence level than before the penalty, except

penalized coyotes in GCL 3 coyotes remained in the analysis as GCL 3. Using the Digital

Terrain Elevation Data from the National Aeronautics and Space Administration Shuttle

Radar Topology Mission (NASA-SRTM) (128 ), I aggregate elevation data of California

from a resolution of 90 meters to 2.5 arcminutes to match the resolution of the PRISM

variables. Any pixels with a standard deviation larger than 125 meters were considered to

have high elevation variability (Figure 32). The NASA-SRTM data are accessed via the

raster package (129 ) in the statistical software R (127 ). Over 12% of coyotes (n = 977 of

7,919) are located in areas of California with excessive variation in elevation (GCL 1: 288,

GCL 2: 354, GCL 3: 335; Table 8).

4.2.2 Environmental data processing

Plague occurrence has been associated with climate factors (58 , 70 , 85 , 89 , 90 ). The

analysis in preceding chapters employed the Oregon State University Parameter elevation

Regression on Independent Slopes Model (PRISM) statistical mapping system, which fol-

lows a weighted regression framework that relies on digital elevation models built from a

network of ground measurements (125 ). The 30-year average normals (1981–2010) at a

2.5 arcminute (∼4 kilometer by ∼4 kilometer; ∼16 square kilometers) resolution were se-

lected because the temporal range of the data mostly overlapped with CDPH surveillance

(1983–2015). PRISM data were accessed via the prism package (126 ) in the statistical

software R (127 ) and appear in Table 10.

Environmental data sets often contain many different measurements, some highly cor-

related (e.g., elevation and precipitation), so in order to avoid collinearity I reduce the

number of variables used in my developed approach (Chapter 3) by conducting a princi-

pal component analysis (PCA). PRISM variables are range standardized using the Gower

metric (197 ) because PRISM variables are measured on different scales. A PCA is con-

ducted using the RStoolbox package (198 ) in the statistical software R (127 ). The first

two principal components (PC1 and PC2) of my environmental variables accounts for over

96% of the variance (Table 11) and are used as environmental predictors for my analysis

(Figure 33).
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4.2.3 Statistical methods

I use the ENM proposed in Chapter 3 for my analyses. The proposed method adapts a

spatial cluster detection algorithm originally designed for spatial cancer epidemiology to

identify spatial clusters of climate signatures within a predictor space. Predictor space

comprises two dimensions that are the first and second principal component of the PCA

described above. These signatures are then predicted across California, even into areas

that are not historically sampled or where data are unavailable as a mechanism for environ-

mental interpolation (19 ). My proposed method is based on a kernel density estimation of

spatial relative risk (211 , 212 ) that treats the observed point locations of cases and controls

as realizations of spatial Poisson processes. An output of the model is a log relative risk

surface (i.e., a smooth surface linking the ratio of estimated spatial density of cases to that

of controls; 211–216 ). Plague is more likely to be observed in areas with a log relative risk

value above zero than areas with a log relative risk value below zero. Another output of

the model is a significance level value of a local two-tailed asymptotic tolerance calculation

(219 , 221 ) at two significance levels (α = 0.05 & α = 0.01). An asymptotic tolerance signif-

icance level value below 0.025 is considered “plague-suitable habitat” where plague is likely

active in a sylvatic cycle and an asymptotic tolerance significance level value above 0.975 is

considered “plague-unsuitable habitat” where plague is likely not active in a sylvatic cycle.

The proposed method also identifies areas within the predictions with sparse observation

data.

To examine the impact of positional uncertainty in sampling location on my prediction

of the spatial distribution of enzootic plague, I use my proposed ENM in two separate

frameworks. First, coyote observations are stratified by geocode confidence level (i.e., “Best

Data,” “Good Data,” and “Poor Data” levels, separately). I also conduct a cumulative

analysis (i.e., “Best Data,” “Best Data” and “Good Data,” and “All Data”). The “All

Data” model is comparable to the model conducted in Chapter 3. Models are compared

quantitatively via the average Area Under the Receiver Operating Characteristic Curve

(AUC) of the predicted log relative risk values from a 5-fold cross-validation within stratum

(222 ). Second, I conduct a Monte Carlo simulation-based assessment of the impact of
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location uncertainty on estimates of the ecological niche of plague in coyotes. “Best Data,”

“Good Data,” and “Poor Data” levels are spatially displaced uniformly within an area with

a radius of two kilometers, six kilometers, and ten kilometers, respectively, roughly based

on the observed location uncertainty observed in each class. I compare these findings to

a model where all coyotes are spatially displaced uniformly within an area with a radius

of two kilometers. Each spatially displaced analysis has 1,000 iterations. Any observation

spatially displaced beyond the extent of the study space (i.e., California state boundary)

is assigned the PC values of the nearest raster pixel. Average log relative risk values and

average asymptotic tolerance significance level values are calculated for each pixel within a

predictor space with its dimensions comprised of the two chosen PCs. Measures of variation

are also calculated including the standard deviation of log relative risk and the proportion

of iterations each pixel falls outside of the 95% tolerance interval for null relative risk. These

statistics are then transformed to geographic space within California.

I use a fixed-bandwidth kernel density estimator to estimate the log relative risk surface

with a smoothing parameter (i.e., bandwidth) chosen with the maximal smoothing principle

(229 ). The bandwidth size is neither restricted across stratified models nor across permuta-

tions in the spatially displaced analysis. The smoothing parameters chosen via the maximal

smoothing principle (229 ) for each model are similar. I do not conduct a sensitively analysis

of the smoothing parameter because the prediction was found to be robust across various

bandwidth sizes in a previous ENM analysis using the same data (see Chapter 3). All

analyses are conducted in the statistical software R (127 ).

4.3 Results

Statistically significant relative clustering of seropositive coyotes (cases; n = 704) and

seronegative coyotes (controls; n = 7251) by the CDPH (1983–2015) was detected in predic-

tor space for all kernel density estimation-based models. After penalization, there were 1800

observations of the highest geocode confidence level (i.e., “Best Data”) with a plague preva-

lence of 9%, 3509 observations of the moderate geocode confidence level (i.e., “Good Data”)

with a plague prevalence of 8.1%, and 2645 observations of the lowest geocode confidence

level (i.e., “Poor Data”) with a plague prevalence of 9.7% (Table 8).
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4.3.1 Stratified by geocode confidence level

In general, predicted suitable habitat areas of plague in California were similar across models

using observations stratified by geocode confidence level (Figure 34). Differences between

models were most evident in Siskiyou County, the Northern Coastal Ranges, and the foothills

on the the western slope of the Northern Sierra Nevada. The “Poor Data” model predicted

more plague-unsuitable habitat in the Mojave Desert than the other models but did not

predict the northern California coast as plague-unsuitable habitat unlike the other models.

The “Best Data” model predicted the least amount of plague-suitable habitat in California

compared to other models, especially in the Peninsular Ranges and high elevation areas of

the Sierra Nevada. The spatial coverage of coyote observations by the CDPH was similar

across stratum (Figure 35). The highest frequency of “Best Data” were recorded in the

northeastern region of California while the highest frequency of “Good Data” and “All

Data” were recoded in the southwestern and south central regions of the state, respectively

(Figure 35). No one model performed statistically superior to others as each average AUC

value within stratum were captured by the 95% confidence intervals of the three models

(Figure 36).

Results were similar when the analysis was conducted cumulatively by geocode confi-

dence level (Figure 37) with an increase in spatial coverage of coyote observations (Fig-

ure 38). The analytically chosen bandwidths of each model were similar but smaller in

models with larger sample sizes, as one might expect. No one model performed statistically

superior to the others but the confidence intervals of AUC within stratum were smaller

in models with larger sample sizes (Figure 39). The “All Data” model predicted more

plague-suitable habitat in the high elevation areas of the northern Sierra Nevada and more

plague-unsuitable habitat in the Mojave Desert than other models. The model using “Best

Data” and “Good Data” predicted plague-unsuitable habitat in some high alpine areas of

the southern Sierra Nevada. Additionally, the model with the largest sample size (“All

Data”) was able to predict the most area of California as either plague-suitable or plague-

unsuitable. The models could not predict into areas such as Death Valley and parts of the

Mojave Desert where there were scarce observations.
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4.3.2 Spatially displaced permutations

Across 1,000 permutations where observations were spatially displaced uniformly within

an area with a radius based on each class of geocode confidence (i.e., two kilometers, six

kilometers, and ten kilometers), statistically significant relative clustering of seropositive

coyotes and seronegative coyotes was detected in predictor space. The average log relative

risk appears in Figure 40a and the standard deviation of the log relative risk appears in

Figure 40b. The average asymptotic tolerance significance level value appears in Figure 41a

and the proportion of iterations that were statistically significant appears in Figure 41b. The

highest variation in log relative risk and significance level values were located in and around

areas of predictor space with few or no observation data. The regions of predictor space

with variation in predicted values were also located at the edges of statistically significant

relative clusters. The log relative risk values were unstable in data sparse areas of predictor

space (i.e., intersection of high PC1 values and low PC2 values).

The estimated values in predictor space were transformed to geographic space within

California (Figures 42 and 43). Plague-suitable habitat was primarily located in moun-

tainous regions of California, but not in high alpine zones. Plague-unsuitable habitat was

predicted in the Central Valley as well as coastal and desert regions of California. Areas in

the state with a higher variation in the significance level values were located in subalpine

regions and foothills such as the northern foothills of the Transverse Ranges. Results were

similar to the prediction of the “All Data” model in the stratified analysis (Figure 37).

Estimates of average log relative risk and average significance level values were similar

when observations were spatially displaced uniformly within a circular area with a two-

kilometer radius (Figures 44 and 45) or the other radii under consideration (Figures 40

and 41). While the shape of the significant seronegative clustering was similar, more areas of

the significant seronegative clustering fell under the higher significance level (α = 0.05 versus

α = 0.01) in the varying radii analysis than in the fixed radius analysis. This translated to

more desert regions of California being predicted plague-unsuitable at a higher significance

level in the varying radii analysis (Figure 43a) versus at a lower significance level in the same

radius analysis (Figure 47a). There was higher variation in the log relative risk (Figure 42)
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and asymptotic tolerance significance level values (Figure 43) in the desert regions and the

northern California coastline in the varying distance analysis than in the same distance

analysis. Percent change in log relative risk between the same distance analysis and the

varying distance analysis appear in Figure 48a. Areas sensitive to higher levels of positional

uncertainty in the sampling location appear in Figure 48b.

4.4 Discussion

Predictions of areas in California with climatological conditions associated with the occur-

rence of a zoonotic pathogen (Y. pestis) using an ecological niche modeling framework were

robust to positional uncertainty in sampling location of observations of a sentinel species

(C. latrans) captured by an animal plague surveillance system. Models stratified by the

degree of geocode confidence of coyote observations performed similarly, but some areas

predicted plague-suitable or plague-unsuitable shifted between models, locally. Predictions

across models were similar, in general, likely due to the large sample size of the study, even

when stratified. However, local sample size varied among stratum, so positional uncertainty

in the sampling location was introduced into an ENM by randomly displacing all geocoded

observations iteratively in a Monte Carlo simulation based analysis. The average predictions

of the Monte Carlo simulation based ENM analysis closely matched the predictions of the

ENM that used all data without spatially displacing observations. The negligible, global

effect yet drastic, local effect of positional uncertainty in sampling location on predictions

from my proposed method (Chapter 3) is similar to that found in various studies (249 ,

259–261 ). Mitchell and colleagues (261 ) found areas sensitive to positional uncertainty in

sampling location were at the fringe of optimal habitat.

The analysis identified some areas of California where the predicted spatial distribution of

enzootic plague was sensitive to positional uncertainty in sampling location of observations,

namely the edges of the seropositive clustering and the seronegative clustering in predictor

space. This was expected because the relative risk ratio along the edges of the clustering are

closer to the null value (zero) and therefore more likely non-significant than the center of

the clustering. As coyote observations were spatially displaced, in some iterations, they may

have been located in a neighboring pixel that has principal component values further away
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from the center of the clustering and the iteration may have considered that combination

of PC values to be in the significant clustering. For example, few coyotes were tested in

areas with PC values in between the two seronegative clusters (see Figure 41a). and when

observations were spatially displaced, they may have been randomly located in between

these two clusters for some iterations (see Figure 41b). In California, areas sensitive to the

positional uncertainty in sampling location were zones with climates in between plague-

suitable and plague-unsuitable habitat, especially at the higher significance level (α =

0.05). For example, the foothills of the Peninsular Ranges were sensitive to the positional

uncertainty in sampling location. The peaks of these ranges as well as dry, low elevation

areas in the southern Central Valley were strongly predicted as plague-suitable, while the

low-lying deserts were strongly predicted as plague-unsuitable. It is imperative that any

plague observation in these zones has a precise sampling location (or exposure location),

that is, the results suggest that positional uncertainty may have spatially varying impact;

an interesting area for future research.

The magnitude of the effect of positional uncertainty in sampling location on predictions

from raster-based analyses can be mediated by the degree of spatial autocorrelation in pre-

dictors (253 , 254 , 263 ). The present study did not directly test the interaction between

spatial autocorrelation in predictors and positional uncertainty in sampling location. How-

ever, areas sensitive to positional uncertainty in sampling location were found in areas of

elevation gradients that likely have different climates within close geographical proximity

(i.e., low spatial autocorrelation). More specifically, these areas were located along elevation

gradients where the ENM was unable to statistically distinguish between plague-suitable

and plague-unsuitable habitat because seropositive and seronegative coyotes occurred rela-

tively equal in these types of areas.

Restricting an ENM for enzootic plague only to the highest quality location data may

well overlook areas of suitable habitat for plague transmission. Coyotes located in areas

of California with excessive variation in elevation were penalized in the geocode confidence

criteria which resulted in more “Good Data” and “Poor Data” observations located in

mountainous regions of California than “Best Data.” This may account for why more area

was considered plague-suitable in the “Good Data” and “Poor Data” models than the “Best
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Data” model (e.g., the Klamath Mountains, namely around Mt. Shasta and Mt. Eddy).

Using only “Poor Data” in an ENM had less area predicted as significantly plague-suitable

habitat but had more area predicted as plague-unsuitable habitat in the Mojave Desert

than a model of only “Good Data” because more “Poor Data” were observed in the desert

regions than “Good Data.” Omitting the highest quality location data in future analyses

would be inconceivable in real-world disease surveillance; thus, a cumulative approach using

both “Best Data” and “Good Data” is more realistic. Indeed, a model using “Best and Good

Data” predicted areas as plague-suitable similar to a model using all observations regardless

of geocoding confidence (i.e. “All Data”). The addition of “Poor Data” in an ENM resulted

in more areas to be predicted as plague-unsuitable habitat, except along the northern Pacific

Coast. More “Poor Data” were located in Humboldt county, but sample size was low overall.

This suggests the analysis was not sensitive to areas or climatological conditions with low

sampling or low seroprevalence. The spatially displaced analysis using various radii based

on the geocode confidence determining the northern Pacific coastline was sensitive to the

positional uncertainty in sampling location. Given historically sparse rodent data (see 89 )

and relatively poor coyote data, the northern Pacific coastline might be an area of interest

for improved surveillance to determine where and how plague is being maintained.

There were several strengths of the study. The approach was computationally inex-

pensive even for a Monte Carlo based simulation and thus can provide results readily for

ongoing disease surveillance systems. I was able to identify what types of uncertainty exist

in the coyote plague system, categorize my observations by the degree of positional uncer-

tainty in sampling location, and then used a Monte Carlo simulation based approach to

assess the impact of positional uncertainty in sampling location on my predictions. Monte

Carlo simulation based approaches are a general tool to assess the degree of sensitivity to

location uncertainty (253 , 254 , 269 ). Additionally, by stratifying the observation data by

geocode confidence level the sample size varied between models. Small sample sizes can

reduce ENM performance and introduce statistical bias (249 , 266–268 ), even though the

seroprevalence of Y. pestis antibodies was similar across stratified models (8%–10%). Incor-

porating all data of various geocode confidences did not negatively affect the prediction of

the spatial distribution of enzootic plague in California, even when including observations
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with uncertain sampling locations (i.e., “Poor Data”). Instead, incorporating all data of

various geocode confidence levels allowed for the selection of a smaller smoothing parame-

ter that could better detect the edge of an ecological niche in predictor space than larger

smoothing parameters. With the addition of reservoir host data, namely rodent species,

this precision can greatly enhance an ENMs ability to identify disease enzootic refugia (271 )

that maintain plague in the environment during inter-epizootic cycles (17 ).

The problem of scale (244 ) was a notable limitation for the study. The spatial scale of

the observational process (i.e., sampling and testing coyotes) was not the same as the spatial

scale of the climate variables used in the analysis. Coyotes were sampled in a precise location

albeit not recorded at that level of detail. The analysis was conducted at the 2.5 arcminute

resolution (∼16 square kilometers) to capture the average climate at the location a coyote

was observed. The geocode confidence criteria were designed to align these two processes

by assigning coyotes based on their uncertainty within a pixel or its neighborhood at the 2.5

arcminute resolution. This spatial resolution balanced statistical tractability, the precision

of annual average climate values at each coyote sampling location, and the representation

of the unknown true plague exposure location of each coyote. The location where a coyote

was exposed to Y. pestis is challenging to discern (91 , 117 ) because coyotes are mobile

and encounter many rodents across their expansive home range (144 , 145 , 184 , and see

Panel 6). Although the observed location of a coyote is often considered the true location of

plague exposure in plague surveillance systems (47 , 85 , 89 , 95 , 113–116 ), the inaccuracy

between the sampling location of a coyote and it true disease exposure location is of concern

(Figure 29). A “typical” home range of a coyote is about 25 km2 (up to 80 km2; 144 ) and an

average dispersal range of 40 km (145 ). However, coyote home range, activity, and density

are influenced by human development (153–156 , 272 ), latitude (273 ), and sex (150 ), but

see (157 ). Here, the PRISM variables at a 2.5 arcminute resolution are locally smoothed

(averaged) values that more likely captured both the sampling and exposure location in

the same or nearby pixel than higher resolution climate data. Conducting the analysis at a

higher resolution would provide more precise climate values at each sampling location but

may create a larger discrepancy between the sampling location and true exposure location

than a lower resolution analysis. In addition, one individual coyote often cannot indicate
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plague activity where it was sampled, but on the aggregate, coyotes indicate plague activity.

With a large sample size (∼ n = 8,000) the central tendency of the ecological niche of plague

in coyotes is elucidated as long they coyotes are sampled evenly and thoroughly across the

study region. Chapter 5 shows coyotes are not sampled evenly across the study region,

including mountainous regions where rodents are better detectors for plague activity and

the ecological niche of plague than coyotes. Once the ecological niche of plague is well

defined using a myriad of host species observations, future studies can assess the effect of

the positional uncertainty of the exposure location for individual coyotes on the predicted

ecological niche of plague.

My penalty for coyotes located in pixels with highly variable elevation (i.e., pixels more

likely to have multiple habitat types) can be improved. These coyotes were penalized be-

cause their true observation location may be, for example, located in a riparian zone in a

valley floor (274 ) that may be distinct from the climate values averaged at a 2.5 arcminute

resolution. These penalized observations were classified as having a lower geocode confi-

dence level and, in the spatially displaced analysis, were more likely to be assigned the PC

values of a neighboring gridded pixel than if the observation was a higher geocode confi-

dence level. While this approach may have accounted for the variability of climate across a

neighborhood of gridded pixels, the approach did not account for the variability of climate

within a gridded pixel. The PC values of a neighboring pixel were likely not the same values

as a unique habitat within a pixel because neighboring pixels in geographic space likely have

similar PC value, unless they are in regions of California with large changes in elevation

(e.g., mountains). Conducting the analysis at a higher resolution would have more precise

PC values for the sampling location and fewer coyotes would have been penalized as lower

quality observations because the higher resolution PRISM variables have smaller elevation

variability within each cell than lower resolution variables. However, as previously men-

tioned, a higher resolution analysis may contain a larger discrepancy between the sampling

location and true exposure location than a lower resolution analysis. A future sensitivity

analysis can assess the combined effects of spatial scale on the prediction of the ecological

niche in coyotes and spatial distribution of enzootic plague in California.

The circular, uniformly random spatial displacing may not be realistic of the posi-
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tional uncertainty in the sampling location. A circular shape was chosen for computational

tractability. Coyotes observed along linear topographical features (e.g., roads or streams)

were treated similarly to coyotes not observed along linear topographical features (e.g.,

campground, park, or private ranch). For observations along linear topographical features,

a circle was not the best representation of their positional uncertainty and the analysis po-

tentially heightened the positional uncertainty in sampling location of these observations.

A more informed shape of positional uncertainty can be used in future analyses. Spatial

displacement was assumed to be a random uniform distribution, which assesses the effect

of uninformed positional uncertainty in the sampling location on the predictions. A future

investigation can assess other distributions such as, for example, a bivariate normal distri-

bution centered at the geocoded sampling location (269 ) or an informed spatial displacing

process that uses additional covariates (e.g., presence of a riparian corridor).

Effective zoonotic disease surveillance relies on observational studies collecting rich data,

but real-world disease surveillance systems often have gaps or uncertainties. Data quality

is an important consideration for wildlife disease surveillance, especially for passive surveil-

lance systems (159 ) such as coyote plague surveillance. Certain analytical measures can be

taken to overcome types of data uncertainties that balance statistical rigor and biological re-

alities. Here, poorer quality data were not an impediment to the prediction of the ecological

niche of Y. pestis in coyotes or its spatial distribution in California. However, omitting data

based on quality issues can lead to smaller samples sizes and local sampling effect biases

for predictive models. The approach can help reform ongoing CDPH plague surveillance

protocols to record precise sampling location information in statistically-sensitive areas of

California. The methodological framework defining and assessing the positional uncertainty

in sampling location has great promise for other wildlife and zoonotic disease systems that

have data quality concerns from field observations.
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4.6 Appendices

4.6.1 Appendix A: Panels

Panel 6: Considerations for coyotes as a sentinel species for plague activity
Coyotes (Canis latrans) have been used as a sentinel species of plague (Yersinia pestis) activity in rodent
populations of North America (95 , 112–116 ), but there are limitations for focusing on coyote-based plague
surveillance data. I outline some notable limitations below:

• Coyotes are a wide-ranging species (144 , 145 , 171 ) and effectively sample a broad variety of habitats in
which plague occurs and thus sample a considerable extent of the ecological niche of plague (85 ). However,
coyotes are not observed homogeneously across North America (Chapter 5) and other species may be
better indicators of plague activity in some habitats (e.g., rodent species for alpine regions of California).
Therefore, without rodent data, I am estimating a the fundamental ecological niche of plague in coyotes,
which I am considering as an approximation for the entire fundamental ecological niche of plague.

• The location where an individual coyote was truly exposed to Y. pestis is unknown and challenging to
discern (91 , 117 ). Coyotes are mobile, encountering many rodents across their expansive individual home
range (144 , 145 , 184 ) and whose plague antibodies can last for many months (91 , 112 , 118 ). Reinfection
of coyotes is also probable and so a coyote can only indicate its most recent plague exposure. Rodent
species have smaller individual home range sizes (185 ) and are the gold standard indicator of current or
recent plague activity (108 ).

• Coyote specimens are not collected evenly across the United States and instead are collected
opportunistically (107 ). Coyotes tested for plague exposure are primarily collected in conjunction with
ongoing livestock/wildlife damage management operations conducted by the U.S. Department of
Agriculture Animal and Plant Health Inspection Service Wildlife Services. Agricultural and urban areas
may be more sampled for plague than other land-use types and their respective habitats. Including other
species monitored for plague activity may help overcome this potential spatial sampling effort bias.
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4.6.2 Appendix B: Tables

Table 8: Sample size of observations across geocode confidence levels following the criteria found
in Table 9

.

Geocode Confidence Level Plague Result Count before penalty Count after penalty
1 Positive 224 162

“Best Data” Negative 1864 1638
2 Positive 273 285

“Good Data” Negative 3302 3224
3 Positive 207 257

“Poor Data” Negative 2085 2388
4 Positive 1 1

“No Data” Negative 163 163
Total Positive 705 705

Negative 7414 7414
Total 8119 8119
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Table 9: Geocode criteria for animal-based plague surveillance in California
Geocode

Confidence
Level*

Criterion†

1 A specific location identifier (≤ 16 km2 area), such as:
Precise location, small town, or medium town without a directional
Precise location with a ≤ 6.8 km directional
Small town with a ≤ 3.4 km directional
Road section ≤ 5.7 km long
Other defined location ≤ 16 km2 in area (e.g., small recreational area)

2 A less specific location identifier (Between 16 km2 and 144 km2 area), such
as:

Precise location with a directional between 6.8 km and 20.5 km
Small town with a directional between 4.3 km and 17.1 km
Medium town with a directional ≤ 13.7 km
Large town without a directional
Road section between 5.7 km and 17 km long
Other defined location between 16 km2 and 144 km2 (e.g., large reservoir)

3 An unspecific location identifier (> 144 km2 area), such as:
Precise location with a directional > 20.5 km
Small town with a directional > 17.1 km
Medium town with a directional > 13.7 km
Large town with a directional
Extra large town with or without a directional
Road section > 17 km long
Other defined location > 144 km2 (e.g., Lake Tahoe)

4 No location identifier, such as:
Uninterpretable location description

*If a geocoded specimen is located in a grid cell (4 km x 4 km) with variable elevation (standard deviation of
elevation greater than 125 meters calculated using the Shuttle Radar Topography Mission digital elevation model
aggregated from 90 m x 90 m resolution to 4 km x 4 km resolution), then the specimen is penalized and dropped
one geocode confidence level (e.g., from Geocode Confidence Level 1 to Geocode Confidence Level 2). Geocode
Confidence Level 3 is the lowest classification (i.e., a specimen cannot drop from Geocode Confidence Level 3 to
Geocode Confidence Level 4). Refer to Figure 32 for areas of California that are penalized for subsequent analysis.
†Precise location: ≤ 0.4 km2; Small town: ≤ 4 km2; Medium town: 4 km2–16 km2; Large town: 16 km2–144 km2;
Extra large town: > 144 km2
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Table 10: Oregon State University Parameter elevation Regression on Independent Slopes Model
(PRISM) 30-Year Average Annual Normals (1981–2010). Modeled using a combination of a digital
elevation model (DEM) and climatologically-aided interpolation (CAI)*. Variables were modeled
at 30 arcseconds (∼800 m) resolution and aggregated to 2.5 arcminutes (∼4 km). See (125 ) for
more details. .

Variable Units Derivation

Precipitation millimeters (mm) Modeled; Summing monthly averages (rain + melted
snow)

Maximum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Temperature °Celsius (°C) Derived; Average of Maximum Temperature and
Minimum Temperature

Minimum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Dewpoint Temperature °Celsius (°C) Modeled; CAI used minimum temperature as the
predictor grid

Maximum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
maximum temperature as the predictor grids

Minimum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
minimum temperature as the predictor grids

*Accuracy of these data is based on the original specification of the Defense Mapping Agency one-degree DEMs.
The stated accuracy of the original DEMs is 130-meter circular error with 90% probability. Data sets use all
weather stations, regardless of time of observation.
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Table 11: Summary of principal component analysis of Oregon State University Parameter
elevation Regression on Independent Slopes Model (PRISM) 30-Year Average Annual Normals
(1981–2010) at a 2.5 arcminute (∼4 km) resolution. Variables were range standardized using the
Gower metric (197 ).

Statistic Variable Principal Component
PC1 PC2 PC3

Standard Deviation 0.326 0.170 0.058
Proportion of Variance 0.756 0.205 0.024
Cumulative Proportion of Variance 0.756 0.962 0.985
Loadings Precipitation 0.063 0.342 0.549

Maximum Temperature 0.485 -0.208 -0.290
Mean Temperature 0.519 -0.064 0.015

Minimum Temperature 0.477 0.088 0.314
Mean Dewpoint Temperature 0.446 0.532 -0.101

Maximum Vapor Pressure Deficit 0.243 -0.533 -0.229
Minimum Vapor Pressure Deficit 0.073 -0.510 0.673
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4.6.3 Appendix C: Figures

Figure 29: The two types of positional uncertainty for Yersinia pestis surveillance using coyote
specimen locations without precise geographical information in two types of environments. Geocod-
ing efforts using location descriptions from collectors in the field have uncertainty for the true location
of the specimen sampling location represented by the “cloud of uncertainty.” Areas sensitive to this
uncertainty are climatologically heterogeneous (e.g., foothills) because the cloud of uncertainty con-
tains dissimilar climates and the geocoding of a specimen could greatly impact the climate values
assigned to the observation in the ecological niche modeling approach. Areas with homogeneous
climates (e.g., floor of the Central Valley, California) are less sensitive to this type of uncertainty
because the assigned climate value for a geocoded coyote does not vary greatly within the cloud
of uncertainty. The present analysis examined the effect of positional uncertainty in the sampling
location on the predicted spatial distribution of enzootic Y. pestis in California. The other type of
observation uncertainty in this system is the true location where a coyote was exposed to Y. pestis
and the true location where a coyote was observed may not be in the same location due to coyote
movement. Future studies can examine the effect of positional uncertainty in the exposure location
on the predicted spatial distribution of enzootic Y. pestis.
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Figure 30: Data layers of proposed method and their sources. Data are structured as point
locations and raster grids. Data layers (grey color) are used as inputs for the proposed method to
predict the spatial distribution of enzootic Yersinia pestis in California (black color). The arrow
represents the layers involved for the predicted layer.
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(a) (b)

Figure 31: (a) Number of coyotes tested by California Department of Public Health (CDPH)
for antibodies against Yersinia pestis (1983–2015). Sampling is heterogeneous across the state of
California, primarily in historic plague enzootic areas and areas of high concern. Limited sampling
in the Mojave and Sonoran Deserts. (b) Results of coyotes tested by the CDPH for antibodies
against Y. pestis (1983–2015). A coyote with plague antibodies was not observed in every county
sampled. Only 2% of observations were unable to be geocoded and ignored in subsequent analysis.
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Figure 32: Internal elevation heterogeneity of California when aggregated to 4 km resolution. Areas
with excessive elevation heterogeneity have a standard deviation larger than 125 meters (colored
black). These areas are mountainous regions, steep coastline, or marked by canyons and likely have
multiple habitat types within the 16 km2 area. Any coyote observed in these areas have penalized
geocode confidence levels.
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Figure 33: First two principal components of a principal component analysis of Oregon State
University Parameter elevation Regression on Independent Slopes Model (PRISM) 30-year average
annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution and presented for California.
Variables were range standardized using the Gower metric (197 ).
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Best Data
bandwidth = 0.067

p-value < 0.005
p-value < 0.025
insignificant
p-value > 0.975
p-value > 0.995
sparse data

Good Data
bandwidth = 0.06

p-value < 0.005
p-value < 0.025
insignificant
p-value > 0.975
p-value > 0.995
sparse data

Poor Data
bandwidth = 0.061

p-value < 0.005
p-value < 0.025
insignificant
p-value > 0.975
p-value > 0.995
sparse data

Figure 34: Comparison of observational data quality (Best v. Good v. Poor) on the predicted area of
California with a log relative risk surface in predictor space of coyotes that tested negative for plague
antibodies (controls) and tested positive for plague antibodies (cases) by the California Department
of Public Health (1983–2015) using the developed approach. Color pertains to calculated asymptotic
tolerance significance level (219 , 221 ) at given two-tailed significance levels (α = 0.05 & α = 0.01).
Warmer-colored areas are more likely suitable for plague transmission and cooler-colored areas are
more likely habitat for plague transmission with grayer-colored areas statistically indistinguishable.
The areas in black coloring correspond to habitat with sparse data.
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Figure 35: Local sampling effort of coyotes tested by the California Department of Public Health
(1983–2015) for the presence of Yersinia pestis antibodies stratified by geocode confidence level
(separately) following the criteria found in Table 9. Data are aggregated to protect landowner
privacy.
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Figure 36: Results of 5-fold cross-validation of data quality (Best v. Good v. Poor) comparison for
the log relative risk surface in predictor space of coyotes that tested negative for plague antibodies
(controls) and tested positive for plague antibodies (cases) by the California Department of Public
Health (1983–2015) using the developed approach. Iterations were balanced (prevalence = 0.5) by
randomly undersampling control locations used for in each fold for cross-validation. The prediction
is robust across bandwidth selection with similar Area Under the Receiver Operating Characteristic
Curve (AUC) across bandwidths.
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Figure 37: Comparison of observational data quality (Best v. Best & Good v. All) on the predicted
area of California with a log relative risk surface in predictor space of coyotes that tested negative
for plague antibodies (controls) and tested positive for plague antibodies (cases) by the California
Department of Public Health (1983–2015) using the developed approach. Color pertains to calculated
asymptotic tolerance significance level value (219 , 221 ) at given two-tailed significance levels (α =
0.05 & α = 0.01). Warmer-colored areas are more likely suitable for plague transmission and cooler-
colored areas are more likely unsuitable for plague transmission with grayer-colored areas statistically
indistinguishable. The areas in black coloring correspond to habitat with sparse data.
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Figure 38: Local sampling effort of tested by the California Department of Public Health
(1983–2015) for the presence of Yersinia pestis antibodies stratified by geocode confidence level
(cumulatively) following the criteria found in Table 9. Data are aggregated to protect landowner
privacy.
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Figure 39: Results of 5-fold cross-validation of data quality (Best v. Best & Good v. All) comparison
for the log relative risk surface in predictor space of coyotes that tested negative for plague antibodies
(controls) and tested positive for plague antibodies (cases) by the California Department of Public
Health (1983–2015) using the developed approach. Iterations were balanced (prevalence = 0.5) by
randomly undersampling control locations used for in each fold for cross-validation. The prediction
is robust across bandwidth selection with similar Area Under the Receiver Operating Characteristic
Curve (AUC) across bandwidths.
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Figure 40: (a) The average log relative risk surface in predictor space comparing coyotes that
tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (1983–2015) using the developed approach, which
randomly displaced observation locations uniformly within an area specified by the criteria in Table 9
(n = 1000 iterations). Predictor space is comprised of the first two principal components of a
principal component analysis of seven range-standardized (197 ) Oregon State University Parameter
Elevation Regression on Independent Slopes Model 30-year average annual normals (1981–2010) at
a 2.5 arcminute (∼4 km) resolution. Each bandwidth was chosen using the maximal smoothing
principal (229 ). Color pertains to average log relative risk values where positive log relative risk
(more likely suitable for plague transmission) are in red and negative log relative risk (more likely
unsuitable for plague transmission) with grayer coloring closer to the null log relative risk value
(zero). (b) Color pertains to the standard deviation of the log relative risk values across random
iterations.
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Figure 41: (a) The average asymptotic tolerances (219 , 221 ) at given two-tailed significance levels
(α = 0.05 & α = 0.01) of the log relative risk surface in predictor space comparing coyotes that
tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (1983–2015) using the developed approach, which
randomly displaced observation locations uniformly within an area specified by the criteria in Table 9
(n = 1000 iterations). Predictor space is comprised of the first two principal components of a
principal component analysis of seven range-standardized (197 ) Oregon State University Parameter
Elevation Regression on Independent Slopes Model 30-year average annual normals (1981–2010) at
a 2.5 arcminute (∼4 km) resolution. The each bandwidth was chosen using the maximal smoothing
principal (229 ). Warmer colors indicate the ecological niche of plague in coyotes and cooler colors
indicate the absence of plague with grayer-colored areas statistically indistinguishable. (b) Color
pertains to the proportion of iterations a location falls outside of the 95% tolerance interval for null
relative risk.
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Figure 42: (a) Areas of California predicted with average log relative risk surface in predictor space
comparing coyotes that tested negative for plague antibodies (controls) and tested positive for plague
antibodies (cases) by the California Department of Public Health (1983–2015) using the developed
approach, which randomly displaced observation locations uniformly within an area specified by the
criteria in Table 9 (n = 1000 iterations). Color pertains to average log relative risk values where
positive log relative risk (more likely suitable for plague transmission) are in red and negative log
relative risk (more likely unsuitable for plague transmission) are in blue with grayer coloring closer
to the null log relative risk value (zero). (b) Color pertains to the proportion of iterations fell outside
of the 95% standard deviation of the log relative risk values across random iterations in California.
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Figure 43: (a) Areas of California predicted with average asymptotic tolerances (219 , 221 ) at
given two-tailed significance levels (α = 0.05 & α = 0.01) of the log relative risk surface in predictor
space comparing coyotes that tested negative for plague antibodies (controls) and tested positive
for plague antibodies (cases) by the California Department of Public Health (1983–2015) using
the developed approach, which randomly displaced observation locations uniformly within an area
specified by the criteria in Table 9 (n = 1000 iterations). Warmer-colored areas are more likely
suitable habitat for plague transmission and cooler-colored areas are more likely unsuitable habitat
for plague transmission with grayer-colored areas statistically indistinguishable. (b) Color pertains
to the standard deviation of the asymptotic tolerances across random iterations. in California.
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Figure 44: (a) The average log relative risk surface in predictor space comparing coyotes that
tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (1983–2015) using the developed approach, which
randomly displaced all observation locations uniformly within an area with a radius of 2 km (n =
1000 iterations). Predictor space is comprised of the first two principal components of a principal
component analysis of seven range-standardized (197 ) Oregon State University Parameter Eleva-
tion Regression on Independent Slopes Model 30-year average annual normals (1981–2010) at a 2.5
arcminute (∼4 km) resolution. Each bandwidth was chosen using the maximal smoothing principal
(229 ). Color pertains to average log relative risk values where positive log relative risk (more likely
suitable for plague transmission) are in red and negative log relative risk (more likely unsuitable for
plague transmission) are in blue with grayer coloring closer to the null log relative risk value (zero).
(b) Color pertains to the standard deviation of the log relative risk values across random iterations.
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Figure 45: (a) The average asymptotic tolerances (219 , 221 ) at given two-tailed significance levels
(α = 0.05 & α = 0.01) of the log relative risk surface in predictor space comparing coyotes that
tested negative for plague antibodies (controls) and tested positive for plague antibodies (cases)
by the California Department of Public Health (1983–2015) using the developed approach, which
randomly displaced all observation locations uniformly within an area with a radius of 2 km (n =
1000 iterations). Predictor space is comprised of the first two principal components of a principal
component analysis of seven range-standardized (197 ) Oregon State University Parameter Eleva-
tion Regression on Independent Slopes Model 30-year average annual normals (1981–2010) at a
2.5 arcminute (∼4 km) resolution. The each bandwidth was chosen using the maximal smoothing
principal (229 ). Warmer colors indicate the ecological niche of plague in coyotes and cooler colors
indicate the absence of plague with grayer-colored areas statistically indistinguishable. (b) Color
pertains to the proportion of iterations a location falls outside of the 95% tolerance interval for null
relative risk.
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Figure 46: (a) Areas of California predicted with average log relative risk surface in predictor
space comparing coyotes that tested negative for plague antibodies (controls) and tested positive
for plague antibodies (cases) by the California Department of Public Health (1983–2015) using the
developed approach, which randomly displaced all observation locations uniformly within an area
with a radius of 2 km (n = 1000 iterations). Color pertains to average log relative risk values where
positive log relative risk (more likely suitable for plague transmission) are in red and negative log
relative risk (more likely unsuitable for plague transmission) are in blue with grayer coloring closer
to the null log relative risk value (zero). (b) Color pertains to the standard deviation of the log
relative risk values across random iterations in California.
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Figure 47: (a) Areas of California predicted with average asymptotic tolerances (219 , 221 ) at given
two-tailed significance levels (α = 0.05 & α = 0.01) of the log relative risk surface in predictor space
comparing coyotes that tested negative for plague antibodies (controls) and tested positive for plague
antibodies (cases) by the California Department of Public Health (1983–2015) using the developed
approach, which randomly displaced all observation locations uniformly within an area with a radius
of 2 km (n = 1000 iterations). Warmer-colored areas are more likely suitable habitat for plague
transmission and cooler-colored areas are more likely unsuitable habitat for plague transmission
with grayer-colored areas statistically indistinguishable. (b) Color pertains to the proportion of
iterations a location falls outside of the 95% tolerance interval for null relative risk.
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Figure 48: Change in results after adding more uncertainty in the perturbation analysis (i.e.,
from the same distance analysis to the varying distance analysis). Same distance analysis randomly
displaced all observation locations uniformly within an area with a radius of 2 km (n = 1000 it-
erations). Varying distance analysis randomly displaced observation locations uniformly within an
area specified by the criteria in Table 9. (a) Percent change in log relative risk surface in predictor
space comparing coyotes that tested negative for plague antibodies (controls) and tested positive
for plague antibodies (cases) by the California Department of Public Health (1983–2015) using the
developed approach. (b) Change in average asymptotic tolerances (219 , 221 ) at given two-tailed
significance level (α = 0.05) of the log relative risk surface described above.
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5 Combining multiple animal-based surveillance systems to
predict the spatial distribution of enzootic plague in the
western United States

“On the 10th of November [1846] I left Chihuahua, bound for the capital of New Mexico.
Passing the Rancho del Sacramento... we entered a large plain well covered with grass, on
which were immense flocks of sheep. A coyote lazily crossed the road, and, stopping within

a few yards, sat down upon its haunches, and coolly regarded us as we passed.”

- Adventures in Mexico and the Rocky Mountains
by George Frederick Augustus Ruxton (275 )

5.1 Introduction

Plague is an infectious disease found throughout the globe that is a concern for conservation

and public health, but the precise locations wherein the disease is transmitted and main-

tained with in the United States remain uncertain. The gram-negative bacterium Yersinia

pestis causes plague and is primarily transmitted between mammal hosts via bites of in-

fected fleas (31 ). After arriving in California in 1900, plague spread eastward across the

United States and reached Kansas by the 1940s where it appeared to stop (102 ). Plague

is often found in small mammal species (e.g., rodents) that maintain the bacterium within

their populations (31 , 43 ). Many small mammal species are highly susceptible to a Y. pestis

infection, some dramatically such as prairie dogs (Cynomys spp.) that can experience die-off

events of up to 98% mortality of an afflicted colony (105 , 106 ). In North America, prairie

dogs are keystone species that greatly influence their ecosystem and their losses are a major

concern for conservationists (276 ). Humans are also susceptible to a Y. pestis infection

and experience high fatality (40-95%) without prompt antibiotic treatment (16% mortality

with treatment) in the United States (33 ). Human plague cases have been associated with

recent or ongoing nearby outbreaks (i.e., epizootics) in wildlife (57 , 146 ) but seldom do

these cases result from close contact with a prairie dog or their fleas (277 , 278 ). Identifying

regions of the United States where Y. pestis is persistent would greatly facilitate public

health surveillance and conservation programs because these areas are likely the location of

144



human and animal exposure to Y. pestis-carrying hosts and vectors (94 , 196 ).

Plague surveillance in the United States relies on the sampling of animal populations.

Various public health agencies conduct rodent and flea surveillance in response to a human

plague case to ascertain the potential source of human plague exposure while some agencies

proactively test animals for plague exposure in order to better understand plague occurrence

(107 , 108 ). Passive surveillance for plague is not random sampling. Rather, these specimens

are often tested for plague exposure: 1) opportunistically because they were originally not

collected for the purpose of plague detection and 2) preferentially because specimens were

often more likely tested if they were located near historical plague occurrences or suspected

plague enzootic regions (107 ). Non-random sampling can lead to statistical biases and

is a known challenge of wildlife disease surveillance, in general (159 ). Coyotes (Canis

latrans Say, 1823) have been used as a sentinel species to monitor plague activity (95 ,

112–116 , but see Panel 8) because coyotes are carnivores that scavenge carcasses and

prey on potentially infectious rodents that typically survive plague infection (109 ). In

response to exposure to Y. pestis, surviving coyotes develop long-lasting antibodies (91 ,

112 ). Coyotes are found in numerous types of environments across North America (171 )

and can act as spatially wide-ranging and ecologically comprehensive detectors for plague

that is cycling in rodent populations (i.e., sylvatic plague). Plague-positive coyote locations

are associated ecologically with plague-positive rodent species locations in California (89 )

and coyote plague cases are temporally associated with human plague cases between 1974

and 1998 in Arizona (95 ).

Using an ecological niche modeling (ENM) framework that identified correlations be-

tween environmental variables and the occurrence of coyote plague, Maher and colleagues

(85 ) suggest coyote plague cases indicate the fullest extent of plague distribution in North

America. Few plague cases have occurred east of the “plague line” in the Great Plains

(∼100th meridian) albeit for yet unknown reasons (102 , 279 ). However, Maher and col-

leagues (85 ) predict plague-suitable habitat in areas with no known plague occurrence such

as, for example, the Great Lakes region, likely because the authors were limited by un-

available plague absence data. Furthermore, a pathogen first needs to be established in

host populations in order for “disease-suitable habitat” to become an enzootic area (12 );
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therefore, areas with plague-suitable habitat can still be at zero risk of infection if the bac-

terium has not yet been introduced or established within host populations. This represents

a challenge in niche identification, particularly for communicating disease risk. Just because

Y. pestis could be maintained in an area does not mean that the area is currently at high

risk of infection. I avoid this challenge in risk communication by focusing on where risk

currently exist: the western United States.

Using an ecological niche modeling framework, I aim to predict the spatial distribution

of enzootic Y. pestis in the United States found in coyotes that accounted for spatial sam-

pling bias. Maher and colleagues (85 ) found evidence to suggest plague has its own distinct

ecological niche that is independent of the distribution of any of its host species (“Plague

Niche Hypothesis”) and is influenced more by transmission dynamics such as flea vector

ecology (Figure 49a). Here, I incorporate an assessment of how much of the host niche is

tested for plague exposure and thus how much of the plague niche is observed (Figure 49b).

Sampling effort can be accounted in ENMs in various ways from including the host distri-

bution into the estimation of the niche as an explanatory variable (see 90 ) to affecting the

probability of an ENM algorithm selecting background points for comparison with known

occurrences (see 280 ). These methods are primarily employed for ENMs that are used in

the event only occurrence data are available and absence data are not. I use an extensive

collation of coyote plague case (presence) and control (absence) data to estimate the plague

niche and, when compared against a separate collation of untested coyote observations, I

can estimate how much of the coyote niche was tested for plague. This step-wise process

allows me to identify areas of the plague distribution that are sufficiently tested by coyote

plague surveillance programs and conservatively predict enzootic areas of plague in North

America. My study is conducted in collaboration with federal and state agencies that par-

ticipate in plague monitoring and the results will identify gaps in monitoring as well as

areas of conservation and public health concern.

5.2 Data and methods

I employ an ecological niche modeling framework using a variety of data sources. The data

source and design of the analysis can be found in Figure 50.
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5.2.1 Coyote location and plague exposure data

Coyotes samples are collected by various agencies. Two sources are used to train an ENM

while a third source is used to test the subsequent ENM. Coyote whole blood is collected

in the field on strips of filter paper, called “Nobuto strips,” allowed to dry, and then trans-

ported to a laboratory where the strips are eluted and tested for plague antibodies (119 ).

Diagnostic tests for Y. pestis exposure vary by agency and are found in Panel 7. A seroposi-

tive test result indicates that the coyote was exposed to and developed an antibody response

to Y. pestis, while a seronegative test result indicates there were no detectable antibodies

to Y. pestis.

United States Department of Agriculture The U.S. Department of Agriculture (USDA)

Animal & Plant Health Inspection Services (APHIS) Wildlife Services (WS) conducts live-

stock and wildlife damage management (i.e., depredation) operations throughout the United

States. Blood samples are taken from a subset of coyotes that are removed during these

operations (107 ). Samples are sent to the USDA APHIS National Wildlife Disease Program

in Fort Collins, Colorado and are tested for plague at either the USDA National Wildlife

Disease Laboratory in Fort Collins, Colorado or at the U.S. Centers for Disease Control

and Prevention (CDC) laboratory in Fort Collins, Colorado. Over 28,000 coyotes have been

screened for Y. pestis exposure (2005–2017). Plague antibodies are detected in 12.7% of

coyotes in 15 states (n = 3, 665) across all 13 years of surveillance (Table 12). Fewer than

2.5% of specimens are missing geographic location information and are ignored in subse-

quent analysis (Table 13). Of the 28,029 coyotes with geolocation information, about 13.0%

(n = 3, 648 total) are seropositive. In order to protect landowner privacy, county-level

USDA coyote sampling appear in Figure 51 and counties with at least one seropositive

coyote appear in Figure 52.

California Department of Public Health Blood samples from coyotes managed by

USDA APHIS WS in California are sent to the California Department of Public Health

(CDPH) Vector-borne Disease Laboratories for plague diagnostic testing. Beginning in

1983 the CDPH Vector-Borne Disease Section digitized coyote-based plague surveillance
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data across California. The CDPH conducts passive surveillance of coyotes as sentinels

for rodent plague activity to corroborate regional increases in plague activity indicated by

rodent plague surveillance data as well as fill surveillance gaps in regions of California with

fewer resources or lower access (108 ). Between 1983 and 2015, the CDPH screened 8,119

coyote blood samples for Y. pestis antibodies. However, the precise sampling location is

not recorded for the vast majority of coyotes. I geocode specimens without geographic

coordinates using location descriptions provided by the collector, county data, and base

maps. Two percent of tested coyotes lack geographic reference information and are ignored

in subsequent analysis (Table 13). Of the 7,955 coyotes with geolocation information, about

8.8% (n = 704 total) were seropositive. In order to protect landowner privacy, county-level

CDPH coyote sampling appear in Figure 53a and counties with at least one seropositive

coyote appear in Figure 53b.

5.2.2 Independently observed coyotes

I collate locations of coyotes observed by other agencies and individuals in order to deter-

mine the background coyote population in the United States. Observers include university

principal investigators, biologists, citizen scientists, and conservation agencies. These obser-

vations are recorded in databases maintained by various museums and government agencies.

Here, I assemble coyote observations across the United States from three main databases:

1) United States Geological Survey–Biodiversity Information Serving Our Nation (121 ), 2)

Global Biodiversity Information Facility (122 ), and 3) VertNet (123 ). Across the United

States 13,972 unique coyote occurrences were reported (Table 14; Figure 55). Taken to-

gether, these coyotes are not necessarily tested for plague antibodies, but are included in

subsequent analysis because they have accompanying location information. These data are

an approximation of coyote habitat preference, which is a better indicator of where coy-

otes reside than a species home range. Coyotes are found across the majority of North

America (171 ) and coyotes are not homogeneously distributed within their species home

range. Individual coyote home range information would be favorable for this analysis, but

was unavailable.
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Other state health departments I use an independent source of animal plague surveil-

lance data to validate my prediction from an ENM using USDA and CDPH data. The CDC

partners with state health departments that require the laboratory resources of the CDC to

monitor plague in wildlife. Animal specimens are sampled using active and passive surveil-

lance in response to a suspicious animal or human plague case. State health departments

send blood samples to the CDC in Fort Collins, Colorado for laboratory testing (Panel 7).

Test results are recorded in a massive, paper-based archive of animal-based plague surveil-

lance in North America maintained by the CDC National Center for Emerging and Zoonotic

Infectious Disease Division of Vector-Borne Diseases Bacterial Diseases Branch. A digiti-

zation effort by Maher and colleagues (85 ) georeferenced 3,777 occurrence points between

1998 and 2008 that included generic or specific reference to host species for 75 mammal

taxa, primarily C. latrans (n = 2, 516; 90% of samples). Plague-positive coyote location

data were provided by Maher and colleagues (85 ) that contained 93.8% of coyote locations

from the original analysis (n = 2, 360) and non-coyote locations (n = 929).

There are duplicates between the CDC and USDA coyote data because the CDC tested

coyotes for the USDA until 2012. Complete metadata are not available from the CDC so

identifying duplicates proves challenging. Duplicate coyote records between the CDC and

the USDA are detected by exact spatial coordinates using the sp package (165 , 166 ) in

the statistical software R (127 ). This is not a perfect duplicate detection method because

there is a risk of excluding coyotes that may not truly be duplicates (false-positive error).

However, the method is conservative because the CDC data set is being used for external

validation and was sought to reduce the risk of false-negative error. Duplicate records in

the CDC data set (n = 559 or ∼23.7% of CDC coyote plague specimens) are excluded

from subsequent analysis with the resulting data containing 1, 801 coyote records used

for external validation of my ENM. County-level state health department coyote sampling

appear in Figure 54.

Environmental data processing Although the relationship between plague and cli-

mate is complex (58 ), past studies have established links between Y. pestis occurrence and

climate factors (70 , 85 , 89 , 90 ). I employ the Oregon State University PRISM (Param-
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eter elevation Regression on Independent Slopes Model) statistical mapping system as my

predictor variables for the subsequent analysis. PRISM follows a weighted regression frame-

work that relies on digital elevation models built from a network of ground measurements

(125 ). The 30-year average normals (1981–2010) at a 2.5 arcminute (∼4 kilometer by ∼4

kilometer; ∼16 square kilometers) resolution for the contiguous United States are selected

because the USDA has a long-term partnership with the PRISM Climate Group at Ore-

gon State University and is the official climatological data for the USDA. The variables

used in the analysis are reviewed in Table 15. Data are available from the PRISM portal

(http://prism.oregonstate.edu/) or via the prism package (126 ) in the statistical software

R (127 ).

Environmental data sets often contain many different measurements, some highly cor-

related (e.g., elevation and precipitation) so collinearity is avoided by reducing the number

of variables used in the approach. I conduct a principal component analysis (PCA), which

transforms multiple predictors into a set of linearly uncorrelated variables called principal

components. PRISM variables for the contiguous United States range standardized using

the Gower metric (197 ) because PRISM variables are measured on different scales. A PCA

is conducted using the RStoolbox package (198 ) in the statistical software R (127 ). The

first two principal components of the PRISM variables account for over 96% of the vari-

ance (Table 16) and are used as the environmental covariates for the subsequent analysis

(Figure 56).

5.2.3 Statistical methods

Ecological niche model construction An ecological niche modeling approach is used

for my analyses. Developed in Chapter 3, the approach adapted a spatial cluster detection

algorithm originally designed for spatial cancer epidemiology. Here, I use the method as

a mechanism for environmental interpolation (19 ) to identify spatial clusters of climate

signatures within the PC space. These signatures are then predicted across California even

into areas that are not historically sampled or where plague surveillance data are unavailable.

The approach is based on a kernel density estimation of spatial relative risk (211 , 212 ) that

treats the observed point locations of cases and controls as realizations of spatial Poisson
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processes. An output of the model is a log relative risk value (i.e., the log ratio of estimated

spatial density of cases to that of controls; 211–216 ) where plague is more likely to be

observed in areas with a log relative risk value above zero than areas with a log relative risk

value below zero. Another output of the model is a local two-tailed asymptotic tolerance

calculation (219 , 221 ) at two significance levels (α = 0.05 & α = 0.01). An asymptotic

tolerance level value below 0.025 is considered “plague-suitable habitat” where plague is

likely sylvatically cycling and an asymptotic tolerance level value above 0.975 is considered

“plague-unsuitable habitat” where plague is likely not sylvatically cycling. The approach

also identifies areas within the predictions with sparse observation data. All analyses were

conducted in the statistical software R (127 ).

Here, USDA and CDPH coyote data are used in an ENM to predict the spatial distribu-

tion of enzootic plague in the western United States (i.e., the “disease map”). Seropositive

cases and seronegative controls of both agencies are used to estimate a log relative risk sur-

face in predictor space and then are predicted across geographic space to map risk across

the western United States. A fixed-bandwidth kernel density estimator provides an esti-

mate of the log relative risk surface with a smoothing parameter (i.e., bandwidth) chosen

with the maximal smoothing principle (229 ). I conduct a sensitivity analysis for the choice

of smoothing parameter (i.e., bandwidth) in predictor space. Unlike my findings in Chap-

ter 3 my prediction is not robust across increasing bandwidth sizes. A smaller bandwidth

(i.e., half the size chosen by the maximal smoothing principle; 229 ) performed similarly

to the initial model, but a larger bandwidth (i.e., double the size chosen by the maximal

smoothing principle; 229 ) performed worse than the initial model according to 95% con-

fidence intervals of the average Area Under the Receiver Operating Characteristic Curve

(AUC; 222 ) across iterations from a 50-fold cross-validation. This suggest that the scale of

observation associated with twice the selected bandwidth is not sensitive enough to detect

the same pattern as detected by the two smaller bandwidths. Prediction results and vali-

dation statistics of the bandwidth sensitivity analysis appear in Figure 57 and Figure 58,

respectively. An ENM with a bandwidth chosen by the maximal smoothing principle (229 )

is used for subsequent analysis and the predicted disease map is saved for the next step.
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Accounting for spatial sampling effort The analysis accounts for the spatial sampling

effort bias of coyote plague surveillance by the USDA and the CPDH in two ways. First,

because the ENM uses both cases (presences) and controls (absences) the method implicitly

accounts for sampling effort, provided the same limitations apply to both cases and controls

(212 ). Absence data improves ENM predictions and can identify low habitat suitability

areas that may have been considered high suitability if only presence data are used in an

ENM (281 ). For example, Brotons and colleagues, (161 ) suggests absence data helps to

remove bias in model predictions for uncommon habitat of a study region if presence and

absences are located in them. Without absence data, an ENM can associate uncommon

habitat with occurrences. Second, I conduct a separate ENM to detect the area of predictor

space that is tested for plague as an indicator of the sampling effort of coyote plague

surveillance (i.e., the “bias layer”). I then combine the disease map and bias layer together

to indicate zones of the spatial distribution of enzootic plague in the western United States

that are sufficiently tested for the presence of Y. pestis in coyotes.

For the bias layer, USDA and CDPH coyote data are combined, regardless of plague

exposure, and compared against the independently observed coyote observations from mu-

seum repositories. In this step, coyotes that are tested for plague (USDA and CDPH) are

considered “cases” and coyotes that are not tested for plague (museum data) are considered

“controls” in an ENM. A fixed-bandwidth kernel density estimator is used for the log rela-

tive risk surface with a smoothing parameter chosen with the maximal smoothing principle

(229 ). The predicted spatial distribution from this ENM indicates areas that are more

likely sampled for plague (“sufficiently sampled”) and less likely sampled for plague (“insuf-

ficiently sampled”) as an indicator of sampling effort bias. Insufficiently sampled areas are

zones with habitat types where coyotes have been historically observed, but are likely not

observed by the USDA or the CDPH and tested for plague. These areas indicate gaps in

plague surveillance. As a comparison, I calculate a spatial relative risk surface of the bias

layer in geographic space using the sparr package (282 ) in the statistical software R (127 )

with a fixed bandwidth of one degree latitude/longitude. A bias layer constructed from the

spatial density of observations is a traditional method of accounting for spatial sampling

bias in ENMs (280 ).
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I combine the disease map and the bias layer in two ways. First, I weight the disease

map by the bias layer to create a weighted continuous layer. The predicted log relative risk

of the bias layer is standardized by:

r(x)standardized =
r(x)

|min(r(x))|
+ 1

where r(x) is the log density relative ratio of the bias layer that is centered at the null value

(zero) by:

r(x) ≤ −max(r(x)) → r(x) = −max(r(x)).

The standardized bias layer ranges from a maximum of two (sufficiently sampled areas)

to a minimum of zero (insufficiently sampled areas) and is centered at a null value of one

(i.e., no change in weight). I weight log relative risk of coyote plague in the western United

States by multiplying the predicted log relative risk of the disease map by the standardized

bias layer. Second, a composite of the disease map and bias layer is created based on each

asymptotic tolerance significance levels. Both layers are categorized at a local two-tailed

significance level of α = 0.05 and overlaid to identify areas of the disease map with, for

example, statistically significant suitable plague habitat that are insufficiently tested for

plague when compared to historical coyote occurrence data. The output of this composite

is categorical in nature.

Model performance Model performance and statistical inference are conducted on the

predicted spatial distribution of enzootic plague in the western United States (disease map).

Predictive model performance is evaluated by 50-fold cross-validation. Controls are ran-

domly undersampled to balance plague prevalence (0.5) in each iteration. The average

AUC and a 95% confidence interval are calculated across iterations (222 ). A precision-

recall curve (223 ) is also used to evaluate the prediction. Additionally, the positive pre-

dictive value (PPV) of the predicted spatial distribution of enzootic plague in the western

United States is calculated for the CDC-tested animal plague surveillance data. The per-

formance of the disease map is assessed for coyotes and other non-coyote species within the
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CDC data.

5.3 Results

Statistically significant relative clustering of seropositive coyotes (cases; n = 4, 352) and

seronegative coyotes (controls; n = 31, 632) by the USDA (2005–2017) and the CDPH

(1983–2015) was detected in predictor space using the kernel-density estimation-based ap-

proach in predictor space (bandwidth = 0.054 PCA coefficient). The estimated intensity

surfaces of seropositive cases and seronegative controls in predictor space appear in Fig-

ure 59 and calculated asymptotic tolerances appear in Figure 60. Additionally, statistically

significant relative clustering of coyotes tested by the USDA (2005–2017) and the CDPH

(1983–2015) for Y. pestis antibodies (cases; n = 35, 984) and historical coyote observations

(controls; n = 13, 972) from museum repositories was detected in predictor space using the

kernel-density estimation-based approach in predictor space (bandwidth = 0.05 PCA coeffi-

cient). The estimated intensity surfaces of plague-tested cases and plague-untested controls

in predictor space appear in Figure 61 and calculated asymptotic tolerances appear in Fig-

ure 62.

5.3.1 Spatial distribution of enzootic plague in the western United States

The ecological niche of plague in coyotes was predicted for the western United States. The

log relative risk and asymptotic tolerance significance level values appear in Figure 63 and

Figure 64, respectively. Plague-suitable habitat was predicted in every western state but

not east of the 100th meridian. Plague-suitable habitat was predicted in mountainous and

plateau regions of the western United States. Areas of the western United States with high

log relative risk occur in the southwestern region compared to the northern states. Plague-

unsuitable habitat occurs in the eastern Great Plains, the Pacific coastline, and desert

regions. The ENM could not determine the habitat suitability for plague transmission in

alpine regions or elevation transition zones between plague-suitable and plague-unsuitable

areas. There were sparse coyote observations in areas such as, for example, the northwestern

region, high alpine habitat, and regions of the Pacific Ocean and Gulf of Mexico coastline.

The prediction of log relative risk across the western United States had an average Area
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Under the Receiver Operating Characteristic Curve (AUC) of 0.757 (95% CI: 0.747–0.767)

and an acceptable precision-recall curve after a 50-fold cross-validation (Figure 65). The

PPV for all CDC-tested animals (1998–2008) was high (88.1), especially for non-coyote

specimens (91.6), but also for coyotes (86.3). Of the CDC-tested coyotes that were observed

outside of plague-suitable areas (n = 423) about a third (30.3%) were located within the

circular diameter of an average coyote home range size of 25 km2 (144 ) and the vast majority

(85.8%) were within the observed dispersal range (∼40 km) of a coyote (145 ).

5.3.2 Spatial sampling effort of plague surveillance in the United States

The observed niche of plague in coyotes was predicted for the contiguous United States. The

log relative risk and asymptotic tolerance significance level values appear in Figure 66 and

Figure 67, respectively. Sufficient plague testing occurred in every western state. Mountain-

ous and plateaued regions of the western United States were relatively more likely tested

for plague occurrence than the eastern United States. Mid-elevation levels of mountainous

regions of the western United States were relatively more likely tested for plague occurrence

than high alpine regions. For example, the highest elevation of Utah, the Unita Mountains

(∼3,900 meters), was relatively more likely untested for plague occurrence than the Wasatch

Range (∼3,300 meters). In the southwestern United States the trend switches where, for

example, the high and low elevation areas of Arizona were relatively more likely tested for

plague occurrence than the transitional zone between these regions. Desert regions were rel-

atively more likely tested for plague occurrence than plains. For example, the Chihuahuan

and Sonoran Deserts were relatively more likely tested for plague occurrence than the Cen-

tral Valley in California or southern Great Plains. The ENM could not determine if areas of

the Great Plains in Kansas and Oklahoma were sampled sufficiently or insufficiently tested

for plague, as well as the area surrounding Las Vegas, Nevada. There were sparse coyote

observations in areas such as, for example, the northwestern region, extremely high alpine

habitat, and small unique climate areas of the eastern United States.

The environmentally interpolated bias layer using an ENM (Figure 67) was similar to

a spatially interpolated bias layer using a spatial relative risk function (Figure 68). The

areas predicted more likely untested for plague occurrence in Arizona and Wyoming are
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similar in the two models. However, the ENM predicted habitat in southern California and

eastern Washington, for example, as relatively more likely tested for plague than the spatial

interpolation.

5.3.3 Spatial distribution of enzootic plague in western United States account-

ing for spatial sampling effort

When the disease map and bias layer are combined the predicted spatial distribution of

enzootic plague is moderated. The majority of predicted plague-suitable habitat was suffi-

ciently tested for plague occurrence (Figure 69). Areas predicted plague-suitable but were

undersampled for plague occur in eastern and central New Mexico, the low elevation levels

of the Colorado Plateau, and the foothills of ranges within the Rocky Mountains. The

majority of predicted plague-unsuitable habitat was undersampled for plague occurrence

except in, for example, desert regions the northern Great Plains, and the Columbia Basin.

Areas of high weighted log relative risk were predicted in the Great Salt Lake area in Utah

and eastern foothills of the Sangre de Cristo Mountains in Colorado and New Mexico (Fig-

ure 70) similar to the unweighted log relative risk disease map (Figure 63). However, there

were more areas closer to the null log relative risk value (zero). The transitional zone and

Colorado Plateau in Arizona as well as the Black Range in New Mexico, for example, that

had elevated log relative risk values in the disease map were down weighted when account-

ing for the bias layer in the predicted disease map. In addition, central Texas as well as the

Central Valley in California, Willamette Valley in Oregon, and western slope of the Cascade

Mountains in Washington that had low predicted log relative risk values in the disease map

were up weighted when accounting for the bias layer in the predicted disease map.

5.4 Discussion

Sampling effort bias was evident in the surveillance of a zoonotic pathogen (Y. pestis) in

the western United States using a sentinel species (C. latrans) monitored by federal and

state animal-based surveillance systems. Accounting for sampling effort bias in an ecological

niche modeling framework, I predicted the spatial distribution of enzootic plague across the

western United States. My prediction using case (presence) and control (absence) coyote
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location data was more constrained than the extent of the spatial distribution predicted by

Maher and colleagues (85 ) who used only cases in their ENM. By accounting for spatial

sampling effort of my prediction the eastern most extent of the predicted distribution of

enzootic plague was restricted to west of the 100th meridian. Few animal plague cases have

occurred east of this “plague line” even though susceptible hosts (e.g., prairie dogs, coyotes,

and humans) occur on either side (102 , 276 , 279 ). My results suggest climate may be

a contributing factor to this phenomenon based on an ENM comprised of 30-year annual

average climatological variables.

USDA coyote-based plague surveillance is preferentially opportunistic sampling whereby

The USDA collects blood samples from coyotes typically on agricultural/rural land (live-

stock and wildlife damage management; 107 ). Coyotes provided to the CDPH for plague

testing were from USDA APHIS WS operations in California (283 ). Preferential sampling

explains why sampling effort was sufficient for the majority of the western United States

predicted suitable for plague transmission and insufficient for areas predicted unsuitable

for plague transmission. In Oregon, for example, the Columbia Plateau has the type of

environment that was sufficiently tested and predicted suitable for plague transmission,

but the Willamette Valley has the type of environment that was predicted unsuitable for

plague transmission and insufficiently sampled when compared to historical coyote records.

Additionally, preferential plague sampling is evident on a regional scale where the vast ma-

jority of USDA plague-tested coyotes were located west of the “plague line” although the

USDA has sufficiently tested both sides of the “plague line” in the northern Great Plains.

Opportunistic sampling explains why certain sampling effort was insufficient in some areas

and environments. With the exception of extremely high alpine environments, coyotes in

the historical record were observed in high elevation regions of the western United States

but were infrequently tested for plague because agricultural land is rare at high altitude

and fewer requests for USDA APHIS WS occurred in these areas. The USDA APHIS WS

operates only by request for assistance and thus has jurisdiction restrictions that creates

spatial gaps in sampling, for example, the Four Corners regions of the southwestern United

States.

Some spatial limitations in sampling were overcome by using an ENM as an environ-

157



mental interpolation technique (19 ). USDA sampling was sparse in northeastern Arizona

and northwestern New Mexico where many Native American Tribal Nations are located. A

spatial interpolation of plague relative risk (282 ) in coyotes would be challenged by sparse

data in this region. Much of the environment in this region is located in other parts of

the western United States and was tested for plague, which allowed me to predict plague-

suitable habitat into data sparse areas. Domestic dogs are commonly used as sentinel

species on the Navajo Reservation (146 , 284 ) and the CDC tested their blood samples.

The portion of those data were digitized between 1998 and 2008 (∼300 dogs) and were

used in the Maher and colleagues study (85 ). My ENM had high prediction performance,

especially for non-coyote specimens (PPV = 91.6; 31% were domestic dogs in Arizona and

New Mexico) suggesting my predictions are accurate in this region of the western United

States. Additionally, seropositive coyotes were located in Yakima County, Washington but

were excluded for lack of sub-county geographical identification. I predicted plague-suitable

area in Yakima County without these data in my ENM demonstrating the utility of envi-

ronmental interpolation. While the USDA found no seropositive coyotes in North Dakota

a separate survey found one Y. pestis exposed coyote (114 ) in McKenzie County, North

Dakota and I predicted parts of western North Dakota as suitable for plague transmission.

seropositive

My results are similar to other studies. Three studies by Eisen and colleagues predicted

high-risk plague areas in the southwestern United States (71 , 72 ) and only for New Mexico

(73 ) by conducting a logistic land-use regression approach using human plague cases ranging

from 1957 to 2004. My prediction captured all areas predicted by Eisen and colleagues (see

Figure 2 in 71 , Figure 1 in 72 , and Figure 1 in 73 ) as high plague risk. However, because the

analysis was not limited to certain land-use types (e.g., Rocky Mountain Ponderosa pine)

I predicted more areas of southwestern states (Arizona, Colorado, New Mexico, and Utah)

were suitable for plague transmission. My results also suggests that my prediction was more

sensitive but not as specific as for human-plague risk by Eisen and colleagues (71–73 ). Areas

with higher log relative risk in my prediction were in elevations immediately below areas

predicted by Eisen and colleagues (71–73 ) as high-plague risk. Seropositive coyotes may

be more commonly found in habitats at these lower elevations and either exposed there or
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immigrated to lower elevations after being exposed at higher elevations. Using an ENM and

a small sample of deer mice (Peromyscus maniculatus) Walsh and Haseeb (90 ) predicted

plague-suitable habitat in patchy, high elevation areas across the western United States and

further east than my prediction (see Figure 3 in 90 ). Even though deer mice are monitored

for plague activity (108 ), deer mice are more an indicator of a recent epizootic event (92 ,

93 , 285 ) than a predictor of enzootic areas. My prediction was more similar to Holt and

colleagues (89 ) predictions than my predictions in Chapter 3 and Chapter 4 using only

CDPH coyote serology data. Holt and colleagues (89 ) used rodent serology data from the

CDPH to predict plague-suitable areas of California, including high elevation areas of the

Santa Lucia Range and Diablo Range. My predictions in Chapter 3 and Chapter 4 did not

predict plague-suitable area in the central Coastal Ranges and I concluded that was for lack

of detection in CDPH coyote data. Here, I was able to predict plague-suitable area in the

central Coastal Ranges because I leveraged regional data from the USDA and seropositive

coyotes were found in habitats similar to the central Coastal Ranges, thus demonstrating

the utility of a regional analysis.

My study was limited to the western United States. Plague-infected animals have been

found in southern parts of British Columbia, Alberta, and Saskatchewan, Canada (286 ).

Maher and colleagues (85 ) predicted plague-suitable habitat in Canada using climate data

from WorldClim (287 ) for Canada and the United States. Here, I focused on interpolation

within the United States where I had plague surveillance data and predicted plague in

Montana and the Columbia Basin of Washington that have analogs in Canada. A future

study could predict sample bias corrected plague-suitable habitat in Canada using Canadian

plague surveillance data with or without United States plague surveillance data. While I

predicted plague-suitable habitat in southern New Mexico and western Texas, no plague

infected flea vectors have been found in Mexico (288 , 289 ) and no human plague case

has occurred since 1923 (290 ). Hot, dry climates like the Sonoran Desert were predicted

unsuitable for plague transmission potentially due to the lower efficiency of flea vector

transmission at higher temperatures (82 , 291 but see 81 ). Therefore, there may be less

plague activity in hotter, dryer climates of Mexico, which could explain the lack of animal

cases. But transmission can still occur in suboptimal conditions (41 , 46 ) and plague may
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be enzootic in Mexico at low levels. A future study could project plague-suitable habitat

into Mexico using United States plague surveillance data.

There are limitations to using only coyotes to predict the spatial distribution of enzootic

plague in the United States (Panel 8). While coyotes are wide-ranging and sample the

fullest extent of the plague niche (85 ), the bacterium is a generalist pathogen found in

numerous mammal species (43 ) and other mammals may be better suited as detectors of

plague, especially if their species range exists in areas where coyotes do not. Maher and

colleagues (85 ) conclude plague has its own niche distinct from any one of its mammal hosts;

therefore, while I accounted for how well I observed the coyote plague niche (Figure 49b)

by excluding non-coyote species, I did not sample the entire plague niche. My ENM using

coyotes primarily collected on agricultural land could not determine if some areas were

plague-suitable or plague-unsuitable. These areas included alpine habitats that was likely

due to a lack of sampling and other mammals, namely rodent species, can and are used to

detect plague in these environments (89 ). For example, the ENM could not determine if the

environment in and around Yellowstone National Park and Grand Teton National Park was

plague-suitable or plague-unsuitable. Plague was found absent or at low prevalence (<1%)

in surveys of small mammals (292 , 293 ) but at varying prevalence (0%-57%) in coyotes

(294 ) in Teton County, Wyoming. Because coyotes have large home range sizes (144 , 145 ),

the true location of Y. pestis exposure is not known for an individual coyote. Coyotes could

be exposed in one area and emigrate to another area where they are sampled which could

be problematic for prediction, especially for areas on the boundary of plague-suitable and

plague-unsuitable. Indeed, almost half (47.8%) of the CDC-tested coyotes that were not

observed in a plague-suitable raster pixel were within the raster neighborhood (12 km x

12 km) of a plague-suitable pixel. Using small mammals with smaller home ranges along

these boundaries or in unique environments like Teton County, Wyoming would provide

precise measurements of plague activity instead of only relying on coyotes that may have

immigrated. This source of uncertainty was not addressed in the present analysis and

assessment of its impact on the prediction of the spatial distribution of enzootic plague is

recommended for future investigation.

My estimate of the sampling effort bias of United States federal and state agencies that
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participate in plague monitoring is imperfect because coyote occurrences in museum repos-

itories are an imperfect proxy for the coyote niche. Biodiversity databases improve data

access and availability for investigations of species distributions; however, sampling effort,

spatial scale, type of data collected, and data storage protocols distort large-scale biodiver-

sity patterns (167–169 ). Not all coyotes were observed and of those that were observed

not all were recorded in museum repositories. Further, coyote observations in museum

repositories that did not have geographical location information were ignored in the present

analysis. There were fewer coyote observations with geographical location information in

museum repositories than those collected in coyote-based United States plague surveillance

systems, but I aimed to better match sampling effort. Observations from museum repos-

itories were not restricted to the present study period (1983-2017) and include historical

coyote occurrences (early 1900s) in order to capture as many records as possible. Inclusion

of pre-1983 records may result in a temporal bias in the analysis but the species range of

coyotes has not drastically changed in the western United States since 1900 (see Figure 3

in 295 ). A future study could account for sampling effort by using the spatial density of

coyote occurrences (from museums and coyote-based plague surveillance) as a covariate in

the estimation of the plague niche (see 90 ), either in the principal component analysis or

as a separate variable.

The ENM model used in the analysis is analytically limited to pairwise comparisons

in two dimensions (variables). Other types of this model have been extended to many

dimensions (208 ). Future studies can extend this ENM method to more than two dimensions

for applications where more than two variables are necessary, such as a variable for sampling

effort or the spatial distribution of the host. The ENM model is designed to compare cases

(presences) and controls (absences), but cases for two separate diseases could be compared.

The ENM model is an adaptation of a spatial relative risk (211 , 212 ) that originally assessed

cancer cases clustered within the population at risk in the United Kingdom. Plague cases

of two different species could be compared to assess where in predictor space they relatively

cluster together (niche overlap) or to assess how the niche of a particular host overlaps with

the plague niche, which can facilitate the identification of reservoir, spillover, and sentinel

hosts – a central focus of animal plague investigations in the United States (47 , 57 , 85 , 91 ,
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107 , 117 , 147 , 196 , 285 , 296 , 297 ). Sin Nombre Virus (Bunyaviridae), another zoonotic

pathogen that causes the deadly hantavirus pulmonary syndrome (298 ), is found in plague

enzootic regions (71 , 299 ). The relative clustering of plague and hantavirus cases could

be assessed using the developed ENM approach to predict the type of environment and

areas that both diseases are active for unified surveillance operations. Other methods can

detect niche overlap for more than two groups (300 , 301 ) and are recommended if that is

of interest.

A map of enzootic areas of plague can help inform conservation and public health pro-

grams, such as surveillance and vaccine delivery. My results could identify zones to monitor

for plague in threatened species and to deploy a vaccine currently developed for prairie dogs

(302 ) and, potentially, a human vaccine that is in development (303 ). The utility of the

predicted spatial distribution of enzootic Y. pestis in the western United States to describe

the spatial patterns in human cases is tested in Chapter 6. When accounting for sampling

effort, I identified areas where additional testing is warranted to determine the spatial dis-

tribution of enzootic plague. My results will likely not impact policy decisions about where

a coyote is sampled because that is the purview of USDA APHIS WS livestock and wildlife

damage management operations and not intended for plague surveillance. However, lab-

oratory testing of coyote blood samples for plague surveillance could be prioritized to fill

gaps in surveillance such as, for example, the Llano Estacado in New Mexico and the Little

Colorado River basin in Arizona. Even though the majority of USDA-tested coyotes were

located in New Mexico and Arizona, local-level shifts in testing can optimize laboratory

resources. Compared to historical coyote records, USDA plague surveillance has sufficiently

sampled the “plague line” in the northern Great Plains, but further testing in the Texas

Panhandle is recommended to validate plague is not enzootic east of the 100th meridian.

Surveillance in these areas may become more important in the future because of climate

change. Nakazawa and colleagues (70 ) predicted plague would shift northward and the

“plague line” may shift eastward as the Great Plains becomes more arid (304 , 305 ) further

threatening prairie dog colonies that have previously been unaffected by plague.
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5.6 Appendices

5.6.1 Appendix A: Panels

Panel 7: Diagnostic tests for Yersinia pestis in wildlife
The following are four of the recognized diagnostic tests for Yersinia pestis infection:
Passive hemagglutination Assay (PHA) & F1-inhibitation (PHI) test
– Antigen-antibody reactivity is visible qualitatively using F1 antigen coated on glutaraldehyde-fixed sheep red

blood cells as a sensitizing antigen. If serum reacts positively, a PHI test is run to verify the specificity of the
PHA test that calculates the titer.

– Positive Test: At least fourfold change in antibody titer, specific for F1 antigen of Y. pestis.
– Strength: Sensitive and generally reproducible.
– Limitations: Relies on unstable reagent, interpretation is fairly subjective, and prone to nonspecific reactivity of

natural antibodies.
– More detailed procedures found in (181 ).

F1 Luminex Plague Assay (F1-LPA)
– Semi-automated bead-based flow cytometric assay, specific for the F1 antigen of Y. pestis.
– Positive Test: With a baseline background noise of 250 mean fluorescent intensity (MFI), a Signal to Noise

Ratio (S/N) ≥ 10 (or ≥ 2,500 MFI) is considered a positive test.
– Strength: More sensitive (x64) than PHA-PHI, fewer false negative results.
– Limitation: Has not been assessed for human tissue.
– More detailed procedures found in (120 ).

Fluorescent Antibody (FA)
– Smears of suspected tissue are prepared with plague antiserum and examined via fluorescent microscopy.
– Positive Test: Smear brightly fluoresce as “apple green-colored hollow rods” (Or less brightly if conducting a

fluorescence inhibition test).
– Strength: Quick assay and requires a small amount of test material.
– Limitations: Sensitive with fresh tissue samples, not optimized for field collection.
– More detailed procedures found in (182 , 183 ).

Bacterial Culture
– Suspected tissue samples are suspended in blood agar and examined for growth daily for at least 7-10 days.
– Positive Test: Bacterial growth appears, typically a “stalactite”-type pattern or colonies about 4-7 mm in

diameter.
– Strength: The gold-standard assay.
– Limitation: Time intensive. Y. pestis is slow growing.
– More detailed procedures found in (182 ).
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Panel 8: Considerations for coyotes as a sentinel species for plague activity
Coyotes (Canis latrans) have been used as a sentinel species of plague (Yersinia pestis) activity in rodent
populations of North America (95 , 112–116 ), but there are limitations for focusing on coyote-based plague
surveillance data. I outline some notable limitations below:

• Coyotes are a wide-ranging species (144 , 145 , 171 ) and effectively sample a broad variety of habitats in
which plague occurs and thus sample a considerable extent of the ecological niche of plague (85 ). However,
coyotes are not observed homogeneously across North America (Chapter 5) and other species may be
better indicators of plague activity in some habitats (e.g., rodent species for alpine regions of California).
Therefore, without rodent data, I am estimating a the fundamental ecological niche of plague in coyotes,
which I am considering as an approximation for the entire fundamental ecological niche of plague.

• The location where an individual coyote was truly exposed to Y. pestis is unknown and challenging to
discern (91 , 117 ). Coyotes are mobile, encountering many rodents across their expansive individual home
range (144 , 145 , 184 ) and whose plague antibodies can last for many months (91 , 112 , 118 ). Reinfection
of coyotes is also probable and so a coyote can only indicate its most recent plague exposure. Rodent
species have smaller individual home range sizes (185 ) and are the gold standard indicator of current or
recent plague activity (108 ).

• Coyote specimens are not collected evenly across the United States and instead are collected
opportunistically (107 ). Coyotes tested for plague exposure are primarily collected in conjunction with
ongoing livestock/wildlife damage management operations conducted by the U.S. Department of
Agriculture Animal and Plant Health Inspection Service Wildlife Services. Agricultural and urban areas
may be more sampled for plague than other land-use types and their respective habitats. Including other
species monitored for plague activity may help overcome this potential spatial sampling effort bias.
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5.6.2 Appendix B: Tables

Table 12: Summary of Canis latrans testing for antibodies against Yersinia pestis by Califor-
nia Department of Public Health (CPDH; 1983–2015), U.S. Department of Agriculture (USDA;
2005–2017) and U.S. Centers for Disease Control and Prevention (CDC; 1998–2008).

Agency Plague Result Count Tested Count With Location Prevalence
CDPH Positive 705 704 8.8%

Negative 7,414 7,251
USDA Positive 3,665 3,648 13.0%

Negative 25,082 24,381
CDC Positive 2,516 2,360

Negative Not digitized Not digitized
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Table 13: Missingness of coyote specimens by U.S. Department of Agriculture (2005–2017) and
California Department of Public Health (CDPH; 1983–2015). Specimens were considered missing
if textual geographic location information was unavailable or indiscernible to geocode. Fewer than
2.5% of specimens were missing and ignored in subsequent analysis.

State Missing Total
Arizona 33 3,097
California* 164 8,199
Colorado 3 2,161
Idaho 1 576
Kansas 2 240
Montana 43 6,272
Nebraska 5 586
New Mexico 42 5,998
Nevada 9 3,269
Oklahoma 12 1,177
Oregon 3 543
South Dakota 5 521
Texas 16 1,084
Utah 3 487
Washington† 540 590
Wyoming 0 1,224

*Missing specimens were located in 28 counties (∼48% of counties in California). Over 30% of missing specimens
were located in Santa Clara County, California and San Luis Obispo County, California.
†All missing specimens were located in Yakima County, Washington.
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Table 14: Sources of Independent Coyote Observations in the United States
Database Coyote Observations
Angelo State Natural History Collections 100
California Academy of Sciences 59
California State University, Long Beach 2
Chicago Academy of Sciences 11
Cornell University Lab of Ornithology 42
Cornell University Museum of Vertebrates 36
Denver Museum of Nature & Science 83
Fort Hays Sternberg Museum of Natural History 70
Florida Museum of Natural History 120
Humboldt State University 1
iNaturalist.org 4,485
Illinois State University 3
James R. Slater Museum of Natural History 78
Louisiana State University Museum of Natural Science 43
Michigan State University Museum 91
Museum of Cultural and Natural History–Central Michigan University 4
Museum of Comparative Zoology, Harvard University 4
Museum of Southwestern Biology 458
Museum of Texas Tech University 250
Museum of Vertebrate Zoology 987
Natural History Museum of Geneva 3
Natural History Museum of Los Angeles County 166
naturgucker.de 11
New Mexico Museum of Natural History and Science 1
National Museum of Natural History, Smithsonian Institution 1
National Parks Service 207
Natural History Museum of Utah 186
New York State Museum 528
North Carolina Museum of Natural Sciences 86
Northern Michigan University 5
The Ohio State University Borror Lab of Bioacoustics 139
The Ohio State University Museum of Biological Diversity 363
Royal Ontario Museum 46
Sam Noble Oklahoma Museum of Natural History 556
Santa Barbara Museum of Natural History 37
Tall Timbers Research Station and Land Conservancy 1
Texas A&M University Biodiversity Research and Teaching Collections 44
United States Geological Survey (USGS) 30
USGS Western Ecological Research Center San Diego Field Station 2,899
University of Alaska Museum of the North 93
University of Arizona Museum of Natural History 31
University of California–Los Angeles Dickey Collection 48
University of California–Santa Barbara Marine Science Institute 62
University of Colorado Museum of Natural History 1
University of Kansas Biodiversity Institute 676
University of Michigan Museum of Zoology 257
University of Texas at El Paso Biodiversity Collections 409
University of Washington Burke Museum 90
University of Wyoming Museum of Vertebrates 9
Yale University Peabody Museum 59
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Table 15: Oregon State University Parameter elevation Regression on Independent Slopes Model
(PRISM) 30-Year Average Annual Normals (1981-2010). Modeled using a combination of a digital
elevation model (DEM) and climatologically-aided interpolation (CAI)*. Variables were modeled
at 30 arcseconds (∼800 m) resolution and aggregated to 2.5 arcminutes (∼4 km). See (125 ) for
more details. .

Variable Units Derivation

Precipitation millimeters (mm) Modeled; Summing monthly averages (rain + melted
snow)

Maximum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Temperature °Celsius (°C) Derived; Average of Maximum Temperature and
Minimum Temperature

Minimum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Dewpoint Temperature °Celsius (°C) Modeled; CAI used minimum temperature as the
predictor grid

Maximum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
maximum temperature as the predictor grids

Minimum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
minimum temperature as the predictor grids

*Accuracy of these data is based on the original specification of the Defense Mapping Agency one-degree DEMs.
The stated accuracy of the original DEMs is 130-meter circular error with 90% probability. Data sets use all
weather stations, regardless of time of observation.
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Table 16: Summary of principal component analysis of Oregon State University Parameter ele-
vation Regression on Independent Slopes Model (PRISM) 30-Year Average Annual Normals (1981-
2010) at a 2.5 arcminute (∼4 km) resolution. Variables were masked to the western United States
and were range standardized using the Gower metric (197 ).

Statistic Variable Principal Component
PC1 PC2 PC3

Standard Deviation 0.326 0.170 0.058
Proportion of Variance 0.756 0.205 0.024
Cumulative Proportion of Variance 0.756 0.962 0.985
Loadings Precipitation 0.063 0.342 0.549

Maximum Temperature 0.485 -0.208 -0.290
Mean Temperature 0.519 -0.064 0.015

Minimum Temperature 0.477 0.088 0.314
Mean Dewpoint Temperature 0.446 0.532 -0.101

Maximum Vapor Pressure Deficit 0.243 -0.533 -0.229
Minimum Vapor Pressure Deficit 0.073 -0.510 0.673
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5.6.3 Appendix C: Figures

(a) (b)

Figure 49: (a) The disease niche hypothesis postulated for Yersinia pestis by Maher and colleagues
(85 ) where the ecological niche of Y. pestis is independent of its host niches and plague occurs in
hosts only in areas with suitable conditions for Y. pestis transmission. (b) The proposed “observed”
disease niche hypothesis that augments the disease niche hypothesis for Y. pestis by including the
region of predictor space that is sampled and tested for plague. The bacterium and its hosts may
occur in areas not sampled and tested for plague.
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Figure 50: Data layers of the present analysis and their sources. Data are structured as point
locations or raster grids. Three layers are predicted (black color) using data layers (grey color).
Arrows represent the layers involved for each predicted layer.
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Figure 51: Number of coyotes tested by U.S. Department of Agriculture Animal and Plant
Health Inspection Service National Wildlife Disease Program for antibodies against Yersinia pestis
(2005–2017). Sampling is heterogeneous across the United States, primarily in historic plague en-
zootic areas. Data for coyotes from California are managed by the California Department of Public
Health and were not included with these data.
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Figure 52: Results of coyotes tested by U.S. Department of Agriculture Animal and Plant
Health Inspection Service National Wildlife Disease Program for antibodies against Yersinia pestis
(2005–2017). A coyote with plague antibodies was not observed in every county sampled. Counties
with a coyote that tested plague-positive are found throughout the western region of the United
States. A figure of crude rates is not included
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(a) (b)

Figure 53: (a) Number of coyotes tested by the California Department of Public Health (CDPH)
for antibodies against Yersinia pestis (1983–2015). Sampling is heterogeneous across the state of
California, primarily in historic plague enzootic areas and areas of high concern. Limited sampling
in the Mojave and Sonoran Deserts. (b) Results of coyotes tested by CDPH for antibodies against
Y. pestis (1983–2015). A coyote with plague antibodies was not observed in every county sampled.
Only 2% of observations were unable to be geolocated and ignored in subsequent analysis.
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Figure 54: Number of coyotes sampled by state health departments and tested by the U.S. Centers
for Disease Control and Prevention (CDC) for antibodies against Yersinia pestis (1998–2008). All
coyotes in this data set tested positive for plague antibodies because coyotes that tested negative
were not electronically available. See (85 ) for more details. Possible duplicate coyote specimens
between the U.S. Department of Agriculture and the CDC were removed from the CDC data and
are not presented here.
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Figure 55: Number of coyote observations with geolocation information collated by various bio-
diversity repositories (1900-2017). These coyotes were not tested for antibodies against Yersinia
pestis. Coyotes are found throughout the United States, including Alaska, with higher observations
recorded in Southern California and the western United States, in general. See (121–123 ) for more
details.

181



Principal component 1

-1.05 -0.5 0 0.5 0.9

coefficient

Principal component 2

-1.05 -0.5 0 0.5 0.9

coefficient

Figure 56: First two principal components of a principal component analysis of Oregon State
University Parameter Elevation Regression on Independent Slopes Model 30-year average annual
normals (1981-2010) at a 2.5 arcminute (∼4 km) resolution of the contiguous United States. Vari-
ables were range standardized using the Gower metric (197 ).
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Figure 57: Comparison of bandwidth selection on the predicted area of California with a log rela-
tive risk surface in predictor space of coyotes of coyotes that were observed but not tested for plague
antibodies (controls) and coyotes that were tested the presence of plague antibodies (cases) by the
California Department of Public Health (CDPH; 1983–2015) and U.S. Department of Agriculture
(USDA; 2005–2017) using the developed approach. Color pertains to calculated asymptotic toler-
ances (219 , 221 ) at given local two-tailed significance levels (α = 0.05 & α = 0.01). Warmer-colored
areas are more likely suitable habitat for plague transmission and cooler-colored areas are more likely
unsuitable habitat for plague transmission with greyer-colored areas statistically indistinguishable.
The areas in yellow coloring correspond to habitat with sparse data. The prediction is robust across
smaller bandwidth selection with a notable reduction in habitats the log relative risk surface cannot
statistically distinguish as suitable (unsuitable) for plague transmission as bandwidth increases.
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Figure 58: Results of 50-fold cross-validation of a bandwidth selection comparison for the log
relative risk surface in predictor space of coyotes that were observed but not tested for plague
antibodies (controls) and coyotes that were tested for the presence of plague antibodies (cases) by
the California Department of Public Health (CDPH; 1983–2015) and U.S. Department of Agriculture
(USDA; 2005–2017) using the developed approach. Iterations were balanced (prevalence = 0.5) by
randomly undersampling control locations used for in each fold for cross-validation. The prediction
was robust across small bandwidths, but not a larger bandwidth. Area Under the Receiver Operating
Characteristic Curve (AUC) was similar between the bandwidth chosen using the maximal smoothing
principle (229 ) and a bandwidth half the size. A bandwidth double the size chosen by the maximal
smoothing principle (229 ) resulted in poorer cross-validation than other bandwidths.
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Figure 59: Estimated intensity surface in predictor space of seronegative coyotes (controls)
and seropositive coyotes (cases) tested by the California Department of Public Health (CDPH;
1983–2015) and U.S. Department of Agriculture (USDA; 2005–2017) using the developed approach.
Predictor space is comprised of the first two principal components of a principal component analy-
sis of seven range-standardized (197 ) Oregon State University Parameter Elevation Regression on
Independent Slopes Model 30-year average annual normals (1981-2010) at a 2.5 arcminute (∼4 km)
resolution. The bandwidth (0.054) was chosen using the maximal smoothing principle (229 ). The
dashed grey line is the entire extent of predictor space of the western United States and the solid grey
line is the extent of predictor space that the CDPH and the USDA sampled with coyote specimens.
The area outside of the solid grey line is habitat that was neither sampled by the CDPH nor the
USDA.
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Figure 60: The estimated log relative risk surface in predictor space of seronegative coyotes (con-
trols) and seropositive coyotes (cases) tested by the California Department of Public Health (CDPH;
1983–2015) and the U.S. Department of Agriculture (USDA; 2005–2017) using the developed ap-
proach. Calculated asymptotic tolerances at given local two-tailed significance levels (α = 0.05 & α
= 0.01) are included (219 , 221 ). Color pertains to log relative risk values where positive log relative
risk (more likely cases) are in red and negative log relative risk (more likely controls) in blue with
greyer coloring closer to the 0 null log relative risk value. Predictor space is comprised of the first
two principal components of a principal component analysis of seven range-standardized (197 ) Ore-
gon State University Parameter Elevation Regression on Independent Slopes Model 30-year average
annual normals (1981-2010) at a 2.5 arcminute (∼4 km) resolution. The bandwidth (0.054) was
chosen using the maximal smoothing principle (229 ). The dashed grey line is the entire extent of
predictor space of the western United States and the solid grey line is the extent of predictor space
that the CDPH and the USDA sampled with coyote specimens. The area outside of the solid grey
line is habitat that was neither sampled by the CDPH nor the USDA.
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Figure 61: Estimated intensity surface in predictor space of coyotes that were observed but not
tested for plague antibodies (controls) and coyotes that were tested the presence of plague anti-
bodies (cases) by the California Department of Public Health (CDPH; 1983–2015) and the U.S.
Department of Agriculture (USDA; 2005–2017). Predictor space is comprised of the first two princi-
pal components of a principal component analysis of seven range-standardized (197 ) Oregon State
University Parameter Elevation Regression on Independent Slopes Model 30-year average annual
normals (1981-2010) at a 2.5 arcminute (∼4 km) resolution. The bandwidth (0.054) was chosen
using the maximal smoothing principle (229 ). The dashed grey line is the entire extent of predictor
space the contiguous United States and the thin solid black line is the extent of predictor space that
the CDPH, USDA, and independent investigators observed coyotes. The area outside of the solid
grey line is habitat that did not have a coyote observation.
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Figure 62: The estimated log relative risk surface in predictor space of coyotes that were observed
but not tested for plague antibodies (controls) and coyotes that were tested the presence of plague
antibodies (cases) by the California Department of Public Health (CDPH; 1983–2015) and the
U.S. Department of Agriculture (USDA; 2005–2017) using the developed approach. Calculated
asymptotic tolerances at given local two-tailed significance levels (α = 0.05 & α = 0.01) are included
(219 , 221 ). Color pertains to log relative risk values where positive log relative risk (more likely
cases) are in purple and negative log relative risk (more likely controls) are in green with greyer
coloring closer to the 0 null log relative risk value. Predictor space is comprised of the first two
principal components of a principal component analysis of seven range-standardized (197 ) Oregon
State University Parameter Elevation Regression on Independent Slopes Model 30-year average
annual normals (1981-2010) at a 2.5 arcminute (∼4 km) resolution. The bandwidth (0.05) was
chosen using the maximal smoothing principle (229 ). The dashed grey line is the entire extent of
predictor space of the contiguous United States and the thin solid black line is the extent of predictor
space that the CDPH, USDA, and independent investigators observed coyotes. The area outside of
the solid grey line is habitat that did not have a coyote observation.
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Figure 63: Areas of the western United States predicted with log relative risk surface in predictor
space of seronegative coyotes (controls) and seropositive coyotes (cases) tested by the California
Department of Public Health (CDPH; 1983–2015) and the U.S. Department of Agriculture (USDA;
2005–2017) using the developed approach. Color pertains to log relative risk values where positive
log relative risk (more likely suitable habitat for plague transmission) are in red and negative log
relative risk (more likely unsuitable habitat for plague transmission) are in blue with greyer coloring
closer to the 0 null log relative risk value. The areas in yellow coloring correspond to habitat that
was neither sampled by the CDPH nor the USDA.
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Figure 64: Areas of the western United States predicted with log relative risk surface in predictor
space of seronegative coyotes (controls) and seropositive coyotes (cases) tested by the California
Department of Public Health (CDPH; 1983–2015) and the U.S. Department of Agriculture (USDA;
2005–2017) using the developed approach. Color pertains to calculated asymptotic tolerances (219 ,
221 ) at given local two-tailed significance levels (α = 0.05 & α = 0.01). Warmer-colored areas
are more likely suitable habitat for plague transmission and cooler-colored areas are more likely
unsuitable habitat for plague transmission with greyer-colored areas statistically indistinguishable.
The areas in yellow coloring correspond to habitat that was neither sampled by the CDPH nor the
USDA.
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Figure 65: Results of 50-fold cross-validation of the estimated log relative risk surface in predictor
space of seronegative coyotes (controls) and seropositive coyotes (cases) tested by the California
Department of Public Health (CDPH; 1983–2015) and the U.S. Department of Agriculture (USDA;
2005–2017) using the developed approach. Iterations were balanced (prevalence = 0.5) by randomly
undersampling control locations used for in each fold for cross-validation. Results are fairly robust
with a high average Area Under the Receiver Operating Characteristic Curve (AUC) of 0.757 (95%
CI: 0.747–0.767) and an fairly acceptable precision-recall curve.
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Figure 66: Areas of contiguous United States predicted with log relative risk surface in predictor
space of coyotes that were observed but not tested for plague antibodies (controls) and coyotes
that were tested the presence of plague antibodies (cases) by the California Department of Public
Health (CDPH; 1983–2015) and the U.S. Department of Agriculture (USDA; 2005–2017) using the
developed approach. Color pertains to log relative risk values where positive log relative risk (more
likely tested for plague antibodies) are in purple and negative log relative risk (more likely not tested
for plague antibodies) are in green with greyer coloring closer to the 0 null log relative risk value.
The areas in yellow coloring correspond to habitat with sparse data and statistically dissimilar from
sampled habitat.
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Figure 67: Areas of contiguous United States predicted with log relative risk surface in predictor
space of coyotes that were observed but not tested for plague antibodies (controls) and coyotes
that were tested the presence of plague antibodies (cases) by the California Department of Public
Health (CDPH; 1983–2015) and the U.S. Department of Agriculture (USDA; 2005–2017) using the
developed approach. Color pertains to calculated asymptotic tolerances (219 , 221 ) at given local
two-tailed significance levels (α = 0.05 & α = 0.01). Purple-colored areas were more likely tested for
the presence of plague antibodies in coyotes and green-colored areas were more likely not tested for
the presence of plague antibodies in coyotes with greyer-colored areas statistically indistinguishable.
The areas in yellow coloring correspond to habitat with sparse data and statistically dissimilar from
sampled habitat.
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Figure 68: Areas of contiguous United States predicted with log relative risk surface in geographic
space (221 ) of coyotes that were observed but not tested for plague antibodies (controls) and coyotes
that were tested the presence of plague antibodies (cases) by the California Department of Public
Health (CDPH; 1983–2015) and U.S. Department of Agriculture (USDA; 2005–2017). A one-degree
bandwidth was chosen. Color pertains to calculated asymptotic tolerances (219 , 221 ) at given local
two-tailed significance levels (α = 0.05 & α = 0.01). Purple-colored areas were more likely tested for
the presence of plague antibodies in coyotes and green-colored areas were more likely not tested for
the presence of plague antibodies in coyotes with greyer-colored areas statistically indistinguishable.
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Figure 69: Composite of the disease map (Figure 64) and bias layer (Figure 67) categorized by
calculated asymptotic tolerances (219 , 221 ) at given local two-tailed significance levels (α = 0.05 &
α = 0.01) of a predicted log relative risk surface in predictor space. Seronegative coyotes (controls)
and seropositive coyotes (cases) tested by the California Department of Public Health (CDPH;
1983–2015) and the U.S. Department of Agriculture (USDA; 2005–2017) were compared using the
developed approach. Warmer-colored areas are more likely suitable habitat for plague transmission
and cooler-colored areas are more likely unsuitable habitat for plague transmission with greyer-
colored areas statistically indistinguishable. I am more confident in the predicted areas that were
sufficiently sampled by the USDA and the CDPH, indicated in darker colors, than undersampled
areas when compared to historical coyote occurrences from museum repositories. The areas in yellow
coloring correspond to habitat that did not have a coyote occurrence either from the USDA, CDPH,
or museum repositories.
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Figure 70: Composite of the disease map (Figure 63) and bias layer (Figure 66) where log relative
risk values of the disease map are scaled by the bias layer. In the disease map seronegative coyotes
(controls) and seropositive coyotes (cases) tested by the California Department of Public Health
(CDPH; 1983–2015) and the U.S. Department of Agriculture (USDA; 2005–2017) were compared
using the developed approach. Warmer-colored areas are more likely suitable habitat for plague
transmission and cooler-colored areas are more likely unsuitable habitat for plague transmission
with greyer-colored areas statistically indistinguishable. In the bias layer coyote observations from
museum repositories (controls) were compared to coyotes tested for plague antibodies by the UDSA
and the CDPH (cases) using the developed approach. Bias layer values were standardized by the
minimum bias layer value. The areas in yellow coloring correspond to habitat that did not have a
coyote occurrence either from the USDA, CDPH, or museum repositories.
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6 Associating human risk with the spatial distribution of en-
zootic plague in the western United States

“We may brave human laws, but we cannot resist natural ones.”

- Captain Nemo in Twenty-Thousand Leagues Under the Sea
by Jules Verne (306 )

6.1 Introduction

Disease mapping can detect irregular spatial clustering of disease cases and predict disease

risk in areas not historically monitored for a disease (307 ). There is a separate category of

disease mapping called “ecological regression” in which the goal of the analysis is to elucidate

associations between disease incidence and risk factors. With the increasing availability

of secondary data sources, ecological regression has been used to study the relationship

between environmental risk factors and disease risk including, for example, cancer (308 ),

cardiovascular disease (309 ), and non-alcoholic liver disease (310 ) as well as infectious

diseases such as malaria (311 ), lyme disease (312 ), and hand, foot, and mouth disease

(313 ). Ecological regression has also been used to assess veterinary diseases (e.g., canine

heartworm; 314 ) and wildlife diseases (e.g., coral diseases; 315 ). However, a review by

Hay and colleagues (316 ) determines only two percent (seven of 355) infectious diseases

of clinical importance for humans have been comprehensively charted. Here, I perform

an ecological regression on a vector-borne zoonotic disease that originates in rodents and

determine the risk of human infection in the western United States.

Plague is a Category A infectious disease caused by the bacterium Yersinia pestis and

human cases are reportable to the World Health Organization (WHO), U.S. Centers for

Disease Control and Prevention (CDC), and state health authorities. The WHO case def-

inition of plague is found in Panel 9. While rare in the United States, plague is a high

consequence disease that can cause severe pathology, including death (33 ). Plague is also a

security concern as it has the potential to be used as a biological weapon (101 ). Individual

risk factors include living in close proximity to or handling infected animals and their flea
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vectors (31 , 38 , 55 ).

Individual-level risk factors are heightened in areas where plague is active within a syl-

vatic cycle (i.e., rodent-to-rodent transmission). Human plague cases have been associated

with epizootic (i.e., outbreak within animals) events (57 ), but active transmission also

occurs during enzootic (i.e., maintenance within animal populations) periods. Therefore,

humans are at risk of plague infection in areas with persistent plague activity (i.e., enzootic

areas). Eisen and colleagues (71–73 ) found an association between human plague risk and

landscape factors such as, for example, elevation and distance from habitat types associated

with plague activity. However, the authors restricted most of their analyses (72 , 73 ) to

human cases with a known exposure occurring within 2 kilometers of their place of residence

resulting in a smaller sample size (e.g., n = 266 of 346 human plague cases, 1957–2004, in

72 ). The authors also restricted their analyses to the southwestern United States (71–73 )

where the majority of human plague cases have occurred since its introduction in 1900 (33 ).

However, cases have occurred in 13 western states with no estimation of high risk areas for

human plague infection.

Here, I estimate the relative risk of human plague cases across the western United States

in relation to environmental factors. I test the utility of predicting the spatial distribution

of enzootic plague as a risk factor of human plague. In Chapter 5, I predicted the spatial

distribution of enzootic plague in coyotes across the western United States using coyote-

based plague surveillance data and climatological variables. Climatological and landscape

variables are readily available, but the indices of enzootic plague required additional data

and computational resources to predict. Therefore, in this chapter, I test whether the

coyote-based plague data helped predict historical human plague risk in the western United

States (1950 – 2017). I compare indices of enzootic plague and the same climatological

variables used to predict the spatial distribution of enzootic plague on how well they explain

the spatial variation in historic human plague cases. I conduct my analysis at the county

level due to data availability and capture the exposure location of all human cases instead

of restricting the analysis to residence-linked cases. Human plague cases are rare, especially

outside of the southwestern United States, so I use a spatial statistical method to borrow

information from nearby areas to stabilize risk estimates even in areas without a detected

198



human plague case.

6.2 Data and methods

6.2.1 Human data collation

I aim to predict county-level counts of human plague cases between 1950 and 2017 in the

western United States. I restrict my analysis to cases after 1950 because they were likely

acquired in a plague enzootic area during an epizootic event (i.e., disease outbreak animal

populations; 57 ) and to assure that they were not part of urban-rat-transmission phenom-

ena. The CDC receives aggregated human plague case data from state health departments

on an annual basis. Data are reported monthly at the county level to protect the privacy of

cases. Since its introduction in 1900, Y. pestis has infected 1,045 people in the United States

(1900–2017; Table 17 and Figure 71a). Plague arrived in California in 1900 and quickly

jumped from commensal rats into native rodent populations where it spread eastward and

reached western Kansas by the 1940s (102 ). Human cases before the 1930s were marked by

outbreaks in port cities (e.g., San Francisco, CA and Los Angeles, CA), but by 1950 human

cases occurred in the country interior only. Since 1950, human plague cases have occurred

in 13 western states (521 total cases) an over 80% of these cases have occurred in the Four

Corner States (Arizona, Colorado, New Mexico, and Utah; Figure 71b). There have been

an average of six cases per year since 2000 (32 , 33 , 103 ). At least one plague case has

occurred in 118 of the 1,062 counties of the western United States (Figure 72a) and only

one plague case has occurred in 58 (∼49%) of those counties (Figure 72b).

I consider background human population at risk of plague to be the western United

States population in 2010 based on the 2010 United States census (132 ) at the county-

level. The human population density of the western United States in 2010 appears in

Figure 73a. Human plague counts are aggregated across the study period (1950–2017) and

I create a variable to account for the change in human population over the study period.

The percent change in human population size between 1950 and 2017 is calculated using the

population of each western United States county recorded in the 1950 United States census

(317 ) and the 2010 United States census (132 ). The percent change in human population
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size of the western United States (1950–2010) appears in Figure 73b. Three counties were

created during the study period and are assigned their earliest population value. Broomfield

County, Colorado was a city in 1961 and is assigned its population according to the 1961

United States census (187 ). La Paz County, Arizona and Cibola County, New Mexico were

created in the 1980s and are assigned their population according to the 1990 United States

census (188 ). While the United States Census Bureau collects socio-economic and socio-

demographic information associated with a sample of households and plague cases have

been associated with socio-demographic factors (318 ), I do not include these factors here

as they are not the focus of the study.

6.2.2 Environmental data processing

Plague occurrence involves the interaction of a vector (fleas) and mammalian hosts; hence,

occurrence typically relates to the intersections of each in the environment. Occurrence

has been associated with climate factors (58 , 59 , 70 , 85 , 89 , 90 ) and found at certain

elevations (71–73 ). To examine the utility of my prediction of the spatial distribution of

enzootic plague to explain the spatial distribution of human plague cases (1950–2017), I first

assess how climatological and topographical variables may explain the spatial distribution of

human plague cases (1950–2017). I use the same topographical and climatological variables

that were used to predict the spatial distribution of enzootic plague (See Chapter 5 for

more details). I aggregate these environmental variables to the county-level for my analysis

by using the county-level means. I use elevation data from the the National Aeronautics

and Space Administration Shuttle Radar Topology Mission (NASA-SRTM) Digital Terrain

Elevation Data (128 ). I obtain NASA-SRTM data via the raster package (129 ) in the

statistical software R (127 ). County average elevation appears in Figure 74. I employ

climatological data from the Oregon State University Parameter elevation Regression on

Independent Slopes Model (PRISM) statistical mapping system. PRISM uses a weighted

regression framework that relies on digital elevation models built from a network of ground

measurements (125 ). I select the 30-year average normals (1981–2010) at a 2.5 arcminute

(∼4 kilometer by ∼4 kilometer; ∼16 square kilometers) resolution because the temporal

range of the data mostly overlap with the animal-based plague surveillance I use in previous
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chapters (1983–2017). I obtain PRISM data via the prism package (126 ) in the statistical

software R (127 ) and review each variable in Table 18. The county average PRISM variables

appear in Figure 74 and Figure 75.

To predict the spatial distribution of enzootic plague in the western United States, I

use the first two principal components (PCs) of a principal component analysis (PCA).

Inputs in the PCA are seven range-standardized PRISM variables. I use the Gower metric

(197 ) to standardize the variables because they are measured on different scales. I use the

RStoolbox package (198 ) in the statistical software R (127 ) to conduct the PCA. The first

two principal components (PC1 and PC2) accounted for over 96% of the variance (Table 19)

of the PRISM variables across the contiguous United States. Here, I also use PC1 and PC2

to explain the spatial distribution of human plague cases in the western United States

(1950–2017) in the model comparison. The county average principal component coefficients

appear in Figure 76.

County-level indices of enzootic plague The utility of the predicted plague niche to

explain the spatial distribution of human plague cases (1950–2017) is investigated using

various indices. Both raw outputs and outputs accounting for sampling effort bias of state

and federal agencies that monitor plague activity are used in the analysis. These agencies

included the U.S. Department of Agriculture (USDA; 2005–2017) and the California De-

partment of Public Health (CDPH; 1983–2015). Raw outputs include 1) the log relative

risk of enzootic plague and 2) the area predicted significantly plague-suitable. The log rel-

ative risk values are predicted comparing seropositive coyotes and seronegative coyotes in

predictor space (see Chapter 3 and Chapter 5). Predictor space is comprised of PC1 and

PC2. Plague-suitable areas are predicted as locations falling outside of the 95% tolerance

interval for null log relative risk of observing a seropositive coyote to that of observing a

seronegative coyote (219 , 221 ).

Sampling effort bias is accounted for in both Chapter 5 outputs. The log relative risk of

enzootic plague is weighted by a standardized log relative risk of plague testing by the USDA

and CDPH. The log relative risk of plague testing is predicted using the same ecological

niche model (see Chapter 3) comparing coyotes tested for Y. pestis antibodies to coyotes not
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tested for Y. pestis antibodies in predictor space. Coyotes not tested for plague antibodies

are collated from historical coyote observations in museum repositories (see Chapter 5).

Predictor space is the same as above. The log relative risk of plague testing is standardized

by its minimum value and null value is centered at one. Sampling effort variations between

state and federal agencies that monitor plague activity are accounted for in predicted plague-

suitable areas by considering only plague-suitable areas that are also sufficiently tested by

state and federal agencies that monitor plague activity (USDA and CDPH). I define areas

sufficiently-tested for plague as locations that fall outside of the 95% tolerance interval for

null log relative risk of observing a seropositive coyote to that of observing a seronegative

coyote (219 , 221 ).

The indices of enzootic plague represent a county-level aggregation of Chapter 5 outputs.

First, the log relative risk of enzootic plague, both raw and bias corrected values, are

averaged within each county (Figure 78). Any counties with missing values (n = 10) are

assigned the average value of its neighboring counties. Second, plague-suitable areas, both

raw and bias corrected values, are assigned several separate indices. The proportion of

plague-suitable area within each county is calculated (Figure 79). In order to account for

the various sizes of counties, I also calculate the total area predicted plague-suitable in

each county. To test if there is a threshold effect for the amount of area within a county

predicted plague-suitable on the spatial distribution of human plague cases (1950–2017), I

only consider counties with at least a certain proportion of plague-suitable area. Here, I

consider counties where at least 50%, 75%, or 90% of their total area is predicted plague-

suitable. The raw plague-suitable area indices appear in Figure 80 and bias corrected

plague-suitable area indices appear in Figure 81.

Finally, I compare these derived indices of enzootic plague to an indicator of county-level

coyote plague sampling by state and federal agencies that monitor plague activity. Counties

with at least one seropositive coyote sampled by the USDA and tested by the USDA,

CDC, or CDPH were considered “plague-positive,” counties with no seropositive coyotes

are considered “plague-negative,” and counties without any tested coyotes are considered

“not tested.” This categorical variable appears in Figure 77. Serological results are often

presented at an aggregated spatial scale to protect land-owner privacy (see 107 )). These
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data are absent of any environmental interpolation (19 ) unlike the derived plague indices

that use climate variables to predict where plague may be cycling in the environment.

6.2.3 Statistical methods

I employ a county-level spatial model comparison approach to evaluate the utility of enzootic

plague to explain the spatial distribution of human cases in western United States counties

(1950–2017). The modeling framework is atemporal because cases are aggregated for the

67-year study period. I compare the performance of models using univariate plague indices

to univariate models of environmental variables. Descriptions of each model appear in

Table 20 and the model comparison approach is described below.

The western United States is my region of interest S and is split into n contiguous

small-areas (counties). I aim to detect which counties exhibit elevated disease risks as well

as case counts based on their 2010 population. Let yi = (y1, ..., yn) denote the number

of observed cases in county i and Ei = (E1, ..., En) contain offsets, defined here as the

population of each county i based on the 2010 census (132 ). Because human plague cases

are rare I use a Bayesian hierarchical model-based approach, which estimates disease risk in

each county using county-level covariates and a set of random effects. The random effects

borrow information from neighboring counties, resulting in spatial smoothing of estimated

rates and stabilization of their variances (due to the very small observed numbers of human

cases).

I use a hierarchical model defined as:

yi|λi ∼ Poisson(λi)

λi = Eiρi

ηi = log(ρi) = xTi βi + ψi.

Where ηi is the local relative risk of disease in county i and a set of p county-level fixed-effects

xTi = (1, xi1, ..., xip) with regression coefficients βi = (β1, ..., βp). County-level fixed-effects

depend on the model specification found in Table 20. To model any spatial autocorrelation
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that remain in the data beyond the covariate effects I have a set of random effects ψi ∈

(ψ1, ..., ψn) where

ψi = γi + φi.

A conditional autoregressive (CAR) model assigns spatial structure to the random effects.

Here, I use a convolution or Besag-York-Mollié (BYM) CAR model outlined in Besag and

colleagues 1991 (319 ) that contains a convolution of non-spatially autocorrelated random

effects γi = (γ1, ..., γn) and spatially autocorrelated random effects φi = (φ1, ..., φn):

γi
ind∼ N(0, σγ), 1, . . . , n

2

φi|φ−i,W , σ2φ ∼ N

(∑n
i=1 ωniφi∑n
i=1 ωni

,
σ2φ∑n

i=1 ωni

)

log(τφ), log(τγ) = log(1/σ2φ), log(1/σ
2
γ) ∼ logGamma(a, b).

A non-negative symmetric n × n neighborhood matrix W containing positive elements

ωni is specified based on geographical contiguity between counties where ωni = 1 if counties

share a common border, and is zero otherwise (ωii = 0 by convention), forcing geographi-

cally adjacent counties to be autocorrelated and non-adjacent counties to be conditionally

independent given the remaining random effects. Hyperpriors (a, b) for the variance param-

eters (σ2φ, σ
2
γ) are set at vague default levels (a = 1 and b = 0.0005). Future models can

investigate other CAR model specifications, including other globally and locally smooth

CAR models.

The vast majority of counties in the western United States did not have an observed

human plague case (Figure 72a). Therefore, I control for overdispersion by considering two

zero-inflated Poisson (ZIP) modeling approaches (320–322 ). One ZIP model assumes all

zero counts result from a county having no current plague circulation (i.e., a structural zero

where zero is the only allowed observation); the other model assumes that a fraction of the

observed zeros are structural (no plague circulation), and the other zeros are observed zeros

(i.e., human plague could be observed but was not).
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The first zero-inflated Poisson modeling approach (ZIP0) assumes the zero human plague

case counts in the western United States (1950–2017) are all structural zeros (i.e. zero is

the only observable value). Given n counties, the probability function for y = (y1, ..., yn)

is:

p(yi|λi, π0) = π0I(yi = 0) + (1− π0)I(yi > 0)
exp(λi)λ

yi
i

yi!

where I(yi = 0) is the indicator variable and the zero-probability hyperparameter π0 is pa-

rameterized with a default Normal(-1,0.2) prior distribution (323–328 ) and is transformed

with the inverse logit transformation exp(π0)
1+exp(π0)

(see 329 ). The probability of observing a

zero in the ith county is π0 + (1− π0) exp(−λi) with a mean and variance is:

E(yi) = (1− π0λi)

V ar(yi) = (1− π0λi) +
π0

1 + π0
((1− π0)λi).

The second zero-inflated Poisson modeling approach (ZIP1) assumes the zero human

plague case counts in the western United States (1950–2017) are a combination of structural

zeros and sampling zeros (i.e., zero is observed but may be another value). Given n counties,

the probability function for y = (y1, ..., yn) is:

p(yi|λi, π0) = π0I(yi = 0) + (1− π0)
exp(λi)λ

yi
i

yi!
.

Poisson, ZIP0, and ZIP1 models are run for each model specification (Table 20) and

compared using the Deviance Information Criteria (DIC; 330 ) and the Watanabe-Akaike

information criterion (WAIC; 331 , 332 ). The best-performing model has the lowest DIC

and WAIC score. I first assess if including the percent change in population (1950–2010)

improves upon a null (Poisson, ZIP0, and ZIP1) model with only an intercept. The best-

performing Poisson and zero-inflated Poisson models are the subsequent focus of the analy-

sis. I compare the proportion of variance explained by the spatially-structured component

of each model (329 ):
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fracφ =
s2φ

s2φ + σ2γ

where σ2γ is the variance of the spatially-unstructured effect and s2φ is the estimate of the

posterior marginal variance of the spatially-structured effect:

s2φ =
Σn
i=1(φi − φ̄)2

n− 1

where φ̄ is the average of the spatially-structured component (φ). s2φ is estimated empirically

using a simulation-based approach where I calculate the variance from 100,000 samples of

the marginal posterior distribution of γi. I also examine the spatially-structured residuals

(φi) and spatially-unstructured residuals (γi) of the best-performing model as well as the

residual relative risk not explained by the fixed-effects (exp(ψi)) and the excess residual

relative risk (p((ψi) > 0|y)).

All models are performed in the R-INLA package (323–328 ) in the statistical software

R (127 ). The integrated nested Laplace approximation (INLA) method is an alternative

to the commonly used Markov Chain Monte Carlo (MCMC) simulations developed by Rue

and colleagues (323 ) that approximates Bayesian inference.

6.3 Results

Of the 81 candidate models (Table 20), the best-performing model was a Poisson model com-

prised of the percent change in population (1950–2010), the two principal components (PC1

and PC2), and the interaction term between PC1 and PC2 (DIC: 714.17; WAIC: 715.67).

However, there was evidence of overdispersion in the human plague data (1950–2017; Fig-

ure 72) and the best-performing zero-inflated Poisson model was comprised of the log relative

risk of enzootic plague that did not account for sampling effort of state and federal agencies

that monitor plague activity (DIC: 758.45; WAIC: 764.89). Model performance goodness

of fit results appear in Table 21. The subsequent analysis focused on the comparison and

interpretation of these models.

All risk factors were statistically significant in the best fitting Poisson model, including

the interaction term between PC1 and PC2 (Table 22). For every one percentage point
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increase in human population (1950–2010) within a county, relative risk of a human plague

case (1950–2017) decreased by an average of 0.13% (95% credibility interval: 0.19%–0.05%

decrease). If PC2 is zero, for every one hundredth of one unit coefficient value increase

in PC1, the relative risk of a human plague case (1950–2017) decreased by an average

of 4.7% (95% credibility interval: 6.5%–2.8% decrease). If PC1 is zero, for every one

hundredth of one unit coefficient value increase in PC2, the relative risk of a human plague

case (1950–2017) decreased by an average of 13.4% (95% credibility interval: 16.9%–10.0%

decrease). The interaction term is positive and large (23.6% with a 95% credibility interval:

12.8%–36.4% increase). Mean and standard deviation of predicted human plague case

counts (1950–2017) from the best-performing Poisson model appear in Figure 82. Predicted

mean case counts were high in the southwestern United States, primarily in Arizona and

New Mexico. Counties predicted with at least one plague case occurred in 15 of the 17

western states, including in highly-populated areas around cities in the Great Plains such

as Dallas, Texas and Oklahoma City, Oklahoma. The model did not predict more than

one human plague case (1950–2017) in any county in southern Oregon, however standard

deviation of the predicted human plague cases (1950–2017) was higher in this region. Higher

standard deviations in predicted case counts were located in counties of the southwestern

United States and California.

All risk factors were statistically significant in the best-fitting ZIP model (Table 22).

For every one percent point increase in human population (1950–2010) within a county,

relative risk of a human plague case (1950–2017) decreased by an average of 0.09% (95%

credibility interval: 0.17%–0.03% decrease). For every one tenth of one log relative risk

value increase in enzootic plague, the relative risk of a human plague case (1950–2017)

increased by an average of 20% (95% credibility interval: 15.9%–23.8% increase). Mean

and standard deviation of predicted human plague case counts (1950–2017) from the best-

performing ZIP model appear in Figure 83. Predicted mean case counts were high in the

southwestern United States, primarily in Arizona and New Mexico but also in populated

areas of California, Colorado, and western Texas. Counties predicted with at least one

plague case occurred in all western United States states except North Dakota, including in

highly-populated areas around cities in the Great Plains such as San Antonio, Texas and
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Omaha, Nebraska. The model did not predict a human plague case (1950–2017) in counties

surrounding Las Vegas, Nevada. Clark County, Nevada had low standard deviation in

predicted human plague case counts (1950–2017). Higher standard deviation in predicted

case counts were located in the southwestern United States and highest in El Paso County,

Texas.

Both best-fitting models predicted counties with high human plague case counts (1950–2017)

better than counties with low or no human plague case (Figure 84), as expected. On av-

erage, both best-fitting models underestimated the number of counties with zero recorded

human plague cases (1950–2017) and overestimated the number of counties with one to three

human plague cases (1950–2017). The best-fitting ZIP model underestimates predicted case

counts more than the Poisson model (Figure 85), as expected, especially with decreasing

human plague case counts (1950–2017). The proportion of variance explained by the struc-

tured spatial component in the best-fitting Poisson model is about 100% and about 84% in

the best-fitting ZIP model (Table 22). For reference, the proportion of variance explained

by the structured spatial component in the null Poisson model and null ZIP model (percent

change in population only; see Table 20) are both almost 100%. Also for reference, the ZIP

model comprised of PC1 and PC2 with their interaction had a lower proportion of variance

explained by the structured spatial component (55%) and the Poisson model comprised of

the log relative risk of enzootic plague (not accounting for sampling effort bias) was almost

100%. All risk factors in reference models were statistically significant. ZIP models had a

lower mean precision of the spatially-uncorrelated random effect and their 95% credibility

interval than Poisson models by orders of magnitude, as expected.

I examined the best-fitting ZIP model. The spatially-correlated and spatially-uncorrelated

residuals of the best-fitting ZIP model appear in Figure 86. The spatial distribution of the

residuals was similar with high values in counties at the California-Oregon border and north-

ern counties of Arizona and New Mexico. Low residual values (both spatially-correlated and

spatially-uncorrelated) were located in the northern counties of the western United States as

well as Salt Lake City, Utah and west Texas. Five counties had high spatially-uncorrelated

residual values: Humboldt County, California; Coos County and Lake County in Oregon;

and McKinley County and Rio Arriba County in New Mexico. Residual relative risk was
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high in counties of northern New Mexico, the California-Oregon border, and Mariposa

County, California (Figure 87a). Excess residual relative risk was high in the southern

regions of the western United States and Oregon (Figure 88). The mean zero-probability

parameter of the best-fitting ZIP model was 0.20 (95% credibility interval: 0.197%–0.206%

decrease; Table 22) and varied across the western United States (Figure 88). Counties with a

low mean zero-probability were predicted in the southwestern United States except in Clark

County, Nevada and nearby counties. Counties with a high mean zero-probability were pre-

dicted in western Washington State and in the Great Plains, except highly-populated areas

such as Houston, Texas.

6.4 Discussion

The spatial variation and distribution of historical human plague cases in the United States

(1950–2017) are explained by environmental risk factors, including the spatial distribution

of enzootic plague, and random effects, especially spatially-correlated random effects. The

best-fitting hierarchical model is a Poisson model comprised of the percent change in popu-

lation (1950–2010), the two principal components (PC1 and PC2), and the interaction term

between PC1 and PC2. However, this model does not account for overdispersion in histori-

cal human plague cases in the United States (1950–2017) and its statistically significant risk

factors are difficult to interpret for human plague risk inference, especially the interaction

term. The vast majority of the variation in human plague risk is explained by the spatially-

correlated random effect; thus, the fixed effects, while statistically significant, do not explain

much of the spatial variation and distribution of historical human plague cases in the United

States (1950–2017). The exceedingly high precision for the spatially-unstructured compo-

nent of the best-fitting Poisson model further suggests the Poisson model is not sufficient.

A zero-inflated Poisson model is a more appropriate model for historical human plague

cases (1950–2017) because it allows for the existence of some structural zeros from counties

with zero underlying risk. The best ZIP model is comprised of the percent change in

population (1950–2010) and the average log relative risk of enzootic plague (not accounting

for sampling effort by state and federal agencies that monitor plague activity). The precision

for the spatially-unstructured component of the best-fitting ZIP model is stable suggesting
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the ZIP model is more appropriate than a Poisson model. The average log relative risk of

enzootic plague has a statistically significant positive association with human plague risk.

Counties with an increase in one tenth of one log relative risk value see an average 20% (95%

credibility interval: 15.9%–23.8%) increase in human plague risk. Other county-level indices

of enzootic plague (e.g., proportion of a county with plague-suitable habitat or total area of

a county considered plague-suitable) did not explain the spatial variation and distribution

of historical human plague cases in the United States (1950–2017) as well as average log

relative risk of enzootic plague. The ecological niche of enzootic plague is more likely located

in counties with a higher log relative risk of enzootic plague, on average, than counties with

a lower log relative risk of enzootic plague. Counties with a higher average log relative risk

of enzootic plague can be considered highly-persistent plague counties where climatological

conditions are prime for sylvatic plague transmission.

The log relative risk of enzootic plague captures some of the interaction between PC1

and PC2 and may explain why these models perform similarly. I estimated the log relative

risk of enzootic plague in Chapter 5 using PC1 and PC2. The second best-performing Pois-

son model is comprised of the percent change in population (1950–2010) and the average

log relative risk of enzootic plague (not accounting for sampling effort by state and federal

agencies that monitor plague activity). The second best-performing ZIP model is comprised

of the percent change in population (1950–2010), the two principal components (PC1 and

PC2), and the interaction term between PC1 and PC2. Predicting the spatial distribution

of enzootic plague in the United States using coyote-based plague surveillance has utility

for predicting human plague risk both for explaining some of the variation and being more

interpretable than the individual principal components and their interaction. This relation-

ship breaks down somewhat when spatially aggregated to the county-level, so the county

average log relative risk of enzootic plague cannot account for all the interaction between

PC1 and PC2. A future study can develop a framework to comprehensively model the three

levels of the ecological regression (human plague risk layer estimated using an animal plague

risk layer that is predicted using animal-based plague data and environmental variables) in

a multi-stage model instead of step by step as was conducted in the present analysis. A

hierarchical model can account for the variability in each level and the relationship between
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the three levels can be examined.

Spatial scale is a limitation of the analysis. Human plague cases were only available

at a county-level for privacy considerations. A county may have areas of high log relative

risk of enzootic plague, but these areas can be hidden when averaged across an entire

county. For example, the Transverse and Peninsular Ranges in southern California are

suitable for plague transmission (see Chapters 3-5), but the majority of area within southern

California counties are plague-unsuitable. Therefore, at a county-level average, the counties

in southern California have low log relative risk of enzootic plague (Figure 78a) even though

historical human plague cases (1950–2017) have occurred in southern California. I observed

the same data aggregation effect for other indices of enzootic plague (e.g., the proportion of

a county predicted plague-suitable) where smaller counties are more likely to have a higher

plague values. Aggregation at the county-level more accurately captures the location of

exposure for every case if the location of exposure is known, which is not always the case

(see 133 ). For example, Coos County in southern Oregon has high model residuals, which

suggests the average log relative risk of enzootic plague fixed effect does not explain the

human plague risk in this county. Two possible explanations are that either cases in this

county resulted from epizootic events occurring outside of the predicted enzootic areas or

the true locations of exposure for these human plague cases were not in Coos County,

Oregon. McKinley County and Rio Arriba County in New Mexico have moderate average

log relative risk of enzootic plague values but are nearby counties with high log relative risk

of enzootic plague values (i.e., highly-persistent plague areas). Epizootic conditions may

have spilled over from nearby counties into McKinley County and Rio Arriba County, New

Mexico that are not captured in the analysis, resulting in high residuals for these counties.

Human plague is rare in the United States, especially outside of the southwestern United

States (33 ), and the best-fitting ZIP model underestimates counties with no historical

human plague cases (1950–2017). Human plague cases are rare because of the low risk of

human infection but also the low human population levels outside major cities in the western

United States. Plague is actively cycling in many regions of the western United States, but

low human interaction within the natural transmission cycle results in few human cases.

While fortunate for public health, the rarity of human plague cases presents a challenge for
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disease surveillance. Eisen and colleagues (72 , 73 ) focused on human plague risk in the

southwestern United States where the majority of historical human cases have occurred in

the United States. I extend human plague risk estimation throughout the western United

States where human plague cases have also occurred, but in doing so, I incorporate counties

with zero human plague cases. While I account for such structural zeros by using a ZIP

model, a future study can restrict the analysis to counties in the southwestern United

States. A more parsimonious Poisson model may be appropriate for this smaller spatial

extent because there will be fewer counties with zero cases in the analysis. A future study

can assess other models that may be more appropriate to account for overdispersion of

historical human plague cases (1950–2017) such as, for example, a zero-inflated negative

binomial distribution.

The best-fitting models predict human plague cases in highly-populated areas of the

Great Plains such as, for example, San Antonio, Texas and Omaha, Nebraska. The large

baseline population at risk in these urban areas increase the chance of a human plague

case occurring in these counties. However, the individual relative risk of plague infection in

these counties is extremely low. Ben-Ari and colleagues (59 ) found no correlation between

human plague outbreak frequency (1950–2005) and population density at the county level

in the United States. Population growth (1950–2010) was weakly significantly negatively

associated with human plague risk. Fast-growing urban populations likely drive this rela-

tionship such as, for example, Las Vegas in Clark County, Nevada that grew over 8,000%

within the study period. This is consistent with other findings from Schotthoefer and col-

leagues (318 ) who found human plague cases do not occur in urban areas of New Mexico

(1976–2007) and human plague cases in rural or lightly suburbanized areas were associated

with human population growth. A future study could limit human plague risk estima-

tion to rural and suburban areas across the western United States to examine the effect

of changing socio-demographics. Humans at risk of plague infection also include visitors

and non-county residents. For instance, Kwit and colleagues (32 ) linked two human plague

cases from Georgia to exposure in Yosemite National Park in California. Popular destina-

tions within plague enzootic areas are high-risk locations of exposure. A future study can

more accurately estimate human plague risk by incorporating tourism in the background
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population at-risk.

Human plague risk maps should ideally incorporate environmental and social factors that

influence human plague risk. Plague in humans and wildlife is associated with environmental

factors, such as climate patterns and landscape features (58 , 59 , 70–73 , 85 , 89 , 90 ).

Human plague is associated with socio-economic factors (104 , 318 ). These factors interact

and a human plague case likely occurs under the perfect combination of conditions in time

and location. Therefore, a spatio-temporal human plague analysis is desirable for public

health action, but is intractable due to the rarity of human plague cases in the United

States. Here, I did not conduct a spatio-temporal analysis because the sample size of human

cases was even smaller within shorter time periods and the problem of overdispersion was

worse within smaller study periods. Some studies have conducted a spatial analysis of

temporally-aggregated human plague cases to predict high human plague risk areas (70 ,

72 , 73 ). Ben-Ari and colleagues (59 ) compared human plague cases (n = 105 counties

with at least one case) in three regions of the western United States (1950–2005) but did

not predict human plague risk. Schotthoefer and colleagues (318 ) compared three periods

of human plague cases (n = 123 of 162) in New Mexico (1976–2007) but did not conduct a

spatio-temporal ecological regression. To assess the interaction of environmental and social

risk factors, a future spatio-temporal ecological regression could focus on New Mexico where

the majority of historical human cases in the United States (1950–2017) has occurred.

The results have public health relevance. I identified an environmental risk factor for

human plague infection that is measurable at the county level. Human plague cases have

been associated with epizootic conditions (57 ) and inter-annual seasonal patterns (59 ), but

I demonstrated that historical human plague cases (1950–2017) are also associated with

enzootic plague. The bacterium Y. pestis is transmitting within rodent populations at low

levels and, while low-risk, a human can contract plague if they interact with this sylvatic

cycle. A human is more likely to interact with sylvatically-cycling plague in plague enzootic

areas. Therefore, identifying areas where plague is persistent can benefit public health ac-

tion by informing healthcare providers or directing preventive programs. Figure 88 shows

counties within the western United States that were predicted to have at least one human

plague case (1950–2017). Public health action can be targeted to counties with a high
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probability of observing at least one case (low probability of zero cases). The results also

provide an example of a spatial model that accounts for overdispersion and structural zero

case counts, which may be useful for other disease systems. In particular, surveillance sys-

tems for rare events such as, for example, zoonoses or antibiotic-resistant pathogen strains

can benefit from the methodology utilized in this study.
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6.6 Appendices

6.6.1 Appendix A: Panels

Panel 9: World Health Organization case definition for plague surveillance
Disease characterized by rapid onset of fever, chills, headache, severe malaise, prostration, with
– Bubonic form: extreme painful swelling of lymph nodes (buboes)
– Pneumonic form: cough with blood-stained sputum, chest pain, difficult breathing
Note: Both forms can progress to a septicemic form with toxemia. Sepsis without evident buboes rarely occurs.

Laboratory criteria for diagnosis
– Isolation of Yersinia pestis in cultures from buboes, blood, cerebrospinal fluid or sputum or
– Passive hemagglutination (PHA) test, demonstrating an at least fourfold change in antibody titer, specific for

F1 antigen of Y. pestis, as determined by the hemagglutination inhibition test (HI) in paired sera.

Case classification
– Suspected: A case compatible with the clinical description. May or may not be supported by laboratory finding

of Gram stain negative bipolar coccobacilli in clinical material (bubo aspirate, sputum, tissue, blood).
– Probable: A suspected case with Positive direct fluorescent antibody (FA) test for Y. pestis in clinical specimen;

or passive hemagglutination test, with antibody titer of at least 1:10, specific for the F1 antigen of Y. pestis as
determined by the hemagglutination inhibition test (HI); or epidemiological link with a confirmed case.

– Confirmed: A suspected or probable case that is laboratory-confirmed.
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6.6.2 Appendix B: Tables

Table 17: Human plague cases in United States by state of exposure (1900–2017). Unpublished
data courtesy of Ken Gage, Ph.D. at the U.S. Centers for Disease Control and Prevention in Fort
Collins, Colorado.

State Number of Human Cases
Total Pre-1950 Post-1949 Post-1983

Arizona 68 0 68 27
California 492 441 48 26
Colorado 67 0 67 50
Florida 10 10 0 0
Idaho 5 1 4 3
Illinois* 1 0 1 1
Louisiana 51 51 0 0
Maryland* 1 0 1 0
Michigan 1 1 0 0
Montana 2 0 2 2
Nevada 6 0 6 3
New Mexico 283 3 280 140
Oklahoma 2 0 2 2
Oregon 19 1 18 9
Texas 35 31 4 3
Utah 16 1 15 10
Washington 9 8 1 1
Wyoming 5 0 5 3
Unknown 2 1 1 1
Total 1,045 522 523 281

*Laboratory Acquired
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Table 18: Oregon State University Parameter elevation Regression on Independent Slopes Model
(PRISM) 30-Year Average Annual Normals (1981–2010). Modeled using a combination of a digital
elevation model (DEM) and climatologically-aided interpolation (CAI)*. Variables were modeled
at 30 arcseconds (∼800 meters) resolution and aggregated to 2.5 arcminutes (∼4 kilometers). See
(125 ) for more details. .

Variable Units Derivation

Precipitation millimeters (mm) Modeled; Summing monthly averages (rain + melted
snow)

Maximum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Temperature °Celsius (°C) Derived; Average of Maximum Temperature and
Minimum Temperature

Minimum Temperature °Celsius (°C) Modeled; Averaging over all months using a DEM as
the predictor grid

Mean Dewpoint Temperature °Celsius (°C) Modeled; CAI used minimum temperature as the
predictor grid

Maximum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
maximum temperature as the predictor grids

Minimum Vapor Pressure Deficit hectopascal (hPA) Modeled; CAI used mean dewpoint temperature and
minimum temperature as the predictor grids

*Accuracy of these data is based on the original specification of the Defense Mapping Agency (DMA) 1 degree
digital elevation models (DEM). The stated accuracy of the original DEMs is 130 meter circular error with 90%
probability. Datasets use all weather stations, regardless of time of observation.
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Table 19: Summary of principal component analysis of Oregon State University Parameter
elevation Regression on Independent Slopes Model (PRISM) 30-Year Average Annual Normals
(1981–2010) at a 2.5 arcminute (∼4 km) resolution. Variables were masked to the western United
States and were range standardized using the Gower metric (197 ).

Statistic Variable Principal Component
PC1 PC2 PC3

Standard Deviation 0.326 0.170 0.058
Proportion of Variance 0.756 0.205 0.024
Cumulative Proportion of Variance 0.756 0.962 0.985
Loadings Precipitation 0.063 0.342 0.549

Maximum Temperature 0.485 -0.208 -0.290
Mean Temperature 0.519 -0.064 0.015

Minimum Temperature 0.477 0.088 0.314
Mean Dewpoint Temperature 0.446 0.532 -0.101

Maximum Vapor Pressure Deficit 0.243 -0.533 -0.229
Minimum Vapor Pressure Deficit 0.073 -0.510 0.673
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Table 20: Specification of performed models. Two types of models were performed: Poisson and zero-inflated Poisson. Poisson model assumes
count data distributed with equivalent mean and variance. A zero-inflated Poisson model assumes count data with many zero observations (320 ).
Two zero-inflated Poisson models were used. Zero-inflated Poisson 0 assumes all zeros are structural zeros where zero was the only observable value.
Zero-inflated Poisson 1 assumes some zeros are structural and others are sampling zeros where zeros were observed but may have been a different
value. Models were compared using Deviance Information Criteria (DIC; 330 ) and the Watanabe-Akaike information criterion (WAIC; 331 , 332 ).

Number Formula Description Visual Representation
NULL0 1 Null model with offset of human population in 2010 Figure 73a
NULL1 1 + P∆ Null model with percent change in human population size (1950–2010) and offset Figure 73

1 NULLi + ELEV PRISM variables are interpolations of a digital elevation model, county average Figure 74
2 NULLi + PPT PRISM 30-year average annual total precipitation, county average Figure 74
3 NULLi + Tdew PRISM 30-year average annual mean dewpoint temperature, county average Figure 74
4 NULLi + Tmax PRISM 30-year average annual maximum temperature, county average Figure 74
5 NULLi + Tmean PRISM 30-year average annual mean temperature, county average Figure 75
6 NULLi + Tmin PRISM 30-year average annual minimum temperature, county average Figure 75
7 NULLi + V PDmax PRISM 30-year average annual maximum vapor pressure deficit, county average Figure 75
8 NULLi + V PDmin PRISM 30-year average annual minimum vapor pressure, county average Figure 75
9 NULLi + PC1 First principal component (75.6% of variation), county average Figure 76a
10 NULLi + PC2 Second principal component (20.5% of variation), county average Figure 76b
11 NULLi + PC1 + PC2 First and second principal components, county averages Figure 76
12 NULLi+PC1+PC2+PC1∗PC2 First and second principal components, county averages, with interaction Figure 76
13 NULLi + C Categorical indicator of county-level results of coyote-based plague surveillance Figure 77
14 NULLi + LRRraw Log relative risk of plague (not accounting for sample bias), county average Figure 78a
15 NULLi + PROPraw Proportion of county significantly plague-suitable (not accounting for sample bias) Figure 79a
16 NULLi +Araw,total Total area of county plague-suitable (not accounting for sample bias) Figure 80
17 NULLi +Araw,50 Area of county plague-suitable (not accounting for sample bias) if at least 50% Figure 80
18 NULLi +Araw,75 Area of county plague-suitable (not accounting for sample bias) if at least 75% Figure 80
19 NULLi +Araw,90 Area of county plague-suitable (not accounting for sample bias) if at least 90% Figure 80
20 NULLi + LRRunbias log relative risk of plague (accounting for sample bias), county average Figure 78b
21 NULLi + PROPunbias Proportion of county significantly plague-suitable (accounting for sample bias) Figure 79b
22 NULLi +Aunbias,total Total area of county plague-suitable (accounting for sample bias) Figure 81
23 NULLi +Aunbias,50 Area of county plague-suitable (accounting for sample bias) if at least 50% Figure 81
24 NULLi +Aunbias,75 Area of county plague-suitable (accounting for sample bias) if at least 75% Figure 81
25 NULLi +Aunbias,90 Area of county plague-suitable (accounting for sample bias) if at least 90% Figure 81

Total models: 27 variable combinations x 3 types of models = 81
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Table 21: Performance of all models. Models were compared using Deviance Information Criteria
(DIC; 330 ) and the Watanabe-Akaike information criterion (WAIC; 331 , 332 ). Poisson model
assumes count data distributed with equivalent mean and variance. A zero-inflated Poisson model
assumes count data with many zero observations (320 ). Two zero-inflated Poisson models were
used. Zero-inflated Poisson 0 (ZIP0) assumes all zeros are structural zeros where zero was the only
observable value. Zero-inflated Poisson 1 (ZIP1) assumes some zeros are structural and others are
sampling zeros where zeros were observed but may have been a different value. See Table 20 for a
description of each model. The best-performing Poisson model and best-performing zero-inflated
model are highlighted in yellow.

Poisson ZIP0 ZIP1
Number Formula DIC WAIC DIC WAIC DIC WAIC
NULL0 1 732.21 1544.15 1108.13 1113.96 1310.09 1329.48
NULL1 1 + P∆ 732.40 1085.42 1108.82 1113.00 1307.87 1328.72

1 NULL1 + ELEV 729.58 736.60 1102.45 1105.38 815.57 836.59
2 NULL1 + PPT 731.11 922.02 1107.74 1111.86 842.39 848.95
3 NULL1 + Tdew 724.16 795.85 1098.78 1099.14 877.97 888.99
4 NULL1 + Tmax 733.76 858.38 1107.23 1110.09 882.73 876.50
5 NULL1 + Tmean 734.40 813.31 1106.17 1108.87 870.99 871.94
6 NULL1 + Tmin 734.93 798.03 1105.05 1107.78 1317.32 1340.12
7 NULL1 + V PDmax 733.23 1297.16 1109.77 1114.84 1301.55 1320.97
8 NULL1 + V PDmin 732.86 1758.75 1109.70 1115.05 1300.03 1317.36
9 NULL1 + PC1 733.71 785.21 1105.25 1107.61 838.90 836.03
10 NULL1 + PC1 728.80 926.53 1107.35 1111.49 1301.62 1320.27
11 NULL1 + PC1 + PC2 722.89 840.42 1099.26 1099.58 1193.00 1216.86
12 NULL1+PC1+PC2+PC1∗PC2 714.17 715.67 1099.13 1100.24 822.20 833.77
13 NULL1 + C 727.04 1294.41 1106.32 1108.98 1298.82 1312.94
14 NULL1 + LRRraw 720.84 2251.52 1104.51 1107.92 758.45 764.89
15 NULL1 + PROPraw 721.78 820.26 1103.43 1106.56 1302.63 1319.78
16 NULL1 +Araw,total 730.95 891.64 1103.83 1106.16 1307.34 1324.76
17 NULL1 +Araw,50 732.17 927.85 1104.96 1107.70 1306.57 1326.01
18 NULL1 +Araw,75 732.23 887.48 1104.15 1106.74 1310.09 1326.31
19 NULL1 +Araw,90 733.09 960.59 1306.55 1326.12 1306.55 1326.12
20 NULL1 + LRRunbias 728.72 3647.21 1104.16 1108.35 1614.25 1643.29
21 NULL1 + PROPunbias 725.33 890.37 1107.39 1112.09 1302.21 1317.88
22 NULL1 +Aunbias,total 732.07 962.29 1107.57 1111.38 1307.84 1325.11
23 NULL1 +Aunbias,50 732.07 999.52 1108.23 1112.08 1307.95 1325.30
24 NULL1 +Aunbias,75 733.02 1014.93 1109.02 1113.40 1309.00 1327.03
25 NULL1 +Aunbias,90 732.84 1012.56 1109.30 1113.66 1305.73 1326.03
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Table 22: Summary statistics of the best-performing Poisson model and zero-inflated Poisson
model appear here with their reference models. Posterior estimates of fixed effects (βi) and
their 95% credibility interval (CI) of each model given their formula also appear here as well as
posterior estimates for hyperparameters, including the precision for the spatially-unstructured
random effect (τφ), precision for the spatially-structured random effect (τγ), and the zero-
probability parameter (π0). The proportion of variance explained by the structured spatial
component fracφ is also included. See Table 20 for a description of each model.

Type Variable Estimate Mean Standard
Deviation

Lower
95% CI

Upper
95% CI fracφ

Poisson Intercept β0 -14.822 0.367 -15.599 -14.159 0.9996
P∆ β1 -0.0013 4e-04 -0.0020 -6e-04
PC1 β2 -4.818 1.013 -6.810 -2.826
PC2 β3 -14.437 2.015 -18.499 -10.577

PC1 ∗ PC2 β4 21.177 4.827 12.043 31.024
τφ 1889.3 1850.1 127.4 6779.1
τγ 0.159 0.030 0.108 0.226

Zero-inflated Intercept β0 -11.948 0.245 -12.440 -11.477 0.8439
Poisson 1 P∆ β1 -9e-04 4e-04 -0.0017 -0.00028

LRRraw β2 1.791 0.170 1.472 2.139
π0 0.200 0.002 0.197 0.206
τφ 3.124 0.019 3.089 3.163
τγ 0.423 0.005 0.417 0.435

References
Poisson Intercept β0 -15.065 0.394 -15.901 -14.359 0.9999

P∆ β1 -0.0012 4e-04 -0.0020 -4e-04
τφ 1855.6 1835.1 128.8 6700.6
τγ 0.082 0.013 0.059 0.111

Zero-inflated Intercept β0 -2.467 0.168 -2.793 -2.134 0.9995
Poisson 1 P∆ β1 -0.0024 4e-04 -0.0031 -0.00165

π0 0.886 0.010 0.866 0.905
τφ 470.233 458.628 25.026 1682.908
τγ 0.042 0.005 0.032 0.051

Zero-inflated Intercept β0 -12.948 0.189 -13.330 -12.589 0.5535
Poisson 1 P∆ β1 -0.0017 3e-04 -0.0023 -0.0012

PC1 β2 -4.381 0.582 -5.541 -3.256
PC2 β3 -13.295 1.154 -15.600 -11.069

PC1 ∗ PC2 β3 15.448 3.411 8.544 21.944
π0 0.389 0.008 0.374 0.406
τφ 2.732 0.196 2.386 3.153
τγ 2.961 0.184 2.589 3.308

Poisson Intercept β0 -12.841 0.383 -13.640 -12.136 0.9995
P∆ β1 -8e-04 4e-04 -0.0016 -4e-05

LRRraw β2 1.707 0.208 1.312 2.129
τφ 1466.2 1329.2 86.3 4964.6
τγ 0.142 0.027 0.097 0.202
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6.6.3 Appendix C: Figures
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Figure 71: (a) Human plague cases in contiguous United States since introduction (1900–2017).
The early period (1900–1930) contained outbreaks in port cities (e.g., San Francisco, CA and Los
Angeles, CA), but by 1950 plague became locally endemic in the western United States and human
cases occurred in the country interior only. (b) Human plague cases in western United States
(1950–2017) by county of exposure. Plague spread from California to Kansas by the 1940s (86 ).
Since 1950, human plague cases have occurred in 13 western states (521 total cases) where over 80%
of these cases have occurred in the Four Corner States (Arizona, Colorado, New Mexico, and Utah;
32 , 33 , 103 ). Data are unpublished and courtesy of Kenneth Gage, Ph.D. at the U.S. Centers for
Disease Control and Prevention in Fort Collins, Colorado.
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Figure 72: (a) Frequency of human plague case counts in western United States (1950–2017;
n = 1, 062 counties, or 89%). The vast majority of western United States counties have not had
a human case (n = 944). (b) Frequency of human plague case counts in western United States
(1950–2017) for counties with at least one case (n = 118 counties). The almost half of western
United States counties with at least one human plague case have only one case (n = 58 counties or
49%).
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(a) (b)

Figure 73: (a) Human population density of the western United States (2010) per square kilometer
by county (132 ). (b) Percent change of human population in the western United States 1950 to 2010
by county (132 , 186 ). Counties without 1950 census data (n = 3) were given earliest population
estimate. Broomfield County, Colorado was created in 2001 from Boulder County, Colorado but
existed as a town since 1961 (n = 4, 535 people; 187 ). Cibola County, New Mexico was created in
1981 from Valencia County, New Mexico and its first census was in 1990 (n = 23, 794 people; 188 ).
La Paz County, Arizona was created in 1983 from Yuma County, Arizona and its first census was in
1990 (n = 13, 844 people; 188 ).
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(a) (b)

(c) (d)

Figure 74: A subset of environmental variables used in the study, averaged within counties. Cli-
matological variables were aggregated from the Oregon State University Parameter Elevation Re-
gression on Independent Slopes Model (PRISM) 30-year average annual normals (1981–2010) at a
2.5 arcminute (∼4 km) resolution (125 ). (a) Elevation aggregated from the Digital Terrain Eleva-
tion Data provided by the National Aeronautics and Space Administration Shuttle Radar Topology
Mission (128 ). (b) Total annual precipitation. (c) Annual average maximum vapor pressure deficit.
(d) Annual average minimum vapor pressure deficit.
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(a) (b)

(c) (d)

Figure 75: A subset of environmental variables used in the study, averaged within counties. Cli-
matological variables were aggregated from the Oregon State University Parameter Elevation Re-
gression on Independent Slopes Model (PRISM) 30-year average annual normals (1981–2010) at a
2.5 arcminute (∼4 km) resolution (125 ). (a) Annual average maximum temperature. (b) Annual
average mean temperature. (c) Annual average minimum temperature. (d) Annual average mean
dewpoint temperature.
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(a) (b)

Figure 76: County average coefficient values of the top two principal components from a principal
component analysis of seven range-standardized (197 ) Oregon State University Parameter Eleva-
tion Regression on Independent Slopes Model 30-year average annual normals (1981–2010) at a 2.5
arcminute (∼4 km) resolution of the contiguous United States (125 ). (a) First principal component
accounted for 75.6% of the variation. (b) Second principal component accounted for 20.5% of the
variation.
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Figure 77: County-level detection of Yersinia pestis in coyote (Canis latrans) specimen across the
western United States. Coyotes were collected and sampled by the U.S. Department of Agriculture
(USDA) Animal and Plant Health Inspection Service Wildlife Services. The USDA, U.S. Centers
for Disease Control and Prevention, and California Department of Public Health tested a large
portion of these coyotes for antibodies against Y. pestis (1983–2017) in their respective laboratories.
Some tested specimen were missing or had indiscernible geographic location information, primarily
in Yakima County, Washington.
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(a) (b)

Figure 78: County average log relative risk of plague presence in the environment. Values were
predicted using a developed ecological niche model comparing seropositive coyotes and seronegative
coyotes tested for Y. pestis antibodies by the U.S. Department of Agriculture (USDA; 2005–2017)
and the California Department of Public Health (CDPH; 1983–2015) in predictor space. Predictor
space was comprised of the first two principal components of a principal component analysis of seven
range-standardized (197 ) Oregon State University Parameter Elevation Regression on Independent
Slopes Model 30-year average annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of
the contiguous United States (125 ). (a) County average log relative risk value (not accounting for
sampling effort bias). (b) County average log relative risk value accounting for sampling effort bias.
Sampling effort bias was accounted for by weighting raw log relative risk values by a standardized log
relative risk of plague testing by the USDA and the CDPH. The log relative risk of plague testing was
predicted using a developed ecological niche model comparing coyotes tested for Y. pestis antibodies
to coyotes not tested for Y. pestis antibodies in predictor space. Coyotes not tested for plague
antibodies were collated from historical coyote observations in museum repositories. Predictor space
was the same as above. The log relative risk of plague testing was standardized by its minimum
value and centered the null value at one.
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(a) (b)

Figure 79: Proportion of county predicted suitable for Yersinia pestis transmission in the environ-
ment. Area within a county was considered suitable for plague transmission if its environment was
within the estimated ecological niche of plague in coyotes. The ecological niche of plague in coyotes
was estimated as the asymptotic tolerance (219 , 221 ) of the log relative risk surface at a two-tailed
significance level (α = 0.05). The log relative risk was estimated using a developed ecological niche
model comparing seropositive coyotes and seronegative coyotes tested for Y. pestis antibodies by
the U.S. Department of Agriculture (USDA; 2005–2017) and the California Department of Public
Health (CDPH; 1983–2015) in predictor space. Predictor space was comprised of the first two prin-
cipal components of a principal component analysis of seven range-standardized (197 ) Oregon State
University Parameter Elevation Regression on Independent Slopes Model (PRISM) 30-year average
annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the contiguous United States
(125 ). (a) Proportion of county predicted suitable for plague transmission (not accounting for sam-
pling effort bias). (b) Proportion of county predicted suitable for plague transmission accounting for
sampling effort bias. Sampling effort bias was accounted for by considering only plague-suitable area
that was also sufficiently tested by state and federal agencies that monitor plague activity (USDA
and CDPH). Areas were considered sufficiently tested for plague if its environment was within the
observed ecological niche of coyotes that were more likely tested for plague than not tested for plague.
The observed ecological niche of coyotes was estimated as the asymptotic tolerance (219 , 221 ) of the
log relative risk surface at a two-tailed significance level (α = 0.05). The log relative risk of plague
testing was predicted using a developed ecological niche model comparing coyotes tested for Y. pestis
antibodies to coyotes not tested for plague antibodies in predictor space. Coyotes not tested for Y.
pestis antibodies were collated from historical coyote observations in museum repositories. Predictor
space was the same as above.
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(a) (b)

(c) (d)

Figure 80: Area within a county predicted suitable for plague transmission in the environment at
various proportion thresholds. Area within a county was considered suitable for plague transmission
if its environment was within the estimated ecological niche of plague in coyotes. The ecological
niche of plague in coyotes was estimated as the asymptotic tolerance (219 , 221 ) of the log relative
risk surface at a two-tailed significance level (α = 0.05). The log relative risk was estimated using a
developed ecological niche model comparing seropositive coyotes and seronegative coyotes tested for
Y. pestis antibodies by the U.S. Department of Agriculture (USDA; 2005–2017) and the California
Department of Public Health (CDPH; 1983–2015) in predictor space. Predictor space was comprised
of the first two principal components of a principal component analysis of seven range-standardized
(197 ) Oregon State University Parameter Elevation Regression on Independent Slopes Model 30-
year average annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the contiguous
United States (125 ). (a) All areas (no threshold). (b) Only counties with at least 50% of its area
predicted plague-suitable. (c) Only counties with at least 75% of its area predicted plague-suitable.
(d) Only counties with at least 90% of its area predicted plague-suitable.
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(a) (b)

(c) (d)

Figure 81: Area within a county predicted suitable for plague transmission in the environment
while accounting for sampling effort bias at various proportion thresholds. Area within a county was
considered suitable for plague transmission if its environment was within the estimated ecological
niche of plague in coyotes. The ecological niche of plague in coyotes was estimated as the asymp-
totic tolerance (219 , 221 ) of the log relative risk surface at a two-tailed significance level (α = 0.05).
The log relative risk was estimated using a developed ecological niche model comparing seropositive
coyotes and seronegative coyotes tested for Y. pestis antibodies by the U.S. Department of Agricul-
ture (USDA; 2005–2017) and the California Department of Public Health (CDPH; 1983–2015) in
predictor space. Predictor space was comprised of the first two principal components of a principal
component analysis of seven range-standardized (197 ) Oregon State University Parameter Eleva-
tion Regression on Independent Slopes Model 30-year average annual normals (1981–2010) at a 2.5
arcminute (∼4 km) resolution of the contiguous United States (125 ). Sampling effort bias was ac-
counted for by considering only plague-suitable area that was also sufficiently tested by state and
federal agencies that monitor plague activity (USDA and CDPH). Areas were considered sufficiently
tested for plague if its environment was within the observed ecological niche of coyotes that were
more likely tested for plague than not tested for plague. The observed ecological niche of coyotes
was estimated as the asymptotic tolerance (219 , 221 ) of the log relative risk surface at a two-tailed
significance level (α = 0.05). The log relative risk of plague testing was predicted using a developed
ecological niche model comparing coyotes tested for Y. pestis antibodies to coyotes not tested for
plague antibodies in predictor space. Coyotes not tested for Y. pestis antibodies were collated from
historical coyote observations in museum repositories. Predictor space was the same as above. (a)
All areas (no threshold). (b) Only counties with at least 50% of its area predicted plague-suitable.
(c) Only counties with at least 75% of its area predicted plague-suitable. (d) Only counties with at
least 90% of its area predicted plague-suitable. 235



(a) (b)

Figure 82: Prediction of the best-performing Poisson model that used the first and second princi-
pal components of a principal component analysis of seven range-standardized (197 ) Oregon State
University Parameter Elevation Regression on Independent Slopes Model 30-year average annual
normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the contiguous United States (125 )
and their interaction term. (a) County-specific posterior mean number of predicted human plague
cases in the western United States (1950–2017). (b) County-specific posterior mean standard devi-
ation of predicted human plague cases in the western United States (1950–2017).
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(a) (b)

Figure 83: Prediction of the best-performing zero-inflated Poisson model (not assuming all zeros
are structural) that used the log relative risk of plague averaged within county (not accounting for
sampling effort bias). Log relative risk values were predicted using a developed ecological niche
model comparing seropositive coyotes and seronegative coyotes tested for Yersinia pestis antibodies
by the U.S. Department of Agriculture (2005–2017) and the California Department of Public Health
(1983–2015) in predictor space. Predictor space was comprised of the first two principal components
of a principal component analysis of seven range-standardized (197 ) Oregon State University Param-
eter Elevation Regression on Independent Slopes Model 30-year average annual normals (1981–2010)
at a 2.5 arcminute (∼4 km) resolution of the contiguous United States (125 ). (a) County-specific
posterior mean number of predicted human plague cases in the western United States (1950–2017).
The grey-colored counties have a posterior mean between 0.1 and 1 predicted predicted human
plague cases. (b) County-specific posterior mean standard deviation of predicted human plague
cases in the western United States (1950–2017).
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Figure 84: Comparison of observed human plague case count in the western United States
(1950–2017) and the predicted case counts. (a) Predicted counts of the best-performing Poisson
model using the first and second principal components of a principal component analysis of seven
range-standardized (197 ) Oregon State University Parameter Elevation Regression on Independent
Slopes Model 30-year average annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution
of the contiguous United States (125 ) and their interaction term. (b) Predicted counts of the best-
performing zero-inflated Poisson model (not assuming all zeros are structural) using the log relative
risk of plague averaged within county (not accounting for sampling effort bias). Log relative risk
values were predicted using a developed ecological niche model comparing seropositive coyotes and
seronegative coyotes tested for Yersinia pestis antibodies by the U.S. Department of Agriculture
(2005–2017) and the California Department of Public Health (1983–2015) in predictor space. Pre-
dictor space was comprised of the first two principal components of a principal component analysis
of seven range-standardized (197 ) Oregon State University Parameter Elevation Regression on In-
dependent Slopes Model 30-year average annual normals (1981–2010) at a 2.5 arcminute (∼4 km)
resolution of the contiguous United States (125 ).
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Figure 85: Comparison of predicted human plague case counts in the western United States
(1950–2017) between the best Poisson model and the best zero-inflated Poisson (ZIP) model that
did not assume all zeros were structural. The best-fitting Poisson model used the county average first
and second principal components of a of a principal component analysis of seven range-standardized
(197 ) Oregon State University Parameter Elevation Regression on Independent Slopes Model 30-
year average annual normals (1981–2010) at a 2.5 arcminute (∼4 km) resolution of the contiguous
United States (125 ) and their interaction. The best-performing ZIP model used the county average
log relative risk of plague value (not accounting for sampling effort bias). Values were predicted
using a developed ecological niche model comparing seropositive coyotes and seronegative coyotes
tested for Yersinia pestis antibodies by the U.S. Department of Agriculture (2005–2017) and the
California Department of Public Health (1983–2015) in predictor space. Predictor space was the
same as above.
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(a) (b)

Figure 86: County-specific residuals of the best-performing zero-inflated Poisson model. (a)
Spatially-unstructured component. (b) Spatially-structured component. The fraction of varia-
tion explained by the spatially-structured component was high (about 0.84), which is shown in the
similarity of the residuals especially in regions of the western United States with few to no human
plague cases.
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(a) (b)

Figure 87: County-specific relative risk the best-performing zero-inflated Poisson model after fixed-
effects (percent change in population (1950–2010) and the log relative risk of plague not accounting
for sampling effort bias) were taken into account. (a) Residual relative risk. The fraction of variation
explained by the spatially-structured component was high (about 0.84) and counties with few to no
cases near a county with many cases show high residual variability. (b) Excess residual relative risk
(probability the residual relative risk is above 1). The fixed-effects are explaining the variability in
the northern region of the western United States where few to no human plague cases have occurred.
However, the fixed-effects are not explaining the variability in the southwestern United States where
many human plague cases have occurred in a select few counties.
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Figure 88: County-specific posterior mean zero-probability of a human plague case (1950–2017)
based on the performing zero-inflated Poisson model. The minimum zero-probability was about 20%
(π0 = 0.200). Counties with a high probability of observing no human plague cases (1950–2017) were
located in the northern and northwestern regions of the United States and the eastern Great Plains.
The desert regions of California, Nevada, and Arizona also have a high probability of observing no
human plague cases (1950–2017).
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7 Discussion and Future Directions

“For much as men differ with regard to places in which they live, or in the law of their
daily life, or in natural bent, or in active pursuits, or in whatever else man differs from

man, in the case of this disease alone the difference availed naught. And it attacked some
in the summer season, others in the winter, and still others at the other times of the

year... spreading in either direction right out to the ends of the world, as if fearing lest
some corner of the earth might escape it. For it left neither island nor cave nor mountain
ridge which had human inhabitants... And this disease always took its start from the coast,

and from there went up to the interior.”

- Book 1, XXII of History of the Wars by Procopius
translated by H.B. Dewing (333 )

7.1 Summary

Plague is a deadly disease of conservation and public health concern caused by the bacterium

Yersinia pestis. Plague is dynamically active across the western United States, primarily

within rodent species and their fleas (31 ). Surveillance is challenging and it is intractable

to systematically monitor rodents across a region of over 4.7 million square kilometers in

size where plague is suspected of being enzootic (13 , 75 ). Instead, I take advantage of an

extensive ongoing national program that collects blood samples of a wide-ranging sentinel

species for plague. Coyotes (Canis latrans) are carnivores that scavenge carcasses and

prey on potentially infectious rodents, typically survive plague infection, and develop long-

lasting antibodies against Y. pestis that can be detected in serological laboratory tests (91 ,

109 , 112 ). In this dissertation, I collaborate with a state health department (California

Department of Public Health) and a national agency (U.S. Department of Agriculture),

both of whom routinely use coyote data in plague surveillance.

Along with coyote data, I define spatial statistical methods to predict areas of high

risk for plague infection in animals and humans. In Chapter 3, I propose an ecological

niche modeling approach to interpolate the spatial distribution of enzootic plague even into

areas not historically sampled by large-scale administrative plague surveillance systems.

In Chapter 5, I extend my prediction to the western United States and use this outcome
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as a risk factor for human plague cases in Chapter 6. Human plague cases likely occur

during epizootic events (57 ), but enzootic areas explain some of the spatial pattern of

historical human plague cases (1950–2017) at a county level. I find that the spatial pattern

in human plague cases is explained better by a county-level indicator for enzootic plague

than climatological or topographical information alone. Plague epizootic events occur in

enzootic areas under special climatologic or demographic conditions (17 ), so understanding

enzootic spread of Y. pestis is a first step in forecasting future plague outbreaks.

I also find that my prediction of the spatial distribution of enzootic plague is conservative

and robust. In Chapter 2, I recognize potential sources of data uncertainty and biases

due to real-world plague surveillance limitations and prioritization of obligations by large-

scale administrative surveillance systems. My method proposed in Chapter 3 accounts for

a source of sampling effort bias by utilizing both case (presence) and control (absence)

information. In Chapter 4, I use my proposed method to examine the effect of a source

of sampling uncertainty in coyote data collected by the California Department of Public

Health. I identify areas that are sensitive to this particular data uncertainty and develop

a method to categorize coyotes by the degree of uncertainty in their sampling location. In

Chapter 5, I further account for sampling effort bias by determining areas of the western

United States that have not been sampled sufficiently by large-scale administrative plague

surveillance systems. I adjust my predicted spatial distribution of enzootic plague based on

sampling effort.

7.2 Future Directions

Coyotes are sentinel species for plague but are not a perfect proxy for sylvatic plague. The

Y. pestis bacterium is a generalist pathogen found in numerous mammal species (43 ) and

the plague niche is distinct from any mammal host niche (85 ). Therefore, including addi-

tional animal-based plague surveillance data would enhance my predictions of the spatial

distribution of enzootic plague because one would sample more of the plague niche. Ro-

dents are routinely monitored by various public health agencies and some flea information

is recorded (107 , 108 ). Active rodent and flea plague surveillance is costly, frequently yields

few positive detections unless sampled during an epizootic event (107 , 109–111 , 147 , 296 ,
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334–336 ), and is not implemented systematically across or within states, due to limitations

in personnel effort and budgetary constraints. In addition, flea data are spatially limited

(86 ) and are unavailable for this dissertation. Pet surveillance has been and continues to

be conducted by veterinary and state health agencies (57 , 284 , 334 , 337 , 338 ) and is a

useful indicator for human risk, but pets are accidental hosts and are likely only indicators

of epizootic events. Plague has been recorded in many other mammal species such as, for

example, black bears (Ursus americanus) and mountain lions (Felis concolor), but these

are not frequently used for surveillance because of low plague detection and limited number

of observations (85 , 107 , 339–343 ).

A species’ ecological niche is defined by abiotic factors, biotic interactions between hosts

and pathogen, and limitations to dispersal (344 ). Disease transmission occurs in areas

abiotically and biotically suitable and accessible for a pathogen (12 ). However, biotic

interactions may be ignored for generalist pathogens when estimating its ecological niche at

a coarse spatial scale (12 ). A generalist pathogen can maintain itself within a community

of hosts and vectors (i.e. polyhostal and polyvectored; (345 )) and abiotic conditions are

more crucial for defining its ecological niche than biotic interactions (20 , 85 ). I use the

Grinnellian definition of an ecological niche (11 ) because Y. pestis is a generalist pathogen.

Plague dispersal appeared to halt at the 100th Meridian (102 ) and my results demonstrate

this may be due to climatological factors. Biotic interactions between hosts and vectors can

be assessed by examining the overlap in their ecological niches (12 , 20 , 346 ) or by using

biotic factors in the ecological niche model (ENM). My proposed method in Chapter 3 is

restricted to pairwise comparisons so other ENMs methods are suggested (e.g., NicheA; 300 )

to assess niche overlaps. While Maher and colleagues (85 ) examined biotic interactions in

the ecological niche of plague at a coarse spatial scale, future studies at finer spatial scales

should incorporate biotic factors because they influence plague transmission at local scales

(149 , 231 ).

Spatial scale is a considerable theme throughout the dissertation. I conduct an ENM at a

2.5 arcminute resolution (∼4 km). This spatial scale was chosen because of data availability

and sampling uncertainty compromises (see Chapter 4). Future studies can investigate

sensitivity of my results at various spatial scales, especially if rodent plague surveillance
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data are included with coyotes. Rodents are precise indicators of plague, spatially and

temporally; therefore, finer resolution climate and weather information can be used in an

ENM leading to precise prediction of enzootic areas. Eisen and colleagues (71–73 ) were

able to use human plague case data at a point level, which enabled the use of an approach

similar to an ENM to predict areas of high-risk for human plague in the southwestern United

States. I pursued finer resolution human plague case information for the Chapter 6 analysis

but was restricted to a county-level analysis due to data privacy concerns. Finer resolution

human plague data (i.e., at a census tract or census block) may be desirable for more precise

risk estimation, but human plague cases are rare and at finer spatial scales contain many

areal units with zero cases, further challenging statistical methods. A future human plague

risk map could focus on the southwestern United States where the majority of human cases

have occurred and then extrapolate to the greater western United States region.

My proposed method in Chapter 3 is a version of environmental interpolation (19 ) but

future work could extrapolate the ecological niche of enzootic plague outside of the United

States. Extrapolation comes with its own challenges, considerations, and interpretations.

For example, ENMs find correlative matches between observed areas and predicted areas,

but dispersal to or biotic interactions in the extrapolated areas limit the extrapolated spatial

distribution of a species or disease (12 , 20 , 344 , 347 ). Plague is a global disease and Y.

pestis has multiple enzootic foci across all continents except Oceania and Antarctica (13 ,

75 ). Maher and colleagues (85 ) predicted plague in Canada where animal plague cases

have been recorded (reviewed by 286 ). There is little evidence of plague in Mexico (348 ),

but an initial extrapolation study could extend my prediction to Canada and Mexico. Hay

and colleagues (316 ) determined only two percent (seven of 355) of infectious diseases of

clinical importance have been comprehensively charted. A global plague map is possible

just like efforts for malaria (29 , 30 ), dengue (349 ), or Zika (350 ) because global plague

data are available. There are records of plague occurring in South America (reviewed by

290 ), Central Asia (351 ), the Middle East (53 ), Vietnam (352 ), and Madagascar (353 ).

Neerinchx and colleagues (68 ) used an ENM to predict the spatial distribution of plague

on the African continent. Other investigators have assessed the plague foci in China (61 ,

64 , 354 , 355 ). A collaborative effort can compile plague records and estimate the global
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ecological niche of plague. There may be more than one niche given plague has enzootic

cycles driven by native rodent populations and epizootic episodes drive by rats in urban

environments (31 ). Combined with genetic information, a future study could also assess

the conservatism of the plague niche (356 ) by comparing Old World and New World plague

niches.

Of interest to plague surveillance systems is how plague will be affected by global cli-

mate change and demographic shifts. Nakazawa and colleagues (70 ) used human plague

cases and predicted a slight northern shift of the spatial distribution of plague in 2055.

My prediction of the ecological niche of plague in coyotes is a cross-sectional study that

temporally aggregates coyote plague data (1983–2017) due to data limitations. The U.S.

Department of Agriculture has a large sample of coyote observations but only for a 12-year

period. A future study could predict a future spatial distribution of plague in California

using the California Department of Public Health coyote plague data, but an assessment

of spatial and temporal sampling effort will need to accompany the analysis. Shifts in

the ecological niche of plague in coyotes would be interesting if the spatial distribution of

plague varied between decades or years. Persistent locations could potentially be refugia

(i.e., ecological source) of Y. pestis, but see (357 ) for important considerations. Identifying

refugia can inform plague surveillance systems by focusing resources to heavily monitor the

activity within and dispersal outside of these areas. Human plague cases (1950–2017) were

temporally aggregated because of their small sample size. Human plague cases have been

associated with climatological oscillations and epizootic events (57 , 59 , 95 ), but a spatio-

temporal human plague analysis may only be feasible in the southwestern United States

where the majority of human plague cases have occurred.

Environmental factors alone cannot explain human plague risk. Risk factors include

living in close proximity to rodents (31 ), available sources of rodent food and harborage

near a domicile (358 ), and handling, skinning, butchering or consuming an infected animal

(38 , 55 ). Pet ownership is another risk factor (31 ), especially indoor-outdoor cat own-

ership (359 ), sleeping with a dog on the bed (38 ), or low-levels of flea control for pets

(358 ). Human plague cases in the United States are associated with sociodemographic

factors and have changed over time. Schotthoefer and colleagues (318 ) determined plague
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became a disease of affluent areas of New Mexico in the 2000s with cases shifting away

from impoverished areas since the 1990s. The shift may be the result of public health pro-

grams in impoverished areas or the overall decline in small game hunting (360 ). However,

population-level information about specific plague risk factors are not available and the

rarity of human cases poses statistical challenges.

7.3 Broader Impact

My results provide both applied and theoretical contributions. I work closely with govern-

ment scientists within agencies that monitor plague activity and their ongoing constructive

input ensures that my results have immediate impact. My results pinpoint locations for

further plague surveillance and can inform public health policy. A map of enzootic areas

of plague can help inform conservation and public health programs such as, for example,

by notifying doctors in high relative risk counties or strategically delivering plague vaccines

for prairie dogs (302 ) and, potentially, humans at particular high risk (303 ). The U.S.

Department of Agriculture (USDA), one of my collaborating agencies, collects coyote blood

samples in concurrence with a separate, ongoing USDA program of livestock and wildlife

harassment management. Therefore, my results will not influence future coyote blood sam-

ple collection, but my results identify undersampled regions of the western US, which can

help prioritize laboratory testing of coyote samples.

My proposed method (Chapter 3) is a useful tool to predict the occurrence of a disease

(or species) using case (presence) and control (absence) location information. The method

can be used to predict the spatial distribution of other zoonotic disease or wildlife species

that may be of importance to public health or environmental conservation. Motivation

for this dissertation arose from Nusser and colleagues’ (159 ) work with a prion disease

called chronic wasting disease (CWD), which is enzootic in North America and causes

population declines in cervid species (i.e., deer and elk; (361 , 362 )). While CWD has

not been found in humans, transmission is possible under experimental conditions and

surveillance is warranted (reviewed by 363 ). The USDA also monitors wildlife diseases

(e.g., rabies) and invasive species (e.g., feral swine, Sus scrofa). My proposed method

(Chapter 3) can be used in a future ensemble of ecological niche modeling approaches to
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predict the potential spatial distribution of these diseases and species. Ensemble ecological

niche modeling is an exciting frontier because it controls for variation between individual

ENM approaches (see 364 ).

Beyond its use as an ENM, my proposed method (Chapter 3) can be applied to other

scientific fields. It is a type of nonparametric multiplicative regression (207 ) that can detect

clusters in two-dimensional predictor space (i.e., “environmental space” or “state space”).

These predictors can be comprised of any variable combinations. In this dissertation, I

conduct my proposed method within a predictor space comprised of the first two principal

components of a principal component analysis. Other fields also conduct analyses within

principal component space with examples found in genetics (365 , 366 ), economics (367 ),

immunology (368 ), neuroscience (369 ), water treatment (370 ), and bioinformatics (371 ).

In closing, I have shown how spatial statistical and data science methods can extend the

value of administrative surveillance data, providing input on how to gain information from

existing data and where and how often to look next.
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