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Abstract

Extremal Problems for Graphs and Hypergraphs

By William Walter Kay

In this thesis we explore extremal results for graphs and hypergraphs.

Graphs: We say that (finite) sets X, Y ⊆ Q have order type τ ∈ [3]` if |X ∪ Y | = `

and τi = 1, 2, or 3 whenever the ith element of X ∪ Y is in X \ Y , Y \X, or X ∩ Y

respectively. In this case, we write τ(X, Y ) = τ . The type graph G(n, τ) is the graph

with vertex set
(
[n]
k

)
where X is adjacent to Y if and only if τ(X, Y ) = τ or τ(Y,X) =

τ . The chromatic number of type graphs have been studied extensively by Erdős,

Hajnal, Rado, and others. More recently, Avart,  Luczak, and Rödl asked if there

was a general formula for the chromatic number based τ . We compute χ(G(n, τ))

asymptotically. This is joint work with Avart, Reiher, and Rödl.

Hypergraphs: An oriented k-uniform hypergraph (or k-graph) H = (V, E) is a

vertex set V coupled with a collection of k-tuples E ⊆ V k. Given < a total order on

V , we say that X = (x1, x2, . . . , xk) ∈ E is consistent with < if x1 < x2 < . . . < xk.

We say that H has Property O if for every total order on V there exists some edge

X ∈ E that is consistent with <. We examine bounds on the minimum number of

edges in an oriented k-graph that has Property O.



Extremal Problems for Graphs and Hypergraphs

By

William Walter Kay

B.A., University of South Carolina, 2009

M.A., University of South Carolina, 2012

M.Sc., Emory University, 2016

Advisor: Dwight Duffus, Ph.D. & Vojtěch Rödl, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2017



Acknowledgments

While a dissertation is largely mathematical, this thesis would be woefully incom-

plete without acknowledgments of the people that supported me through graduate

school. First and foremost, I would like to thank my advisors Dwight Duffus and
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Chapter 1

Introduction

My research interests lie in a field called extremal combinatorics. Loosely speaking,

extremal problems look to maximize or minimize some combinatorial property subject

to some constraint. For example, “maximize the number of edges in a graph subject

to the constraint that it has no triangle as a subgraph.” In this chapter, we introduce

all of the definitions that we need to describe our results. At the end, we include a

brief glossary of technical terms.

1.1 Graphs and Hypergraphs

Here we describe the principal combinatorial objects of interest.

1.1.1 Graphs

A graph G = (V,E) is an ordered pair where V is a (typically finite) set called the

vertex set of G and E ⊆
(
V
2

)
is a collection of pairs of vertices called the edge set of

G. Graphs are relational structures that model any real world phenomenon where

the relationship between pairs of objects is of interest. For example, the internet

graph is one where the vertex set represents the websites on the internet and the
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edges represent websites with a link from one to another. The study of graphs is

called graph theory, and constitutes a major research area in the field of discrete

mathematics. Unless otherwise stated, notation and terminology will be as presented

in Diestel [Die10].

1.1.2 Hypergraphs

Given an integer k ≥ 2, a k-uniform hypergraph (or k-graph)H = (V, E) is an ordered

pair where V is a (typically finite) set called the vertex set of G and E ⊆
(
V
k

)
is a

collection of k-sets of vertices called the edge set of H. Graphs are k-graphs in the

case that k = 2.

1.2 Extremal Combinatorics and an Overview of

Results

Extremal combinatorics is a branch of combinatorics which studies the maximization

or minimization of some combinatorial property subject to some other constraint.

For example, “maximize the number of edges in a graph subject to the constraint

that it has no triangle as a subgraph.” This particular question was answered by

Mantel [Man07] and generalized for any complete graph by Turán [Tur41]. In this

section, we will detail several relevant types of extremal problems in combinatorics.

We will conclude the section with an overview of results contained in this document.

1.2.1 Chromatic Number

Given a graph G = (V,E), we define the chromatic number of G (denoted χ(G)) to be

the least integer so that there exists a function f : V → [χ(G)] so that if {u, v} ∈ E,

f(u) 6= f(v). Informally, χ(G) is the fewest number of colors one requires to color
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the vertex set of V so that adjacent vertices receive different colors. The chromatic

number has been studied in a variety of contexts. For example, the celebrated Four

Color Theorem [AH89] shows that the chromatic number of a planar graph can be no

more than 4. Erdős used probabilistic methods to show that for any g and `, there

exist graphs whose shortest cycle (or girth) is at least g and whose chromatic number

is at least ` [Erd59]. The chromatic number can be generalized to other combinatorial

objects such as hypergraphs (as we will see in Section 1.2.2).

1.2.2 Edge Cardinality

Given a collection of k-graphs C which satisfy some property, one can ask which

members of C have the most or fewest edges? Alternatively, among the k-graphs

which are not members of C, which ones have the most or fewest edges? These types

of extremal questions ignore the size of the vertex set, and focus only on the size

of the edge sets. These extremal problems have a rich history. Perhaps the most

well studied question is the following due to Bernstein [Ber07] and popularized by

Erdős [Erd63] [Erd64]. We say that a k-graph has Property B if its vertex set can

be colored with two colors so that no edge receives only one color (i.e., no edge is

monochromatic). Let m(k) denote the minimum number of edges in a k-graph which

fails to have Property B. In other words, ifH is a k-graph with fewer than m(k) edges,

then the vertices of H can be two colored so that no edge is monochromatic. On the

other hand, there exists a k-graph with m(k) edges which fails to have Property B.

In 1963, Erdős [Erd63] [Erd64] established that 2k ≤ m(k) ≤ k22k, and the upper

bound on m(k) remains the best known. In 1978, Beck [Bec78] used a probabilistic

coloring and recoloring scheme to show that m(k) = Ω(k1/32k), improving the lower

bound on m(k) (which was reproved by Spencer [Spe81]). In 2000, Radhakrishnan

and Srinivasan [RS00] showed m(k) = Ω(2k
√
k/ ln k), establishing the best known

lower bound on m(k) (which was reproved by Cherkashin and Kozik [CK15]).
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1.2.3 Overview of Results

This thesis focuses on two problems in extremal combinatorics–one of each of the

aforementioned types. Here we will provide the background and statements of results

related to each distinct problem. In the subsequent two chapters we present the

corresponding two projects in further detail.

Type Graphs

Chapter 2 focuses on the chromatic number of finite type graphs. Given (finite) sets

X, Y ⊆ Q with |X ∪ Y | = `, we say that X and Y have order type

τ = (τ1, τ2, . . . , τ`) ∈ [3]` if X ∪ Y = {z1 < z2 < . . . < z`} and for every i ∈ [`] :

τi =


1 if zi ∈ X \ Y,

2 if zi ∈ Y \X,

3 if zi ∈ X ∩ Y.

In this case, we write τ(X, Y ) = τ . Note |X| = |Y | = k if and only if

|{i : τi ∈ {1, 3}| = |{i : τi ∈ {2, 3}}| = k.

We call any such τ an order type of width k. For a fixed τ ∈ [3]` of width k, the type

graph G(n, τ) is the graph whose vertex set is
(
[n]
k

)
and X is adjacent to Y if and only

if τ(X, Y ) = τ or τ(Y,X) = τ .

The chromatic number of the finite type graphs has been studied for specific

types. For example, in 1968, Erdős and Hajnal [EH68] showed that for the so-called

generalized shift graphs we have:

χ(G(n, 1 3 . . . 3︸ ︷︷ ︸
k−1

2)) = (1 + o(1)) log(k−1) n
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is

where log(t) n denotes the t-fold iterated binary logarithm. The shift graphs can

be seen to have no short odd cycles, and so these shift graphs provide an explicit

example of graphs with arbitrarily large odd girth and chromatic number. In 2014,

Avart,  Luczak, and Rödl [ALR14] asked about the asymptotic nature of the chromatic

number of finite type graphs in general. In the next chapter, we provide an algorithm

that, on input τ (a finte type of width k), produces a natural number β = β(τ) so

that:

χ(G(n, τ)) = Θ(log(β) n)

This is joint work with Avart, Reiher, and Rödl [AKRR17].

1.2.4 Oriented k-Graphs

Chapter 3.1 focuses on an extremal problem of oriented k-uniform hypergraphs (or

oriented k-graphs). An oriented k-graph is a pair H = (V, E) where V is called the

vertex set and E ⊆ V k is called the edge set. We further require that all the members

of each edge are distinct, and no two edges have all the same members. Given <

a total order on V , we say that X = (x1, x2, . . . , xk) ∈ E is consistent with < if

x1 < x2 < . . . < xk. We say that H has Property O if for every total order on V there

exists some edge X ∈ E which is consistent with <. Let f(k) denote the minimum

number of edges in an oriented k-graph which has Property O. We have the bounds:

k! ≤ f(k) ≤ (k2 ln k)k!

We further show that for a specific value of n, the complete oriented k-graphs on n

vertices have k1/2k!(1+o(1)) edges and almost all such graphs fail to have Property O.

We conclude the chapter with an explicit construction of oriented k-graphs which have
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Property O, and comment on small values of f(k). This is joint work with Duffus

and Rödl [DKR17].

1.3 Glossary of Technical Terms

In this document, it is convenient to describe functions asymptotically–that is in

terms of their rate of growth. Here we include a table of “Big O” notation. Let f(x)

and g(x) be given non-negative functions.

Notation Name Definition

f(x) = O(g(x)) Big O ∃ k, x0 > 0 : f(x) ≤ k · g(x) ∀ x > x0

f(x) = Ω(g(x)) Big Omega ∃ k, x0 > 0 : f(x) ≥ k · g(x) ∀ x > x0

f(x) = o(g(x)) Little O lim
x→∞

f(x)

g(x)
= 0

f(x) = ω(g(x)) Little Omega lim
x→∞

f(x)

g(x)
=∞

f(x) = Θ(g(x)) Theta ∃ k1, k2, x0 > 0 : k1g(x) ≤ f(x) ≤ k2g(x)∀x > x0

f(x) ∼ g(x) Asymptotic lim
x→∞

f(x)

g(x)
= 1



7

Chapter 2

Type Graphs

For n > k ≥ 2, the so-called Shift graph (denoted Shift(n, k)) is the graph whose

vertex set is the k-subsets of {1, 2, . . . , n}, and X = {x1, x2, . . . xk} is adjacent to

Y = {y1, y2, . . . , yk} if and only if:

x1 < y1 = x2 < y2 = . . . < yk−1 = xk < yk

Visually, two k-sets are adjacent if their order type looks as follows:

1 n
X:
Y :

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

Erdős and Hajnal [EH68] showed that χ(Shift(n, k)) = (1+o(1)) log(k−1)(n), where

log(t)(n) is the t-fold iterated binary logarithm. It is easily seen that the shortest odd

cycle in Shift(n, k) has length at least 2k+ 1. Consequently, the shift graphs provide

an explicit construction of graphs with large odd girth and large chromatic number.

Similarly, the Specker graph (denoted Specker(n, 3)) is the graph whose vertex set

is the 3-subsets of {1, 2, . . . , n}, and X = {x1, x2, x3} is adjacent to Y = {y1, y2, y3}

if and only if:

x1 < x2 < y1 < x3 < y2 < y3
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Visually, two 3-sets are adjacent if their order type looks as follows:

1 n
X:
Y :

x1 x2 x3
y1 y2 y3

Erdős and Rado [ER60] showed that for an infinite cardinal κ,

χ(Specker (κ, 3)) = κ. It is easily seen that the Specker graphs are triangle free.

Consequently, the Specker graphs give an example of an (infinite) triangle free graph

that has the same chromatic number as the complete graph.

The Shift graphs and Specker graphs hence provide constructions of graphs that

serve as interesting extremal examples. In this chapter, we will describe a class

of graphs which generalizes both the Specker and Shift graphs, and describe their

chromatic numbers asymptotically.

2.1 Preliminaries and Basic Definitions

The goal of this chapter is to establish the chromatic number of the so-called type-

graphs (see Definition 2.3). For some positive integers n and k with n ≥ k, the

vertex set of these graphs is the k-element subsets of [n] := {1, 2, . . . , n}, and two

k-sets are adjacent if and only if the mutual position of their elements satisfy some

prespecified order pattern. Before defining the type-graphs rigorously, we would like

to fix notation concerning order types of pairs of ordered sets. In particular, we will

encode such order types as finite sequences of 1’s, 2’s, and 3’s. We will find that it is

convenient to define order types for finite subsets of rationals.

Definition 2.1 (order types). Let X, Y ⊆ Q be two finite sets with |X ∪ Y | = ` and

X ∪ Y = {z1 < z2 < . . . < z`}. We say that the order type of the pair (X, Y ) is the

sequence τ = (τ1, τ2, . . . , τ`) ∈ [3]` and write τ(X, Y ) = τ if for every i ∈ [`] we have:
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τi =


1 if zi ∈ X \ Y,

2 if zi ∈ Y \X,

3 if zi ∈ X ∩ Y.

For example, if X = {1, 2, 3, 5} and Y = {3, 4, 5} we get τ(X, Y ) = 11323.

Clearly, for any finite sequence τ of 1’s, 2’s, and 3’s there are sets X, Y ⊆ Q so that

τ(X, Y ) = τ . In fact, one can find such subsets of N, though defining order types

for Q will prove to be technically helpful. The case most relevant to the definition of

type-graphs below is |X| = |Y |.

Definition 2.2 (fixed width types). Fix two positive integers k and `. By a type

of width k and length `, we mean the order type of a pair (X, Y ) with X, Y ⊆ Q,

|X| = |Y | = k, and |X ∪ Y | = `.

So τ = 123312 is a type of width 4 and length 6 that is the order type of e.g.,

X = {1, 3, 4, 7} and Y = {2, 3, 4, 9}. It is easy to see that any type of width k and

length ` contains `− k 1’s, `− k 2’s, and 2k − ` 3’s. As a degenerate case we regard

the empty sequence ε as an empty type of width and length 0. A type is said to be

trivial if it consists only of 3’s, i.e. its width equals its length.

We are now prepared to define the main objects of consideration in this chapter.

Definition 2.3 (type-graphs). For a nontrivial type τ of width k and an integer

n ≥ k, the type-graph G(n, τ) is the graph with vertex set
(
[n]
k

)
in which two vertices

X and Y are adjacent if and only if τ(X, Y ) = τ or τ(Y,X) = τ .

Such graphs and their chromatic numbers have been studied in a variety of con-

texts. For example, it is known that the chromatic number of the shift graphs

G(n, 132)(= Shift(n, 2)) is dlog ne, where the base of the logarithm is 2. It is straight-

forward to check that these graphs are triangle-free, and thus provide explicit exam-

ples of triangle-free graphs with arbitrarily large chromatic number. More generally,



10

Erdős and Hajnal [EH68] considered the generalized shift graph G(n, σk), where

σk = 1 3 . . . 3︸ ︷︷ ︸
k−1

2

and the infinite analogues which arise when one replaces the finite number n with an

arbitrary cardinal number. Concerning the chromatic number of the finite type-graph

G(n, σk) they obtained the following result which we will apply later.

Theorem 2.4 (Erdős, Hajnal). For any integer k ≥ 2 we have

χ(G(n, σk)) = (1 + o(1)) log(k−1) n

as n tends to infinity.

Strictly speaking, Erdős and Hajnal focused on the case were n is infinite [EH68],

but their proof technique applies to finite values of n as well. The thus adapted

proof may be found with more details in [DLR95] [MSW15]. In the latter refer-

ence the alternative language of ordered Ramsey theory is used. We note that the

infinite case of Theorem 2.4 has applications to the computation of infinite Ram-

sey numbers [EH68] and refer the reader interested in further applications of infinite

type-graphs to [Spe57] [ER60] [PR86] [KS05].

Another interesting consequence of Theorem 2.4 is that it provides us with explicit

examples of graphs with large odd girth and large chromatic number. Any odd cycle

in G(n, σk) has length at least 2k+1 This line of thought was substantially continued

by Nešetřil and Rödl, who used unions of general type-graphs in some of their early

work on structural Ramsey theory, see e.g. [NR76].

The problem of determining the chromatic number of general finite type-graphs

was recently approached in joint work of Avart,  Luzcak and Rödl [ALR14]. The

last section of that article contains a conjecture, restated as Theorem 2.8 below,

that predicts this number asymptotically (up to a constant multiplicative factor).
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In particular, this conjecture implies that for each nontrivial type τ there exists a

nonnegative integer β with χ(G(n, τ)) = Θ(log(β) n) as n tends to inifinity. When

intending to calculate β from τ , the first thing one has to do is to express τ as a

product of as many other types as possible. The next two definitions help us to talk

about this process.

Definition 2.5. Given two finite sequences τ = (τ1, τ2, . . . , τ`) and τ ′ = (τ ′1, τ
′
2, . . . , τ

′
`′)

we write ττ ′ for their concatenation (τ1, τ2, . . . , τ`, τ
′
1, τ
′
2, . . . , τ

′
`′).

Definition 2.6. A nonempty type is said to be irreducible if it cannot be written as

the concatenation of two nonempty types. Otherwise, it is called reducible.

It should be clear that each nonempty type τ can be written in a unique manner

as the concatenation of several irreducible types. In fact, one finds this unique factor-

ization of τ by keeping track of the number of 1’s and 2’s already encountered while

reading τ from left to right, and starting a new factor at every moment where these

two numbers are equal. For example, the type τ = 1332112122 has the following

factorization into irreducible types ρ and ρ′:

τ = 1332︸︷︷︸
ρ

112122︸ ︷︷ ︸
ρ′

As it will turn out most of our work concerning χ(G(n, τ)) addresses the irreducible

case. Once it is solved, the reducible case follows from the irreducible one.

In the next section, we describe an algorithm which partitions any given irreducible

type τ into so-called blocks (which will be formally defined in Section 2.2). Notice

that if τ is trivial, i.e., a string of 3’s, we must have τ = 3 and in this case the

number of blocks is 1. On the other hand, any nontrivial irreducible type is going to

be partitioned into at least 2 blocks.

The main result of this chapter on irreducible types (which is joint work with

Avart, Reiher, and Rödl [AKRR17]) states:
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Theorem 2.7. If τ is a nontrivial irreducible type of width k with b blocks, then

(1 + o(1)) log(b−2)
n

k
≤ χ(G(n, τ)) ≤ (2(b−2)2 + o(1)) log(b−2) n

and hence

χ(G(n, τ)) = Θ(log(b−2) n).

More generally we will obtain the following:

Theorem 2.8. Let τ = ρ1ρ2 . . . ρt be the factorization of an arbitrary nontrivial

type τ into irreducible types. Suppose that ρi has bi blocks for i ∈ [t], and set b∗ =

max(b1, . . . , bt). Then we have

χ(G(n, τ)) = Θ(log(b∗−2) n).

The rest of this chapter is structured as follows. In Section 2.2 we describe the

block algorithm and thus clarify the meaning of our main result. Then Sections 2.3

and 2.4 are dedicated to the proofs of the lower and upper bounds in Theorem 2.7.

Finally, in Section 2.5 we will deduce Theorem 2.8 by means of an argument that

considers the categorical product of graphs.

2.2 The Block Algorithm

In this section, we describe an algorithm partitioning the terms of any irreducible type

τ into blocks of consecutive terms. We will call this algorithm the block algorithm

and the partition it produces will be referred to as the block decomposition of τ .

As said above, if τ is trivial we have τ = 3 by irreducibility. In this special case

we regard τ as consisting of one block only, namely τ itself. If τ 6= 3, then the first

digit of τ is either a 1 or a 2 because otherwise we could write τ = 3ρ for some type
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ρ 6= ε, contrary to the irreducibility of τ . We call τ primary if it starts with a 1 and

secondary if it starts with a 2.

Given a subsequence B of a type τ that consists of consecutive terms, we write

1(B) to denote the total number of 1’s and 3’s in B and 2(B) for the total number

of 2’s and 3’s in B.

Now we are ready to explain how the block algorithm is applied to any primary

irreducible type τ . Processing τ from left to right we are to perform the following

steps:

(i) The first block B1 consists of all the initial 1’s appearing in τ .

(ii) In general, if the block Bi has just been constructed, the next block Bi+1 consists

of the next consecutive digits of τ such that 2(Bi+1) = 1(Bi) and such that

subject to this last condition the block Bi+1 is as long as possible.

(iii) The algorithm stops when all the terms of τ have been placed in a block.

For example, for the type τ = 1121112121212222 we get B1 = 11, B2 = 211121,

B3 = 212122, and B4 = 22. One may use appropriate spacing to make the outcome

of the block algorithm notationally visible and write, for instance,

τ = 11 211121 212122 22.

Similarly the type 131122311222 decomposes into

1 311 22311 222

and for the type σ4 = 13332, the algorithm produces

σ4 = 1 3 3 3 2.
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Fact 2.9. When applied to a primary irreducible type τ the block algorithm does

indeed provide a factorization τ = B1B2 . . . Bb of τ into some nonempty blocks

B1, B2, . . . , Bb, where b ≥ 2. Moreover, we have 1(Bb) = 0.

Proof. Since τ starts with a 1, rule (i) gives us a first block B1 6= ε. Now let i be

the largest integer for which the block algorithm produces in its first i steps some

nonempty blocks B1, B2, . . . , Bi. This happens by an initial application of (i) followed

by i− 1 applications of (ii). Let C denote the finite sequence satisfying

τ = B1B2 . . . BiC (2.1)

We intend to show that either C = ε so that the algorithm stops, or 0 < 1(Bi) ≤ 2(C),

meaning that the algorithm produces a further nonempty block Bi+1. The latter

alternative, however, would contradict the maximality of i.

Recall that by construction we have 2(B1) = 0 and 1(Bj) = 2(Bj+1) for all

j ∈ [i− 1]. This yields

1(B1B2 . . . Bi−1) = 2(B1B2 . . . Bi) (2.2)

and in combination with (2.1) and 1(τ) = 2(τ), it follows that 1(Bi) ≤ 1(BiC) =

2(C). So if 1(Bi) > 0 we could use (ii) once more and optain the next nonempty

block Bi+1 to obtain the next nonempty block Bi+1, contrary to the maximality of i.

Thus we must have 1(Bi) = 0 and (2.2) entails that B1B2 . . . Bi is a type. By (2.1)

and the irreducibility of τ if follows that C = ε, meaning that the algorithm stops

with a final application of the rule (iii). Now b = i, the moreover part was obtained

at the beginning of this paragraph, and b ≥ 2 is clear.

So far we have only talked about primary types. For dealing with secondary types
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we use the following symmetry: if τ denotes any finite sequence of 1’s, 2’s, and 3’s,

we write τ ′ for the sequence obtained from τ by replacing all 1’s by 2’s and vice versa.

Evidently if τ is a secondary irreducible type, then τ ′ is a primary irreducible type

and thus we already know how to find its block decomposition τ ′ = B1B2 . . . Bb. Now

we have τ = B′1B
′
2 . . . B

′
b and we define this to be the block decomposition of τ . In

particular, τ and τ ′ have the same number of blocks.

Notice that if τ(X, Y ) = ρ holds for some finite sets X, Y ⊆ Q, then τ(Y,X) = ρ′

follows. In particular, for any type τ the two type-graphs G(n, τ) and G(n, τ ′) are

the same and thus it suffices to prove Theorem 2.7 for primary τ .

We conclude this section with two statements concerning irreducible types and

the block algorithm that will be employed in Sections 2.2, 2.3, and 2.4.

Lemma 2.10. Suppose that τ is a primary irreducible type of width k and that X,

Y ⊆ Q are two finite sets with τ = τ(X, Y ). Let X = {x1 < x2 < . . . < xk} and

Y = {y1 < y2 < . . . < yk}. Then we have

(a) xi < yi for all i ∈ [k], and

(b) xi+1 ≤ yi for all i ∈ [k − 1].

Proof. Let τ = (τ1, τ2, . . . , τ`), where ` denotes the length of τ . We contend that

if i ∈ [k − 1] and xi ≤ yi, then xi+1 ≤ yi. (2.3)

To show this, let yi be the m-th element in the increasing enumeration of X ∪ Y . In

view of 1 ≤ i < k we have 1 ≤ m < ` and thus (τ1, τ2, . . . , τm) cannot be a type due

to the irreducibility of τ . This in turn yields |X ∩ (−∞, yi]| 6= |Y ∩ (−∞, yi]| = i.

But assuming xi ≤ yi the number |X ∩ (−∞, yi]| is at least i, so that altogether it

must be at least i + 1, which means that xi+1 ≤ yi. This proves (2.3). Next we
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show (a) by induction on i. The base case x1 < y1 follow from τ being primary. For

the induction step we suppose that xi < yi holds for some i < k. Then (2.3) entails

xi+1 ≤ yi < yi+1, which concludes the argument.

Finally, (b) is an immediate consequence of (2.3) and (a).

We now come to the only place in the proof of Theorem 2.7 where the demand

from rule (ii) of the block algorithm that the blocks should end with as many 1’s as

possible is utilized. The purpose of the following lemma is that, roughly speaking, it

tells us how the “blocks” of two finite sets X and Y realizing an irreducible type τ

overlap with each other. This will be useful in Subsection 2.4.1 for embedding G(n, τ)

into an auxiliary graph whose chromatic number is easier to bound from above.

Lemma 2.11. Let τ = B1B2 . . . Bb be the block decomposition of some primary irre-

ducible type whose width is k and set s(i) = 2(B1, B2, . . . , Bi) for all i ∈ [b]. Then

for any two sets X and Y satisfying τ = τ(X, Y ), say X = {x1 < x2 < . . . < xk} and

= {y1 < y2 < . . . < yk}, we have xs(i+1) < ys(i)+1 ≤ xs(i+1)+1 for all i ∈ [b− 2].

Proof. Let X ∪ Y = {z1 < z2 < . . . < z`}. Fix any i ∈ [b− 2] and set β =
∑i

j=1 |Bj|.

By rule (ii) of the block algorithm the block Bi+1 cannot start with a one and thus

we have zβ+1 ∈ Y . In combination with

s(i) = 2(B1B2 . . . Bi) = |Y ∩ (−∞, zβ]|

which yields

ys(i)+1 = zβ+1. (2.4)

Similarly we have

s(i+ 1) = 2(B1B2 . . . Bi+1) = 1(B1B2 . . . Bi) = |X ∩ (−∞, zβ]|
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and thus xs(i+1) ≤ zβ as well as zβ+1 ≤ xs(i+1)+1. The desired conclusion follows from

these two estimates and (2.4).

2.3 The Lower Bound – Noncolorability

In this section we will prove the lower bound in Theorem 2.7. So we intend to

show that a certain graph G(n, τ) cannot be colored with a certain “small” number

of colors. Recall that for any graph H and any natural number r, the statement

χ(H) > r is equivalent as saying there is no graph homomorphism from H to the

complete graph Kr. Thus one strategy to prove such an noncolorabiliy statement

is to exhibit a homomorphism from some auxiliary graph G to H, with χ(G) > r

already being known. So in the light of Theorem 2.4 our task reduces to:

Proposition 2.12. For every nontrivial irreducible type τ of width k with b blocks

and every integer n ≥ b there is a graph homomorphism

φ : G(n, σb−1)→ G(kn, τ).

For the construction of such a homomorphism, we will make use of the following.

Fact 2.13. If B denotes a finite sequence of 1’s, 2’s, and 3’s, and Y ⊆ Q has size

2(B), then there is a set X ⊆ Q with τ(X, Y ) = B.

This can easily be shown by induction on the number of 1’s appearing in B and

we leave the details to the reader.

Proof of Proposition 2.12. As said above we may assume that τ is primary. Let

τ = B1B2 . . . Bb
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be the block decompostion of τ . We commence by defining recursively an auxiliary

sequence R0, R1, . . . , Rb of finite subsets of Q with

|Ri−1| = 2(Bi) for all i ∈ [b]. (2.5)

Since B1 consists exclusively of 1’s, such a sequence needs to start with R0 = ∅. Once

Ri−1 has been defined for some i ∈ [b], we use Fact 2.13 to obtain a set Ri ⊆ Q

satisfying τ(Ri, Ri−1) = Bi. Notice that for i < b this yields |Ri| = 1(Bi) = 2(Bi+1),

so that the construction may be continued. We also get |Rb| = 1(Bb) = 0 and hence

Rb = ∅ from Fact 2.9.

In view of (2.5) we have

b−1∑
i=0

|Ri| =
b∑
i=1

2(Bi) = 2(τ) = k (2.6)

and thus there exist k rational numbers α1 < α2 < . . . < αk with

∪0≤i<bRi ⊆ {α1, α2, . . . , αk}.

Pulling this situation back to [k] we define R∗i = {j ∈ [k]|αj ∈ Ri} for all i ∈ [b − 1]

as well as R∗0 = R∗b = ∅. The main properties of these sets are

R∗i ⊆ [k] and τ(R∗i , R
∗
i−1) = Bi for all i ∈ [b]. (2.7)

Now we are ready to define the desired map
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φ :

(
[n]

b− 1

)
→
(

[kn]

k

)
.

Given any integers hi for i ∈ [b− i] with 1 ≤ h1 < h2 < . . . < hb−1 ≤ n we set

φ({h1, h2, . . . , hb−1}) = ∪i∈[b−1]{(hi − 1)k + j|j ∈ R∗i }.

Due to R∗i ⊆ [k] the right hand side of this formula is indeed a subset of [kn] and

by (2.6) its size is k. It remains to check that φ maps edges of G(n, σb−1) to edges of

G(kn, τ). To this end let any integers hi for i ∈ [b] with 1 ≤ h1 < h2 < . . . < hb ≤ n

be given. Then by (2.7) we have

τ(φ({h1, h2, . . . , hb−1}), φ({h2, h3, . . . , hb})) = τ(R∗1, R
∗
0)τ(R∗2, R

∗
1) . . . τ(R∗b , R

∗
b−1)

= B1B2 . . . Bb = τ

as desired.

2.4 The Upper Bound – Constructing Colorings

This entire section is dedicated to the proof of the upper bound from Theorem 2.7.

The strategy we use is to embed the type-graph G(n, τ) into some other graph Gb−1(n)

that depends solely on b and n but not on τ . Thereby the task we are to perform is

reduced to the problem of coloring these auxiliary graphs with “few” colors. It seems

that this new problem is more susceptable to an inductive treatment than the old

one.
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2.4.1 Embedding Type-Graphs

We begin by defining the auxiliary graphs Gb(n) mentioned above.

Definition 2.14. For any positive integers b and n we set

Wb(n) = {(x1, x2, . . . , x2b−1)|1 ≤ x1 ≤ x2 ≤ . . . ≤ x2b−1 ≤ n}

and

Vb(n) = {(x1, x2, . . . , x2b−1) ∈ Wb(n)|x1 < x3 < . . . < x2b−1}.

By Gb(n) we mean the graph with vertex set Vb(n) in which an unordered pair e ⊆ Vb(n)

is declared to be an edge if and only if we can write e = {x, y},

x = (x1, x2, . . . , x2b−1), and y = (y1y2, . . . , y2b−1) such that

(i) x1 < y1 ≤ x3 < y3 ≤ . . . ≤ x2b−1 < y2b−1

(ii) and xj+1 ≤ yj for j ∈ [2b− 2].

It should perhaps be observed that the conditions (i) and (ii) in this definition do

not uniquely determine how the elements of the multiset {x1, . . . , x2b−1} ∪ {y1, . . . , y2b−1}

are ordered. This makes it more plausible, of course, that many type-graphs embed

homomorphically into Gb(n) and in fact we have the following.

Theorem 2.15. For any nontrivial irreducible type τ with b ≥ 2 blocks and every

positive integer n there is a graph homomorphism φ : G(n, τ)→ Gb−1(n).

Proof. As usual we may assume that τ is a primary type of width k. Let τ = B1B2 . . . Bb

be its block decomposition and define s(i) = 2(B1B2 . . . Bi) for any i ∈ [b]. Since

0 = s(1) < s(2) < . . . < s(b) = k ,

there is a map

φ :

(
[n]

k

)
→ Vb−1(n)
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given by

φ({x1, x2, . . . , xk}) = (xs(1)+1, xs(2), xs(2)+1, . . . , xs(b−1), xs(b−1)+1) ,

whenever 1 ≤ x1 < . . . < xk ≤ n. So roughly speaking φ remembers where the

“blocks” of such a set {x1, x2, . . . , xk} start and end and forgets everything else.

It remains to verify that φ sends edges of G(n, τ) to edges of Gb−1(n). For this

purpose let any two vertices X and Y of G(n, τ) with τ(X, Y ) = τ be given and

write X = {x1 < x2 < . . . < xk} as well as Y = {y1 < y2 < . . . < yk}. We need to

show that {φ(X), φ(Y )} is an edge of Gb−1(n), i.e., that the clauses (i) and (ii) from

Definition 2.14 are satisfied.

Now by Lemma 2.10 (a) we have, in particular, xs(i)+1 < ys(i)+1 for all i ∈ [b− 1]

and Lemma 2.11 tells us that ys(i)+1 ≤ xs(i+1)+1 holds for all i ∈ [b − 2]. Both

statements together yield condition (i) from Definition 2.14.

For the verification of (ii) we consider the cases that the index j is odd or even

separately. To deal with the case where j is odd we need to check that xs(i+1) ≤ ys(i)+1

holds for all i ∈ [b − 2], which follows from Lemma 2.11. For even j we need that

xs(i+1)+1 ≤ ys(i+1) holds for all i ∈ [b− 2] and this was obtained in Lemma 2.10 (b).

Now it is clear that in order to complete the proof of Theorem 2.7 we just need

to establish the following result.

Theorem 2.16. For every positive integer b we have

χ(Gb(n)) ≤ (2(b−1)2 + o(1)) log(b−1) n .

Throughout the rest of this section we deal with the proof this theorem. We will

proceed by induction on b, considering the base cases b = 1 and b = 2 separately.
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They will be established by statement (2.8) and Lemma 2.18 below. The main idea

for the induction step is to relate the graphs Gb(2
n) and Gb−1(n) to each other.

Roughly speaking, we will show that for any b ≥ 3 the vertex set of the graph

Gb(2
n) may be split into about 22b−3 pieces, each of which induces a graph that maps

homomorphically into Gb−1(n). A precise assertion along these lines is provided by

Proposition 2.24 below. For the construction of half of these homomorphisms it will

be helpful to bear the following symmetry in mind.

Fact 2.17. For any positive integers b and n the bijection η : Vb(2
n)→ Vb(2

n) given

by

(x1, x2, . . . , x2b−1) 7→ ((2n + 1)− x2b−1, (2n + 1)− x2b−2, . . . , (2n + 1)− x1)

is an automorphism of Gb(2
n).

We leave the easy proof of this assertion to the reader.

2.4.2 Coloring the Auxiliary Graphs Gb(n)

Clearly the graph G1(n) is nothing else than a complete graph on n vertices. Thus

we have

χ(G1(n)) = n for every positive integer n . (2.8)

The case b = 2 of Theorem 2.16 is technically easier than the general case and thus

we would like to treat it separately.

Lemma 2.18. We have χ(G2(n)) ≤ 2dlog ne − 1 for all integers n ≥ 2.

Proof. Clearly it suffices to show χ(G2(2
k)) ≤ 2k − 1 for all positive integers k and

we shall do so by induction on k. The base case k = 1 poses no difficulty because the

graph G2(2) just consists of two isolated vertices. To handle the induction step it is
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enough to show

χ(G2(2m)) ≤ χ(G2(m)) + 2 for all m ≥ 2 . (2.9)

Bearing this goal in mind we partition the vertex set of G2(2m) into the four classes:

A = {(x, y, z) ∈ V2(2m) | z ≤ m} ,

B = {(x, y, z) ∈ V2(2m) | y ≤ m < z} ,

C = {(x, y, z) ∈ V2(2m) |x ≤ m < y} ,

and D = {(x, y, z) ∈ V2(2m) |m < x} .

We also identify subsets of V2(2m) with the subgraphs of G2(2m) that they induce.

Evidently A is the same asG2(m), the map (x, y, z) 7→ (x+m, y+m, z+m) provides an

isomorphism between A and D, and there are no edges between A and D. Therefore

A∪D is a disjoint union of two copies of G2(m) and we have χ(A∪D) = χ(G2(m)).

Moreover, using condition (ii) from Definition 2.14 it is easy to check that the sets

B and C are independent. This concludes the proof of (2.9) and, thus, the proof of

Lemma 2.18.

Before we proceed to the colouring of Gb(2
n) for b ≥ 3 we introduce some auxiliary

functions.

Lemma 2.19. Given any integers x and y with 1 ≤ x < y there exist a positive

integer f and an odd positive integer q such that

(q − 1) · 2f−1 < x ≤ q · 2f−1 < y ≤ (q + 1) · 2f−1 .

Moreover, f and q are uniquely determined by x and y so that we may write f =

f(x, y) as well as q = q(x, y).

Proof. Let us first prove the existence of f and q. To this end, we pick an integer
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n with y ≤ 2n. Then we expand x − 1 and y − 1 in the binary system using n

digits and allowing leading zeros. Say that this yields x − 1 = xn−1 . . . x1x0 and

y − 1 = yn−1 . . . y1y0. Next we compare these expansions from left to right and

let xf−1 6= yf−1 be the first place where they differ. Notice that x < y ensures

xf−1 = 0 and yf−1 = 1. Finally we let q be the number with binary representation

q = xn−1 . . . xf1.

So formally we have

x− 1 =
n−1∑
i=0

xi · 2i , y − 1 =
n−1∑
i=0

yi · 2i , q = 1 +

n−f∑
i=1

xf+i−12
i

and xj = yj for j ∈ [f, n− 1]. Clearly, q is odd and

(q − 1) · 2f−1 ≤ x− 1 < q · 2f−1 ≤ y − 1 < (q + 1) · 2f−1 ,

wherefore f and q are as desired.

2n−1 2n−2 . . . 2f 2f−1 2f−2 . . . 1

x− 1 xn−1 xn−2 . . . xf 0 xf−2 . . . x0

y − 1 xn−1 xn−2 . . . xf 1 yf−2 . . . y0

q · 2f−1 xn−1 xn−2 . . . xf 1 0 . . . 0

The uniqueness of f and q may likewise be shown by studying the binary expan-

sions of x− 1 and y − 1. An alternative argument proceeds as follows.

Given x and y, let (f, q) and (f ′, q′) be two pairs with the requested properties.

Due to symmetry we may suppose f ≤ f ′. Now we have (q− 1) · 2f−1 < x ≤ q′ · 2f ′−1

and consequently q ≤ q′·2f ′−f . Similarly q′·2f ′−1 < y ≤ (q+1)2f−1 yields q′·2f ′−f ≤ q.

The combination of both estimates reveals q = q′ · 2f ′−f but, since q is odd, this if

only possible if f = f ′ and q = q′.
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We would like to point out that the uniqueness of f and q will be essential through-

out the following arguments. By redoing the above proof of this uniqueness more

carefully one can show the following monotonicity property of the function f .

Lemma 2.20. For any three positive integers x, y, and z such that x < y ≤ z the

inequality f(x, y) ≤ f(x, z) holds.

Proof. For brevity we set f = f(x, y), q = q(x, y), f ′ = f(x, z), and q′ = q(x, z).

Arguing indirectly we assume f ′ < f . Now (q′ − 1) · 2f ′−1 < x ≤ q · 2f−1 entails

q′ ≤ q · 2f−f ′ and similarly q · 2f−1 < y ≤ z ≤ (q′ + 1) · 2f ′−1 leads to q · 2f−f ′ ≤ q′.

Hence we must have q′ = q · 2f−f ′ , contrary to the fact that q′ is odd.

The following will be a standard argument later on.

Lemma 2.21. For any positive integers x < y ≤ z with f(x, y) = f(x, z) we have

q(x, y) = q(x, z) and, consequently,

(q − 1) · 2f−1 < x ≤ q · 2f−1 < y ≤ z ≤ (q + 1) · 2f−1 ,

where f = f(x, y) = f(x, z) and q = q(x, y) = q(x, z).

Proof. Define q = q(x, y). Lemma 2.19 gives

(q − 1) · 2f−1 < x ≤ q · 2f−1 < y ≤ (q + 1) · 2f−1

and thus q · 2f−1 is the least multiple of 2f−1 which is at least x. Due to f = f(x, z)

this yields q(x, z) = q and hence z ≤ (q + 1) · 2f−1.

Next we record another property of f that shall be used later.

Lemma 2.22. If any four positive integers t, x, y, and z satisfy t ≤ x < y ≤ z and

f(x, y) = f(x, z), then f(t, y) = f(t, z) holds as well.
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Proof. Setting f = f(t, z) and q = q(t, z) we get

(q − 1) · 2f−1 < t ≤ q · 2f−1 < z ≤ (q + 1) · 2f−1

from the definition of these quantities.

Of course the claim would easily follow from q · 2f−1 < y. So from now on we may

assume y ≤ q · 2f−1 towards contradiction. This yields

(q − 1) · 2f−1 < t ≤ x < y ≤ q · 2f−1 < z ≤ (q + 1) · 2f−1 ,

and, in particular, we obtain f(x, z) = f but f(x, y) 6= f , thus reaching a contradic-

tion.

To conclude our discussion of the auxiliary functions f and q we state how they

interact with the map η introduced in Fact 2.17.

Fact 2.23. For any integers x and y with 1 ≤ x < y ≤ 2n we have

f(x, y) ∈ [n] ,

f(2n + 1− y, 2n + 1− x) = f(x, y) ,

and q(2n + 1− y, 2n + 1− x) = 2n+1−f − q(x, y) .

Again we leave the straightforward verification to the reader. We may now return

to the problem of coloring the graphs Gb(2
n).

Proposition 2.24. We have

χ(Gb(2
n)) ≤ (2b− 6) + 22b−3 χ(Gb−1(n))

for any integers n ≥ b ≥ 3.
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Proof. For any vertex x = (x1, x2, . . . , x2b−1) of Gb(2
n) we use the abbreviations

f(x) = f(x1, x2b−1) ,

q(x) = q(x1, x2b−1) ,

T−(x) = (q(x)− 1) · 2f(x )−1 ,

T (x) = q(x) · 2f(x )−1 ,

and T+(x) = (q(x) + 1) · 2f(x )−1 .

Recall that by Lemma 2.19 we have

T−(x) < x1 ≤ T (x) < x2b−1 ≤ T+(x) (2.10)

for any such vertex x and in the first steps of the current proof we will distinguish

these vertices according to the position of their other entries xi with respect to T (x).

To begin with, we partition Vb(2
n) into three sets,

Vb(2
n) = A ∪B ∪ C , (2.11)

that are defined by

A = {x = (x1, x2, . . . , x2b−1) ∈ Vb(2n) |x2b−3 ≤ T (x)} ,

B = {x = (x1, x2, . . . , x2b−1) ∈ Vb(2n) |x3 ≤ T (x) < x2b−3} ,

and C = {x = (x1, x2, . . . , x2b−1) ∈ Vb(2n) |T (x) < x3} .

Again we identify subsets of Vb(2
n) with the corresponding induced subgraphs of

Gb(2
n). We will use different colors for these three sets and commence by coloring B.

This set may be partitioned further into
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B = B3 ∪B4 ∪ . . . ∪B2b−4 ,

where

Bi = {x = (x1, x2, . . . , x2b−1) ∈ Vb(2n) |xi ≤ T (x) < xi+1}

for any integer index i ∈ [3, 2b − 4]. We claim that each of these 2b − 6 sets is

independent. To show this suppose that {x, y} was an edge of Gb(2
n) with x, y ∈ Bi

for some i ∈ [3, 2b − 4]. Let the notation be as in Definition 2.14. By x ∈ B,

inequality (i) from Definition 2.14, and by (2.10) we have

T−(x) < x1 < y1 ≤ x3 ≤ T (x) < x2b−3 < y2b−3 ≤ x2b−1 ≤ T+(x) ,

whence f(y1, y2b−3) = f(x) and q(y1, y2b−3) = q(x). Due to y ∈ B this yields f(y) =

f(x) and q(y) = q(x). For this reason x, y ∈ Bi imply yi ≤ T (y) = T (x) < xi+1,

contrary to part (ii) from Definition 2.14. So the sets Bi are indeed independent and

we obtain

χ(B) ≤ 2b− 6 . (2.12)

This accounts for the summand 2b− 6 on the right-hand side of our claim and we

may proceed with analyzing A and C. Using Fact 2.23 it is not hard to check that

the map η from Fact 2.17 constitutes an isomorphism between A and C, wherefore

χ(A) = χ(C) . (2.13)

Now by (2.11), (2.12), and (2.13) we have

χ(Gb(2
n)) ≤ χ(A) + χ(B) + χ(C) ≤ (2b− 6) + 2χ(A)
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and thus to finish the current proof we just need to show

χ(A) ≤ 22b−4 χ(Gb−1(n)) . (2.14)

The main idea for proving this is to split A into at most 22b−4 further sets, each

of which is either independent or has the property of being homomorphically mapped

into Gb−1(n) by a certain function φ that is to be introduced next. Observe that by

the first statement from Fact 2.23 and by Lemma 2.20 there is a map φ : A→ Wb−1(n)

defined by

φ(x1, x2, . . . , x2b−1) = (f(x1, x3), f(x1, x4), . . . , f(x1, x2b−1))

for any (x1, x2, . . . , x2b−1) ∈ A.

We call two vertices x = (x1, x2, . . . , x2b−1) and y = (y1, y2, . . . , y2b−1) from A

equivalent and write x ∼ y if for every integer i ∈ [3, 2b− 2] we have

f(x1, xi) = f(x1, xi+1) ⇔ f(y1, yi) = f(y1, yi+1) .

It is plain that ∼ is an equivalence relation and that the number of its equivalence

classes is at most 22b−4. Thus to conclude the proof of (2.14) we just need to verify

the following statement:

if x, y ∈ A, x ∼ y, and {x, y} ∈ E(Gb(2
n)), then {φ(x), φ(y)} ∈ E(Gb−1(n)) . (2.15)

So let any two equivalent vertices x and y from A be given and suppose that they

are adjacent in Gb(2
n), the notation for this being as in Definition 2.14. For any

i ∈ [2b− 3] we set

αi = f(x1, xi+2) and βi = f(x1, yi+2) . (2.16)
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Notice that there is no misprint in (2.16) – it is true that βi = f(y1, yi+2) holds as

well, and actually this fact is very relevant to our main concern, but it will only be

shown at a rather late moment of our argument.

Combining the assumption that {x, y} be an edge of Gb(2
n) with Lemma 2.20 we

infer

α1 ≤ β1 ≤ α3 ≤ β3 ≤ . . . ≤ α2b−3 ≤ β2b−3 (2.17)

as well as

αj+1 ≤ βj for j ∈ [2b− 4] . (2.18)

Next we would like to show

α2b−3 < β2b−3 . (2.19)

Assume towards a contradiction that α2b−3 = β2b−3, i.e., f(x) = f(x1, y2b−1). Lemma 2.21

yields

T−(x) < x1 ≤ T (x) < x2b−1 < y2b−1 ≤ T+(x) ,

so in combination with {x, y} being an edge and with x ∈ A we obtain

T−(x) < x1 < y1 ≤ x2b−3 ≤ T (x) < x2b−1 ≤ y2b−2 ≤ y2b−1 ≤ T+(x) .

It follows that T (y) = T (x) and f(y1, y2b−2) = f(y1, y2b−1) = f(x). Using x ∼ y we

may deduce f(x1, x2b−2) = f(x1, x2b−1). Now Lemma 2.21 shows that q(x1, x2b−2) =

q(x1, x2b−1) holds as well and consequently we have T (x) < x2b−2 ≤ y2b−3. Thus we

get a contradiction to y ∈ A, whereby (2.19) is proved.

Extending this result we contend that more generally we have

αi < βi for all i ∈ [2b− 3] . (2.20)
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Arguing indirectly again, we let i denote the largest counterexample to this claim.

Notice that (2.19) tells us i ≤ 2b − 4. Set q = q(x1, xi+2), T
− = (q − 1) · 2αi−1,

T = q · 2αi−1, and T+ = (q + 1) · 2αi−1. Due to Lemma 2.21 our indirect assumption

αi = βi entails

T− < x1 ≤ T < xi+2 ≤ yi+2 ≤ T+ ,

which together with xi+2 ≤ xi+3 ≤ yi+2 shows f(x1, xi+2) = f(x1, xi+3). Now x ∼ y

discloses f(y1, yi+2) = f(y1, yi+3) and by Lemma 2.22 it follows that f(x1, yi+2) =

f(x1, yi+3). Using Lemma 2.21 again we obtain

T− < x1 ≤ T < xi+3 ≤ yi+3 ≤ T+

and thus αi+1 = βi+1, contrary to the maximality of i. Thereby (2.20) is proved as

well.

Now we are ready to confirm the alternative definition of βi announced above.

That is, for any i ∈ [2b− 3] we claim

βi = f(x1, yi+2) = f(y1, yi+2) (2.21)

where the second equality is to be verified. To see this, set q = q(x1, yi+2),

S− = (q − 1) · 2βi−1, S = q · 2βi−1, and S+ = (q + 1) · 2βi−1. Now

S− < x1 ≤ S < yi+2 ≤ S+

and x3 < y3 ≤ yi+2. Hence S < x3 would entail

S− < x1 ≤ S < x3 ≤ S+

and, consequently, α1 = f(x1, x3) = βi ≥ β1, which contradicts the case i = 1
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of (2.20). This proves x1 < y1 ≤ x3 ≤ S, which in turn establishes (2.21).

Putting everything together, the equations (2.16) and (2.21) yield

φ(x) = (α1, α2, . . . , α2b−3) and φ(y) = (β1, β2, . . . , β2b−3)

and by (2.20) we may strengthen (2.17) to

α1 < β1 ≤ α3 < β3 ≤ . . . ≤ α2b−3 < β2b−3 .

In particular, this shows that φ(x) and φ(y) are indeed vertices of Gb−1(n) and to-

gether with (2.18) it further shows that these two vertices are adjacent. This concludes

the proof of (2.15) and, hence, the proof of Proposition 2.24.

To summarize, we would like to emphasize again that (2.8), Lemma 2.18 and

Proposition 2.24 taken together yield an easy proof of Theorem 2.16 by induction on

b. In addition, the combination of Proposition 2.12, Theorem 2.15, and Theorem 2.16

implies Theorem 2.7.

2.5 Reducible Types

Having thus said everything we want to say about the chromatic number of irreducible

type-graphs, we devote the present section to the proof of Theorem 2.8. So we consider

any nontrivial type τ and let τ = ρ1ρ2 . . . ρt be its factorization into irreducible types.

For each i ∈ [t] the number of blocks into which ρi decomposes is denoted by bi and

we set b∗ = max(b1, . . . , bt). Finally, let k be the width of τ and let ρi have width ki

for i ∈ [t].

The notation introduced up to this moment will be used throughout this section

without being repeated in the numbered statements that will occur.
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Recall that our goal is to show

χ(G(n, τ)) = Θ(log(b∗−2) n) .

Here we have b∗ ≥ 2 because otherwise each factor ρi of τ would have to be equal

to 3, meaning that τ were trivial. Again we treat the lower bound and the upper

bound separately, but this time the latter is easier, so we start with it.

Fact 2.25. For every i ∈ [t] and every integer n ≥ k there is a graph homomorphism

φi : G(n, τ)→ G(n, ρi) .

Proof. Set r = 1(ρ1ρ2 . . . ρi−1) and s = 1(ρ1ρ2 . . . ρi). Clearly ρi has width ki = s− r,

and, since ρ1, ρ2, . . . , ρi are types, we also have r = 2(ρ1ρ2 . . . ρi−1) and

s = 2(ρ1ρ2 . . . ρi). Now it easy to confirm that the map

φi :

(
[n]

k

)
→
(

[n]

ki

)

given by

φi({x1, x2, . . . , xk}) = {xr+1, xr+2, . . . , xs}

whenever 1 ≤ x1 < x2 < . . . < xk ≤ n is a graph homomorphism.

Applying this, in particular, to some index i∗ ∈ [t] with bi∗ = b∗ we may deduce

the following by means of Theorem 2.7.

Fact 2.26. As n tends to infinity we have

χ(G(n, τ)) ≤ (2(b∗−2)2 + o(1)) log(b∗−2) n . (2.22)

In the other direction, we will use Proposition 2.12 to homomorphically map the
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generalized shift graph G(n, σb∗−1) into G(kn, τ).

Fact 2.27. For every integer n ≥ b∗ there is a graph homomorphism

ψ : G(n, σb∗−1)→ G(kn, τ)

and, consequently, we have

(1 + o(1)) log(b∗−2)
n

k
≤ χ(G(n, τ)) . (2.23)

Proof. Let I = {i ∈ [t] | ρi 6= 3} and write ci =
∑i

j=1 kj for every integer i ∈ [0, t].

Recall that we know from Proposition 2.12 that for every index i ∈ I there exists

a homomorphism ψi : G(n, σbi−1) → G(kin, ρi). Utilizing these, we define for each

i ∈ [t] a map

ψ̂i :

(
[n]

b∗ − 1

)
→
(

[ci−1n+ 1, cin]

ki

)
by stipulating

ψ̂i({h1, h2, . . . , hb∗−1}) =


ci−1n+ ψi({h1, h2, . . . , hbi−1}Br if i ∈ I,

{cin} if i 6∈ I ,

whenever 1 ≤ h1 < h2 < . . . < hb−1 ≤ n, where the addition of a number to a set in

the upper case is to be performed “elementwise”. It is easy to check that the map

ψ :

(
[n]

b∗ − 1

)
→
(

[kn]

k

)

given by

ψ(X) =
⋃
i∈[t]

ψ̂i(X)

for all X ∈
(

[n]
b∗−1

)
is indeed a homomorphism from G(n, σb∗−1) to G(kn, τ).



35

Formula (2.23) follows from the mere existence of ψ and from Theorem 2.4.

Owing to (2.22) and (2.23) the proof of Theorem 2.8 is complete.

2.5.1 Concluding Remarks

In this chapter, we have shown that if τ has factorization into irreducible types

ρ1ρ2 . . . ρt where ρi has bi blocks for i ∈ [t], and set b∗ = max(b1, . . . , bt), then there

exist constants c1 and c2 so that

c1 · log(b∗−2)(n) ≤ χ(G(n, τ)) ≤ c2 · log(b∗−2)(n).

where

1

k
≤ c1 ≤ c2 ≤ 2(b∗−2)2 .

It is natural to ask, what is the chromatic number of G(n, τ)? More precisely, we

formulate the following.

Problem 2.28. Let τ be an irreducibe type with b blocks. Compute precisely cτ so

that

χ(G(n, τ)) = (cτ + o(1)) log(b−2) n

Since τ = 112122 is an irreducible type with 3 blocks, Theorem 2.7 implies

χ(Specker(n, 3)) = Θ(log n). On the other hand, Erdős and Rado [ER60] showed

that for κ an infinite cardinal, χ(Specker(κ, 3)) = κ. Hence, the chromatic number of

infinite type-graphs behaves differently than that of finite type-graphs. It is natural

to ask the following.

Problem 2.29. Given an infinite cardinal κ and a type τ , compute precisely χ(G(κ, τ)).

One can define type hypergraphs in a manner similar to types. Given

X1,X2,. . .,Xt ∈
(
[n]
k

)
, we say that (τ1, τ2, . . . , τ`) = τ ∈ [2t − 1]` is the type of

X1,X2,. . .,Xt if ∪tj=1Xj = {z1 < z2 < . . . < z`}, and τi is the number whose unique
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binary representation has a 1 in position j if and only if zi ∈ Xj. Denote the corre-

sponding type-hypergraph H(n, τ).

Problem 2.30. Establish bounds on χ(H(n, τ)).
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Chapter 3

Property O

This chapter is motivated by two types of problems concerning hypergraphs. The first

is well-known and regards 2-colorable hypergraphs, also said to possess Property B.

Several papers have presented bounds on m(k), the minimum number of edges in a k-

uniform hypergraph that does not have Property B ( see [Bec78] [Spe81] [RS00] [CK15]).

The next section contains a brief overview of the background of Property B. The sec-

ond comes from Ramsey theory, where appropriate properties of graphs containing a

given graph with a fixed order can be used to prove negative partition relations for

unordered graphs (see [NR75] [NR78] for early papers on this topic). The entirety of

this chapter is based on joint work with Duffus and Rödl [DKR17].

3.1 Property B

We give a brief introduction to the work on Property B. The history of this problem

is rich, and the probabilistic techniques used in proving the best known upper bound

for m(k) serve as a template to produce a probabilistic upper bound on f(k), the

minimum number of edges in an oriented k-graph with Property O (to be defined in

the next section). In some sense, Property O serves as an ordered analogue to the

coloring problem of Property B, and much of the effort in establishing non-trivial
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lower bounds on f(k) has been motivated by lower bounds on m(k).

Property B is named for Felix Bernstein, who introduced the property in [Ber07].

The first lower bound of 2k−1 was established in 1963 by Erdős [Erd63] and served

as an early application of the probabilistic method. Suppose that H = (V, E) is a

k-graph with |E| < 2k−1. If we color the vertices red and blue uniformly at random,

the probability that any fixed edge is monochromatic is 1
2k−1 . By the union bound, the

probability that some edge is monochromatic is at most |E| 1
2k−1 < 1 by hypothesis.

Hence there is some coloring under which no edge is monochromatic. The first (and

current best) upper bound came a year later in 1964 [Erd64], wherein Erdős used

probabilistic methods to prove the existence of a k-graph with O(k22k) edges which

fails to have Property B. These probabilistic arguments serve as the archetypes for

the bounds on f(k) in Theorem 3.2.

In 1978, Beck [Bec78] improved the lower bound to Ω(k1/32k). The argument was

again probabilistic, this time employing the so-called method of alterations. Suppose

H = (V, E) is a k-graph with |E| = Ω(k1/32k). First, color the vertices red and blue

uniformly at random. For each vertex v which is in some monochromatic edge, recolor

v with probability p, where p is some small prescribed probability. Beck shows that

with positive probability, no edge in the recoloring is monochromatic. Beck’s argu-

ment was essentially probabilistic, but was written as a counting argument. In 1981,

Spencer [Spe81] rewrote Beck’s argument succinctly in the language of probability

theory, and any interested readers are encouraged to read this treatment.

In 2000, Radhakrishnan and Srinivasan [RS00] improved the lower bound to

Ω(
√
k/ log k2k) by a modification of Beck’s argument, where the vertices that are

candidates for recoloring are considered sequentially according to a probabilistic algo-

rithm. The same lower bound was reproven in 2015 by Cherkashin and Kozik [CK15]

by a nice application of a random greedy algorithm.
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3.2 Definitions and Overview

We would like to determine the minimum number of edges in a oriented uniform

hypergraph needed to ensure that for every ordering of the vertex set, some edge is

ordered in the same way. In some sense, we seek to establish an ordered analogue to

Property B, where the bounds in question are normalized by k! (as opposed to 2k,

as with Property B). Here are the required definitions followed by our results and a

conjecture.

Fix a positive integer k ≥ 2 and a finite set V . An ordered k-set X is a k-

tuple (x1, x2, . . . , xk) of distinct elements of V ; we use X to denote the unordered set

{x1, x2, . . . , xk}. Given a family of ordered k-sets E ⊆ V k with no two k-tuples on

the same k-element set, call H = (V, E) an oriented k-uniform hypergraph, or, more

briefly, an oriented k-graph. In the case that E contains an ordered k-set for each

k-element subset of V , call H a k-tournament. So, a k-tournament is obtained from

the complete k-uniform hypergraph K
(k)
n by giving each k-set an orientation. For

X ⊆ V and a linear order < on V , an ordered k-set X = (x1, x2, . . . xk) is consistent

with < if x1 < x2 < . . . < xk.

Here is the property that interests us.

Definition 3.1 (Property O). Given an oriented k-graph H = (V, E) we say that H

has the ordering property, or Property O, if for every (linear) order < of V there

exists X ∈ E that is consistent with <.

For an integer k ≥ 2, let f(k) be the minimum number of edges in an oriented

k-graph with Property O. Here is what we know about bounds for f(k).

Theorem 3.2. The function f(k) satisfies k! ≤ f(k) ≤ (k2 ln k)k! where the lower

bound holds for all k and the upper bound for k ≥ k0.

The upper bound for f(k) is proven in Section 3.3. The lower bound k! ≤ f(k)

follows from a standard argument. Given any oriented k-graph H = ([n], E), clearly
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each X ∈ E is consistent with

(n− k)!

(
n

k

)
=
n!

k!

orders on [n]. Consequently, if H has Property O then

|E| · n!

k!
≥ n!, so |E| ≥ k!.

We would like to decide if f(k) is bounded away from k!, in analogy with Prop-

erty B.

Problem 3.3. Determine whether
f(k)

k!
→∞ as k →∞.

We are unable to improve the simple lower bound for f(k) at this point, however

we can show that for appropriately chosen k and n = n(k), almost all k-tournaments

on n vertices fail to have Property O. This is made precise in Theorem 3.4. Let Tn,k

denote the set of all k-tournaments on [n].

Theorem 3.4. Let 0 < α < 1, let c = 2π
3e
ee

2/2 and let n = (cα)1/k
(
k
e

)2
k3/2k. Then

for k sufficiently large at least (1− α)|Tn,k| do not have Property O.

In Section 3.3, we prove the upper bound of f(k) given in Theorem 3.2. In

Section 3.4 we prove Theorem 3.4. In Section 3.5 we provide a construction of k-

graphs with Property O, investigate the situation for small values of n and k, and

pose a few problems.

We close this section with an observation used in both Sections 3.3 and 3.4.

Fact 3.5. Let

n =

(
k

e

)2

(1 + o(1)). (3.1)

Then (
n

k

)
=
(
e−e

2/2
) nk
k!

(1 + o(1)). (3.2)
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Proof. Indeed, (3.1) implies that

(n)k
nk

=

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
= exp

(
k−1∑
j=1

ln(1− j/n)

)

= exp

(
(1 + o(1))

k−1∑
j=1

−j/n

)

= exp

(
(1 + o(1))

(
−
(
k

2

)
/n

))
= exp

(
(1 + o(1))

(
−e2/2

))
= (1 + o(1))e−e

2/2 ,

so (3.2) holds.

3.3 Proof of Theorem 3.2

We verify the upper bound in Theorem 3.2 by showing that for k large enough, there

exists a k-tournament with (k2 ln k)k! edges which has Property O. Indeed, we show

that for an appropriate choice of n, a randomly selected member of Tn,k has Property

O with positive probability.

Let H = ([n], E) ∈ Tn,k be sampled uniformly. Note that this is equivalent to

orienting the edges of a k-tournament independently according to the uniform dis-

tribution. For a fixed order < on [n] and a fixed X ∈ E , the probability that X is

not consistent with < is 1− 1
k!

. Since the edges of H are oriented independently, the

probability that no edge of H is consistent with < is (1 − 1
k!

)(
n
k). Taking the union

bound over all orders on V , we see that the probability that there exists an order <

on V so that no edge of H is consistent with < is at most n!(1− 1
k!

)(
n
k).

The upper bound follows once we verify (3.3) and (3.4), below, for k sufficiently
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large.

Let n =

(
k

e

)2

(π · exp(e2/2) · k3 ln k)
1/k

. Then

(
n

k

)
1

k!
≤ k2 ln k, and (3.3)

n!

(
1− 1

k!

)(n
k

)
< 1. (3.4)

To prove (3.3), we apply Fact 3.5 and the Stirling approximation k! = (k/e)k
√

2πk(1 + o(1)):

(
n

k

)
1

k!
= e−e

2/2

(
(k/e)2k π · ee2/2 · k3 ln k

(k!)2

)
(1 + o(1))

=
1

2
k2 ln k(1 + o(1)). (3.5)

Hence (3.3) holds for k sufficiently large.

Turning to inequality (3.4), we use the choice of n and (3.5) to infer that

n lnn = 2

(
k

e

)2

ln k(1 + o(1))

<

(
n

k

)
1

k!
, (3.6)

for k sufficiently large. We have

n!

(
1− 1

k!

)(n
k)
≤ nn

(
1− 1

k!

)(n
k)

≤ exp(n lnn) · exp

(
−
(
n

k

)
1

k!

)
= exp

(
n lnn−

(
n

k

)
1

k!

)
< 1.



43

where the last inequality follows from (3.6). This proves (3.4) and completes the

proof of the upper bound.

3.4 Proof of Theorem 3.4

Let α, c, and n be as in the statement of Theorem 3.4. We first obtain an expression

for
(
n
k

)
, the number of edges in a k-tournament in Tn,k, which we use in the proof of

Theorem 3.4.

Applying Stirling’s formula to k!:

nk = cα

(
k

e

)2k

k3/2

=
ee

2/2

3e
α(k!)2k1/2(1 + o(1)). (3.7)

On the other hand, by Fact 3.5,

nk = ee
2/2(n)k(1 + o(1)). (3.8)

Equate the right hand sides of (3.7) and (3.8) and, for brevity, set ω = (α/3e)k1/2(1 + o(1)):

(
n

k

)
=

α

3e
k1/2k!(1 + o(1))

= ωk! (3.9)

the estimate we require.

We will show that if T is sampled from Tn,k, the set of all k-tournaments on [n],

according to the uniform distribution, the probability that T has Property O is at

most α. It will follow that at least (1−α)|Tn,k| members of Tn,k fail to have Property
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O.

The random sampling of T = ([n], E) from Tn,k is done in two phases. In the

first phase we will select k-tuples that are consistent with the natural order < on [n]

and in the second phase we will assign to the remaining k-tuples one of the k! − 1

remaining orientations.

3.4.1 Phase 1: reveal consistent edges

In phase 1, reveal the set C(T ) of the members of E that are oriented consistently

with <.

For any X ∈ E , P(X ∈ C(T )) = 1/k! and thus, by (3.9),

E(|C(T )|) =

(
n

k

)
1

k!
= ω.

Let Aω be the event that |C(T )| ≤ 2
α
ω. By Markov’s inequality we have

P
(
|C(T )| > 2

α
ω

)
<
α

2
and so P(Aω) > 1− α

2
.

Assume that Aω occurs. For each X ∈ E , as before, let minX be the <-least

element of X. Define

M = {minX|X ∈ C(T )}

and note that

|M | ≤ |C(T )| ≤ 2

α
ω < k − 1.

Thus, for each X ∈ C(T ), X \M 6= ∅. Let W ⊆ [n] be obtained by selecting one

element from each X \M . We now define <′ to be the natural order < on each of W

and [n] \W , and let u <′ v for u ∈ W , v ∈ [n] \W .

We claim that no X ∈ C(T ) is consistent with <′. To see this, let v ∈ X ∩W .

On the one hand, minX 6∈ W by the way that we selected W . On the other hand,
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v <′ minX by the definition of <′. However, X ∈ C(T ) means precisely that X is

consistent with <, and so v <′ minX is a contradiction.

3.4.2 Phase 2: reveal inconsistent edges

In phase 2, reveal the orientation of the edges not in C(T ). For each X 6∈ C(T ) there

are k!− 1 possible orientations of X in T – any one except that given by the natural

order <. Since T is chosen according to the uniform distribution, each orientation is

equally likely and at most one of these is consistent with <′. Thus,

P(X is consistent with <′) ≤ 1/(k!− 1).

Also, if X ∩W = ∅, then < and <′ coincide on K, so X cannot be consistent with

<′. Set ω′ = 2
α
ω ≥ |W |.

Since the only k-tuples which may become consistent with <′ are those which have

a nonempty intersection with W , in view of (3.9),

P(∃X 6∈ C(T ) consistent with <′ |Aω)

is bounded above by

(
ω′∑
j=1

(
ω′

j

)(
n− ω′

k − j

))
1

k!− 1
=

(
ω′∑
j=1

(
ω′

j

)(
n− ω′

k − j

))
ω(
n

k

)(1 + o(1))

= ω

ω′∑
j=1

(ω′)j(n− ω′)k−jk!

j!(k − j)!(n)k
(1 + o(1))

≤ ω
ω′∑
j=1

(k)j(ω
′)j

j!(n)j
(1 + o(1)). (3.10)

The inequality in (3.10) holds because j ≤ ω′ and so
(n− ω′)k−j

(n)k
≤ 1

(n)j
.
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It is straightforward to argue that for all numbers a, b, c satisfying 1 ≤ a, b < c,

(a− 1)(b− 1)

c− 1
<
ab

c
.

Repeated application of this shows that the expression in (3.10) is bounded above by

ω
ω′∑
j=1

1

j!

(
kω′

n

)j
(1 + o(1)) ≤ ω

(
ekω

′/n − 1
)

(1 + o(1))

≤ ω
kω′

n
(1 + o(1))

=
2kω2

αn
(1 + o(1)). (3.11)

We apply

ω = (α/3e)k1/2(1 + o(1)) and n =

(
k

e

)2

(1 + o(1))

to the expression on the right hand side of (3.11) to obtain

2kω2

αn
(1 + o(1)) =

2α

9

(k/e)2

n
(1 + o(1))

=
2α

9
(1 + o(1))

<
α

2

for k sufficiently large. Therefore

P(∃X 6∈ C(T ) consistent with <′ |Aω) <
α

2

If T has Property O then either Aω does not occur, or Aω does occur and some

X 6∈ C(T ) is consistent with <′. Consequently, we have
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P(T has Property O) ≤ P(Acω) + P(Aω)P(∃X 6∈ C(T ) consistent with <′ |Aω)

<
α

2
+
α

2

= α.

Hence, the probability that T fails to have Property O is at least (1−α). Since T is a

uniform selection from Tn,k, this is equivalent to saying at least (1−α)|Tn,k| members

of Tn,k fail to have Property O, as desired. This completes the proof of Theorem 3.4.

3.5 A Construction, Small Values of n, and Prob-

lems

We have an upper bound for f(k), the minimum number of edges in oriented k-

graphs with Property O, in Theorem 3.2: for k ≥ k0, f(k) ≤ (k2 ln k)k!. We have a

construction of oriented k-graphs with Property O, for all k ≥ 2. While these k-graphs

have edge sets that are larger than the upper bound obtained by the probabilistic

proof in Section 3.3, the hypergraphs are not unreasonably large.

For each k ≥ 2 we construct an oriented k-graph Gk = (Vk, Ek) that has Property

O, where

|Vk| = 3k−1 and |Ek| = 22(k−2) · 3
(k−1

2 )+1

. (3.12)

To begin, let G2 = (V2, E2) be an oriented 3-cycle. It is clear that G2 has Property O

and its vertex and edge sets have the sizes given in (3.12). Notice that the number

of edges given in (3.12) provides an upper bound on f(k) which is weaker than the

probabilistic upper bound given in Theorem 3.2. This can be seen by application of

Stirling’s approximation and a crude analysis:
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(k2 log k)k! ≈ (k2 log k)

(
k

e

)k√
2πk

< 22(k−2)
(
k

e

)k
< 22(k−2) (3k)k
= O(22(k−2)3k

2

)

where the last expression is the growth rate of the bound given in (3.12).

Here is the induction hypothesis: Gk = (Vk, Ek) is an oriented k-graph with Prop-

erty O and satisfies the conditions in (3.12). Let X, Y and Z be three disjoint copies

of Vk and let GX = (X, EX),GY = (Y, EY ) and GZ = (Z, EZ) each be isomorphic to Gk.

Define Gk+1 = (Vk+1, Ek+1) as follows. (See Figure 3.1)

• Let Vk+1 = X ∪ Y ∪ Z.

• Let Ek+1 be comprised for these four types of (k + 1)−tuples:

T1 = {(x, y1, y2, . . . , yk) : x ∈ X and (y1, y2, . . . , yk) = y ∈ EY };

T2 = {(z, x) : z ∈ EZ and x ∈ X};

T3 = {(y, z) : y ∈ EY and z ∈ Z};

T4 = {(x, y) : x ∈ EX and y ∈ Y }.

To see that Gk+1 has Property O, let < be any linear order on Vk+1. We find a

member of Ek+1 consistent with < as follows.

1. Suppose there is x ∈ X such that x < minY . Since GY has Property O there is

some y ∈ EY consistent with <. Thus, (x, y) ∈ T1 is consistent with <.

2. Suppose there is x ∈ X such that maxZ < x. Since GZ has Property O there

is some z ∈ EZ consistent with <. Thus, (z, x) ∈ T2 is consistent with <.
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GZ
z

GY

GXx0 x1

y0

z0

(y, z0) ∈ T3

(z, x0) ∈ T2

(x, y0) ∈ T1

(x1, y
′) ∈ T4

x

y′

y

Figure 3.1: Constructing Gk+1 from Gk.

By 1 and 2 , we may assume that

for all x ∈ X there exist yx ∈ Y and zx ∈ Z such that yx < x < zx.

Let x0 = maxX. Then x ≤ x0 < zx0 for all x ∈ X.

3. Suppose all y ∈ Y satisfy y < zx0 . Since GY has Property O there is some

y ∈ EY consistent with <. Then (y, zx0) ∈ T3 is consistent with <.

4. Suppose some y ∈ Y satisfies zx0 < y. Then for all x ∈ X, x < y. Since GX

has Property O there is some x ∈ EX consistent with <. Then (x, y) ∈ T4 is

consistent with <.

Therefore, Gk+1 has Property O. (Note that 1 - 4 use all types of edges.) Let us see

that Gk+1 = (Vk+1, Ek+1) satisfies the conditions in (3.12). First,

|Vk+1| = 3|Vk|

= 3 · 3k−1
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= 3k.

Second,

|Ek+1| = 4 · |Ek| · |Vk|

= 4 · 22(k−2) · 3
(k−1

2 )+1

· 3k−1

= 22k · 3(k
2)+1.

3.5.1 Concluding Remarks

Let n(k) be the minimum number of vertices in a k-tournament with Property O.

We have already seen that for any oriented k-graph to have Property O, it must have

at least k! edges. Since
(
n
3

)
≥ 3! forces n ≥ 5, we have n(3) ≥ 5. An exhaustive

computer search shows that there are no 3-tournaments on 5 vertices with Property

O. However, the case where n = 6 is already much more time consuming. On the

other hand, from the construction above, we have an oriented 3-graph on 9 vertices

which has Property O. Thus n(3) ≤ 9. It remains an open question as to whether

there exists a 3-tournament with Property O on n = 6, 7, or 8 vertices. So, it is

natural to pose this:

Problem 3.6. Find the minimum number of vertices n(3) in a 3-tournament with

Property O.

Returning to the function f(k), we would like to determine f(3), the minimum

number of edges in an oriented 3-graph with Property O. It is easily seen that

f(3) > 6. For k in general, it would be interesting to find a construction that im-

proves the upper bound in Theorem 3.2. Finally, we would like to settle Problem 1,

that is, to determine whether f(k)/k!→∞.
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