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Abstract

Preserving Individual Privacy in Spatio-Temporal Data Analytics

By Liyue Fan

We live in the age of big data. With an increasing number of people,

devices, and sensors connected with digital networks, individual data

now can be largely collected and analyzed by data mining applications

for social good as well as for commercial interests. However, the data

generated by individual users exhibit unique behavioral patterns and

sensitive information, and therefore must be transformed prior to the

release for analysis. The AOL search log release in 2006 is an example

of privacy catastrophe, where the searches of an innocent citizen were

quickly re-identified by a newspaper journalist. In this dissertation, I

present a novel framework to release continuous aggregation of private

data for an important class of real-time data mining tasks, such as

disease outbreak detection and web mining, to name a few. The key

innovation is that the proposed framework captures the underlying dy-

namics of the continual aggregate statistics with time series state-space

models, and simultaneously adopts filtering techniques to correct the

observed, noisy data. It can be shown that the new framework provides

a rigorous, provable privacy guarantee to individual data contributors

without compromising the output analysis results. Extensive empirical

studies confirm that it will enable privacy-preserving data analytical

tasks in a broad range of application domains.
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Chapter 1

Introduction

1.1 Motivation

We live in the age of big data. With an increasing number of people, devices,

and sensors connected with digital networks, individual data now can be

largely collected and analyzed to understand important phenomena. An

important class of data mining tasks which rely on real-time analysis of

aggregated private data, are particularly investigated in this dissertation. A

few example tasks include:

Disease Surveillance: A health care provider gathers data from in-

dividual visitors. The aggregated data, e.g. the daily number of In-

fluenza cases, is then shared with third parties, e.g., researchers, in

order to monitor and to detect seasonal epidemic outbreaks at the ear-

liest [5, 33,62].

Web Mining: A web server collects data from individual browsing

sessions. The aggregated data, e.g. the number of requests to each

web page during each time unit, can be mined to discover popular web

pages [49], interesting contents [25], as well as suspicious behavior and

attacks [11].
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Figure 1.1: Real-Time Analysis of Aggregated Private Data

Traffic Monitoring: A GPS service provider gathers data from in-

dividual users about their locations, speeds, mobility, etc. The aggre-

gated data, for instance, the number of users at each region during

each time period, can be mined for commercial interest, such as pop-

ular places, as well as public interest, such as congestion patterns on

the roads [38].

Figure 1.1 illustrates how real-time aggregate monitoring tasks can be ac-

complished. A trusted central server gathers data from a large number of

individual subscribers, i.e. dynamic information regarding their health, lo-

cation, service usage, and online activities. The collected data may be then

aggregated and continuously shared as aggregate time series with un-trusted

entities for research purposes.

Although analyzing individually generated data is clearly beneficial, user

concerns rise from a privacy perspective, as they contribute an increasing

amount of private information. As a matter of fact, the uniqueness of each

person is promoted by the continuous collection of individual data, which
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represents behavioral patterns and personal preferences. Therefore, each

individual is more likely to “stand out” in the data space and be easily

distinguished from those of the rest. The AOL data release in 2006 is an

unfortunate example of privacy catastrophe [3], in which the search logs of an

innocent citizen were quickly identified by a newspaper journalist. A recent

study by de Montjoye et al. [18] concludes that human mobility patterns

are highly unique and four spatio-temporal points are enough to uniquely

identify 95% of the individuals. In order to protect data contributors from

re-identification attacks, their private data must be transformed prior to

release for analysis.

The current state-of-the-art paradigm for privacy-preserving data publish-

ing is differential privacy [4, 22], which requires that the aggregate statistics

reported by a data publisher be perturbed by a randomized algorithm A, so

that the output of A remains roughly the same even if any single tuple in

the input data is arbitrarily modified. Given the output of A, an adversary

will not be able to infer much about any single tuple in the input, and thus

privacy is protected.

A plethora of works have been developed for differentially private data re-

lease, the majority of which enable one-time release of static data [40,51,66–

68]. In the applications we consider, data values at successive time stamps

are highly correlated, creating more challenges for privacy preservation. A

straightforward application of differential privacy mechanism [22] which adds

a Laplace noise to each aggregate value at each time stamp can lead to a very

high perturbation error due to the sequential composition property [54]. Few

works [12, 23, 59] studied the problem of releasing time series or continual

statistics with differential privacy guarantee. The work of [59] relies on time

series Discrete Fourier Transform (denoted as DFT), which is not compati-

ble with real-time data mining tasks. Dwork et al. [23] and Chan et al. [12]

studied a differentially private continual counter over a binary stream. How-
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ever, both works adopt an event-level privacy model, with the perturbation

mechanism designed to protect the presence of an individual event, i.e. a

user’s contribution to the data stream at a single time point, rather than the

presence or privacy of a user.

1.2 Research Contributions

The following research questions are addressed in this dissertation:

• How to release accurate aggregates in real-time while providing user-

level differential privacy guarantee?

• How to quantify individual privacy risk when releasing long series of

aggregates?

• When releasing multi-variate aggregate time series, how to model the

spatio-temporal correlation between variables and time stamps?

1.2.1 Real-Time Aggregate Monitoring with Differen-

tial Privacy (Chapter 3)

This chapter focuses on developing a generic framework for releasing aggre-

gate time series data in real time with the guarantee of differential privacy,

which hasn’t been investigated by previous works. The goal of the frame-

work is to continuously release accurate aggregated data under the notion of

user-level differential privacy, by utilizing partial knowledge, as opposed to

offline methods, about the aggregate data series.

To this end, two challenges are examined in this chapter: predictability and

controllability. Firstly, we explore the possibility to release accurate values at

every time stamp, given the underlying dynamics of the aggregate time series

and the differential privacy mechanism. Secondly, we investigate sampling
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approaches in the temporal domain, reducing the overall perturbation error

by only querying true aggregates at sampling time points.

To improve the accuracy of data release at each time stamp, we establish the

state-space model for the time series to monitor and use filtering techniques

to estimate the original data values from observed values. By assuming a

process model that characterizes the time series, we can reduce the impact

of perturbation error introduced by the differential privacy mechanism. This

is achieved by combining the noisy observation with a prediction based on

the process model. The combined value, also referred to as correction or

posterior estimate, provides an educated guess rather than a pure perturbed

answer. The posterior estimate is then fed back to the system for future

predictions and for dynamically adjusting the sampling process.

To minimize the overall privacy cost, hence, the overall perturbation error,

we propose to sample the time series data as needed. Besides the fixed-

rate sampling method, we introduce an adaptive sampling algorithm which

adjusts the sampling rate with PID control (stands for Proportional, Integral,

and Derivative), which is the most common form of feedback control. We

design a PID controller to detect data dynamics from the estimates derived

by the filtering techniques. Ultimately, we increase the sampling frequency

when data is going through rapid changes and vice versa.

1.2.2 Estimating Individual Privacy Risk with Domain

Statistics (Chapter 4)

This chapter investigates the problem of estimating individual privacy risk

when the proposed framework is applied to aggregate monitoring tasks over

a long period of time. The risk parameter adopted by previous works, called

global sensitivity, equals to the total number of time points in aggregate

monitoring applications, leading to high perturbation error due to differen-
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tial privacy requirement. The goal of this chapter is to bound the individual

privacy risk over a long time period with a small constant, thus reducing the

amount of differential privacy perturbation when releasing continual aggre-

gates.

We propose to estimate individual privacy risk with publicly available do-

main statistics, which quantifies the probability of individuals contributing

to the aggregate time series. We illustrate the estimation method with a case

study on epidemic outbreak detection, where the monitoring period is often

long, i.e. 10 years, and public survey statistics are available about patient

visits and diagnosis. We show that for the majority of individuals, the con-

tribution to the aggregate time series is a very small constant, compared to

the length of series, with high probability. To evaluate the utility of released

aggregates, we conduct empirical studies with simulated data sets with dif-

ferent characteristics. Three extensively used epidemic outbreak detection

algorithms, i.e. C1, C2, and C3 [42], are performed on both the original data

series and the private, released data series.

1.2.3 Modeling Spatio-Temporal Correlation of Multi-

Variate Aggregate Time Series (Chapter 5)

This chapter extends the proposed framework to releasing multi-variate time

series, in order to monitor multiple aggregates simultaneously, e.g. for web

mining and traffic monitoring. Two challenges are present in this chapter.

The first challenge is to model the spatio-temporal correlation between mul-

tiple aggregates at different time stamps. The second challenge is the scale

of the problem, where the number of aggregates to monitor is high.

We first explore the possibility of modeling the spatio-temporal correlation

with individual behavioral patterns for web mining tasks. We propose to

incorporate the Markov property of web browsing behavior in the process
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model, when applying the proposed framework to release web visit aggre-

gates. For efficient learning of model parameters, we propose to obtain a

small sample of browsing data and to set entry values in the high dimensional

covariance matrix with genetic algorithms. We conduct extensive empirical

studies with real-world dataset and examine three differential utility metrics

of the released multi-variate aggregate time series data.

We then investigate complex spatio-temporal correlations, i.e. traffic his-

togram over a road network, which cannot be captured by a linear process

model in the proposed framework. Furthermore, when monitoring traffic

count on a two-dimensional spatial grid, data sparsity becomes another is-

sue for privacy-preserving mechanisms, as a result of large domain size. We

propose to model the spatial correlation between grid cells based on the back-

ground road network and to group cells with similar density to overcome data

sparsity. A Quadtree based space partitioning algorithm is developed and

evaluated with simulated moving object data over a real-world road network.
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Chapter 2

Related Works

Here we briefly review the recent, relevant works on differential privacy,

time series analysis, filtering techniques, and anomaly detection applications.

2.1 Differential Privacy

Dwork et al. [22] established the guideline to guarantee differential privacy

for individual aggregate queries by calibrating the Laplacian noise to the

global sensitivity of each query. Since then, various mechanisms have been

proposed to enhance the accuracy of differentially private data release. Blum

et al. [4] proved the possibility of non-interactive data release satisfying dif-

ferential privacy for queries with polynomial VC-dimension, such as predicate

queries. Dwork et al. [24] further proposed more efficient algorithms to re-

lease private sanitization of a data set with hardness results obtained. The

work of Hay et al. [40] improved the accuracy of a tree of counting queries

through consistency check, which is done as a post-processing procedure after

adding Laplace noise.

Several recent works [16,40,51,66–68] study the counting queries on multi-

dimensional data, also referred to as histograms or contingency tables, where

the multi-dimensional data can be indexed by a tree structure and each level

in the tree is an increasingly fine-grained summary/count. Cormode et al [16]
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propose the class of “private spatial decompositions” and conclude that the

hybrid structure kd-hybrid provides an accurate yet efficient solution com-

pared to alternatives. A recent study [65], aiming to reduce the relative error,

suggests to inject different amount of Laplace noise based on the query re-

sult and works well with multidimensional data. Several other works studied

differentially private mechanisms for particular kinds of data, such as search

logs [48] [41], sparse data [17], and set-valued data [14]. When applied to

highly self-correlated time series data, all the above methods, designed to per-

turb static data, become problematic because of highly compound Laplace

perturbation error.

2.2 Time Series Analysis and Privacy

Time series data is pervasively encountered in the fields of engineering, sci-

ence, sociology, and economics. Various techniques [7], such as ARIMA

modeling, exponential smoothing, ARAR, and Holt-Winters methods, have

been studied for time series forecasting. Papadimitriou et al. [56] studied

the trade-offs between time series compressibility property and perturba-

tion. They proposed two algorithms based on Fast Fourier Transform (FFT)

and Discrete Wavelet Transform (DWT) respectively to perturb time series

frequencies. However, the proposed additive noise does not guarantee dif-

ferential privacy, leaving sensitive information vulnerable to adversaries with

strong background knowledge.

Rastogi and Nath [59] proposed a Discrete Fourier Transform (DFT) based

algorithm which guarantees differential privacy by perturbing the discrete

Fourier coefficients. However, this algorithm cannot release real-time count

data in a streaming environment. The recent works [12] [23] on continuous

data streams defined the event-level privacy to protect an event, i.e. one

user’s presence at a particular time point, rather than the presence of that
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user. For example, if one user contributes to the aggregation at time k − 1,

k, and k+ 1, the event-level privacy protects the user’s presence at only one

of the three time points, resulting the rest two open to attack.

Gőtz et al. [37] proposed a novel approach (MaskIt) for releasing user con-

text streams with suppression. MaskIt allows user-defined sensitive contexts

that are carefully checked in the released stream, with the goal of limiting the

adversary’s ability of learn about user sensitive contexts from the released

stream. They also propose to model user movement patterns by a Markov

chain. In the event stream domain, a similar notion of privacy based on

suppression has been proposed in [64]. In this approach, the sensitive infor-

mation is related to the presence of private patterns in the data stream. The

suppression of these patterns is performed over the stream to maximize the

utility for the useful non-sensitive patterns reported in the released series.

2.3 Filtering

In our context, ”filtering” refers to the derivation of posterior estimates based

on a sequence of noisy measurements, in hope of removing background noise

from a signal. The Kalman filter, which is based on the use of state-space

techniques and recursive algorithms, provides an optimal estimator for lin-

ear Gaussian problems. R.E. Kalman published the seminal paper on the

Kalman filter [45] in 1960. Since then, it has become widely applied to ar-

eas of signal processing [8] and assisted navigation systems [2]. It has also

gained popularity in other areas of engineering. One particular application

is to wireless sensor networks. Jain et al. [44] adopted a dual Kalman fil-

ter model on both server and remote sensors to filter out as much data as

possible to conserve resources. Their main concern was to minimize memory

usage and communication overhead between sensors and the central server

by storing dynamic procedures instead of static data. Increasingly, it has
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become important to include nonlinearity and non-Gaussianity in order to

model the underlying dynamics of a system more accurately. A very widely

used estimator for nonlinear systems is the extended Kalman filter (EKF) [60]

which linearizes the current mean and error covariance. Masreliez [53] pro-

posed solutions to the non-Gaussian filtering problems with linear models

in 1975. His algorithms retain the computationally attractive structure of

the Kalman filter but require convolution operations which are hard to im-

plement in all but very simple situations, for instance, when noises can be

modeled as a Gaussian mixture. Gordon et. al [36] introduced particle fil-

ters for solving non-linear non-Gaussian estimation problems in 1993. Since

then, particle methods have become very popular due to the advantage that

they do not rely on any local linearisation or any crude functional approxi-

mation. Pitt and Shephard [58] introduced auxiliary particle filter and adap-

tation. Doucet et al. [20] proposed the optimal importance distribution,

approximation, smoothing, and Rao-Blackwellization. A few tutorials, for

instance [1] [21], on particle methods have been published and cover most

sequential Monte Carlo algorithms in particle filtering to facilitate implemen-

tation.

2.4 Anomaly Detection

At an abstract level, an anomaly is defined as a pattern that does not conform

to expected normal behavior [13]. Anomaly detection has been researched

within diverse research areas and application domains, such as epidemic out-

break detection for syndrome surveillance [43] and intrusion detection for

cyber-security [9]. Both tasks are conducted on continual aggregate statis-

tics, i.e. aggregate time series. The aberration detection algorithms studied

by Jackson et al. [43] aim to find disease outbreaks from daily counts of

diagnosed cases. The work of Caberera et al. [9] addressed network intru-
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sion detection by establishing statistical models for the number of incoming

connections within a given time interval.

Specifically for outbreak detection, there are a multitude of algorithms that

have been reported and applied to a variety of disease studies. Most algo-

rithms compare the current signal, i.e. current count of diagnosed cases,

with a baseline period, i.e. previously released counts, in order to determine

whether there is an outbreak or not. Three control-chart based algorithms

proposed by Hutwagner et al. [42], commonly referred to as EARS [33] C1,

C2 and C3, require little baseline data and have been found to provide early

detection of outbreaks. The Negative Binomial Cusum (NBC) method, orig-

inally proposed in Hawkins and Olwell [39], is reported to reduce the number

of false positives generated by other cusum methods. Unlike the cusum meth-

ods, the Historical Limit Method (HLM) [61] incorporates historical data and

accounts for seasonality by design. Gatton et al. [34] proposed to model the

number disease cases in a time period as a Poisson process and their method

considers years of historical data as baseline.
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Chapter 3

Real-Time Aggregate

Monitoring with Differential

Privacy

In this chapter, we formally define the problem of real-time aggregate mon-

itoring with differential privacy and introduce FAST, a generic framework

with Filtering and Adaptive Sampling to release differentially private aggre-

gate Time series.

3.1 Preliminaries

3.1.1 Problem Statement

We formally define an aggregate time series as follows:

Definition 3.1 (Aggregate Time Series). A univariate, discrete time series

X = {xk} is a set of values of an aggregate variable x at discrete time k,

where 0 ≤ k < T and T is the length of the series.

In particular, X is a count series in our example applications, such as the

daily count of patients diagnosed of Influenza, or the hourly count of vehicles

passing by a gas station. This assumption will hold true for the rest of this
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dissertation. However, other types of aggregate function, such as min, max,

average, and sum, can also be monitored by FAST with slight adaptations.

Our goal is to release in real-time a private version of X, denoted as R =

{rk}, that satisfies differential privacy.

Definition 3.2 (Utility Metric). We measure the quality of a private, re-

leased series R by the average relative error E between R and the original

series X:

E =
1

T

∑
k

|rk − xk|
max{xk, δ}

(3.1)

where δ is a user-specified constant (also referred to as sanitary bound in

[65]) to mitigate the effect of excessively small query results. We set δ = 1

throughout the entire series for count data.

Intuitively, the utility of R increases as each rk approaches xk, the extreme

case of which would have rk = xk for each k. However, a privacy-preserving

algorithm is likely to perturb original data values in order to protect individ-

ual privacy. Therefore, a mechanism that guarantees user privacy and yields

high utility is highly desirable.

3.1.2 Differential Privacy

The privacy guarantee provided by FAST is differential privacy [4]. Simply

put, a mechanism is differentially private if its outcome is not significantly

affected by the removal or addition of a single user. An adversary thus learns

approximately the same information about any individual user, irrespective

of his/her presence or absence in the original database.

Definition 3.3 (α-Differential Privacy [4]). A non-interactive privacy mech-

anism A gives α-differential privacy if for any dataset D1 and D2 differing on
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at most one record, and for any possible anonymized dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eα × Pr[A(D2) = D̃] (3.2)

where the probability is taken over the randomness of A.

The privacy parameter α, also called the privacy budget [54], specifies the

degree of privacy offered. Intuitively, a lower value of α implies stronger

privacy guarantee and a larger perturbation noise, and a higher value of α

implies a weaker guarantee while possibly achieving higher accuracy.

Laplace Mechanism. Dwork et al. [22] show that α-differential privacy

can be achieved by adding i.i.d. noise Ñ to the query result q(D):

q̃(D) = q(D) + Ñ (3.3)

The magnitude of Ñ conforms to a Laplace distribution with probability

p(x|λ) = 1
2λ
e−|x|/λ and λ = GS(q)/α, where GS(q) represents the global

sensitivity [22] of query q. In our target applications, each aggregate value

is a count query and it is known GS(count) = 1. Later on, we denote the

Laplace distribution with 0 mean and λ scale as Lap(0, λ).

Composition. The composition properties of differential privacy provide

privacy guarantees for a sequence of computations, e.g. a sequence of count

queries.

Theorem 3.4 (Sequential Composition [54]). LetAi each provide αi-differential

privacy. A sequence of Ai(D) over the dataset D provides (
∑

i αi)-differential

privacy.

User-level privacy vs. Event-level privacy. The work [23] proposed a

differentially private continual counter with the notion of event-level privacy,

where the neighboring databases differ at ui, a user u’s contribution at time

stamp i. In our study, we provide a stronger privacy guarantee, user -level
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Algorithm 1 Laplace Perturbation Algorithm(LPA)

Input: Raw series X, privacy budget α

Output: Released series R

1: for each k ∈ 0, 1, ..., T − 1 do

2: rk ← perturb xk by Lap(0, T
α

);

privacy, where the neighboring databases differ at the user u, i.e. u’s contri-

bution at all time stamps, thus protecting sensitive information about user

u at any time.

3.1.3 Existing Solutions

Here we present the baseline Laplace perturbation algorithm and a recently

proposed transformation-based algorithm. Empirical studies of the two al-

gorithms against our proposed solution are included in Section 5.

Laplace Perturbation Algorithm. A baseline solution to sharing differ-

entially private time series is to apply the standard Laplace perturbation at

each time stamp. If every query satisfies α/T -differential privacy, by Theo-

rem 1 the sequence of queries guarantees α-differential privacy. We summa-

rize the baseline algorithm in Algorithm 1 and Line 2 represents the Laplace

mechanism to guarantee α/T -differential privacy for each released aggregate.

Discrete Fourier Transform. Algorithm 2 outlines the Fourier Perturba-

tion Algorithm proposed by Rastogi and Nath [59]. It begins by comput-

ing Fd, which is composed of the first d Fourier coefficients in the Discrete

Fourier Transform (DFT) of X, with the jth coefficient given as: DFT (X)j

=
∑T−1

i=0 e
2π
√
−1

T
jixi. Then it perturbs Fd using LPA algorithm with privacy

budget α, resulting a noisy estimate F̃d. This perturbation is to guarantee

differential privacy. Denote PADT (F̃d) the sequence of length T by append-
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Algorithm 2 Discrete Fourier Transform(DFT)

Input: Raw series X, privacy budget α, parameter d

Output: Released time-series R

1: compute Fd ← DFTd(X)

2: compute F̃d ← LPA(Fd, α);

3: compute R← IDFT(PADT (F̃d));

ing T − d zeros to F̃d. The algorithm finally computes the Inverse Discrete

Fourier Transform(IDFT) of PADT (F̃d) to get R. The jth element of the

inverse is given as: IDFT (X)j = 1
T

∑T−1
i=0 e

− 2π
√
−1

T
jixi.

The number of coefficients d is a user-specified parameter. In our empirical

study, we set d = 20 according to the original paper [59]. As each IDFT (X)j

may be a complex number due to truncation and perturbation, the authors

proposed to use L1 distance to measure the quality of the inverse series.

To be consistent, we adopt the same metric in our empirical study for this

algorithm. We slightly abuse the term and refer to their algorithm as DFT

in the rest of the chapter.

3.2 FAST

We propose FAST, a novel solution to sharing time-series data under differ-

ential privacy. It allows fully automated adaptation to data dynamics and

highly accurate time-series prediction and correction. Figure 3.1 illustrates

the framework of FAST. The key steps are outlined below:

• For each time stamp k, the adaptive sampling component determines

whether to sample/query the input time-series or not.

• If k is a sampling point, the data value at k is perturbed by the Laplace
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Figure 3.1: FAST Framework

mechanism to guarantee differential privacy. This perturbed value is

then received by the filtering component for posterior estimation.

• The filtering component produces a prediction of data value based

on an internal state model at every time stamp. The prediction, i.e.

prior estimate, is released to output at a non-sampling point, while a

correction, i.e. posterior estimate based on both the noisy observation

and the prediction, is released at a sampling point.

• The error between the prior and the posterior estimates is then fed to

the adaptive sampling component to adjust the sampling rate. Once

the user-specified privacy budget α is used up, the system will stop

sampling the input series and will predict at each onward time stamp.

Algorithm 3 summarizes our proposed framework. Given a raw series

X, overall privacy budget α, and maximum number of samples allowed M

(M ≤ T ), FAST provides real-time estimates of data values by the Pre-

diction and Correction procedures and dynamically adjusts the sampling
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Algorithm 3 FAST Algorithm

Input: Raw series X, privacy budget α, maximum number of samples al-

lowed M

Output: Released series R

1: for each k do

2: obtain prior estimate from Prediction;

3: if k is a sampling point & numSamples < M

4: zk ← perturb xk by Lap(0, M
α

);

5: numSamples++;

6: obtain posterior estimate from Correction;

7: rk ← posterior

8: adjust sampling rate by Adaptive Sampling;

9: else

10: rk ← prior;

rate with the Adaptive Sampling procedure. The details will be discussed

in the next two subsections. Note that FAST evenly distributes the overall

privacy budget α to each sample and the exhaustion of α can be detected if

numSamples ≥M (Line 3).

Theorem 3.5. FAST satisfies α-differential privacy.

Proof. Given the maximum number of samples M and the overall privacy

budget α, each sample is α/M -differentially private. According to Theorem

1, Algorithm 3 satisfies α-differential privacy.

There are two types of error to balance in our solution: perturbation error by

the Laplace perturbation mechanism at sampling points and prediction error

by the filtering prediction step at non-sampling points. The more we sample,

the more perturbation error is introduced, while the prediction error might
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be reduced due to more feedback, and vice versa. FAST successfully strikes

a balance between the two types of error. The adaptive sampling component

reduces the perturbation error from Θ(T ) (error of the baseline LPA) to

Θ(M) and dynamically adjusts the sampling rate. The filtering component

reduces the prediction error by model-based estimation and achieves great

accuracy especially when data fits the underlying process model. Technical

details of the two components are described below and empirical results which

confirm the superiority of FAST are presented in Section 5.

3.2.1 Filtering

The filtering component in FAST provides estimates of monitored aggregates

in order to improve the accuracy of released data per time stamp. We first

establish a state-space model for the aggregate series to monitor. Then we

propose and present the details of two filtering algorithms for estimation.

Process Model. Suppose the original aggregate series is generated by a

underlying process. Let xk denote the internal state, i.e. true value, of the

process at time k. The states at consecutive time stamps can be modeled by

the following equations:

xk = xk−1 + ω (3.4)

ω ∼ N (0, Q) (3.5)

This constant process model indicates that adjacent values from the original

time series should be consistent except for a white Gaussian noise ω, called

the process noise, with variance Q.

Measurement Model. The noisy observation, which is obtained from the

Laplace mechanism, can be represented as follows:

zk = xk + ν (3.6)

ν ∼ Lap(0, 1/α0) (3.7)
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where ν is called the measurement noise. Clearly, the noisy observation

zk is the true state plus the perturbation noise. Note that α0 denotes the

differential privacy budget for each sample, e.g. α0 = α/T if sampling at

every time stamp; α0 = α/M if no more than M samples are allowed.

Posterior Estimate. Instead of releasing the noisy observation zk as the

baseline LPA does, we propose to release the aposteriori estimate of the true

state xk after obtaining zk. The posterior estimate, denoted by x̂k, can be

given by the following conditional expectation:

x̂k = E(xk|Zk) (3.8)

where Zk = {z0, z1, ..., zk} denotes the set of observations obtained so far.

Therefore, we can derive x̂k only if the aposteriori probability density func-

tion f(xk|Zk) can be determined. According to Bayes’ theorem, we obtain

the following relation between two consecutive time stamps:

f(xk|Zk) =
f(xk|Zk−1)f(zk|xk)

f(zk|Zk−1)
(3.9)

where the prior and the normalizing constant are given by:

f(xk|Zk−1) =

∫
f(xk−1|Zk−1)f(xk|xk−1)dxk−1 (3.10)

f(zk|Zk−1) =

∫
f(xk|Zk−1)f(zk|xk)dxk . (3.11)

In general, Equations 3.8, 3.9, and 3.10 are difficult to carry out when

f(zk|xk), i.e. f(ν = zk − xk), is non-Gaussian. Therefore, the posterior

density cannot be analytically determined without the Gaussian assumption

about the measurement noise.

We propose two solutions to the posterior estimation challenge discussed

above. One is to model the Laplace perturbation noise with a Gaussian

measurement noise; the other is to simulate the posterior density function

with Monte Carlo methods. The details are presented below, respectively.
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Gaussian Approx. of Measurement Noise

In our previous work [28], we propose to model the Laplace noise ν with an

approximate, white Gaussian error

ν ∼ N (0, R) (3.12)

and therefore the estimation of x̂k in Equation 3.12 can be solved with the

classic Kalman filter [45].

The Kalman Filter. At time stamp k, the prior state estimate x̂−k is made

according to the process model in Equation 3.4 and is related to the posterior

estimate of the previous step:

x̂−k = x̂k−1 . (3.13)

The posterior estimate x̂k can be given as a linear combination of the prior

x̂−k and the observation zk:

x̂k = x̂−k +Kk(zk − x̂−k ) . (3.14)

where Kk, the Kalman Gain, is adjusted at every time stamp to minimize

the posterior error variance. Below we briefly show how Kk is derived for

each time stamp k.

Let P−k and Pk denote the apriori and aposteriori error variance, respec-

tively. They are defined as

P−k = E[(xk − x̂−k )(xk − x̂−k )T ] (3.15)

Pk = E[(xk − x̂k)(xk − x̂k)T ] . (3.16)

By the Gaussian assumption regarding ω and ν and given the prior error

variance P−k at time stamp k, we can substitute Equation 3.14 and 3.15 into

Equation 3.16 and apply the gradient descendant method to minimize Pk.

Therefore, we obtain an optimal value for Kk as

Kk = P−k (P−k +R)−1 (3.17)
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Algorithm 4 KFPredict(k)

Input: Previous release rk−1

Output: Prior estimate x̂−k

1: x̂−k ← rk−1;

2: P−k ← Pk−1 +Q;

Algorithm 5 KFCorrect(k)

Input: Prior x̂−k , noisy measurement zk

Output: Posterior estimate x̂k

1: Kk ← P−k (P−k +R)−1;

2: x̂k ← x̂−k +Kk(zk − x̂−k );

3: Pk ← (1−Kk)P
−
k ;

and thus the optimal Pk is

Pk = (1−Kk)P
−
k . (3.18)

Similarly, given Pk, we can easily project the prior error variance at k + 1

according to Equation 3.4:

P−k+1 = Pk +Q . (3.19)

The classic Kalman filter recursively performs two operations: Prediction

and Correction, which correspond to prior and posterior estimation respec-

tively. Algorithm 4 and 5 provide details of the two estimation steps used in

FAST framework.

Accuracy. Here we study the performance of the Kalman filter based algo-

rithm without sampling. Therefore, a noisy observation is obtained and the

Prediction and Correction pair is performed at every time stamp. Theoreti-

cally, the Kalman filter is optimal when the Gaussian assumption regarding
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the measurement noise holds, i.e. Equation 3.12. However, additional ap-

proximation error is introduced since we explicitly model the Laplace per-

turbation noise as Gaussian in posterior estimation. Below we analyze the

posterior error var(xk − x̂k) where zk is obtained from the Laplace mecha-

nism and x̂k is derived under the Gaussian assumption. The goal is to find

the optimal approximate Gaussian noise, i.e. the optimal value of R, in or-

der to achieve minimum variance posterior estimate. Due to the recursive

nature of filtering, it’s difficult to obtain a closed form for the optimal R

value. We conclude our main finding in the theorem below and refer readers

to Appendix A for the detailed least square analysis.

Theorem 3.6 (Optimal Approximation). Given the perturbation noise dis-

tribution Lap(0, T/α) at every time stamp, using an approximate Gaussian

noise that follows N (0, R) leads to the following posterior error:

var(xk − x̂k) =

R2[var(xk−1 − x̂k−1) +Q]

(P−k +R)2
+

2P−k
2
T 2

(P−k +R)2α2
(3.20)

and optimal posterior estimation requires R ∝ T 2

α2 .

Proof. See Appendix A.

Theorem 3 provides guidance for choosing the Gaussian measurement noise,

i.e. the value of R, to approximate the perturbation noise introduced by

differential privacy mechanism. The result confirmed that the optimal R is

proportional to the variance of the Laplace perturbation noise, given that

the privacy budget is uniformly allocated to every time stamp.

Estimation with Sampling. Note that the posterior estimate x̂k cannot

be determined when noisy observation zk is absent. When combined with

sampling in our overall solution, we propose to estimate as follows: at sam-

pling points, i.e. when noisy observations are available, both Prediction and
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Correction will be performed and the posterior estimates will be released;

at non-sampling points, i.e. when noisy observations are absent, only the

Prediction step will be performed and the prior estimates will be released.

One advantage of the Kalman filter based algorithm is it estimates the

internal state by properly weighing and combining all available data (prior

and noisy observation). Another advantage is its computation efficiency: only

O(1) computations are required for each time stamp according to Algorithm 4

and 5.

Monte Carlo Estimation of Posterior Density

Besides modeling the Laplace perturbation with an approximate Gaussian

noise, Monte Carlo methods can be used to represent the posterior density

function f(xk|Zk) by simulation. In this section, we will show the solution

to posterior estimation based on the Sampling-Importance-Resampling(SIR)

particle filter, which is also known as bootstrap filtering [36] and condensation

algorithm [52].

SIR Particle Filtering. With a collection of N weighted samples or parti-

cles, {xik, πik}Ni=1, where πik is the weight of particle xik, the posterior density

at time k can be represented as follows:

f(xk|Zk) =
N∑
i=i

πikδ(xk − xik) (3.21)

where δ(·) is Dirac delta measure.

The weights {πik}Ni=1 are chosen according to the importance sampling

method, where particles {xik}Ni=1 can be easily generated from a proposal q(·)
called an importance density. The details of the importance sampling method

are omitted here and can be found in [19]. By assuming that the importance

density q(·) depends only on the previous state and current measurement,

the following weight relationship between two successive time stamps can be
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Algorithm 6 PFPredict(k)

Input: Particles at time k − 1 {xik−1, π
i
k−1}Ni=1

Output: Prior estimate x̂−k

1: for each i ∈ 1, ..., N do

2: draw xik ∼ f(xk|xik−1)

3: x̂−k ← 1
N

∑N
i=1 x

i
k

derived:

πik ∝ πik−1

f(zk|xik)f(xik|xik−1)

q(xik|xik−1, zk)
. (3.22)

According to Arulampalam et al [1], it is offen convenient to choose the

importance density q(·) to be the prior density f(xk|xik−1). Substituting it

into Equation 3.22 then yields

πik ∝ πik−1f(zk|xik) (3.23)

where

f(zk|xik) = f(ν = zk − xik) (3.24)

and ν follows the Laplace distribution in Equation 3.7.

The SIR particle filter explicitly employs a resampling step at every time

stamp in order to circumvent degeneracy phenomenon, where after a few

iterations, all but one particle will have negligible weights. In our solution,

we adopt systematic resampling as recommended in [1]. Since πik−1 = 1/N

for every i after resampling, weights at time k can be simplified as follows:

πik ∝ f(zk|xik) . (3.25)

We will use the above result for correction in the overall algorithm.

Prediction and Correction. Algorithm 6 and 7 provide details of the

particle filtering based estimation algorithm used in FAST framework.
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Algorithm 7 PFCorrect(k)

Input: Particles {xik}Ni=1, noisy measurement zk

Output: Posterior estimate x̂k

1: for each i ∈ 1, ..., N do

2: assign particle weight πik according to (25)

3: normalize {πik}Ni=1

4: x̂k ←
∑N

i=1 π
i
kx

i
k

5: resample from {xik, πik}Ni=1

For each particle i, the Prediction step (Line 1-2 in Algorithm 6) projects

its value for the next time stamp according to the process model f(xk|xik−1).

Note that f(xk|xik−1) represents the distribution N (xik−1, Q), according to

Equation 3.4. Once the particles are drawn, the prior estimate can be given

with the uncorrected weights (Line 3 in Algorithm 6):

x̂−k =
N∑
i=1

πik−1x
i
k =

1

N

N∑
i=1

xik . (3.26)

The Correction step adjusts particle weights according to the noisy obser-

vation zk. After weight adjustment and normalization (Line 1-3 in Algo-

rithm 7), the posterior estimate can be derived as follows (Line 4 in Algo-

rithm 7):

x̂k =
N∑
i=1

πikx
i
k . (3.27)

As implied by the SIR particle filtering method, resampling is applied at the

end of the Correction step (Line 5 in Algorithm 7).

The initialization of particles {xi0, πi0}Ni=1 is non-trivial, since the distribu-

tion of the initial state is unlikely to be available in many real-time appli-

cations. Therefore, we skip the estimation steps, i.e. Equation 3.26 and
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eq:pfcorrect, at time 0 and release the noisy measurement z0. Particles

{xi0}Ni=1 are then uniformly drawn from the vicinity of z0 and {πi0}Ni=1 are

initialized as 1/N .

Accuracy. We refer the readers to [21] for the accuracy and convergence re-

sults of the SIR algorithm. Intuitively, a larger number of particles implies a

more accurate distribution estimation. On the other hand, a larger number of

particles requires more computation time, which is crucial to real-time moni-

toring applications. As a matter of fact, the complexity of Algorithm 6 and 7

is O(N) per time stamp. We will examine the trade-off between accuracy

and run time of Algorithm 6 and 7 in the experiment section.

Estimation with Sampling. Combined with sampling in the overall solu-

tion, the particle filtering based algorithm adopts the same strategy as the

Kalman filter: it releases posterior estimates at sampling points and prior

estimates at non-sampling points. The utility of the particle filtering based

algorithm will be evaluated against other methods in Section 5.

3.2.2 Sampling

Since each noisy observation from Laplace mechanism comes with a cost

(privacy budget spent), we are motivated to sample data values through the

differential privacy interface only when needed in our overall solution. Below

we propose two sampling strategies: one is to sample the series with a fixed

interval, while the other is to dynamically adapt the sampling rate based on

feedback control.

Fixed Rate Sampling. Given a pre-defined interval I, the fixed-rate algo-

rithm samples the time series periodically and releases the posterior estimate

per I time stamps. As for the time points between two adjacent samples,

a predicted value/prior estimate is released. Privacy budget α/(T
I
) will be

spent on each sample to guarantee α-differential privacy for the entire series
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Algorithm 8 Fixed Rate Sampling

Input: Current time stamp k, fixed interval I

Output: Sampling or not

1: if k%I == 0

2: k is a sampling point

3: else

4: k is a non-sampling point

according to Theorem 1.

Algorithm 8 summarizes the fixed rate sampling algorithm which can be

used in FAST framework. The challenge of fixed-rate sampling is to deter-

mine the optimal interval I. When increasing the sampling rate, i.e. when

I is low, an extreme case of which is to issue a query at each time step as in

the baseline solution, the perturbation error introduced at each time stamp

is increased. On the other hand, when we decrease the sampling rate, i.e.

when I is high, the perturbation at each sampling point will drop, but the

published series will not reflect up-to-date data values, resulting large pre-

diction error. We analyze the posterior error of fixed-rate sampling and find

that it is very challenging to quantify and minimize the sum of error a pri-

ori. Detailed discussion is in Appendix B. Therefore, the fixed-rate sampling

method may not be optimal in our problem setting.

Adaptive Sampling. With no a priori knowledge of the time series, it

is desirable to detect data dynamics and to adjust the sampling rate on-

the-fly. Figure 3.2 illustrates the idea of adaptive sampling. We plot the

original traffic series as well as the number of queries (samples) issued by

the adaptive sampling mechanism during each corresponding time unit. As

is shown, the adaptive sampling mechanism increases sampling rate between

day 20 and day 100, when the traffic count exhibits significant fluctuations,
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Figure 3.2: Adaptive Sampling with Traffic Data

and decreases sampling rate beyond day 100, when there’s little variation

among data values.

In FAST framework, we propose an adaptive sampling algorithm with feed-

back control. The feedback is the error between the posterior and the prior

estimates from the filtering module, which is defined below.

Definition 3.7 (Feedback Error). At time step kn (0 ≤ kn < T ), where the

subscript n indicates the n-th sampling point (0 ≤ n < M), we define the

feedback error Ekn as follows:

Ekn = |x̂kn − x̂−kn|/max{x̂kn , δ} . (3.28)

Note that no error is defined at a non-sampling point.

The feedback error measures how well the internal state model describes

the current data dynamics, assuming x̂kn is close to the true state. Since x̂−kn
is given by a constant state model, we may infer that data is going through

rapid changes when the error Ekn increases. In response, the controller in
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our system will detect the error change and increase the sampling rate ac-

cordingly.

FAST adopts a PID controller, the most common form of feedback con-

trol [46], to measure the performance of sampling over time. We re-define

the three PID components, Proportional, Integral, and Derivative, with the

feedback error defined in Equation 3.28.

• Proportional error is to keep the controller output (∆) in proportion

to the current error Ekn with kn being the current time step and sub-

script n being the sampling point index. It is given by ∆p = CpEkn

where Cp denotes the proportional gain which amplifies the current

error.

• Integral error is to eliminate offset by making the change rate of con-

trol output proportional to the error. With similar terms, we define

the integral control as ∆i = Ci
Ti

∑n
j=n−Ti+1Ekj where Ci denotes inte-

gral gain amplifying the integral error and Ti represents the integral

time window indicating how many recent errors are taken.

• Derivative error attempts to prevent large errors in the future by

changing the output in proportion to the change rate of error. It is

defined as ∆d = Cd
Ekn−Ekn−1

kn−kn−1
where Cd is derivative gain amplifying

the derivative error.

The full PID algorithm is thus

∆ = CpEkn +
Ci
Ti

n∑
j=n−Ti+1

Ekj + Cd
Ekn − Ekn−1

kn − kn−1

. (3.29)

Control gains Cp, Ci, and Cd denote how much each of the proportional,

integral, and derivative counts for the final calibrated PID error. In FAST,
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Algorithm 9 Adaptive Sampling

Input: Current time stamp k, next sampling point ns

Output: Sampling or not

1: if k == ns

2: k is a sampling point

3: afterwards, obtain feedback from filtering

4: update ∆ according to (29)

5: calculate I ′ according to (32)

6: ns← ns+ I ′, I ← I ′

7: else

8: k is a non-sampling point

they are constrained by:

Cp, Ci, Cd ≥ 0 (3.30)

Cp + Ci + Cd = 1 . (3.31)

Note that setting Ci > 0 requires Ti previous samples in order to evaluate the

integral error, which can be implemented as a straight-forward initialization

prior to adaptive adjustment of the sampling rate.

Given the PID error ∆, a new sampling interval I ′ can be determined:

I ′ = max{1, I + θ(1− e
∆−ξ
ξ )} (3.32)

where θ and ξ are user-specified parameters. By default, the smallest sam-

pling interval is set to 1. Parameter θ determines the magnitude of change

and ξ is the set point for the sampling process. We assume ξ is 10% in our

empirical studies, i.e. the maximum tolerance for PID error is 10%. It can

be determined by FAST users according to specific applications.

Algorithm 9 summarizes the adaptive sampling algorithm used in FAST

framework. It maintains and updates the variable ns indicating the next
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(a) flu data (b) traffic data

Figure 3.3: Snapshots of Datasets with Various Dynamics

sampling point. If the current time stamp is determined to be a sampling

point, a feedback error can be obtained from the filtering component (Line 3)

after correction. The current PID error ∆ can then be evaluated (Line 4)

as well as a new sampling interval I ′ (Line 5). A future sampling point, i.e.

updated ns, is derived by applying the new sampling interval I ′ (Line 6).

When k is a non-sampling point, the algorithm receives no feedback since

only the prediction step is run in the filtering component. We will study the

parameters as well as the performance of both sampling algorithms in the

next section.

3.3 Experimental Results

We have implemented FAST in Java with JSC (Java Statistical Classes1) for

simulating the statistical distributions. Our study has been conducted with

synthetic as well as real-world data sets. The synthetic data sets are 1000

time stamps long and generated with Q = 105 to incorporate data value

fluctuations.

1http://www.jsc.nildram.co.uk
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• Linear is a synthetic series generated according to the process model

in Equation 3.4.

• Logistic is a synthetic series generated by the logistic model xk =

A(1 + e−k)−1 with A = 5000.

• Sinusoidal is a synthetic series generated by a sinusoid xk = A sin(bk+

c) with A = 5000, b = π/6, c = π/2.

The real-world data sets are of variable length.

• Flu is the weekly surveillance data of Influenza-like illness provided by

the Influenza Division of the Centers for Disease Control and Preven-

tion2. We collected the weekly outpatient count of the age group [5-24]

from 2006 to 2010. This time-series consists of 209 data points.

• Traffic is a daily traffic count data set for Seattle-area highway traf-

fic monitoring and control provided by the Intelligent Transportation

Systems Research Program at University of Washington3. We chose

the traffic count at location I-5 143.62 southbound from April 2003 till

October 2004. This time-series consists of 540 data points.

• Unemploy is the monthly unemployment level of African American

women of age group [16-19] from ST. Louis Federal Reserve Bank4. This

data set contains observations from January 1972 to October 2011 with

478 data points.

Figure 3.3 illustrates the different dynamics of the data sets. For instance,

the flu data set has a relatively smooth curve and reflects significant changes

in data value (unemploy data shows similar characteristics), while the traffic

2http://www.cdc.gov/flu/
3http://www.its.washington.edu/
4http://research.stlouisfed.org/
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Symbol Description Default Value

α Total Privacy Budget 1

Q Process Noise 105

R Gaussian Measurement Noise 106

N Number of Particles 103

(Cp, Ci, Cd) Control Gains (0.9, 0.1, 0)

Ti Integral Time Window 5

(θ, ξ) Interval Adjustment Params (10, 0.1)

Table 3.1: FAST Parameters

data has a less smooth curve but fluctuates around a rather stable average

value.

To show the impact of FAST parameters, we will only present empirical

results with the Linear data set for brevity. The default parameter setting,

unless otherwise noted, is summarized in Table 3.3.

3.3.1 Effects of Filtering

Here we study the impact of parameters on filtering performance alone.

Therefore, no sampling is applied in the experiments of this section, hence a

posterior estimate can be derived for each time stamp.

Choice of R in the Kalman Filter. Since the process noise Q is in-

trinsic to the time-series data of interest, it can be determined by domain

users who have good understanding about the process to monitor or have

access to historic data. What is not straight-forward is the choice of R, the

Gaussian measurement noise we have proposed to approximate the Laplace

perturbation noise. Figure 3.4(a) plots the utility of the released time-series

with various R values when using first 10% of the data series versus using the

entire series. Figure 3.4(b) plots the utility with various R values when α set
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(a) R vs. T (b) R vs. α

Figure 3.4: Impact of R in the Kalman Filter

to 0.1 versus 1. As can be seen in Figure 3.4(a), when using 10% of the data,

the optimal R value is 104, as opposed to 106 when using the entire series.

Similarly in Figure 3.4(b), when α = 1, the optimal R value is 106, which is

a hundred times less than 108, the optimal R for α = 1. Both these results

confirm our finding in Theorem 3 that the optimal R value is proportional

to T 2/α2.

Choice of N in Particle Filter. Due to the Monte Carlo nature of the

particle filtering method, a larger number of particles implies more accu-

rate estimation of the posterior distribution and more computation time.

Therefore, N cannot be infinitely large for real-time applications where fast

response is required. Here we examine the trade-off between accuracy and

runtime of the particle filter. Figure 3.5(a) plots the utility of particle fil-

tering with different N values. As we expect, the relative error goes down

as the number of particles increases and we observe no significant boost in

accuracy when N is greater than 103. On the other hand, a larger number of

particles requires more processing time, as in Figure 3.5(b). Based on these

results, we choose N = 103 as the default value as it provides a good balance

between accuracy and computation efficiency.
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(a) Accuracy (b) Runtime

Figure 3.5: Impact of N in Particle Filter

Figure 3.6: Comparison of Two Filtering Algorithms
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(a) Impact of θ (b) Impact of M

Figure 3.7: Impact of Adaptive Sampling Params

Kalman Filter vs. Particle Filter. Recall that the number of computa-

tions per time stamp for the Kalman filter is O(1) and that of the particle

filter is O(N). Here we compare the utility of the two methods and sum-

marize our findings in Figure 3.6. For logistic and sinusoidal data, both

the Kalman filter and particle filter result in high relative error due to the

non-linearity in the data. For the rest data sets, both filtering algorithms

achieve high accuracy and their utility results are comparable. We conclude

that particle filter requires more time and is more robust since it relies on

only one parameter N which is independent of data sets, while the Kalman

filter is more efficient and provides comparable accuracy on condition that

the Gaussian variance R is wisely chosen.

3.3.2 Effects of Sampling

In the following studies, we apply sampling techniques on top of filtering and

examine the advantage of adaptive sampling.

Parameters for Adaptive Sampling. We first study the settings of adap-

tive sampling parameters θ and M . Recall θ represents the magnitude of
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sampling interval adaptation and M represents the maximum number of

samples allowed for each application. Figure 3.7(a) shows the impact of θ.

Both the Kalman filter and particle filter show similar utility results and

trends as θ varies. We observe that the error is prohibitive when θ = 1,

due to insufficient interval adjustment. In that case, the application quickly

exhausts the given privacy budget. The optimal θ value for the Kalman fil-

tering method is 5, while that of the particle filtering method is observed

at θ = 10. Both filtering methods result in slightly increased error as θ

increases beyond the optimal point, due to enlarged sampling interval and

hence a higher prediction error between two adjacent samples. However, the

increase is insignificant compared to the extreme case where θ = 1. There-

fore, we conclude that FAST algorithms are robust to θ as we avoid apparent,

extremely small values. Similarly, we state the same conclusion for the max-

imum number of samples M . As shown in Figure 3.7(b), we observe robust

performance of FAST to the ratio M/T as long as it is not deliberately set

to be M/T < 0.1. The optimal performance of FAST with the Kalman filter

in this setting is achieved at M = 15%T and with particle filter the optimal

performance is at M = 25%T . We record the findings above and use them

for our other empirical studies.

We also study the impact of the control gains (Cp, Ci, Cd) as well as the inte-

gral time Ti. We find that as long as the control gains are set according to the

common practice: proportional > integral > derivative, the error variation

between different settings is insignificant and is likely to be introduced by

randomness. Hence we omit the detailed results and conclude that there’s no

extra “rule of thumb” beside the common practice for tuning the controller

gains. Similarly, as the integral time increases, the resulting error shows no

clear trend. We consider the above control parameters as non-influential in

our system.

Fixed-Rate vs. Adaptive Sampling. We now compare the performance
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Figure 3.8: Fixed-Rate Sampling vs. Adaptive Sampling

of adaptive sampling, denoted as PID in Figure 3.8, with fixed-rate sampling,

while varying the sampling interval for fixed-rate algorithm from 1 to 20.

For our adaptive approach, we use the optimal M setting for each filtering

method. However, there’s a wide range of M to choose from, which provides

equivalent level of utility, according to our previous study.

The result is shown in Figure 3.8. As the sampling interval increases,

i.e. from 1 to 3, fixed-rate sampling shows reduced average relative error

of various scales. This phenomenon can be interpreted by the reduction of

perturbation error resulting from less frequent queries. As the interval further

increases, from 5 to 20, the error starts to rise, which can be explained by

the accumulation of prediction error due to longer intervals between adjacent

samples. The optimal sampling interval, which is 3 and 5 for linear data set,

may not be known a priori and may differ from dataset to dataset. We

found that the performance of adaptive sampling with no prior knowledge

is comparable to the optimal fixed-rate despite the filtering method in use,

which confirms once again the advantage of FAST adaptive framework.
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(a) Overall Performance (b) Performance with Larger Budget

Figure 3.9: Utility vs. Privacy with Linear Data

3.3.3 Utility vs. Privacy

We examine the trade-off between utility and privacy in FAST, in comparison

to the baseline LPA algorithm and the DFT algorithm. We note that DFT

algorithm can be only applied offline and was run using the entire series

in our experiments while FAST was run real-time. Figure 3.9 shows the

empirical study conducted with the linear data set. Figure 3.9(a) plots the

relative error against a wide range of privacy budget values, from 10−4 to

1. As we relax the privacy level and increase the privacy budget α, all four

methods show reduced relative error, to different extents. We observe that

the DFT algorithm with off-line processing provides highest utility when

α ∈ [10−4, 10−1]. However, no significant utility improvement can be seen

when α ≥ 10−3 due to its dominant reconstruction error. On the other hand,

FAST algorithms, i.e. KF+PID and PF+PID, consistently outperform LPA

with reduced relative error. When compared with DFT, FAST algorithms

provide comparable utility and even outperform DFT when α ∈ [10−1, 1].

Figure 3.9(b) presents a closer look at this privacy budget interval, where

FAST algorithms outperform both existing methods, providing high utility
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(b) Unemploy Data

Figure 3.10: Utility vs. Privacy with Real-World Datasets

without compromising the privacy guarantee.

In addition, we conducted the same trade-off analysis with real-world data

sets in order to study the robustness of FAST framework. Figure 3.10 summa-

rizes our findings with traffic and unemploy data. For both data sets, FAST

methods greatly outperform the LPA algorithm, especially under small pri-

vacy budget, i.e. α ≤ 0.1. With larger privacy budget, i.e. α ≥ 0.1, our

methods are comparable to the off-line DFT algorithm and even outperform

DFT with the unemploy data. We observe that the result with flu data is

similar to Figure 3.10(b). With non-linear synthetic data sets, FAST meth-

ods result in higher relative error due to model misfit but show similar overall

trends as in Figure 3.10(a) in comparison to LPA and DFT. Therefore the

detailed figures are omitted here for brevity. We conclude that FAST algo-

rithms greatly improve the utility of released series over the baseline LPA

method especially under small privacy cost and provide robust performance

despite different data dynamics.
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Figure 3.11: F1 Metric of Outbreak Detection

3.3.4 Detection and Correlation

In this study, we explore FAST performance with respect to utility metrics

besides the standard relative error. In particular, we studied the F1 metric

for outbreak detection with the released series and also performed correlation

analysis between the released and original aggregate series.

There have been extensive studies on effective methods in epidemic out-

break detection and various definitions of an outbreak/signal period have

been adopted [47, 57, 63]. We take a simplified interpretation of outbreak

similar to Pelecanos et al. [57] and define a target event/signal as a signifi-

cant increase between two adjacent aggregate values. Usually the threshold

of increase can be given by users according to the application. In our empir-

ical study, we set this threshold to be 5% of the median value in the original

aggregate series, in order to mitigate the effects of extremely small or large

values. Figure 3.11 compares FAST solution against existing methods and

shows the F1 metric of event/signal detection in the released series across

multiple data sets. We observe that FAST consistently outperforms LPA al-

gorithm and provides comparable utility to DFT algorithm. Especially with

traffic data, our approach provides 30% improvement over existing methods
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Figure 3.12: Spearman’s Rank Correlation between Original Series and Re-

leased Series

due to reduced false positives.

As for correlation analysis, we measure the similarity between the released

series and the original series with Spearman’s rank correlation. Figure 3.12

summarizes the comparative study on FAST and existing methods. We ob-

serve that the DFT algorithm doesn’t preserve the ranking order for log or

sinusoidal data. In contrast, FAST algorithm provides robust performance

across all data sets, even when DFT fails to produce correlated release.

To summarize, FAST yields high utility in both outbreak detection and

correlation analysis compared to existing methods. In many cases, our solu-

tion outperforms both existing methods, e.g. with traffic data in Figure 3.11.

Furthermore, FAST releases differentially private aggregates in real-time , in

contrast to the offline DFT algorithm. We believe that FAST will enable

a wide range of monitoring applications with the real-time feature and the

adaptive strategies.
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Chapter 4

Analyzing Individual Privacy

Risk for Releasing Long

Aggregate Series

In this chapter, we analyze individual privacy risk when FAST is applied

to monitoring tasks over a long time period and demonstrate through a case

study on epidemic outbreak detection. We show that by doing so we can

lower the privacy perturbation while retaining the majority of individual

data.

4.1 Differentially Private Anomaly Detection

In this section, we apply FAST framework to anomaly detection tasks and

provide the technical details of each component through a case study of

epidemic outbreak detection for syndrome surveillance.

4.1.1 Privacy Risk Definition

Dwork et al. [22] show that given function f : D → Rd, α-differential privacy

can be achieved as follows:

f̃(D) = f(D) + (ν1, ..., νd) . (4.1)
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νk are independent draws from a Laplace distribution Lap(∆f
α

) with 0 mean

and the following probability density function:

p(x) =
1

2∆f
α

e−|x|/
∆f
α . (4.2)

∆f represents the global sensitivity [22] of the function f . Given function

f : D → Rd, the global sensitivity of f is defined as:

∆f = max
D,D′
||f(D)− f(D′)||1 (4.3)

where the maximum is taken over all pairs of neighboring databases.

Example 4.1 (count Sensitivity). For a count query, adding or removing

an individual user from database D would change the output by at most 1,

i.e. ∆count = 1.

In the example anomaly detection tasks, it is required to output a series of

count queries, i.e. f(D) = {x1, ..., xT}, where xk represents the number of

events/occurrences during the kth time interval. The global sensitivity of f

can be bounded by ∆f ≤ T , since adding or removing an individual would

change xk by 1 for each k, k ∈ {1, ..., T}.
An overview of our proposed framework for privacy-preserving anomaly

detection is shown in Figure 4.1. The input to the framework is a time series

of aggregates that are collected from individual users by a server. Since the

server is trustworthy, such as an Emergency Department or Internet Service

Provider, we assume no privacy risk at the aggregation step. At every time

stamp, the raw aggregate, e.g. the number of Influenza cases or the number

of incoming connections, is perturbed by the Laplace Perturbation module to

enforce the pre-defined level of privacy guarantee. The perturbed aggregate

is then received by the Filtering module to produce a posterior estimate.

There are two internal procedures, i.e. prediction and correction, that are

performed recursively at every time stamp. The posterior estimate, which



47

A
gg

re
ga

tio
n

Laplace 
Perturbation

A
no

m
al

y 
D

et
ec

tio
n

Sensitivity Analysis

Trusted ServerUser
Untrusted 
Third-Party

Filtering

Prediction

Correction

Figure 4.1: Proposed Solution for Differentially Private Anomaly Detection

is less noisy than the purely perturbed aggregate, can then be used by an

anomaly detection algorithm.

On the other hand, given a real-time anomaly detection task, such as

epidemic outbreak detection or network intrusion detection, a couple task-

specific aspects need to be considered to set up the privacy preserving frame-

work. Firstly, what aggregate is required at each time stamp, e.g. the

average value of a certain attribute or a count of records that satisfy certain

predicate? Secondly, what is the privacy principal in the application domain,

an event or a user? With these questions settled, sensitivity analysis can

be performed to understand the privacy risk of releasing continual aggre-

gates given the anomaly detection task. We show a practical estimate of the

global sensitivity can be derived with domain specific knowledge/statistics.

The Laplace perturbation model as well as the internal models for filtering

can be established correspondingly with respect to the global sensitivity. We

will introduce a case study on epidemic outbreak detection and discuss each

component in details in the following subsections.
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4.1.2 Epidemic Outbreak Detection

The early detection of disease outbreaks has long been a concern of public

health because of the potential to reduce morbidity and mortality. Patient

data collected from Emergency Department/urgent-care and ambulatory-

care can be aggregated, e.g. daily case counts, and shared continuously

as the input to regional or national syndromic surveillance systems, such as

CDC BioSense [5], EARS [33], and RODS [62]. Below we provide technical

details of each component with an application to real-time epidemic outbreak

detection. Note that any anomaly detection task on continual user statistics

can be enabled by our proposed framework.

Most outbreak detection methods compare the current case count with

a baseline period to determine whether there is an outbreak or not. We

choose three extensively used, EARS [33] algorithms C1,C2, and C3 [42]

for outbreak detection task. EARS algorithms were developed based on a

one-sided positive CUSUM (cumulative sum) calculation. They were named

according to their degree of detection sensitivity, with C1 being the least

sensitive and C3 the most sensitive. The advantage of EARS algorithms is

that they require limited baseline data, e.g. case counts from the previous

week, compared to other methods that require that of previous years.

For C1 and C2, the test statistics on day k was calculated as

Ci(k) =
rk − µk
σk

, i ∈ {1, 2} (4.4)

where rk is the disease case count on day k, and µk and σk are the mean

and standard deviation of the counts from the baseline period. For C1, the

baseline data is {rk−7, ..., rk−1}, i.e. one week’s data immediately prior the

current day. For C2, the baseline is {rk−9, ..., rk−3}, i.e. one week’s data with

a two-day gap from the current day. In EARS [33], an outbreak is detected

when Ci(k) > 3, i ∈ {1, 2}.
C3 algorithm uses the C2 statistics from day k and the previous two days.
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The test statistic for C3 is calculated as

C3(k) =
k−2∑
j=k

max(0, C2(j)− 1). (4.5)

An outbreak is detected when C3(k) > 2.

4.1.3 Sensitivity Analysis.

For outbreak detection tasks, the daily case count of a certain illness is usually

the data of interest. In most existing syndrome surveillance systems, this

data is collected daily from the Emergency Department for early detection.

Below we analyze the global sensitivity for monitoring the daily count of

Influenza cases over T days, where T is a pre-defined project time line, e.g.

the number of days over 10 years. Note that for other anomaly detection

applications, the sensitivity analysis can be conducted in a similar way with

domain-specific statistics/knowledge.

Let D be the patient database and f(D) outputs a sequence of counts

{x1, ..., xT}, where xk represents the number of Influenza cases on day k. As

discussed in Section III, the global sensitivity of f(D) can be set ∆f = T ,

which is the length of the surveillance period, roughly 3650 for 10 years’ time

line. Although theoretically sound, there are two drawbacks to adopting

the upper bound of ∆f . First of all, it is an impractical estimate and will

almost never happen in reality. Recall that the global sensitivity defines the

maximal contribution of any individual to the function output. It is very

rare that anyone would visit the emergency room and be diagnosed with

Influenza for every day in 10 year’s period. Secondly, when T is large, the

Laplace perturbation error introduced at every time stamp has a variance

proportional to T 2, according to Equation 4.2. The released data with such

high perturbation error would be practically useless for detection purposes.

Below we quantify the rareness of ∆f = T with publicly available survey
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statistics and provide a practical, smaller valued estimate of ∆f . Again, the

value of ∆f represents the number of times that an individual visits emer-

gency room and is diagnosed with Influenza in 10 years’ period. According

to the National Hospital Ambulatory Medical Care Survey: 2010 Emergency

Department Summary Tables1, the number of emergency room visits per 100

persons in 2010 is 42.8 and 3.2% of visits are diagnosed with “Acute upper

respiratory infections, excluding pharyngitis”, which includes Influenza. We

note that young children, under 1 years old, have a higher rate of emergency

room visit and other age groups have similar rates. Therefore, we derive the

probability of a patient visiting emergency room and being diagnosed with

Influenza every year, p, as follows:

p ≈ 42.8%× 3.2% = 1.4% . (4.6)

Let n denote the number of a patient visiting emergency room and being

diagnosed with Influenza in 10 years’ period. Given Equation 4.6, we obtain

the following:

P (n ≤ 2) =
2∑

k=0

P (n = k) =
2∑

k=0

(
10

k

)
pk(1− p)10−k = 99.9% (4.7)

which indicates that with 99.9% confidence, any individual patient will con-

tribute to f(D) at most twice in every 10 years.

4.1.4 Laplace Perturbation

The Laplace Perturbation component ensures differential privacy by perturb-

ing the input aggregate at every time stamp. Let f(D) outputs a sequence of

counts {x1, ..., xT} on data set D, where xk represents the number of events

of interest during time interval k. Given the global sensitivity ∆f and the

1http://www.cdc.gov/nchs/ahcd/web tables.htm
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desired level of privacy α, we can derive a private count sequence f̃(D) that

satisfies α-differential privacy as follows:

f̃(D) = {zk = xk + νk|k = 1, ..., T} (4.8)

where νk are independent draws from Lap(∆f
α

). The default value for ∆f is

T . When a practical estimate can be derived from domain-specific statistics,

we can set ∆f with a much smaller value, i.e. ∆f = 2 as in the analysis above

for Influenza outbreak detection. This perturbation model in Equation 4.8

is used in our proposed framework.

A natural concern arises when setting ∆f < T : how about those individuals

that are counted more than ∆f times in the released data? As the sensitivity

analysis above shows, only few patients, i.e. 0.1%, will contribute to the

time series for more than two times in 10 years. In reality, those are patients

who are more susceptible to Influenza or who have more frequent emergency

room visit history, and thus can choose to opt out at the data collection

stage without significantly affecting the quality and quantity of collected

data. Below we assume that the database consists of the majority patients,

i.e. 99.9% patients who contribute to the data series at most 2 times over 10

years, and can be protected by differential privacy.

4.1.5 Filtering

The Filtering component in our framework utilizes time series modeling and

estimation algorithms to improve the accuracy of released aggregates. The

Kalman filter based estimation algorithm is adopted and is shown to be

computationally efficient [29]. We briefly show the state-space model for

time series data as well as the filtering algorithms used in our framework.

For a time series of count queries, i.e. {xk}, we establish the following
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models:

xk = xk−1 + ω , (4.9)

ω ∼ N (0, Q) . (4.10)

The noisy observation, which is obtained from the Laplace Perturbation

mechanism, can be represented as follows:

zk = xk + νk , (4.11)

νk ∼ Lap(∆f/α) (4.12)

We adopt the following Gaussian approximation:

νk ∼ N (0, R) , R ∝ (∆f)2/α2 (4.13)

which has been shown in [29] to be computationally efficient and to minimize

posterior estimation error.

We outline the Filtering procedure in Algorithm 10. It consists of two

recursive operations: prediction and correction. The detailed definitions and

derivations as well as Prediction and Correction implementations are omitted

here for brevity, as they can be found in [28,29].

It is shown in [28] that releasing {x̂k} rather than {zk} greatly improves the

accuracy of the shared aggregates. We will empirically evaluate the utility

of shared data in the context of outbreak detection in the next section.

4.2 Experimental Results

We implemented the proposed framework as well as three outbreak detection

algorithms, i.e. C1, C2, and C3, in Java. All experiments were conducted

using a 2.90 GHz Intel Core i7 PC with 8GB RAM. We used simulated data

sets provided by CDC EARS2, all simulating 6 years of daily count data. We

2http://www.bt.cdc.gov/surveillance/ears/datasets.asp
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Algorithm 10 Filtering

Input: Noisy measurements Z= {zk}
Output: Released series R= {rk}

1: for each k do

2: Prediction: x̂−k = rk−1

3: zk ← Laplace Perturbation

4: Correction: x̂k = x̂−k +Kk(zk − x̂−k )

5: rk ← x̂k

Set Mean Standard Dev. Trend Seasonality

s01 90.2 33.3 Yes Mild-None

s02 29.9 5.6 No Medium

s03 1.19 5.76 No Mild-None

s04 6 4.3 Yes Very

s07 150 26.635 No Mild-None

s11 301.1 78.8 Yes Medium

Table 4.1: Simulated Outbreak Detection Data Sets

chose 6 data sets, i.e. s01-04, s07, and s11, with different characteristics to

evaluate our proposed solution. The descriptions of the 6 data sets are listed

in Table 4.2. From each data set, 10 iterations were used in the evaluation

and the average utility results are reported.

Unless specified, the default parameter settings are as follows: α = 1,

R ∝ (∆f)2/α2, Q[s01] = 100, Q[s02] = 100, Q[s03] = 0.001, Q[s04] = 1,

Q[s07] = 100, Q[s11] = 100. Note that the Q values are commonly derived

by offline tuning and our settings may not be optimal.
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4.2.1 Accuracy of Released Data

We first study the trade-off between privacy and accuracy in our proposed

framework, in comparison to the baseline Laplace Perturbation algorithm

(LPA) with default sensitivity ∆f = T and practical sensitivity ∆f = 2.

The LPA algorithms apply perturbation at every time stamp, and release

perturbed values, i.e. {zk} as in Equation 4.11. In contrast, our solution

adopts a tighter sensitivity bound, i.e. ∆f = 2, and releases the posterior

estimates, i.e. {x̂k} as in Algorithm 10. We measure the accuracy of the

released time series by average relative error, as proposed in [29]. We plotted

the trade-off curves with data set s04 in Figure 4.2 and note that other data

sets have similar trends.

As we increase the privacy budget α from 0.001 to 1, all methods show

improvement in accuracy of released data series, due to the reduced per-

turbation noise. As can be seen, methods that adopt practical sensitivity

outperform baseline LPA with default sensitivity, reducing the relative error

by several orders of magnitude. Moreover, our proposed solution constantly

outperforms LPA(∆f = 2). We conclude that FAST filtering techniques can

improve the accuracy of released data on top of already reduced perturbation

error.

We further examine the private, released series by our solution and compare

it with the original s04 data set. The released data series was generated with

α = 1. As is shown in Figure 4.3, the data series released by our privacy-

preserving framework closely follows the original data line at all time stamps.

This shows that our framework provides highly accurate data release while

providing differential privacy guarantee.
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4.2.2 Outbreak Detection Evaluation

We study the usefulness of the private, released data series provided by our

solution with EARS outbreak detection algorithms. We generated released

data from all six data sets with the privacy parameter α = 1 and ran C1, C2,

and C3 on both original data sets and private, released data sets. For C1,

C2, and C3 algorithms, we set rk = xk if detection is performed on original

data with no privacy preservation and rk = x̂k if using our privacy-preserving

framework. Same rules apply to the baseline counts.

Two common data mining metrics, i.e. Sensitivity and Specificity, are stud-

ied. Sensitivity, also referred to as recall, measures an algorithm’s ability to

identify positive results, while specificity relates to an algorithm’s ability to

identify negative results. A true positive is a correctly identified outbreak

day while a true negative is a correctly identified non-outbreak day. Note

that the ground truth is provided along with the simulated data sets. We

summarize the utility results in Figure 4.4 and Figure 4.5.

As can be seen, using the data released by our privacy-preserving solution

does not significantly degrade the performance of any outbreak detection

algorithm. For instance in Figure 4.4(c), C3 achieves 35.48% sensitivity with

the original s01 data set, and 35.25% with the private released data. We

notice that with data set s03, where the original data values exhibit relatively

high variation and no clear trend, using the private released data incurs more

detected positives, i.e. higher sensitivity and lower specificity. We interpret

this phenomenon as a result of model misfit, since the process model for the

underlying time series is constant. As a future work direction, in-depth study

about the dynamics of real data sets can be performed in order to establish

an accurate internal model in the Filtering component.
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Chapter 5

Modeling Spatio-Temporal

Correlation of Multi-Variate

Aggregate Time Series

In this chapter, we address the problem of modeling spatio-temporal cor-

relation between multiple aggregates when releasing multi-variate aggregate

time series. We first explore the possibility of incorporating individual be-

havioral patterns into FAST process model for web mining tasks. We then

investigate complex spatio-temporal correlations, i.e. traffic histogram over

a road network, and propose to model the spatial correlation based on the

background road network.

5.1 Differentially Private Web Monitoring

5.1.1 Problem Statement

Here we formally define the problem of monitoring web browsing activities

with differential privacy. A browsing session is defined as a sequence of web

pages browsed at consecutive, discrete time stamps, which can be obtained

from the log file of page requests 1. We consider all browsing sessions are es-

1Between two successive requests, the user is assumed to browse the previous page
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Session t1 t2 t3 t4 t5 . . .

s1 fp fp

s2 fp news sports news

s3 tech news news local . . .

s4 on-air health local . . .

. . . . . . . . . . . . . . . . . . . . .

Table 5.1: Examples of Individual browsing sessions

tablished on a single server, where no data integration is needed across differ-

ent servers. Furthermore, the sessions are dynamically established, possibly

starting at different time points with variable lengths.

Let D denote the database of browsing sessions (illustrated in Table 5.1)

and T denote the expected length of monitoring period. Without loss of gen-

erality, we assume that there are m web pages, i.e. page1, page2, . . . , pagem,

hosted on the server. An example of a browsing session of length 3 is s2 in

Table 5.1. In this session, the user starts from the front page (“fp” for short)

at time t2, then successively navigates to the news page at time t3, and finally

at time t4 browses the sports news page and the session terminates there.

The goal of our work is to release the number of sessions in D browsing pagei

at time k for each i and k, without disclosing the presence or absence of any

private session. A formal definition of our problem is provided below.

Problem 5.1 (Private Web Monitoring). Let xik denote the number of ses-

sions in D that browse the i-th page at time stamp k, 1 ≤ k ≤ T . For every

time stamp k, we are to release a sanitized count rik for every i, such that the

series of private releases {{rik}mi=1, for k = 1, . . . , T} satisfies α-differential

privacy.

We further limit user browsing activities by introducing an additional pa-

rameter lmax, which indicates the maximum session length allowed in our
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problem setting. We assume lmax < T . Our consideration is three-fold: 1) In

practice, a typical browsing session would not contain unlimited number of

web pages. For example, the average session length is 4.7 from data collected

on msnbc.com, shown in Table 5.3. 2) It is very common for web applications

to specify a fixed time-out period such that the session automatically ends

if the user does not refresh or request a page within that period. 3) From

privacy preservation point of view, if a session could contain an unbounded

number of web pages, it would have an unlimited influence on the released

aggregate values. As a consequence, the differential privacy mechanism, de-

scribed below, would have to inject a large perturbation in order to mitigate

such an influence. Based on these considerations, we set lmax = 20 later in

our empirical studies.

Privacy Definition. The following lemma establishes the sensitivity of

counting web page visits in data set D for T time stamps, in order to protect

the privacy of each individual session.

Lemma 5.2 (Sensitivity for Counting Page Visits). Let D be the session

database with maximum session length lmax. Then for a query q(D) =

{{xik}mi=1, for k = 1, . . . , T} which computes the number of sessions in D

browsing pagei at time k for every i and k, the sensitivity GS(q) of q is at

most lmax.

Proof. For any session s in D, at most one page pagei is visited by s at time

k. Furthermore due to the session length constraint, over the entire time

frame T , the session s can visit at most lmax pages (either the same page for

multiple times or different web pages). Hence, by adding or removing any

session s from the dataset D, we would change at most lmax counts of q(D)

output by one. Therefore, it follows that the sensitivity GD(q) of q is at

most lmax.
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5.2 Proposed Solution

The goal of our work is to enable the data holders to share useful aggre-

gates for web monitoring applications, while preserving privacy. There are

three key components to achieving this goal. First of all, the privacy of in-

dividual sessions should be protected with strong guarantee. Our solutions

adopt differential privacy to protect every session, despite possible back-

ground knowledge known to the adversary. Secondly, the differential privacy

mechanism injects perturbation noise into every released aggregate. There-

fore, a post-processing, i.e. estimation, component is used in our system in

order to recover the perturbed values and to improve the utility of released

aggregates. We propose two approaches to estimate the aggregates for each

web page separately or all web pages simultaneously. Thirdly, the dynamics

of the underlying aggregate time series should be utilized in order to perform

accurate estimation. Therefore, we propose to learn the state-space models

with publicly available data, which can come from historical data or users

who consent disclosure. We will demonstrate that our solutions learn accu-

rate models and achieve high utility in the released data, even with a small

training set.

The system framework of monitoring web browsing activities with differ-

ential privacy is depicted in Figure 5.6. At every time stamp, the statistics

of browsing sessions can be obtained by aggregating the private user data.

The raw aggregates will then be perturbed by the Laplace Perturbation

mechanism to ensure the pre-defined level of differential privacy. The per-

turbed aggregates are then used by the Estimation module to derive pos-

terior estimates of the original aggregates. Based on which approach is in

use, the posterior estimate can be derived for each web page separately or

for all web pages simultaneously. The state-space model used in posterior

estimation can be learned through the Training component with publicly
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Figure 5.1: Proposed Solution for Differentially Private Web Monitoring

available data. Based on the method in use, we can learn a state-space model

for each activity separately or an all-in-one state-space model for all web

pages. The sanitized output data is the posterior estimates released in

real-time, which are statistically more accurate than the purely perturbed

values. The detailed algorithms are described below.

5.2.1 Univariate Time Series Approach

The first solution to monitoring web activities with differential privacy is

to establish a univariate state-space model for the count series of each web

page and estimate the true states from the perturbed values. We adapt our

previously proposed FAST framework [28,29] to provide session-level privacy

and apply the Kalman filter based estimation algorithm to each univariate

count series.

For each web page i, we establish the following process model for the time

series {xik, for k = 1, . . . , T}:

xik+1 = xik + ωik (5.1)

ωik ∼ N(0, Qi) (5.2)

Similarly, the measurement model for the Laplace perturbed value zik is es-
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Algorithm 11 Univariate Time-Series Algorithm(k)

Input: Raw counts {xik, for i = 1, . . . ,m}, privacy budget α

Output: Private, released counts {rik, for i = 1, . . . ,m}

1: for i = 1, . . . ,m, do

2: prior ← Prediction(i, k)

3: zik ← perturb xik by Lap( lmax
α

)

4: posterior ← Correction(i, k)

5: rik ← posterior

tablished below:

zik = xik + νik (5.3)

νik ∼ Lap(0,
lmax
α

) (5.4)

Note that since νik is added to each page i in parallel at every time stamp k,

it follows the same distribution regardless of i and k.

In this work, we adopt the approximation in Equation 5.5 in order to utilize

computational attractive structure of the Kalman filter for posterior estima-

tion.

νik ∼ N(0, R) (5.5)

Estimation algorithm. Below we outline the recursive Kalman filter mech-

anism for our proposed solution based on univariate time series models. The

detailed procedures for prediction and correction can be found in [26].

The overall solution based on univariate time series state-space model is

summarized in Algorithm 11. At every time stamp k, for each web page

i, a prior estimate is derived from the prediction procedure according to

the process model, while a posterior estimate is derived by combining the
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prediction and the noisy observation in the correction procedure. At the first

time stamp, i.e. k = 1, the perturbed value zi1 is released for initialization.

The advantage of the univariate solution is its efficiency in computing the

minimum variance estimate for linear Gaussian problems. As can be seen,

the required computation time is linear of the number of web pages, i.e.

O(m), per time stamp. The process can be easily parallelized, since each

web page is modeled and processed separately. We will further study the run

time performance of this approach in the experiment section.

5.2.2 Multivariate Time Series Approach

As web browsing sequences exhibit strong navigation patterns between adja-

cent web page requests, it has been shown that user navigation patterns can

be well captured by first-order Markov chain [10]. In order to incorporate

this rich spatio-temporal correlation, we propose the following method which

establishes a multi-variate time series model and at each time stamp releases

the counting histograms of all web pages at once.

The multivariate time series process model which utilizes the navigation

Markov chain is described below:

Xk+1 = MXk + ωk (5.6)

ωk ∼ N(0,Q) (5.7)

Each state in the multivariate time series is a vector, i.e. Xk = (x1
k, . . . , x

m
k )ᵀ.

The linear coefficient M is represented as a m-by-m Markov transition matrix

and is defined as follows:

M =


p1,1 p1,2 . . .

p2,1 p2,2 . . .
...

...
. . .

 (5.8)

where each element pi,j represents the probability of transitioning to the ith

page from the jth page.



66

The process noise is also a vector, i.e. ωk = (ω1
k, . . . , ω

m
k )ᵀ, where ωik rep-

resents the process noise of the ith page at time stamp k. By assuming

each ωik follows a white, time-invariant Gaussian distribution and all ωik’s are

mutually independent, we can derive that ωk is also white Gaussian and its

covariance matrix Q is the diagonal, i.e.

Q =


Q1,1 0 . . . 0

0 Q2,2 . . . 0
...

...
. . .

...

0 0 . . . Qm,m

 (5.9)

where each Qi,i is a positive scalar value that represents the variance of

process noise ωik in the multivariate model. Note that Qi,i might be different

from Qi as in the univariate model, since the multivariate model captures

the spatio-temporal correlation of multiple aggregates.

Similarly, the multivariate measurement model is established as follows:

Zk = Xk + νk (5.10)

νk ∼ N(0,R) (5.11)

where Zk is the vector of perturbed values at time k, i.e. Zk = (z1
k, . . . , z

m
k )ᵀ.

νk stands for the vector of independent perturbation noise, i.e. νk = (ν1
k , . . . , ν

m
k )ᵀ,

where each noise follows the time-invariant Laplace distribution Lap(0, lmax
α

).

For efficiency, we approximately model νk as a white Gaussian noise with co-

variance matrix R.

The perturbation noises are added independently to web pages. Therefore,

the covariance matrix R is also diagonal:

R =


R1,1 0 . . . 0

0 R2,2 . . . 0
...

...
. . .

...

0 0 . . . Rm,m

 (5.12)
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Algorithm 12 Multivariate Time-Series Algorithm(k)

Input: Raw counts {xik, for i = 1, . . . ,m}, privacy budget α

Output: Private, released counts {rik, for i = 1, . . . ,m}

## Prediction

1: X̂−k = MX̂k−1

2: P−k = MPk−1M
ᵀ + Q

## Perturbation

3: Zk ← perturb Xk by Lap( lmax
α

)m

## Correction

4: Kk = P−k (P−k + R)−1

5: X̂k = X̂−k + Kk(Zk − X̂−k )

6: Pk = (I−Kk)P−k

7: {rik} ← X̂k

where each Ri,i is a positive scalar value that represents the variance of

measurement noise νik in the multivariate model.

Estimation algorithm. The estimation algorithm based on multivariate

time-series model is summarized in Algorithm 12. As can been seen, similar

computation structure based on the Kalman filter is adopted. At every time

stamp k, a posterior estimate X̂k is released for monitoring applications,

which contains the estimated counts at time k for each web page.

From the computational aspect, the multivariate time series approach in-

cludes four matrix-matrix multiplications as well as one matrix inversion at

every time stamp. The computation complexity at every time stamp is there-

fore O(m3), due to the matrix computations. We will empirically study its

runtime performance in the experiment section.

Parameters. In the Markov matrix M, each entry pi,j represents the prob-

ability of transitioning to the ith page from the jth page. We propose to
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estimate each pi,j as follows:

pi,j =
#(pagej, pagei)

#pagej
(5.13)

where #pagej is the number of occurrences of page j and #(pagej, pagei) is

the number of occurrences of page i immediately following page j. The num-

ber of occurrences can be obtained by counting support from the browsing

sequences in the training set.

The noise covariance matrix Q can be also learned by off-line tuning. Unlike

the univariate approach, the tuning of covariance matrix Q has an exponen-

tial search space, since we need to simultaneously set all diagonal elements.

We adopt a similar approach to Yan et. al [69] which utilizes the compu-

tation structure of genetic algorithm (GA) for parameter optimization. The

details are provided in the experiment section.

As for the approximate measurement noise R, since the actual measurement

noise is only determined by the Laplace perturbation mechanism, we set

Ri,i = R for every i as in the univariate model in our experiments.

Privacy. The privacy guarantee of multivariate algorithm is stated in the

following theorem.

Theorem 5.3 (Privacy Guarantee). Algorithm 12 satisfies α-differential pri-

vacy.

Proof. Similar to the proof of Theorem 2. Omitted.

5.3 Experimental Results

Here we present a set of empirical studies conducted a simulation of dynamic

web browsing behavior generated from real-world data. In each study, we

compare the following four methods: 1) U-KF, i.e. our univariate Kalman

filter approach as an extension of the FAST framework [28], 2) M-KF, i.e.
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Symbol Description Default Value

α Total Privacy Budget 1

R Gaussian Noise Variance 40, 000

m Number of Web Pages 18

T Monitoring Time 100

lmax Max Session Length 20

Table 5.2: Parameters for Multi-Variate Aggregate Series Release

our multivariate Kalman filter approach which incorporates the rich spatio-

temporal correlation in the process model, 3) LPA, i.e. the baseline method

that releases the Laplace perturbed value at every time stamp, which is

applied to each univariate times series, and 4) DFT, i.e. the Fourier transfor-

mation based algorithm [59], applied to each univariate time series separately

in an off-line manner.

The default settings of parameters required by the above methods are shown

in Table 5.3, except for the process noise parameters Qi and Qi,i for every i

and the markov transition matrix M, which can be learned from the training

data. Note that the number of web pages m is 18, which includes all the

actual web pages from MSNBC data set and an inactive status “$” introduced

by us on purpose. We preserve d = 20 Fourier coefficients for the DFT method,

as suggested by the authors [59].

5.3.1 Simulating Dynamic Browsing Sessions

We believe that empirical evaluations should be conducted in a practical

setting in order to demonstrate the usability of proposed methods in solving

real problems. In the absence of raw log files with the finest page and time

granularity, we propose to simulate the dynamic browsing behavior with the

Poisson process and anonymous, real-world session data.
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Dataset MSNBC

sessions 989,818

categories 17

longest session length 14,975

average session length 4.7

Table 5.3: MSNBC Dataset Characteristics

As the data pool for our simulation, we consider the MSNBC anonymous web

dataset at the UCI Machine Learning Repository 2. The MSNBC data, sum-

marized in Table 5.3, contains nearly 1 million anonymous browsing sessions

collected over a period of twenty-four hours on the msnbc.com domain. All

web pages were classified into 17 categories, and each session in MSNBC data

set records a sequence of category requests with variable length.

In our simulated data set, we consider a time frame of T = 100 time stamps,

where at each time stamp a number of new sessions start and some existing

ones may end. At time t = 1 we start by randomly sampling Sstart = 100000

sessions from the candidate set. Successively at every new time stamp, we

randomly sampled Snew sessions from the candidate set, where Snew is a

random variable drawn from a Poisson distribution with mean 10000. This

choice is motivated by the fact that the Poisson process has been commonly

used in modeling user page request rate for web browsing [15, 50] and for

video-on-demand systems [70]. In particular, we use the same methodology

as in Yu et al. [70], where Snew is upper-bounded by N = 20000 which

represents the maximum number of new sessions that the server can handle at

any time. For every session drawn from the candidate set, prior to adding to

our simulated data set, it is first truncated if needed to contain up to lmax web

pages. Then it is padded with a special symbol “$”, which indicates being

inactive, at the beginning as well as in the end, such that the total number of

2http://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
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symbols is T . For each session starting at time stamp k, k−1 $’s are added at

the beginning. A proper number of $’s are added to the end of each session

based on the actual session length. As a result, we generated 1, 089, 281

dynamic browsing sessions, where the start of each session is indicated by

the first non-$ symbol in the sequence.

To estimate model parameters for our proposed methods, we created a

training data set with a small percentage, i.e. 5%, randomly sampled from

the simulated data set. For evaluation purpose, we randomly sample 100

test data sets {D1, D2, ..., D100}, each containing 10% of the simulated data

set. Average results obtained from {D1, D2, ..., D100} are reported in our

evaluations.

5.3.2 Learning Models

Below we describe how to estimate the model parameters from the training

data. As we introduced $ in simulating the browsing behavior to indicate the

inactive states, we treat $ as a web page and learn the process noise for its

count series as well as the transition probabilities for our proposed methods.

For the univariate approach, we can learn the dynamics of the count series

for each web page i, i.e. the process noise variance Qi, from the training data

set. For each web page i, we aggregated its count series from the training

set and tuned Qi to minimize the posterior estimate error. Since each Qi is

a real value and implies a large search space, we specified a search domain

comparing only different orders of magnitude, i.e. {10−4, 10−3, . . . , 109}, in

order to speed up the training process. For every i and each setting of Qi,

we ran the univariate approach 50 times to overcome the randomness of the

perturbation noise and the value which resulted in minimum average relative

error, as defined in Equation 5.14, for posterior estimates was preserved for

real-time monitoring.



72

For the multivariate approach, we can learn the transition probabilities pi,j

for any web page pair i and j from the training set, as in Equation 5.13. Note

that we can also learn the transition probability from the inactive status $

to any web page, which indicates the likelihood of starting a new session and

which web page it starts from. As for the noise covariance matrix Q, the same

search domain as above was specified for each element Qi,i. We implemented

the genetic algorithm (GA) with random initial solutions and the population

size 50, and ran it for 20 iterations. The fitness value is defined as the

average relative error (over 50 runs) of the posterior estimates generated by

the multivariate approach, compared to the raw count series aggregated from

the training set. The best solution generated by GA algorithm was preserved

for real-time monitoring.

5.3.3 Utility Evaluation

The goal of our work is to share useful statistics of on-line browsing behavior

in order to perform monitoring tasks. We compare the utility of data released

by our proposed methods, i.e. U-KF and M-KF, against existing approaches,

i.e. LPA and DFT. Note that the DFT is an off-line method and therefore

cannot be applied to real-time monitoring tasks. It is only included in our

experiments for reference and comparison.

We adopt three different utility metrics in the following studies, including

both generic metrics as well as application-specific metrics. For each set of

evaluations, we further study the trade-off between utility and privacy for

each method by varying the privacy budget, i.e α value. The usual range of

α adopted by most other works in differential privacy is between 0.1 an 1.

However, we choose a larger range in our experiments including smaller α

values, i.e. 0.01 and 0.05, to demonstrate the applicability of all four methods

when the privacy requirement is high.
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Figure 5.2: Privacy vs. Average Relative Error

Average Relative Error

In the first set of empirical evaluations, we consider to measure the Average

Relative Error (ARE) between the released count series and the original

count series. In short, ARE is a widely used metric which measures how

well the released time series {rik} follows the original series {xik} for every

i = 1, . . . ,m. It is a generic metric to evaluate data accuracy, disregarding

the actual, domain-specific applications. More formally, we define the ARE

error as follows:

ARE =
1

mT

m∑
i=1

T∑
k=1

|rik − xik|
max{xik, δ}

(5.14)

where δ = 1 by default, in order to handle the special case when xik is zero.

As in the above definition, the ARE value provides an indication about

the quality of the overall released time series, where smaller values of ARE

imply higher similarity between the released and the original series, hence

higher utility. We ran all four methods under different privacy budgets and

the corresponding ARE values are reported in Figure 5.2. We observe that
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for every approach the ARE drops as the privacy budget increases. This

is due to reduced perturbation error introduced by the differential privacy

mechanism.

The baseline approach LPA which directly releases perturbed values results

in the highest ARE error in every privacy setting, due to the perturbation

noise. With relatively strong privacy requirement, i.e. α = 0.01, the LPA

algorithm results in large relative error which is more than 10 times higher

than that of our proposed method M-KF. The U-KF method and the DFT

method show similar results for all privacy settings. However, the former

releases aggregates in real-time, while the latter requires an off-line processing

of the time series due to the Fourier transform. Our proposed algorithm

M-KF turns out to be superior and constantly outperforms all other methods,

resulting in the lowest ARE error with real-time release of private data. M-KF

yields to 59% error when α = 0.01 and 8% error when α = 1, while DFT results

in more than 200% error when α = 0.01 and 13% error when α = 1.

Top-K Mining

A fundamental application of monitoring web browsing behavior is top-K

mining, which aims to find the K most popular web pages visited at every

time stamp. Therefore, the ability to preserve the most popular pages in

the private, released data values is an important indicator of the solution

usability. In the next set of experiments, we perform top-K mining at every

time stamp on the released data by all the methods and report the Average

Precision (AP) over the entire monitoring time period. We define the average

precision as follows:

AP =
1

T

T∑
k=1

TPRk (5.15)

where TPRk represents the true positive rate of the top-K pages discovered

from the private, released data at time k. Apparently, a higher value of
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Figure 5.3: Privacy vs. Precision for Top-K Mining

AP indicates higher utility, since it reflects the capability for more accurate

discovery of most visited web pages at any time stamp. We ran all four

methods with different privacy budget values and plot the average precision

for mining top-5 web pages in Figure 5.3. Similar trends can be observed

when experimenting with different K values. Thus we omit those results here

for brevity.

For all four methods, the average precision is raised as the privacy budget

α increases. The baseline LPA again offers the worst mining utility in the

shared data in every privacy setting, preserving only 33% of top-5 web pages

when α is small, i.e.α = 0.01, due to the random perturbation. Our univari-

ate approach U-KF falls behind the off-line method DFT and the multivariate

approach M-KF until the privacy budget is large enough, i.e. α ≥ 0.5, due to

the individual state-space modeling for each web page. However, we observe

that U-KF is still applicable and it yields 80% precision with α = 0.05. The

off-line DFT method yields 80% precision when α = 0.01 and provides com-

parable utility to our multivariate approach M-KF when α ≥ 0.05. Again the

M-KF method is proved to be superior to all the other methods, providing
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95% precision in top-K mining even under very small privacy budget, i.e.

α = 0.01.

Distributional Similarity

In this set of experiments, we consider the count values at every time stamp,

i.e. {xik, for i = 1, . . . ,m} and {rik, for i = 1, . . . ,m}, as distributions of

user sessions over the domain of web pages and propose to evaluate the

distributional similarity between the released counts and the original counts

at all time stamps. The intuition behind is that the session distribution over

the domain of web pages enables understanding of the relative popularity

of any web page at any time stamp. Thus measuring the distributional

similarity would provide a comprehensive view of the utility of data released

over the entire web page domain.

A common metric widely used to measure the distance between two proba-

bility distributions is the KL-divergence. It is a non-symmetric measure that

computes the information lost when a proposed distribution is used to esti-

mate a true distribution. In our scenario, the estimate distribution at time

stamp k comes from the released data values {rik, for i = 1, . . . ,m}, while the

true distribution comes from the original count values {xik, for i = 1, . . . ,m}.
We normalized the data values at every time stamp and denote the cor-

responding distributions as {x̃ik} and {r̃ik}. Therefore, the average KL-

divergence of the released time series R with respect to the original data

series X can be defined as follows:

DKL(X‖R) =
1

T

T∑
k=1

m∑
i=1

ln

(
x̃ik
r̃ik

)
x̃ik (5.16)

It reports the average KL-divergence of the released distributions {r̃ik} with

respect to the true distribution {x̃ik} at all time stamps. Intuitively, the

smaller the average KL-divergence is, the more similar the released distribu-

tions are to the original distributions.
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Figure 5.4: Privacy vs. Distributional Similarity

All four methods were run under different privacy settings and the aver-

age KL-divergence results are shown in Figure 5.4. The baseline LPA yields

highest KL-divergence among all methods in every privacy setting. Due to

the randomness of the perturbation noise, the data released by LPA fails

to preserve the distributional similarity with respect to the original data.

Our univariate approach U-KF does not show clear advantage over LPA when

α = 0.01, due to the separate modeling of each web page. However, it can be

seen that U-KF quickly catches up with DFT and the multivariate approach

M-KF when α ≥ 0.1. Again, the M-KF method provides the best utility in

every privacy setting, preserving the distributional properties in the private,

released data values even when the privacy budget is small, i.e. α = 0.01.

We can see that M-KF yields a four times smaller divergence compared to

the off-line DFT method when α = 0.01, thanks to its accurate, multivariate

model.
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5.3.4 Runtime

An important aspect of the methods that release data for monitoring tasks

is the processing time of shared data. Here we empirically compare all four

methods in terms of the total running time for releasing private data values

over T time stamps. Note that we exclude the training time for learning the

model parameters since it is a one-time cost and usually done off-line. In

addition, the processing time for each time stamp can be easily estimated

from the total running time.

All four methods were run under the default parameter settings. Their

testing time (training time excluded) was recorded and the average runtime

in milliseconds over all test data sets is reported in Figure 5.12. As can be

seen, the off-line method DFT, with overall complexity O(mT 2) 3, turns out

to be the most expensive compared to other real-time methods. We observe

that DFT takes 23 milliseconds to release aggregated data for m = 18 web

pages over T = 100 time stamps. Our multivariate approach M-KF, which

requires matrix multiplications, additions, and inversions, has overall com-

plexity O(m3T ). As is shown, M-KF only takes 4 milliseconds, one sixth of

DFT runtime, to release the same amount of data. We believe M-KF is highly

applicable in our problem setting, especially when m� T . Both our univari-

ate approach U-KF and the baseline LPA have linear complexity, i.e. O(mT ).

As in the empirical results, both LPA and U-KF take in-significant amount of

time which is measured as zero. We conclude that compared to the baseline

LPA, our U-KF method achieves good amount of utility improvement with

no additional computational cost, while our M--KF method greatly improves

utility with moderate additional computational cost. We believe that our

proposed methods can be applied to sharing private statistics in real-time,

without compromising the outcome of web monitoring applications.

3In general, the Discrete Fourier Transform requires O(T 2) complex multiplications

and additions for a time series of length T .
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Figure 5.5: Runtime Performances for Web Monitoring

5.4 Differentially Private Traffic Monitoring

5.4.1 Problem Statement

In the traffic monitoring application we consider, a set of objects are mov-

ing in a two-dimensional space and a central server is collecting information

about their locations over time. We adopt a fine-grained 2D grid that par-

titions the space G into w × w cells, where w is a constant number called

resolution. We further assume the expected collection time span is T and

denote k as the discrete time index where 0 ≤ k < T . For each cell c in G, we

define the frequency series of c as Xc= {xck| 0 ≤ k < T}, where xck represents

the number of objects within its extent at time stamp k. A multi-dimensional

time series XG can be defined as the set of frequency series of every cell c

in G, i.e. XG = {Xc| c ∈ G}. A snapshot of the spatio-temporal database

XG
k is defined as the set of cell frequencies at time k, i.e. XG

k = {xck| c ∈ G}.
The same terms for the released data set RG can be defined similarly.

Problem 5.4. Given a multi-dimensional time series XG where G = w×w
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Algorithm 13 Laplace Perturbation Algorithm(LPA)

Input: Raw data series XG, privacy budget α

Output: Released data series RG

1: for each cell c ∈ G do

2: for each time stamp k do

3: rck ← perturb xck by Lap(0, T
α

);

cells, for each snapshot XG
k , release in real-time a sanitized version RG

k such

that the overall release RG satisfies α-differential privacy, where α is a user-

specified privacy level.

Note that sharing RG will enable a variety of data mining tasks. Therefore

we use a generic utility metric, i.e. relative error, to measure the usefulness

of the released series for each cell c:

Definition 5.5 (Utility Metric). The utility of a published series Rc = {rck}
can be measured by the average relative error, denoted as Ec, against the

original time-series Xc ={xck}.

Ec =
1

T

T−1∑
k=0

|rck − xck|
max{xck, δ}

(5.17)

where δ is a user-specified constant (also referred to as sanitary bound as

in [65]) to mitigate the effect of excessively small query results, e.g. 0′s.

Here we set δ = 1 throughout the entire time-series for all cells.

5.4.2 Baseline Solution - LPA Algorithm

A baseline solution to sharing differentially private multi-dimensional time

series is to apply the standard Laplace perturbation at each time stamp to
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Figure 5.6: Proposed Solution for Differentially Private Traffic Monitoring

every frequency series. For any c, if every released aggregate satisfies α/T -

differential privacy, by Theorem 1 the released frequency series guarantees

α-differential privacy. We summarize the baseline algorithm in Algorithm 13

and Line 3 represents the Laplace mechanism to guarantee α/T -differential

privacy for each released aggregate. Empirical studies of the LPA algorithm

against our proposed solutions are included in Section 4.

5.5 Proposed Solutions

In this section, we present our proposed solutions for privacy-preserving traf-

fic monitoring. Figure 5.6 provides a high-level overview of the system frame-

work. At every time stamp, the input multi-dimensional data is perturbed by

the Laplace Perturbation mechanism to guarantee differential privacy. Then

the perturbed data can be post-processed by the Estimation module to pro-

duce a more accurate, released version. Domain knowledge, such as road

network and population density, is utilized by Modeling/Aggregation, which

in return interacts with the perturbation component as well as the estima-

tion method in use. Below we describe in detail two separate estimation

algorithms: one is to perform time-wise estimation for each individual cell,
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while the other is to perform spatial aggregation and estimation over the

entire 2D space.

5.5.1 Temporal Estimation

For each cell c in space G, we can apply FAST framework [28, 29] to the

cell frequency series Xc. We model the dynamics of different types of cells

according to the domain knowledge on the road networks. Below we briefly

show how to model the cell frequency series and refer to our work [28] for

further implementation details.

Note that the internal model of cell frequencies depends on many factors,

such as location, overall population, road network, etc. Here we simply

classify each cell as sparse or dense based on road network connections and

assume the same internal model for cells within each category. For each cell

c, its frequency series Xc can be represented by the following process model:

xck+1 = xck + ωc , p(ωc) ∼ N(0, Qc) (5.18)

Qc value indicates the level of variation between adjacent time stamps. In-

tuitively, sparse cells exhibit little variation since very few objects travel

within them, therefore we should specify a small Qc value for such cells. On

the other hand, higher Qc should be assigned for dense cells since they are

visited more frequently in reality.

The noisy observation, which is obtained from the Laplace Perturbation

mechanism, can be modeled as follows:

zck = xck + ν , ν ∼ Lap(0, 1/α0) (5.19)

The differential privacy budget for each traffic count is α0 = α/T , since the

overall privacy budget α is uniformly allocated to each time stamp.
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Algorithm 14 Temporal Estimation Algorithm

Input: Raw data series XG, privacy budget α

Output: Released data series RG

1: for each timestamp k do

2: for each cell c ∈ G do

3: prior ← c.Predict(k) ;

4: zck ← perturb xck by Lap(0, T
α

);

5: posterior ← c.Correct(k, prior, zck);

6: rck ← posterior;

We adopt the following Gaussian approximation for every cell and use the

Kalman filter based filtering technique [28] for posterior estimation.

ν ∼ N(0, R) . (5.20)

The outline of the temporal estimation algorithm is presented in Algo-

rithm 14. The advantage of temporal estimation approach is that it utilizes

the internal time series model and the observations to form an educated guess,

which is shown in [28] to greatly improve the accuracy of released data per

time stamp. As for complexity, we can see that the computation time re-

quirement is O(w2) for every time stamp where w is the spatial resolution,

since only O(1) operations are performed for each cell.

5.5.2 Spatial Estimation

When every cell is perturbed individually, data sparsity imposes great utility

challenge, i.e. high relative error due to perturbation. We thus are motivated

to group similar cells to overcome the data sparsity issue. Considering the

spatial correlation among cells, it is very likely that neighboring cells are

connected by the same roads therefore are more similar to each other. To
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Algorithm 15 QuadTreeAgg Algorithm

Input: 2D grid G, depth threshold d

Output: QuadTree index structure QT

1: QT.root← G;

2: queue.add(QT.root) ;

3: while ! queue.empty() do

4: node← queue.remove() ;

5: if ! node.homogeneous() and node.depth < d

6: node.split() ;

7: queue.add(node.children) ;

utilize this heuristic, we propose to aggregate similar cells into partitions

according to spatial vicinity and perform estimation within each partition

assuming uniformly distributed objects within the partitions.

We propose a top-down space partitioning approach based on Quadtree

due to several considerations. One advantage of Quadtree is its efficiency:

it recursively partitions a 2D space into 4 quadrants disregard the actual

object distribution in the space. Another advantage of Quadtree is that it

doesn’t incur any extra privacy cost due to its independence from data. In

contrast, the kdTree structure proposed by Cormode et al [16] does require

extra privacy budget spent on finding the “private median”. Since the privacy

budget for each time stamp is very limited, we believe that Quadtree is more

suitable in the multi-dimensional time series scenario.

We outline the spatial aggregation algorithm based on Quadtree in Algo-

rithm 15. Line 5 checks every node/partition for the splitting condition.

Line 6 splits a partition into four equal quadrants. The node.homogeneous()

method returns true if all the cells within the partition belong to the same

category. Again, each cell is pre-classified as sparse or dense based on domain
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Algorithm 16 Spatial Estimation Algorithm

Input: Raw data series XG, depth threshold d, privacy budget α

Output: Released data series RG

1: QT ← QuadTreeAgg(G, d); # initialize the quadtree index

2: for each timestamp k do

3: for each partition p ∈ QT do

4: pk ←
∑

c∈p x
c
k ;

5: p̃k ← perturb pk by Lap(0, T
α

);

6: rck ← p̃k/p.size(), c ∈ p ;

knowledge. We stop splitting a partition if it is homogeneous. Otherwise,

as long as the predefined depth threshold d is not violated, we further split

the partition in the hope of reducing the class impurity in each child parti-

tion. The value of d represents the aggregation level. Setting d = 0 implies

that all cells are aggregated in one partition. Since the uniform assumption

within the partition does not hold, high estimation error will be incurred.

On the other hand, a higher value of d implies that many partitions will

be further split to produce homogeneous regions so as to reduce estimation

error. However, due to data sparsity, very few moving objects will fall into

each partition when it is small. Therefore, the perturbation error will dom-

inate the released data in that case. Clearly the optimal d value depends

on the spatial distribution of cells. We will examine the impact of d in the

experiment section.

Once the Quadtree index structure of the space G is established, we as-

sume uniform data distribution within each partition and estimate each cell

frequency with average partition frequency. The spatial estimate algorithm

is described in Algorithm 16. For each time stamp k, a partition count is

aggregated from cells for every partition (Line 4). It is then perturbed by
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the Laplace mechanism to guarantee differential privacy (Line 5) and the

average noisy count is used to estimate the frequency of each cell within the

partition (Line 6). The intuition is that the cells within each partition have

similar density. Therefore by uniformly distributing the noisy partition count

to each cell, we reduce the magnitude of perturbation error applied to each

cell without compromising the accuracy.

One advantage of the spatial estimation algorithm is that it relies on simple

and practical assumptions. The complexity is also O(w2) for each time stamp

since every cell is visited O(1) times. Although it takes extra time to build

the spatial index for initialization, we see it as a one-time cost which can

be done off-line. The runtime of the spatial estimation is reduced because

only one perturbation noise is needed for every partition at every k (Line 5).

In contrast, both the baseline LPA algorithm and the temporal estimation

algorithm will generate one perturbation noise for each cell at every k. We

will study their runtime performance in the next section.

5.6 Experimental Results

We implemented the proposed algorithms as well as alternative methods in

Java with JSC4 for simulating the statistical distributions. All experiments

were conducted using a 2.90GHz Intel Core i7 PC with 8GB RAM.

Data Set. We generated synthetic traffic data with the Brinkhoff genera-

tor [6]. The input of the generator is the road map of Oldenburg in Germany5

(Figure 5.7(a)),which contains 6,105 nodes and 7,035 edges, and the output

is a set of moving objects on the road network. We created the data set with

100 discrete timestamps, with 500,000 objects at the beginning and 25,000

new objects introduced at every time stamp. The starting positions and

4http://www.jsc.nildram.co.uk
5http://iapg.jade-hs.de/personen/brinkhoff/generator/
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(a) Map of Oldenburg (b) Partitions by Quadtree

Figure 5.7: Road Network and Generated Partitions of Oldenburg Dataset

destinations of the moving objects are selected randomly by the generator

(see [6] for detailed network-based techniques). Once an object reaches its

destination, it disappears from the map. At the server side, we use a 2D grid

with 1024 × 1024 cells to record the locations of the moving objects, with

each cell representing approximately 20× 20 square meters’ range in reality.

We assign each cell a class label, i.e. sparse or dense, based on the presence

of roads within its extent. Roughly 95% cells are labeled sparse, indicating

only the rest 5% have been visited by the moving objects. Figure 5.7(b) visu-

alizes the partition result achieved by the Quadtree-based algorithm with the

depth threshold d = 8. It can be seen that spares regions around map edge

are contained in larger partitions and densely connected regions in map cen-

ter are further split into smaller partitions. We will evaluate the set of sparse

cells and the set of dense cells separately since they exhibit very different

dynamics over time.

Comparison. We compare our proposed solutions against the state-of-the-

art methods which are summarized below:



88

• DFT is the Fourier Perturbation Algorithm recently proposed by Ras-

togi and Nath [59] for sharing single time series. It first performs the

Discrete Fourier Transform on an input time series and retains only

the first l DFT coefficients. Those coefficients are then perturbed by

the Laplace mechanism to guarantee differential privacy. Finally, the

Inverse Discrete Fourier Transform is performed on the perturbed co-

efficients to produce a released series. The number of coefficients to

preserve, i.e. l, is a user-specified parameter. In our empirical study,

we set l = 20 according to their recommendation [59].

• kd-hybrid is proposed by Cormode et al [16] as their best method

to achieve differentially private space decomposition with static data.

Without the help of a grid, kd-hybrid builds a mixture index over the

2D data space that begins with kd-tree and switches to quad-tree at a

certain level. They slightly modified the kd-tree algorithm, changing

the fanout rate to 4 in order to reduce the privacy budget consumption.

According to their studies, kd-hybrid is most reliable among several

representative differentially private space partitioning methods. They

reported the optimal parameter setting empirically with the height set

to 8 and the switch level set to 4.

Since the DFT algorithm can be only performed with the complete series,

it is not compatible to real-time applications. However, we include it in

our evaluation since it serves as a good, off-line reference for utility. As for

the kd-hybrid algorithm, there are two limitations. One is its high privacy

cost since the algorithm iteratively spends budget on finding “private medi-

ans” for every data snapshot. The other limitation is its high computation

cost: application of the kd-hybrid method requires constructing the index

structure at every time stamp. Experiments with the author’s provided im-

plementation take hours for each iteration, since the domain size and the
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Symbol Description Default Value

α Total Privacy Budget 1

w Resolution for Each Dimension 1024

T Length of Multidimensional Time Series 100

Qsparse Process Noise for Sparse Cells 10−2

Qdense Process Noise for Dense Cells 103

R Gaussian Measurement Noise 106

d Depth Threshold for Quadtree 8

Table 5.4: Parameters for Traffic Histogram Release

number of objects in our data set are extremely large. We conclude that the

kd-hybrid method is too expensive for the continuous, real-time applications

and therefore do not include the results in the remaining section.

5.6.1 Parameter Impacts

The default parameter setting, unless otherwise noted, is summarized in

Table 5.6. Note that Qsparse and Qdense, which correspond to Qc in Equa-

tion 5.18 for sparse and dense cells, can be chosen by domain users and our

default setting may not be optimal. As for R from Equation 5.19, we set its

value according to our previous studies [27], which shows that the optimally

R is proportional to T 2/α2.

We study the impact of the depth threshold d used in Algorithm 15 in

terms of utility as defined in Equation 5.17 and runtime. Intuitively, the

larger value d takes, the finer partitions the algorithm results in, especially

along the border of sparse and dense regions. However, it also incurs a

higher overhead to construct the index as we can expect. Figure 5.8(a) plots

separately the utility of released series for sparse cells and dense cells when

varying the depth threshold d. For each class of cells, we plot the median
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Figure 5.8: Impact of d on Quadtree-based Spatial Estimation

relative error to avoid the extremely small or large values. As we increase the

threshold value, the error for sparse cells gradually drops to 0 between d = 0

and d = 4 and remains stable when d value is further increased. This is due

to the fact that majority sparse cells are located together (on map edge) and

will not take too many splits to be separate from dense cells (in map center).

Increasing the d value can help separating those sparse cells on the boarder

line. However, the utility of majority sparse cells is not affected since those on

the boarder line only count for a very small percentage. On the other hand,

dense cells require more splits to achieve optimal separation (d = 8). When

further split (d > 8), the perturbation noise greatly impacts their utility

due to data sparsity. Figure 5.8(b) shows the overhead for constructing the

aggregation index when varying the d value. It takes at most 0.9 second and

we note that it is a one-time cost. As we expect, a higher depth threshold

requires more construction time (from d = 0 to d = 6). However, when

d > 6 the overhead does not grow since there are only very few partitions

that do not meet the homogeneous requirement at depth 6. As can be seen

in Figure 5.7(b), the densely connected areas in the map are split into finer

partitions compared to less populous areas on the map edge.
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Figure 5.9: Privacy vs. Accuracy for Individual Cell Counts

5.6.2 Utility Performance

Utility vs. Privacy. Here we examine the trade-off between utility and

privacy. Our proposed solutions, i.e. Kalman and Quadtree, are compared

against the baseline LPA and state-of-the-art DFT algorithm, in terms of

utility of individual cells. Figure 5.9(a) and Figure 5.9(b) plot the utility

of sparse cells and dense cells respectively when varying the overall privacy

budget, i.e. α value, from [10−3, 100]. As we can see, the baseline LPA al-

gorithm results in highest relative error in both figures. The DFT algorithm

results in high relative error with sparse cells even with high privacy cost

(α = 1), due to the perturbation and reconstruction error. Our solutions

Kalman and Quadtree outperform both LPA and DFT especially with sparse

cells, as Quadtree only results in 10% error and Kalman produces 0% error

when α = 1. As for the dense cells, both Kalman and Quadtree slightly

outperforms DFT, which is supposed to be optimal. When α = 1, DFT re-

sults in 83% error due to lack of smoothness in the original frequency series,

while our solutions provide comparable utility to DFT and real-time data

release. Figure 5.10(a) and Figure 5.10(b) provide a closer look at the utility
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Figure 5.10: Privacy vs. Accuracy for Individual Cell Counts: α ∈ [0.1, 1]

curves within a more practical range of privacy budget α ∈ [0.1, 1]. DFT

and LPA are not plotted in one or both figures because the errors they result

in are prohibitive. For sparse cells, Kalman provides optimal performance

even under small privacy budget (α = 0.1), thanks to the accurate model-

ing. Quadtree is able to approach 0% error as α value increases. For dense

cells, we observe that Quadtree provides the best utility in the same privacy

budget range. We conclude that both our proposed solutions outperforms

existing methods, allowing for real-time data sharing without compromising

the utility.

Utility of Range Queries. Here we evaluate our solutions with range

queries, where each query is a square window that covers a neighborhood of

m × m cells. For each m value, we randomly generate 100 queries of size

m × m, evaluate each method with the same set of queries, and plot the

average relative error. Note that when m = 1, each set query consists of

one cell only and therefore the set query error is equivalent to individual cell

error. Our findings are summarized in Figure 5.11. Our temporal estimation

algorithm based on the Kalman filter clearly outperforms Quadtree and LPA
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Figure 5.11: Accuracy for Spatial Range Queries

with smaller query windows (m ≤ 100). For all three methods, the relative

error shows a growing trend to different extent as the query set size increases,

mainly due to the data sparsity in the space. When m = 500, we observe that

the error of Kalman keeps accumulating while Quadtree and LPA show re-

duced relative error. We believe that it is because Kalman does not explicitly

utilize the spatial correlation between cells. When querying the entire space

(m = 1024), both Quadtree and LPA provide good utility because the Laplace

noise added to each cell is from a zero-mean distribution and the sum of a

large set of such noises is likely to be small. Overall, Quadtree outperforms

LPA by making sound estimation within close-to-uniform partitions.

5.6.3 Runtime Performance

Lastly we compare the runtime performance of our solutions against the

baseline since computation time is critical to real-time applications. We

measure and plot the runtime for releasing the two-dimensional aggregates for

100 timestamps in order to mitigate random disturbance from the operating

system. The results are summarized in Figure 5.12. As we can see, all three
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Figure 5.12: Runtime Performances for Traffic Monitoring

methods take less than 35 seconds to release 100 snapshots of 1024 × 1024

cell frequencies with differential privacy guarantee. Note that the state-of-

the-art kd-hybrid takes hours to release/evaluate one time stamp. Compared

to LPA, our solution Kalman takes roughly 2 more seconds in total to perform

prediction and correction at every time stamp. Quadtree turns out to be

the most time efficient, even though it has a small overhead in building the

spatial index. This is because less perturbation is performed by Quadtree,

as at every time stamp we only generate one perturbation noise for each

partition rather than for each cell as in LPA.
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Chapter 6

Conclusion and Future Work

The work described in this dissertation has been concerned with the de-

velopment of differentially private aggregate release algorithms for a class of

real-time spatio-temporal data analytical tasks. A novel framework utilizing

an internal data model and feedback mechanism has been proposed. An in-

vestigation of individual privacy risk with domain statistics was presented,

which shows the privacy cost can be reduced for monitoring tasks over a long

period of time. Two ways to model the spatio-temporal correlation between

aggregates and time-stamps have been described and they were shown effec-

tive for improving the accuracy of released data. The contributions of this

dissertation are summarized below:

• A generic framework, FAST, for releasing real-time aggregates with

differential privacy guarantee [28,29].

• A software toolkit which implements FAST filtering and sampling al-

gorithms, along with baseline and offline solutions [32].

• Statistical analysis of individual privacy risk when FAST monitoring

period is long [30].

• Modeling spatio-temporal correlation with user behavioral patterns

when FAST is applied to multi-variate aggregate monitoring [26].
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• Modeling complex/non-linear correlation with background road net-

work for differentially private traffic monitoring [31].

6.1 Summary of Dissertation

An introduction of the potential and challenges of privacy preservation in

spatio-temporal data analytics was first presented in Chapter 1. The increas-

ing amount of available data has enabled many data mining applications to

understand important phenomena, such as disease surveillance, web mining,

and traffic monitoring. However, the data generated by individuals contain

sensitive information regarding their health, confidential preferences, loca-

tions, and etc, which should not be disclosed to untrusted parties, e.g. data

researchers, to protect individual privacy. The state-of-the-art paradigm for

private data publication, i.e. differential privacy, provides rigorous guarantee

for individual data contributors. Due to the sequential composition property,

when applied to continual data publication, the perturbation cost becomes

high and the released data contain large privacy perturbation error.

There have been a plethora of works developed for differentially private

data publication, the majority of which focus on one-time release of static

data. Few works studied the problem of releasing time series or continual

statistics with differential privacy guarantee. The work of [59] relies on time

series Discrete Fourier Transform (denoted as DFT), which is not compatible

with real-time data mining tasks. Dwork et al. [23] and Chan et al. [12] stud-

ied a differentially private continual counter over a binary stream. However,

both works adopt an event-level privacy model, with the perturbation mech-

anism designed to protect the presence of an individual event, i.e. a user’s

contribution to the data stream at a single time point, rather than the pres-

ence or privacy of a user. Chapter 2 reviewed relevant works on differential

privacy, time series analysis, and other data analytics.
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Chapter 3 presented FAST, an adaptive framework with filtering and sam-

pling for monitoring real-time aggregates under differential privacy. The key

innovation is that FAST utilizes feedback loops based on observed values to

dynamically adjust the estimation model as well as the sampling rate. To

minimize the overall privacy cost, FAST uses the PID controller to adaptively

sample long time-series according to detected data dynamics. As to improve

the accuracy of data release per time stamp, FAST adopts the state-space

model and filtering techniques to predict data values at non-sampling points

and to estimate true values from perturbed values at sampling points. Ex-

periments with real-world and synthetic data sets show that it is beneficial

to incorporate feedback into both the estimation model and the sampling

process. The results confirmed that the adaptive framework improves utility

of time-series release and has excellent performance even under small privacy

cost.

The software [32] implements all FAST algorithms, including three filtering

options and two sampling methods, along with baseline and offline solutions.

The graphical interface allows users to upload the input aggregate time se-

ries in batch mode and to enter one aggregate value at a time in real-time

mode. By generating a private, released value in real-time, this software

demonstrates the efficiency and effectiveness of FAST algorithms. It is the

first software that provides trusted servers, i.e. data holders, necessary tools

to continuously release differentially private aggregated data. We believe it

will enable a wide range aggregate monitoring tasks.

When applying differential privacy to release long series of aggregates, the

high perturbation cost, which is proportional to the length of aggregate series,

prevents the released data from being useful. Chapter 4 investigated domain-

specific individual privacy risk in order to reduce the perturbation cost to

achieve differential privacy. This practical estimate of individual privacy

risk with domain statistics quantifies the rareness of the worst-case privacy
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disclosure, showing that the majority of the individuals, e.g. 99%, do not

contribute to the 10 years’ long daily aggregates more than a very small

number of times, e.g. 2 daily aggregates. The method for analysis can be

applied to general monitoring tasks, given domain-specific usage statistics.

This result shows when collecting individual data for privacy-preserving data

analysis, excluding a small percentage of individuals with high disclosure risk

allows for lower perturbation error and more accurate analysis results from

the collected data.

To monitor multiple aggregates simultaneously, such as traffic counts at

road intersections within a city, data sparsity imposes a new challenge to

privacy preserving mechanisms, as released aggregates are dominated by pri-

vacy perturbation noise. The straight-forward solution is to model and apply

FAST algorithms to each individual aggregate series separately. However, the

aggregates between timestamps are correlated, as individual behavior follows

certain movement patterns. Furthermore, the aggregates of interest can be

correlated at the same time instance, due to distributional or topological

constraints.

Chapter 5 first presented a study of incorporating domain-specific indi-

vidual behavioral patterns in FAST process model for the spatio-temporal

correlation between multiple aggregates. As a result, the prediction of fu-

ture aggregates becomes more accurate and the posterior estimates by FAST

filtering mechanism improve over the noisy, perturbed aggregates. We also

present the computation efficiency of FAST framework for releasing multi-

variate aggregate time series and point out the most computation-intensive

procedure for potential speed-up. We believe this method can be applied to

a wide range of monitoring tasks where individual usage patterns, especially

Markovian properties, can be employed.

For complex correlation, a Quadtree-based differentially private mechanism

was presented to continuously release traffic histogram over a given road
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network. Results show that the utility of released data can be improved by

taking into consideration of spatial correlation between adjacent locations.

This work illustrates how domain knowledge, e.g. road network, can be used

to model complex spatio-temporal correlation between multiple aggregates,

e.g. traffic count at different locations. Moreover, the private, accurate traffic

histogram released by this approach will enable a wide range of geo-spatial

data mining tasks.

6.2 Recommendations for Future Work

Although the results in this dissertation demonstrated effectiveness of the

proposed methods for a variety of aggregate monitoring tasks, they can be

extended in a number of ways:

Extending FAST framework with non-linear data models and al-

ternative privacy mechanisms

When applied to various domain statistics, FAST framework can be eas-

ily generalized to monitor aggregate series which follow non-linear process

models, such as sinusoidal functions, in which case the particle filter based

estimation algorithm can be used for prediction and correction. It will be

interesting to study the applicability of alternative differential privacy mech-

anisms, such as geometric mechanism [35] and exponential mechanism [55],

and investigate their privacy-utility tradeoff under FAST framework.

Extending private web monitoring for large scale implementation

The first potential is to combine user browsing requests to different web-

sites/servers. Browsing across platforms is very common in the real world,

as users often switch between search engines and shopping sites or social net-

works. Combining the browsing requests to different servers which are made
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within a short time window could provide a broader view of user navigation

patterns and thus enable more data mining applications. The second as-

pect, i.e. the scalability of the multivariate method, becomes an immediate

challenge when the domain of web pages is large. As the m value increases,

the multivariate state-space method yields high time complexity, i.e. O(m3),

due to matrix operations. Classic techniques that exploit matrix properties,

such as sparsity, rank, and decomposability, can be utilized to reduce the

computation requirement at the cost of accuracy.

Extending private traffic monitoring with data-dependent tech-

niques and alternative spatial indexing structures

It has been confirmed that considering the spatial correlation is beneficial

to privacy-preserving traffic monitoring, even by simply assuming uniform

distribution within each partition as above. In order to capture the fine-

grained correlation among grid cells, data-dependent approaches, which in-

cludes [16, 66], can be adopted to reflect the potential range of actual cell

density. Furthermore, the partitioning algorithm can be adapted to further

explore alternative spatial indexing structures, such as Binary Space Parti-

tion, Hilbert Curve, R-Tree, and etc.
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Appendix

The Kalman Filter Posterior Analysis

Given that prediction and correction are performed at every time stamp,

here we analyze the posterior error variance where x̂k is derived with the

Gaussian assumption, i.e. Equation 3.14, while zk is perturbed by the Laplace

mechanism, i.e. Equation 3.6 and 3.7. The posterior error variance is defined

as follows:

var(x̂k − xk) = E(x̂k − xk)2 − E2(x̂k − xk) . (A.1)

Note that both process noise and measurement noise are white and mutually,

serially independent. By definition of x̂k, we get the following:

E(x̂k − xk) = 0 .

Therefore, we will only need to estimate the first term in Equation (A.1).

Substituting Equation 3.14 leads to

E(x̂k − xk)2 = E[(1−Kk)(x̂
−
k − xk) +Kk(zk − xk)]2

= E[(1−Kk)(x̂k−1 − xk) +Kkν]2

= E[(1−Kk)(x̂k−1 − xk−1)

+ (1−Kk)(xk−1 − xk) +Kkν]2

= E(1−Kk)
2(x̂k−1 − xk−1)2

+ E[(1−Kk)
2ω2] + E(K2

kν
2)

= (1−Kk)
2E(x̂k−1 − xk−1)2

+ (1−Kk)
2Q+K2

k

2T 2

α2
(A.2)
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where α is the overall privacy budget and T is the lifetime of the time-series.

Substituting the Kalman gain, i.e. Equation 3.17, into Equation (A.2), we

get

E(x̂k − xk)2 =
R2[E(x̂k−1 − xk−1)2 +Q]

(P−k +R)2
+

2P−k
2
T 2

(P−k +R)2α2
.

Applying the gradient descendant method to minimize the posterior error

variance, we obtain the following result for R:

R =
T 2

α2

2P−k
E(x̂k−1 − xk−1)2 +Q

.

Fixed-Rate Sampling Posterior Analysis

Posterior Error at a Sampling Point

When sampling techniques are combined with the Kalman filter based estima-

tion algorithm, measurements are obtained only at sampling points. Assume

fixed rate sampling is applied with interval I and the current time stamp

k is a sampling point. The prior estimate at time stamp k is actually the

posterior estimate of time k − I (the last sampling point):

x̂−k = x̂k−I .

By definition of x̂k, we get

x̂k − xk = (1−Kk)(x̂k−I − xk) +Kk(zk − xk)

= (1−Kk)[(x̂k−I − xk−I)− (xk − xk−I)] +Kkν

= (1−Kk)[(x̂k−I − xk−I)−
k∑

k−I+1

ωj] +Kkν .

According to the process model in Equation 3.4, I independent white Gaus-

sian process noise variables, i.e. ωj’s, are introduced between time k − I + 1
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and time k. Therefore,

E(x̂k − xk) = (1−Kk)[E(x̂k−I − xk−I)

−
k∑

k−I+1

Eωj] +KkE(ν)

= 0

and

var(x̂k − xk) = E(x̂k − xk)2

= (1−Kk)
2E(x̂k−I − xk−I)2

+ (1−Kk)
2

k∑
k−I+1

Eω2
j +K2

kEν
2

= (1−Kk)
2[E(x̂k−I − xk−I)2 + IQ]

+K2
k

2T 2

I2α2
(B.1.1)

where ν ∼ Lap(0, T
Iα

) for fixed rate sampling with interval I.

Prediction Error at a Non-Sampling Point

At non-sampling points, the prior estimates will be released and we will derive

the error variance below. Assume the current time stamp k is a non-sampling

point and the most recent sample occurs at time stamp k− t. Therefore, by

applying process model, we get

x̂−k − xk = x̂k−t − xk
= x̂k−t − xk−t − (xk − xk−t)

= x̂k−t − xk−t −
k∑

k−t+1

ωj
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and

E(x̂−k − xk) = 0 .

Therefore, the prediction error at a non-sampling point is:

var(x̂−k − xk) = E(x̂−k − xk)
2

= E(x̂k−t − xk−t)2 +
k∑

k−t+1

Eω2
j

= E(x̂k−t − xk−t)2 + tQ . (B.2.1)

Overall Error

Let S denote the set of sampling points, for instance, S = {0, I, 2I, ...}.
Suppose k ∈ S and let varj denote the error variance at any time stamp j.

The sum of error between two samples, i.e. from time stamp k to k + I − 1,

can be found by applying Equation (B.2.1):

k+I−1∑
k

varj =
k+I−1∑
k

[vark + (j − k)Q]

= I · vark +
I−1∑

0

jQ

= I · vark +
I(I − 1)

2
Q . (B.3.1)

The overall error for the entire time series can be derived by applying Equa-

tion (B.3.1) for every sampling period:

sumErr =
∑
k∈S

k+I−1∑
k

varj

= I ·
∑
k∈S

vark + |S|I(I − 1)

2
Q

= I ·
∑
k∈S

vark +
T (I − 1)

2
Q
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since the size of S is T/I.

We can further substitute each vark at sampling points, i.e. Equation (B.1.1).

Therefore the sum of error variance over T can be viewed as a function of

interval length I:

sumErr = I2 ·Q
∑
k∈S

(1−Kk)
2

+ I · [
∑
k∈S

vark−I(1−Kk)
2 +

TQ

2
]

+ I−1 · 2T 2

α2

∑
k∈S

K2
k −

TQ

2

which is very challenging to minimize a priori due to the recursive filtering

procedures.
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