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Abstract 

Using TROPOMI-Based Estimation of Daily Ozone Ground Levels to Assess the Impact of 
COVID-19 on Ozone Concentrations in China  

 

By Muwu Xu  

Background: While China’s strict quarantine policy during the COVID-19 pandemic reduced the 
formation of ozone precursors from transportation and industrial sectors, ground observations 
have reported an increase in ozone levels in many Chinese cities. However, few studies have 
been able to evaluate the ozone level change in the entire country.  

 

Methods and Materials: We developed a machine learning model using nadir ground level 
ozone column from the TROPOspheric Monitoring Instrument (TROPOMI), ozone profiles from 
the Ozone Monitoring Instrument (OMI),  metrological parameters, and land use data to 
estimate full-coverage daily ground ozone concentrations across China at 0.05° spatial 
resolution.  

 

Results: We built two separate models for the pandemic year (11/2019 – 04/2020) and the 
reference year (11/2018 – 04/2019), respectively. There were 209, 654 daily measurements 
from a total of 1, 500 AQS monitor during the study period. The out of bag R2 was 86.7% in the 
reference year model and 90.06% in the pandemic year model. During the phase of lockdown in 
Covid-19 (Jan/23/2020-Feb/13/2020) , defined as high level quarantine phase, a significant 
increase of concentration of ozone took place comparing to the concentration in pre-lockdown 
episode (Jan/1/2020to Jan/22/2020) in China (95% CI: 9.80 μg/m3, 9.88 μg/m3; p < 0.0001).  

Conclusion: Our study demonstrates the possibility and utilization of TROPOMI product for 
modelling Ozone at a fine spatial and temporal resolution, which will allow us for construction 
of long-term daily Ozone measurements at 5km2 spatial resolution and support further 
epidemiological and environmental studies about ground Ozone. 
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1. Introduction:  

Ground level Ozone (O3) is nowadays a major air pollutant that influence the health of human 

beings a lot. Many adverse effects such as respiratory symptoms or cardiovascular dysfunction 

are attributed to high concentrations of ground level ozone [1]. It is reported in China that a 10 

μg/m3 increase of the maximum 8-hour average concentration of O3 resulted in increases in 

percent change for non-accidental mortality, cardiovascular mortality and respiratory mortality 

of 0.42% (95%CI, 0.32-0.52%), 0.44% (95%CI, 0.17-0.70%) and 0.50% (95%CI, 0.22-0.77%), 

respectively [2]. Studies about air pollutions in China remain mostly to PM2.5, NO2 and 

somehow are only conducted in certain regions[3-6]. Moreover, current studies on ozone 

predictions in China either don’t have a full profile of ground level ozone or not very accuracy 

and high resolution[7, 8].  

During the serious period of 2019 novel coronavirus (COVID-19), nationwide quarantines and 

restrictions on the movement of population are implemented by China to stop COVID-19 from 

spreading after the Chinese New Year of 2020, which leads to large reduction of industrial and 

transportation activities associated to the ozone emissions[9-11]. According to previous 

research on the formation and fate of ozone, these activities were essential and usually good 

for ozone formation[12, 13]. The COVID-19 pandemic in China allowed us to investigate the 

association between industrial and transportation emissions and ground level ozone 

concentration in a very large scale, considering almost all the cities and people reduced their 

level of activities that could increase the ozone[9, 14].  Considering the lockdown policies 

implementation time point, we choose 4 different phases in out study as for lockdown phases 

and reference phases: pre-lockdown phase: Jan/1/2020 to Jan/22/2020; lockdown phase: 
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Jan/23/2020 to Feb/13/2020; 2019 Lunar calendar reference: Feb/4/2019 to Feb/25/2019; 

2019 Gregorian calendar reference: Jan/23/2019 to Feb/13/2019.   

Because O3 is an important air pollutant as it connects air quality and public health, it draws a 

growing attention from environmental science community[15-17]. However, it is very difficult 

to catch comprehensive ground ozone due to the lack of enough deployment of ground 

monitors. There is only a few research and publication for China[18], using a monitoring 

network covering major cities across whole country which was completed in 2012. However, 

due to the sparse monitor located merely on major cities, the resolution and 

comprehensiveness of the ground level ozone are large limitations for directly utilizing ground-

level air monitoring data. Recently, the satellite remote sensing techniques are a widely used 

tools and provide useful way to estimate and investigate the ground-level air pollutants[15, 19, 

20]. For ozone pollution, remote sensing data have been utilized also, however, previous study 

for China ozone by the use of space-based Ozone Monitoring Instrument data doesn’t give a 

great result of estimation with the correlation coefficient ranging from 0.3 to 0.6 for sites in 

southern China and ranging from 0.1 to 0.3  for sites in northern China during the summertime 

in daily level from 2013 to 2017[21].  In our study, we try to discover some new remote sensing 

data source to have a better retrieve of ground level ozone. In our study, TROPOMI turns out to 

be a very useful data source showing a great result of estimation, with a R2 of around 0.8. And 

because of its high resolution, a ground level ozone prediction map is built at a resolution of 

0.5°, which by far is one of the finest prediction maps of ground level ozone across all China.  
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In this analysis, our model implemented elevation, land-use type, atmospheric chemistry 

components and meteorological factors using machine learning technique to estimate the daily 

surface ozone at a spatial resolution of 0.5°. With these models, we can evaluate the actual 

change of ground level-ozone in the period of COVID-19 and the reference period of the last 

year to see how the COVID-19 policies of restrictions change the ground level ozone in different 

regions.   

2.Data and methods:  

2.1 Study Design  

In our study, monthly average MDA8 ozone concentrations in China were predicted from 

2018/11/01 to 2019/04/30 and 2019/11/01 to 2020/04/30 using satellite remote sensing data. 

The workflow design of our study is shown in Fig.1. At first, the fraction of the ground-layer 

ozone column were extracted from the SAO OMI ozone profile. And we imputed the missing 

values by daily random forest models with the application of MERRA-2 meteorological fields 

and other fields like surface flux. Then the full coverage ground level column ozone could be got 

by multiplying the gap-filled fraction of the ground-layer ozone with the TROPOMI total column 

ozone. Then we could get the final daily average MDA8 ozone predictions with the application 

of another random forest model, which is trained with multiple features, such as the TROPOMI 

full profile ground-level ozone, land-use terms, population, meteorological fields, and chemistry 

fields.    
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2.2 Datasets:  

2.2.1 Ozone monitoring data  

The study domain covers mainland China, Hong Kong special administrative region, and Taiwan. 

The China map is made through ArcGIS Pro and the province outlines is downloaded from 

Resource and Environment Science and Data Center[22]. Then a 0.5° modeling grid was 

constructed covering the study domain for data integration.  

Ozone measurement: Concentrations of O3 at around ~ 1590 stations are from air monitoring 

data center of China. Measurements are published by the China National Environmental 

Monitoring Center (http://www.cnemc.cn/). We calculated the maximum daily 8-hour average 

(MDA8) from the measurements. Then MDA8 Ozone measurements from stations located in 

the same grid cell were averaged, and there were 1232 grid cells with Ozone measurement 

totally.  

2.2.2 SAO OMI ozone profile 

The Smithsonian Astrophysical Observatory (SAO) Ozone Monitoring Instrument (OMI) using 

the NASA Aura satellite is a nadir viewing spectrometer and its ozone profiles is from the 0.22 

to 261 hPa and so can be used to estimate the ground layer fraction ozone layer[23]. 

 

2.2.3 TROPOMI data:  

The TROPOspheric Monitoring Instrument (TROPOMI) is a nadir-viewing spectrometer data 

from sentinel-5p satellites at a resolution of 0.07° * 0.035° resolution, which can be 

downloaded from Goddard Earth Sciences Data and Information Services Center[24]. To have a 



  

 

5 

full ground ozone profile, we use the gap-filled ground layer fraction from the SAO OMI ozone 

profile and then use inverse distance weighting (IDW) technique to impute the missing values 

of TROPOMI ground layer ozone.  

2.2.4 Meteorological variables 

Meteorological parameters in our study period were from the Goddard Earth Observing System 

Data Assimilation System Forward Processing (GEOS-FP) at resolution of 0.25° latitude * 

0.3125° longitude resolution[25]. Then they are upscaled to 0.5° grid cell by inverse distance 

weighting (IDW)[26].  

2.2.5 Aerosol chemistry  

Trace chemistry and gases data are retrieved from the Goddard Earth Observing System Data 

Assimilation System GEOS-5 Composition Forecasting systems (GEOS-CF)[27]. We use the time-

averaged two-dimensional collections (tavg) as our input data sources, whose resolution is 

0.25°. Also, we regrided the data into 0.5° grid cell by inverse distance weighting (IDW). Among 

the different chemistry and gases components, we selected C2H6, CO, HCHO, ISOP, NO2, NO 

and BENZ, according to previous research discussed the precursors by P.S.Monks et.al[12].  

2.2.6 Land use, population density, road length and digital elevation 

As we know, the parameters, such as land use, population density, road length and digital 

elevation could affect the emission, transportation, and chemistry reaction. Below are these 

data sources.  
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We grabbed the land use data from the European Space Agency (ESA) Climate Change Initiative 

Global Land Cover Maps Version 2.0.7., which contains 23 types of land covering based on 

satellite observations at a spatial resolution of 300m.  

LandScan global population data were grabbed from the Oak Ridge National Laboratory. The 

spatial resolution of the dataset is 30 arc-seconds and we choose the 2018 version as the 

estimate of the population density[28]. 

Also, from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM), version 3, we grabbed the 30-m elevation data, which is 

the latest version with an increased accuracy comparing to previous versions[29]. 

2.3 Data integration  

0.05° grid cells were created across whole china for integration. The input features were 

resampled to the cells by a few methods. At first, IDW was used to interpolate and resample 

data which spatial resolutions are rougher than 0.05. These data included ground-level column 

TROPOMI ozone, GEOS-FP meteorological fields, GEOS-CF chemistry fields. For the land use 

data, which is categorical, we further categorized them into 7 categories (cropland, urban, 

vegetation, water, bare, wetland and ice) and then made a calculation of the percentage 

coverage of these categories within each cell. Moreover, the average elevation, road length, 

and population density were calculated and integrated within each cell. After integrating the 

feature data, the training dataset were built by selecting grid cells that contained the air quality 

monitoring stations.  
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2.4 Model construction and validation  

We trained two separate random forest models within the same set of parameters for the two 

study phases (ref: 2018/11/01 to 2019/04/30; covid: 2019/11/01 to 2020/04/30), because we 

believe that because of the COVID 19 quarantine, the sources of the ground-level ozone are 

shifted and so the rank of importance of different input features would be changed. The 

detailed list and the ranking of the variables in the random forest models could be checked in 

Figure 4.  

For the validation, a 10-fold cross-validation method was used. Randomly, the original dataset 

was divided into ten equal fold subsets. Each time we used 9 folds of them to train the model 

and make prediction on the one left. After 10 times, each fold would have a prediction value 

corresponding to the original ground-level ozone concentration. Then we could calculate the R2 

and root-mean-square error (RMSE) out of them, which could be used to evaluate the model 

performance. Furthermore, a spatial 10-fold CV was used to test the generalizability of our 

model prediction in different regions. Likely, the original dataset was divided randomly but 

based on the geospatial location of the data points. On such condition, the predictions on a 

given site would be output by a trained model from other locations.   

R version 4.0.3 was used to process and perform statistical analysis. Package ‘randomForest’ 

and ‘ranger’ were utilized for training and testing the random forest models.   

2.4.1 Random forest model  

A random forest (RF) model was used to fit 26 predictors to over 1500 ground measurements. 

There are several reasons we choose RF model: 1. It has high accuracy in learning and 
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classifying features; 2. We can put a large number of input variables as predictors; 3. It will 

output the variable importance so we could tell what is of high ranking in our input predictors. 

As we know, random forest is a supervised machine learning model involving a bagged classifier 

built on decision tree that proposed by Breiman[30].By averaging a set of decision tress with a 

subset of, the RF model will give you the best predictions. In the process, a random subset of 

samples will be selected from all observations with replacement, and gradually RF model will 

select the best set of predictors that provides the best split at each node. There are two main 

parameters for RF model, which are the number of predictors sampled for each node (mtry) and 

the number of tress to be averaged (ntree). The parameters we used in our model are mtry 8 and 

ntree 500 after a comparison of results with different settings to achieve the best prediction 

accuracy. The 26 predictors used in our model includes are shown in Figure 4.  

 

 

3. Results and discussion:  

3.1 Descriptive statistics of the training dataset: 

After gap-filling for the TROPOMI data, only 9383 out of 222392 (4%) site-days samples and 

2838 out of 243043 (1%) site-days samples of near ground TROPOMI for 2018-2019 and 2019-

2020 model are missing, respectively. For ground monitor: 3494/222392 (1%) site-days samples 

and 13480/243043 (5%) site-days samples of ground monitor MDA8 ozone, in 2018-2019 and 

2019-2020 are missing, respectively. The mean concentrations (μg m-3) of MDA-8 of ozone in 

2018-2019 and 2019-2020 are 72.82 and 79.16, respectively.  
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3.2 Random forest model performance and cross-validation:  

From figure 3 and table 1, we can see the CV results of the random forest models at datily level 

generated for 2018-2019 and 2019-2020 respectively, consisting of the R2 and RMSE between 

the estimates and observations. The random forest models’ out-of-bag R2 are 86.6% and 

90.0%, showing a relatively good agreements between the predictions and the observations, 

respectively. Though their performance were different, we can assume they both had a pretty 

good performance comparing to models in previous report [31], the reasons are mostly 

because of the improvement of the data quality of ground monitors and the improvement of 

the data quality of our predictors.  

Our general CV performance of our models were basically same comparing to their out-of-

bags’. In terms of spatial CV, the results are still comparable, with only a 1.9 and 1.7 slight 

decrease comparing to the correspoinding out-of-bags’ R2, indicating that our models’ stability 

and efficiency in terms of spatial variability capturing ability of the surface ozone 

concentrations, which will be a great help for us to detect the different spatial patterns in the 

phases of lockdown in different regions across China.    

3.3 Importance ranking of model predictors  

Figure 4 shows us the predictors’ importance rankings used in models development accroding 

to their percent change of mean square error (MSE) for each year, respectively. From the 

ranking plot, we can tell that the TROPOMI ozone profile played an important roles in the two 

models with a high importance rankings. Meterological fields, such as wind component (U,V) 

surface incoming shortwave flux (SWGDN) and surface pressure (PS), were among the highest 

ranking predictors. The VOC components, such as C2H6, HCHO, CO and ISOP, were also among 



  

 

10 

the high important predictors. These predicators of high ranking are related to the production 

and transition of ozone[12]. There are some difference between the two models considering 

the importrance rankings (figure S1), in 2018-2019 model, the wind components, TROPOMI 

ozone profile, C2H6 and surface pressure are among the top 5 important. On the other hand, in 

the 2019-2020 model, the CO, C2H6, surface incoming shortwave flux, wind component and air 

temperature are among the highest top 5. However, for the overall ranking plot, the difference 

is generally slight and the performance of each model is good. Among the top 15 important 

predictors in different models, only one predictor was different, which is the cropland land 

cover type ranked 10th in 2018-2019 vs urban land cover type ranked 14th in 2019-2020.  

3.4 Spatial and temporal trends of O3 predictions during COVID:  

To control the spread of the COVID-19 virus among human beings, a major preventive 

lockdown was firstly implemented on 23 January in Wuhan, Hubei and the other provinces and 

cities followed the similar regulation for at least 3 weeks[32]. Thus, we set the period from 23 

January to 13 February 2020 as lock down period (LD), which consisted of a 7-day national 

holiday (Spring Holiday), during which previous articles have reported that reductions 

happened as in anthropogenic emissions in eastern china regions[33].  There are three 

reference period we set for comparing. Firstly, the previous 3 weeks before the lock down (pre-

LD); secondly, the same time periods as LD in 2018-2019 in the Chinese lunar calendar (LNY); 

thirdly, the same time periods as LD in 2018-2019 in the Gregorian calendar (ref). In the 

national scale, we could see that there are a nonnegligible amount of change in ground-level 

ozone concentration between the After-quarantine and Before-quarantine (Figure 6). In the 

high population density, while a notable decrease happened in Pearl River Delta, the other 
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regions, like the North China Plain, Yangtze River Delta and Wuhan city are all having an 

increasing level of ground-level ozone concentrations after quarantine (Table 2).   

There are four regions or cities (NCP: North China Plain; YRD: Yangtze River Delta; Wuhan; PRD: 

Pearl River Delta) were selected to focus to tell how the ozone were changed and why such 

changes happened in terms of the aerosol chemical, meteorological and other factors. 

Calculation of the mean values of ozone concentrations in the four different periods among the 

4 regions we selected to study the COVID-19 lock down effect were shown as figure 5. For 

Wuhan, which is the first city of locking down in China, the ozone concentration after 

quarantine was the higher than 3 weeks means before the LD period as well as the means 

concentration of the reference periods in the last year. Particularly, ozone was increased by 

24.61μg/m3 (48.62%), 19.38μg/m3 (34.70%) and 15.73μg/m3 (26.44%) compared with the 

Before-quarantine, the Lunar Calendar reference (LNY) and Gregorian Calendar reference (ref). 

Similarly, Yangtze River Delta and NCP showed the same changing patterns where the ground-

level ozone concentrations after quarantine were the highest comparing to the other three 

reference periods (Before-quarantine, Ref Lunar, Ref Gregorian), where the differences are 

19.56μg/m3 (33.82%), 7.24μg/m3 (10.32%) and 7.80μg/m3 (11.35%) for YRD and 20.86 μg/m3 

(36.00%), 2.48 μg/m3 (3.25%) and 10.58 μg/m3 (15.51%). However, in Pearl River Delta, the 

ground-level ozone decreased after quarantine comparing to the ozone level before quarantine 

(70.49μg/m3 vs 84.88μg/m3), showing another change pattern comparing to the other three 

northern regions.     
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The different patterns of ground-level ozone changes were possibly due to following reasons: 1. 

During the quarantine, in the Northern China, the transportation is limited and thus the 

combustion and the resulting NOx production became dramatically less than usual, the 

decrease of NOx is much more significant than the decrease of the VOCs, which means the 

titration effect of the NOx on ozone impaired and thus the ground-level ozone increased[34]. 2. 

In the Southern China, because the temperature was higher and the plant area were larger, so 

the biological sources of VOCs production was great and kept the ground-level ozone in a 

relative high level[35].  3. In the Northern China high population density area, due to the 

quarantine happened in the time of Chinese Spring Festival when family gathered and a lot of 

biomass fuel, such as coal or wood were burnt, which may also increase the level of VOCs and 

kept the ground-level ozone in a high level.   

3.5 Strengths and Limitations 

Our Ozone model is the first advanced model during the COVID-19 period in China to incorporate both 

TROPOMI satellite remote sensing data and other important features to provide daily ground 

measurement at 5-km² resolution, to help examine the ozone pollution level and aid in epidemiology 

studies in the future. A very important major of the study is that it provides a high resolution of 5-km² 

through whole china by the application of TROPOMI gap-filled Ozone profile data. It is able to seize the 

spatial temporal change trends to further investigate epidemiological health studies requiring daily 

measurements, especially the investigation about whether the ozone concentration would help fight 

against the COVID 19 virus[36]. Moreover, an emerging ensemble classifier, the random forest model, is 

used to generate the estimates with a very high accuracy, which is very inspiring and tell a story that 

possible the machine learning approaches or more cutting edges models could be very useful in the air 

pollution assessment in the future.  
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Also, our work was subject to several limitations. 1. Our study period is winter and spring where 

the concentration of ground-level ozone is relatively low and not thought as a regular air 

pollution. To improve that, we could further use the model to investigate the whole year range 

of ground-level ozone concentrations in China to see whether the model is still reliable. 2. The 

study can’t tell precisely which input features or sources were essential to the ozone 

production during the different study periods we chose. Although the model performances are 

pretty trust-worthy, the mechanisms and pathways of the ground-level ozone concentrations 

were unclear and request further efforts and investigations to understand. 
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4.Figure  

Figure 1.  
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Figure 2.  

 

  



  

 

16 

 

Figure 3.  
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Figure 4. 
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Figure 5. 
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Figure 6.
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5.Table 

Table 1. 

 Out-of-bag General CV Spatial CV 

Year R2  RMSE R2 RMSE R2 RMSE 

2018-2019 86.6 12.56 86.6 12.78 84.7 13.57 

2019-2020 90.0 10.97 89.9 11.20 88.2 12.06 

Table 1. R2 and RMSE (μg m-3) values of out-of-bag predictions, general CV, spatial CV for 2018-

2019 and 2019-2020 model. 
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Table 2.  

Ozone(μg/m3) 

Region 

After-

quarantine 

Before-

quarantine 

Ref Lunar Ref 

Gregorian 

NCP 78.79 57.93 76.31 68.21 

YRD 77.39 57.83 70.15 69.59 

Wuhan 75.23 50.62 55.85 59.50 

PRD 70.49 84.88 62.09 85.76 
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Supplemental:  

Figure S1:  
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