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ABSTRACT 
 
Background: Thyroid hormones serve a host of functions including metabolism, growth, and 
development. Endocrine disrupting chemicals (EDCs) can cause perturbations to thyroid hormone 
homeostasis, leading to adverse health effects. Risk assessment of thyroid disruptors requires an 
approach mechanistically linking toxicological and epidemiological data across multiple scales. 
Dynamic models can serve the integrating role. 
 
Objective: (1) Construct a dynamic model of the hypothalamus-pituitary-thyroid (HPT) axis, (2) use 
the model to establish a reference human thyroid population model, and (3) use the population model 
to predict thyroid-disrupting mechanisms of EDCs. 
 
Methods: An ordinary differential equation (ODE)-based deterministic model of the HPT axis was 
constructed to capture the feedback regulation between T3, T4, and TSH, their synthesis, metabolism, 
and plasma buffering. The initial model representing an average euthyroid condition was then 
optimized by using the NHANES thyroid profile data to establish a reference thyroid population 
model. Pearson correlation and weighted multiple linear regression of the thyroid profile data and/or 
optimized model parameters to urinary EDCs including sodium iodide symporter (NIS) inhibitors, 
environmental phenols, and perfluorinated chemicals were then performed. Hierarchical clustering of 
EDCs based on thyroid hormone profile and/or optimized model parameters was performed. 
 
Results: The deterministic model recapitulated the mean levels of free T3, free T4, TSH, total T3 and 
total T4 of a general human population. The model can simulate primary or secondary hyper- or 
hypothyroid conditions. Using the NHANES dataset, a virtual thyroid population was established with 
optimized parameter distributions. Correlation analysis (1) confirmed the thyroid-disrupting 
mechanisms of well-characterized EDCs such as perchlorate and (2) made predictions for novel 
thyroid-disrupting mechanisms of a number of chemicals such as thiocyanate. Multiple linear 
regression demonstrated the negative association of thyroid hormones with a number of EDCs 
however the associations with TSH varied, suggesting different thyroid-disrupting mechanisms. 
Hierarchical clustering demonstrated the usefulness of optimized model parameters as additional 
features to help refine chemical grouping. 
 
Conclusions: A dynamic model of the HPT axis can be used to infer novel mechanistic information 
of thyroid EDCs and it can become an important tool in risk assessment of EDCs by incorporating 
future in vitro testing data. 
  



 

DEVELOPING A DYNAMIC MODEL OF THE HYPOTHALAMIC-PITUITARY-

THYROID AXIS FOR RISK ASSESSMENT OF ENDOCRINE DISRUPTING 

CHEMICALS 

 

By 

 

Patrick Ovie Fueta 

 

Doctor of Medicine (M.D.) 

Windsor University School of Medicine 

[2012] 

 

Thesis Committee Chair: Qiang Zhang, M.D, Ph.D. 

 

 

 

 

A thesis submitted to the Faculty of the 

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Public Health Public Health 

in Environmental Health 

2017 

 

  



 

Table of Contents 

INTRODUCTION 

▪ Physiology of the Hypothalamus-Pituitary-Thyroid (HPT) Axis 

▪ Pathology of the HPT Axis and Prevalence of Thyroid Disease 

▪ Role of Endocrine Disrupting Chemicals (EDCs) in Thyroid Disease 

o Environmental Phenols 

o Nitrate, Perchlorate and Thiocyanate 

▪ Current Movement in Chemical Toxicity Testing 

▪ Role of Dynamic Modeling in Risk Assessment of EDCs 

▪ Objectives of the Thesis Study 

 

METHODS 

▪ Construction of the Computational Model of the Human HPT Axis 

o Construction of the Deterministic Model 

o Construction of the Population Model 

▪ Statistical Methods 

o Study Design and Population 

o Study Variables 

o Statistical Analysis 

RESULTS 

▪ Deterministic HPT Model 

▪ Population HPT Model 

▪ Statistical Summary of NHANES Data 

▪ Correlation Analysis 

▪ Hierarchical Clustering 

 



 

DISCUSSION 

LIMITATIONS AND FUTURE RESEARCH 

REFERENCES 

 

 

 

 

  



 

ACKNOWLEGEMENT 

First and foremost, I will like to thank God for his grace and blessings in my life, and for turning my 

dream to get an MPH into a reality. 

 

To my parents, Mr. and Mrs. Fueta, for their undying love and most of all complete support through 

this program, and every other venture I have sought in life. Trying times were never a deterring 

factor for them, despite the turbulent times they stood strongly by my side. 

 

To my advisor, Dr. Qiang Zhang for his dedication to my cause from the first day I walked into his 

office, and creating numerous opportunities for me to be able to progress academically. He 

personally mentored me in dynamic modelling outside the classroom. Without him this thesis project 

would not have been possible.  

 

To my faculty advisor, Dr. Dana Barr for her kindness, and support. 

 

To my friends and family that have been supportive through this journey. 

 
  



 

ABBREVIATIONS 

 

BP3= Benzphenone-3 

BPA= Bisphenol-A 

CDC= Centers for Disease Control and Prevention 

EDC= Endocrine Disrupting Chemical 

HPT= Hypothalamus-Pituitary-Thyroid 

NCHS= National Center for Health Statistic 

NHANES= National Health and Nutrition Examination Survey 

PFCs= Perfluorinated Chemicals 

PFDE= Perfluorodecanoic acid 

PFOA= Perfluorooctanoic acid 

PFOS= Perfluorooctanesulfonic acid 

T3= Thyronine 

T4= Thyroxine 

TG-AB= Thyroglobulin Antibody 

TPO-AB= Thyroperoxidase Antibody  

TRH=Thyrotrophic Releasing Hormone 

TSH=Thyroid Stimulating Hormone 

 
 
  



 1 

INTRODUCTION 

 

Anatomy and Physiology of the Hypothalamus-Pituitary-Thyroid (HPT) Axis 

The hypothalamus occupies the anterior portion of the diencephalon, and is comprised of numerous 

small nuclei and tracts located on the body of the third ventricle (Lechan et al., 2013). Anteriorly, the 

hypothalamus spans from the periaqueductal gray matter of the midbrain, and proceeding posteriorly; 

the mammillary bodies, interpeduncular fossa and cerebral peduncles. Posteriorly, the hypothalamus 

spans from the region of the anterior commissure, lamina terminalis and the optic chiasm. The 

hypothalamus controls the hormonal activity of the anterior portion of the pituitary gland, and 

produces hormones (oxytocin and anti-diuretic hormone) which are stored in the posterior portion of 

the pituitary gland (Reichlin, 1967). The hypothalamus exerts control of the hormonal activity of the 

anterior pituitary by producing “trophic” hormones such as corticotropin-releasing hormone (CRH), 

gonadotropin-releasing hormone (GRH), growth hormone-releasing hormone (GHRH), thyrotropin-

releasing hormone (TRH), and somatostatin (Barrett et al., 2010). 

 

The pituitary gland commonly called the “master gland”, is a pea shaped organ located at the base of 

the brain within the “sella turcica” (Sheng et al., 1999). It is anatomically, physiologically and 

embryologically divided into 2 distinct structures, the adenohypophysis (anterior pituitary) and the 

neurohypophysis (posterior pituitary) (Takuma et al., 1998). The adenohypophysis produces several 

hormones including adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), 

thyroid-stimulating hormone (TSH), growth hormone (GH), luteinizing hormone (LH), and prolactin. 

(Barrett et al., 2010). Anti-diuretic hormone (ADH) and oxytocin which are both produced in the 

hypothalamus and transported via neurophysins are stored in the neurohypophysis.  

 

The thyroid gland is in the anterior aspect of the neck, and it is a bi-lobed butterfly shaped organ 

connected via a structure called the isthmus, which in a subset of patient is the site for an additional 
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lobe ‘the pyramidal lobe’ (Khatawkar et al., 2015). The primary function of the thyroid gland is the 

production of thyroid hormones which are iodine-containing amino acids; thyroxine (T4) and 

triiodothyronine (T3), and the natural occurring isomers are the L-isomers (levo-Isomers) (Khatawkar 

et al., 2015). T4 is also converted to T3 in the periphery via 5’ deiodinase (Barrett et al., 2010, Khatawkar 

et al., 2015). 

 

The thyroid gland is made up of follicular cells, which contains a substance called “colloid” and this is 

where thyroid hormonal synthesis occurs (Barrett et al., 2010). The thyroglobulin complex within the 

colloid contains bound thyroid hormones, and for this complex to be synthesized, a series of important 

steps are required; first, inorganic iodide, a univalent anion, needs to be transported into the thyroid 

gland via the sodium-iodide symporter (NIS), then the inorganic iodide is converted to iodine via an 

oxidative process (Barrett et al., 2010, Khatawkar et al., 2015). Within the thyroid gland, 

thyroperoxidase (TPO) binds iodine to tyrosine forming iodotyrosines, and coupling of mono-

iodotyrosines and di-iodotyrosines form thyroid hormones (T3 & T4) (Khatawkar et al., 2015). 

 

Upon requirement of thyroid hormone, TRH from the hypothalamus is produced which stimulated 

the pituitary gland to produce TSH, then TSH stimulates the thyroid gland which causes the cleavage 

of formed thyroid hormones coupled on thyroglobulin by proteases present within the lysosomes of 

the thyroid follicular cells, and this results in the release of thyroid hormones thyronine (T3) and 

thyroxine (T4) into circulation (Barrett et al., 2010, Khatawkar et al., 2015). T4 is the predominantly 

produced thyroid hormones with about 80% being thyroxine, and 20% thyronine, however the active 

form of thyroid hormone is T3. Within the periphery, T4 is being converted to T3 by 5’ deiodinase 

and within the CNS type II 5’ deiodinase is responsible for the conversion of T4 to T3 needed for 

thyroid hormonal homeostasis and function (Lakshmy et al., 1999). This system is referred to as the 

hypothalamic-pituitary-thyroid (HPT) axis, and this is essential in ensuring thyroid hormone 

homeostasis (Barrett et al., 2010). These released thyroid hormones are bound by albumin, thyroid 
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binding prealbumin (or transthyretin), and thyroid binding globulin (TBG) which are all serum 

proteins, hence only a very tiny fraction (<0.1%) of the released hormones are available in free form 

(De Escobar et al., 2004, Khatawkar et al., 2015). T3, the active form of thyroid hormone, has a rapid 

onset of action (within a few hours), and T4 has a much slower onset of action ranging between 4-14 

days (Khatawkar et al., 2015). Thyroid hormones (T3 and T4) are metabolized mainly in the liver and 

excreted into bile via the cytochrome P450 system (CYP450s) (Ye et al., 2017). 

 

Thyroid hormones are required for several physiological processes such as metabolism, appetite, bone 

growth, menstrual cycle regulation, body weight, central and peripheral nervous system function, heart 

rate, lipid/cholesterol oxidation and thermogenesis (Witkowska-Sędek et al., 2017). In-utero, thyroid 

hormone is also associated with growth, development, differentiation, migration and gene expression 

in tissues and specialized organs including cerebral growth and development (Bernal et al., 1995). 

Therefore, thyroid hormones are crucial in ensuring timely progression of several important 

developmental processes through effects on the rate of gene expression and cell differentiation. The 

receptors for all the T3 isoforms are expressed in the brain, and their “spatial and temporal patterns of 

expression” is suggestive of a variation in function of the expressed isoforms.  

 

Pathology of the HPT Axis and Prevalence of Thyroid Disease 

Thyroid disease states are generally classified into hyperthyroidism and hypothyroidism (Barrett et al., 

2010). These states are further classified into primary, secondary and tertiary causes with primary 

originating from the thyroid gland, secondary from the anterior portion of the pituitary gland, and 

tertiary from the hypothalamus. In primary disease states, commonly due to thyroid nodules or cancer, 

there is an increase or decrease in thyroid hormones (T3/T4) produced by the thyroid gland, which 

have an inverse relationship with TSH, and ultimately TRH (Barrett et al., 2010). In secondary disease 

states, commonly due to dysfunctional pituitary adenomas secreting TSH, there is a direct positive 
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relationship between TSH levels and thyroid hormones with an inverse relationship on TRH, while in 

tertiary disease states there is a direct positive relationship between TRH, TSH and thyroid hormones.  

 

During pregnancy, thyroid hormones required by the developing fetus for a host of functions including 

growth and differentiation of tissues and organs, and neurodevelopment, are supplied to the fetus from 

the mother (Aker et al., 2016). T3, T4 and iodine are detected in fetal circulation in the first trimester 

prior to fetal production of thyroid hormones, however only T4 is transported via the placenta to the 

fetus and local conversion to T3 occurs in the fetus. Therefore, to meet this increased T4 demand in 

pregnancy, mothers need to increase production of thyroid hormones, making the balance of thyroid 

hormones crucial within pregnancy (Aker et al., 2016). 

 

Thyroid disease is prevalent worldwide with 12% of the world’s population projected to develop 

thyroid disease in their lifetime, and are consequent of perturbations in the HPT axis (Bjoro et al. 

2000). The prevalence of thyroid disease in different populations is dependent on factors such as race, 

sex and geographic location. Among US adults, the prevalence of thyroid abnormalities ranges between 

1 to 10 percent (Stone et al, 2003). Poor iodine intake is the most common cause of thyroid disease 

globally with an increased prevalence in developing countries with poor dietary iodine fortification 

(Bjoro et al. 2000). In developed countries such as the United States with iodine fortification, causes 

of thyroid disease in the population are resultant of autoimmune disease states such as Hashimoto’s 

disease/thyroiditis, and Grave’s disease. Pregnancy substantially affects thyroid glandular function with 

a 10% increase in gland size in “iodine-replete” regions, and a 20-40 % increase in gland size in iodine 

deficient regions (Stagnaro-Green et al. 2011). During pregnancy, there is an increase production of 

thyroid hormones (T3 and T4) by 50% and to meet this increase need, the requirement for iodine 

which is essential in thyroid hormone synthesis increases by 50%, hence pregnancy has been described 

as a “stress test for the thyroid”.  
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Endocrine Disrupting Chemicals and their effect on the HPT Axis 

Endocrine disrupting chemicals (EDCs) are compounds that can affect components/organs of the 

endocrine system, lead to perturbations in hormone production and subsequently cause deleterious 

health outcomes (Andrady, 2015). EDCs have been demonstrated to perturb hormone production by 

imitating, preventing the production, release, metabolism, disrupting transport and by binding or 

elimination of naturally produced hormones (Caserta et al., 2008). Conventionally, EDCs were 

perceived to exert their action exclusively by interacting with nuclear hormone receptors including 

thyroid receptors (TRs), estrogen receptors (ERs), androgen receptors (ARs) amongst a host of others, 

however, they have been demonstrated to have other mechanisms of actions (Schug et al., (2011). 

EDCs also act on nonsteroid receptors, enzymatic pathways involved in steroid synthesis/metabolism, 

as well as transcriptional coactivators involved in the endocrine and reproductive systems. Other 

mechanisms of actions of EDCs include effect on genes and epigenetics which have several 

implications on programming in early development, diseases through the life course, and potentially 

transgenerational inheritance of disease. EDCs have also been demonstrated to be carcinogenic with 

substances such as diethylstilbestrol exposure linked to formation of breast cancer in women, as well 

as malformation of the female genital tract given in utero exposure (Soto et al., 2010). 

 

Greater than 800 compounds are either identified or speculated to be EDCs, and the human interaction 

with the environment can be a significant source of exposure to EDCs (Andrady, 2015). EDCs have a 

low-dose effect described by the National Toxicology Program as an effect of a chemical on humans 

noted at a level lower than stipulated and used in traditional toxicological studies (Vandenberg et al., 

(2012). Therefore, even though they may only be present in small quantities in the environment, they 

may still lead to deleterious outcomes especially when multiple chemicals affect the same target organ. 

(Andrady, 2015). To place further emphasis on this point, most EDCs are under the class of 

compounds referred to as persistent organic pollutants (POPs) (Ngwa et al., 2015). POPs are 

compounds that are retained in the environment because of their resistance to degradation via 
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chemical, biological and photolytic processes, and due to this they bioaccumulate in human and animal 

tissues up the food chains, conferring the capacity of long-range transport (Ngwa et al., 2015). Coupling 

this fact that EDCs persist in the environment to the low-dose effect, EDCs are compounds of 

significant concern (Ngwa et al., 2015, Vandenberg et al., 2012). Several chemicals (compounds) have 

been researched and identified as EDC on the HPT axis, leading to disruption of thyroid hormone 

synthesis and ultimately causing disease states of hyperthyroidism or hypothyroidism. 

 

Environmental Phenols 

Phenols are compounds with a hydroxyl group bonded with an aromatic (cyclical) hydrocarbon group 

(Amorati et al., 2012). They are classified as simple phenols or polyphenols based on the number of 

phenol groups coupled on a molecule. Compounds that are phenol based have a characteristic sweet 

smell and are utilized in a wide array of manufacturing purposes, such as parabens and their use in 

cosmetics, benzophenone-3 and its use in sunscreens, triclosan and its use as an antibacterial or 

antifungal agent in soaps, and bisphenol A and its use in soap/plastics (Wu et al., 2016). These 

compounds are referred to as environmental phenols because they are not readily degraded in the 

environment, therefore making them persistent organic pollutants.  

 

▪ Bisphenol-A 

Bisphenol-A (BPA), a compound that is a constituent of plastics, food packaging, and receipts amongst 

a host of other things, has been shown to be hazardous to human health secondary to its EDC 

properties (Rochester et al., 2015). BPA has been of concern amongst the scientific community because 

it is readily available in an extensive array of consumer products, causing widespread exposure across 

the population coupled with the fact that it is a POP (Vandenberg et al., 2010). In response to this, a 

shift from using BPA to BPA analogues such as BPS and BPF has been made by several industries that 

utilize BPA in production of their goods in lieu to provide safer alternatives. However, these analogues 

have the same effect on human health with demonstrated estrogenic, antiestrogenic, androgenic, and 
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antiandrogenic properties (Rochester et al., 2015). Analogues used as substitute chemicals to BPA such 

as BPM, BPS, or BPF are structurally like BPA hence carry the same potential to interact with hormonal 

receptors, hence leading to adverse health outcomes like their parent compound. BPA has been 

demonstrated to cause perturbations within organs derived from endodermal origin such as the 

thyroid, pancreas and prostate glands, and has been implicated in disease states such as diabetes 

secondary to pancreatic disruption, and thyroid disease states secondary to thyroid disruption (Porreca 

et al., 2017). 

 

BPA has been demonstrated to exert its effect at the level of the pituitary and the thyroid gland leading 

to thyroid hormonal production perturbations (Lee et al., 2017). BPA has been demonstrated to show 

a positive association between TSH and urinary BPA levels, suggestive of a resultant hypothyroid state 

from exposure (Andrianou et al., 2016). BPA and its analogues such as BPS have antagonistic effects 

at the level of thyroid hormone receptors, which potentially leads to a resultant hypothyroid state 

(Skledar et al., 2016). Mammalian studies using rats demonstrated that maternal exposure to BPA 

increases the expression of “neurogranin” in the hippocampus of the brain, leading to postulations 

that BPA may have antagonistic actions on thyroid hormonal synthesis through TRβ (Boas et al., 2006). 

 

TPO is an enzyme glycoprotein that catalyzes the transfer and coupling of iodine to thyroglobulin 

during thyroid hormonal synthesis of T3 or T4 (Song et al., 2012). BPS, compared to methimazole, a 

drug used to treat hyperthyroidism as a TPO inhibitor, shows effect of TPO inhibition at a much lower 

dose. BPA has also been implicated as a cause of thyroid autoimmune disease evidenced by a positive 

correlation between BPA levels and TPO antibody positivity, which is suggestive of a resultant thyroid 

autoimmune diseases state (Chailurkit et al., 2016). In utero exposure to BPA has different consequences 

by sex, with no effect noted in thyroid function parameters prior to 16 weeks’ gestation which is 

suggestive of a window of susceptibility (Romano et al., 2015). Female neonates show a decrease in 

TSH levels with each 10-fold increase in BPA concentrations in maternal blood, however no change 



 8 

is noted in male neonates. This inverse relationship between BPA and TSH is indicative of increase in 

the amount of thyroid hormone (T3/T4), causing a resultant hyperthyroid state in female neonates, 

which is the opposite of the effect of BPA on thyroid function in adults (Andrianou et al., 2016, 

Romano et al., 2015). 

 

▪ Parabens 

Parabens are esters of para-hydroxybenzoic acid such as methyl paraben, isopropyl paraben, butyl 

paraben and propyl paraben, commonly used in pharmaceuticals and in the food industry as a 

preservative, and in cosmetics such as soaps, shampoos, facial and skin cleansers, and lotions (Koeppe 

et al., 2013, Darbre et al., 2004). Parabens are readily absorbed in the skin as well as in the 

gastrointestinal tract, and this raises concern as these compounds have been defined as EDCs, and 

their applications are in tandem with their route of entry into the bodies of mammalian species (Soni 

et al., 2002). 

 

Parabens have been demonstrated to have a negative correlation with thyroid hormone species 

(T3/T4) in an analysis using the cross-sectional data from the NHANES 2007-2008 database, which 

is indicative of thyroid hormonal disruption by these compounds (Koeppe et al., 2013). Methyl paraben 

has been demonstrated to show a weak anti-thyroid activity in vitro by inhibiting iodine organification 

in the thyroid gland in a dose-dependent fashion (Boas et al., 2006). Butyl paraben however has been 

demonstrated to show increased growth of GH3 cells in T-Screen assay, therefore, butyl paraben was 

described as a thyroid hormone receptor agonist (Taxvig et al., 2008). 

 

Considering the discordance noted between these compounds that are under the same family of 

chemicals, it is imperative that further research should be conducted to define these chemicals, and 

their roles as thyroid disrupting chemicals (Taxvig et al., 2008). 
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▪ Triclosan 

Triclosan (5-chloro-2-(2,4-dichloropheoxy) phenol) is a manufactured chlorinated phenol, utilized for 

its antimicrobial and preservative properties in many cosmetics and household products. (Schnitzler et 

al., 2016). Triclosan is measured and detected in various environment, including several rivers in the 

United States, therefore it is one of the most common exposures with regards to POPs. Triclosan 

present in cosmetic and personal care products washed down the drain can be effectively removed via 

sewage treatment, however the presence within the U.S waters exposed aquatic creatures as well as 

land animals to triclosan leading to accumulation within biologic species that humans may consume, 

therefore serving as a means of human exposure to triclosan (Mihaich et al., 2017). Triclosan is 

structurally like thyroid hormone, therefore has been postulated to carry thyroid hormonal disruption 

properties (Schnitzler et al., 2016). 

 

About 80% of thyroid hormones are bound to transport proteins which increases the half-life of 

thyroid hormones, as well as transport the thyroid hormones to their site of action (Witkowska-Sędek 

et al., 2017).  Triclosan has been demonstrated to be correlated with a decrease in thyroxine (T4) 

concentration pre-natally and post-natally among mammalian species (rats) (Johnson et al., 2016). This 

decrease in T4 concentration has been attributed to triclosan binding with transthyretin (TTR) 

decreasing the binding sites for thyroid hormones, therefore leading to a reduction in the measureable 

concentration of thyroid hormone in plasma (Weiss et al., 2015). Triclosan is a non-competitive NIS 

inhibitor as demonstrated by a dose-dependent decrease in iodide uptake by FRTL-5 cells when grown 

in the presence of triclosan, triclocarban, BPA or BDE-47 (Wu et. al, 2016). Triclosan inhibits TPO 

activity in a dose-dependent manner, therefore it inhibits the organification of iodine and ultimately 

thyroid hormonal synthesis.  
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Despite studies demonstrating these results, the data proving the relationship between triclosan and 

thyroid hormonal disruption is still elusive, and further studies showing these associations need to be 

conducted (Witorsch, 2014). 

 

Sodium-Iodide Symporter (NIS) Inhibitors 

▪ Nitrate, Perchlorate and Thiocyanate 

Nitrate are a common contaminant in the drinking water supplies within agricultural communities 

(Aschebrook-Kilfoy et; al., 2016). Sources of nitrogen contamination in the environment include leaky 

septic tanks, animal excrement, and nitrogen based fertilizers which since their use in the 1950’s have 

increased nitrogen contamination of the environment (Ward e. al., 2010). Perchlorate is conventionally 

used as an oxidizing agent in rocket and missile fuel, however it can occur naturally in some soils and 

within the atmosphere which deposits in soil after precipitation and becomes a source of human 

exposure (Abt et al., 2016). Perchlorate is ubiquitous in food because of its presence and persistence 

in soil, source water, irrigation and processing water utilized for agricultural purposes. This is because 

it is hydrophilic and hence, detectable in snow, rain, ground water, fertilizers (Jugan et al, 2010). 

Perchlorates have been measured in the U.S drinking water system in levels between (4 – 200) μg/L. 

Thiocyanate is a detoxification by-product of cyanide and can be found in cigarette smoke as well as 

plant foods such as cassava, cabbage, turnips, Brussel sprouts, and cauliflower (Erdoǧan, 2003). 

Perchlorate, thiocyanate and nitrate are univalent anions like iodide which is up-taken by NIS of the 

thyroid gland for thyroid hormone synthesis, therefore they can compete with iodide for NIS leading 

to an iodine deficient state and ultimately a hypothyroid state (Aschebrook-Kilfoy et al., 2016). 

 

Thiocyanates in addition to this also upregulates the activity of type II 5’ deiodinase which converts 

T4 to T3 in the CNS and within peripheral tissue, as well as the number of binding sites for the enzyme 

as an adaptive measure secondary to persistent thiocyanate exposure (Lakshmy et al., 1999). This leads 

to depletion of T4 with normal levels of T3. Following exposure to these chemicals, TSH levels rise in 
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response to the low T4/T3 levels and can lead to the formation of goiters. (Aschebrook-Kilfoy et al., 

2016). 

 

Current Movement in Chemical Toxicity Testing 

Traditional chemical toxicity testing requires exposures of laboratory animals for 14 days, 90 days, and 

2 years depending on the apical endpoints of toxicological concerns. Several forces including 

regulatory, commercial, scientific and animal welfare considerations, are converging to promote a 

change. Thus, toxicity testing for man-made chemicals is undergoing a strategic transformation from 

the traditional animal-based approaches with an aim of achieving a more efficient, less expensive, 

scientifically accurate, and humane way of conducting chemical health risk assessment. 

 

The first consideration comes from the cost and efficiency issue of animal testing. In the United States, 

greater than 85,000 chemicals are currently manufactured for commercial purposes and 600 are 

introduced in addition to this pool annually (Trasande, 2016). The law regulating the production and 

use of these chemicals in the United States is the Toxic Substances Control Act (TSCA), which was 

passed on October 11, 1976 by President Ford in response to several counts of chemical damage to 

the environment and health (EPA History, 2016).  The prerogative for passing this law was to curb 

environmental pollution from chemical exposure by ensuring adequate pre-distribution and 

commercial chemical use testing, require manufacturers and distributors to demonstrate chemicals are 

not toxic to health and the environment, and confer authority on the Environmental Protection Agency 

(EPA) to regulate toxic substances. At the time the TSCA was passed, approximately 60,000 chemicals 

in use then were “grandfathered-in”, hence not subjected to adequate toxicity testing and evaluation 

(Trasande, 2016). The Frank R. Lautenberg Chemical Safety for the 21st Century Act was passed as an 

amendment to the TSCA to address its inefficiencies (Frank R. Lautenberg, Chemical Safety for the 

21st Century Act. 2017). This amendment broadened the reach of the act by mandating the evaluation 

of existing and “grandfathered-in” chemicals prior to the passing of the act, enabling the EPA to 
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develop standards that are “risk-based”, require manufacturers to disclose chemical information, and 

create provision allowing the federal government provide funding to the EPA to deliver its 

responsibilities.    

 

This translates to increased accountability by manufactures of chemicals to their consumers, and the 

EPA has a huge backlog to address with regards to toxicity assessment of these existing chemicals to 

inform population safety. Meanwhile, new chemicals are coming online looking for regulatory approval 

at a fast rate. Therefore, an undue burden is placed on conventional toxicity testing which is primarily 

animal-based in vivo assays. How to reduce the cost of animal testing and accelerate the speed of testing 

to keep up with the demand of commercial chemicals has become a practical issue which cannot be 

adequately addressed if we continue the traditional animal testing approaches (Burden et al, 2015). 

 

A second consideration for a new testing approach comes from scientific concerns (Burden et al, 2015). 

Traditional animal testing is normally conducted in a way that animals are exposed to a chemical at 

high doses such that some apical endpoint changes are likely to be observed, such as liver toxicity and 

cancers. Then the responses observed at high doses are extrapolated, in most cases linearly, back to 

the origin where zero dose is located. In doing so, the responses at low doses can be predicted, after 

adjusting for uncertainty factors for exposure route difference, inter-species difference, and inter-

individual variability. In some cases, a few more dose points may be conducted to derive for no 

observed adverse effect levels (NOAELs) or lowest observed adverse effect levels (LOAELs), which 

can be considered as the point of departure (POD) or the point from which linear extrapolation is 

conducted. Many years of this high-dose extrapolation practice based on animal data has proven that 

this approach informs little, if any, human health risk for environmental chemicals humans are exposed.  

In other words, high-dose animal studies bear little relevance to human health risk assessment in most 

cases and the results are inaccurate and scientifically unsound.  
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Moreover, the traditional animal studies are still based on top of the gross knowledge of animal 

anatomy, pathology and physiology dated back 50 years ago when these methods were first established. 

In the intervening years, biology has advanced dramatically both in our understanding of how biological 

systems work at molecular and cellular levels, but also the methodologies to interrogate biological 

systems at these levels. Unfortunately, the traditional animal testing utilizes little of these achievement 

and modern biology. Therefore, these scientific concerns are one of the driving forces behind the 

change in animal testing. 

 

A third consideration for a change in chemical testing is about animal right. Increasingly animal welfare 

becomes a humane concern. Animal right activities of how to replace, refine, and reduce (3Rs) animal 

usage in biomedical research for human benefits is taking place around the globe, especially in the 

Europe. For instance, legislature has been passed in the European Union that starting from 2013, 

cosmetics with ingredients tested in animals are no longer legal in the EU market (EC, 2009).  

 

Taken together, multiple forces are coming together to push for an animal alternative approach to 

chemical toxicity testing. These alternative approaches would be economical, efficient, humane, and 

informative to real-world human exposures through making best use of modern science. In 2007, the 

National Academy of Sciences (NAS) published a report: Toxicity Testing the in 21st Century: a Vision 

and a Strategy (NRC, 2007). This highly publicized report envisaged that “In a not-so-distant future, 

virtually all routine toxicity testing would be conducted in human cells or cell lines in vitro by evaluating 

perturbations of cellular responses in a suite of assays anchored on toxicity pathways.” Toxicity 

pathways are defined based on modern biology, which refer to any existing biochemical circuit in the 

cell that, when sufficiently perturbed, is expected to result in an adverse health outcome.  

 

One potential challenge for human risk assessment by using the advocated cell-based approach is how 

to interpret these in vitro assays results in the in vivo context and inform safety assessment at the human 
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population level. To this end, computational modeling will play an indispensable role. Computational 

modeling is necessary not only for correlating the in vitro derived point of departure chemical 

concentrations to in vivo exposure dose through realistic routes, but also for relating the in vitro cell 

effects to organism-level health effects. This is a situation particularly relevant for EDCs. 

 

Role of Dynamic Modeling of in Risk Assessment of EDCs 

Dynamic models are products of the application of computational toxicology, which involves using 

mathematical and computational models to aid in evaluating the impact of the hazards that chemicals 

pose on health and the environment (Kavlock et al., 2010). Developing robust dynamic models require 

the use of informatics, high-throughput screening (HTS) technologies, and systems biology. Therefore, 

this is a research area that merges advancement in chemistry and molecular biology with modelling and 

computational science to improve and advance research in the field of toxicology (Kavlock et al., 2008). 

Dynamic models improve the effectiveness and efficiency of assessing the harm posed by 

environmental toxicants, yielding information that pertinent in the protection of human health and the 

environment. The advances made by computational toxicology has enabled an increase in the scale of 

chemicals studied, and determining the potential impact on health while decreasing the number of 

animals needed for conventional toxicology research.  

 

USEPA being the agency within the United States mandated on chemical testing and evaluation, utilizes 

dynamic modeling to develop “computational tools” for application in risk assessment of chemical 

produced within various environmental matrixes including air, water, soil and dump sites (Kavlock et 

al., 2010).  The Food and Drug Administration also uses dynamic models for risk assessment of 

medication side effects during drug development and testing, and to achieve this they merge the 

strengths of in vitro, in vivo, and in silico testing and build it into their dynamic modeling (Merlot, 2010). 

They utilize the strengths of dynamic modeling in determining the toxicity of their compounds prior 

to pre-testing and pharmacokinetic optimization (Merlot, 2010). Dynamic modeling enables the FDA 
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in determining the mechanism of action of medications, and they can help in determining adverse 

effects of medication, predicting “off-target” sites of these medications therefore. Dynamic modeling 

can also be used to support animal testing by bridging the gap between in vivo and in vitro testing, 

particularly pertaining to biomarker detection and evaluation as instances arise in in vivo testing where 

the correct biomarker is not being evaluated, and in in vitro testing where the effect of the biomarker is 

not demonstrated in a physiologic system under homeostasis (Merlot, 2010). 

 

Dynamic models have also been shown to be optimal prediction and risk assessment tools. Dynamic 

models have been utilized to develop aquatic life (fish) physiological based models of the hypothalamic-

pituitary-gonadal (HPG) axis, for assessment of the effect of estrogen exposure on plasma steroid 

hormone and vitellogenin concentrations (Watanabe et al., 2009). Dynamic models have also been used 

for descriptive purposes for marine life also on the HPG axis to determine the reproductive activity of 

salmon (Kim et al., 2006). To apply dynamic modeling in human research, adequate knowledge on the 

anatomy, physiology, and pathology of these systems are needed to construct the dynamic model. 

 

As far as risk assessment of EDCs is concerned, dynamic modeling can facilitate the translation of in 

in vitro assays results to in vitro situations. Because endocrine systems are high homeostatic systems, 

where the negative feedback regulation through the hypothalamus and pituitary plays an extremely 

important role in maintaining the hormone levels within a narrow physiological range against any 

internal or external perturbations. Therefore, quantitative EDC testing results observed in vitro with 

isolated endocrine cells cannot be a true representation of the quantitative consequence in vivo when 

the hypothalamic-pituitary-endocrine organ axis is fully operating. A dynamic model of the axis will be 

able to bridge the gap between cell-based assay results and in vivo hormonal changes. Such a model will 

also allow derivation of mode of action of EDCs or at least the main perturbed physiological processes, 

based on the hormonal profile under exposure to an EDC. A dynamical model of the endocrine system 

can also allow incorporation of population variability into the various physiological processes such that 



 16 

a reference virtual human population may be established to be used for risk assessment based on cell 

assay data. Finally, it has become clear that many EDCs can have nontraditional, nonmonotonic dose 

response effects (Vandenberg et al., 2012) but the underlying mechanisms are still unclear. A dynamic 

model approach of the endocrine system will allow opportunities to explore the biochemical rationales 

behind these nonmonotonic effects. 

 

Objectives of the Thesis Study 

Given the current issues concerning risk assessment of EDCs, as discussed above, including 

extrapolating increasingly available in vitro toxicity testing data to in vivo scenarios, taking into 

consideration of inter-individual variability in human populations, and the frequent nonmonotonic 

dose responses of EDCs, it is imperative to develop mechanistically-based tools to address these issues. 

For this thesis study, we chose the HPT axis as the endocrine system to develop a dynamic model to 

facilitate the risk assessment research on environmental thyroid disruptors. The following aims were 

set: 

(1) Develop a minimal, deterministic model of the HPT axis representing the thyroid hormone 

regulation in an average human individual. 

(2) By using the National Health and Nutrition Examination Survey (NHANES) 2007 – 2012 thyroid 

profile dataset, explore the parameter space of the HPT model to establish a reference human 

population model recapitulating inter-individual variability in the thyroid system. 

(3) By using the NHANES 2007-2012 urine environmental chemical concentration dataset and the 

population model, confirm and/or predict HPT processes that can be potentially disrupted leading 

to thyroid effects by EDCs, including environmental phenols (BPA, benzophenone-3, methyl 

paraben, ethyl paraben, butyl paraben and propyl paraben), NIS inhibitors (nitrate, perchlorate and 

thiocyanate), and polyfluorochemicals (PFCs) including perfluorodecanoic acid (PFDE), 

perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS). 
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(4) Perform multiple linear regression (MLR) with NHANES thyroid profile data as outcome against 

urine EDCs in similar categories, sex, age, race, smoking, body mass index (BMI), and urine iodine.  
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METHODS 

 

Construction of the Computational Model of the Human HPT Axis 

Deterministic HPT Model 

A deterministic model of the human HPT axis was developed as a coupled ordinary differential 

equations (ODEs) system. The model contains the following state variables: thyroid-stimulating 

hormone (TSH), free T4, free T3, thyroxine-binding globulin (TBG)-bound T4, and TBG-bound T3. 

Thyrotropin-releasing hormone (TRH) is excluded from the model for simplicity and because it is 

produced in the hypothalamus and thus less prone to chemical perturbations. The HPT processes 

modeled include: TSH-stimulated T4/T3 production, peripheral T4 conversion into T3, T4/T3 

binding with TBG, T4/T3 metabolism, inhibition of TSH production by T4/T3, and TSH degradation 

(Fig. 1). The resulting ODEs are as follows: 

 

dTSH/dt =  k3*Km^n/(Km^n+(T3+T4)^n) - k4*TSH,    (1) 

 

dT4/dt   = k1*a*TSH - k2*T4 – k6/Kd1*T4*(TBGtot - T4_TBG - T3_TBG) + 
k6*T4_TBG - k8*T4,       (2) 

 
 

dT4_TBG/dt = k6/Kd1*T4*(TBGtot - T4_TBG - T3_TBG) - k6*T4_TBG,  (3) 

 

dT3/dt  =  k1*(1-a)*TSH + k8*T4 - k9*T3 - k11/Kd2*T3*(TBGtot - T4_TBG - T3_TBG) 

+ k11*T3_TBG,       (4) 

 

dT3_TBG/dt = k11/Kd2*T3*(TBGtot - T4_TBG - T3_TBG) - k11*T3_TBG.  (5) 

 

The default parameter values were determined based on those reported in the literature and are listed 

in Table 1. The resulting ODE model produces steady-state hormone levels representing the means of 
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respective hormones in a human population (Hoermann, et al., 2015) are listed in Table 2. The model 

was initially constructed in the numerical simulation program Berkley Madonna and optimized using 

the built-in Stiff ODE solver. The model was then manually imported into MatLab to explore the 

multi-parameter space to obtain the population model based on the NHANES thyroid dataset.  

 

Population HPT Model 

To establish an HPT model representing the US population thyroid profile, years 2007-2012 NHANES 

dataset was used. An assumption was made that the thyroid hormone levels in the individuals of the 

NHANES data were at steady state at the time of blood sample collection. The deterministic model 

constructed above was optimized by varying a subset of model parameters such that the thyroid 

hormone levels of the steady state model output match the thyroid data of each individual in the 

NHANES dataset. For this thesis research, the following parameters, which uniquely determine the 

hormone steady-state values in the deterministic model, were chosen for optimization: k1, k3, k8, Kd2, 

and TBGtot. In MatLab, an objective cost function was formulated which is equal to the sum of the 

squares of the percentage differences between model output and NHANES data. The “fmincon( )” 

function in MatLab was used to search the parameter subspace for optimization through minimizing 

the cost function. The search range was 100-fold above and below the default values. The optimized 

parameter values for each NHANES individual excluding those taking thyroid medications and 

diagnosed thyroid cancers were recorded and as a result a reference US population model of the HPT 

axis was obtained, from which a random set of parameters can be chosen to reproduce the thyroid 

profile representing a thyroid-wise health US population.  

 

Statistical Methods 

Study Design and Population 

The datasets analyzed consisted of three 2-year cycles of data (2007 - 2012), retrieved from the National 

Health and Nutrition Examination Survey (NHANES) database conducted by the National Center for 
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Health Statistics (NCHS), under the Centers for Disease Control and Prevention (CDC). The design 

of the NHANES database is cross-sectional and the samples within the study represent the general 

population within the United States, with oversampling of certain demographics such as blacks and 

Hispanics Americans to produce statistically relevant results pertaining to these listed population 

groups. Demographic information, medical history, and race/ethnicity were collected from interview, 

while urine and blood samples were collected via physical examination/specimen collection and then 

analyzed in a laboratory. The analysis was conducted on the entire represented population of 12 – 80 

years of age. Participants taking thyroid medication and/or diagnosed with thyroid cancer (n=36) were 

excluded from the analysis. A total of 10241 individuals were included in conducting our final analysis. 

 

Study Variables 

The primary outcome variables are thyroid profile hormones, which could indicate hyperthyroidism or 

hypothyroidism. Data pertaining to age, gender, race and ethnicity, sex, income, pregnancy status and 

BMI were retrieved from the questionnaire and examination data in NHANES included in the analysis.  

These variables have been associated with variations in thyroid profile (Andrady et al, 2015). Blood 

samples were obtained to measure the serum concentration of thyroid profile variables such as free 

T4, free T3, TSH, total T4, total T3, thyroperoxidase antibody (TPO-AB) and thyroglobulin antibody 

(TG-AB). Smoking was also included in the analysis by including serum cotinine which is a biomarker 

of tobacco use and has been implicated in causing thyroid hormone disruption (Murphy et al., 2017). 

Urine samples were obtained and analyzed to determine the concentration of EDCs, and we focused 

our interest in environmental phenols (BPA, BP3, butyl paraben, methyl paraben, propyl paraben and 

ethyl paraben) and the NIS inhibitors (nitrate, thiocyanate, and perchlorate), and for HTP model 

analysis also perfluorinated chemicals (PFCs) including PFDE, PFOA and PFOS for this thesis. 

Urinary creatinine measures were used to adjust for the urinary concentration of the identified 

endocrine disruptor chemicals across individuals by age, sex and race. Previous studies shown 

associations between these chemicals and thyroid hormone disruption, however controversies are still 
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present linking some of these associations, and some of these chemicals have unknown mechanism of 

action as stated above. By using the dynamic HPT model, our analysis sets out to develop and propose 

an alternative method in toxicological risk assessment to predict some of the mechanisms of action of 

these chemicals. Individuals without thyroid profile measurements listed above were excluded from 

the analysis. Analysis was performed with the EDCs, and log-transformed thyroid profile variables 

listed above and the optimized HPT model parameter sets. Correlation analysis were performed 

between individual thyroid profile variables, HPT model parameters, and EDCs. Multiple linear 

regression models were run with log transformed thyroid profile variables as the dependent variables 

of interest, and log transformed EDCs, BMI as well as age, sex, race, cotinine, creatinine to control for 

urinary measures of the identified endocrine disruptors. 

 

Statistical Analysis 

The statistical analysis conducted for this study was done primarily in SAS 9.4. The PROC 

SURVEYMEANS and PROC FREQ procedures were used to derive descriptive statistics for age, sex, 

BMI and race in SAS (Table 3). The PROC SURVEYMEANS procedure was then used to explore the 

descriptive statistics for the thyroid profile variables for the population (Table 4A), and by racial 

categories (whites, blacks, and Hispanics) (Table 4B). The PROC SURVEYMEANS procedure was 

then used to explore the descriptive statistics for iodine, cotinine and EDCs for the population (Table 

5A), and by racial categories (whites, blacks, and Hispanics) (Table 5B). The PROC TTEST procedure 

was used to compare the difference in the means between males and females for thyroid panel variables 

(Table 6). The impetus for this was to deduce if there is a difference in thyroid panel variables between 

males and females.  

 

The PROC CORR procedure was used to evaluate Pearson correlation between log-transformed 

thyroid profile variables and log-transformed, creatinine-corrected EDCs (Table 7). The EDCs were 

corrected with creatinine prior to running the correlation analysis to give a more accurate measure of 
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the urinary concentrations of the EDCs, hence more accurate correlation analysis. The PROC 

SURVEYREG procedure was used to conduct several multiple linear regression models with log-

transformed thyroid profile variables as dependent variables of interest and with independent variables 

including log-transformed EDCs classified into two groups (NIS inhibitors and the environmental 

phenols), BMI, age, race, sex, log-transformed creatinine and log-transformed cotinine as independent 

variables (Table 8 and 9). Log transformation of endocrine disrupting chemical variables as well as 

thyroid profile variables was done as the transformed data conform more to normal distributions and 

also lessen the effect of extremely high measurement values on the analysis. The PROC 

SURVEYMEANS and PROC SURVEYREG procedures were used to account for survey weights, 

thereby making the analysis representative of the US population. Hierarchical clustering of EDCs based 

on thyroid profile data and/or HPT model parameters was performed by using the pdist( ), 

squareform( ), linkage( ), and dendrogram( ) functions in MatLab. Specifically, if a chemical is 

significantly positively correlated with a hormone or parameter, +1 is assigned to qualitatively describe 

the relationship between this hormone or parameter and this particular chemical; if a chemical is 

significantly negatively correlated with a hormone or parameter, -1 is assigned; if a chemical is not 

correlated with a hormone or parameter, 0 is assigned. At last, Euclidian distance was used to calculate 

the similarity between chemicals. 
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RESULTS 

Deterministic HPT Model 

The constructed deterministic HPT model produces steady-state levels of free T4, free T3, TSH, total 

T4 and total T3 at concentrations indicated in Table 2, which are comparable to the mean values in a 

general human population (Hoermann et al., 2015). To test the capability of the dynamic model of 

simulating altered thyroid conditions, parameters k1, which governs the synthesis rate of thyroid 

hormones, and k3, which governs the synthesis rate of TSH, were varied separately from the default 

values in the model. Figure 2 shows the model output. By increasing k1 by 10-fold, both free T3 and 

free T4 increase by about 50%, whereas TSH decreases by nearly 10-fold, indicating a primary 

hyperthyroid condition (Figure 2A). In contrast, by decreasing k1 by 10-fold, both free T3 and free T4 

decrease by about 30%, whereas TSH increases by about 6-fold, indicating a primary hypothyroid 

condition (Figure 2B). By increasing k3 by 10-fold, both free T3 and free T4 increase by about 50%, 

and TSH also increases by about 50%, indicating a secondary hyperthyroid condition (Figure 3C). By 

decreasing k3 by 10-fold, both free T3 and free T4 decrease by about 40%, and TSH also decreases by 

about 40%, indicating a secondary hypothyroid condition (Figure 3D). These simulation results 

demonstrated that the deterministic HPT model is capable of reproducing the four major non-cancer 

thyroid clinical conditions.  

 

Population HPT Model 

Using the deterministic HPT model, we next set out to obtain a population HPT model by using the 

NHAMES thyroid profile data excluding those individuals taking thyroid medications and having 

thyroid cancers. After parameter optimization, which minimizes the differences between the 

NHANES data and model hormone output by searching the parameter space, distributions of the 

following parameters, which can uniquely determine the hormone steady-state levels, were obtained 

(Figure 3): k1: TSH-stimulated T3/T4 production rate constant; k3: TSH production rate constant; k8: 

T4-to-T3 conversion rate constant; Kd2: dissociation constant for binding between free T3 and TBG; 
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TBGtot: total TBG. These parameter distributions allow the HPT model to output hormone 

distributions (Figure 4) comparable to the US population in the 2007-2012 NHANES dataset with 

similar statistics (results not shown). 

 

Statistical Summary of NHANES Data 

The demographic variables age, sex, BMI and race are summarized in Table 3. The mean age in the 

population is 43.9 with a standard deviation of 20.71. The minimum and maximum age among study 

participants is 12 and 80 respectively. There is an almost even distribution among sexes with 50.01% 

of the population male, and 49.9% female. The mean BMI of the study participants was 28.07 kg/m2 

with a standard deviation of 6.77. There were 121 individuals with unmeasured BMI, and the minimum 

and maximum BMI recorded was 13.18 kg/m2 and 73.43 kg/m2 respectively. Whites accounted for the 

majority among racial divisions with 43.36%, blacks 20.64% and Hispanics 36%. 

 

Thyroid profile variables free T4, free T3, TSH, total T4, total T3, TPO-AB and TG-AB are 

summarized in Table 4 by the population, as well as by racial categories (white, black and Hispanic). 

Chemical variables iodine, cotinine, NIS inhibitors (nitrate, perchlorate, thiocyanate) and 

environmental phenols (BPA, BP3, butyl paraben, methyl paraben, propyl paraben and ethyl paraben) 

are summarized in Table 5 for the population, as well as by racial categories (white, black and Hispanic). 

 

Table 6 summarizes the difference in the means between males and females for thyroid profile 

variables. There was a statistically significant difference in thyroid profile variables free T4, free T3, 

TSH, total T3, total T4, TPO-AB and TG-AB (p <.0001). free T4, TPO-AB, total T4, TSH and TG-

AB levels were higher and free T3 and total T3 were lower in women. TPO-AB and TG-AB are 

markers of pathologies in the thyroid gland such as thyroiditis, and autoimmune disease, and the 

difference in the mean concentration is outstanding with TPO-AB (Males: 10.75; Females: 25.69), and 

TG-AB (Males: 7.15; Females: 11.57). 
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Correlation Analysis 

Pearson correlation analysis results of thyroid profile variables and NIS inhibitors are summarized in 

Table 7A. Perchlorate has a negative correlation with free T4, free T3, total T3 and total T4 and positive 

correlation with TSH, conforming to its NIS inhibitory role produces primary hypothyroid hormone 

profile. k1, which governs the thyroid hormone synthesis rate, is the only model parameters 

significantly correlated with perchlorate, thus further confirming the mode of action of perchlorate 

(Figure 5). Perchlorate however demonstrated a positive correlation with TPO-AB and TG-AB 

(<.0001). This is indicative that perchlorate exposure increases the likelihood of developing thyroiditis, 

or autoimmune diseases of the thyroid. Thiocyanate demonstrates negative correlation with free T4, 

TSH, and total T4, and no statistical significant correlation with free T3, and total T3. With model 

parameters, thiocyanate shows the most significantly negative correlation with k3 and positive 

correlation with k8 (Figure 5). This result suggests novel action sites of thiocyanate where it may also 

act centrally on the pituitary gland as well as on T4-to-T3 conversion. Thiocyanate is negatively 

correlated with TG-AB and TPO-AB. Nitrate demonstrates a negative correlation with total T4 

(p<.0001), however there is no statistical significant correlation with other hormones. 

 

Correlation analysis results of thyroid profile variables and environmental phenols are summarized in 

Table 7B. BPA demonstrates a negative correlation with free T3 and free T4 respectively, however no 

statistical significant correlation was noted with total T3, total T4, TSH, TPO-AB, and TG-AB. 

Interestingly, k3 is the only model parameter significant correlated (negatively) with BPA, suggesting 

BPA may cause hypothyroidism through inhibiting TSH secretion. BP3 demonstrates a negative 

correlation with free T3, free T4 and total T4, with no statistically significant correlations for the other 

thyroid panel variables. k1 is the only model parameter that is significantly correlated with BP3, 

suggesting an inhibitory role of BP3 on thyroid secretion. Triclosan demonstrated significantly negative 

correlation with free T3, free T4, total T3, k1, and positive correlation with TSH (Figure 5), suggesting 
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a similar mechanism as BP3. The paraben family, including methyl, ethyl, propyl, and butyl paraben, 

shows strong negative correlation with free T3 (p <.0001) and total T3. k3 and k8 appear to be the 

primary model parameters that are affected by these compounds. Ethyl paraben is slightly positive 

correlated with TPO-AB (p=0.036), propyl paraben is negatively correlated with free T4 (p=0.01). 

 

With respect to the PFC family, which includes PFOA, PFOS, and PFDE, they are negatively 

correlated free T3 and total T3 and positively correlated with TSH (Table 7C). k1 and Kd2 are the 

most significantly correlated (negative) model parameters, suggesting an inhibitory action on the 

thyroid gland by these chemicals and interference with T3 binding to TBG.  PFDE and PFOS (Figure 

5) also seem to disrupt k8, while PFDE and PFOS affect total TBG. 

 

Hierarchical Clustering 

Hierarchical clustering using the qualitative correlation between a chemical and thyroid hormone and 

optimized model parameters was performed. If the clustering only used hormone profiles, only a crude 

clustering was obtained (Figure 6, top panel). However, when optimized model parameters were added 

as additional dimensions, much more refined clustering results were obtained (Figure 6, lower panel). 

 

Multiple Linear Regression 

Multiple linear regression procedures for NIS inhibitors are summarized in Table 8. Perchlorate and 

thiocyanate have negative effects on free T4 and total T4 (p <.0001) respectively. Nitrate, perchlorate 

and thiocyanate all effect TG-AB levels with nitrate and perchlorate having a negative effect (p=0.0147, 

0.0207) respectively, and thiocyanate having a positive effect (p<0.0001). free T3, total T3, TSH and 

TPO-AB are not significantly correlated with the three NIS inhibitors. Interestingly urinary iodine is 

positively correlated with free T3, total T3 and total T4, but not free T4 and TSH. 
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Multiple linear regression procedures for environmental phenols are summarized in Table 9. BP3 and 

butyl paraben have negative effects on free T4 (p=0.015, 0.0093) respectively. BPA has a negative 

effect on TSH (p=0.0296). Ethyl paraben has a negative effect on total T3 (p=0.0039). BPA. BP3, 

methyl paraben, propyl paraben, and ethyl paraben have negative effects on total T4 (p=0.0002, 0.0086, 

0.0287, 0.0245, 0.0061) respectively. BPA showed a positive effect on TG-AB levels (p=0.0232), 

however BP3 demonstrated a negative effect on TG-AB levels (p=0.0066). Neither of the chemicals 

in this family is significantly correlated with free T3 and TPO-AB. 
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DISCUSSION 

To conduct effective risk assessment for EDCs, it becomes increasingly imperative that a 

mechanistically-based mathematical model of the hypothalamic-pituitary-endocrine axes is constructed 

such that it can integrate information collected across multiple scales of the endocrine organization, 

including data concerning molecular, cellular, organism-level perturbations due to exposure to 

environmental EDCs. Such a model should ideally capture the physiology of the endocrine system to 

allow integration of the multi-scale data in a mechanistically-coherent manner. Past and ongoing 

molecular and cellular studies of the normal physiology of the endocrine system allow one to formulate 

a computational model of a hypothalamic-pituitary-endocrine axis around its operating set-point and 

simulate its robust capability of resisting perturbations exerted by internal or external variations. As far 

as EDCs are concerned, large amount of data exists and are being generated at both the molecular and 

cellular levels as an effort to understand their mode of action of toxicity and screen for toxicity using 

animal-alternative methods, as exemplified in the EPA ToxCast and multi-agency Tox21 efforts 

(Judson et al., 2009; Shukla et al., 2010). How to effectively utilize these data beyond their screening 

purpose has become a challenging issue. On the other hand, there are many cross-sectional 

epidemiological surveys and measurements interrogating the endocrine health and internal EDCs levels 

in large human populations, as exemplified by the NHANES study. How to utilize these population 

data beyond their primary association study purpose is another challenging issue. 

 

The present thesis study was aimed to formulate an HPT axis model that is based on the feedback 

regulation between TSH and T3 and T4. Although not obtainable in the present theses, our ultimate 

goal with future versions of this model is to be able to incorporate multi-scale data into the model and 

make health risk predictions for thyroid disruptors. While the HPT model captures the main thrust of 

the feedback regulation for maintaining thyroid hormone homeostasis, the HPT model was kept 

sufficiently simple by having a minimal set of parameters at the moment to minimize overfitting issues 

due to small number of dimensions of the human data used to optimize the model.  
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TSH and thyroid hormones (T3 and T4) form a negative feedback loop where TSH stimulated thyroid 

hormone secretion and T3/T4 inhibits TSH secretion. To achieve robust homeostasis, i.e., keeping the 

controlled variables (T3 and T4 in the HPT model) within a narrow-preset range, there must be a 

reasonably high signal amplification (gain) within the feedback loop (Zhang et. al, 2007). Normal T3 

and T4 serum levels vary in a very narrow range in human population (about 2-fold) while TSH can 

vary by a much larger extent (about 10-fold) (Figure. 4 and Table 4). And also, there appears to be an 

inverse relationship between TSH and T3/T4, indicating that the primary variation must originate in 

T3/T4, which through inhibiting TSH, leads to a negative correlation between TSH and T3/T4 

(Hoermann et al., 2015). If the original variation comes from TSH, then a positive correlation would 

be expected. More importantly, the larger fold-change in TSH indicates that the signaling gain of the 

feedback loop must be situated in the arm of T3/T4 inhibition of TSH, rather than the arm of TSH 

stimulation of T3/T4 of the feedback loop. As a result, in the dynamic model a Hill function, which 

was used to amplify biochemical signal, was implemented as an inhibition term in the ODE of TSH 

(Equation 1) to describe the feedback regulation. This implementation allows the model to simulate 

clinical non-cancer thyroid conditions in a quantitative way. As shown in Figure 2A and 2B, varying 

parameter k1 to alter T3/T4 production leads to relatively smaller fold change in T3/T4 but opposite, 

much larger fold change in TSH, a hormonal profile conforming to clinical primary hyper- or 

hypothyroidism. This is a design principle by nature where the range control of TSH is sacrificed for a 

tight control of the T3/T4 range, which is much more physiologically important. In contrast as shown 

in Figure 2C and 2D, varying k3 to alter TSH production leads to similar fold changes in both TSH 

and T3/T4 of same direction, a hormonal profile conforming to clinical secondary hyper- or 

hypothyroidism. The steady-state output of this model produces hormone levels that are comparable 

to human population means (Table 2). 
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To make the model useful for population risk assessment, it is necessary to parametrize it so that it can 

reproduce population distributions of these thyroid profile hormones. The NHANES 2007-2012 

thyroid profile data provide a very useful resource to calibrate the model for a reference population 

after excluding those individuals taking thyroid-related medications or having thyroid cancers. The 

thyroid profile data measured 5 hormones, free T3, free T4, TSH, total T3 and total T4. The HPT 

model also outputs 5 hormones, free T3, free T4, TSH, T3-TBG and T4-TBG. Because the bound 

forms of T3 and T4 are primarily with TBG, an assumption was made here that T3-TBG and T4-TBG 

are equivalent to total T3 and total T4, respectively. The computational HPT model has 12 parameters 

(Table 1). Clearly if all the parameters are used to optimize the model against the NHANES thyroid 

profile data, it will result in highly correlated parameter distributions because multiple combinations of 

parameter values can give rise to same hormone levels. To alleviate this problem, a subset of 

parameters, which can uniquely determine the hormone levels and are likely to be disrupted by EDCs, 

were chosen: k1, k3, k8, Kd2, and TBGtot. Optimization against the NHANES data led to 

distributions of these parameters as shown in Figure 3. Most of these parameters are distributed in a 

log-normal fashion within 2 orders of magnitude. The distributions of these parameters likely reflect 

variabilities of genetic, epigenetic, and environmental factors among individuals in the NHANES 

survey. Randomly selecting parameter combinations from these distributions establishes a reference 

thyroid population as shown in Figure 4. In future, relevant in vitro data which measure the effects of 

a particular chemical on a parameter can be applied to this virtual thyroid population to predict the 

population effects of the chemical at a particular concentration. In addition, chemical mixer effects can 

also be predicted based on the corresponding parameters disrupted by the mixed chemicals. 

 

Many of the individuals in the NHANES dataset were also measured for their environmental chemical 

concentrations in their urine. Such data provide an opportunity to examine the association between 

chemical exposure and thyroid effects. With such an epidemiological study alone, it is hard to reveal 

insights into the thyroid disrupting mechanisms of the chemicals. The population model and the 
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optimized parameter distributions provide a chance to link chemical exposure to alteration of a 

particular model parameter for a mechanistic insight. Also, because biochemical processes, which are 

captured by model parameters, are among the initiating event of EDCs, it may be more sensitive to 

detect significant changes in these parameters in situations where there are no significant alterations in 

the hormone profile because of the feedback regulation. In this thesis study examining correlations 

between model parameters and urine EDCs of the NHANES data confirmed some of the known 

mode of actions and revealed potentially novel ones. 

 

Perchlorate is a typical NIS inhibitor, which blocks iodide uptake by the thyroid gland leading to 

reduction in thyroid hormone secretion in the form of primary hypothyroidism. The NHANES data 

is clearly consistent with this mode of action, where both T3 and T4 were significantly correlated 

negatively with urinary perchlorate and TSH was significantly correlated positively with urinary 

perchlorate (Figure 5 and Table 7A). Reassuringly, among the model parameters optimized, only k1, 

which is the rate constant for thyroid hormone production, is significantly correlated negatively with 

perchlorate, thus confirming the mode of action of perchlorate. In contrast, thiocyanate, which is also 

believed to be an NIS inhibitor, is associated with a very different thyroid profile where both T4 and 

TSH are significantly correlated negatively with thiocyanate, a hormone profile consistent with 

secondary hypothyroidism (Figure 5 and Table 7A). The insignificant changes in T3 makes it hard to 

pinpoint the exact mechanism of thiocyanate here. However, the model parameter distribution 

predicted that with thiocyanate exposure, k3 which governs the production of TSH and k8 which 

governs the T4-to-T3 conversion, are significantly correlated negatively and positively with thiocyanate, 

respectively. Absent other confounding chemical exposures, such results would suggest that 

thiocyanate may promote the activity of deiodinase converting T4 to T3. Centrally in the pituitary, such 

increased conversion will lead to increased local T3, thus increased inhibition of TSH secretion, which 

is consistent with decreasing k3 values. Decreased TSH will lead to decreased T4 and T3, but 
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peripherally increased deiodinase activity will convert more T4 to T3, which further decreases T4 while 

compensating for T3, resulting in a thyroid hormone profile like the NHANES data. 

 

As reviewed in Introduction, multiple thyroid disrupting mechanisms have been proposed for 

environmental phenols. The NHANES data shows clearly that T3 is significantly correlated negatively 

with the four parabens measured with mixed result on T4 and TSH (Table 7B). Mechanistically, the 

model parameter distributions showed negative correlation of k3 and k8 with parabens. Such a result 

suggests that parabens may inhibit T4-to-T3 conversion and acting centrally to inhibit TSH secretion. 

The latter is consistent with the finding that butyl paraben may function as a thyroid hormone receptor 

agonist (Taxvig et al., 2008). Triclosan exposure is significantly correlated negatively with T3 and T4 

and positively with TSH, consistent with a primary hypothyroidism profile (Figure 5 and Table 7B). 

Model parameter distributions show that k1 is the only significantly altered parameters by triclosan. 

This is consistent with the proposed mechanism for triclosan which may inhibit NIS non-competitively 

and TPO, thus inhibiting thyroid hormone secretion (Wu et al., 2016). BPA shows significant negative 

correlation with free T3 and T4 and model parameter k3, suggesting a central role of BPA inhibiting 

TSH. BPA has been demonstrated to exert its effect at the level of the pituitary in addition to the 

thyroid gland leading to thyroid hormonal production perturbations (Lee et al., 2017). 

 

A far as PFCs are concerned, all PFDE, PFOA and PFOS show significant negative correlation with 

free T3, positive correlation with TSH, and positive correlation with k1, consisting with a mode of 

action of inhibiting thyroid hormone secretion at the level of thyroid gland (Table 7C). In addition, 

Kd2  and TBGtot appear also to be significantly correlated with the chemicals, suggesting their possible 

role in interfering with TBG binding. For PFDE and PFOS, k8 is also negatively correlated, suggesting 

inhibition of deiodinase, which will help keep T4 level unchanged in the presence of significant 

increases in TSH. In comparison, PFOA is also negatively correlated with free T4 without the negative 

correlation with k8. 
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Chemical toxicants can be classified based on several features, including their structures, physio-

chemical properties, biological targets, hazards, and at a higher level, endpoint outcomes. The grouping 

of EDCs can be based on chemical structures, disrupted thyroid hormone profile, or known 

mechanisms. However, many of the EDCs have unknown thyroid disrupting mechanisms, thus 

endpoint alterations, such as thyroid profile changes, can only provide limited reliable information for 

chemical clustering or classification, especially due to the negative feedback regulation often making 

changes in T3 and T4 too small to produce statistically significant results in a variable population. 

Hierarchical clustering based on the Pearson correlation results demonstrated that only crude results 

can be obtained if using thyroid hormone profile as the only input features (Figure 6). In comparison, 

when the optimized model parameters are used as additional features, a much more refined clustering 

resulted (Figure 6). While parabens are grouped together and are close to BPA and 4-tert-octylphenol 

as environmental phenol family, triclosan is in the same group as perchlorate, iodine, and PFOS, 

although chemically they belong to very different families. Interestingly thiocyanate is in a group of its 

own, keeping with the surprising result regarding its potential novel mechanisms presented above. 

 

In addition to dynamic modeling, the present thesis also conducted epidemiological studies of the 

thyroid profiles and EDCs with respect to sex, age, race, and smoking etc. The results of this study 

demonstrate that females are differentially affected by EDCs compared to their male counterpart. The 

mean concentration for the EDCs analyzed in this paper are significantly higher in females in 

comparisons to males, in all except for nitrate. This can be secondary to the lipophilicity with respect 

to the environmental phenols, leading to a higher bioavailability in females compared to males (Schmidt 

et al., 2002). Nitrate, perchlorate and thiocyanate are all univalent anions that are metabolized by enteric 

bacteria prior to entering circulation, and are metabolized and excreted by the kidneys afterwards 

(Schultz et al., 1985). Renal function has been demonstrated to be different between males and females, 

and this can therefore be responsible the difference in the concentration of the univalent anions 
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concentrations (perchlorate and thiocyanate) between males and females (Sabolić et al., 2007). The 

correlation analysis revealed the points of perturbations among the thyroid panel variables, and offered 

a preliminary description of the mechanism of action of these chemicals. The EDCs analyzed in this 

paper demonstrate mainly an increased likelihood to cause hypothyroid states as evidenced by the 

negative correlation with the thyroid hormones. However, the correlation with TSH is chemical-

dependent, suggesting different hypothyroid mechanisms of the EDCs or co-exposures to other EDCs 

of different thyroid-disrupting mechanisms. The MLR models provided a more comprehensive 

analysis of the association between EDCs and thyroid panel variables. Perchlorate and thiocyanate 

demonstrate a negative association with free T4 and total T4, which is indicative of hypothyroidism in 

keeping with its definition in literature as a blocker of NIS. Nitrate, perchlorate and thiocyanate also 

demonstrate associations with TG-AB with nitrate and perchlorate demonstrating negative 

associations and thiocyanate demonstrating a positive association. Thyroperoxidase antibodies and 

thyroglobulin antibodies have been linked to the development of Hashimoto’s thyroiditis which is a 

cause of hypothyroidism, as well as thyroid carcinoma posing additional reasons for concern in 

individuals exposed to thiocyanate (Ott et al., 1987). 

 

The environmental phenols were also demonstrated to have negative associations with thyroid 

hormone variables which lead to hypothyroidism. BPA also show statistically significant positive 

associations with TG-AB, which can potentially lead to a hypothyroid state, with the worse endpoint 

potentially being thyroid carcinoma. The elevated levels of TG-AB noted with exposure to thiocyanate 

and BPA, which are suggestive of a casual association for autoimmune thyroid disease, may be resultant 

of underlying thyroiditis caused by exposure, or can be related to a direct consequence of exposure, 

hence further research to determine this relationship need to be conducted.  

 

The effect of the NIS inhibitors and environmental phenols on thyroid panel variables differentially 

affect women in comparison to men. Women of reproductive age furthermore will be differentially 
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affected by this because of the increase requirement for thyroid hormones during pregnancy, and 

particularly with the profile generated by these chemicals showing a negative association with free T4 

and total T4. This raises issues of more concern because T4 is the only form of thyroid hormone 

capable of crossing the placenta during the early gestational periods when the fetus does not 

autonomously produce thyroid hormones. As discussed above this can lead to potential harm with 

regards to fetal development, and therefore is imperative that it should be addressed.  
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LIMITATIONS AND FUTURE RESEARCH 

Tease out co-exposure effect. 

The population data used to optimize the dynamic model is cross-sectional in nature, and steady state 

hormone levels were assumed which may not be the case in certain individuals. Cross-sectional data 

provides descriptive information about the population that the samples were drawn from. Therefore, 

this poses challenges in the cause-effect pathway. Another limitation of the thesis study is the 

uncertainty of the confounding effects of co-exposed chemicals, which would bias the mechanistic 

insight into the EDC of interest. To address these issues, future research will need to focus on using 

human cell or organoid models to determine the mechanistic action of these EDCs which will provide 

more relevant results for the optimization of the dynamic model. These in vitro data can also be utilized 

by the population model to make quantitative in vivo predictions. In addition to the dynamic model 

used in this paper, future research will expand this model to contain more biochemical details such as 

thyroid hormone receptor signal and TSH signaling which can be targets of thyroid-disrupting EDCs. 
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FIGURES 
 

 

 

Figure 1. Deterministic model structure capturing main steps of thyroid hormone homeostasis and 

regulation: TSH-stimulated T4/T3 production, peripheral T4 conversion into T3, T4/T3 binding with 

TBG, T4/T3 metabolism and T4/T3 inhibition of TSH production. For simplicity, TRH in the 

hypothalamus was omitted. ODEs describing these physiological processes are provided below. Blue 

lines denote mass fluxes; orange lines denote regulatory events. 
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Figure 2. Model Simulation of primary/secondary hyper/hypothyroidism by increasing or decreasing 

parameters k1 by 10-fold and k3 by 10-fold, respectively. k1 controls the production rate of thyroid 

hormones; k3 controls the production rate of TSH. 
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Figure 3. Distributions of model parameters optimized to NHANES thyroid profile data.  
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Figure 4. Statistical distributions of the population HPT model hormone output (10548 data points). 
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Figure 5. Pearson correlation analysis between thyroid data, optimized model parameters and 

perchlorate, thiocyanate, triclosan and PFOS. 
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Figure. 6. Chemical clustering for thyroid effects using thyroid profile data only (top panel0 or using 

thyroid profile data and optimized model parameters (lower panel).  
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TABLES 
Table 1. Deterministic HPT model parameters 

Parameter Name Value Definition Note 

k1 256.14 
pM/(mU/L)/h 

Rate constant of TSH-
stimulated synthesis of 
T4 and T3 

 

k2 11.935 h-1 Rate constant of free T4 
metabolism 

T4 (total or free) in plasma 
half-life=5-7days (use 6 
days here). Since 0.03% T4 
is in free form which is the 
form being degraded, k2 
and k8 are parameterized to 
make the total T4 half-
life=6 days. 

k3 1.11e9 mU/L/h Max synthesis rate of 
TSH 

 

k4 0.693 h-1 Rate constant for TSH 
clearance 

TSH half-life=1 h 

k6 69.3 h-1 Dissociation rate 
constant for T4_TBG 
dissociation into free T4 
and TBG 

Assuming half-life = 36 sec 

Kd1 60 pM Binding affinity between 
free T4 and TBG 

The literature has k6/k5 = 
50-300 pM. This value also 
give percentage of TBG 
saturation around 25% and 
together with total TBG it 
allows free T4 to be 0.03% 
and TBG-bound T4 
99.97%. 

k8 4.11 h-1 Rate constant for 
conversion of T4 into T3 
by deiondinase in 
peripheral tissues 

This process accounts for 
80% of T3 production; this 
number also means that 
about 25% of T4 produced 
is converted to T3, and the 
remaining 75% of T4 is 
metabolized into something 
else. 

k11 69.3 h-1 Dissociation rate 
constant for T3_TBG 
dissociation into free T3 
and TBG 

Assuming half-life = 36 sec 

Kd2 600 pM Binding affinity between 
free T3 and TBG 

This value determines that 
free T3 is 0.3% and TBG-
bound T3 is 99.7%.  

n 4 Hill coefficient of the Hill 
function describing the 
inhibition of TSH 
synthesis by T3 and T4 

This value needs to be large 
such that T3 and T4 can be 
maintained within a narrow 
range by sacrificing TSH 
homeostasis, which can 
range more than 10-fold. 
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a 0.94 Fraction of T4 
production by the thyroid 
gland. 

So, this value makes the 
ratio of amounts of T4 and 
T3 produced by thyroid 
gland around 15.67:1, 
which accounts for 20% of 
T3 production. The 
remaining 80% of T3 
production is through T4 
conversion. 

TBGtot 250 nM Total TBG in blood Total TBG concentration 
in blood is 180-350 nM 
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Table 2. Deterministic HPT model state variables 

Variable Name Steady-State Value Definition 

TSH 1 mU/L TSH 
T4 15 pM Free T4 
T4_TBG 50 nM TBG-bound T4 
T3 5 pM Free T3 
T3_TBG 1.66 nM TBG-bound T3 
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Table 3. Descriptive Statistics on Study Variables (Age, Sex, BMI and Race), N=10241 

Variable   Mean (SD)/n (%)         N Missing (%)           Min  Max 

Age 43.90 (20.71) N/A 12 80 

Sex  

N/A        Male 5131 (50.01) 

     Female 5110 (49.90) 

  
 

BMI (kg/m2) 28.07 (6.77) 121 13.18 73.43 

Race  

N/A   
    White 4440 (43.36) 

    Black 2114 (20.64) 

    Hispanic 3687 (36.00) 

BMI: Body Mass Index, SD: Standard Deviation 
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Table 4A. Descriptive Statistics for Concentration of Thyroid Hormones for Study 
Population 

Population Statistics (n=10241) 

Variable N   Mean       SD 95% CL for Mean        

Free T4 (pmol/L) 10241 10.34 2.18 7.7 13.5 

Free T3 (pg/mL) 10241 3.25 0.58 2.6 4 

TSH (uIU/mL) 10241 1.93 2.58 0.53 4.15 

Total T4 (ug/dL) 10241 7.92 1.64 5.6 10.8 

Total T3 (ng/dL) 10241 116.57 26.75 81 160 

TPO-AB (IU/mL) 10241 18.21 87.55 0.18 73.8 

TG-AB (IU/mL) 10241 9.35 88.37 0.6 7.3 

TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody, SD: Standard Deviation, CL: 
Confidence Limit 
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Table 4B. Descriptive Statistics for Concentration of Thyroid Hormones for Study 
Population by Race 

Statistics for Whites (n=4440) 

Variable N   Mean       SD 95% CL for Mean        

Free T4 (pmol/L) 4440 10.34 2.11 7.7 14.2 

Free T3 (pg/mL) 4440 3.18 0.43 2.56 3.93 

TSH (uIU/mL) 4440 2.14 2.96 0.56 4.7 

Total T4 (ug/dL) 4440 7.78 1.57 5.6 10.6 

Total T3 (ng/dL) 4440 113.72 24.82 78 157 

TPO-AB (IU/mL) 4440 20.58 86.43 0.18 119.15 

TG-AB (IU/mL) 4440 12.81 107.35 0.6 12.45 

Statistics for Blacks (n=2114) 

Variable N   Mean       SD 95% CL for Mean        

Free T4 (pmol/L) 2114 10.21 2.42 7.7 13 

Free T3 (pg/mL) 2114 3.23 0.58 2.6 3.99 

TSH (uIU/mL) 2114 1.59 2.3 0.46 3.39 

Total T4 (ug/dL) 2114 7.92 1.79 5.5 11 

Total T3 (ng/dL) 2114 116.3 28.03 80 161 

TPO-AB (IU/mL) 2114 10.8 81.38 0.18 9.9 

TG-AB (IU/mL) 2114 3.56 45.12 0.6 2 

Statistics for Hispanics (n=3687) 

Variable N   Mean       SD 95% CL for Mean        

Free T4 (pmol/L) 3687 10.41 2.12 7.7 13.3 

Free T3 (pg/mL) 3687 3.34 0.71 2.7 4.1 

TSH (uIU/mL) 3687 1.86 2.2 0.56 3.94 

Total T4 (ug/dL) 3687 8.1 1.62 5.8 10.9 

Total T3 (ng/dL) 3687 120.16 27.81 86 162 

TPO-AB (IU/mL) 3687 19.6 91.99 0.18 73.9 

TG-AB (IU/mL) 3687 8.52 81.32 0.6 7.6 

TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody, SD: Standard Deviation, CL: 
Confidence Limit 
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Table 5A. Descriptive Stats for Iodine/Cotinine/EDC Chemicals for Study Population 

Population Statistics (n=10241) 

Variable N   Mean       SD    95% CL for Mean        

Iodine (ug/L) 10043 363.32 7840.14 35.1 597.6 

Cotinine (ng/mL) 10237 52.23 122.84 0.01 339 

Nitrate (ng/mL) 10081 56926.89 52285.71 11100 131000 

Perchlorate (ng/mL) 10081 5.53 8.37 0.76 15.7 

Thiocyanate (ng/mL) 10081 2346.6 3471.76 177 9020 

Bisphenol - A (ng/mL) 3919 3.36 7.03 0.28 10.5 

Benzophenone-3 (ng/mL) 3919 268.54 2020.94 0.7 885 

Butyl Paraben (ng/mL) 3919 4.01 27.31 0.14 14.4 

Methyl Paraben (ng/mL) 3919 18.58 98.83 0.71 69.2 

Propyl Paraben (ng/mL) 3919 246.66 542.02 3.5 1070 

Ethyl Paraben (ng/mL) 3919 59.21 161.11 0.14 270 

SD: Standard Deviation, CL: Confidence Limit 
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Table 5B. Descriptive Stats for Iodine/Cotinine/EDC Chemicals for Study Population by 
Race 

Statistics for Whites (n=4440) 

Variable N   Mean       SD    95% CL for Mean        

Iodine (ug/L) 4343 474.09 11628.63 34.5 638.7 

Cotinine (ng/mL) 4439 68.04 139.76 0.01 379 

Nitrate (ng/mL) 4365 54792.66 50169.94 10900 128000 

Perchlorate (ng/mL) 4365 5.52 9.54 0.76 15.2 

Thiocyanate (ng/mL) 4365 2656.01 3679.13 205 10000 

Bisphenol - A (ng/mL) 1580 3.4 7.37 0.28 10.75 

Benzophenone-3 (ng/mL) 1580 338.05 2772.67 0.6 980.5 

Butyl Paraben (ng/mL) 1580 3.89 20.32 0.14 14.35 

Methyl Paraben (ng/mL) 1580 18.35 114.33 0.71 62.25 

Propyl Paraben (ng/mL) 1580 160.75 387.39 2.7 686 

Ethyl Paraben (ng/mL) 1580 45.7 138.28 0.14 232 

Statistics for Blacks (n=2114) 

Variable N   Mean       SD    95% CL for Mean        

Iodine (ug/L) 2083 280.95 1635.42 34.7 567 

Cotinine (ng/mL) 2113 65.85 138.93 0.01 383 

Nitrate (ng/mL) 2094 55712.73 44968.25 10900 126000 

Perchlorate (ng/mL) 2094 5.1 6.44 0.73 14.4 

Thiocyanate (ng/mL) 2094 3015.81 4301.94 207 11900 

Bisphenol - A (ng/mL) 894 3.8 5.95 0.28 11.2 

Benzophenone-3 (ng/mL) 894 180.31 1022.85 0.6 591 

Butyl Paraben (ng/mL) 894 4.55 45.44 0.14 9.2 

Methyl Paraben (ng/mL) 894 25.17 111.66 0.71 90.9 

Propyl Paraben (ng/mL) 894 409.02 756.58 6.4 1610 

Ethyl Paraben (ng/mL) 894 85.29 202.15 0.5 391 

Statistics for Hispanics (n=3687) 

Variable N   Mean       SD    95% CL for Mean        

Iodine (ug/L) 3617 277.76 2600.31 35.9 559.5 

Cotinine (ng/mL) 3685 25.36 78.73 0.01 200 

Nitrate (ng/mL) 3622 60200.87 58230.92 11400 141000 

Perchlorate (ng/mL) 3622 5.79 7.83 0.78 16.7 

Thiocyanate (ng/mL) 3622 1586.83 2364.42 150 5530 

Bisphenol - A (ng/mL) 1445 3.05 7.25 0.28 9.2 

Benzophenone-3 (ng/mL) 1445 247.12 1420.44 0.8 929 

Butyl Paraben (ng/mL) 1445 3.82 17.15 0.14 19.9 

Methyl Paraben (ng/mL) 1445 14.77 66.75 0.71 61.3 

Propyl Paraben (ng/mL) 1445 240.15 504.57 3.8 1080 

Ethyl Paraben (ng/mL) 1445 57.84 153.69 0.2 273 

SD: Standard Deviation, CL: Confidence Limits 
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Table 6. T Tests showing the difference in the means between Males and Females for 
Thyroid Panel Variables 
 

Variable   Mean       95% CL Mean Comparison by Gender 

Free T4 (pmol/L) Equality of Variances (Free T4) 

Male 10.31 10.26 10.36 
Method Num 

DF 
F 

Value 
Pr > F 

Female 10.37 10.29 10.43 
Folded 

F 5109 1.71 <.0001 

Free T3 (pg/ml) Equality of Variances (Free T3) 

Male 3.34 3.33 3.35 
Method Num 

DF 
F 

Value 
Pr > F 

Female 3.16 3.14 3.17 
Folded 

F 5109 2.31 <.0001 

TPO Antibodies(IU/mL) Equality of Variances (TPO-AB) 

Male 10.75 9.01 12.49 
Method Num 

DF 
F 

Value 
Pr > F 

Female 25.69 22.79 28.59 
Folded 

F 5109 2.75 <.0001 

Total T4 (ug/dL) Equality of Variances (Total T4) 

Male 7.66 2.4 23.1 
Method Num 

DF 
F 

Value 
Pr > F 

Female 8.18 2 27.6 
Folded 

F 5109 1.28 <.0001 

Total T3 (ng/dL) Equality of Variances (Total T3) 

Male 118 117.3 118.6 
Method Num 

DF 
F 

Value 
Pr > F 

Female 115.2 114.4 116.0 
Folded 

F 5109 5.32 <.0001 

TSH (uIU/mL) Equality of Variances (TSH) 

Male 1.87 1.82 1.91 
Method Num 

DF 
F 

Value 
Pr > F 

Female 1.98 0.002 99.564 
Folded 

F 5109 3.76 <.0001 

TG-AB (IU/mL) Equality of Variances (TG-AB) 

Male 7.15 5.01 9.29 
Method Num 

DF 
F 

Value 
Pr > F 

Female 11.57 8.89 14.25 
Folded 

F 5109 1.55 <.0001 

TG-AB: Thyroglobulin antibody, TPO-AB: Thyroperoxidase antibody 
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Table 7A. Correlation Analysis for NIS Inhibitors 

Variable   Nitrate Perchlorate Thiocyanate 

Free T4 
(pmol/L) 

rho -0.01787 -0.0622 -0.09267 

p value 0.081 <.0001 <.0001 

n 9529 9549 9542 

Free T3 
(pg/mL) 

rho -0.0171 -0.0984 -0.0104 

p value 0.0948 <.0001 0.3082 

n 9529 9549 9542 

TSH 
(uIU/mL) 

rho -0.0005 0.0584 -0.0483 

p value 0.0026 <.0001 <.0001 

n 9529 9549 9542 

Total T3 
(ng/dL) 

rho 0.0145 -0.0486 -0.008 

p value 0.1581 <.0001 0.4326 

n 9529 9549 9542 

Total T4 
(ug/dL) 

rho -0.043 -0.051 -0.097 

p value <.0001 <.0001 <.0001 

n 9529 9549 9542 

TPO-AB     
(IU/mL) 

rho 0.0299 0.0418 -0.0351 

p value 0.0035 <.0001 0.0006 

n 9529 9549 9542 

TG-AB 
(IU/mL) 

rho 0.0201 0.0201 -0.0359 

p value 0.0497 <.0001 0.0004 

n 9529 9549 9542 

k1 

rho -0.0038 -0.0717 0.0304 

p value 0.7111 <.0001 0.003 

n 9529 9549 9542 

k3 

rho -0.0165 -0.0103 -0.1042 

p value 0.1081 0.3156 <.0001 

n 9529 9549 9542 

k8 

rho 0.0046 -0.0125 0.0743 

p value 0.6547 0.221 <.0001 

n 9529 9549 9542 

kd2 

rho -0.0547 -0.0119 -0.0122 

p value <.0001 0.244 0.2315 

n 9529 9549 9542 

TBGtot 

rho -0.0318 -0.0031 -0.0278 

p value 0.0019 0.7588 0.0066 

n 9529 9549 9542 

 
TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody, rho: correlation coefficient. 
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Table 7B. Correlation Analysis for Environmental Phenols 

Variable   BPA BP3 
Butyl 

Paraben 
Ethyl 

Paraben 
Methyl 
Paraben 

Propyl 
Paraben 

Triclosan 

Free T4 
(pmol/L) 

rho -0.0375 -0.0441 -0.0196 -0.0109 -0.0249 -0.04331 -0.0475 

p value 0.0287 0.0082 0.4679 0.6482 0.13 0.0103 0.0110 

n 3401 3604 1370 1766 3700 3511 2862 

Free T3 
(pg/mL) 

rho -0.0456 -0.0698 -0.1788 -0.1546 -0.1559 -0.1643 -0.1039 

p value 0.0078 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

n 3401 3604 1370 1766 3700 3511 2862 

TSH 
(uIU/mL) 

rho -0.0262 0.0228 0.0471 0.0052 0.0373 0.0261 0.0761 

p value 0.1272 0.1719 0.0816 0.8247 0.0234 0.122 <.0001 

n 3401 3604 1370 1766 3700 3511 2862 

Total T3 
(ng/dL) 

rho -0.022 -0.0318 -0.1131 -0.0941 -0.0812 -0.0933 -0.0664 

p value 0.1996 0.0566 <.0001 0.0001 <.0001 <.0001 0.0004 

n 3401 3604 1370 1766 3700 3511 2862 

Total T4 
(ug/dL) 

rho -0.028 -0.049 -0.009 -0.035 0.031 0.005 -0.0079 

p value 0.107 0.004 0.735 0.147 0.057 0.773 0.6741 

n 3401 3604 1370 1766 3700 3511 2862 

TPO-AB     
(IU/mL) 

rho 0.0326 0.0186 0.0262 0.0499 0.0234 0.0124 0.0485 

p value 0.0571 0.2643 0.3332 0.0361 0.1541 0.4625 0.0094 

n 3401 3604 1370 1766 3700 3511 2862 

TG-AB 
(IU/mL) 

rho 0.0102 0.0282 0.0628 0.0477 0.0147 0.0114 0.0331 

p value 0.5529 0.0901 0.0201 0.045 0.373 0.4982 0.0763 

n 3401 3604 1370 1766 3700 3511 2862 

k1 

rho 0.0155 -0.0332 -0.0607 -0.0087 0.0191 0.0051 -0.0862 

p value 0.3662 0.0465 0.0246 0.7133 0.2448 0.7624 <.0001 

n 3401 3604 1370 1766 3700 3511 2862 

k3 

rho -0.0585 -0.0249 -0.0152 -0.0492 -0.0889 -0.0933 0.0119 

p value 0.0006 0.1357 0.5743 0.0387 <.0001 <.0001 0.5247 

n 3401 3604 1370 1766 3700 3511 2862 

k8 

rho 0.0013 -0.0103 -0.1112 -0.1018 -0.0875 -0.0775 -0.0320 

p value 0.9394 0.5352 <.0001 <.0001 <.0001 <.0001 0.0870 

n 3401 3604 1370 1766 3700 3511 2862 

kd2 

rho -0.0016 -0.0238 0.0045 -0.0312 0.0319 0.029 0.0332 

p value 0.925 0.1528 0.8681 0.1906 0.0525 0.086 0.0760 

n 3401 3604 1370 1766 3700 3511 2862 

TBGtot 

rho 0.0033 -0.0167 0.0051 -0.0311 0.055 0.0413 0.0300 

p value 0.8453 0.3174 0.8495 0.1909 0.0008 0.0143 0.1087 

n 3401 3604 1370 1766 3700 3511 2862 

TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody, BPA: Bisphenol-A, BP3: 
Benzophenone-3, rho: correlation coefficient. 
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Table 7C. Correlation Analysis for PFCs 

Variable   PFDE PFOA PFOS 

Free T4 
(pmol/L) 

rho -0.0154 -0.052 -0.0213 

p value 0.416 0.0017 0.1988 

n 2800 3652 3655 

Free T3 
(pg/mL) 

rho -0.1779 -0.1029 -0.183 

p value <.0001 <.0001 <.0001 

n 2800 3652 3655 

TSH 
(uIU/mL) 

rho 0.0445 0.0666 0.0648 

p value 0.0184 0.0001 0.0001 

n 2800 3652 3655 

Total T3 
(ng/dL) 

rho -0.1524 -0.1005 -0.1873 

p value <.0001 <.0001 <.0001 

n 2800 3652 3655 

Total T4 
(ug/dL) 

rho 0.0565 0.0078 0.0108 

p value 0.0028 0.6386 0.5133 

n 2800 3652 3655 

TPO-AB   
(IU/mL) 

rho 0.0593 0.0323 0.055 

p value 0.0017 0.0513 0.0009 

n 2800 3652 3655 

TG-AB 
(IU/mL) 

rho 0.0616 0.0233 0.0344 

p value 0.0011 0.1595 0.0374 

n 2800 3652 3655 

k1 

rho -0.0581 -0.0788 -0.0782 

p value 0.0021 <.0001 <.0001 

n 2800 3652 3655 

k3 

rho -0.0114 0.0019 0.001 

p value 0.5482 0.9093 0.9521 

n 2800 3652 3655 

k8 

rho -0.1035 -0.0232 -0.1031 

p value <.0001 0.1602 <.0001 

n 2800 3652 3655 

kd2 

rho 0.1126 0.0932 0.1058 

p value <.0001 <.0001 <.0001 

n 2800 3652 3655 

TBGtot 

rho 0.0759 0.054 0.0312 

p value 0.0001 0.0011 0.0594 

n 2800 3652 3655 

 
TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody, PFDE: Perfluorodecanoic 
acid, PFOA: Perfluorooctanoic acid, PFOS: Perfluorooctanesulfonic acid, rho: correlation coefficient. 
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Table 8. MLR Models for NIS Inhibitors 

Variable Estimate SE p-value 

Log Free T4 

Log Nitrate 0.002473 0.00437914 0.5723 

Log Perchlorate -0.0162833 0.00320033 <.0001 

Log Thiocyanate -0.0167883 0.00274054 <.0001 

Age 0.00073 0.00012333 <.0001 

Race 0.003117 0.00192795 0.106 

Gender=F vs. M -0.0037467 0.00464379 0.4198 

Log Cotinine 0.0014748 0.00075597 0.0511 

Log Creatinine 0.0102205 0.00503027 0.0422 

BMI -0.0011331 0.00036772 0.0021 

Log Iodine 0.0047072 0.00323625 0.1458 

Log Free T3 

Log Nitrate -0.0006498 0.00256114 0.7997 

Log Perchlorate -0.0039044 0.00200133 0.0511 

Log Thiocyanate -0.0020633 0.00162167 0.2033 

Age -0.0031052 0.00007728 <.0001 

Race -0.0095363 0.00131839 <.0001 

Gender=F vs. M -0.0588622 0.00288618 <.0001 

Log Cotinine 0.000618 0.0004538 0.1733 

Log Creatinine 0.0181555 0.00311953 <.0001 

BMI 0.0008659 0.00020948 <.0001 

Log Iodine -0.0084902 0.00201049 <.0001 

Log TSH 

Log Nitrate -0.0031474 0.01866953 0.8661 

Log Perchlorate 0.0073422 0.01358789 0.589 

Log Thiocyanate -0.0046002 0.01116941 0.6805 

Age 0.0023178 0.00049539 <.0001 

Race -0.020526 0.00750199 0.0062 

Gender=F vs. M -0.0641352 0.0190496 0.0008 

Log Cotinine -0.0117469 0.00296325 <.0001 

Log Creatinine -0.0437171 0.02164975 0.0435 

BMI 0.0073302 0.00135687 <.0001 

Log Iodine 0.0149726 0.01377772 0.2772 

Log total T3 

Log Nitrate -0.0016021 0.00698187 0.8185 

Log Perchlorate -0.005264 0.0050712 0.2993 

Log Thiocyanate -0.0032478 0.00425825 0.4457 

Age -0.0045384 0.00018644 <.0001 

Race -0.0140411 0.00309477 <.0001 

Gender=F vs. M 0.0307073 0.00751687 <.0001 
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Log Cotinine 0.0015394 0.00118113 0.1925 

Log Creatinine 0.0220461 0.00813644 0.0067 

BMI 0.0028085 0.00052484 <.0001 

Log Iodine -0.0175224 0.00506386 0.0005 

Log total T4 

Log Nitrate -0.0060358 0.00483477 0.2119 

Log Perchlorate -0.0222433 0.00355197 <.0001 

Log Thiocyanate -0.0194636 0.00294936 <.0001 

Age 0.0004653 0.00013129 0.0004 

Race -0.0038432 0.00205381 0.0613 

Gender=F vs. M 0.0595461 0.0051933 <.0001 

Log Cotinine 0.0020838 0.00083653 0.0128 

Log Creatinine 0.020668 0.00557204 0.0002 

BMI 0.0032119 0.0003778 <.0001 

Log Iodine 0.0079417 0.00346531 0.0219 

Log TPO-AB 

Log Nitrate 0.0509534 0.04579957 0.2659 

Log Perchlorate 0.0286983 0.03414541 0.4007 

Log Thiocyanate -0.049752 0.02888233 0.085 

Age 0.0053352 0.00124333 <.0001 

Race -0.0519131 0.01722412 0.0026 

Gender=F vs. M 0.3688847 0.05009926 <.0001 

Log Cotinine -0.0131077 0.00819584 0.1098 

Log Creatinine -0.0458793 0.0541102 0.3965 

BMI -0.0009239 0.00382836 0.8093 

Log Iodine -0.0075825 0.03263152 0.8163 

Log TG-AB 

Log Nitrate -0.0706391 0.02893983 0.0147 

Log Perchlorate -0.0504378 0.02180698 0.0207 

Log Thiocyanate 0.0816995 0.01734531 <.0001 

Age -0.0023618 0.00083153 0.0045 

Race 0.1031391 0.01153569 <.0001 

Gender=F vs. M 0.1092105 0.03218413 0.0007 

Log Cotinine 0.0277177 0.00486499 <.0001 

Log Creatinine 0.0710846 0.03696665 0.0545 

BMI 0.0102335 0.00220114 <.0001 

Log Iodine -0.0547027 0.02158931 0.0113 

TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody. 
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Table 9. MLR Models for Environmental Phenols 

Variable Estimate SE p-value 

Log Free T4 

Log BPA -0.0054717 0.00352146 0.1203 

Log BP3 -0.0102286 0.00420457 0.015 

Log Butyl Paraben -0.0053451 0.00205388 0.0093 

Log Methyl Paraben -0.0073973 0.00471603 0.1168 

Log Propyl Paraben 0.005032 0.00358424 0.1604 

Log Ethyl Paraben -0.0008904 0.00208019 0.6686 

Log Creatinine 0.0056839 0.00651404 0.383 

Log Iodine -0.0034774 0.0040761 0.3936 

Log Cotinine -0.0017192 0.00084331 0.0416 

BMI -0.0009899 0.00052223 0.0581 

Gender=F vs. M 0.0045533 0.00705082 0.5185 

Age 0.0003218 0.00015604 0.0392 

Race 0.0091836 0.00245042 0.0002 

Lbp3*Lmpara 0.0034064 0.00125057 0.0065 

Lbp3*Lppara -0.0026134 0.00102174 0.0106 

Log Free T3 

Log BPA -0.0026325 0.00245095 0.2829 

Log BP3 -0.0007225 0.0009502 0.4471 

Log Butyl Paraben 0.0004758 0.00126339 0.7065 

Log Methyl Paraben -0.0010782 0.00195954 0.5822 

Log Propyl Paraben -0.0013112 0.00145469 0.3674 

Log Ethyl Paraben -0.0022577 0.0013029 0.0832 

Log Creatinine 0.0177303 0.00440157 <.0001 

Log Iodine -0.0091192 0.00250057 0.0003 

Log Cotinine 0.0002899 0.00056063 0.6051 

BMI 0.0005399 0.00034876 0.1217 

Gender=F vs. M -0.0522801 0.00477118 <.0001 

Age -0.0031918 0.00009878 <.0001 

Race -0.0086544 0.0015852 <.0001 

Log TSH 

Log BPA -0.0292232 0.01342979 0.0296 

Log BP3 0.0065338 0.00563521 0.2463 

Log Butyl Paraben 0.007454 0.00848703 0.3798 

Log Methyl Paraben -0.0090537 0.01127544 0.422 

Log Propyl Paraben -0.0042203 0.00845127 0.6176 

Log Ethyl Paraben -0.0110879 0.00861581 0.1982 

Log Creatinine -0.0592919 0.02637739 0.0246 

Log Iodine 0.0589775 0.0144902 <.0001 

Log Cotinine -0.0189107 0.00348766 <.0001 
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BMI 0.0056603 0.00198194 0.0043 

Gender=F vs. M -0.0553881 0.02822121 0.0498 

Age 0.0025064 0.00059413 <.0001 

Race -0.0342158 0.0090602 0.0002 

Log total T3 

Log BPA -0.0065892 0.00588555 0.263 

Log BP3 0.0035187 0.00249175 0.158 

Log Butyl Paraben 0.0009529 0.00358676 0.7905 

Log Methyl Paraben 0.0067828 0.00478259 0.1562 

Log Propyl Paraben -0.0062905 0.00379399 0.0974 

Log Ethyl Paraben -0.0105421 0.00364874 0.0039 

Log Creatinine 0.0146298 0.01020208 0.1517 

Log Iodine -0.0180137 0.00636295 0.0047 

Log Cotinine 0.0010673 0.00133562 0.4243 

BMI 0.0024269 0.00070208 0.0006 

Gender=F vs. M -0.0196914 0.01125176 0.0802 

Age -0.004591 0.00024725 <.0001 

Race -0.0071155 0.0038172 0.0624 

Log total T4 

Log BPA -0.0150057 0.00405864 0.0002 

Log BP3 -0.004336 0.00164828 0.0086 

Log Butyl Paraben -0.0041384 0.00246196 0.0929 

Log Methyl Paraben 0.0073132 0.00334274 0.0287 

Log Propyl Paraben -0.005985 0.00265986 0.0245 

Log Ethyl Paraben -0.0066237 0.00241376 0.0061 

Log Creatinine 0.0207458 0.00709852 0.0035 

Log Iodine -0.0014733 0.00424085 0.7283 

Log Cotinine -0.0018652 0.00091664 0.0419 

BMI 0.0028918 0.00049314 <.0001 

Gender=F vs. M 0.067417 0.00770168 <.0001 

Age 0.0004619 0.00016767 0.0059 

Race -0.0004522 0.00263616 0.8638 

Log TPO-AB 

Log BPA 0.0014043 0.03325362 0.9663 

Log BP3 -0.0044942 0.01546161 0.7713 

Log Butyl Paraben 0.0346672 0.02194394 0.1142 

Log Methyl Paraben -0.0068996 0.03048617 0.821 

Log Propyl Paraben -0.0289484 0.02378773 0.2237 

Log Ethyl Paraben 0.0254773 0.0215674 0.2376 

Log Creatinine -0.0826005 0.0599608 0.1684 

Log Iodine 0.00714 0.03730374 0.8482 

Log Cotinine -0.0055357 0.00857327 0.5185 
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BMI 0.0012931 0.00433367 0.7654 

Gender=F vs. M 0.2748754 0.06632261 <.0001 

Age 0.0059348 0.00145184 <.0001 

Race -0.0911778 0.02490387 0.0003 

Log TG-AB 

Log BPA 0.2325249 0.10237441 0.0232 

Log BP3 -0.0275842 0.01014522 0.0066 

Log Butyl Paraben -0.0268221 0.01499917 0.0738 

Log Methyl Paraben 0.0287976 0.01891123 0.1279 

Log Propyl Paraben 0.0198048 0.01519715 0.1926 

Log Ethyl Paraben -0.014821 0.01397617 0.289 

Log Creatinine -0.0100513 0.03839851 0.7935 

Log Iodine -0.0342128 0.0256051 0.1816 

Log Cotinine 0.0379349 0.00508802 <.0001 

BMI 0.012696 0.00259128 <.0001 

Gender=F vs. M 0.1271931 0.04432021 0.0041 

Age -0.0018563 0.00102926 0.0714 

Race 0.1008462 0.01526239 <.0001 

Lbpa*Liodine -0.0442043 0.02000789 0.0272 

TPO-AB: Thyroperoxidase antibody, TG-AB: Thyroglobulin antibody, BPA: Bisphenol-A, BP3: 
Benzophenone-3, F: Female, M: Male, Lbp3: Log Benzophenone-3, Lbpa: Log Bisphenol-A, Lmpara: 
Log Methyl Paraben, Lppara: Log Propyl Paraben, Liodine: Log iodine. 
  

  



 61 

REFERENCES 
 
Abt, E., Spungen, J., Pouillot, R., Gamalo-Siebers, M., & Wirtz, M. (2016). Update on dietary intake 
of perchlorate and iodine from US food and drug administration’s total diet study: 2008–2012. Journal 
of Exposure Science and Environmental Epidemiology.  
 
Aker, A. M., Watkins, D. J., Johns, L. E., Ferguson, K. K., Soldin, O. P., Del Toro, L. V. A., ... & 
Meeker, J. D. (2016). Phenols and parabens in relation to reproductive and thyroid hormones in 
pregnant women. Environmental Research, 151, 30-37. 
 
Allegri Sr, T. H. (1986). The Toxic Substances Control Act. In Handling and Management of 
Hazardous Materials and Waste (pp. 383-390). Springer US. 
 
Amorati, R., & Valgimigli, L. (2012). Modulation of the antioxidant activity of phenols by non-
covalent interactions. Organic & biomolecular chemistry, 10(21), 4147-4158. 
 
Andrady, A. L. (2015) Endocrine Disruptor Chemicals, in Plastics and Environmental Sustainability, 
John Wiley & Sons, Inc, Hoboken, NJ. doi: 10.1002/9781119009405.ch7 
 
Andrianou, X. D., Gängler, S., Piciu, A., Charisiadis, P., Zira, C., Aristidou, K., … Makris, K. C. 
(2016). Human Exposures to Bisphenol A, Bisphenol F and Chlorinated Bisphenol A Derivatives 
and Thyroid Function. PLoS ONE, 11(10), e0155237. http://doi.org/10.1371/journal.pone.0155237 
 
Aschebrook-Kilfoy, B., Heltshe, S. L., Nuckols, J. R., Sabra, M. M., Shuldiner, A. R., Mitchell, B. D., 
… Ward, M. H. (2012). Modeled nitrate levels in well water supplies and prevalence of abnormal 
thyroid conditions among the Old Order Amish in Pennsylvania. Environmental Health, 11, 6. 
http://doi.org/10.1186/1476-069X-11-6 
 
Ballesteros, V., Costa, O., Iñiguez, C., Fletcher, T., Ballester, F., & Lopez-Espinosa, M. J. (2016). 
Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A 
systematic review of epidemiologic studies. Environment international. 
 
Banerjee, P., Siramshetty, V. B., Drwal, M. N., & Preissner, R. (2016). Computational methods for 
prediction of in vitro effects of new chemical structures. Journal of Cheminformatics, 8, 51. 
http://doi.org.proxy.library.emory.edu/10.1186/s13321-016-0162-2 
 
Barrett, K. E., Barman, S. M., & Boitano, S. (2010). Ganong's review of medical physiology. New Delhi: 
McGraw Hill, 2010. 
 
Bernal, J., & Nunez, J. (1995). Thyroid hormones and brain development. European journal of 
endocrinology, 133(4), 390-398. 
 
Bjoro, T., Holmen, J., Kruger, O., Midthjell, K., Hunstad, K., Schreiner, T., ... & Brochmann, H. 
(2000). Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a 
large, unselected population. The Health Study of Nord-Trondelag (HUNT). European Journal of 
Endocrinology, 143(5), 639-647. 
 
Boas, M., Feldt-Rasmussen, U., Skakkebæk, N. E., & Main, K. M. (2006). Environmental chemicals 
and thyroid function. European Journal of Endocrinology, 154(5), 599-611. 
 
Burden, N,, Sewell, F., Chapman, K. (2015). Testing Chemical Safety: What Is Needed to Ensure the 
Widespread Application of Non-animal Approaches? PLoS Biol 13(5): e1002156. 

http://doi.org/10.1371/journal.pone.0155237
http://doi.org/10.1186/1476-069X-11-6
http://doi.org.proxy.library.emory.edu/10.1186/s13321-016-0162-2


 62 

Caserta, D., Maranghi, L., Mantovani, A., Marci, R., Maranghi, F., & Moscarini, M. (2008). Impact of 
endocrine disruptor chemicals in gynaecology. Human reproduction update, 14(1), 59-72. 
 
Chailurkit, L. O., Aekplakorn, W., & Ongphiphadhanakul, B. (2016). The Association of Serum 
Bisphenol A with Thyroid Autoimmunity. International Journal of Environmental Research and Public 
Health, 13(11), 1153. 
 
Cooper, R. L., & Kavlock, R. J. (1997). Endocrine disruptors and reproductive development: a 
weight-of-evidence overview. Journal of endocrinology, 152(2), 159-166. 
 
Coperchini, F., Awwad, O., Rotondi, M., Santini, F., Imbriani, M., & Chiovato, L. (2016). Thyroid 
disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). Journal of 
Endocrinological Investigation, 1-17. 
 
Darbre, P. D., Aljarrah, A., Miller, W. R., Coldham, N. G., Sauer, M. J., & Pope, G. S. (2004). 
Concentrations of parabens in human breast tumours. Journal of applied toxicology, 24(1), 5-13. 
 
De Escobar, G. M., Obregón, M. J., & Del Rey, F. E. (2004). Role of thyroid hormone during early 
brain development. European Journal of Endocrinology, 151(Suppl 3), U25-U37. 
differences in kidney function. Pflügers Archiv-European Journal of Physiology, 455(3), 397. 
 
Dong, X., Dong, J., Zhao, Y., Guo, J., Wang, Z., Liu, M., … Na, X. (2017). Effects of Long-Term In 
Vivo Exposure to Di-2-Ethylhexylphthalate on Thyroid Hormones and the TSH/TSHR Signaling 
Pathways in Wistar Rats. International Journal of Environmental Research and Public Health, 14(1), 44. 
http://doi.org/10.3390/ijerph14010044 
 
EC (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 
November 2009 on Cosmetic Products. OJ L 342: Official Journal of the European Union. 
 
EPA History (1970-1985). (2016). Retrieved March 28, 2017, from 
https://archive.epa.gov/epa/aboutepa/epa-history-1970-1985.html 
 

Erdoǧan, M. F. (2003). Thiocyanate overload and thyroid disease. Biofactors, 19(3, 4), 107-111. 
 
Gaum, P. M., Lang, J., Esser, A., Schettgen, T., Neulen, J., Kraus, T., & Gube, M. (2016). Exposure 
to polychlorinated biphenyls and the thyroid gland–examining and discussing possible longitudinal 
health effects in humans. Environmental research, 148, 112-121. 
 
Hoermann, R., Midgley, J. E., Larisch, R., & Dietrich, J. W. (2015). Homeostatic Control of the 
Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment. Front Endocrinol. 6:177. 
 
Huang, H. B., Pan, W. H., Chang, J. W., Chiang, H. C., Guo, Y. L., Jaakkola, J. J., & Huang, P. C. 
(2017). Does exposure to phthalates influence thyroid function and growth hormone homeostasis? 
The Taiwan Environmental Survey for Toxicants (TEST) 2013. Environmental Research, 153, 63-72. 
 
Huang, P.-C., Tsai, C.-H., Liang, W.-Y., Li, S.-S., Huang, H.-B., & Kuo, P.-L. (2016). Early Phthalates 
Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones. PLoS 
ONE, 11(7), e0159398. http://doi.org/10.1371/journal.pone.0159398 
 
Johnson, P. I., Koustas, E., Vesterinen, H. M., Sutton, P., Atchley, D. S., Kim, A. N., ... & Zeise, L. 
(2016). Application of the Navigation Guide systematic review methodology to the evidence for 
developmental and reproductive toxicity of triclosan. Environment international, 92, 716-728. 

http://doi.org/10.3390/ijerph14010044
https://archive.epa.gov/epa/aboutepa/epa-history-1970-1985.html
http://doi.org/10.1371/journal.pone.0159398


 63 

 
Judson, R., Richard, A., Dix, D. J., Houck, K., Martin, M., Kavlock, R., Dellarco, V., Henry, T., 
Holderman, T., Sayre, P., Tan, S., Carpenter, T., & Smith, E. (2009). The toxicity data landscape for 
environmental chemicals. Environ Health Perspect. 117(5):685-95. 
 
Jugan, M. L., Levi, Y., & Blondeau, J. P. (2010). Endocrine disruptors and thyroid hormone 
physiology. Biochemical pharmacology, 79(7), 939-947. 
Kavlock, R. J., Ankley, G., Blancato, J., Breen, M., Conolly, R., Dix, D., ... & Richard, A. (2008). 
Computational toxicology—a state of the science mini review. Toxicological sciences, 103(1), 14-27. 
 
Kavlock, R., & Dix, D. (2010). Computational toxicology as implemented by the US EPA: providing 
high throughput decision support tools for screening and assessing chemical exposure, hazard and 
risk. Journal of Toxicology and Environmental Health, Part B, 13(2-4), 197-217. 
 
Khatawkar, A. M., & Awati, S. M. (2015). Thyroid gland–Historical aspects, Embryology, Anatomy 
and Physiology. 
 
Kim, J., Hayton, W. L., & Schultz, I. R. (2006). Modeling the brain–pituitary–gonad axis in salmon. 
Marine environmental research, 62, S426-S432. 
 
Koeppe, E. S., Ferguson, K. K., Colacino, J. A., & Meeker, J. D. (2013). Relationship between 
Urinary Triclosan and Paraben Concentrations and Serum Thyroid Measures in NHANES 2007–
2008. The Science of the Total Environment, 445-446, 299–305. 
http://doi.org/10.1016/j.scitotenv.2012.12.052 
 
Lakshmy, R., & Rao, P. S. (1999). Effect of thiocyanate induced hypothyroidism on 5'deiodinase 
activity and T 3 receptors in developing rat brain. 
 
Lechan, R. M., & Toni, R. (2013). Functional anatomy of the hypothalamus and pituitary. 
 
Lee, S., Kim, C., Youn, H., & Choi, K. (2017). Thyroid hormone disrupting potentials of bisphenol A 
and its analogues-in vitro comparison study employing rat pituitary (GH3) and thyroid follicular 
(FRTL-5) cells. Toxicology in Vitro, 40, 297-304. 
 
Li, Y., Cheng, Y., Xie, Z., & Zeng, F. (2017). Perfluorinated alkyl substances in serum of the 
southern Chinese general population and potential impact on thyroid hormones. Scientific Reports, 7, 
43380. http://doi.org/10.1038/srep43380 
 
Merlot, C. (2010). Computational toxicology—a tool for early safety evaluation. Drug discovery 
today, 15(1), 16-22. 
 
Mihaich, E., Capdevielle, M., Urbach-Ross, D., & Slezak, B. (2017). Hypothesis-driven weight-of-
evidence analysis of endocrine disruption potential: a case study with triclosan. Critical reviews in 
toxicology, 1-26. 
 
Murphy, S. E., Sipe, C. J., Choi, K., Raddatz, L. M., Koopmeiners, J. S., Donny, E. C., & Hatsukami, 
D. K. (2017). Low cotinine glucuronidation results in higher serum and saliva cotinine in African 
American compared to White smokers. Cancer Epidemiology and Prevention Biomarkers, cebp-0920. 
 
National Research Council. (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy, 
The National Academies Press, Washington, DC, USA. 
 

http://doi.org/10.1016/j.scitotenv.2012.12.052
http://doi.org/10.1038/srep43380


 64 

Ngwa, E. N., Kengne, A.-P., Tiedeu-Atogho, B., Mofo-Mato, E.-P., & Sobngwi, E. (2015). Persistent 
organic pollutants as risk factors for type 2 diabetes. Diabetology & Metabolic Syndrome, 7, 41. 
http://doi.org/10.1186/s13098-015-0031-6 
 
Ott, R. A., McCall, A. R., McHenry, C., Jarosz, H., Armin, A., Lawrence, A. M., & Paloyan, E. (1987). 
 

Porreca, I., Ulloa‐Severino, L., Almeida, P., Cuomo, D., Nardone, A., Falco, G., ... & Ambrosino, C. 
(2017). Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on 

endoderm‐derived organs. Obesity Reviews, 18(1), 99-108. 
 
Reichlin, S. (1967). Function of the hypothalamus. The American journal of medicine, 43(4), 477. 
 
Rochester, J. R., & Bolden, A. L. (2015). Bisphenol S and F: a systematic review and comparison of 
the hormonal activity of bisphenol A substitutes. Environmental Health Perspectives (Online), 123(7), 643. 
 
Romano, M. E., Webster, G. M., Vuong, A. M., Zoeller, R. T., Chen, A., Hoofnagle, A. N., … Braun, 
J. M. (2015). Gestational urinary bisphenol A and maternal and newborn thyroid hormone 
concentrations: the HOME Study. Environmental Research, 138, 453–460.  
http://doi.org/10.1016/j.envres.2015.03.003 
 
Sabolić, I., Asif, A. R., Budach, W. E., Wanke, C., Bahn, A., & Burckhardt, G. (2007). Gender 
Schmidt, B., & Schuphan, I. (2002). Metabolism of the environmental estrogen bisphenol A by plant 
cell suspension cultures. Chemosphere, 49(1), 51-59. 
 
Schnitzler, J. G., Frederich, B., Dussenne, M., Klaren, P. H., Silvestre, F., & Das, K. (2016). Triclosan 
exposure results in alterations of thyroid hormone status and retarded early development and 
metamorphosis in Cyprinodon variegatus. Aquatic Toxicology, 181, 1-10. 
 
Schug, T. T., Janesick, A., Blumberg, B., & Heindel, J. J. (2011). Endocrine Disrupting Chemicals and 
Disease Susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 127(3-5), 204–215. 
http://doi.org/10.1016/j.jsbmb.2011.08.007 
 
Schultz, D. S., Deen, W. M., Karel, S. F., Wagner, D. A., & Tannenbaum, S. R. (1985). 
Pharmacokinetics of nitrate in humans: role of gastrointestinal absorption and metabolism. 
Carcinogenesis, 6(6), 847-852. 
 
Sheng, H. Z., & Westphal, H. (1999). Early steps in pituitary organogenesis. Trends in Genetics, 15(6), 
236-240. 
 
Shukla. S. J., Huang, R., Austin, C. P., & Xia, M. (2010). The future of toxicity testing: a focus on in 
vitro methods using a quantitative high-throughput screening platform. Drug Discov Today, 15(23-
24):997-1007. 
 
Skledar, D. G., Schmidt, J., Fic, A., Klopčič, I., Trontelj, J., Dolenc, M. S., ... & Mašič, L. P. (2016). 
Influence of metabolism on endocrine activities of bisphenol S. Chemosphere, 157, 152-159. 
 
Soechitram, S. D., Berghuis, S. A., Visser, T. J., & Sauer, P. J. (2017). Polychlorinated biphenyl 
exposure and deiodinase activity in young infants. Science of The Total Environment, 574, 1117-1124. 
 
Song, M., Kim, Y. J., Park, Y. K., & Ryu, J. C. (2012). Changes in thyroid peroxidase activity in 
response to various chemicals. Journal of environmental monitoring, 14(8), 2121-2126. 
 

http://doi.org/10.1186/s13098-015-0031-6
http://doi.org/10.1016/j.envres.2015.03.003
http://doi.org/10.1016/j.jsbmb.2011.08.007


 65 

Soni, M. G., Taylor, S. L., Greenberg, N. A., & Burdock, G. A. (2002). Evaluation of the health 
aspects of methyl paraben: a review of the published literature. Food and chemical Toxicology, 40(10), 
1335-1373. 
 
Soto, A. M., & Sonnenschein, C. (2010). Environmental causes of cancer: endocrine disruptors as 
carcinogens. Nature Reviews. Endocrinology, 6(7), 363–370. http://doi.org/10.1038/nrendo.2010.87 
 
Stagnaro-Green, A., Abalovich, M., Alexander, E., Azizi, F., Mestman, J., Negro, R., ... & Wiersinga, 
W. (2011). Guidelines of the American Thyroid Association for the diagnosis and management of 
thyroid disease during pregnancy and postpartum. Thyroid, 21(10), 1081-1125. 
Stone, M. B., & Wallace, R. B. (Eds.). (2003). Medicare coverage of routine screening for thyroid dysfunction. 
National Academies Press. 
 
Takuma, N., Sheng, H. Z., Furuta, Y., Ward, J. M., Sharma, K., Hogan, B. L., ... & Mahon, K. A. 
(1998). Formation of Rathke's pouch requires dual induction from the 
diencephalon. Development, 125(23), 4835-4840. 
 
Taxvig, C., Vinggaard, A. M., Hass, U., Axelstad, M., Boberg, J., Hansen, P. R., ... & Nellemann, C. 
(2008). Do parabens have the ability to interfere with steroidogenesis?. Toxicological sciences, 106(1), 
206-213. 
 
Taxvig, C., Vinggaard, A. M., Hass, U., Axelstad, M., Boberg, J., Hansen, P. R., ... & Nellemann, C. 
(2008). Do parabens have the ability to interfere with steroidogenesis?. Toxicological sciences, 106(1), 
206-213. 
 
The Frank R. Lautenberg Chemical Safety for the 21st Century Act. (2017). Retrieved March 28, 
2017, from https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/frank-r-lautenberg-
chemical-safety-21st-century-act 
 
The incidence of thyroid carcinoma in Hashimoto's thyroiditis. The American surgeon, 53(8), 442-445. 
 
Trasande L. (2016). Updating the Toxic Substances Control Act to Protect Human 
Health. JAMA. 2016;315(15):1565-1566. doi:10.1001/jama.2016.2037 
 
Vandenberg, L. N., Chahoud, I., Heindel, J. J., Padmanabhan, V., Paumgartten, F. J., & Schoenfelder, 
G. (2010). Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to 
bisphenol A. Environmental health perspectives, 1055-1070. 
 
Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs, D. R., Lee, D.-H., … Myers, J. P. 
(2012). Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic 
Dose Responses. Endocrine Reviews, 33(3), 378–455. http://doi.org/10.1210/er.2011-1050 
 
Vandenberg, L.N., Colborn, T., Hayes, T.B., Heindel, J.J., Jacobs, D.R. Jr, Lee, D.H., Shioda, T., 
Soto, A.M., vom Saal, F.S., Welshons, W.V., Zoeller, R.T., Myers, J.P. (2012). Hormones and 
endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev., 
33(3):378-455.  
 
Ward, M. H., Kilfoy, B. A., Weyer, P. J., Anderson, K. E., Folsom, A. R., & Cerhan, J. R. (2010).  
Nitrate Intake and the Risk of Thyroid Cancer and Thyroid Disease. Epidemiology (Cambridge, 
Mass.), 21(3), 389–395. http://doi.org/10.1097/EDE.0b013e3181d6201d 
 

http://doi.org/10.1038/nrendo.2010.87
https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/frank-r-lautenberg-chemical-safety-21st-century-act
https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/frank-r-lautenberg-chemical-safety-21st-century-act
http://doi.org/10.1210/er.2011-1050
http://doi.org/10.1097/EDE.0b013e3181d6201d


 66 

Watanabe, K. H., Li, Z., Kroll, K. J., Villeneuve, D. L., Garcia-Reyero, N., Orlando, E. F., ... & 
Denslow, N. D. (2009). A computational model of the hypothalamic-pituitary-gonadal axis in male 
fathead minnows exposed to 17α-ethinylestradiol and 17β-estradiol. Toxicological Sciences, kfp069. 
 
Weetman, A. P. (2004). Autoimmune thyroid disease. Autoimmunity, 37(4), 337-340. 
 
Weiss, J. M., Andersson, P. L., Lamoree, M. H., Leonards, P. E., van Leeuwen, S. P., & Hamers, T. 
(2009). Competitive binding of poly-and perfluorinated compounds to the thyroid hormone 
transport protein transthyretin. Toxicological sciences, kfp055. 
 
Weiss, J. M., Andersson, P. L., Zhang, J., Simon, E., Leonards, P. E. G., Hamers, T., & Lamoree, M. 
H. (2015). Tracing thyroid hormone-disrupting compounds: database compilation and structure-
activity evaluation for an effect-directed analysis of sediment. Analytical and Bioanalytical 
Chemistry, 407(19), 5625–5634. http://doi.org.proxy.library.emory.edu/10.1007/s00216-015-8736-9 
 
Weng, T. I., Chen, M. H., Lien, G. W., Chen, P. S., Lin, J. C. C., Fang, C. C., & Chen, P. C. (2017). 
Effects of Gender on the Association of Urinary Phthalate Metabolites with Thyroid Hormones in 
Children: A Prospective Cohort Study in Taiwan. International Journal of Environmental Research and 
Public Health, 14(2), 123. 
 
Witkowska-Sędek, E., Kucharska, A., Rumińska, M., & Pyrżak, B. (2017). Thyroid dysfunction in 
obese and overweight children. Endokrynologia Polska, 68(1), 54-60. 
 
Witorsch, R. J. (2014). Critical analysis of endocrine disruptive activity of triclosan and its relevance 
to human exposure through the use of personal care products. Critical reviews in toxicology, 44(6), 535-
555. 
 
Wu, Y., Beland, F. A., & Fang, J. L. (2016). Effect of triclosan, triclocarban, 2, 2′, 4, 4′-
tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and 
expression of genes involved in thyroid hormone synthesis. Toxicology in Vitro, 32, 310-319. 
 
Wu, Y., Beland, F. A., & Fang, J. L. (2016). Effect of triclosan, triclocarban, 2, 2′, 4, 4′-
tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and 
expression of genes involved in thyroid hormone synthesis. Toxicology in Vitro, 32, 310-319. 
 
Yang, L., Li, J., Lai, J., Luan, H., Cai, Z., Wang, Y., … Wu, Y. (2016). Placental Transfer of 
Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure 
Study. Scientific Reports, 6, 21699. http://doi.org/10.1038/srep21699 
 
Ye, H., Ha, M., Yang, M., Yue, P., Xie, Z., & Liu, C. (2017). Di2-ethylhexyl phthalate disrupts thyroid 
hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic 
enzymes. Scientific Reports, 7, 40153. http://doi.org/10.1038/srep40153 
 
Zhang, Q. & Andersen, M. E. (2007). Dose response relationship in anti-stress gene regulatory 
networks. PLoS Comput Biol. 3(3):e24. 

http://doi.org.proxy.library.emory.edu/10.1007/s00216-015-8736-9
http://doi.org/10.1038/srep21699
http://doi.org/10.1038/srep40153

