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Abstract

Modeling the COVID-19 Pandemic: A Model-Driven and a Data-Driven Analyses
By Yujia Hao

The COVID-19 pandemic has sparked a plethora of mathematical models, each
constructed with varying assumptions and methodologies. However, the nature of in-
fectious disease dynamics, which are inherently complex and influenced by numerous
factors, poses challenges to the development of accurate models. In this project, we
propose a space-dependent compartmental model based on the classical Susceptible,
Infected, Recovered (SIR) epidemiological model as well as a data-driven approach
that combines the SIR model and data assimilation through physics-informed neural
networks (PINN) using generated training data. The space-dependent model allows
for control over each geographical unit (GU) in a global domain, making the problem
scalable, while time-dependent parameters are included to simulate the effect of inter-
ventions like lockdowns and vaccination campaigns. Following the space-dependent
model, we investigate the most influential parameters of the basic SIR model through
a first-order local sensitivity analysis. The results show that the reproduction/death
rate has the most impact on all compartments of the SIR model. This analysis pro-
vides insights into which parameters should be prioritized in future studies and can
help in developing more effective interventions. Finally, the PINN approach based on
SIR models exhibits satisfactory predictive capability for parameter estimation and
dynamics simulation, even with limited and noisy data. This project is a promis-
ing start to the modelling of intricate and multifaceted dynamics pertaining to the
transmission of infectious diseases.
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Chapter 1

Introduction

Modeling the dynamics of an infectious disease like the COVID-19 outbreak, re-

searchers need to not only incorporate and improve upon existing mathematical mod-

els but also utilize data-driven methods to link theoretical concepts to reality. In this

project, we consider different aspects of the description of the outbreak, whose impor-

tance was recently defined by the pandemic and its implications on other infectious

diseases. We first introduce a multi-regional model addressing the space-dependence

of the outbreak by splitting a domain of interest (the “Domain”) into subdomains

(the “Geographical Units”) connected by matrices representing the inter-regional mo-

bility. With a robust model, policymakers may directly or indirectly alter the disease

parameters within the model in order to control the pandemic. In this project, we

alter the parameters by adding time dependence to mimic the realistic situations of

lockdowns and vaccination campaigns. Therefore, it is crucial to analyze the sensi-

tivity of the compartmental model on each parameter. For this reason, we perform

a first-order local sensitivity analysis on the mono-regional endemic SIR model. Fi-

nally, as an alternative approach, we introduce physics-informed neural networks that

combines the mono-regional SIR model with a standard neural network to perform

parameter estimation and prediction from simulated limited or noisy data.
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In Chapter 2, we consider the classical compartmental modeling, based on the

Susceptible, Infected, and Recovered (SIR) populations. In Chapter 3, we introduce

the construction of inter-regional mobility based on mono-regional models and discuss

the corresponding design of an object-oriented solver. We present some benchmarks

and results of the simulations. Note that the majority of Chapters 2 to 4 is an excerpt

from a collaborative conference proceeding [10] for the CILAMCE-PANACM 2021

Conference with four other Emory students under the mentorship of Dr. Alessandro

Veneziani. InChapter 4, we present the sensitivity analysis for the mono-regional en-

demic SIR model. In Chapter 5, we introduce physics-informed neural networks and

present results on parameter estimation and model predictions on the mono-regional

model. In Chapter 6, we conclude this project and discuss future perspectives.
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Chapter 2

Mono-region SIR-Like Models for

the Outbreak

2.1 The basic SIR model

In a classical SIR model for a specific region, the total population, denoted with

N(t) individuals function of time t, is divided into three compartments: Susceptible

S(t), Infected I(t), and Recovered R(t). SIR models are categorized into two models:

the epidemic model that describes a rapid outbreak of the infectious disease and the

endemic model that portrays the long-term dynamics by including regional birth and

death rates (see, e.g., [11]). Similarly to a predator-prey model, the infection occurs

proportionally to the product SI. More precisely, the endemic model considered here

reads 
dtS = µN − βIS/N − (µ+ ρ)S

dtI = βIS/N − γI − µI

dtR = ρS + γI − µR

(2.1)

Here, β is the number of the average adequate contacts for disease transmission per

person per unit of time, and γ is the rate of recovery; µ is the reproduction/death
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rate assumed to be constant for simplicity, and ρ is the vaccination rate which is

proportional to S [17]. Should we set µ = 0, dropping the reproduction/death rate

(as reasonable in a short time range), and ρ = 0, we obtain the so-called “epidemic”

model. The inclusion of vaccination is essential to its application in the real-world

scenario. We are considering an idealized case, where vaccinated individuals are

perfectly protected. More complex scenarios will be considered elsewhere. The vacci-

nation coefficient ρ can be time-dependent as multiple factors can affect the vaccine

distribution. We envision that the vaccination rate may range from a minimal value

ρm, and increases to a maximum ρM as the organization and the advertising reach

out for more people. We model this aspect by a logistic dynamics [4],

ρ(t) =
ρme

a(t−tV )

1 + ρm/ρM(ea(t−tV ) − 1)
(2.2)

where tV is the first day of vaccinations. Notice that in this model, the total number

of individuals N is constant (summing up the three equations, for N = S + I + R

we obtain dtN = 0). No space dependence is indicated in this system; thus, it refers

to an isolated geographical unit (GU). This system is intuitively illustrated in Figure

2.1.

Figure 2.1: SIR Compartmental Model

For the sake of notation, we set A ≡ [S, I, R]T and the shorthand notation for the
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model (2.1) reads: dtA = F(A) where we omit for brevity the dependence of F on

the parameters µ, β, γ, ρ.

2.2 Asymptotic behaviors of the SIR model

The SIR system is well-studied, and it is known to exhibit some analytical properties

as demonstrated in [11]. We state the two theorems

Theorem 1 (Epidemic SIR system). Let µ = ρ = 0, N = 1 in Equation (2.1) and

define σ ≡ β/γ. Let (S(t), I(t)) be a solution of this system. If σS(0) ≤ 1, then I(t)

decreases to zero as t → ∞. If σS(0) > 1, then I(t) first increases up to a maximum

value Imax = I(0)+S(0)− 1/σ− [ln(σS(0))]/σ and then decreases to zero as t → ∞.

The susceptible fraction S(t) is a decreasing function and the limiting value S∞ is the

unique root in (0, 1/σ) of the equation

I(0) + S(0)− S∞ + ln(S∞/S(0))/σ = 0.

Theorem 2 (Endemic SIR system). Let ρ = 0, N = 1 in Equation (2.1) and define

ϑ ≡ β/(γ + µ). Let (S(t), I(t)) be a solution of this system. If ϑ ≤ 1, the solutions

approach disease-free equilibrium given by S = 1 and I = 0; if ϑ > 1, the all solutions

approach the endemic equilibrium given by Se = 1/ϑ, Ie = µ(ϑ− 1)/β.

Theorems 1 and 2 are verified numerically with results presented in Section 3.4.1.
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Chapter 3

Inter-regional Mobility

One of the main limitations of our basic SIR model is the absence of space dependence

and, in general, of the mobility of individuals across different geographical regions.

The inclusion of such mobility would be critical, for instance, for assessing the impact

of transportation and restrictions on the passengers mobility on the outbreak [2].

Space dependence can be included as systems of partial differential equations [22] or

fractional differential operators (to incorporate preferential directions like highways

or train lines). In this work, we resort to a simpler approach. We consider a region of

interest as a set of geographical units (GU) where we assume an SIR dynamic. Then,

we describe migration among the different regions in the form of “mobility matrices”

that quantify the number of people leaving one region for another. In this way, we

have a simplified description of the space dependence, yet potentially able to consider

the impact of the mobility on the outbreak.

3.1 The mobility matrix

Let us consider now a set of n areas or GU denoted by the compartment vectors Ai,

i = 1, 2, . . . n. Each area will have an intrinsic dynamic corresponding to the vector

Fi(Ai) as specified in Section 2.1. Then, we consider the mobility among the regions
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as follows. As a simplifying assumption, we assume that people of a compartment in an

area do not change compartment when moving : a susceptible in the GU j will keep the

status of susceptible also in the target region i. The rate of susceptible moving from j

to i will be σijSj where σij are mobility coefficients. In this way, the incoming rate of

susceptibles in region i is given by
∑n

j=1,j ̸=i σijSj. Correspondingly, the outgoing rate

of susceptible from the region i is (−
∑n

j=1,j ̸=i σji)Si. We can introduce the S-mobility

matrix

MS ≡ [mS
i,j] =


σij for i ̸= j

−
n∑

k=1,k ̸=i

σki for i = j,
(3.1)

where the off-diagonal entries mS
i,j, i ̸= j, i, j ∈ {1, . . . , n} are the incoming rates

of susceptible from each region j to each region i, and the diagonal entries mS
i,i, i ∈

{1, . . . , n} are the outgoing rates of susceptible from each region i to all other regions

as discussed above.

Similarly, we introduce an I-mobility and an R-mobility matrices M I and MR,

and finally the block-diagonal (nc × n)2 matrix M = diag(MS,M I ,MR), where nc

is the number of compartments per region (3 in our case). This matrix is promptly

reordered consistently with the vector A, oriented by geographical areas as opposed

to a compartment-wise ordering. We keep calling M the rearranged matrix. In this

way, the Domain, i.e. the set of GU, denoted by the vector C ≡ [A1,A2, . . . ,An] will

obey the ordinary differential system

dtC = D(C) +MC (3.2)

where D(C) ≡ [F1(A1), . . . ,Fn(An)]
T . Should we admit that a population can

change compartment while moving across regions, the matrix M would have a full

pattern (not block-diagonal).
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3.2 The numerical solver

As analytical solutions for this problem are not available, we opted for a numerical

solver. In particular, we choose a explicit solver like Heun’s method [20] to avoid

the solution of non-linear equations. This method solves the system with O(∆t2)

accuracy. Specifically, let us denote by ∆t a user-selected time-step, and by tk the

collocation instants when we compute the solution. The Heun’s scheme then reads:

given the solution Ck at time tk, compute Ck+1 as:

Predictor : C∗ = Ck +∆t
(
D(Ck) +MCk

)
Corrector : Ck+1 = Ck +

∆t

2

(
D(Ck) +D(C∗) +M(Ck +C∗)

)
.

(3.3)

At time t0 the initial condition C0 is provided. The scheme is only conditionally

stable: we empirically select our time-step to ensure numerical stability.

3.3 Design of the objected-oriented solver

One of the design specifics of our solver is to be flexible to both horizontal and

vertical extensions. With this, we mean that we want a solver easily scalable to any

given number of GU, so to manage the 20 regions in Italy (one of the countries most

affected by the virus [7]), the 50 states of the United States or even the counties [3]

in one or more of the US (horizontal expansion). Meanwhile, we want to manage

possible refinements of the models for the single area; while the SIR model is a good

starting point, more compartments may be needed for a better representation of

the outbreak (e.g. SEIR models); in an even more sophisticated modeling, we can

consider Partial Differential Equations models, where the local mobility is assimilated

to a Brownian motion [22] (vertical flexibility). For this reason, Object-Oriented

programming provides the right framework to our solver, particularly for the features

of encapsulation and inheritance.
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3.3.1 The local and global models

The GU class (local model) The core class of our solver is the GU Class imple-

menting the model for the single area represented by the generic equation

dtA = F(A) (3.4)

with the corresponding initial conditions. At the basic level, the class implements the

SIR model in (2.1). As members of the class we include:

- the vector A (by default given by S, I, R, with the number of compartments

nc(= 3));

- the vector F with the associated parameters β, µ, γ, ρ, possibly function of time;

- the initial conditions.

More sophisticated models are inherited by this class. For instance, to implement a

PDE-based model like [22] we can add as members the mesh of the region of interest.

Similarly, to include the structure of age, we can extend the number of compartments

and parameters to describe Susceptible etc. at the different ages, by exploiting the

inheritance from the basic class.

The domain class (global model) To cover the entire domain of interest, we

introduce a class with the following members:

- an array of GU;

- the mobility matrix M;

- a solver for the problem (3.2) with the initial conditions of the GU, for instance

(3.3).

The solver was implemented both in Python and Matlab and it is available at the

GitHub repository github.com/HowardYutingHou/CovidProject.
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3.4 Benchmarks and results

We present a number of tests we run to check the correctness of our solver. Specifically,

we test the accuracy of our simulations against analytical results, when available.

Then, we use our two different and independent implementations to cross-validate the

results on a fictitious benchmark consisting of seven regions (having the nickname of

seven states of the U.S). Successively, we test the endemic vs. the epidemic models,

to stress the importance of the parameter µ in the final results. In the second part of

this Section, we illustrate the results we obtain when we want to mimic the presence

of lockdown policies and a vaccination campaign.

3.4.1 Consistency test with theorems for one-region models

When cross-regional interactions are disregarded, each local dynamics is represented

locally by the classical epidemic or endemic SIR models. In this case, analytical results

are available as mentioned in Section 2.2. Using the numerical method described in

Section 3.2, we verified Theorems 1 and 2 with various parameter values in an un-

normalized population, i.e. N is the total population and does not equal to 1.

For example, in the case of an endemic model for the GU “Alabama” with N =

78, 000 we assign the parameter values β = 0.3, γ = 0.1, and µ = 0.01, resulting in

ϑ = β/(γ + µ) = 0.3/(0.1 + 0.01) > 1. By Theorem 2, all solutions of the system

should approach the endemic equilibrium given by Se = N/ϑ ≈ 2.882 × 104 and

Ie = µN(ϑ − 1)/β ≈ 4.525 × 103. The numerical solver successfully simulates this

asymptotic behavior as shown in Figure 3.1.
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Figure 3.1: top: simulation results of the endemic SIR model for the GU “Alabama”;
bottom: MATLAB output of comparison between simulated and real asymptotic
values.

We run similar tests on both epidemic and endemic models, and the consistency

of our simulations with these results was carefully assessed and verified. Thus, this

verification with existing analytical results gives confidence to the numerical solver.

3.4.2 Cross-validation

Another test was performed by comparing the results of the two different codes de-

veloped with two different languages (MATLAB and Python). The Python version

of the solver is constructed by my teammates in [10]. To this aim, we introduce a

fictitious data-set, with seven GUs. For the sake of notation, we give these units

the name of seven States of the U.S. The parameters and the mobility matrices are,

however, selected without a specific tuning of the data, so the names are to be in-

tended as nicknames, with no particular reference to the real states. Fine tuning

of the parameters is, in fact, an important follow-up of the present work. For the

present proof-of-concept, we calibrate the results arbitrarily, based on the available
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literature. Figure 3.2 shows the computational solutions of the GUs “Georgia” and

“Alabama” with the endemic model from both versions of the solver.
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Figure 3.2: left: Results for our multi-regional MATLAB solver in “Georgia” and
“Alabama”; right: results for the same case with the Python solver.

By visual and quantitative inspections, the results do coincide. The two solvers

were developed independently with just the same code-specifications. The comparison

provides therefore an excellent cross-validation of our results, giving confidence in the

correctness of the solvers.

3.4.3 Epidemic vs. endemic

Figure 3.3 shows the comparison of the multi-regional solver in “Georgia”, when we

drop the local reproduction rate (µ = 0), i.e. the “epidemic model”, on the left, and

when we include it (“endemic model”) on the right. The increment of S in the first 10

days is due to the mobility (particularly, in this case, from “California” and “Texas”,
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with a mobility rate of 0.01 and 0.02 respectively). The comparison between the two

plots highlights the importance of the coefficient µ on the long time range, as the

endemic model exhibits and additional increment of S, absent in the endemic one.

Figure 3.3: Results in “Georgia”: left: epidemic model (µ = 0); right: endemic model.

3.4.4 Effects of lockdown

We simulate the effects of lockdown restrictions by reducing the infection rate β by

a factor of 10 as a result of restrictive measures like mask-enforcement, curfew, etc.

Local lockdown We consider first the effects of lockdown in an isolated region or

GU. In Fig. 3.4 we show the results in “Georgia” with no mobility: on the left the

no-lockdown results for 200 days, on the right the results with a lockdown enforced

from day 20 to 60. The impact of the lockdown is evident, particularly on the I

population. At the end of the restrictive measures, there is a partial comeback,

however the lockdown significantly helps containing the number of infected (from

10, 000 to 5, 000). At the end of the lockdown there is a spike of infected, as the

number of susceptible is considerably higher than in the no-lockdown case, yet the

peak of I is halved.
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Figure 3.4: Local evolution in “Georgia” without lockdown (left) and with lockdown
(right).

Multi-regional lockdown We consider now the multi-regional case: during lock-

down, β is reduced by a factor of 10 and the borders are closed, i.e. the mobility

coefficients are set to 0. In particular, we assume that in the 7-state case, only Geor-

gia enforces a lockdown (Fig. 3.5). As expected, with the restrictions on the mobility,

the results are similar to the isolated case, and the lockdown reduces the number of

infected to about 10, 000 vs. the 20, 000 of the no-lockdown case.

Figure 3.5: left: without lockdown; right: with lockdown.

We also plot in Figure 3.6 Florida and New York from day 0 to day 100 to show

how a lockdown in Georgia can slightly affect other regions. After day 60, Florida

immediately experiences an increase in S because once the lockdown is dismissed, 0.03

of Georgia’s susceptible (incremented by the lockdown) move into Florida (only 0.02
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of Florida’s S is assumed to move into Georgia). As for New York, there is a slower

increase in R after day 60. As 0.01 of Georgia’s recovered population is moving into

New York, and the recovered population of Georgia is lower than without lockdown,

while 0.015 of New York recovered is moving into Georgia. In conclusion, if the

lockdown is enforced only on one state, the effects for the other states appear to be

minor.

Figure 3.6: Multi-regional case with a lockdown in Georgia: left: Florida; right: New
York.

Effects of vaccination

To test the effects of vaccination (in absence of lockdown), we introduce the vaccine at

day 80, where the vaccination rate is modeled by (2.2). We refer again to “Georgia.”

We observe that at day 80, the development pattern of the recovered is interrupted

and R increases at a much higher rate. At the same time, the population of the

susceptible drop significantly, decreasing faster than before.

Notice that the total number of recovered reaches a greater value than that without

vaccination. Also, the susceptible population decreases to 0 at the end, which does not

happen where vaccination is not implemented, reaching herd immunity. Therefore,

our model suggests that the introduction of vaccination can end the outbreak. We

compare the effects of a temporary measure like the lockdown and the vaccination in

Fig. 3.7.
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Figure 3.7: Measurements for fighting the pandemic in a multi-regional solver, with
focus on “Georgia”: left, lockdown; right, vaccination.
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Chapter 4

Sensitivity Analysis for

Mono-region Models

COVID-19 modeling is subject to several uncertainties, including unknown disease

parameters and limited data availability. Sensitivity analysis is a valuable tool that

can help researchers assess the impact of these uncertainties on COVID-19 model pre-

dictions. By systematically varying the disease parameters within plausible ranges,

sensitivity analysis can provide insights into which parameters have the most signif-

icant impact on model outcomes and which are less critical. This information can

guide researchers and policymakers in prioritizing data collection efforts and devel-

oping effective interventions to control the spread of COVID-19. In this chapter, we

perform first-order local sensitivity analysis on the endemic model without consider-

ation for vaccination, i.e. ρ = 0.



18

4.1 First-order local sensitivity analysis on the en-

demic model

To perform first-order local sensitivity analysis the SIR endemic model, we investigate

the effect of perturbations in each disease parameter, i.e., β (the number of average

adequate contacts per person per unit of time), γ (the recovery rate) and µ (the

reproduction/death rate), on each S, I, R compartment. More specifically, we perturb

β, γ and µ by δβ, δγ and δµ respectively; then the corresponding perturbed system

dynamics are derived as


dtŜβ = µN − (β + δβ)ÎβŜβ/N − µŜβ

dtÎβ = (β + δβ)ÎβŜβ/N − γÎβ − µÎβ

dtR̂β = γÎβ − µR̂β

(4.1)


dtŜγ = µN − βÎγŜγ/N − µŜγ

dtÎγ = βÎγŜγ/N − (γ + δγ)Îγ − µÎγ

dtR̂γ = (γ + δγ)Îγ − µR̂γ

(4.2)


dtŜµ = (µ+ δµ)N − βÎµŜµ/N − (µ+ δµ)Ŝµ

dtÎµ = βÎµŜµ/N − γÎµ − (µ+ δµ)Îµ

dtR̂µ = γÎµ − (µ+ δµ)R̂µ

(4.3)

where the hat indicates the compartmental population after perturbation of the pa-

rameter in the subscript; for example, Ŝβ is the perturbed susceptible population

after perturbing β by δβ.

To obtain dt(S − Ŝ), dt(I − Î), dt(Ŝµ − R̂), we subtract systems (4.1), (4.2),

and (4.3) from the original system (2.1). Since we are not considering the effect of

vaccination, we set ρ, the vaccination rate in the original system, to zero. We also

normalize the total population to N = 1. For concision, we will exemplify below the
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computation of dt(S − Ŝβ) and omit those of the other compartments. We have

dt(Ŝβ − S) = dtŜβ − dtS

= (µN − (β + δβ)ÎβŜβ/N − µŜβ)− (µN − βIS/N − µS)

= −µ(Ŝβ − S)− β(Ŝβ − S)(Îβ − I)− βS(Îβ − I)− β(Ŝβ − S)I − δβŜβ Îβ

We then compute

dt
Ŝβ − S

δβ
= −µ

(Ŝβ − S)

δβ
− β

(Ŝβ − S)(Îβ − I)

δβ
− βS

(Îβ − I)

δβ
− β

(Ŝβ − S)

δβ
I − Ŝβ Îβ

(4.4)

Since we assume the response of the susceptible and infected populations from

a small perturbation of β is small, we assume limδβ→0(Ŝβ − S)(Îβ − I) = 0. With

this assumption, we set the second term of equation (4.4) to be zero. Also, note that

limδβ→0 Ŝβ = S, limδβ→0 Îβ = I, etc. In this way, we arrive at the relation

dtσ
β
S = dt lim

δβ→0

Ŝβ − S

δβ
= −µ

(Ŝβ − S)

δβ
− βS

(Îβ − I)

δβ
− β

(Ŝβ − S)

δβ
I − SI

= −µσβ
S − βSσβ

I − βσβ
SI − SI,

where σβ
S ≡ limδβ→0(Ŝβ −S)/δβ and σβ

I ≡ limδβ→0(Îβ − I)/δβ are defined respectively

as the sensitivities of the S and I compartments on β.

Using similar computations, we obtain sensitivities of every compartment on every

parameter as follows:


dtσ

β
S = −µσβ

S − βSσβ
I − βσβ

SI − SI

dtσ
β
I = βSσβ

I + βIσβ
S + SI − γσβ

I − µσβ
I

dtσ
β
R = γσβ

I − µσβ
R

(4.5)



20
dtσ

γ
S = −µσγ

S − βSσγ
I − βIσγ

S

dtσ
γ
I = βSσγ

I + βIσγ
S − I − γσγ

I − µσγ
I

dtσ
γ
R = γσγ

I − µσγ
R + I

(4.6)


dtσ

µ
S = 1− S − µσµ

S − βSσµ
I − βIσµ

S

dtσ
µ
I = βSσµ

I + βIσµ
S − γσµ

I − µσµ
I − I

dtσ
µ
R = γσµ

I − µσµ
R −R

(4.7)

With these systems of ODEs, we can solve for these sensitivities through numerical

methods. We use the ode45() method from MATLAB and obtain the following results

shown in Figure 4.1.

Figure 4.1: Sensitivities of the S, I, R compartments on: top left: β, the transmission
rate; top right: γ, the recovery rate; bottom: µ, the reproduction/death rate.

We observe that the transmission rate β is negatively associated with the suscepti-
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ble population and positively associated with the infected and recovered populations.

Regulation measures such as lockdown and mask mandates that aim to reduce β

can effectively reduce the infected population. From the sensitivity on γ, the recov-

ery rate, we observe the recovered population is positively associated with γ until

around day 70; then, the relationship becomes negative. We reason that an increased

recovery rate induces reduction in infected population, which ultimately leads to a

reduction of the recovered population over time. From sensitivity on µ, we observe

that the reproduction/death rate, µ, has the highest magnitude of sensitivities. More

interestingly, the sensitivity of the infected population on µ is negative before day

90 but positive afterwards. This result indicates that if the policymakers are able to

control µ in this short period of time, increasing µ in the first 90 days reduces the

infected population.
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Chapter 5

Parameter Estimation and

Prediction with Physics-Informed

Neural Networks

During the COVID-19 pandemic, governments around the world collected a vast

amount of data to be analyzed for disease control. In this chapter, we utilize the

versatility of neural networks to estimate the disease parameters and make predictions

of the dynamics. Neural networks have shown great promise and remarkable accuracy

on image processing and other classification problems [14][15]. However, standard

neural networks produce unsatisfactory results on domains beyond the training data;

thus, we take advantage of physics-informed neural networks (PINN) [13], which

enforce physical constraints to eliminate unreasonable results. In Section 5.1, we

provide a brief introduction to PINN. In Section 5.2, we discuss results from using

PINNs to estimate disease parameters and make predictions, from noisy or limited

data, for the endemic mono-regional SIR model.
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5.1 Introduction to physics-informed neural net-

works (PINN)

Neural networks consist of multiple layers of neurons that are connected to each other

in a systematic way, where outputs from neurons of a given layer become inputs for

the next layer. Figure 5.1 displays an example of a feedforward neural network [1].

Figure 5.1: An example of a feedforward neural network. The neurons are partitioned
into four layers. The first layer is referred to as the input layer and the last layer is
referred to as the output layer. Each layer between these two layers is a hidden layer.

Mathematically, each data point in the dataset is trained by a neural network,

f̂W ,b, defined as

a0 = x,

ai = σ(W iai−1 + bi), ∀i ∈ {1, 2, ..., L},

f̂W ,b(x) = aL,

where x ∈ RM0 denotes a vector of M0 input variables. The weight matrix connecting

the (i−1)th layer to the ith layer is denoted by W i ∈ RMi×Mi−1 , where Mi denotes the

number of neurons in the ith layer of the network with i ∈ {1, 2, ..., L}, and the bias,

the other set of learning parameters that are added to the weighted sums of inputs

to each neuron in the network, is denoted by bi ∈ RMi . The nonlinear differentiable
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activation function, σ : R −→ R, is applied element-wise to the weighted input vector

(W iai−1+bi). The output of the i
th layer is denoted ai and is passed to the following

layer as input. The final layer’s output, aL, is the output of the neural network.

To train a standard neural network, the weights and biases are adjusted to fit the

training data well. This is performed by minimizing the loss function L. In practice,

the full dataset is divided into batches, and the losses from all batches are summed

to compute the total loss. A typical example of a loss function is the mean squared

error. With f̂W ,b(x) denoting the neural network output from a batch of S input

data points and f(x) the actual values, the loss function is defined as

L =
1

S

∥∥∥f̂W ,b(x)− f(x)
∥∥∥2

2
, (5.1)

where ∥ · ∥2 denotes the L2 norm. Then, expressing the loss function of the ith batch

as Li, we find the total loss function as

Ltot =

Nb∑
i=1

Li,

where Nb is the total number of batches.

The goal of neural networks is to minimize the loss function with respect to the

weights and biases so that f̂ approximates f . In practice, the loss is computed over

each batch by using an algorithm called stochastic gradient descent with backpropa-

gation [16]. This algorithm computes the gradient of the loss function over the batch,

and moves in the direction of steepest descent to minimize the loss function. As differ-

ent activation functions render different derivative behaviors, the choice of activation

function plays an important role in the model’s efficiency. Commonly used activation

functions include Sigmoid, tanh, rectified linear unit (ReLU), and swish (see Table

5.1 and Figure 5.2).



25

Mathematical formulation

Sigmoid σ(x) =
1

1 + e−x

tanh tanh(x) =
ex − e−x

ex + e−x

ReLU R(x) = max{0, x}
swish S(x) = x · σ(βx), β ∈ R

Table 5.1: Mathematical formulations of common activation functions.

(a) sigmoid (b) tanh

(c) relu (d) swish

Figure 5.2: Plots of commonly used activation functions.

.

By the Universal Approximation Theorems [19], neural networks are exceptional

at approximating any arbitrary function. However, neural networks can easily fall

susceptible to overfitting the noise in the training data while failing to approximate
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any meaningful trend. This drawback reduces the ability of neural networks to ex-

trapolate beyond the training data domain [12]. To minimize this error, one can train

directly on data in the extrapolation region, but generating additional data is usually

inefficient.

The extrapolation limitation of standard neural networks can be overcome with

physics-informed neural networks (PINN). By incorporating constraints based on

physical, empirical, or mathematical consistency, a standard neural network is en-

dowed with physical intuition. Consequently, PINNs yield more interpretable results

that are accurate with noisy or a lack of data [13]. The incorporation of physical

constraints is accomplished through augmenting the loss function with a regularizer.

Ideally, regularization increases generalization accuracy without greatly decreasing

accuracy over the training data and decreases variance of the model predictions,

V(f̂(x)) without greatly increasing the bias of the model output, (E[f̂(x)] − f(x))2

[9].

In this project, we simply use the ODE residuals of the SIR model as the regular-

izer. For example, the regularizers attributed to each of the compartment in the SIR

epidemic model are

NS[ŜW ,b(t), ÎW ,b(t)] = dtŜW ,b(t) + βŜW ,b(t)ÎW ,b(t)− µ+ µŜW ,b(t)

NI [ŜW ,b(t), ÎW ,b(t)] = dtÎW ,b(t)− βŜW ,b(t)ÎW ,b(t) + (µ+ γ)ÎW ,b(t)

NR[ÎW ,b(t), R̂W ,b(t)] = dtR̂W ,b(t)− γÎW ,b(t) + µR̂W ,b(t),

where the NS, NI , and NR represent the differential operator for the S, I, and

R compartments respectively, and ŜW ,b(t), ÎW ,b(t), and R̂W ,b(t) are the predicted

compartmental populations with parameters W and b. In practice, the first-order

derivatives of the model predictions are approximated with automatic differentiation.

Taking the susceptible compartment for example, this augmentation leads to a
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new loss function:

LS =
1

S

∥∥∥ŜW ,b(t)− S(t)
∥∥∥2

2
+
∣∣∣NS[ŜW ,b(t), ÎW ,b(t)]

∣∣∣ , (5.2)

Trained with augmented loss functions for each compartment, PINNs are able to

not only fit the training data well but also to comply with the underlying physical

principles, rendering more confidence in the predictions.

5.2 Using PINN for parameter estimation and pre-

diction of the SIR endemic model

One of the most prominent challenges of COVID modeling is parameter estimation.

Accurate parameter estimation facilitates effective policy making and pandemic con-

trol. However, in most cases, these parameters are difficult to obtain analytically and

thus must be approximated with data-driven methods. In this Section, we simulate

data of the SIR system using predetermined parameters; then, we use the deepxde

package developed by Lu et al. [16] to solve this inverse problem for the endemic SIR

system as shown in equation (2.1), with ρ = 0. We construct a fully connected deep

neural network with 1 input layer of 1 neuron for the time input, 3 hidden layers

of 30 neurons each, and 1 layer of 3 neurons for the S, I, R outputs. This con-

struction of the neural network is relatively small, as the size of the dataset is small,

and the dynamics is not too complex. The network is trained for 30, 000 iterations

with a learning rate of 0.001. Since the solution for each compartment strictly lies in

the interval [0, 1], an activation function with a smaller range usually facilitates fast

convergence. Therefore, we choose the tanh function as the activation function.

First, we experiment with the SIR endemic model with ρ = 0, N = 1, I0 = 0.1,

β = 0.08, γ = 0.03, and µ = 0.01. The estimated parameters are β, γ, and µ, which
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are initialized with values 0.01, 0.01, and 0 respectively. The training data comprises

of 237 data points over the span of 180 days and is unperturbed in this case.

The neural network successfully recovers the parameters as β̂ = 7.98 × 10−2,

γ̂ = 3.00× 10−2, µ̂ = 9.97× 10−3. Using these approximations, the model accurately

replicates the SIR dynamics with a test loss (using L2 relative error metric) of 1.05×

10−6:

Figure 5.3: left: training data for SIR endemic model; right: PINN prediction for
SIR endemic model.

Similar accuracy is found in the prediction of the SIR epidemic model and is

omitted for concision.

5.2.1 Using PINN for noisy data

However, during this pandemic, the inadequate reporting systems in most countries

have resulted in noisy data. Therefore, we use simulated noisy data to examine the

model performance under this limitation. We compare the model accuracy under

5%, 10%, and 20% Gaussian noise as demonstrated in Table 5.2 and Figure 5.4. We

observe that with 5% noise, the PINN demonstrates success in parameter estimation,

with highly accurate predictions that closely align with true values. As anticipated,

the introduction of higher levels of noise at 10% and 20% result in a degradation of

performance with regard to both parameter estimation and prediction, yet the PINN
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still captures the general dynamics of system with respect to peak of infection and

asymptotic behaviors. However, intriguingly, the parameter estimation outcomes for

the 20% noise scenario are actually superior to those obtained with 10% noise, but

the predictions for the 10% noise scenario are closer to truth, as reflected by the

test losses. These findings highlight the complexity of the interplay between noise

levels and the performance of the PINN, and underscore the importance of careful

consideration of these factors in optimizing the accuracy of the model.

β̂ γ̂ µ̂ Test loss
True value 8× 10−2 3× 10−2 1× 10−2

5% noise 8.07× 10−2 3.01× 10−2 1.02× 10−2 1.094× 10−2

10% noise 7.47× 10−2 2.84× 10−2 9.29× 10−3 2.536× 10−2

20% noise 8.47× 10−2 3.08× 10−2 1.04× 10−2 6.289× 10−2

Table 5.2: PINN parameter estimations and test losses from noisy data.
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(a) Training data for SIR endemic model. (b) PINN prediction from data with 5% noise.

(c) PINN prediction from data with 10% noise. (d) PINN prediction from data with 20% noise.

Figure 5.4: PINN predictions from noisy data.

.

5.2.2 Using PINN for limited data

Infectious disease modeling usually takes place while the pandemic is in progress,

as policymakers are interested the future dynamics of the pandemic given limited

amount of initial data. Therefore, PINN’s ability to extrapolate beyond training

domain is especially beneficial in this case. We again consider the SIR endemic

model for demonstration. By limiting the training data to a certain point in time,

we simulate the real situation during a pandemic where we must estimate parameters

and predict the future development of the disease with limited data. Table 5.3 and
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Figure 5.5 show the SIR parameter estimations, test losses, and predictions by the

PINN using the first 20, 50, 100 (out of 237 total) training data points.

As expected, augmenting the volume of training data significantly improves the

predictive ability of the PINN, as the test loss consistently decreases as the volume of

data increases. However, similarly to findings in Section 5.2, the increase of training

data from 50 to 100 points does not correspond with superior parameter estimation

as expected. The total training loss are evaluated for each of the three cases exam-

ined: 3.74 × 10−8 for the 20-point scenario, 4.37 × 10−8 for the 50-point scenario,

and 1.38 × 10−7 for the 100-point scenario. We observe that the training losses are

broadly consistent across all scenarios. This result suggests that the PINN may have

converged upon alternative sets of parameters that are similarly capable of satisfying

the underlying ODE system, despite being distinct from the true values.

β̂ γ̂ µ̂ Test loss
True value 8× 10−2 3× 10−2 1× 10−2

20 data points 1.28× 10−1 3.31× 10−2 4.91× 10−2 4.013× 10−1

50 data points 8.84× 10−2 3.14× 10−2 1.50× 10−2 4.204× 10−2

100 data points 7.08× 10−2 2.69× 10−2 6.82× 10−3 3.043× 10−2

Table 5.3: PINN parameter estimations and test losses from limited data.
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(a) Training data for SIR endemic model. (b) PINN prediction from 20 points.

(c) PINN prediction from 50 points. (d) PINN prediction from 100 points.

Figure 5.5: PINN predictions from limited data.

.
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Chapter 6

Conclusions: Limitations and

Perspectives

In conclusion, this project aims to simulate the dynamics of the COVID-19 pandemic

through both (1) a space-explicit compartmental model approach and (2) a data-

driven machine learning approach; a first-order local sensitivity analysis is also used

to identify the impact of each parameter on the SIR system. The space dependence

of the model-driven approach holds significant potential for policymakers who are

seeking to navigate the complex regulatory landscape of pandemics that involve a

multitude of regions. We validate our solver against existing theorems and by cross-

validation of two solvers developed independently with different languages. This

solver is just a starting point for a tool to test in realistic and complex scenarios (e.g.

[7]). The physics-informed neural networks approach combines classic compartmental

models with observable data to produce enhanced extrapolation ability for parameter

estimation and model prediction with data limitations. Our results show that this

method captures the general dynamics of an SIR model with very few data points,

while significant data limitation hinders accurate parameter estimation.

For the space-dependent model approach, we consider the following improvements:
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Local model The SIR model is just a starting point. Class inheritance enables

using more complex models like SEIR [7], up to models incorporating a local space

dependence like in [22]. In the latter case, we will combine a multi-scale represen-

tation of population mobility, with a PDE for local range and matrices for the long

range. Inheritance of classes should guarantee a prompt extension of the current

solver when all the GUs are modeled by the same system, more challenging will be

the implementation of heterogeneous local solvers (e.g. with complex models in some

regions and simpler in others). Other improvements refer to (1) the introduction of a

structure of age (particularly evident in the COVID-19 pandemic); (2) the introduc-

tion of re-infection of vaccinated people and virus variants in the model.

Numerical methods The Heun’s method is explicit, so to avoid the computational

burden of nonlinear solvers, consequently it is only conditionally stable. This requires

a manual tuning of the time-step, to avoid numerical oscillations. We are consider-

ing the introduction of adaptive explicit solvers (like the Runge-Kutta Fehlberg 45),

where the time step is selected automatically to guarantee the accuracy. Notice that

the region of stability of the multi-regional solver is driven by the smallest stability

region of the single GU. A challenging task will be the introduction of a solver-by-

subdomains, where the solution of the global domain is achieved by solving iteratively

the subdomains with different time-steps selected adaptively. This may be crucial in a

multi-regional multi-scale solvers based on PDEs to contain the computational costs.

Parameter tuning The local parameters and the mobility data need to be re-

trieved from measurements. As suggested by our results of parameter estimation

with neural networks and the first-order sensitivity analysis, the reliability of the re-

sults strongly depend on these disease parameters. We argue that, even in presence

of complete measures, the parameters will be affected by noise. The first-order local

sensitivity analysis that was conducted in the current study is a valuable initial step
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in identifying the most influential parameters of the model. However, it should be

noted that this method is inherently limited in its ability to accurately capture the

complex interactions that may occur between the various model parameters. As such,

the use of higher-order sensitivity analysis or global sensitivity analysis is needed to

better capture the complex dynamics of the model and thus allows a more comprehen-

sive understanding of the underlying mechanisms driving the model. For parameter

estimation, we consider other data-driven methods other than the current neural net-

work approach, such as minimal variance techniques for non-linear problems like the

Ensemble Kalman-Filter or Bayesian approaches [5][6].

For the data-driven physics-informed neural networks approach, we propose the

following improvements:

Uncertainty quantification Given the promise that PINNs have shown in its

predictive power, we need to perform uncertainty quantification (UQ) to ensure its

reliability and robustness with the lack of actual data. The UQ process involves

characterizing the uncertainties that arise from model inputs, parameters, and the

inherent stochasticity of the model itself. Thus, it can provide researchers and pol-

icymakers with a more complete understanding of the potential sources of error in

the model’s predictions and enable more effective decision-making. Furthermore, UQ

can facilitate the identification of areas of the model that require further refinement

or calibration to improve its predictive accuracy. Some of the existing UQ methods

include Bayesian neural networks [8] and various types of ensemble methods [18].

Model complexity The neural network in this project only considers the classic

SIR model, which does not capture the full development of the COVID pandemic.

For example, the model does not consider waning immunity, for no recovered pop-

ulation re-enters the susceptible. The model also does not take space dependence

into account. For future work, we can continue using neural networks for more com-



36

plex models such as the Susceptible, Exposed, Infected, Recovered, Waning immunity

(SEIRW) model with space dependence as we considered earlier. We may also ap-

ply this approach to the space-dependent model in this project. In this case, this

deep learning approach is especially beneficial, as the increased dimensionality of a

complex problem poses minimal computational hindrance.

Time dependence of parameters Moreover, the current use of neural networks

for parameter estimation and prediction does not take time-dependent model pa-

rameters into consideration. Although the current model shows predictive potentials

with static parameters, its reliability is undetermined under the evolving nature of

the pandemic. Future research efforts should explore incorporating time-dependent

parameters into the model, potentially through the use of recurrent neural networks

[21] or other techniques capable of modeling time-series data. By accounting for

the dynamic nature of disease transmission, these models can provide a more com-

prehensive understanding of the pandemic’s evolution and subsequently enable more

effective decision-making by policymakers and public health officials.
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