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Abstract 

 

Cell Type–specific Gene Expression and DNA Methylation  

Differences in Complex Tissues 

 

By Siyi Geng 

 

A majority of tissues such as blood and tumor are complex and heterogeneous samples 

containing different cell types. Thus, the profiles of the genome or epigenome of tissue 

samples from high-throughput technologies are mixed signals. The heterogeneity in such 

data bring difficulties in data analysis and result in biases without proper adjustment.  

We extend an existing method TOAST (TOols for the Analysis of heterogeneouS Tissues) 

to model the data from mixed, heterogeneous samples and detect cell-specific differential 

signals. We design a series of simulation studies on cell-specific differential expression 

(csDE) detection to evaluate the TOAST performance. Furthermore, we conduct analysis 

on DNA methylation (DNAm) data from two existing human blood datasets. We use a 

reference-based method EpiDISH to estimate cell proportions and apply TOAST to detect 

age-related cell-specific differential methylated CpG sites (csDMC).  

Simulation studies and analysis on real data show good performance of upgraded TOAST 

on csDE/DM detection. The results from the simulation study show that larger sample size 

has a positive effect on performance accuracy, while the larger noise level has a negative 

effect. In real data study, we find that age is related to cell proportions of mixed samples. 

Through csDM analysis using TOAST, we identify varies of age-related DMCs in each 

cell type and the numbers of csDMCs are different among cell types. These results show 

that the upgraded TOAST provides a flexible statistical method to analyze cell-specific 

differential gene expression and DNA methylation. 
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Introduction 

Background of Genetics and Genomics  

Gene is a segment of DNA that codes functional molecules, which is the basic physical 

and functional unit of heredity. Gene expression is the process by which the genetic 

information in the DNA is implemented into functional products such as proteins or other 

molecules. For synthesizing proteins, gene expression has two key steps: transcription and 

translation, both are tightly regulated by many mechanisms. 

DNA methylation (DNAm) is an epigenetic process where a methyl group is added to the 

DNA molecule. In mammals, more than 98% DNA methylation occurs in a CpG 

dinucleotide context in somatic cells (Jin, Li, and Robertson 2011). Methylation often 

affects gene expressions and functions. Existing studies reported that cytosine methylation 

is widespread in animals but the patterns vary in space and time (Bird 2002). In mammals, 

70% to 80% of all cytosines in CpG site (the dinucleotide where C and G appear at 

consecutive bases) are methylated (Jabbari and Bernardi 2004). A set of special genomic 

regions is the CpG island, which has high frequency of CpG sites and is usually associated 

with promoter regions. Generally, CpG islands maintain an unmethylated state 

(Christensen et al. 2009). An increasing body of studies reports association between aging 

and epigenetic mechanism, particularly, age-related DNA methylation (Horvath 2016; 

Gregory Hannum et al. 2013; Christensen et al. 2009; Jaffe and Irizarry 2014). 

Knowledge of DNA sequences has greatly enhanced our understanding for biological 

processes and become essential in both basic biological research and clinical application. 

DNA sequencing is the technology of determining the sequence of the nucleotides in DNA. 
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It is usually accomplished by cutting long DNA fragments (like chromosomes) into short 

pieces, creating multiple copies for each piece through PCR, and sequencing all of them 

through one of several technologies (Mäkinen et al. 2015). “High-throughput sequencing” 

has revolutionized the genomics research since its invention in early 2000’s. Compared to 

earlier low through-put DNA sequencing methods, the high-throughput methods can 

sequence much larger amount of DNA in a short period time, and with much lower cost.   

Sample Mixture Problem   

In a practical research environment, people often profile the genome or epigenome of tissue 

samples using high-throughput technologies. The tissue samples, such as blood, brain, and 

tumor, are mostly very heterogeneous. Tumor tissue, as an example, contains distinct cell 

types, as demonstrated by in vivo multilineage differentiation and clonal genetic 

heterogeneity (Shipitsin et al. 2007; Dalerba et al. 2011). It was shown that tumor samples 

are mixtures of tumor cells, precancerous lesion cells, and surrounding normal cells. The 

variation in gene expression and DNA methylation from distinct cell and tissue types has 

been reported from multiple studies (Walker et al. 1983; Whitney et al. 2003; Shen-Orr et 

al. 2010; Heintzman et al. 2009; Brady et al. 1995; Absher et al. 2013; Ho et al. 1993). 

Because of this, the overall gene expression or DNA methylation measurements from 

complex tissues are often affected by the cell mixtures. In human blood, the pattern of 

variation in gene expression is correlated with certain cell counts: CD20 gene expression 

associated with lymphocyte count, while the variations of CD19, CD22 and CD72 genes 

expressions are affected by B cells (Whitney et al. 2003). In a systemic lupus 

erythematosus study testing the differential DNA methylation (DM) between patients and 

controls, the patterns of methylation difference varied among T cells, B cells and 
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monocytes with different methylated CpGs (Absher et al. 2013). Thus, the heterogeneous 

and dynamic nature of complex tissues (Clarke et al. 2008) is a confounding factor for data 

analysis and requires further investigation. 

The Existing Statistical Methods 

High-throughput measurements from complex tissues containing different cell types are 

mixed signals (weighted averages of the pure cell type quantities). Traditional analysis 

methods for differential expression (DE) and differential methylation (DM) often ignore 

this problem, which could lead to biased result. Recently, the method development for 

high-throughput data from complex tissues has gained much interest (Shen-Orr and 

Gaujoux 2013; Brady et al. 1995; Achim et al. 2015; Whitney et al. 2003). In cell type 

specific research, cell isolation methods, such as Fluorescence-activated cell sorting 

(FACS) and Microfluidic, are widely applied. However, these methods are expensive and 

require high technical skills (Hu et al. 2016). In addition, these methods are limited by the 

instability of protein epitopes, the requirements for cell processing and the timeliness of 

cell analysis, which is beyond the possibility to analyze the normally mixed composition 

of tissues (Houseman et al. 2012). In multiple studies, scientists estimated cell proportion  

through global profiles (Teschendorff et al. 2017; Zheng et al. 2018). EpiDISH, as an 

example, generate estimated cell proportions based on robust partial correlations 

(Teschendorff et al. 2017). 

The development of computational methods for analyzing csDE/csDM from 

heterogeneous tissues began almost two decades ago, and gained significant interest 

recently. (Venet et al. 2001; Erkkilä et al. 2010). In an early work (Venet et al. 2001), a 

linear model was proposed, assuming that each cell type has some uniquely expressed 
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genes as cell type markers, by which both the cell-type specific frequency and cell-type-

specific gene expression are estimated. Population-Specific Expression Analysis (PSEA) 

assumes the cell type specific gene expression to be proportional to the cell proportions 

and builds a linear regression model for cell-specific marker genes (Kuhn et al. 2011). The 

application of these methods has several requirements and lacks flexibility. PSEA, as an 

example, relies on marker genes expression, which is only available for tissues with 

identified cell-specific marker genes (Kuhn et al. 2012). 

Age Impact on DNA Methylation  

According to multiple studies, age-related DNAm changes have been identified in multiple 

tissues and organisms. In human whole blood, genome-scale DNAm profiling identifies 

many CpGs with methylation levels significantly associated with age (Rakyan et al. 2010). 

Changes in methylation have been linked to complex age-associated phenotypes such as 

telomere length and systolic blood pressure (SBP) (Bell et al. 2012), age-associated 

diseases such as Alzheimer’s Disease (Wang, Oeize, and Schumacher 2008), and cancer 

(Levine et al. 2015). The association between age and DNAm is also modeled to measure 

and compare human aging rates (Gregory Hannum et al. 2013). 

Study Goals  

The goals in this thesis work are two-fold. First, we will extend the previously developed 

method TOAST (TOols for the Analysis of heterogeneouS Tissues), which detects 

differential signals in high-throughput data from mixed samples. TOAST has been 

implemented as an R package and is freely available on GitHub 

(https://github.com/ziyili20/TOAST). Although the original TOAST paper proposed a 

https://github.com/ziyili20/TOAST
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generalized framework for identifying cell-type specific differential signals from various 

conditions, the implementation only considers two-group design, i.e. samples from 

diseased and controls. In this work, we will expand the implementation to more general 

experimental designs, which accepts various covariates including binary, categorical, and 

continuous variables. We will examine our implementation through simulation studies and 

evaluate the impact of sample size and noise levels. Secondly, we will apply the method 

on two real data sets to identify age-related cell-specific differential methylated CpG sites 

(DMCs).  

Method 

Estimating mixture proportions using EpiDISH  

With high-throughput measurements of mixed samples, the first step of the analysis is to 

estimate mixture proportions for different cell types. In this study, we use an existing 

reference-based deconvolution method EpiDISH to estimate the cell proportions 

(Teschendorff et al. 2017; Houseman et al. 2012; Newman et al. 2015).  

EpiDISH models the observation of mixed sample from one subject 𝒀  as a linear 

combination of K cell-type specific pure profiles 𝒉𝒌 

𝐘 = ∑ 𝑤𝑘𝒉𝒌 + 𝜀
𝐾

𝑘=1
 

Here 𝑤𝑘 denotes the weight coefficients of the 𝑘𝑡ℎcell type. satisfying a constraint 

∑ 𝑤𝑘
𝐾
𝑘=1 = 1. EpiDISH uses robust partial correlations (RPC) to estimate  𝑤𝑘 and 

enforce the constraints a posteriori by setting all 𝑤𝑘 non-negative and added up to 1, 

following the procedures described in Newman et al. 2015. Lm() and rlm() functions in R 
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are used to perform multivariate regressions for RPC in EpiDISH. EpiDISH is available 

as an R-package from Bioconductor: 

https://bioconductor.org/packages/release/bioc/html/EpiDISH.html.   

TOAST Model 

Assuming we have high-throughput measurements Y for N samples and G features (e.g. 

genes, CpG sites, ... etc.), and each subject has K underlying “pure” cell types, the 

mixing proportions 𝛉𝒊 = (θ𝑖1, θ𝑖2, … , θ𝑖𝑘) for i𝑡ℎ sample (under the constraint ∑ θ𝑖𝑘
𝐾
1 =

1) can be estimated using the above described method EpiDISH. Ygi denotes the 

measurement for the gth feature in the ith sample. Xgik denotes the measurement for the 

gth feature in the ith sample in the kth cell type.  

Denote the vector for subject-specific covariates by 𝐙𝐢 for ith sample. In the most general 

case, 𝐙𝐢 can contain a number of covariates that are binary, categorical, or continuous. All 

covariates are encoded in a typical fashion in linear regression. For example, categorical 

covariates can be represented as a vector of dummy variables. For example, a three-level 

covariate has two degrees of freedoms and will be coded as (0,0)  for Group 1 

(reference), (1,0) for Group 2, and (0,1) for Group 3. A continuous variable will have one 

degree of freedom. Overall, assume there are 𝑴  categorical variables, and the mth 

covariate contains 𝜐𝑚  levels, and 𝑷  continuous variables in the model, the number of 

elements in vector 𝐙𝐢 is  

∑ (𝜐𝑚 − 1)

𝑚

+ 𝑷. 

https://bioconductor.org/packages/release/bioc/html/EpiDISH.html
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We can write the profile for the kth cell type as: E[Xik] = μk + 𝐙𝐢
𝐓𝛃𝐤 , where μk is the 

baseline for kth cell type, and 𝛃𝐤 are defined as the covariate’s coefficients for the kth cell 

type. Usually, Xik is not directly observed in experiments. Instead, the weighted average of 

Xik  by mixing proportions 𝛉𝒊 is observed. Then, the ith sample with given 𝛉𝒊 will have: 

E[Yi; 𝛉𝐢] = ∑𝜃𝑖𝑘𝐸[𝑋𝑖𝑘] = ∑(𝜃𝑖𝑘μk + 𝜃𝑖𝑘𝐙𝐢
𝐓𝛃𝐤)

𝑘𝑘

 

This is a linear model with unknown parameters 𝝁𝒌 𝑎𝑛𝑑 𝜷𝒌. The mixing proportions 𝜽𝒊 

and mixing proportions by covariate interactions 𝜽𝒊𝒁𝒊  are known and included in the 

design matrix. Thus, we can write the model in a matrix form as 

E[𝐘] = 𝐖𝛃 

where 𝐖 =

[
 
 
 
 𝜃11 𝜃12 … 𝜃1𝐾

𝜃21 𝜃22 … 𝜃2𝐾

𝜃11 · 𝑍1
𝑇

𝜃12 · 𝑍1
𝑇 … 𝜃1𝐾 · 𝑍1

𝑇

𝜃21 · 𝑍2
𝑇

𝜃22 · 𝑍2
𝑇 … 𝜃2𝐾 · 𝑍2

𝑇

⋮ ⋮ ⋱ ⋮
𝜃𝑁1 𝜃𝑁2 … 𝜃𝑁𝐾

⋮ ⋮ ⋱ ⋮
𝜃𝑁1 · 𝑍𝑁

𝑇 𝜃𝑁2 · 𝑍𝑁
𝑇 … 𝜃𝑁𝐾 · 𝑍𝑁

𝑇]
 
 
 
 

 , 

𝛃 = [𝜇1 , 𝜇2 , . . . , 𝜇𝑘 , 𝜷𝟏
𝑻, 𝜷𝟐

𝑻, . . . , 𝜷𝒌
𝑻]𝑇 . 

Β has Q = K + ∑  (𝜐𝑚 − 1)𝑚 + 𝑷 elements. 

Simulation 

We design a series of simulation studies to evaluate our implementation of the TOAST 

methods. All simulations are focused on csDE detection, since there are good cell type 

specific expression data that can be used for simulation. In all simulations, model 

parameters applied to generate data are estimated from real data in order to obtain a realistic 

simulation setting.  
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First, cell-type specific profiles are generated based on a real dataset studying immune 

system (Wolslegel et al. 2009). The data were generated in a systemic lupus erythematosus 

study, which includes the gene expression profiles from four types of peripheral leukocytes 

cell lines (B cells: "Raji" and "IM-9"; T cell: "Jurkat"; monocyte cell: "THP-1"). Based on 

this dataset, the mean 𝜇𝑔𝑘 and variance of log expression values were estimated, for the 

gene in the cell type. Then we obtained the estimated profiles 𝐗i with 54657 genes and 4 

cell lines for the ith  subject from a log-normal distribution with mean (𝜇𝑔𝑘) 𝐺𝐾  and 

variance (𝜎2
𝑔𝑘)𝐺𝐾. 

Next, we simulate three subject-level covariates, including a binary one (such as disease, 

1 represents case, and 0 for control), a continuous one (such as age, 30 - 50), and a 

categorical one with 3 groups (such as ethnicity). We simulate the data this way in order to 

test the functionality of TOAST to make sure it works for all type of variables (continuous, 

categorical with 2 or more levels). We define a 30-year-old normal subject in ethnicity 1 

as a baseline subject. For baseline subjects, we simulate the (gth, kth) element of 𝐗𝒊 from 

a log-normal distribution with mean 𝜇𝑔𝑘  and variance 𝜎2
𝑔𝑘 . For other subjects, we 

randomly select a group of genes in each cell types as csDE genes related with different 

phenotypes, half of them are up-regulated and another half are down-regulated. To be 

specific, 3% DE genes are selected for case subjects versus controls, similarly, the other 

two groups of 3% genes are selected independently for ethnicity 2 and ethnicity 3 subjects 

versus ethnicity 1 subjects. The log fold changes (lfc) are randomly drawn from N(±1, 0.2) 

for up- and down-regulated genes. Age are generated randomly from uniform distribution 

Unif(30, 50). The lfc per unit age increase are randomly applied from N(±0.03, 0.1) for up- 

and down-regulated genes. For example, the  𝑖𝑡ℎ subject, who is a 30-year-old patients in 
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ethnicity 1, D = [0.015*G] ([.] is the round operation) genes are selected to be up-regulated 

and another D genes are down-regulated if this is a patient. Then we have: 

𝑿𝑖𝑘~log − 𝑛𝑜𝑟𝑚𝑎𝑙 (

[
 
 
 
 
 
 
 
 

𝜇1𝑘

⋮
𝜇𝐷𝑘

𝜇(𝐷+1)𝑘

⋮
𝜇(2𝐷)𝑘

𝜇(2𝐷+1)𝑘

⋮
𝜇𝐺𝑘 ]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 

1
⋮
1

−1
⋮

−1
0
⋮
0 ]

 
 
 
 
 
 
 
 

× 𝑁(1, 0.2),

[
 
 
 
 
 
 
 
 
 

𝜎2
1𝑘

⋮
𝜎2

𝐷𝑘

𝜎2
(𝐷+1)𝑘

⋮
𝜎2

(2𝐷)𝑘

𝜎2
(2𝐷+1)𝑘

⋮
𝜎2

𝐺𝑘 ]
 
 
 
 
 
 
 
 
 

） 

Xik denotes the underlying expression level for the G genes in the ith sample in the kth cell 

type (here the subscript for gene is omitted for notation simplicity). We consider 50, 100, 

and 500 as total sample sizes, and in all settings the total sample size are distributed equally 

by disease status (case vs control) and ethnicity levels (1, 2 and 3).  

Furthermore, the mixing proportions 𝛉𝒊 are generated based on the estimated proportions 

from an Alzheimer’s study dataset (Sonnen et al. 2009). We estimated the MLE of 𝜶𝟎 = 

(0.968, 4.71, 0.496, 0.347) based on the four cell proportions of 11 normal subjects in 

Sonnen et al. study.  Dirichlet distribution 𝛉𝒊 ~ 𝐃𝐢𝐫(𝜶𝟎) is applied to generate proportions 

𝛉𝒊.  

Lastly, with the simulated  𝐗𝒊 and proportions 𝛉𝒊, the measurement for the ith subject is 

obtained by 𝐘𝐢 = 𝜽𝒊𝐗𝐢 + 𝜺. 𝜺 is the measurement error, and randomly generated from 

N(0, 𝑛𝑠𝑑η𝑔
2) based on the Immune data. 𝑛𝑠𝑑 is the technical noise level, three levels are 

selected in simulation study:  𝑛𝑠𝑑 = 0.1 for low level, 1 for medium level and 10 for high 

level. η𝑔 is the standard deviation of measurement error in the gth gene. η𝑔 is simulated 
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based on a function of Xi𝜃i
̅̅ ̅̅ ̅ =

1

𝐾
∑ Xgik𝜃ik𝑘 ,  η𝑔 = −8.06 + 0.11Xi𝜃i

̅̅ ̅̅ ̅, which is estimated 

from the Immune Dataset. 

Real Data Application 

To test the functionality of TOAST on detecting cell-type specific DNAm changes, we 

applied our method on two real DNA methylation datasets from human blood tissues. The 

data were obtained from NCBI GEO database, both datasets were generated from Illumina 

Infinium HumanMethylation450 BeadChip.  

The first dataset (GSE42861) is from a study aiming to detect the methylation differences 

from 354 Rheumatoid arthritis patients (cases) and 335 normal controls using their 

peripheral blood leukocytes (PBLs) (Liu et al. 2013). In this study, we only use the 335 

normal subjects as Rheumatoid arthritis may cause cell type changes in patients’ blood. 

The second dataset (GSE40279) is a DNA methylation dataset measured from 656 

individuals’ whole blood samples. The original study was designed to characterize the 

association between the genome-wide methylation and human aging rates (Gregory 

Hannum et al. 2013). 

In this project, we assume both datasets, either gathered from peripheral blood leukocytes 

or whole blood samples, contain six types of blood cells: CD8+ T cell, CD4+ T cell, natural 

killer cells (NK), B cells, monocytes (Mono), and granulocytes (Gran). We first use 

EpiDISH to estimate the proportions. For that, the top 10000 cell marker CpGs are selected 

through TOAST based on the sorted specificity index and are imported into EpiDISH to 

conduct deconvolution for estimating the cell proportions with RPC method. 
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Next, the cell-specific differential methylated CpG sites (DMCs) among different age are 

detected through TOAST based on the mixed sample profiles and estimated cell 

proportions. We test the cell-specific coefficients for age impact and calculate the 

Benjamini-Hochberg False Discovery Rate (FDR). The true DMCs are defined as FDR 

smaller than 0.05. Finally, we explore the overlapped DMCs for each of six cell types 

between two datasets and conduct gene ontology (GO) analysis through online gene 

enrichment analysis tool Enrichr. 

Enrichment Analysis  

Gene set enrichment analysis tool Enrichr (Chen et al. 2013; Kuleshov et al. 2016) (Online 

tool available at http://amp.pharm.mssm.edu/Enrichr/) is applied for gene ontology (GO) 

enrichment analysis.  First, each DMC is mapped to its nearest gene based on gene 

annotation for probes on Illumina Infinium methylation 450k methylation microarrays of 

human genome version hg19. An R-package 

IlluminaHumanMethylation450kanno.ilmn12.hg19 from Bioconductor is used for that 

(http://bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/). 

After importing overlapped DMCs list, it returns a list containing gene location information. 

In Enrichr, we choose hg19 dataset as reference libraries and set 1000 genes as the 

maximum entry number. Upload gene list into Enrichr, it returns a result table in which 

each imported gene is associated with a functional term or an enrichment term including 

p-values, adjusted p-values (FDR), z-scores and combined scores. The p-values are 

calculated by Fisher’s exact test to examine the binomial distribution assumption of DMC-

mapped genes and the independence for the probability of any gene set containing certain 

gene. The adjusted p-values (FDR) are computed based p-values using the Benjamini-

http://amp.pharm.mssm.edu/Enrichr/
http://bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/
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Hochberg method for multiple testing correction. The rank scores or z-scores measure the 

deviation from the expected rank and are computed through a modification to Fisher's exact 

test. Finally, the combined scores are equal to the natural logarithm of p-values multiplied 

by z scores. We choose combined scores for enrichment terms ranking since it combines 

both methods. 

Results 

Simulation  

In the simulation study, we evaluated the method to detect cell-specific csDE from 

microarray data. We conducted simulations in three ways: 1) age effect comparison; 2) 

case vs control comparison; and 3) ethnicity comparison:  ethnicity 2 vs ethnicity 1, and 

ethnicity 3 vs ethnicity 1. The impact of sample size and noise levels on the accuracy of 

csDE detection were evaluated. The True Discovery Rate (TDR, which is the percentage 

of true positives) among top-ranked genes was calculated to measure the method 

performance. Each simulation was run 20 times, and the results are the average of the 20 

iterations. The typical setting in simulation studies are with medium sample size 100 and 

Figure 1 Boxplot of the estimated proportions 
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medium noise level. We assumed there are four cell types in the mixed sample, and the cell 

proportions were estimated under the reference-based method as mentioned in Method 

(Figure 1). The data contains three training groups with modest sample size (total 100 

samples), medium noise level (𝑛𝑠𝑑 =  1, which is the baseline noise level estimated from 

the Immune Data) and the age range from 30 to 50.  

Impact of noise level and sample size  

 

Figure 2a Impact of sample size on DE detection accuracy – Sample Size = 50 
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Figure 2b Impact of sample size on DE detection accuracy – Sample Size = 100 
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Figure 2c Impact of sample size on DE detection accuracy – Sample Size = 500 
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Figure 3a Figure 2c Impact of noise level on DE detection accuracy – n_sd=0.1 
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Figure 3b Impact of noise level on DE detection accuracy – n_sd = 1 
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Figure 2a-2c show the TDR curves for each cell type from TOAST under different sample 

size. The total sample sized range from 50 to 500, with medium noise level (𝑛𝑠𝑑 = 1). It is 

reasonable that larger sample sizes result in better csDE detection. Among four cell types, 

cell type 2 has the highest accuracy in all four comparisons. When sample size is 100 or 

larger, TOAST has very good performance with high accuracy for the first 500 top-ranked 

Figure 3c Impact of noise level on DE detection accuracy – n_sd = 10 
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genes of Cell Type 2. This is reasonably since cell type 2 has the highest proportion in the 

mixture (as shown in Figure 1). Such phenoemenan also happens when varying the noise 

levels (Figure 3).  

Figure 3a-3c show the TDR curves for each cell type from TOAST with different noise 

levels. The noise levels range from low (𝑛𝑠𝑑 =  0.1) to high (𝑛𝑠𝑑 = 10). We chose a 

medium sample size (N = 100) in these simulations. We can see that for medium or low 

noise levels, TOAST performs well. When noise level is high (𝑛𝑠𝑑 = 10, meaning that the 

noise level is 10 times of that from the real data), the performance of TOAST is extremely 

affected. 

Overall, the simulation results demonstrate that the method we implemented in TOAST 

can effectively detect csDE for different type of covariates including continuous and 

categorical ones.  
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Real Data 

Descriptions of samples in the datasets  

 

We first provided some summary statistics for the two datasets used in this study (Table 

1). For the first dataset GSE42681, the mean age of subjects is 52.8 (SD = 11.5), and the 

range of age is 20 to 70; 239 (71.3%) subjects are female; four types smoking status are 

reported as Never, Former Smoker, Occasional Smoker, Current Smoker. For the second 

dataset, the mean of age is 64.0 (SD = 14.7); 338 (51.5%) subjects are female; 426 (64.9%) 

subjects are Caucasian – European. 

 

Table 1a: Descriptive Statistics of 

GSE42861  
 

Table 1b: Descriptive Statistics of 

GSE40279  

Variables     
 

Variables     

Age (years)   55(20-70) 
 

Age (years)   65(19-101) 

Gender 
 

 
 

Gender 
 

 

· Female 
 
239(71.3%) 

 
· Female 338(51.5%) 

· Male 
 
96(28.7%) 

 
· Male 

 
318(48.5%) 

Smoking status*    Ethnicity   

· Never  101(30.3%)  · Caucasian - European 426(64.9%) 

· Former smoker  108(32.4%) 
 

· Hispanic - Mexican 230(35.1%) 

    · Occasional   35(10.55%)    

· Current Smoker 
 
89(26.7%) 

  
 

Total sample size N = 689  Total sample size N = 656 

* Missing data n = 2 
     

Values are median (range), or n (%).  
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Reference-based deconvolution results 

EpiDISH with robust partial correlations (RPC) (Teschendorff et al. 2017) was applied to 

deconvolute DNAm data and to obtain estimated proportions of six cell types based on 

10000 marker CpGs selected in each cell type. Figure 4 shows the estimated proportions 

of each cell type in normal subjects from two datasets. The estimated proportions are 

similar between the two datasets, and granulocytes occupies the highest proportion. 

Age Effect on Cell Type Proportions 

We first examined whether the cell mixing proportions are correlated with age. Estimated 

cells proportions were plotted against age for each cell type in Figure 5 and Figure 6. The 

blue lines are fitted LOESS curves and confidence intervals in grey regions. To test the 

correlation between cell proportions and subject age, we applied the simple linear 

regression to test the coefficients of age and reported Spearman correlation coefficients for 

Figure 4 Boxplot of the estimated proportions in real data 
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each cell type. From most tests, we found weak but statistically significant association 

between age and cell type proportions. In GSE42681 dataset, with age increasing, the 

proportions of CD8T (p-value = 0.0002), NK (p-value = 0.0015) and monocytes (p-value 

= 0.0012) increase, while the proportions of CD4T (p-value = 0.0001) and granulocytes 

(p-value = 0.0106) decrease. In GSE40279 dataset, the proportions of CD8T (p-value < 

0.0001), monocytes (p-value < 0.0001) and granulocytes (p-value <-0.0001) increase while 

the proportions of CD4T (p-value < 0.0001), NK (p-value < 0.0001) and B cells (p-value 

< 0.0001) decrease.  These results basically agree with previous findings (Jaffe and Irizarry 

2014). 

 

Figure 5 Cell proportions changes across the age - GSE42681 
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Age Effect on CpGs 

We used TOAST to detect cell-type specific changes with age. Differential methylated 

CpG (DMC) were defined as the ones with q-value (FDR) less than 0.05 from the csDM 

test. For GSE42861 dataset, Figure 7 suggests the numbers of DMCs showing significant 

association with age vary among different cell types. Most DMCs were found from B cells.  

For GSE40279 dataset, the age effect on DMCs also suggests various patterns among cell 

types. Compared to GSE42681 dataset, more DMCs were found from CD8T cells in 

GSE40279 （Figure 8）.  

Figure 6 Cell proportions changes across the age - GSE40279 
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Overall, the real data application study suggests that TOAST can detect age-related cell-

specific DMCs. To further validate these findings, we compared the csDMCs found from 

two datasets. Table 2 shows the numbers of cell-specific and total overlapped CpGs (with 

FDR < 0.05) in two datasets and Chi-square test p-values for testing the overlaps. There 

results show that the number of overlapped CpGs which associate with age are significant. 

Most DMCs exist in the CD8T and B cells (Figure 9), which suggests the results of two 

datasets are in line with each other. 

 

 

 

 

 

 

 

 

0

10000

20000

30000

40000

CD8T CD4T NK Bcell Mono Gran Sum

fdr < 0.05 2173 338 1 20130 13 12 22224

fdr < 0.1 3513 832 1 27873 16 14 31165

Number of DMCs in GSE42861 Dataset

fdr < 0.05 fdr < 0.1

Figure 7 Histogram of the number of cell-type specific DMCs - GSE42681 
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20000
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70000

CD8T CD4T NK Bcell Mono Gran Sum

fdr < 0.05 19099 905 3482 11251 1266 4053 36463

fdr < 0.1 28960 2851 8944 20205 2245 7750 60839

Number of DMCs in GSE40279 Dataset

fdr < 0.05 fdr < 0.1

Figure 8 Histogram of the number of cell-type specific DMCs - GSE40279 
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As a comparison, we also performed analysis without considering the cell mixture. For that 

we ran a simple linear regression for each CpG, using age as predictor and beta value as 

outcome. In GSE42681 dataset, 13,280 DMCs are found; and in GSE40279, 40,915 DMCs 

are found from this analysis. There are 6502 overlapped DMCs in both two datasets (Chi-

square test p-value < 0.001). Furthermore, we fitted a linear regression model with both 

Table 2: Number of Overlapped DMCs between Two Datasets 

 
CD8T CD4T NK Bcell Mono Gran Sum 

Number of 

overlapped DMCs 
1613 37 0 2652 0 5 4264 

P-value < 0.001 < 0.001 - < 0.001 - < 0.001 < 0.001 

0

1000

2000

3000

4000

5000

6000

7000

CD8T CD4T NK Bcell Mono Gran Sum

fdr < 0.05 1613 37 0 2652 0 5 4264

fdr < 0.1 2611 95 0 4389 0 5 6995

Number of Overlapped DMCs

fdr < 0.05 fdr < 0.1

Figure 9 Histogram of the number of overlapped cell-type specific DMCs between 

GSE42681 and GSE40279 
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age and cells proportions as predictors, but only tested the age effect. This is a typical 

procedure used before for adjusting the cell mixture in EWAS. From this, fewer DMCs are 

found (3,912 in GSE42681 and 21,095 in GSE40279), there are 3,556 DMCs overlapped 

in two datasets (Chi-square test p-value < 0.001). In addition, there are 567 overlapped 

DMCs datasets (Chi-square test p-value < 0.001) in both TOAST and linear regression 

model in GSE42681 and 8825 overlapped DMCs datasets (Chi-square test p-value < 0.001) 

in GSE40279. Both age and cells proportions affect DNAm. Compared the total number 

of csDMCs found by TOAST, fewer DMCs are detected in mixed samples with linear 

regression. This disparity suggests that there are cell type-specific changes of the age 

impact on CpGs methylation, under different patterns among cell types. TOAST can detect 

these csDMCs effectively. 

Table 3: Number of DMCs Found through TOAST and Linear Regression Model 

 
GSE42681 GSE40279 

Overlaps between 

Two Datasets 

Total DMCs found through 

TOAST 
22224 36463 6632 

DMCs found through linear 

regression model fixed age and 

proportions 

3912 21095 3556 

Overlaps between TOAST and 

Linear Regression Model 
567 8825  

 

Pathway Analysis based on DMCs 

In enrichment analysis, the 4264 DMCs found overlapped in both two datasets are mapped 

to their nearest genes. GO analysis is conducted by the Enrichr, and Table 2 shows the 
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result of top 20 GO progresses with the highest combined score. More detailed 

understanding for the biological implication of these results, as well as the enrichment 

analysis for csDMC is the work we plan to further investigate in the near future. 

 

Table 4: Enriched GO Terms for Overlapped DMCs 

GOID Term 
Adjusted 

P-value 

Combined 

Score 

GO:0007399 Nervous system development 0.0000 35.62 

GO:2000177 
Regulation of neural precursor cell 

proliferation 
0.0016 28.74 

GO:0035270 Endocrine system development 0.0016 25.95 

GO:0045944 
Positive regulation of transcription from 

RNA polymerase II promoter 
0.0021 22.07 

GO:0006357 
Regulation of transcription from RNA 

polymerase II promoter 
0.0002 21.82 

GO:0030182 Neuron differentiation 0.0020 21.07 

GO:0045595 Regulation of cell differentiation 0.0071 20.21 

GO:0001938 
Positive regulation of endothelial cell 

proliferation 
0.0011 20.14 

GO:0048562 Embryonic organ morphogenesis 0.0016 19.28 

GO:0045110 Intermediate filament bundle assembly 0.1532 19.25 

GO:0032000 
Positive regulation of fatty acid beta-

oxidation 
0.1725 18.96 

GO:0045893 
Positive regulation of transcription, 

DNA-templated 
0.0037 18.67 

GO:2000544 
Regulation of endothelial cell 

chemotaxis to fibroblast growth factor 
0.1725 18.35 

GO:0032526 Response to retinoic acid 0.0167 18.27 

GO:0048663 Neuron fate commitment 0.0434 17.40 

GO:0071300 Cellular response to retinoic acid 0.0269 17.15 

GO:0048699 Generation of neurons 0.0021 16.79 

GO:0045073 
Regulation of chemokine biosynthetic 

process 
0.1725 16.55 

GO:0060429 Epithelium development 0.0261 16.51 
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Discussion   

In this work, we extended a method (TOAST) to model the high-throughput data from 

mixed, heterogeneous samples. TOAST is able to conduct deconvolution on mixed signals 

and performs hypothesis testing on cell-specific or joint signals. In previous study, TOAST 

was used to detect csDE/csDM under two-group comparison (Li et al. 2018). In this work, 

we upgraded TOAST to work for multiple level categorical covariates and continuous 

covariate age. 

We performed extensive simulation studies to evaluate the implementation. We found the 

sample size has positive effect on performance accuracy, while the noise level has negative 

effect. Furthermore, our results show that cell type with higher proportions will have better 

csDE results on almost all occasions. Among three covariates (disease, ethnicity, and age), 

the TDR curves for each cell type are closer together in age panel than other two because 

of the marker gene selection and the regulation levels. For categorical covariates disease 

and ethnicity, we randomly chose one set of marker genes for each group in each covariate, 

for instance, ethnicity 1 and ethnicity 2 have different marker genes. For continuous 

covariate age, we only selected one set of marker genes for regulation. Moreover, we drew 

the up- or down-regulation for disease and ethnicity from N(±1, 0.2). We applied N(±0.03, 

0.1) for per unit age, and the regulation scales are proportional to the age. Thus, compared 

with baseline subjects, the variation scale for age is different from other two covariates. 

We applied the upgraded TOAST on two real DNA methylation datasets to look for cell 

type specific CpG sites associated with age. We first found that cell type proportions are 

associated with age. For instance, the proportion of CD4+ cells continues to decline with 
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aging, which associated with the loss of thymic tissue (Lynch et al. 2009). Through csDM 

analysis using TOAST, we identified a number of age-related DMCs in each cell type. 

While the previous study reported that DNA methylation associates with the long-term 

scaled age (Teschendorff, West, and Beck 2013), we found that the numbers of age-related 

csDMCs are different in each of the six cell types. Since the DNAm profiles differ among 

blood cell types and cell proportions change with aging, cell proportion is reported as an 

unignorable source of variability in DNAm (Jaffe and Irizarry 2014). In our analysis 

without considering the cell mixture, we applied two simple linear regression models for 

each CpGs, one fitted the age effect and another one fitted both age and cell proportions 

and detected the age-related DMCs of two datasets. There are 6,502 overlapped DMCs 

found in both two datasets through the model only fitted age, while there are only about 

half number of overlapped DMCs detected through the model fitted both age and 

proportions. We could conjecture that cell proportions introduce variations into the global 

DNAm profiles. Overall, both age and cell proportions could be effect modifiers of DNAm, 

which worth more biological and pathological investigation. 

The aim of TOAST is to detect cell-specific DE/DM in complex tissues. This study focuses on 

high-throughput experiments data, gene expression data in simulation study and DNA 

methylation data in real data application. In the future, TOAST could be extended for other 

types of high-throughput data such as proteomics and metabolomics.  
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