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Abstract 
 

Statistical and Machine Learning Methods in the Studies of Epigenetics Regulation 
By Tianlei Xu 

 
 
Rapid development of next generation sequencing technologies produces a plethora of large-
scale epigenome profiling data. Given the quantity of available epigenome datasets, obtaining 
a clear and comprehensive picture of the underlying regulatory network remains a challenge. 
The multitude of cell type heterogeneity and temporal changes in the epigenome make it 
impossible to assay all epigenome events for each type of cell.  Computational model shows 
its advantages in capturing intrinsic correlations among epigenetic features and adaptively 
predicting epigenome marks in a dynamic scenario. Current progress in machine learning 
provides opportunities to uncover higher level patterns of epigenome interactions and 
integrating regulatory signals from different resources. My works aim to utilize public data 
resources to characterize, predict and understand the epigenome-wide regulatory relationship. 
The first part of my work is a novel computational model to predict in vivo transcription factor 
(TF) binding using base-pair resolution methylation data. The model combines cell-type 
specific methylation patterns and static genomic features, and accurately predicts binding sites 
of a variety of TFs among diverse cell types. The second part of my work is a computational 
framework to integrate sequence, gene expression and epigenome data for genome wide TF 
binding prediction. This extended supervised framework integrates motif features, context-
specific gene expression and chromatin accessibility profiles across multiple cell types and 
scale up the TF prediction task beyond the limits of candidate sites with limited known motifs. 
The third part of my work is a novel computational strategy for functional annotation of non-
coding genomic regions. It takes advantage of the newly emerged, genome-wide and tissue-
specific expression quantitative trait loci (eQTL) information to help annotate a set of genomic 
intervals in terms of transcription regulation. This method builds a bridge connecting genomic 
intervals with biological pathways and pre-defined biological-meaningful gene sets. Tissue 
specificity analysis provides additional evidence of the distinct roles of different tissues in the 
disease mechanisms. 
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Chapter 1  
Epigenomic feature prediction from high-throughput data 

 

 

1.1 Introduction 

1.1.1 Epigenomic research and high-throughput data 

Epigenomics is the study on the regulation of gene expression. Literally it refers to the 

specific mechanisms that control the outcome of expression result without altering the 

DNA sequence, which is the static format of encoded genetic information that doesn’t 

change dynamically through development of different cells. Epigenetic factors regulates 

the chromatin structure and gene expression in eukaryotes. Study on mechanisms of 

epigenetic regulation in diverse cell contexts is the key to a better understanding of the 

basis of biological processes and diseases. The epigenetic regulation are carried out by 

multiple factors, including DNA methylation(Lister et al., 2009), histone modifications 

(Barski et al., 2007; Heintzman et al., 2009) and the chromatin accessibility(Thurman et 

al., 2012). The activities of these epigenetic marks are highly tissue and cell type-specific. 

Assessing the distribution of epigenetic marks on whole genome scale is proved to be a 

powerful technique to infer functional roles of each member.  

High-throughput technologies have been developed in fast pace in the recent decades. A 

plethora of sequencing platforms (Bentley et al., 2008; Harris et al., 2008; Margulies et al., 

2005; McKernan et al., 2009; Shendure, 2005) brings the cost of reading the characters of 

genetic samples to a unprecedented low level. Ideally, a full range of epigenetic profiles 
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should be investigated for each cell context. Multiple research consortiums, including NIH 

Roadmap Epigenomic Consortium(Bernstein et al., 2010; Roadmap Epigenomics 

Consortium et al., 2015), ENCODE (Bernstein et al., 2012), have made considerable 

endeavors towards such goal, and a rich collection of epigenetic profiles became available 

thanks to these efforts.  TCGA is trying to do that. However it’s prohibitively expensive 

and cannot be practically applied in large-scale study and clinical settings. Thus, 

computational prediction is helpful to provide an alternative when the epigenetic data are 

unavailable. With the accumulation of high-quality epigenomic profiling data, and the 

development of modeling methodology, in silico study on epigenomics has been gaining 

popularity ever since. Calls new statistical and computational methods to be developed to 

address the many challenges analyzing epigenomics data (Qin et al., 2016)  

 

1.1.2 Epigenomic features in gene regulation 

In general, the genetic features can be categorized into two classes: the static features,  and 

the dynamic features. The static features are based on DNA sequence, thus they do not 

change across cell types within one individual. These features only need to be measured 

once, then it can be applied among different cells. Dynamic features are cell type-specific 

features. They are the direct reason for a diverse range of function and shapes in the cell 

population from the same individual. The heterogeneity of cells result in the complexity of 

characterizing all the dynamic features, given that we currently ignore the impact of genetic 

variants. A list of members from both classes are shown below. 

 

Static Features: 
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• DNA Sequence composition (GC content, k-mer, etc.) 

• DNA motifs (TF specific) 

• Gene annotation (including gene itself and regulatory regions) 

• CpG island 

• Sequence conservation 

• Shape of DNA 

Dynamic Features: 

• Gene expression 

• DNA methylation 

• Histone modification 

• Protein-DNA interaction 

• Chromatin structure (spatial organization, open/close chromatin) 

In silico prediction is possible due to the intrinsic correlations among features. Although 

the observed correlation among features doesn’t imply any causal relationships, it is still 

important to mine knowledge from vast data for the most predictive or relevant features, 

which would bring insights to further facilitate research on mechanism of transcription 

regulation. 

 

1.1.3 Prediction methods  

Predictive models have been proposed all the time along with the progress of research in 

the study of epigenetics. At least two benefits from models are noteworthy in this co-

evolutionary process. The first is the modeling of underlying mechanism of epigenetics 

regulation. Without any prior knowledge on the function of epigenetic marks, generating 



 

 

 

4 

rules with statistical methods from observation is the first step to understanding the true 

underlying mechanism. Predictive models is the automation of representation for 

generalized rules we learned from data, and it can help to validate the discovery by testing 

models on different scenarios. The second is the benefits to support decision making. 

Before the true biological mechanism is validated, computational models provide useful 

tools to generate complex rules based on existing information that could bring profound 

improvement on the research efficiency. In this work, both supervised models and 

unsupervised models will be discussed. While it is reasonable to make a safe assumption 

that for predictive models, supervised learning should be the dominant type of method, I 

will show in the following sections that unsupervised models also plays an important role 

in biological studies. The heterogeneity of sample context makes it necessary to discover 

the inner structure of the observed data before dumping all the available data into a simple 

and unified machine learning framework. In addition, due to the raw data might not be 

applicable to generate well defined features, many models are hybrid computational 

frameworks that perform rigorous feature engineering before proceeding to build 

predictive models. In the following sections, I will provide a comprehensive survey of 

existing predictive models in the study of epigenetics. The methods are grouped based on 

the target of the prediction. Within each group, the detailed nature and characters of target 

marker, together with the rationale behind the selection of features and models will be 

discussed in detail.  

 

1.2 Prediction of protein binding 

1.2.1 Rationale for transcription factor binding prediction using epigenetic profiles 
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The task of predicting binding sites for regulatory proteins, or transcription factors (TFs), 

is necessary, due to the fact that experimental methods can only determine the true binding 

sites of one type of TF, under one condition (tissue, cell, treatment/disease, etc.)  at a time. 

It is impossible to enumerate all the combinations between every TF and cell condition to 

sequence. Thus, computational methods are becoming popular in this area, using existing 

data and knowledge to generate rules of TF binding, and trying to impute the binding 

profile in a new cell condition that no data are available.  

In general, several factors participate in the regulation of TF binding. These factors include: 

DNA sequence motifs, chromatin accessibility, Histone modification and methylation 

status. Previous to the comprehensive study of dynamics in TF binding regulation, DNA 

sequence motif is the most widely used feature to predict TFBS in silico. TF binding motif 

can be found in database such as JASPAR (Sandelin, 2004) and factorbook (J. Wang et al., 

2013). Motif based methods suffer in performance, due to the fact that static genome 

sequence cannot be the only determinant factor for the cell-type-specific dynamic events, 

such as TF binding. It should be noted that the dynamics of TF binding is not simply a 

repository of conserved binding sites being switched on and off by epigenetic landscape. 

For one TF, the sequence patterns in different cells may vary (Arvey, Agius, Noble, & 

Leslie, 2012). A recent study also shows that on individual level, the repository of TF 

binding activities may be affected by one’s genetic variation (Barrera et al., 2016). We will 

not discuss existing works on sequenced based methods. Instead we will discuss how 

sequence-based information is combined with other features in prediction. 

 

1.2.2 Prediction methods using histone modifications 
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Histone marks were found in close correlation with regulatory activities in the human 

genome (Heintzman et al., 2007). Different histone marks were reported associated with 

different regulatory elements, such as open chromatin, promoter, enhancers etc. 

(Heintzman et al., 2007; Schones et al., 2008).   

Whitington et al. (Whitington, Perkins, & Bailey, 2009) firstly used histone mark 

H3K4me3 as filters for TFBS predictions based on motif only. Combined with other 

features, such as distance to known TSS and sequence conservation, their work reduced 

the false positive rates in TFBS predicting result. He H.H et al. used differential H3K4me2 

ChIP-seq signals to measure nucleosome positioning, followed by motif analysis to predict 

TF binding dynamics(H. H. He et al., 2010). Talebzadeh used the composition of different 

histone marks within neighboring nucleosomes as predicting features. Then it is combined 

with PWM to fit in a logistic regression classifier to predict TF binding (Talebzadeh & 

Zare-Mirakabad, 2014). Stephen A. Ramsey et al used local-minima of Histone 

Acetylation ChIP-seq signals (valley score) combined with motif scanning score to predict 

TF binding sites . Binding score is assigned by a weighted sum of score from different 

features. Supervised training is performed to infer model parameter and hold-out test to 

evaluate model (Ramsey et al., 2010). Won et al used a more comprehensive set of histone 

features to train HMM models in a supervised fashion to predict TFBS (Won, Ren, & Wang, 

2010). This method, Chromia, takes both PSSM signal and binned histone modification 

signal as input, and fit a three-state mixture Gaussian model. It could also implement 

conservation score and genomic features that treated promoter sequence and enhancer 

differently. But the features used inside less well characterized enhancer regions are harder 

to be generalized in prediction, as shown in the worse performance in enhancer TFBS 
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predicting result. Another interesting finding is the heterogeneity of histone contribution. 

There is no histone mark that are constantly associated with TFBS. H3K4me3 are the most 

frequent strong predictor. The best performed TF, E2f1, shows the strongest association 

with H3K4me3. Interestingly, CTCF behaves differently from other TFs listed as major 

results in this paper. CTCF prediction have bad performance using Chromia, which is 

almost similar to baseline method. Adding conservation score might sabotage promoter 

TFBS prediction, however will increase enhancer TFBS prediction for CTCF. These results 

suggest that histone modification is definitely not the global indicator of TF binding signals. 

Histone marks that are associated with chromatin states might help improving relevant 

TFBS.  

It is interesting to notice that among a variety of histone marks, only a few are used, 

selected, or proved to be relevant with TF binding regulation. This might suggest their 

association with other confounding factors, rather than a direct binding signal. These 

factors can be open chromatin (HAc, (Ramsey et al., 2010)), nucleosome distribution 

(H3K4me2, (H. H. He et al., 2010)), transcription (H3K36me3, (Won et al., 2010)), 

promoter (H3K4me3) or enhancers (H3K4me1). Based on this idea, Ji et al. (Ji, Li, Wang, 

& Ning, 2013) use histone marks to define genomic categories and made TFBS prediction 

based on this information. The histone marks serve as a feature space in which the complete 

epigenome environment could be projected. 

 

1.2.3 Prediction methods using chromatin accessibility  

Ever since the chromatin accessibility data became available via large epigenomic projects, 

this topic is dominated by predicting methods using chromatin accessibility information as 
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features. It is intuitively ideal, that the direct measurement of open chromatin structure is 

the straight-forward evidence for a protein-DNA interacting events. There are in general 

two big categories of methods using chromatin data: bin-based methods and candidate site 

based methods. Bin-based methods include DNase2TF (Sung, Guertin, Baek, & Hager, 

2014) and HINT (Gusmao, Dieterich, Zenke, & Costa, 2014). This class starts with 

searching for footprint signature of TFBS shown on DNase hypersensitive site sequencing, 

where a short range of DNase data is depleted from two peaks of cleavage sites. This 

footprint is usually enclosed within signatures of histone modifications. HMM model was 

adopted to recognize this type of local-dependency relationship in HINT and Chromia. The 

other class are based on candidate sites predicted using known TF motifs. Then the 

chromatin profile centered at these candidate sites are analyzed to detect potential TF 

binding sites. This class contains both supervised and unsupervised learning methods. In 

unsupervised methods, CENTIPEDE (Pique-regi et al., 2011), FootprintMixture (Yardimci, 

Frank, Crawford, & Ohler, 2014) and PIQ (Sherwood et al., 2014)are three representative 

works. These methods, including Romulus (Jankowski, Tiuryn, & Prabhakar, 2016) and 

MOCAP (Chen, Yu, Carriero, Silva, & Bonneau, 2017), capturing differences between 

binding sites and non-binding sites, then phase out the labels using prior knowledge. This 

type of methods are useful when there is no training data available for supervised learning 

methods, and models can learn the class structure directly from data. Other methods use a 

variety of representations of DNase profile, some combine with additional epigenetic 

marks as prior (Cuellar-Partida et al., 2012)for this task, and train different types of models, 

including SVM (Arvey et al., 2012; Quach & Furey, 2017) or random forest (Kuang, Ji, 

Boeke, & Ji, 2017; S. Liu et al., 2017).  
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One problem associated with chromatin-based predicting methods are the sequence bias 

issue of the DNase foot printing experiments, which might lead to false detection of 

enriched motif resulted from technique noise, rather than sequence signal of TF binding. 

Gusmao et al. discussed this issue in detail in a recent review work (Gusmao, Allhoff, 

Zenke, & Costa, 2016), in which details of this issue is analyzed with results from multiple 

methods. 

 

1.2.4 Other methods for TFBS prediction 

The prediction of TFBS has been an active field for nearly a decodes, and new predictive 

features has been adding to this category continuously. Methods using methylation profile 

(Xu et al., 2015) or DNA shape features(Ma, Yang, Rohs, & Noble, 2017) have been 

proposed in addition to popular epigenetic marks. In addition, recent popularity of deep 

learning technology brought applications in TFBS prediction as well. DeepBind (Alipanahi, 

Delong, Weirauch, & Frey, 2015) used convolutional neural network (CNN) to detect 

motif-like DNA sequence kernels, and using them as input features in a feed-forward 

neural network to predict binding affinity of proteins. FactorNet (Quang & Xie, 2017) 

added an additional layer of recurrent neural network (RNN) to model the spatial 

dependency of feature signals. A full list of TFBS prediction methods reviewed are shown 

below. 

 

Table 1.1 Predition methods for TFBS 

Publication  Features Method  Software 
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Whitington et al. 
(2009) Histone ChIP-seq 

PWM scan 
followed by 
filtering Chromatin 
features 

N/A 

He et al. (2010)  
Nucleosome-
resolution histone 
ChIP-Seq 

Dynamics of 
nucleosome  

occupancy and 
motif 

N/A 

Won et al. (2010)  Histone ChIP-seq  HMM  Chromia 

Ramsey et al. 
(2010)  

Histone acetylation 
ChIP-seq, 
nucleosome 
occupancy, genome 

Weighted sum of 
scores.  RamseyHAc2010 

Pique-Regi et al. 
(2011)  DNase I + genome  

Two-component 
mixture model, 
EM. unsupervised 

CENTIPEDE 

Cuellar-Partida et 
al. (2012)  

DNase I, histone 
ChIP-seq  

Epigenetic data as 
prior, use motif to 
predict. 

FIMO, part of 
MEME 

Arvey et al. (2012)  Histone ChIP-seq + 
DNase I  SVM  N/A 

Ji et al. (2013)  Nine histone ChIP-
seq  

PCA-type 
unsupervised 
learning.  

dPCA 

Gusmao et al. 
(2014) DNase + histone HMM HINT 

Sung et al. (2014) DNase + Motif (4-
mer) 

Tests based on 
counts Dnase2TF 

Yardimci et al. 
(2014) 

DNase + bias 
adjustment 

2-component 
mixture model. FootprintMixture 

Sherwood et al. 
(2014) 

DNase (magnitude 
+ shape) around 
motif match sites 

2-component 
mixture model; 
Gaussian process 
model for DNase 
reads 

PIQ 
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Kahara et al. 
(2014) 

DNase + motif 
score 

Logistic regression 
+ greedy backward 
feature selection 

BinDNase 

Xu et al. (2015) Methylation + 
genomic features 

random forest + 2-
component mixture 
model for 
methylation  

Methylphet 

Alipanahi et al. 
(2015) 

DNA sequence 
(using binding array 
data as target) 

CNN DeepBind 

Quach and Furey 
(2016) 

DNase (profile: 
mean and slope, 
centered at motif)  

SVM DeFCoM 

Jankowski et al. 
(2016)  

DNase (shape, on 
motif matched sites) 

2-component 
mixture model Romulus 

Liu et al. (2017) 

DNase (footprint 
score defined by 
counts) + genomic 
features 

Random Forest BPAC 

Ma et al. (2017) DNA sequence + 
shape kernel 

Support vector 
regression Sequence-shape 

Kuang et al. (2017) 
Histone + DNase, 
on known motif 
matched sites 

Random Forest DynaMO 

Chen et al. (2017) 

 
ATAC-seq 

3-component 
mixture model, 
EM; Negative-
binomial; 
unsupervised 

Mocap 

Quang et al. 
(unpublished) DNase CNN+RNN FactorNet 

 

1.3 Prediction of enhancer 

1.3.1 Diversity of definition of Enhancer 
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Enhancer prediction is difficult, potentially decided by the lack of a unified standard to 

define what is the gold standard for an enhancer-gene pair. The question about what is an 

enhancer is unquestionably more important before we ask how to predict them. By far, 

predicting models rely on experimentally validated enhancers from public data resources, 

such as FANTOM (Andersson et al., 2014) or ENCODE (Bernstein et al., 2012), where 

the spatial chromatin organization that brings the regulatory enhancer to a distal promoter 

region of a gene is considered as the validated evidence of an enhancer. However, this 

approach is not applicable to all the cells/tissues due to the cost. Alternative standards are 

proposed to use epigenetic features that are faithfully present at enhancer region as the 

indirect gold standard. Thus it will be contra-intuitive that some epigenetic marks are used 

as the definition of enhancer, rather than the features to predict them, or at least, the border 

line between features and gold-standards is tricky, and need to be carefully specified when 

a study of enhancer prediction is conducted.   

With limited annotation resource, the task of predicting enhancers are necessary yet non-

trivial. Unlike well-annotated gene/TSS/promoter, this task only became possible with the 

accumulation of TFBS/DHS/Histone data available. Histone modifications are considered 

associated with enhancer, acting as the markers to guide different transcription factors to 

form regulatory chromatin loops. These modifications include H3.3 and H2AZ (Jin et al., 

2009), H3K4me1 and H4K27ac (Cotney et al., 2012; Heintzman et al., 2007; Koch et al., 

2007). The latter is specifically studied as the marker for poised enhancer (Creyghton et 

al., 2010; Rada-Iglesias et al., 2011). Nucleosome positioning is also a key factor to define 

enhancers (H. H. He et al., 2010), which could potentially be the result of chromatin 

opening.  Also, transcription factors are essential components of enhancer activity as well. 



 

 

 

13 

Multiple studies showed the key role of TFs as the marker of enhancers, such as p300/CBP 

(Blow et al., 2010; Ghisletti et al., 2010; May et al., 2012; Visel et al., 2009) or a 

combination of multiple TFs (Cheng et al., 2012; A. He, Kong, Ma, & Pu, 2011; Yip et al., 

2012; Zinzen, Girardot, Gagneur, Braun, & Furlong, 2009).  In prediction methods, 

common practice is to overlap predicted “enhancer” with P300 + DHS + several TFBS 

known to be associated with enhancer. Overlapping with TSS is regarded as negative gold-

standard, especially for methods using histones as predictors, since promoters share a large 

portion of histone features with enhancers. 

 

1.3.2 Challenges of enhancer prediction 

As described from previous section, the definition of enhancer positive and negative class 

is up to the researchers. Especially the negative set of enhancers – it is noteworthy that one 

negative sites in one tissue might be an active enhancer in another tissue, the context 

matters at all time. It is therefore important to choose negative set in the training set 

carefully, after all, the performance of the model can only be as good as the training data 

quality that are fed to the model. For example, transcription start sites share a considerable 

amount of common features with enhancers, thus the negative sites must include TSS 

regions should the user differentiate them from distal regulatory regions. 

Tissue specificity is another issue to be considered. Just like gene expression and other 

epigenetic profiles, enhancer is highly cell-type specific (Paige et al., 2012; Wamstad et 

al., 2012). The enhancers regulating developmental genes should not function in developed 

tissues in principle. In accordance, the relevant features, such as developmental TFs like 

SOX2/OCT4/NANOG in embryonic cells, will function differently with enhancer 
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regulation in other tissues. Thus, the dilemma of prediction methods emerges: if the model 

cannot generate rules of enhancer regulation across different cell types, then the model is 

in general useless. Within cell prediction is not indeed necessary, given the fact that whole 

genome profiling techniques will take a snapshot of the full range of genome. 

Another challenge of enhancer prediction is the diversity of enhancer itself. Studies have 

shown that the enhancers are highly heterogeneous(Bonn et al., 2012; Zentner, Tesar, & 

Scacheri, 2011). Thus, for the prediction task of enhancer, it is essential for the selection 

of training data to collect a comprehensive set of representing training samples, both for 

positive classes and negative classes.  

 

1.3.3 Tools for enhancer prediction 

Before epigenetic marks were adopted for predicting enhancer, DNA sequence was 

investigated as the potential predictor for enhancers (Heintzman et al., 2007), and this 

information has been used as enhancer predictor for a long time. K-mer based methods are 

always coupled with SVM classifier, and new representation of k-mers allowing gaps was 

introduced as well (Ghandi, Lee, Mohammad-Noori, & Beer, 2014; Lee, Karchin, & Beer, 

2011). Other variants based on motifs (Taher, Narlikar, & Ovcharenko, 2012), DNA local 

structure (B. Liu, Fang, Long, Lan, & Chou, 2015) were proposed as well. As more 

epigenomic data become available, tools like (Jia & He, 2016) that based only on sequence 

are not as popular as before.  

Among all the epigenomic marks, histone modifications are the most relevant to enhancer. 

Firpi et.al developed a tool for enhancer prediction in early stage of enhancer prediction 

(Firpi, Ucar, & Tan, 2010). They used neural network to model the histone modifications 



 

 

 

15 

as features at enhancer regions. It was considered as the standard work that many following 

works adopt the same setting of task, including the size of negative sets, validation methods 

and so on. Non-linear effects among different histone modifications were modeled by SVM 

(Miranda-saavedra, 2012), random forest (Rajagopal et al., 2013), adaboost (Lu, Qu, Shan, 

& Zhang, 2015) or combined with ensemble learning framework (Kleftogiannis, Kalnis, & 

Bajic, 2014). The current trend to predict enhancer is to utilize all the available epigenetic 

profiles and capture the inter-relationships by complex models. Such methods combine 

histones with chromatin accessibility (Erwin et al., 2014; F. Liu, Li, Ren, Bo, & Shu, 2016) 

or methylation (Y. He et al., 2017). A comprehensive list to these tools are shown below, 

the length of which will continue to grow due to the increasing amount of epigenome data 

becoming available. 

Table 1.2 Prediction methods for enhancer 

Publication  
Enhancer 
definition/c
ontrol 

Features Used  Method  Software 

Heintzman 
et al. (2007), 
Nature 
Genetics 

P300/rando
m DNA sequence  correlation  

Firpi et al. 
(2010), 
Bioinformati
cs 

74 validated 
from 
Heitzman et 
al. 2007 

histones ANN  (TDNN) CSIANN 

Lee et al. 
(2011), 
Genome 
Research  

P300/rando
m 

DNA sequence (k-
mer with k=3~10) SVM Kmer-svm 

Taher et al. 
(2012), 

Validated/r
andom TF motifs LASSO 

regression CLARE 



 

 

 

16 

Bioinformati
cs 

Miranda-
saavedra et 
al. (2012), 
NAR 

P300 distal 
to 
TSS/rando
m 

histone SVM + genetic 
algorithm 

ChromaGenSV
M 

Rajagopal et 
al. (2013), 
Plos Comp. 
Bio 

p300 
overlapping 
with DHS, 
distal to 
TSS/validat
ed 

24 histones Random forest RFECS 

Ghandi et al. 
(2014), Plos 
Comp. Bio 

p300 in 
mouse 
embryonic/ 
random 

Gapped-kmer SVM Gkm-svm 

Erwin et al. 
(2014) Plos 
Comp. Bio. 

VISTA 
enhancer/tis
sue-specific 
non-
enhaner 
validated 

step 1: histone, 
TFBS, 
Dnase/FAIRE,  
conservation, motif; 
step 2: histone, p300 

linear SVM as 
step 1; multiple 
kernel learning 
in step 2 

EnhancerFinde
r 

Kleftogianni
s et al. 
(2015), 
NAR 

ENCODE 
validated 
enhancer / 
random 

Histone, sequence  

Ensemble, with 
SVM as base 
classifier and 
ANN as final 
output classifier 

DEEP 

Liu et al. 
(2015), 
Bioinformati
cs 

Validated 
enhanver/n
on-
enhancer 

Sequence(k-mer), 
DNA local structure SVM iEnhancer-2L 

Lu et al. 
(2015), Plos 
ONE 

P300, DHS; 
distal to 
TSS/rando
m 

Histone (shape of 
profile in addition to 
intensity) 

adaboost DELTA 

Liu et al. 
(2016) 

H3K27ac 
peaks; 
multiple 

9 category: 
histone modifications, 
27  

deep 
learning(DNN)
+HMM; 

PEDLA 
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Scientific 
Report 

filters 
(distal to 
TSS, etc); 

TFs and cofactors, 15 
chromatin 
accessibility, 
transcription,  
RRBS,  
CpG islands,  
evolutionary 
conservation,  
sequence  k-mers,  
motifs (TFBS)  

Iteratively train 
through cell 
types 

Jia et al. 
(2016) 
Scientific 
Report 

Strong or 
weak 
enhancer / 
non-
enhancer 

400bp: bi-profile 
bayes(BPB) (similar 
to 200bp positive 
PWM and 200bp 
negative PWM; 
Nucleotide 
frequency; 
pseudo-nucleotide 
frequency:3-mer 
frequency; 

SVM EnhancerPred 

He et al. 
(2017) 
PNAS 

P300/rando
m + 
promoters 

Histones, 
methylation Random forest REPTILE 

 

 

1.4 Prediction of DNA methylation 

DNA methylation is an important component among all epigenetic marks. A variety of 

biological processes including development and differentiation, have methylation changes 

as a signature. The majority of DNA methylation is on the Cytosine of CG 

dinucleotides(5mc), or CpG sites, although other types of DNA methylation (non-CG 

methylation) exists as well. There are also variation of methylation types, such as 

hydroxymethylation (5hmC). 
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In early studies when high throughput sequencing technologies are not yet available, 

methylation level of CpG sites are investigated together with DNA sequence pattern using 

methylation specific restriction enzymes (Rollins et al., 2006), and prediction models aim 

to infer methylation levels based on the limited rules generated from sequence. MethDB 

(Grunau, 2001) was the popular choice of the training resource then. Multiple works 

(Bhasin, Zhang, Reinherz, & Reche, 2005; Das et al., 2006; Fang, Fan, Zhang, & Zhang, 

2006) were proposed to use sequence-derived features for methylation prediction on 

limited CpG sites. However, an intrinsic problem with these initial exploring works is that 

epigenetic marks, such as DNA methylation is cell/tissue type specific, thus, using only 

static genomic DNA sequence is not sufficient to capture its dynamic profile, or at least, 

this strategy can only be applied within specific genomic regions containing functional 

elements (Whitaker, Chen, & Wang, n.d.). 

High-throughput sequencing technologies enable researchers to profile methylation 

landscape in larger scale with lower costs. Microarrays such as the Illumina Infinium 

Methylation450k and MethylationEPIC array, are designed to cover CpG sites in important 

regulatory genomic regions. Reduced representation bisulfite sequencing (RRBS) 

extended the range of research to the genomic scale that are enriched with CpG 

sites(Meissner et al., 2005). Whole-genome bisulfite sequencing (WGBS) covers CpG sites 

across the whole genome. Prediction of DNA methylation has some distinct features 

compared to predictions on other epigenetic marks. The majority of tools for this task are 

to perform imputation across the whole genome (Angermueller, Lee, Reik, & Stegle, 2017; 

Fan, Huang, Ai, Wang, & Wang, 2016; Y. Wang et al., 2016; Zeng & Gifford, 2017; Zhang, 

Spector, Deloukas, Bell, & Engelhardt, 2015), usually within the same cell/tissue, rather 
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than transferring known mechanism to a new cell/tissue context. This is largely the result 

of DNA methylation measurement techniques: array-based methods are cost-efficient, but 

only cover a portion of all the CpG sites; on the other hand, WGBS method performs a 

genome-wide survey of all CpG sites, but the expenses limits its application, also, 

inaccurate measurement of methylation level on low coverage CpG sites occurs within 

WGBS data. Thus, computational imputation methods evolves to address the tradeoffs.  

With the growing numbers of epigenome profiling data available, imputation can be done 

without initial probing of limited CpG sites. Predicting methods using relevant markers to 

predict methylation became possible. Zhang et al. integrate sequence signatures together 

with other cell-type specific markers, including DNase Hypersensitive Sites(DHS) and 

transcription binding sites (TFBS) to predict methylation level (Zhang et al., 2015). A 

different group introduced the other possibility to consume chromatin topological features 

for the same task (Y. Wang et al., 2016). A recent method brings in histone modification 

to the already rich collection of features for the task of methylation prediction (Zou et al., 

2018). In addition to prediction of methylation level for CpG sites in general, Zeng et al. 

proposed to predict the effect of sequence variants on CpG methylation (Zeng & Gifford, 

2017), which is similar to the application of DeepBind (Alipanahi et al., 2015). Also, 

imputation methods might find their new application in single-cell data, due to the high 

missing values in single-cell methylation data. Angermueller et al. proposed a deep 

learning framework, using convolutional neural net (CNN) to capture sequence features, 

and recurrent neural net (RNN) for spatial dependent relationships among CpG sites to 

impute missing data for single cell methylation sequencing results (Angermueller et al., 

2017). 
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A list of the methods in methylation prediction is shown in Table below. 

Table 1.3 Prediction methods for methylation 

Publication  Methylation 
Type Features Used  Method  Software 

Bhasin, et al. 
(2005), FEBS 

CpG sites 
from 
MethDB 

DNA sequence  SVM Methylator 

R. Das, et al. 
(2006), PNAS 

CpG sites, 
differentiate 
in/out CGI  

DNA sequence SVM HDFinder 

Fang, et al. 
(2006), 
Bioinformatics 

CGI GC content, DNA 
motifs,  SVM 

MethCGI 

 

Whitaker et al. 
(2015), Nature 
Method 

DNA 
methylation 
valleys 

DNA sequence (motif) 

LASSO 
feature 
selection + 
random forest 
prediction 

epigram 

Zhang, et al. 
(2015), 
Genome 
Biology 

WGBS, 
450K 

DNA 
sequence,(composition, 
recombination rate, 
evolution rate), 450K 
data, DHS site, TFBSs 

Random 
Forest 

[not 
available] 

Wang, et al. 
(20156), 
Genome 
Biology 

RRBS, Hi-C 

 DNA sequence 
(composition, k-mer) , 
both local and remote 
based on Hi-C data 

DNN 
(stacked 
denoising 
autoencoders) 

deepmethyl 

Fan, et al. 
(2016), 
Genomics 

WGBS, 
450K 

DNA sequence (k-
mer), 450K data 

Random 
Forest 

[not 
available] 

Zeng, et al. 
(2017), 
Nucleic Acid 
Research 

RRBS, 
meQTL DNA sequence CNN of 

Keras CpGenie 



 

 

 

21 

Angermueller, 
et al. (2017), 
Genome 
Biology 

Single-cell 
RRBS 

DNA sequence, 
neighboring CpG CNN + RNN DeepCpG 

Luli S Zou, et 
al. (2018), 
bioRxiv 

WGBS, 
EPIC, 

ATAC-seq, Histone, 
TFBS, Genomic 
Features(CGI, GC 
content, recombination 
rate) 

XGBoost BoostMe 

 

 

1.5 Prediction of spatial chromatin structure 

In this category, the prediction methods vary a lot due to the complexity of characterizing 

chromatin structure. Different experimental techniques provide diverse views of the spatial 

organization of chromatin.  

A/B compartments are one way to divide the genome based on chromatin structure. 

Interactions between loci within one compartment are independent to the other. The A 

compartment was found to be associated with open chromatin while the B compartment 

with closed chromatin. The simple yet inspiring assumption behind the works to predict 

chromatin structure is that distal but interacting loci turn to harbor similar epigenomic 

features. Fortin et al. (Fortin & Hansen, 2015) used this strategy to reconstruct A/B 

compartment using methylation data and other types of epigenomic marks across multiple 

cell lines. Genomic loci with high correlation of these marks are predicted to be within the 

same compartment.  

Similarly, Zhu et al. (Zhu et al., 2016) developed a novel strategy to detect spatial 

chromatin interaction structure measured by capture-C experiments, using 1D epigenomic 

data. They collected epigenomic marks including chromatin accessibility, histone 
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modifications and gene expression levels from 5 different tissue types. Then correlation of 

distal loci are measured based on tensorized epigenomic marks, and significantly 

associated loci are called by permutation. Huang et al. (Huang, Marco, Pinello, & Yuan, 

2015) adopted a different way to study the structural features by defining interaction hubs 

and train a machine learning classifier based on epigenomic marks. In addition to the efforts 

to utilize epigenomic marks, molecular thermal simulation has been applied to explore the 

structural feature of chromatin as well; Brackley et al. (Brackley et al., 2016) proposed to 

use chromatin accessibility data to infer TF binding sites, which could serve as the 

interaction points to form protein bridge. Then polymer modeling were applied to simulate 

the thermal motion of the chromatin fiber to detect potential local interaction structures 

based on inferred protein bridging sites.  

A recent study extend the prediction target from the looping structure of chromatin to 

accessibility prediction (Jung, Angarica, Andrade-Navarro, Buckley, & Del Sol, 2017). 

Transcriptome data is used to infer the chromatin landscape within gene-regulatory 

regions. The intent to predict high-cost signals from low-cost transcriptome data sounds 

rational, however, the limitation is obvious as well: only with known regulatory 

relationships between genes and regulating genomic regions, the availability of which 

across multiple cell/tissue types is questionable, can the prediction be made faithfully.  

Table 1.4 Prediction methods for chromatin structure 

Publication  Targeted 
Chromatin Features Used  Method Software 

Fortin et al. 
(2015) Genome 
Biology 

A/B compartment 
450K 
Methylation, 
microarray, 
DHS, 

Eigen 
vector of 
features + 
Correlation  

(R script 
provided) 
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scATAC-seq, 
scWGBS 

Huang et al. 
(2015), 
Genome 
Biology 

chromatin 
interaction hubs 
and topologically 
associated domain 
(TAD) 
boundaries.  

Hi-C, histones, 
DNA sequence 

Bayesian 
additive 
regression 
tree 

N/A 

Zhu et al. 
(2016), Nature 
Communication 

Spatial 
association within 
TADs 

Histone, DHS, 
RNA-seq 

Tensor 
vector 
correlation 
+ 
permutation 

EpiTensor 

Brackley et al. 
(2016), 
Genome 
Biology 

Local 
folding/interaction 
map, on 
Alpha/beta globin 
loci in mouse 
erythoblasts 

DHS + TF 
motifs 

Polymer 
model N/A 

Jung et al. 
(2017) 
Scientific 
Report 

Chromatin 
accessibility 
(ENCODE 
DNase-seq) 

Transcriptomic 
data 
(ENCODE 
RNA-seq) 

hierarchical 
random 
forest 

ChromAccPredi
ction 

 

 

1.6 Prediction of gene expression.  

Gene expression prediction is the downstream target in the whole cascade of regulatory 

network. All the other elements, including chromatin accessibility, histone modification 

and transcription factor binding, are all serve as an intermediate step to control the 

expression of targeted genes.  

The goal to evaluate gene expression can be achieved by several experimental 

transcriptome quantifying methods. Microarray based methods has been through more than 
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a decades of popularity (Schulze & Downward, 2001). For sequencing based methods, 

evaluation at transcript level expression can be done by RNA-seq (Mortazavi, Williams, 

McCue, Schaeffer, & Wold, 2008); methods capturing TSS include CAGE (Kodzius et al., 

2006; Shiraki et al., 2003)and RNA-PET (Ruan et al., 2007). The experimental methods to 

quantify gene expression can be usually done with a lower price than profiling other 

epigenetic marks, due to the fact that the transcriptome is only a small portion of the whole 

genome on sequence length. Thus prediction methods are not proposed in order to perform 

in silico imputation for unmeasured data, instead, are focusing on studying the regulatory 

roles of different epigenetic marks on gene expression.  

Initially there were efforts to study the patterns of DNA sequence at the regulatory regions 

of expressed genes in limited tissue context. Multiple sequence based prediction works are 

analyzed in an early work by Yuan et al., in which they reexam the sequence based 

prediction works, and proposed a method to select regulatory motif to predict gene 

expression in Yeast (Yuan, Guo, Shen, & Liu, 2007) .  

In the meantime, histone modifications have been found to be predictive of gene expression. 

Histone modifications have many different types, depending on the location and the 

chemical group of the modification. This results in the diverse functional activities that 

they are able to initiate. Thus, it is necessary to treat different histone marks in different 

ways when modeling their regulatory roles. In the beginning, Yu et al. proposed to model 

the causal relationship between histone modifications and gene expression (Yu, Zhu, Zhou, 

Xue, & Han, 2008). Their Bayesian network not only reveals regulatory rules from histone 

modification to gene expression, but also inter-regulatory relationships among different 

types of histone marks. In a following study, Karlic et al. shows that only a small subset of 
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histone marks are needed to accurately predict gene expression levels, while the subset 

selection of histone marks is dependent on the GC content of the gene promoter regions 

(Karlić, Chung, Lasserre, Vlahovicek, & Vingron, 2010).  

In addition to histone modifications, transcription factor binding sites (TFBS) are shown 

to be related to gene expression as well, which is not surprising due to the role of TFs. 

Ouyang et al. firstly propose to decompose groups of TFBS signals into sets of 

combinations (PCs) using PCA, then perform regression to model their relationships with 

gene expression (Ouyang, Zhou, & Wong, 2009). Since 2011, researcher started to 

combine multiple resources for the prediction task. Costa, et al. combines TFBS and 

histone marks to predict the expression levels of genes with low-CG promoters in diverse 

immune cells(Costa, Roider, do Rego, & de Carvalho, 2011). They point out that genes 

with low-CG promoters turn to express in tissue-specific manner. Cheng et  al. followed 

the same strategy to predict gene expression in C. elegans and mouse ESCs, using SVM to 

accommodate model non-linearity(Cheng et al., 2011; Cheng & Gerstein, 2012). Current 

stage of prediction work still look for hint from histone marks. A recent deep learning 

predictive model used histone modification profile as the input features of a convolutional 

neural network and achieved good performance (Singh, Lanchantin, Robins, & Qi, 2016).  

New types of features have been added to predictive frameworks all the time. Park et al. 

used methylation levels as input for the first time in (Park & Nakai, 2011). This strategy 

has been extended to non-linear SVM model by Kapourani et al. in (Kapourani & 

Sanguinetti, 2016). Natarajan et al. introduced DNase hypersensitive sites (DHS) as the 

predicting feature when the ENCODE project release this type of cell-specific data, making 

the use of chromatin accessibility in the study of cell-specific epigenetic regulation in large 
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scale possible(Natarajan, Yardimci, Sheffield, & Frazer, 2012). In addition, DNA shape 

was also found to be predictive for TFBS and gene expression (Peng & Sinha, 2016).  

Table 1.5 Prediction methods for gene expression 

Publication  Features Used  Method  Target genes Description 

Yuan, et al. 
(2007), Plos 
Computational 
Biology 

TF motifs Naïve Bayes 
Microarray, 
2,587 Yeast 
genes 

Revisit of 
sequence based 
expression 
prediction 
methods. 

Yu, et al. 
(2008), 
Genome 
Research 

Histone  Bayesian 
Network 

Microarray , 
~15,000 
Human genes 
from multiple 
tissues 

Predict 
regulatory 
network among 
histone and 
gene 
expression 

Ouyang et al. 
(2009), PNAS TFBS  Linear 

regession 
RNA-seq, 
mouse ESCs 

PCA on TF 
binding 
strength; use 
PCs as 
regressors 

Karlic et al. 
(2010), PNAS Histone  Linear 

regression 
Microarray, 
human T-cell 

Different 
combination of 
histone marks; 

Costa, et al. 
(2011), BMC 
Bioinformatics 

Histone + 
TFBS 

Mixture of 
linear models 

Microarray, 
human Th1, 
Th2, Th17 and 
iTreg cells 

linear 
regression for 
each factor; 
then EM for 
estimating 
mixture 

Park, et al. 
(2011), BMC 
Bioinformatics 

12 TFBS, 
Methylation, 
Histone, CpG 
island 

Linear 
regression 

RNA-seq, 
mouse ESCs 

Identified two 
classes of 
genes regulated 
by distinct 
combination of 
epigenetic 
marks 
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Cheng, et al. 
(2011), 
Genome 
Biology 

Histone, TFBS,  SVM 

RNA-seq, C. 
elegans  and 
other 
species(modE
NCODE data) 

Histone 
features are 
redundant; 
Positional 
contribution 
varies. 

Natarajan, et 
al. (2012), 
Genome 
Research 

DHS 
Logistic 
regression + L1 
norm 

Microarray, 19 
human cell 
lines (from 
ENCODE) 

Using DHS + 
TF motif to 
infer binding 
sites 

Cheng, et al. 
(2012), NAR Histone, TFBS SVM RNA-seq, 

mouse ESCs 

TFBS and 
Histone shows 
distinct spatial 
patterns 

Dong, et al. 
(2012), 
Genome 
Biology 

Histone, DHS, 

Random forest 
for binary 
prediction; 
regression to 
quantify 
expression 

CAGE data, 
RNA-seq, 
RNA-
PET(ENCODE
) 

Different 
subset of 
chromatin 
features are 
predictive for 
different types 
of RNA 
quantifying 
experiments 

Kapourani, 
Sanguinetti. 
(2016) 
Bioinformatics 

Methylation(R
RBS) 

SVM 
regression 

RNA-seq, cell 
lines(K562, 
GM12878, H1-
hESC) 

Methylation 
profiles are 
predictive of 
gene 
expression 
across cell 
lines. 

Singh, et al. 
(2016) 
Bioinformatics 

Histone CNN RNA-seq 
(REMC) 

Deep learning 
used 

Peng and 
Sinha, (2016) 
NAR 

DNA shape 
features, TF 
motifs 

Random Forest  37 Drosophila 
genes 

Only one using 
DNA shape 
features 
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1.7 Discussion  

Here I presented the majority of predictive models in epigenetic studies. The pros and cons 

for computational methods are summarized based on this collection of methods. For the 

pros of predictive models, in-depth understanding of the regulatory cascade of genetic 

information is explicitly modeled in multiple scales and validated across many scenarios. 

It is also feasible to provide decision support for tests in practical applications, such as 

clinical settings. However, the drawbacks of in silico modeling should be noted as well. 

Firstly, the definition of gold standard is not unique, partly because of the fast development 

of experimental technologies. For the same predicting target, the definition of positive class 

may vary in both quantity and the genome coverage scale. Also the target itself can be 

highly heterogeneous and not well characterized, and limited by the resolution and 

accuracy of the experiment methods. Thus, the collection of data is a non-trivial task in 

order to fully saturate the feature space for all the potential sub-clusters of samples. 

Secondly, the rationale behind each prediction should be emphasized before exploring the 

correlation from data. Prediction tasks that using multiple marks requiring higher cost to 

predict lower-cost targets are impractical, and should not be considered. The economic 

reason is not the sole deal-breaker indeed, the biological logic is more important. For 

example, predicting gene expression using a full collection of chromatin profiles would be 

neither practical nor reasonable. Thirdly, although the correlation among features can be 

modeled, it is not sufficient to draw any conclusion on the causal relationships yet. One 

example of such inequity is the difficulty to transfer learned model or rules to a different 

context of cell other than the trained data. How well the model generalize the rules of 

transcription regulation is highly dependent on how representative the training data are. 
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Users need to be very careful when trying to make cross-cell, or cross-sample prediction, 

in order to make sure that the epigenome controlling rules can be transferred. Finally, the 

models are based on assumptions ignoring multiple other relevant genetic factors, such as 

the effect from genetic variants, modification on transcription, alternative splicing of 

transcripts, artifacts of techniques, etc. It is impossible to contain everything in one model. 

But, users should be aware to exclude the confounding factors to maximize the explain 

ability of proposed models. 

By comparing models on the same topic in chronical order, there are interesting trend of 

model development on the same predicting topic. In general, the control flow of genetic 

information starts from DNA sequence, and ends at the expression of genes. At early stages, 

DNA sequence and features derived from it are the most common start point to build 

models. These studies are the initial exploring works, thus a well-developed software to 

repeat the same task is not common. Or, machine learning methods like SVM are widely 

used for high-dimension features based on k-mer sequence features. In later stages when 

the dynamic features can be profiled by new techniques, the sequence based models will 

generally lose popularity. Later models include more features, so the requirement for the 

complexity of models and the capability to handle heterogeneous features is essential in 

order to achieve better result. Models like random forest or boosting are popular choices. 

It is noteworthy that explicit modeling of experiment data plays a key role at all stages. A 

typical example is the characterization of DNase footprint shapes. Statistical models are 

powerful tools to quantitatively associate the observed sequencing data (read counts) to the 

interested biological events or characters (intensity, slope or other shape features of DNase 
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footprints). In the meantime, trading-off between model performance and model 

interpretability is also  essential in the study of epigenetic regulation. 
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Chapter 2  
Base-resolution methylation patterns accurately predict 

transcription factor bindings in vivo 
 

2.1 Introduction 

A fundamental goal of functional genomic research is to understand gene regulation. Gene 

expression can be controlled by epigenetic mechanisms via the coordinated binding of 

transcription factors (TFs), histone modifications, and DNA methylation (Cooper & 

Hausman, 2013). An important first step toward deciphering the complexities of gene 

regulatory networks is detecting the activities of functional elements, such as TF binding 

sites in the genome.  

Advances in high-throughput sequencing technologies such as ChIP-seq (Barski et al., 

2007; Johnson, Mortazavi, Myers, & Wold, 2007; Robertson et al., 2007) and ChIP-exo 

(Rhee & Pugh, 2011) allow the comprehensive genome-wide profiling of protein-DNA 

binding sites. In recent years, enormous efforts have been made to map TF binding sites 

under different biological contexts; for example, by consortiums like ENCODE 

(Consortium et al., 2012) and modENCODE (Celniker et al., 2009). In spite of the 

successes, the application of ChIP-seq is still limited by the availability of high-quality 

antibodies and a requirement for fresh cells/tissues. The multitude of distinct proteins 

makes genome-wide profiling for all of them labor-intensive and costly. Furthermore, 

individual profiling of TF binding is a challenge in clinical settings because the amount of 

biological materials available is often limited. For these reasons, developing in silico 

approaches to predict in vivo TF binding sites that do not rely on ChIP-seq is desirable. 
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Traditionally, DNA sequence motifs have been used to predict TF binding (Stormo, 2000; 

Tompa et al., 2005). However, such an approach only works well for proteins with binding 

motifs that are highly specific. For proteins with weak binding motif patterns, the 

predictions suffer low specificity. In addition, the DNA motif is insufficient to determine 

whether a TF will bind to DNA in vivo, which means cell type-specific binding cannot be 

determined; additional information is needed to make that prediction. Recent studies 

revealed that TF binding is associated with nucleosome positions (He et al., 2010), histone 

marks (Heintzman et al., 2007; Robertson et al., 2007), and hypersensitivity to cleavage by 

DNase I (Bernat et al., 2006; Hesselberth et al., 2009). Based on these findings, a number 

of statistical methods and software tools have been developed to integrate motif 

information with other data types and genome annotations to achieve better prediction 

results (Arvey, Agius, Noble, & Leslie, 2012; Cuellar-Partida et al., 2012; He et al., 2010; 

Ji, Li, Wang, & Ning, 2013; Pique-Regi et al., 2011; Rajagopal et al., 2013; Ramsey et al., 

2010; Won, Ren, & Wang, 2010). All these methods use histone or DNase I data, as well 

as the genome annotations and DNA motifs for prediction. One of the common limitations 

is that the histone modification or DNase I hypersensitivity studies require large amounts 

of fresh starting material (at least from 106 cells). This makes the existing prediction 

methods practically inapplicable to clinical samples. 

DNA methylation is an important epigenetic modification with essential roles in many 

biological processes (Klose & Bird, 2006; Suzuki & Bird, 2008). Methylation of cytosine 

at carbon five (5-methylcytosine, or 5mC) regulates gene expression, determines cell 

development, and affects numerous disease pathogeneses (Jones, 2012; Klose & Bird, 

2006). Exploiting next-generation sequencing technologies, a powerful experimental assay 
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called bisulfite sequencing (BS-seq) was developed that measures DNA methylation at 

base resolution genome-wide (Lister et al., 2013; Lister et al., 2008; Lister et al., 2009). 

The experiment starts by treating DNA molecules with sodium, which induces deamination 

and conversion of unmethylated cytosine to uracil, while methylated cytosine is protected 

by the methyl group and remains unchanged. The uracil will be amplified as thymine 

during amplification. The bisulfite-treated and PCR-amplified DNA segments then go 

through high-throughput sequencing. After alignment and preprocessing, BS-seq data can 

be analyzed by counting the number of sequencing reads for each CpG site where either a 

thymine or a cytosine is observed. The count of thymine represents the number of 

sequenced DNA strands that are unmethylated, and the count of cytosine represents the 

number of DNA strands that are methylated at this CpG site. 

5mC is known to interfere with DNA-protein interactions, thereby directing transcriptional 

states (Hu et al., 2013). For example, a recent publication reported that 5mC is strongly 

correlated with TF binding, where the binding sites are usually hypomethylated (Stadler et 

al., 2011). Regulation of DNA-protein interactions can occur either through affinity of 

methyl-CpG-binding proteins for 5mC, or through the refractory effects of 5mC on some 

DNA-protein interactions. The latter is known to directly influence binding of a number of 

TFs, such as CTCF (Yu et al., 2012). Furthermore, more recent observations have 

implicated the iterative oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcystosine (5caC) in pathways that serve to offset 5mC 

levels and facilitate TF binding (Song et al., 2013). All these findings indicate that DNA 

methylation levels offer clues as to whether TF binding occurred at a particular locus, 

which may be exploited as an alternative to the DNase I or histone data for the purpose of 
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predicting TF binding in vivo. This is important because DNA methylation profiles are 

more stable and much easier to obtain than DNase I profiles in a clinical setting.  

To investigate the viability of this hypothesis, we aligned profiles of DNase I, methylation, 

and TF binding obtained by DNase-seq, BS-seq, and ChIP-seq, respectively, in which the 

ChIP-seq data are used as the gold standard for TF binding. Visual inspection showed there 

are good concordances between ChIP-seq peaks, DNase I peaks, and methylation “dips.” 

As an example, Figure 2.1 shows one CTCF binding sites in H1-hESC, which is located at 

the transcription start site (TSS) of a protein-coding gene. One can clearly see that at the 

TF binding sites (indicated by ChIP-seq peaks), the DNase-seq data indicates enrichment 

of DNase I hypersensitivity sites. At the same locations, the DNA methylation levels are 

altered and show strong hypomethylation.  
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Figure 2.1 Concordance among epigenetic profiles 

Concordances between ChIP-seq, DNase I and methylation on a genomic locus. A 

comparative view of DNase I- hypersensitive, methylation (5mC), and ChIP-seq profiles 

on a genomic locus on chromosome 10. Good concordances are shown between ChIP-seq 

peaks (used as the gold standard for TF binding), DNase I peaks, and methylation “dips”.  

All data shown are from the H1-hESC cell line. 

 

For a more comprehensive view of the methylation profiles around TFBSs, we explored 

whole-genome BS-seq data from two human cell lines (embryonic stem cell H1-hESC and 

fibroblast IMR90) and one mouse cell line (embryonic stem cell mESC). We calculated 

the average methylation levels of three types of methylation: CG methylation (5mC), CG 



 

 

 

51 

hydroxymethylation (5hmC), and non-CG (CH) methylation around putative TF binding 

sites (motif sites covered by a ChIP-seq peak) and compared these levels to those from 

non-TF binding sites (motif site not covered by any ChIP-seq peak). A “meta-gene” style 

plot is shown in Figure 2.2. From these plots, we make three important observations. First, 

there are differences in the methylation levels between actual TF binding sites and random 

regions, with 5mC patterns showing the most pronounced difference. Second, the 

methylation profiles are distinct for different TFs. Third, the methylation patterns for the 

same TF are similar across cell types. Taken together, these findings indicate that 

methylation profiles, similar to the DNase-seq data, can be used to distinguish TF binding 

sites from the genomic background. Despite the empirical evidence connecting 

methylation level variation and TF binding, how to develop a rigorous statistical approach 

to quantify the methylation profiles around TF binding sites is non-trivial. Another key 

question is how to integrate methylation information along with DNA sequence motif and 

other genomic features in a coherent framework to predict TF binding in vivo.  

Motivated by these findings, we developed a novel computational approach to predict TF 

binding. Our method, named Methylphet, is a supervised learning strategy that is able to 

combine methylation profiles and multiple genomic features to make TF binding 

predictions. Using ChIP-seq data as surrogates for putative TF binding, we show that 

Methylphet achieves higher accuracy than prediction method using motif score alone or 

DNase I profiles. Compared with histone ChIP-seq or DNase-seq, BS-seq can be 

accomplished using very little material (nanograms of genomic DNA) with highly sensitive 

bisulfite conversion-based methods, making a prediction method based on BS-seq data a 
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good alternative means for inferring gene regulatory mechanisms from samples in which 

ChIP-seq and DNase I hypersensitivity studies are not feasible. 

 

Figure 2.2 Methylation profiles from different cell lines/TFs/methylation type. 

Methylation patterns around binding sites of several TFs from different cell lines. Curves 

represent average methylation (CG/5hmC/CH) levels around ChIP-seq peaks (solid lines) 

and motif sites without ChIP-seq peaks (dashed lines). A-C: CG methylation profiles for 

CTCF from different cell lines (H1-hESC, IMR90, and mESC). D-F: CG methylation 
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profiles for several TFs (GABP/MAX/OCT4) from H1-hESC. G-I: Different types of 

methylation profiles (CG/5hmC/CH) for CTCF from H1-hESC.  

 

2.2 Material and Methods 

2.2.1 Description of the Methylphet method 

The workflow of Methylphet is illustrated in Figure 2.3. The method consists of candidate 

site selections, a training module and a testing module. The first step is to identify candidate 

binding sites by genome-wide motif scan using motif PWMs in both training and testing 

data. The detailed procedure of selecting candidate sites is provided in the Data and 

Processing section. Then a predictive model is constructed in the training module, and then 

the model is put to work for TF binding prediction in the testing module. We use Random 

Forest (RF) (Breiman, 2001) to build the predictive model. RF is an ensemble learning 

method for classification that recently became popular in genomics because of its 

flexibility, efficiency, and ability to avoid over-fitting. Moreover, RF provides importance 

measurements for all predictors, which are key to deciding whether to remove an unrelated 

predictor or add a new promising one.  

The required inputs for the training module include the ChIP-seq peak locations (as the 

gold standard), a set of whole-genome BS-seq data, and other static genomic features, such 

as DNA motif and evolutionary conservation scores. Optionally, 5-hydroxymethylcytosine 

(5hmC) data from Tet-assisted BS-seq (TAB-seq) (Yu et al., 2012) can also be included. 

The training module contains two steps: the construction of a methylation model and a RF 

model respectively. Motif information is not used in the methylation model training step, 
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but used in constructing the RF model. With the candidates available, we first identify the 

putative binding sites (those inside a ChIP-seq peak) from all candidate regions using the 

gold standard ChIP-seq data. Next in the estimation of methylation models, we characterize 

the methylation count data in a genomic window around the true TF binding sites as a 

series of beta-binomial distributions (details are provided in the next section). Then the 

same procedure is applied to candidate regions without TF binding. At the end of this step, 

we obtain two sets of beta-binomial distributions for the methylation profiles from TF 

binding and background regions. For example, means of the beta-binomial distributions 

represent the shapes of the methylation levels around TF binding or background regions 

(as shown in Figure 2.2). Based on the estimated distributions, for each candidate region 

we compute multiple “methylation scores,” which are defined as the likelihood ratios of 

the site being a true binding site versus being the background. The methylation scores 

include 5mC scores, CH methylation scores, and 5hmC scores if TAB-seq data are 

available. Next for the training of the RF model, in addition to methylation scores, we also 

include genomic features, such as motif scores, conservation scores, and distance to TSS. 

Subsequently, the methylation and RF models produced from the training module are 

employed for prediction. It is important to note that a different predictive model is 

constructed for each TF due to the TF specificity of the methylation profiles. 

2.2.2 Methylation models  

We used the following model to characterize methylation (including 5mC, 5hmC, and CH 

methylation) patterns at a genomic region. Given a candidate site, we treat the motif site as 

a window, and then add ten 30bp window to each side. The methylation profiles in these 

21 windows are used to capture methylation patterns for TF binding sites and backgrounds. 
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We choose 30bp as the window size for the sake of balancing the needs of model parameter 

estimation accuracy and spatial resolution of the methylation profile. To gauge the impact 

of the window size selection, we repeat the whole analysis procedure using window size 

of 20bp and compare the two sets of results.  We found that the two sets of results are very 

similar and the 30-bp results are slightly better overall. In the software implementation of 

Methylphet, we provide option for user to specify the window size. 

 

Figure 2.3 A flow chart for Methylphet method. 

 

Inside each window, if there was at least one CG dinucleotide covered by at least one read 

(either methylated or not), we recorded the total number of methylated and unmethylated 

reads. Assume there are n candidate sites. In the jth window (𝑗 = 1,2,… ,21) of the ith 
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candidate site (𝑖 = 1,2,… 𝑛), we used 𝑥+, and 𝑦+, 	to denote the number of methylated and 

unmethylated reads and let 𝑛+, = 𝑥+, + 𝑦+, . 

Similar to in (Feng, Conneely, & Wu, 2014), we used a beta-binomial compound 

distribution to model the count data from BS-seq. The counts, given underlying “true” 

methylation levels, are assumed to follow a binomial distribution: 

𝑥+,|𝑛+,, 𝑝,~𝐵𝑖𝑛𝑜𝑚6𝑛+,, 𝑝,7, 𝑖 = 1,2, …𝑛; 𝑗 = 1,2, … 21. 

The methylation levels 𝑝,’s are assumed to follow a beta distribution, but with different 

parameters at TF binding sites and background. When there is no TF binding at a candidate 

site, the methylation levels from all 21 windows are assumed to be identical and similar to 

those from the genomic background (close to fully-methylated). Thus, we assume 𝑝,’s 

follow the same beta distribution. For candidate sites that are bound by TFs, we found 

(Figure 2.2) that the methylation levels are different at different windows, e.g., methylation 

levels dip toward the motif site from both directions. Therefore, we assume that each 

𝑝,	follows a different beta distribution. Defining indicator 𝑧+ to denote binding (𝑧+ = 1) or 

not (𝑧+ = 0) for candidate site i, we have 

𝑝,|𝑧+ = 1~𝐵𝑒𝑡𝑎6𝛼,, 𝛽,7, 𝑝,|𝑧+ = 0~𝐵𝑒𝑡𝑎(𝛼B, 𝛽B). 

For quality control purposes, we removed all windows with less than	five total reads and 

candidates within CpG islands from the training set and used the method of moment (MOM) 

to estimate parameters 𝛼,, 𝛽, and 𝛼B, 𝛽′. With parameters estimated at each motif site, we 

calculated the likelihood ratio comparing the two methylation patterns (TF binding or no 

binding) as methylation score 𝜆+ for the ith candidate sites in test data:  

𝜆+ = E logI
𝑝6𝑥+,J𝑛+,, 𝑧+ = 17
𝑝6𝑥+,J𝑛+,, 𝑧+ = 07

K
L
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Higher methylation scores indicated stronger evidence for a candidate site to have TF 

binding. The same procedure was applied to obtain CH methylation scores, as well as 

5hmC scores if whole-genome TAB-seq data were available. 

2.2.3 Other genomic features 

Other genomic information used in the predicting model included: sequence conservation, 

distance to TSS, overlap with repetitive region, and other genomic features. Conservation 

scores were downloaded from the UCSC genome browser, hg18 phastCons44way table. 

Repeat masker, which marks the repetitive regions, was downloaded from the UCSC 

genome browser. We also calculated the nearest distance between candidate binding sites. 

For other genomic features, we used a binary indicator (0 or 1) to show if the motif 

overlapped with: TSS, TES, exons, introns, or CpG islands, and the distance to TSS. All 

the genomic Feature annotations were calculated using R and Bioconductor.  

2.2.4 Prediction  

Several supervised learning approaches were investigated, and RF performed the most 

accurately and robustly among all the approaches. Hence, results were demonstrated using 

RF, which was achieved with R package randomForest (Liaw & Wiener, 2002).  

In the RF, a binary classification model was trained using methylation score together 

with genomic features. In each trained model, the importance of input features was assessed 

using Gini gain importance. The number of trees used in the model was determined by the 

stability of out-of-bag error. The predicting result is represented by the probability of 

getting a vote from the randomly generated classification tree for each class. The predicting 

performance was evaluated using the ChIP-seq peaks as the gold standard. ROC based on 
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the class probability and the gold standard was computed to show the overall predicting 

performance of our method. 

2.2.5 Data and processing 

5mC data from bisulfite sequencing (BS-seq) studies. The BS-seq data from human 

embryonic stem-cell (hESC) lines H1-hESC and IMR90 were downloaded from Gene 

Expression Omnibus (GEO) with ID GSE16256 (Lister et al., 2009). The 5mC BS-seq data 

from the mouse embryonic stem-cell (mESC) line was downloaded from GEO with ID 

GSE30202 (Stadler et al., 2011). The 5mC BS-seq data from the mouse dentate gyrus (DG) 

cells was downloaded from GEO with ID GSM1263221 (Guo et al., 2014) 

Bisulfite-seq paired-end read processing and methylation calling. Paired-end reads were 

first pre-processed to remove adapter sequences, as well as low-quality sequence on both 

the 3' and 5' ends using Trimmomatic 0.20 (Bolger, Lohse, & Usadel, 2014), with the 

following parameters: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:36. This was followed by in silico conversion of each C to T (Read 1) and each 

G to A (Read 2). Preprocessed reads were then aligned to both C-to-T and G-to-A 

converted chromosomes that were computationally derived from NCBI mm9 genomic 

sequence using Bowtie 0.12.9 (Langmead, Trapnell, Pop, & Salzberg, 2009) (-m 1 -l 30 -

n 0 -e 90 -X 550). Reads mapping to both genomes were discarded and non-aligned pairs 

were reprocessed as single-end data using the same alignment parameters. For both paired-

end and single-end alignments, only uniquely mapping reads were retained, and PCR 

duplicates were removed using MarkDuplicates (Picard Tools 1.82). To avoid counting 

reference positions covered by overlapping paired-end reads, overlapping regions were 

clipped, keeping the region of the overlap with higher quality. The original computationally 
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converted C’s and G’s were reverted, and for each reference cytosine position the number 

of C reads and T reads were counted using SAMTools mpileup. We kept the number of 

5mC reads as well as total read coverage at each CG dinucleotide where 5mC is present 

for the processed data.  

5hmC data. The base-resolution maps of 5hmC in human and mouse ES cells were 

generated previously (Yu et al., 2012). We used the same procedure described above to 

process 5hmC data and call methylation.  

DNase data. The DNase I cutting sites were derived from the ENCODE dataset. We 

downloaded the Human H1-hESC DNase sequencing alignment files from ENCODE 

Crawford-Duke chromatin Map dataset via ENCODE Data Coordination Center (DCC); 

we downloaded the mouse mESC DNase sequencing alignment files from ENCODE Uw 

Dnase dataset from ENCODE DCC; DNase-seq alignment files for the IMR90 cell line 

were first downloaded from ENCODE Duke OpenChromDnase dataset on ENCODE DCC, 

and then converted to the hg18 coordinate system using liftover (Hinrichs et al., 2006). 

ChIP-seq data. The ChIP-seq mapping results for all the TFs in H1-hESC cells, IMR90 

cells, and CTCF in mouse mESC Cells were downloaded from UCSC ENCODE collection 

(Wang et al., 2012). We performed the ChIP-seq experiment on mouse mESC for OCT4.  

ChIP-seq experiment. ChIP-seq experiments were performed following the protocol from 

the laboratory of Richard M. Myers 

(http://myers.hudsonalpha.org/documents/Myers%20Lab%20ChIP-

seq%20Protocol%20v041610.pdf). Briefly, 2×107 mouse ES cells were cross-linked with 

1% formaldehyde at 25°C for 10 min and sonicated to generate chromatin fragments of 
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100–500 bp. Chromatin fragments from 2×107 cells were immunoprecipitated using OCT4 

antibody (Abcam ab8895). ChIP-seq library construction and Illumina sequencing were 

performed following the manufacturer’s instructions. 

ChIP-seq data processing. For bam files that listed genomic coordinates in hg19, we first 

converted them to genomic coordinates in hg18 using liftover (Hinrichs et al., 2006). We 

next used HPeak (Qin et al., 2010) for peaking calling. Peak intersections of biological 

replicates are retained and employed for model training to maintain enhanced ChIP signal 

strength.  

Selection of candidate regions. The candidate TF binding regions are selected based on 

sequence motif scores. The position-specific weight matrices (PWM) for CTCF, MAX, 

SIX5, USF1, BCL11A, EGR1, NANOG, RAD21, RFX5, SRF, USF2, GABP, NRSF, YY1, 

CJUN, JUND , OCT4, and TCF12 were downloaded from JASPAR (Mathelier et al., 2014) 

and factorbook (Wang et al., 2012). We used PWM matching functions from Bioconductor 

package "Biostrings" to scan the entire genome to identify candidate sites for TFBS. The 

cutoff for candidate sites leaves between 200,000 and 600,000 candidate sites for most TFs.  

2.2.6 Data Access 

ChIP-Seq data in mESC have been submitted to GEO (GEO accession number GSE65093). 

2.3 Result 

2.3.1 TF binding prediction results  

We conducted extensive real data analyses to evaluate the performance of Methylphet. In 

total, we performed TF binding prediction of 19 TFs for human embryonic stem cell line 
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H1-hESC and five TFs for human fibroblast cell line IMR90. We randomly split candidate 

sites into equal-sized training set and testing set. Prediction performance is evaluated on 

the testing set only. We compared the prediction performance of Methylphet with 

CENTIPEDE (Pique-Regi et al., 2011), which is a widely used unsupervised method using 

DNase-seq data to predict TFBS. CENTIPEDE takes other genomic features to construct 

the prior for TF binding prediction. For a fair comparison, we fed the same set of non-cell-

type-specific, static genomic features, such as conservation score, motif score, etc. to both 

CENTIPEDE and Methylphet. Besides those, DNase data were used in CENTIPEDE, and 

methylation data were used in Methylphet. We did not include methylation data for 

CENTIPEDE, nor did we include DNase data for Methylphet. We also compared with 

predictions using sequence motif only (candidate regions are ranked by their motif scores). 

Receiver Operation Characteristic (ROC) curves are used to represent the overall 

predicting performance of each method (Figure 2.4-5). Considering that a majority the 

candidate sites are negative for some TFs, we also generate precision-recall curves for 

performance evaluation.  
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Figure 2.4 TF binding predition results for H1-hESC cell line. 

ROC curves for Methylphet, CENTIPEDE, and motif score are shown by red, blue, green 

lines, respectively. Prediction results were generated by randomly splitting the dataset 

into training set and testing set of equal size for the H1-hESC cell line. Methylphet 

robustly provides better predicting performance for different transcription factors. 
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Figure 2.4 shows the ROC curves for nine different TFs in H1-hESC. These extensive real 

data analyses show that Methylphet robustly outperforms CENTIPEDE and the motif-

score-only method. To be more specific, Methylphet outperforms motif-score-only for all 

TFs in all cell lines. This is expected since Methylphet effectively combines motif score 

and information from methylation profiles and other genomic features. Compared with 

CENTIPEDE, which also considers motif score and other genomic features, Methylphet 

also outperforms significantly in all TFs. Although CENTIPEDE and Methylphet perform 

similarly for CTCF and RAD21 when the false-positive rate (FPR) is small (less than 0.1), 

Methylphet outperforms CENTIPEDE after the FPR is higher than 0.1. In order to 

demonstrate the robustness of the performance, we repeat the testing for ten times. The 

boxplots of the ten area under the ROC curves values  show that Methylphet robustly 

outperforms motif score and CENTIPEDE. 

In addition to the difference in information sources, the underlying strategy of Methylphet, 

which is an ensemble learning approach, is also different from that of CENTIPEDE, which 

is a mixture model type of approach. It is of interest to find out whether the source of data, 

or the underlying method is the major contributor of the performance improvement of 

Methylphet. In order to answer the above question, we replaced the methylation scores 

with the DNase scores obtained from CENTIPEDE in the RF of Methylphet and compare 

that to Methylphet as well as CENTIPEDE. Our comparison results between RF with 

methylation data vs. RF with DNase data seem to suggest that both data source 

(methylation data vs. DNase data) and method used (RF vs. mixture model) contribute to 

the performance improvement of Methylphet over CENTIPEDE. However it is also 

possible that the statistical model, not the data source used, made the difference. Therefore, 
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an alternative model for DNase with RF could change, and potentially improve the 

predicting ability of DNase data. 

The advantages of RF, an ensemble learning approach, over the mixture model type of 

approach adopted by CENTIPEDE can be attributed to two factors. First, due to the high 

variability among TFs, a supervised learning approach like RF is more robust. On the other 

hand, an unsupervised mixture model approach may fail in adverse situations. As an 

example, the EM algorithm (Dempster, Laird, & Rubin, 1977) fails to converge when the 

proportion of true positives in the candidate sites is low, which often occurs for TFs with 

shorter motifs and fewer putative binding sites. Second, RF does not assume independence 

among the predictors, as does CENTIPEDE. Our experience with CENTIPEDE is that the 

final results are often dominated by the DNase-seq data. Since the genomic features are 

diverse and many of them are highly correlated, an RF model can better use the integrated 

information from predictors.  

2.3.2 Cross-sample TF binding prediction results 

We further tested the predictive accuracy when training and testing data were from 

different samples. Our approach will be most attractive if the model trained in one cell type 

can produce robust prediction in a different cell type or sample; from Figure 2.2, this seems 

plausible since we saw that the methylation pattern is consistent across cell lines for the 

same TF.  

To verify this, we conducted tests in which we trained the Methylphet model using data 

from IMR90 and mESC cell lines, and then applied the model in a different cell line, H1-

hESC, for prediction. Figure 2.5 shows the ROC curve for predicting CTCF, OCT4, and 

MAFK binding sites with the cross-cell-line-trained model. For MAFK (model trained on 
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IMR90) and OCT4 (model trained on mESC), Methylphet outperforms CENTIPEDE 

significantly. For CTCF on H1-hESC (model trained on IMR90 and mESC, respectively), 

Methylphet outperforms CENTIPEDE after the FPR is higher than 0.15, although 

CENTIPEDE performs slightly better before that. In terms of overall area under the curve, 

Methylphet is superior in all TFs. These results demonstrate that Methylphet achieves 

robust and precise prediction when the model trained in a different cell line, showcasing 

the broad utility of our method.  

 

 

Figure 2.5 Cross-sample TF binding prediction results 
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Upper two figures are cross-cell line predictions between IMR90 and H1-hESC; Lower 

two figures are cross-cell line predictions between a mESC cell line and H1-hESC. The 

results demonstrate that Methylphet generally achieves more robust and precise 

prediction. 

 

2.3.3 Cross-TF prediction results 

We further investigated the TF-specificity of Methylphet model by cross-TF training and 

predicting . This result shows that even though cross-TF prediction is possible, TF-specific 

Methylphet model provides the best results. The methylation profile and other genomic 

characteristics of TF binding are important in the Methylphet model and better to be 

modeled in a TF-specific manner.  

 

2.3.4 Experimental validation in mouse dentate gyrus (DG) cells 

We performed NRSF binding site prediction in mouse dentate gyrus (DG) cells using 

Methylphet model trained from mES data. Because NRSF ChIP-seq data in mouse DG 

cells are not available, we performed qPCR in randomly selected sites as validation. Ten 

positive and ten negative sites are randomly selected from top 1000/bottom 1000 

Methylphet-predicted binding sites respectively. Then five positive and five negative sites 

have suitable qPCR primers were tested. Fold enrichment is calculated on both positive 

sites and negative sites in order to compare the prediction performance. Among the selected 

sites, we can see clear enrichment inside positive predicted sites compared to negative 

predicted sites. 
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Figure 2.6 Relative predictive power of Methylphet features 

(A) and (C) show the contribution of each feature in RF. (B) and (D) show the ROC 

curves with or without adding CG methylation and CH methylation information. Among 

them, (A) and (B) were generated using CTCF TFBS prediction results in H1-hESC; (C) 

and (D) were generated using SOX2 TFBS prediction results in H1-hESC. (E) Boxplot of 

Gini importance for each feature used in RF. 
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2.3.5 Contribution of different features in Methylphet 

It is important to understand the relative predictive power of methylation levels and other 

genomic features used in Methylphet. We present the Gini importance of predictors in the 

RF model for CTCF and SOX2 using bar plots in Figure 2.6(A, C). Gini importance is the 

measurement of classification efficiency for each feature, which is defined as the level of 

decrease in the class impurity. Based on these analyses, we found that 5mC scores play the 

most important role in predicting CTCF binding, whereas the CH score is the most 

important predictor for SOX2. Motif is the second most important for CTCF, but its 

importance is very low for SOX2. This is because the SOX2 motif has much lower 

specificity compared to the CTCF motif. For both TFs, CH and 5hmC methylations play 

rather important roles. We compared the predictive performances with or without 5hmC 

and CH methylations. Figure 2.6(B, D) shows the ROC curves from such comparisons. 

These results demonstrate that including both 5hmC and CH methylation scores in the 

model improves the prediction power. Figure 2.6(E) shows the distributions of Gini 

importance of each predictor across all TFs we tested. We can see clearly that the 5mC 

score contributes the most on average among all features, next being the CH and motif 

scores, followed by sequence conservation and distance to the closest TSS.  

2.3.6 Comparison with other predicting tools and other machine learning methods 

We chose Random Forest as the ensemble algorithm to integrate all the features. During 

the RF model construction, one single variable was used at a time, and by integrating this 

information after sampling, it can give an automatic measure of feature importance. This 
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is important since our work requires integrating different types of information and 

evaluating feature importance. We also compared with other popular supervised machine 

learning tools, such as Neural Network (Venables, Ripley, & Venables, 2002), SVM 

(Dimitriadou, Hornik, Leisch, Meyer, & Weingessel, 2010), and adaBoost (Culp, Johnson, 

& Michailidis, 2006). In general, we can obtain reasonably good results with all these 

choices because of the rich information in the methylation scores and other genomic 

features. Among all the methods we saw robust performance from RF across all the TFs. 

Even though the predicting result is not sensitive to model selection, we prefer RF for its 

additional advantages, such as its efficiency on large datasets, ability to avoid over-fitting, 

and its inherently non-parametric structure. In addition, it can provide more details in the 

importance of features without extra cost. The evaluation of Gini importance is done as the 

learning goes, which lead to one of the major discoveries in our study that 5mc and 5hmc 

profile can contribute as the top predictor in Methylphet. 

2.3.7 Description of the software 

R package Methylphet is freely available from https://github.com/stanleyxu/Methylphet 

and will be submitted to Bioconductor (Gentleman et al., 2004) soon. Methylphet accepts 

5mC, 5hmc, and CH methylation profiles individually or in combination. As the example 

in the package shows, training about 7000 candidate sites and predicting on about 10,000 

candidate sites with both CG and CH information takes less than one minute on a MacBook 

Pro laptop computer with 2.7 GHz i7 CPU and 16G RAM. Training time varies depending 

on number of candidate sites. For most of the cases in this study, training time is less than 

30 minutes. 
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2.4 Discussion 

In this work, we developed Methylphet, a novel computational method and software 

package to predict TF binding using a combination of methylation profiles and genomic 

features. The idea is based on the observation that in vivo TF binding events often co-occur 

with altered methylation levels. Methods for in silico prediction of TF binding using 

epigenetics data have been proposed before, mostly based on histone ChIP-seq or DNase-

seq data. Our method exploits methylation data instead, which is much easier to collect 

experimentally. In this respect, our method provides a more practical means of in silico TF 

binding prediction and will be more useful in the clinical setting. 

We show that Methylphet performs very well in the cross-sample and even cross-species 

predictions. These results imply that a predictive model trained under a certain biological 

context can be applied for prediction in different samples, which is important because it 

indicates that the model building procedure (which is the most time consuming) only needs 

to be performed once, and then the model can be applied elsewhere for the same TF. It is 

important to note that the predictive models are TF-specific, i.e., each TF will have its own 

model. This is because around the binding sites of different TFs, both the methylation 

patterns and the genomic features are different (Figure 2.2). 

Disruption of epigenetic processes is known to contribute to the pathogenesis of multiple 

human diseases. For example, aberrant epigenetic modifications occurring at the earliest 

stages of neoplastic transformation are believed to be an essential player in cancer initiation 

and progression (Kanwal & Gupta, 2012; Verma & Srivastava, 2002). Using our method, 

a change of epigenetic status, particularly DNA methylation status, at a given locus could 

imply dynamics of in vivo TF-DNA interactions. Advances in epigenetics have not only 
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offered a deeper understanding of the mechanisms underlying disease pathogenesis, but 

have also allowed the identification of putative epigenetic biomarkers for early detection 

and diagnosis. Nevertheless, it would be very challenging to collect patient tissues/cells 

that are fresh enough to perform chromatin immunoprecipitation or DNase I-hypersensitive 

assays. However, DNA methylation analyses could be performed routinely with clinical 

samples. So the development of a DNA methylation-based in vivo TF-DNA interaction 

predicting algorithm is critical for uncovering effective biomarkers for human 

diseases(Schubeler, 2015). 

One constraint of the application of the method is that whole-genome BS-seq experiment 

is very expensive. However, with the predictive model pre-built from public data, it is 

possible to use BS-seq data from selected regions (such as reduced representation of BS-

seq, or RRBS (Meissner et al., 2008)) for binding prediction. Such an approach, although 

the prediction will not be genome-wide, still provides valuable information at important 

regions. Potentially, with small modifications of the methylation model, data from 

methylation microarrays can be used for binding prediction. This will be our research plan 

in the near future.  

Unlike plant genomes, where enzymes for generating and erasing CH methylation have 

been well characterized(Heard & Martienssen, 2014), CH methylation in mammalian 

genomes has not been studied extensively until recently. Recent whole-genome bisulfite 

sequencing revealed that CH methylation is abundant in hESCs and hiPSCs, as well as 

brain(Lister et al., 2013). In brain, CH methylation accumulates during neuronal maturation, 

suggesting a potential role for CH methylation in normal brain function(Guo et al., 2014). 

The role of CH methylation in gene regulation remains elusive. Our analyses presented 
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here suggest that CH methylation is among the best predictors of in vivo TF-DNA 

interactions along with 5mC, pointing to an active role for CH methylation in gene 

regulation. It is possible that the coordination between CpG and CH methylations regulate 

the dynamics of TF-DNA interaction in vivo.  

5-hydroxymethylcytosine (5hmC) shares similar characteristics with 5mC data. Since our 

model is very robust to capture the methylation pattern between TF binding sites and non-

binding sites, we extended our model to summarize 5hmC data to calculate 5hmC score. 

Although 5hmC data are far more sparse than 5mC data, they could provide additional 

information to predict TF binding sites. Figure 2.6 shows the ROC curve with and without 

the 5hmC data.  
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Chapter 3  
Multi-layer Ensemble Learning Model Accurately Predict 

Transcript Factor Binding Sites Using DNase-seq and RNA-

seq Data 
 

3.1 Introduction 

The goal of this challenge is to predict cell-type-specific Transcription factor binding 

sites(TFBS) for 32 TFs across 14 different types of cell lines. Cell-specific training 

datasets include chromatin accessibility (DNase-seq), gene expression levels and ChIP-

seq data as gold standard. Non-cell-specific features can also be extracted from the given 

hg19 human genome DNA sequence. 

TFBS can be affected by many factors. Sequence signature, or motif, is a major 

component for binding specificity. However, the ability to accurately define a TFBS 

varies significantly among different TFs. Also in different cell lines, motif will change 

for the same TF. In this challenge, I detect all potential motifs using de-novo motif 

discovery tool, MEME, with ChIP-seq data. Different motifs derived from various 

training cells are used together as DNA sequence features. DNase signal peaks are 

commonly considered as a union of major binding events. However the pattern of the 

DNase signals may vary among TFs. Gene expression level will indicate regulatory 

activities in the neighboring regions, thus in this challenge I will combine the gene 

expression levels together with the distance from a candidate region to the gene, in order 

to evaluate the potential role of TF regulation targeting at this gene. Random forest is 

used as the model to balance the contribution from heterogeneous features. For an 
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extremely unbalanced training set, ensemble methods with repeating sampling of 

negative sets were used to solve this issue. Each random forest model is trained within 

one cell. Final prediction is made by pooling predictions from all available training cells. 

 

3.2 Methods 

3.2.1. Feature Engineering of models 

There are three parts of the feature space: Motif sets, DNase profile, and Expression of 

neighboring gens. The candidate regions for training and testing are 200 bp tiling bins 

across the majority part of human genome.  There are 8,843,011 regions from Chr1, Chr8 

and Chr21 as the hold-out test regions ( referred as “ladder regions” below) in 

Ladderboard stage.  There are 51,676,736 regions from the rest chromosomes as the 

training regions ( refered as “train regions” below). The Final stage requires prediction on 

all these regions. I’ll refer these regions as candidate regions in the following part of this 

write up. 

 For each region, a vector of length 𝑑 is used as the feature vector to characterize this 

region. 𝑑 = 5𝑛 + 8 + 6 in my current models, which 𝑛 is the number of available 

training cell types. For example, for ATF2, there are 3 training cells: GM12878, H1 and 

MCF7. So the feature vector to characterize each ATF2 region will be of length 𝑑 =

5 × 3 + 8 + 6 = 29. Details for the composition of the features are described in the 

coming subsections. 

It should be noted that the nature of these features are different: Motifs are non-cell-

specific features, but DNase landscape and gene expression are associated with different 

cells. Thus when composing feature matrix for each TF-cell combination, the motif sets 
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matrix is the same for all the combinations with the same TF; but DNase matrix and 

Neighboring gene matrix should be changed in accordance with the cell. 

 

3.2.1.1 Motif sets for each TF 

Conservative peaks from ChIP-seq data were used to detect motifs within different cell 

lines. In each cell line, all peaks are ranked by the fold change of the signal, and top 1000 

peaks were chosen for motif calling. MEME was used to call 5 significant motifs for each 

cell line. For a TF with 𝑛 training cell lines, there will be 5𝑛 motifs used in the model. 

Called motifs were scanned across the whole genome using matchPWM() function from 

Biostrings package. Genome coordinates of hits, and their scores were saved. For all the 

train/ladder/test regions, each region will be assigned a vector of length 5𝑛 motif scores; 

if there are no motif hits, score is assigned 0; if there are multiple hits, score is the max of 

all hit scores. For a region set of length 𝑙, the final motif matrix will be of dimension 

𝑙 × 5𝑛.  

For example, ATF2 has three training cell types: GM12878, H1 and MCF7. Using top 

1000 conservative peaks from ChIP-seq data for ATF2 in GM12878, I ran MEME to call 

5 motifs from each of these cell lines. The result will be 15 motifs, represented in 15 

position probability matrices. 

Next step, I scan the whole genome to find the matching sequence with each of these 15 

motifs. For each motif (each PPM), I used matchPWM() function from Biostrings 

package to scan the whole genome. The result of this scanning process will be a list of 

target sequences, with their start/end genome coordinate, and a score (scaled 0~1) 

associated with the motif. The length of the matching target sequences are the same with 
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the length of the motif. This score describes how similar it is between the target sequence 

and the motif, and the minimum score for a matching process is 0.8.  Usually there will 

be millions of hits across the genome (depending on the length of motif), but definitely 

not all across the whole genome. 

The next step is to assign motif score to each regions. Naively I can perform motif 

scanning (the previous step) for all the regions, but that is not efficient (in fact, infeasible 

on my computing environment), since all the candidate regions are overlapping with each 

other. Alternatively, I only identify regions overlapping with motif matches, and assign 

motif score to these regions. For candidate regions with no overlaps with motif matches, 

the motif score is assigned 0. If there are multiple motif matches, the maximum score is 

selected. 

The result from this stage is a motif set matrix. For example, for all the ladder regions 

(8,843,011 regions) for ATF2, the motif sets matrix is a matrix of dimension 8,843,011 * 

29; Similarly, we can get motif sets matrix for train regions (dimension 51,676,736 * 29). 

Motifs are non-cell type specific. The information comes only from sequences and the 

called motifs. Thus, no matter which cell line are we going to use, motif sets matrix will 

be only calculated once for each TF. 

 

3.2.1.2 DNase profile for each cell line 

DNase signal intensity was summarized from bigwig files with rtracklayer package. For 

each train/ladder/test regions of 200bp, eight 25bp bins were opened within each region. 

For a region set of length 𝑙, the final DNase matrix will be of dimension 𝑙 × 8. The 

motivation for this 8-dim score vector, instead of a single DNase score, or peak/non-peak 
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binary classification is that the shape of DNase profile contains more information and the 

potential to capture TF-specific patterns. 

DNase profile are cell-type specific, thus for each training cell, DNase matrix should be 

retrieved from the corresponding DNase profile. 

For example, during the training of ATF2 model, using training cell line GM12878, we 

retrieve DNase profile from the bigwig file for GM12878 DNase-seq datasets. Take the 

first region of the ladder regions as an example, the genome coordinates for the first 

region is: chr1:600-800. The coordinates for the 8 bins for this region is: 600-624, 625-

649, 650-674, … 775-799. DNase within each of these 8 bins were retrieved, and the 

result will be a vector of length 8, representing the DNase profile for this region. Finally, 

the DNase matrix of GM12878 for all the ladder regions will be a matrix of dimension 

8,843,011 * 8. Similarly, DNase matrix of H1 or MCF7 can be constructed, but with the 

corresponding DNase datasets. 

 

3.2.1.3 Gene expression levels and Distance to TSS 

Linking the candidate regions to the target regulated gene is not a trivial issue. In this 

challenge I use the distance to the nearest three TSS together with expression level, in 

order to evaluate the potency of a region to be the binding site of a cis-/trans-regulatory 

factor. 

 TSS genome coordinates are extracted from the given GTF file. Distance is calculated in 

the 5’-3’ direction: negative values indicates that the region is on the upstream side of the 

TSS (regardless strand).  This distance comes from genome DNA, thus it is non-cell-
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specific. Once the neighboring genes were found for each gene, and the distance is 

calculated, it can be saved for further use, and shared in different TF-cell combinations. 

For gene expression levels, TPM from two replicates are averaged as the measurement of 

expression. The reason for choosing TPM is to ensure that they are comparable among 

different samples. For a region set of length 𝑙, the RNA data matrix will be of dimension 

𝑙 × 6, with 3 columns as the distances to the three nearest gene, and 3 columns as the 

expression level of the corresponding genes. Gene expression levels are cell-specific, 

thus in different training and predicting cells, gene expression levels should be retrieved 

accordingly.  

 

3.2.2 Multiple Layer bagging random forest. 

The final prediction result comes from 2 or 3 layers of bagging model, depending on the 

availability of multiple training cell types. At the first layer, all the input features (motif 

sets, DNase profile, TSS distances and corresponding gene expression level) are all fed 

into a random forest model. This procedure is repeated for 10 times, each time with a 

different sampled negative sets. In the second layer of bagging, 10 prediction results from 

these models were averaged. Finally, if there are multiple training cell types are available, 

predictions from different training cells were pooled together based on DNase similarity. 

 

3.2.2.1 Training 

The input of the training dataset is the combination of all the above three matrices. 500 

trees with 1/3 sampled features were used to construct the forest. Imbalanced-class is a 

major problem in this challenge. Less than 1% of all the regions are true binding sites for 
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the majority of TFs. I used an ensemble learning strategy to train models within each 

training cell type. For each cell-TF combination in training, all the regions labeled “B” 

are treated as positive set. From the regions labeled “U”, equal-sized regions were 

sampled, and one random forest model can be trained. This process is repeated for 10 

times. So for each cell-TF combination, there will be 10 models trained, with differently 

sampled negative set. The motivation for this ensemble learning strategy is to deal with 

class-imbalance issue, while mutually cancel out noise due to sampling bias by averaging 

results from 10 models. For one TF with 𝑚 training cell types, there will be 10𝑚 models 

trained. 

For example, in the case of ATF2 model training, there are 3 types of training cell 

available: GM12878, H1-hESC and MCF-7. I trained 10 random forest models separately 

within each of these cell types. Within GM12878 cell, the input matrix is constructed by 

collecting: (1) ATF2 motif sets matrix, (2) DNase matrix from GM12878 DNase-seq data 

(3) RNA matrix from GM12878 RNA-seq data. The labels for ATF2 ChIP-seq in 

GM12878 is used as the gold standard. The training set contains balanced classes of 

binding (“B”) and unbinding (“U”) regions, with all regions labeled “B” as positive class, 

and sampled equal-sized “U” regions as negative class. After training, 10 GM12878-

trained random forest models are ready for prediction. Similar steps can produce 10 H1-

hESC models and 10 MCF-7 models. 

 

3.2.2.2 Prediction 

For each cell-TF combination to be predicted in the ladder stage, prediction was made 

using all the trained models from all training cell types. For one TF with 𝑚 training cell 
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types, prediction results from 10 models within each training cell type is averaged; then 

the weighted sum of these 𝑚 averaged result were used as the final prediction score. The 

weight is assigned based on the local similarity of DNase profile. This is based on the 

motivation that similar chromatin landscape might hint similar functionality during 

regulation. DNase profile similarity is calculated as the correlation coefficient between 

the tested cell type and the 𝑚 training cell types. 

For example, In the case of ATF2 binding prediction within K562. Firstly, input matrix is 

constructed by collecting: (1) ATF2 motif sets matrix, (2) DNase matrix from K562 

DNase-seq data, (3) RNA matrix from K562 RNA-seq data. Then the input matrix is fed 

into all the 30 trained models, resulting in 30 prediction scores for every predicting 

region. Prediction scores within the same training cell are averaged, resulting in 3 scores: 

GM12878 score, H1-hESC score and MCF-7 score. Finally, these three scores are 

weighted average based on the DNase profile similarity between the training cells and 

K562. To be more specific: the more similar the local DNase landscape within this region 

between GM12878 and K562, the more weight the GM12878 score will get. 

Prediction for the final round adopts the same strategy, except that applying on a larger 

test sets. 

 

3.3 Discussion 

The advantage of my method is the benefits from multiple layer’s bagging. Since the 

complete region sets are too huge, it is almost certain that training should be based on 

sampled training sets. Across different sampling negative sets, averaging results from 10 

models will cancel out error predictions due to sampling bias, while enhance convincing 
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prediction results. The class-imbalance issue can be solved by multiple sampled negative 

sets. Pooling results from different training cell lines based on chromatin similarity 

further weighs more on regions that have similar regulatory landscape.  

The major concern for my current result is for TFs with weak motifs. Usually models 

trained for these TFs turn to rely more on DNase signals. This will directly lead to higher 

false positive rate in the prediction result, since DNase peaks are not TF specific. To 

further improve the performance of this method, higher resolution of DNase signal 

anchored at motif matching center will be a good direction. Alternatively, multi-task 

prediction might help to reduce false-positive rate, if we can tell one region is more likely 

to be bound by a different TF. Adding correlations between TF bindings is essential; 

However, the challenge only provide partial TF-cell combinations. Thus, more elegant 

modeling is required to characterize the comprehensive interaction map between TFs. 
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Chapter 4  
Regulatory annotation of genomic intervals based on tissue-

specific expression QTLs 
 

4.1 Introduction 

A large number of high throughput experiments have been producing results that can be 

summarized as a list of genomic intervals. For example, peaks from ChIP-seq (Barski et 

al., 2007; Johnson, Mortazavi, Myers, & Wold, 2007; Qin et al., 2010; Robertson et al., 

2007), humps from ATAC-seq (Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013; 

Buenrostro, Wu, Chang, & Greenleaf, 2015), DNase-seq (Song & Crawford, 2010), 

differential methylated bumps from WGBS (Jaffe et al., 2012; Lister et al., 2008; Wu et al., 

2015), or linkage disequilibrium (LD)-spanned neighborhood around significant disease-

associated single nucleotide polymorphisms (SNPs) identified from Genome Wide 

Association Studies (GWASs) (Welter et al., 2014). Typically, thousands or tens of 

thousands of such intervals are in the list, hence it is impossible to explore them one by 

one. How to effectively and efficiently discover biological properties and reveal biological 

insights from these large number of genomic intervals is an important yet challenging task.  

A common practice for interpreting such findings is a two-step process. First, link each of 

the genomic interval to its nearest gene, then study the properties of the list of genes derived 

from all the intervals, typically using methods such as gene ontology (GO) (Ashburner et 

al., 2000) term enrichment analysis (D. W. Huang, Sherman, & Lempicki, 2009) and gene 

set enrichment analysis (GSEA) (Subramanian et al., 2005). Examples of such approach 

are GREAT (McLean et al., 2010) and Enrichr (Kuleshov et al., 2016). The rationale 
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behind such a method is because most of the biological knowledge we have collected so 

far focus on genes. A drawback of the aforementioned approach is that many of the 

genomic intervals are tens or even hundreds of kb away from its nearest gene hence the 

assignment will be difficult to justify. Recent findings from chromosomal conformation 

capture-based technologies have showed that a distance regulatory element may be put in 

touch with its target gene by chromosomal looping (Smemo et al., 2014). Conversely, in 

gene-dense genomic regions, typically multiple genes can be found within the 10kb radius 

of a variant, making assigning the target gene by proximity comparable to random guessing. 

More importantly, since many genes exert their functions in a context-specific and tissue-

specific manner, their property may not always be transferable to its nearby genomic 

interval. Both gene expression and epigenetic regulation are dynamic across different cell 

and tissue types (Torres et al., 2014; Wang et al., 2016), and such information is not 

considered using distance-based methods. Therefore, it is of great interest to explore the 

function of genomic intervals beyond inferring their functions simply from its closest gene. 

Rather than using nearby genes as surrogates, an alternative strategy is to explore the 

enrichment of functional elements inside these genomic intervals. Examples include DNA 

sequence motifs, DNA conservation and CpG Islands. More recently, thanks to large 

consortium efforts such as ENCODE (Bernstein et al., 2012), REMC (Bernstein et al., 2010) 

and IHEC (Stunnenberg, Consortium, Hirst, International Human Epigenome Consortium, 

& Hirst, 2016), increasing number of functional elements such as transcription factor in 

vivo binding sites detected by ChIP-seq experiments have been systematically cataloged. 

One can check whether their genomic intervals of interest are enriched with any type of 

functional elements (Griffon et al., 2015). The same idea can be extended to other types of 
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biological meaningful genomic entities. For example, checking the enrichment of trait-

associated SNPs (taSNPs) identified by GWAS can help link the set of genomic intervals 

to diseases or traits (Chen & Qin, 2016).  

Similar to GWAS-identified taSNPs, another important type of functional variants are the 

expression quantitative trait loci (eQTL), which are variants that shown association with 

the expression level of their target genes. Transcription regulation is one of the most 

important types of functional annotation in the non-coding part of the genome, and eQTL 

provide direct evidence of such connection. The eQTL catalog has seen significant boosted 

in recent years thanks to the Herculean effort of the Genotype-Tissue Expression 

(GTEx) consortium (Aguet et al., 2017). GTEx provides a comprehensive eQTL catalog 

with high quality and sufficient power given the large sample sizes and large number of 

tissue types. We felt that GTEx eQTLs provide a remarkably valuable resource to include 

in enrichment analysis for genomic intervals, because it provides a putative link to the 

genes these loci potentially regulate. Two aspects of the eQTL data can greatly improve 

the discovery of functional links between genomic loci and genes. Firstly, the association 

between loci and genes does not depend on genomic distance, which has been shown to be 

unreliable (see Result). Secondly, unlike proximity-based gene assignment which is static, 

eQTL information is tissue-specific, in that an eQTL may regulate its target gene(s)—

referred to as eGenes from now on, only in one or two specific cell types. Which make the 

biological interpretation much more specific and informative.  

We believe that studying the enrichment of eQTLs at the pathway or gene set level, instead 

of at the individual gene level, is necessary. In any given tissue, only about 20-30 eQTLs 

are found for each eGene in GTEx on average, and most of them are located near their 
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eGene—since GTEx primarily focused on cis-eQTL. Therefore, eQTLs for a single gene 

do not spread out of the neighborhood of their eGene therefore not suitable to test the 

enrichment of eQTLs for each gene individually. On the other hand, most pathways or gene 

sets contain tens to hundreds of genes that are functionally related. Hence, checking the 

enrichment of eQTLs whose eGenes belong to the same pathway or gene set can help us 

to potentially build connections between the genomic intervals and pathways or functional 

gene sets which will be highly informative. Some recent works (Ahmed et al., 2017; Li et 

al., 2016) show potential to perform functional enrichment analysis using eQTL data. 

However, a systematic evaluation of tissue-specificity is still lacking. In this work, we 

describe loci2path, a computational tool as an R Bioconductor package to enables 

straightforward enrichment analysis of eQTLs of pathways/gene sets for a set of genomic 

intervals. The current version of loci2path utilizes the entire eQTL catalog from the GTEx 

v6p data release which contains 1,702,612 unique eQTLs associated with 16,562 unique 

eGenes identified from 44 tissue types (Table S1). As of pathways and gene sets, the 

current version of loci2path contains 6,320 pathways from MSigDB (Liberzon et al., 2011) 

belonging to  the BioCarta, KEGG and GO categories. To illustrate the utilities of loci2path, 

we test various trait-/disease-related genomic regions constructed from immune-related 

disease database immunoBase (www.immunobase.org) as query regions. 

 

4.2 Result 

4.2.1 Overview of loci2path 

The components and workflow of loci2path are shown in Figure 4.1. We utilize eQTL data 

from the GTEx project, and pathway information from MSigDB for this study. In the 
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beginning, loci2path takes in a set of genomic regions as input. We next count the total 

number of eQTLs that fall in these intervals for each pathway (or gene set) and tissue type 

combination. This is then followed by enrichment test and tissue-specificity evaluation. In 

order to evaluate tissue specificity, we calculate the frequency that an enriched pathway is 

detected across all tissues. The Result contains two piece of information: (1) enriched 

pathways connected to the queried loci, ranked by enrichment; (2) the tissue type in which 

this enrichment is detected. User can customize the query result by sorting pathways based 

either on enrichment test p-values or degree of tissue-specificity (DTS, See Methods). 

Additional summary data, such as the numbers of eGenes or eQTLs, the size of the pathway, 

are also presented which may be used to filter the results.  

In order to visualize both the pathway enrichment and the tissue specificity, loci2path 

presents the main query result as a heat map. The rows of the heat map are enriched 

pathways; the columns are tissues. Rows and columns are arranged by hierarchical 

clustering. The color for each cell indicates the degree of enrichment, rendered from red to 

blue as negative log p-values vary from high to low. We show in the following analysis 

that this visualization method helps to reveal interesting enrichment patterns, and offer 

clues on potential links between genetic variations and disease pathogenesis. 
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Figure 4.1 workflow of loci2path 

(A)Component of loci2path. We use shapes to mark tissue or cell types, and colors to 

represent pathways. In the eQTL box, eQTL loci from different tissues were shown in 

shapes. In the Pathway box, genes from different pathways are shown in colors. Dash 

lines represents the association between eQTL and genes. (B)Workflow of loci2path. 

 

4.2.2 GTEx eQTL data from 44 tissues 

We downloaded all eQTLs from the GTEx data portal. The number of eQTLs and eGenes 

are summarized in Table S1. This dataset contains eQTLs identified from 7,051 samples 

representing 44 different tissue types collected from 449 donors (Aguet et al., 2017b). From 

Table 1 we noticed that the numbers of eQTLs and eGenes vary among tissues. The number 

of eQTLs ranges from 34,898 (Uterus) to 577,857 (Thyroid) and the number of associated 
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eGenes ranges from 542 (Vagina) to 6,990 (Tibia Nerv). The sample size is a major factor 

of the wide range of eQTL/eGene numbers (Table S1), though other factors such as tissue-

specific gene expression (Aguet et al., 2017b) and post-mortem interval (Ferreira et al., 

2018) might also contribute to such differences. The 44 tissue types contain clusters of 

homogeneous tissues, such as multiple types of brain, skin, muscle and artery cells. 

Examining the relationships among eQTLs, eGenes and tissue types composition in GTEx 

data reveals that only about 25% of the times that the closest gene of an eQTL turned out 

to be its eGene (Figure 4.2A). This result highlights the danger of simply assigning genes 

to a locus based on genomic proximity. On the other hand, around 10% of the eQTLs are 

located in loci where multiple genes are located within a 10kb neighborhood, in which case 

assigning the target gene by proximity is very unreliable. Next, we explore the tissue-

specificity of eQTLs and eGenes. The DTS for a gene is decided by the number of tissues 

in which this gene is detected as eGene (see Method).  We find that around 30% of eQTLs 

are detected in only one tissue (i.e., tissue specific), while more than half of all eQTLs are 

detected in one or two tissues (Figure 4.2B). However, the proportion of tissue specific 

eQTLs vary drastically among different tissues. (Figure 4.2C).  
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Figure 4.2 Tissue specificity of eQTL data 

 (A) percentage of eQTL associated with its nearest gene. Three bars represent different 

ways to define nearest gene. For one gene-eQTL pair, three types of distance are 

considered: (1) distance to gene promoter (defined as -2000 ~ +200bps of TSS); (2) 

distance to gene body (TSS~TES); (3) distance to promoter + gene body (-2000 of TSS ~ 

TES). (B) Number of tissue(s) each GTEx eQTL is associated with, ranging from 1(only 

detected as eQTL from one tissue) to 44, total number of tissues from GTEx collection. 

(C) Distribution of DTS of eQTLs within each tissue. Inside the bar plot, each bar shows 

the composition of eQTLs with different DTS. Tissues are ordered with an increasing 
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average DTS. On the left are the ones having more tissue-specific eQTLs; on the right are 

tissues having non-tissue-specific eQTLs. 

 

4.2.3 MSigDB Pathways  

We collected pre-defined gene pathways from the MSigDB (Liberzon et al., 2011; 

Subramanian et al., 2005). In this study, we query loci2path for enrichment of three 

categories of MSigDB pathways: GO terms, KEGG pathways and BioCarta pathways. GO 

terms are commonly known as the most comprehensive resource for functional annotation 

of genes. In this study, we collected all three GO gene sets from MSigDB’s class c5 gene 

sets including BP-biological process, 4436 sets; CC- cellular component, 580 sets; MF-

molecular function, 901 sets. In addition, we included BioCarta pathways to accommodate 

more details of interactions among gene members regardless the hierarchical relationships 

of gene sets that are comprehensively defined in GO. In total, 217 BioCarta gene sets from 

MSigDB’s c2: curated gene sets were downloaded. We also collected 186 KEGG pathways 

to detect metabolism related functions. Details of the pathway resources are listed in 

Method section. 

 

4.2.4 Query regions from immunoBase 

We first analyze immune-related diseases. For each disease. We use risk regions defined 

by immunoBase (https://www.immunobase.org/) as the input. ImmunoBase provides a 

curated data source for immunologically related human diseases. This collection of 

findings from GWASs and fine mapping studies using the immunoChip serves as a 

valuable resource to study immunological disorders (Cortes & Brown, 2011; 
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Polychronakos, 2011). Then the neighborhood around each GWAS variant based on local 

linkage disequilibrium (LD) is added and overlapping neighborhoods are merged to form 

disease risk regions. For example, the input regions for Psoriasis are constructed by 

merging regions within the ±0.1centimorgan genetic linkage ranges around disease-related 

variants (https://www.immunobase.org/region/table/PSO/). Using these data, Chun et al. 

identified autoimmune-disease related risk signal enriched in gene regulatory regions in a 

tissue-specific manner (Chun et al., 2017). In our study, we conduct a pathway enrichment 

analysis leveraging eQTL information which allows us to study the tissue-specificity of 

functional enrichment within pathways. We choose to investigate all the 12 core immune 

diseases originally targeted by the immunoChip consortium. 

 

4.2.5 Tissue specificity captures distinct modules of pathogenesis in Psoriasis 

Psoriasis (OMIM ID: 177900) is a common, chronic skin disorder with a complex genetic 

and environmental etiology characterized by epidermal hyper-proliferation, vascular 

remodeling and inflammation (Nestle, Kaplan, & Barker, 2009). Many genetic studies 

(Greb et al., 2016; Gudjonsson & Elder, 2007; Hwang, Nijsten, & Elder, 2017) including 

GWAS studies (Strange et al., 2010) and meta-analyses (Tsoi et al., 2015) have been 

conducted and tens of genomic loci have been identified as Psoriasis-associated. In 

ImmunoBase, 45 loci are included in 35 regions covering a total of 10.69 million base pairs 

(MB). A heat map of highly enriched pathways with a filtering p-value threshold of 1e-4 

for the Fisher’s exact tests is shown in Figure 4.3.  
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Figure 4.3 Heat map of Tissue-Pathway enrichment of Psoriasis 

Rows of the heat map are pathways; columns are tissues. Each cell shows the 

significance of enrichment by –log(p-value). Red color indicates high enrichment, while 

blue indicates no enrichment. Three groups of pathways with distinct DTS are 

highlighted with red boxes and numbered as group 1~3. 

 

From the heat map shown in Figure 4.3, we notice that three different categories of GO 

pathways showed significant difference in their enrichment patterns across tissue types. 

Pathway group 1 are enriched only in epidermis tissue types, including two skin tissues 

and mucosa. Pathway group 2 show enrichments in several tissue types that harbor 

dendritic cells with fuzzy block edge, but are absent from the majority of brain tissues. It 

is interesting to see that the majority of function is down regulating immune-response; and 

dysfunction of such pathways will cause autoimmune diseases such as Psoriasis. Pathway 

group 3 are all MHC I peptide presentation pathways, and completely non-tissue specific. 

The pathways of each group are listed in Table 4.1. 
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Table 4.1 Enriched pathway groups of psoriasis risk regions 

Group Pathways Shared eGenes 

1 
Keratinization 

Peptide cross linking 

LCE3C, LCE3D, 

LCE3E LCE1E, 

LCE3A 

2 

Negative regulation of cell killing   

Regulation of cell killing       

Negative regulation of innate immune response   

Negative regulation of leukocyte mediated immunity  

Negative regulation of natural killer cell mediated 

immunity                    

HLA-B, MICA, 

LGALS9 

3 

Antigen processing and presentation of endogenous 

peptide antigen 

Antigen processing and presentation of endogenous 

antigen  

HLA-B, ERAP2, 

HLA-C, ERAP1 

 

In accordance with the patterns shown in the heat map, DTS analysis yield the same three 

categories (Figure 4.4B). We extract the genes within each category and discover distinct 

composition of gene members, and we also notice distinct clusters of gene functions within 

each group. In Figure 4.4C, the most frequent genes from each pathway group are shown. 

Group 1 are dominated by late cornified envelope family genes. Figure 4.4A use LCE 

cluster 3 genes as an example to show the spatial relationships among query region, eQTLs, 

eGenes and additional GWAS evidence on the genome.  This shows how loci2path detect 
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the connection and perform the enrichment analysis. Multiple late cornified envelop genes 

locate in this region, and was defined as the cluster 3 genes. The deletion of the gene 

LCE3B and LCE3C has been identified as a risk factor for Psoriasis (De Cid et al., 2009) . 

However, within this gene-dense region, assigning target gene of the association based on 

distance will include irrelevant genes within the same genomic region. Additional GWAS 

studies identifying proximal loci associated with Psoriasis are also shown on the figure (see 

Methods). Group 2 includes genes involved in innate immune response. For example, 

MICA is the gene coding NK cell attracting peptide (Menier, Riteau, Carosella, & Rouas-

Freiss, 2002); NOS2 encodes the cytokine inducible enzyme (Stuart et al., 2010); And 

LGALS9, a versatile factor in immune homeostasis, is reported to be down-regulated and 

dysregulate helper T-cell signaling in Psoriasis patient (De La Fuente et al., 2012; Golden-

Mason & Rosen, 2017). Group 3 has some distinct members involved in antigen processing 

and presentation, such as ERAP1 and ERAP2, together with class 1 MHC encoding gene 

HLA-B and HLA-C. The non-tissue-specific feature is not surprising, since peptide 

presentation is a global event across all cells. Variations of these genes will result in the 

altered antigenic MHC complex that triggered the downstream T-cell activation associated 

with autoimmunity (Goris & Liston, 2012).  
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Figure 4.4 Degree of tissue specificity from Psoriasis 

(A) LCE cluster 3 genes, an example to show the spatial relationships between query 

region, eQTLs, eGenes on the genome. Green arrows at the bottom are genes, with 

arrows showing the direction of genes. Blue double-arrow line at the bottom are the input 

query region. Diamond dots with colors are GWAS loci associated with Psoriasis, 

downloaded from immunoBase. Grey dots are GTEx eQTLs, with height as p-value in 

negative log scale. Different shapes and shades represent different tissue origin. (B) 

Distribution of DTS for enriched pathways using Psoriasis risk regions as query. We 

observed three clusters of DTS, which are in concordance with the clusters in the Tissue-

Pathway heat map.(C) Most frequent eGenes from the three groups of enriched pathways 

using Psoriasis risk regions as query. Top five most frequent genes from each pathway 

group are shown. Name of the gene and its proportion appearing in the pathway group are 

shown. 
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After a systematic review of Psoriasis pathogenesis, we noticed these three categories are 

in concordance with the three major modules of the tentative model of Psoriasis, as 

described by Bergboer et. al (Bergboer, Zeeuwen, & Schalkwijk, 2012). Group 1 pathways 

relate to skin barrier and keratization module. Group 2 pathways relate to innate immune 

systems. Group 3 pathways are general immune response pathways of adaptive immune 

system. It is interesting to note that a well-studied epistasis between HLA and ERAP1 is 

captured in group 3 pathways (Bergboer et al., 2012; Goris & Liston, 2012). HLA encode 

individual specific MHC, and ERAP1 code the enzyme involved in trimming HLA class 

I-binding peptide. Variation on this would affect whether the peptide can be presented to 

MHC1, thus revealing the mechanism of Psoriasis risk within certain population of a 

specific HLA subtype. 

We compared to the query result from GREAT (McLean et al., 2010), using the same set 

of query regions, and GO terms as pathway gene sets. We discovered that more than 50% 

of the top enriched pathways ( with p-value < 1e-5 ) from GREAT are also discovered by 

loci2path. However, loci2path adds tissue specificity information from using eQTL data, 

which demonstrates the potential to combine the function of associated genes with their 

context of tissue type in the study of disease-related genomic regions. We noticed that the 

skin tissue specific pathways are not detected from GREAT query result.  

 

4.2.6 Shared risk pathways among 12 core Immune Disease 

Next we extend our query to all 12 core immune diseases from immunoBase. We again 

organize and present the results in heat maps with rows represent pathways, and columns 

represent the 12 immune diseases, in order to examine the inter-relationships among 
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complex immune diseases. We generate three such heat maps from three immune-related 

tissues: Blood, thyroid and Spleen. And we query against two collections of gene sets: 

BioCarta pathways and GO terms from MSigDB (see Methods).  

From the heat maps, we observe interesting patterns. Firstly, enrichment patterns across 12 

diseases show significant differences across the three tissue types, suggesting that tissue 

information is very important in eQTL studies. Among the three tissues, heat map from the 

blood shows the most enriched pathways, probably due to  the rich repository of immune 

cells (leukocytes lymphocytes), in spite of a relatively smaller repository of eQTLs in blood 

compared to thyroid. One surprising example is for autoimmune thyroid disease; we are 

not able to find enriched pathways in Thyroid. Additionally, we found Ankylosing 

spondylitis and autoimmune thyroid disease show distinct patterns from the other ten 

diseases. Further examination of the query regions for these two diseases shows that these 

regions does not include the HLA gene complex, which resides on a 3Mbp stretch 

within chromosome 6p21, while other immune diseases have risk regions overlapping the 

HLA complex region. Thus the heat map results for these two diseases show distinct 

patterns of lacking immune-related pathways that other diseases share. 
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Figure 4.5 Heat map of 12 immune diseases 

(A) Disease-Pathway heat map of enriched BioCarta pathways from three tissues. All the 

12 immune diseases risk regions are queried against BioCarta pathway collection 

repeatedly in blood, thyroid and spleen, resulting three heat maps. Within each heat map, 

the rows are enriched pathways, and columns are diseases. IBD specific pathways are 

marked with the red box. (B) Disease-Pathway heat map of enriched GO pathways. 

Queries were performed in the same way as in Figure 5A. Two enriched GO Biological 

Process terms are Psoriasis specific and distinctly shared with CRO, and they are 

highlighted with a red box. (C) Venn diagram of gene members of the two distinctly 

enriched pathways. 27 genes form CRO and 18 genes from PSO are associated with 

eQTLs covered by disease risk regions. Among them, 14 genes are in common. Among 

the shared genes, the ones with literature report as the evidence of the shared risk genes 

are highlighted in red. 
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Within BioCarta pathways (Figure 4.5A), we observed similar patterns between two 

diseases: Crohn’s disease (CRO) and Ulcerative colitis (UC). This is expected since these 

are two subtypes of inflammatory bowel disease (IBD) thus sharing numerous enriched 

pathways. Among the shared enriched pathways, Salmonella pathway is related to bacteria 

entering membrane of salmonella infected cells, which plays an important role in the onset 

of IBD (Henderson & Stevens, 2012; Schultz et al., 2017). In addition, several pathways 

associated with Rho family genes: RhoA, Rac and Cdc42 are commonly enriched as well. 

It has been reported that Rho kinase signal pathway is involved in the three-essential 

starting stage in the chronic pathogenic procedure of IBD (Y. Huang, Xiao, & Jiang, 2015). 

Also, pathway Actin Filament Y, one component of cytoskeleton, plays vital role in the 

disruption of epithelial barriers under inflammatory conditions (Ivanov, Parkos, & Nusrat, 

2010).   

In the enrichment of GO terms (Figure 4.5B), in addition to the similar patterns we 

described in BioCarta, we find two unique pathways that are shared only by CRO and PSO: 

defense response and response to stress. We map them onto the hierarchy of GO terms, and 

found defense response is a sub-ontology of response to stress. We extracted the member 

genes of the leaf node from these two diseases, and show them in the Venn diagram (Figure 

4.5C). We found that 50% of CRO genes and 70% PSO genes are in common in this 

pathway. Further literature research reveals that there are several genes among them have 

been identified as common risk genes between CRO and PSO. For example, variants 

located in the TRAF3IP2 gene contribute to the susceptibility to immune diseases 

involving the skin or the gut (Ciccacci et al., 2013). JAK family kinase TYK2 functions as 
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mediator of IL-12 and IL-23, which are key factors in the pathogenesis of PSO and IBD. 

Effective inhibitor of TYK2 provides an attractive therapeutic strategy for such diseases 

(Miao, Masse, Greenwood, Kapeller, & Westlin, 2016). ICAM-3 plays an important role 

in neutrophils to amplify NK cells by producing Inteferon-gamma, with supporting 

evidence from both PSO and CRO patient samples (Costantini et al., 2011). The tissue 

location of neutrophils also suggests the reason that the enrichment within blood is the 

most significant among the three tissue types in the heat map. For the rest of MHC-peptide 

antigen presenting genes, these shared genes function in defense response pathways, and 

variants associated with these genes will affect the normal immune defense mechanism by 

altered antigenicity and immune regulatory pathways. 

 

4.2.7 Software availability 

R package loci2path is freely available from github.com/StanleyXu/loci2path and 

Bioconductor with package name ‘loci2path’. User can provide arbitrary query regions in 

R using the GenomicRanges data type in R. For query regions of 600kbps, using the 

complete 44 tissues GTEx eQTL set, query against the complete BioCarta pathway 

collection (217 gene sets) takes less than 1.5 minute to finish on a MacBook Pro laptop 

computer with 2.9 GHz i5 CPU and 8G RAM. Parallel query mode would further increase 

the speed on a multi-core computing platform, on which the performance varies due to the 

working load and availability of resource. 
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4.3 Discussion 

We developed loci2path, a novel computational tool to annotate non-coding genomic 

regions using comprehensive tissue-specific eQTL information. Functional annotation of 

non-coding genomic regions relies on accurately mapping interested loci to other 

functional elements on the genome. The rationale of loci2path is to build the mapping via 

existing knowledge of tissue-specific association between genomic loci and genes. 

Compared with analysis based on single gene that harbor risk of false associations, 

enrichment analysis provide robust assessment of function by integrating multiple genes 

with pre-defined pathways and brings insight to biologically meaningful results. We 

believe that loci2path would help researchers to identify accurate functionality annotation 

and specific tissue enrichment for query regions of interest. 

We perform enrichment analysis using eQTL data to link genes to genomic loci. In this 

study, eQTL data from GTEx and pathways from MSigDB were collected to study 

functional enrichment of pathways/gene sets for risk regions harboring variants associated 

with immune diseases. We discovered that DTS from loci2path query result reveals three 

different but corroborating underlying pathogenesis modules in the query of Psoriasis risk 

regions. We also discovers that pathways that show distinct enrichment patterns in CRO 

and UC compared to other immune diseases are involved in different ways of pathogenesis 

of IBD. In addition, we identified common disease risk factors from shared enriched 

pathways among the three tissue types: population HLA type, variation in antigen-

presentation, and variation in innate immune response. This pattern shows more significant 

enrichment in blood, rather than the other two immune-related tissues, perhaps due to the 

large proportion of leukocytes participating in the immune-related diseases. 
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The software is written in R and published in Bioconductor. Vectored statistical tests and 

parallel processing makes it run ultra-fast to perform enrichment tests across eQTL data 

from multiple tissues. A standard S4 class data structure enables users to customize 

annotation resources. For example, one might extend the loci-gene connection from eQTL 

data to any arbitrary mapping relationships, such as known regulatory genomic loci and 

target gene. Similarly, users can define arbitrary genomic regions of interest as query input. 

The potential applications of loci2path for arbitrary query regions include, but not limited 

to:  regions containing trait-associated SNPs identified by GWAS, regions showing 

differential methylation levels between two groups, regions harbor different groups of 

transcription factor occupancy that plays different regulatory roles on target genes in 

certain diseases. loci2path is designed to build links between any genomic region(s) and 

targeted gene(s), which is not based on distance.  

We believe the accumulating eQTL data become increasingly useful as a rich information 

resource. Thanks to the accumulating diverse tissue and cell types and enhanced statistical 

power due to increasing sample sizes, the growing eQTL resource would greatly improve 

query quality of loci2path. Availability and user-friendly data portals are making research 

to explore these public resources with loci2path more and more convenient. Together with 

more refined pathways, there are more enrichment patterns for traits, diseases and health 

to be uncovered, and loci2path is a powerful tool in this task. 

 

In the future, we plan to continue adding latest eQTL information to loci2pth. It is expected 

that consortia like GTEx will add more tissue types with increased sample size. Another 

feature could be implemented is the order information of the query regions. Users might 
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have different importance measurement assigned to each query region. However, it is 

difficult to directly transfer the order information from query regions to eGenes, because 

the order might be further affected by other factors, such as the order of eQTLs (ordered 

by association test statistics). Thus, enrichment methods for ranked genes can’t be directly 

borrowed into our framework, and more elaborate modeling is required to reconcile order 

information from multiple resources. 

 

4.4 Method 

4.4.1 Enrichment measurement 

For one eQTL set 𝑬𝑺𝒌 and one gene set 𝑮𝑺𝒋, we use the p-value from enrichment test 

(Fisher’s exact test) to evaluate the significance of enrichment. The default enrichment test 

is carried out with gene based mode, in which loci2path will firstly identify the genes 𝒈 

associated with eQTLs from 𝑬𝑺𝒌  covered by the query regions, then evaluate the 

significance of enrichment of these genes 𝒈 within a given gene set 𝑮𝑺𝒋.  

 

4.4.2 Assessment of tissue specificity 

Once the eQTL set list is ready, the tissue specificity for one eGene is evaluated by the 

number of tissues one gene is detected as eGene. For example, for one gene 𝑔+, the degree 

of tissue specificity (DTS) is defined as:  

𝐷𝑇𝑆(𝑔+) = ∑ 𝐼(	𝑔+ ∈ 𝑬𝑺𝒌)j , 

where 	𝐼  is the identity function, 𝐼(𝑔+ ∈ 𝑬𝑺𝒌) = 1  if 𝑔+  is eGene in tissue 𝑘 , and = 0 

otherwise. 
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4.4.3 Tissue Specificity measured by average tissue number 

Due to the fact that the expression profile of different cell type result in different SNP-gene 

association, we are interested to know if the genomic region-pathway/gene set link 

(through eQTL) is specifically significant in one tissue only, or it is a global enrichment 

across multiple different tissue types. Previously we calculated tissue specificity score as 

DTS for each eGene already. In the query result, we define the average DTS as the 

measurement of tissue specificity for a given set of query regions and a specific gene set 

𝑮𝑺𝒋.  

𝑎𝑣𝑔_𝐷𝑇𝑆, =
1
𝑙R

E 𝐷𝑇𝑆(𝑔+)
no∈Rpq

	

where 𝑙R  are the total number of eGenes from 𝒈 that are members of gene set 𝑮𝑺𝒋.  

 

4.4.4 Output 

All the enrichment scores, counts used in the calculation and tissue/gene set identifiers are 

organized in a table as output. Each row of this result table contains data of a pair of 𝑬𝑺𝒌 

and 𝑮𝑺𝒋. All the rows are ranked by p-values calculated from fisher exact test by default.  

 

 

4.4.5 Tissue Enrichment test of query regions 

The enrichment within tissues are tested before pathway enrichment. A binomial test was 

performed to determine the enrichment of the query regions within the tissue from which 

the eQTL loci were identified. 
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The probability of covering a eQTL loci in tissue 𝑘 is noted as 𝑝j = 𝑙j/𝑙sOstu ,  where 𝑙j is 

the number of regions overlapping with eQTLs in tissue 𝑘, and 𝑙sOstu  is the total length of 

the genome. 

Given 𝑛 query regions, the number of regions overlapping with eQTL loci were calculated 

as 𝑛j. Binomial test calculates the p value of the enrichment in tissue 𝑘 as the probability 

of having at least 𝑛j regions overlapping with eQTL loci from tissue 𝑘: 

E v𝑛𝑖 w𝑝j
+ (1 − 𝑝j)yz+

y

+{y|

 

 

4.4.6 Multiple-test correction using adjusted p-value 

Adjusted p-value is calculated using “BH” method(Benjamini & Hochberg, 1995) from 

function p.adjust() in R. 

 

 

4.4.7 Datasets 

GTEx eQTL  

In this study, we collected eQTL sets from GTEx project, which are composed of eQTL 

studies from 44 type of tissues. GTeX eQTLs from 44 tissues were downloade from GTeX 

with command wget via the link: 

http://www.gtexportal.org/static/datasets/gtex_analysis_v6p/single_tissue_eqtl_data/GTE

x_Analysis_v6p_all-associations.tar. Entrez ID is used as the default gene identifier. If the 

gene identifier is different between eQTL study and the gene set, they are all converted to 

Entrez ID. Unmapped genes are not included.  
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MSigDB pathways  

Pathway and gene sets for this study were downloaded from MsigDB website: 

http://software.broadinstitute.org/gsea/downloads.jsp 

Entrez ID was used as the identifier of genes across all the gene sets. This is based on the 

official release notes from MSigDB v3.1 

(http://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_v3.1_R

elease_Notes) 

“Human Entrez Gene IDs and the corresponding symbols for the MSigDB v3.1 gene sets 

are based on gene_info.gz and gene_history.gz, downloaded from the Entrez Gene FTP 

site on November, 15, 2011” 

Gene annotation 

Genome Coordinates of all the entrez genes on reference genome hg19 were obtained using 

UCSC Known gene table, retrived with Bioconductor/GenomicFeatures package. This is 

the most updated version (downloaded Oct.24, 2016). There are in total 23056 genes, only 

21063 of the MSigDB Entrez ID can be matched onto this set (~65%). By manually 

checking the missing genes, a majority of these records were withdrawn pseudo genes, thus 

excluded in the downstream analysis. 

Gene expression 

Tissue-specific gene expression level was obtained from GTEx data portal. The median 

RPKM table (GTEx_Analysis_v6p_RNA-seq_RNA-SeQCv1.1.8_gene_median_rpkm.gct) 

is used to quantify gene expression. Gene expression data for 44 tissues were downloaded 

from GTeX portal. File is named as “GTEx_Analysis_v6p_RNA-seq_RNA-

SeQCv1.1.8_gene_median_rpkm.gct.gz”. This file contains gene median RPKM by tissue. 
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