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Abstract

Deterministic and stochastic acceleration techniques for Richardson-type iterations

By Massimiliano Lupo Pasini

Since scientific computing is involved in increasingly demanding and challenging appli-

cations from various disciplines, upcoming computing architectures are going to pro-

vide more efficient hardware resources by moving towards exascale capacities, that is

O(1018) floating point operations per second (FLOPS). This computational capacity

is obtained by computer manufacturers via an increase of the number of comput-

ing nodes composing the network. Therefore, the cost of global communications is

expected to become more and more expensive. Because of this, the performance of

state-of-the-art algorithms is expected to be highly deteriorated due to frequent global

communications across the processors. On the one hand, global communications im-

pact the computational time by constraining the parallelization. On the other hand,

they make the algorithm more vulnerable to faulty phenomena (i.e. power loss, core

crash, bit flips). Therefore, reducing the inter-processor communication is needed to

preserve computational efficiency and reliability.

The goal of this thesis is to analyze and develop techniques to solve large scale

sparse linear systems in this new computational framework. The common feature

with all the approaches presented in this work is the attempt to minimize the global

operations needed to solve a linear system in a multiprocessor environment. In partic-

ular, the focus of this thesis is on linear fixed point iterations, since these techniques

are characterized by computational locality and simplicity. Their use to solve sparse

linear systems in parallel thus opens a path towards scalability and resilience on

exascale machines. However, standard fixed point schemes are renown for their de-

teriorated asymptotic convergence rate. To cope with this, we analyze deterministic

and stochastic accelerations. The former aim to increase the efficiency by improv-



ing the convergence rate, the latter aim to enhance the robustness against faults by

avoiding the propagation of locally corrupted calculations.

The deterministic acceleration we consider is the Anderson mixing. Many ap-

proaches to accelerate relaxation schemes through Anderson mixing have been stud-

ied in the literature. The approach analyzed here is called Alternating Anderson-

Richardson. An analysis for this scheme is presented, highlighting the theoretical

and computational advantages over more standard linear solvers to achieve scala-

bility in a parallel framework. Furthermore, an augmented variant of Alternating

Anderson-Richardson is proposed which guarantees convergence on positive definite

linear systems.

As concerns stochastic accelerations for relaxation schemes, we analyze Monte

Carlo linear solvers (MCLS) based on a stochastic reinterpretation of the fixed point

algorithm. In this context, we identify classes of matrices and preconditioners that

produce a convergent splitting for the stochastic fixed point iteration. Moreover,

stopping criteria based on the apparent standard deviation are proposed to determine

the number of statistical samplings needed to achieve a prescribed accuracy.



Deterministic and stochastic acceleration techniques for Richardson-type iterations

By

Massimiliano Lupo Pasini

B.Sc., Politecnico di Milano, 2011

M.Sc., Politecnico di Milano, 2013

Advisor: Michele Benzi, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2018



Acknowledgments

I left Italy almost four years ago to come to the United States and start this

wonderful and precious journey. I only had my luggage with me and many fears.

Some of those fears are gone to make place to new ones. But most of them are gone

to make place to unforgettable memories. Now I can say that I have more than my

luggage with me.

I hope this work will inspire and help someone else in the future. Maybe another

boy who leaves the past behind to start a new adventure as I did myself.

Here below I am going to mention the people I mostly feel grateful for and that

contributed the most in what I have become.

First of all, I want to say ”thank you” to my Ph.D. advisor, Prof. Michele Benzi.

His dedication to work, his expertise and his approach to deal with scientific topics

have been a role model to me. When I was insecure about how to address an issue,

he would be the kind of person that stands up from his office chair, walks up to

the bookshelf, grabs a book and opens it exactly at the page where the solution to

my problem is described. But I must honestly admit that the greatest gift I could

receive from him was not the amount of knowledge transmitted. Indeed, I think I

am still light years behind him. The greatest gift and teaching I received from my

advisor is not to be afraid of what I do NOT know, so that I can approach it with

enthusiasm and not being discouraged by my ignorance. Formulas, matrix properties

and theorems may slip off my head. But this teaching will remain vivid in my mind.

I am also grateful to everyone from the Department of Mathematics and Computer

Science at Emory University who made my graduate life as smooth and delightful as

it could be. In particular, I want to thank the graduate program administrator

Terry Ingram, for her patience and diligence in dealing with an absent-minded and

distracted person like me.

The bitterness of my professional and personal struggles during these years has



been gently sweetened by lots of friends. Some of them are consolidated friendships

from the past, some of them are new ones. Among the new friendships, I want to

thank all MY Latinos, who taught me how to imprint happiness in every day of my

life through simple and easily applicable principles. However, a piece of my heart

is preciously taken by my Italian fellows who started this trip with me many years

ago back in Italy. Dear Sofia and Alessandro, your presence and your personalities

completed two different sides of me: the rational one and the crazy one. Good and

evil nicely coexist in equilibrium inside of me because of you. Of course, I am not

necessarily associating any of you with one of these two concepts in specific (or maybe

I am).

Last but not least, I want to thank my family: mamma, papà e Stefano. If I am
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1

Chapter 1

Introduction

Several real life applications related to disciplines such as physics and engineering

require solving large scale sparse linear systems. Because of the generally high num-

ber of unknowns characterizing the linear systems of interest, it is crucial to reduce

the computational time to solution. This is typically achieved in a parallel com-

puting framework. However, as we are moving towards exascale (O(1018) FLOPS)

machines, new challenges arise. On the one hand, raising the number of cores involved

in a computation usually increases inter-processor communications. This could neg-

atively impact the use of stat-of-the-art algorithms, since significant overhead may

lead to inefficient performance. On the other hand, an upsurge of the number of

processors increases the frequency of hard and soft system failures. Therefore, the

next generation of computational science applications requires numerical solvers that

are both reliable and capable of high performance on exascale platforms. To this

goal, solvers need to be resilient to faulty phenomena and highly concurrent without

compromising accuracy and efficiency.

As concerns the reduction of communication, standard linear solvers are not able

to achieve efficiency in this new computational context. On the one hand, there are

Krylov subspace methods (see Chapters 6 and 7 in [52]) that require global commu-
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nications to compute inner products, which leads to inefficiency on new architectures.

On the other hand, there are standard Richardson iterations (see Chapter 4 in [52]),

whose convergence rate is slow and which in general may not converge. Another

category of linear solvers is represented by Chebyshev iterations [43]. The advan-

tage of these techniques is that they do not require inner products. However, they

necessitate a knowledge on the spectrum of the coefficient matrix which is generally

not available. Many authors have explored the opportunity to enhance the perfor-

mance of Krylov methods [32,38,59]. These studies aim to reduce the inter-processor

communication across iterations by relaxing the orthogonality requirement between

basis vectors of the Krylov subspace. Several strategies have been employed to this

goal (e.g. Block Gram-Schmidt, Tall Skinny QR, s-steps Krylov methods, delayed

orthogonalization, . . .). Although the expedients adopted differ for the computa-

tions being performed, they all share the goal of reconstructing the same projection

subspace as standard Krylov methods in exact arithmetic. In particular, techniques

addressing nonsymmetric linear systems generate the same projection subspace as the

Generalized Minimal Residual method (GMRES) [53]. However, recently proposed

methods to reduce communication employ accelerations based on different projection

subspaces. One of these recent techniques is called Alternating Anderson-Richardson

(AAR for short) [48,49], the main feature of which is the use of Anderson mixing [3] to

accelerate standard Richardson’s iteration. The literature which explains the proper-

ties of this method is not as broad and consolidated as for more standard techniques.

However, a theoretical study to explain the convergence properties is provided in this

thesis. Compared to other Anderson acceleration techniques [25,41,60,61], numerical

experiments included in this thesis prove that AAR is more robust against stagna-

tion. An augmented variant of this algorithm is proposed as well, namely Augmented

Alternating Anderson Richardson, which is guaranteed to converge on linear systems

with a positive definite coefficient matrix. Numerical results show AAR outperforms
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versions of restarted GMRES across various restarting configurations and different

preconditioners. In particular, AAR successfully solves test cases where multiple ver-

sions of restarted GMRES fail to converge. Therefore, recent techniques like AAR

have the potential to better handle linear systems classified as challenging for tradi-

tional linear solvers.

With regards to robustness against system failures, many modified variants of

Krylov methods were proposed to accommodate resilience [1, 26, 37]. However, the

presence of global operations such as inner products severely limits the level of re-

silience that can be obtained via Krylov methods. In particular, global operations

propagate local errors across the network of interacting processors and this can

severely affect the convergence of the scheme. Alternatively, one-level relaxation

schemes merely employ matrix-vector multiplications to update the approximate so-

lution. Therefore, the low amount of communication needed by Richardson’s itera-

tion opens new paths to achieve resilience. This motivated the search for resilient

variant of fixed point schemes [58]. To this goal, this thesis analyzes Monte Carlo

(MC) accelerations for Richardson’s iteration [24, 35]. More specifically, the hybrid

(deterministic-stochastic) fixed point scheme we consider is called Monte Carlo Syn-

thetic Acceleration (MCSA for short). Hybrid schemes such as MCSA have been in-

troduced to breakthrough the slow convergence of standard Monte Carlo techniques

due to the Central Limit Theorem. However, the main drawback of these techniques is

that the statistical estimator needs to have finite expected value and variance. These

statistical conditions are algebraically reinterpreted as more restrictive requirements

than the ones needed for the convergence of the deterministic Richardson’s iteration.

Therefore, the use of stochastic tools to accelerate Richardson’s iteration reduces the

set of problems upon which the fixed point scheme converges. In this thesis we identify

classes of matrices and preconditioners for which convergence is guaranteed. More-

over, we propose variance-based adaptive stopping criteria to estimate the number of
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statistical samplings to employ to attain a prescribed accuracy.

The rest of the thesis is organized into chapters. Chapter 2 introduces the main

concepts of numerical linear algebra needed to develop the discussion in the following

chapters, as well as properties and algorithms of the standard linear solvers. Chapter

3 is dedicated to the Alternating Anderson-Richardson algorithm. Its main properties

are presented, along with a comparison to standard linear solvers. The theoretical

discussion is supported by numerical experiments at the end of this chapter, followed

by conclusions on state-of-the-art and possible future developments. Chapter 4 fo-

cuses on an implementation of AAR for distributed memory parallelization using MPI

as a paradigm. The goal of this chapter is to support the reason why AAR has been

proposed in the literature, that is the leverage of concurrency and reduction of com-

munication with respect to standard Krylov methods. In Chapter 5 we discuss the

properties of Monte Carlo linear solvers. After a brief discussion of the contributions

found in literature, we propose variance-based stopping criteria to automatically select

the number of statistical samplings needed to attain a prescribed accuracy. More-

over, classes of matrices and preconditioners are identified that guarantee a priori the

convergence of the schemes. Also in this case, the chapter is concluded with a section

about numerical experiments which compare Monte Carlo techniques with standard

fixed point schemes. We eventually draw conclusions about the work presented in

this thesis and we propose possible future developments in Chapter 6.
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Chapter 2

Standard Iterative Methods for

Sparse Linear Systems

2.1 Introduction

In this chapter we present some of the standard iterative solvers that are widely

employed nowadays to solve sparse linear systems. We will refer to these algorithms

also in later chapters, either by presenting some new variants that improve their

performance, or as a term of comparison to validate the results of our research. In

particular, all the algorithms analyzed in this thesis aim to solve a square nonsingular

linear system of the form

Ax = b, (2.1)

where A ∈ Rn×n and x, b ∈ Rn.

The chapter is structured as follows. In Section 2.2 we describe the standard

Richardson scheme and we recall its convergence properties. Section 2.3 presents a

broad discussion about two-level methods and all their mathematically equivalent

representations in order to highlight different characteristics. Section 2.4 focuses on a

specific two-level method called Anderson-Richardson (AR), followed by Section 2.5



6

where we describe the Generalized Minimum Residual method (GMRES). Section

2.6 compares AR and GMRES, identifying analogies and differences between the two

algorithms. In conclusion Section 2.7 presents numerical experiments to support the

theoretical discussion conducted in the previous sections.

2.2 The Richardson scheme

Consider a nonsingular linear system as in Equation (2.1). Applying a preconditioning

matrix P−1 to (2.1) to the left, we have

P−1Ax = P−1b. (2.2)

The equation can be recast as a fixed point problem which iteratively updates the

approximation to x

xk+1 = Hxk + f , k = 0, 1, . . . , (2.3)

where H = I − P−1A is the iteration matrix, f = P−1b is the preconditioned right

hand side and x0 is an initial guess. Another equivalent representation, called correc-

tion form, is commonly adopted:

xk+1 = xk + P−1rk, k = 0, 1, . . . , (2.4)

where rk = b − Axk is the residual at the kth iteration. A necessary and sufficient

condition for the scheme in (2.4) to converge to the solution in exact arithmetic is

that the spectral radius ρ(H) < 1. Moreover, the following relations between error

and residual between consecutive iterations hold:

ek+1 = Hek, k = 0, 1, . . . ,
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rk+1 = (I − AP−1)rk, k = 0, 1, . . . ,

where the error at the kth iteration is defined as ek = x − xk. The scheme 2.3 can

be generalized by introducing a positive weighing parameter ω (namely relaxation

parameter):

xk+1 = (1− ω)xk + ω(Hxk + f), k = 0, 1, . . . , (2.5)

which in correction form is equivalently represented as

xk+1 = xk + ωP−1rk k = 0, 1, . . . (2.6)

Equations (2.5) and (2.6) are known as preconditioned stationary Richardson scheme

and the iteration matrix associated with this fixed point scheme is

Hω = I − ωP−1A.

A good choice of the matrix P−1 and of the relaxation parameter ω can ensure

convergence in some cases (provided that all eigenvalues of A have positive real part).

However, requiring that Hω have spectral radius less than one can be too restrictive

in general. Moreover, the standard one-step Richardson scheme does not efficiently

damp error components related to small eigenvalues of P−1A. Therefore, an acceler-

ation of the scheme is recommended to increase its efficiency.

2.3 Two-Level Iterative Methods

Several mathematical contributions have been provided through the years in this

respect [12, 13, 15, 39, 42, 51–53, 63]. The common idea behind these techniques is to

temporarily interrupt the Richardson procedure to replace the current approximation

with an improved one. The approximation is improved by solving a reduced linear
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system obtained by projecting the original linear system onto a subspace, motivating

the use of the term projection methods in the mathematical literature.

From now on we refer to Ax = b as a linear system in the real field which may be

already preconditioned. If p is the dimension of the subspace of corrections or search

subspace Vk where the corrections are sought, then p constraints must be imposed

to extract a corrected approximation xk. A possible choice of constraints may be to

enforce that the residual rk = b−Axk be orthogonal to p linearly independent vectors

that identify another subspace Wk, called subspace of constraints or left subspace.

Projection methods can be categorized as orthogonal or oblique based on the way Vk

and Wk relate to each other. Orthogonal projection methods create Wk so that it

coincides with Vk, whereas oblique projection methods use two different subspaces

and Wk may be totally unrelated to Vk. Projection methods can also be classified

either as multiplicative or additive as in [15]. In particular, given an approximation

xk to the solution of (2.1), multiplicative methods are defined so as to compute an

improved approximation xk as follows:

Find xk ∈ Vk such that b− Axk ⊥ Wk. (2.7)

Additive methods instead search for the correction by solving the following problem:

Find xk ∈ xk + Vk such that b− Axk ⊥ Wk. (2.8)

Let us denote by ΠVk ∈ Rn×n an orthogonal projection operator from Rn onto Vk

and ∆Wk
Vk the oblique projection operator from Rn onto Vk, which operates also as

an orthogonal projector onto Wk. Then the projection operators are defined by their

action on a generic vector v ∈ Rn as follows:

ΠVkv ∈ Vk, v − ΠVkv ⊥ Vk,
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∆Wk
Vk v ∈ Vk, v −∆Wk

Vk v ⊥ Wk.

This allows one to recast (2.7) as

Find xk ∈ Vk such that ∆Wk
Vk (b− Axk) = 0.

Since we impose xk ∈ Vk, then ΠVkx
k = xk, which leads to the under-determined

linear system

∆Wk
Vk AΠVkx

k = ∆Wk
Vk b. (2.9)

Likewise, the formulation in (2.8) can be equivalently written as

Find xk ∈ xk + Vk such that ∆Wk
Vk (b− Axk) = 0.

For additive methods we know that the corrected approximation has the form

xk = xk + εk, εk ∈ Vk.

Therefore, the constraint ∆Wk
Vk (b−Axk) = 0 still leads to the under-determined linear

system (2.9). Moreover, the relation

∆Wk
Vk (b− Axk) = ∆Wk

Vk b−∆Wk
Vk (Axk)−∆Wk

Vk (Aεk)

= ∆Wk
Vk rk −∆Wk

Vk (Aεk)

turn the linear system (2.9) into

∆Wk
Vk AΠVkε

k = ∆Wk
Vk rk. (2.10)

Equations (2.9) and (2.10) are called Petrov-Galerkin conditions. The use of the
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Petrov-Galerkin conditions allows one to reformulate (2.7) as follows:

Find xk ∈ Vk such that ∆Wk
Vk AΠVkx

k = ∆Wk
Vk b.

Similarly, (2.8) can be recast as

Find εk ∈ Vk such that ∆Wk
Vk AΠVkε

k = ∆Wk
Vk rk

followed by xk = xk + εk.

2.3.1 Matrix representation

Equations (2.9) and (2.10) represent under-determined linear systems. Therefore,

the solution to these linear systems is not unique. Moreover, the requirement that

xk ∈ Vk or εk ∈ Vk is not naturally guaranteed for a generic solution to (2.9) or (2.10),

respectively. To this goal, denote by Vk ∈ Rn×p a matrix with column vectors that

form a basis for Vk and Wk ∈ Rn×p a matrix with column vectors that form a basis

for Wk. With regards to the multiplicative approach, the requirement that xk ∈ Vk

is restored by imposing that

xk = Vky
k, yk ∈ Rp,

whereas the requirement that εk ∈ Vk for the additive approach is restored by enforc-

ing that

εk = Vkδ
k, δk ∈ Rp.

In fact (2.7) can be recast as follows:

W T
k AVky

k = W T
k b.
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Similarly, (2.8) can be recast as follows:

W T
k AVkδ

k = W T
k rk.

The uniqueness of the correction can be obtained by requiring that the reduced ma-

trix W T
k AVk be nonsingular. In particular, the matrix W T

k AVk is nonsingular if and

only if no vector of the subspace AVk is orthogonal to the subspace Wk. Under

the assumption that W T
k AVk is nonsingular, the solution xk is thus corrected in a

multiplicative fashion as follows

xk = Vky
k

= Vk(W
T
k AVk)

−1W T
k b.

Similarly, the additive correction is computed as

xk = xk + εk

= xk + Vkδ
k

= xk + Vk(W
T
k AVk)

−1W T
k rk.

(2.11)

The specific choice of ΠVk and ∆Wk
Vk may heavily impact the performance of the

algorithm to achieve a prescribed accuracy. This induces another categorization of the

projection-iterative methods into aggregation methods [12,13,15,51] and minimization

methods [15, 25, 39, 47, 60, 61]. The names are inspired by the criterion adopted to

construct the projection operators ΠVk and ∆Wk
Vk .

2.3.2 Aggregation methods

The key idea of aggregation methods consists of building two mappings Sk and Pk. In

particular Sk ∈ Rp×n is seen as a restriction or aggregation operator and Pk ∈ Rn×p
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is seen as a prolongation or disaggregation operator. Assuming that

SkPk = Ip,

the projection operator onto the search subspace is defined as

Πk = PkSk.

It is straightforward to check that Πk is idempotent. Aggregation/disaggregation

techniques are orthogonal projection methods. Therefore, the left subspace coincide

with the search subspace, i.e.,

Vk =Wk = R(Πk),

where R(·) is going to be used from now on to denote the range of an operator. The

problem (2.9) for multiplicative aggregation/disaggregation methods thus becomes

Find xk ∈ R(Πk) such that ΠkAΠkx
k = Πkb, (2.12)

whereas the problem (2.10) now becomes

Find εk ∈ R(Πk) such that ΠkAΠkε
k = Πkr

k, (2.13)

followed by the additive updating step

xk = xk + εk.

Equations (2.12) and (2.13) are called Galerkin conditions and they represent a spe-

cialization of (2.9) and (2.10). The solutions to (2.12) and (2.13) are not unique.
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Moreover, the requirement that xk ∈ R(Πk) for the multiplicative approaches or that

εk ∈ R(Πk) for the additive approaches does not hold for a generic solution of (2.12)

or (2.13), respectively. However, the matrix SkAPk is nonsingular and this restores

the uniqueness of the solution. In fact, with regards to multiplicative approaches, the

uniqueness of the solution is obtained by solving the reduced linear system

SkAPky
k = Skb,

followed by the prolongation step xk = Pky
k. Similarly, for additive approaches the

uniqueness of the solution is obtained through the reduced linear system

SkAPkδ
k = Skr

k,

followed by the prolongation step εk = Pkδ
k. Moreover, for the multiplicative ap-

proaches we obtain

Πkx
k = PkSkx

k

= PkSkPky
k

= PkSkPk(SkAPk)
−1Skb

= Pk(SkAPk)
−1Skb

= Pky
k = xk (2.14)
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which entails that xk ∈ R(Πk). Similarly, for the additive approaches we have

Πkε
k = PkSkε

k

= PkSkPkδ
k

= PkSkPk(SkAPk)
−1Skr

k

= Pk(SkAPk)
−1Skr

k

= Pky
k = εk, (2.15)

which implies that εk ∈ R(Πk).

We report here below a local convergence analysis of aggregation methods which

is carried out in [15]. The convergence analysis is conducted for multiplicative and

additive methods and this will lead to an estimation of the aggregation/disaggregation

acceleration rate that holds for both. We provide as follows two preliminary results

used in [15] to support the following local convergence analysis. Since the authors

in [15] do not provide any proofs for these results, we are going to include them here

for the sake of clarity.

Proposition 1. Given Sk ∈ Rp×n and Pk ∈ Rn×p such that SkPk = Ip, consider

the projection operator Πk = PkSk. Assume that the matrix A is nonsingular and

consider H = I − A. Then I − ΠkH is nonsingular.

Proof. The proof is based on a contradiction argument. Let us assume that I −ΠkH

is singular. This entails that

[I − ΠkH]x̃ = [I − Πk(I − A)]x̃ = 0 (2.16)

for some x̃ 6= 0. Therefore,

x̃ = Πk(I − A)x̃,
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which implies that x̃ ∈ R(Πk). The condition in (2.16) thus becomes

ΠkAΠkx̃ = 0,

which leads to

PkSkAPkSkx̃ = 0.

Multiplying both the terms of the last equality by Sk we have

SkAPkSkx̃ = 0.

Since SkAPk is nonsingular, then it must be Skx̃ = 0 which implies Πkx̃ = x̃ =

0. However this contradicts the assumption that x̃ 6= 0. Therefore I − ΠkH is

nonsingular.

Proposition 2. Given Sk ∈ Rp×n and Pk ∈ Rn×p such that SkPk = Ip, consider

the projection operator Πk = PkSk. Assume that the matrix A is nonsingular and

consider H = I − A. Then I −HΠk is nonsingular.

Proof. Let us assume that I −HΠk is singular. This would imply that

[I −HΠk]x̃ = [I − (I − A)Πk]x̃ = 0 (2.17)

for some x̃ 6= 0. Therefore,

(I − Πk)x̃ = −AΠkx̃. (2.18)

Exploiting the fact that (I − Πk) is idempotent, i.e. (I − Πk)
2 = (I − Πk), we have

(I − Πk)x̃ = −(I − Πk)AΠkx̃. (2.19)
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If we subtract Equation (2.18) from Equation (2.19) we obtain

ΠkAΠkx̃ = 0 ⇒ x̃ ∈ N (Πk),

where the symbol N (·) denotes the null space of an operator. This combined with

Equation (2.17) leads to

[I −HΠk]x̃ = [I − (I − A)Πk]x̃ = x̃ = 0,

which contradicts the original assumption x̃ 6= 0. Therefore I −HΠk is nonsingular.

Two other important facts that we are going to use for the local convergence

analysis are

(I −HΠk)
−1 − (I −H)−1 = (I −HΠk)

−1(HΠk −H)(I −H)−1 (2.20)

and the fact that (I−Πk) is an idempotent operator. The equality (2.20) is legitimated

by Proposition 2 which guarantees that the matrix I −HΠk is nonsingular.

Multiplicative methods

In [15] the multiplicative case is analyzed on the assumption that xk ∈ R(Πk), which

is equivalent to

Πkx
k = xk. (2.21)

We describe here the convergence analysis for multiplicative aggregation/disaggregation

methods by adopting the same assumption. Although this requirement may be im-

practical for some applications, we enforce it so as to obtain a local convergence result

that holds for both multiplicative and additive approaches. Those applications for
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which the requirement in Equation (2.21) is not feasible can still be addressed via

additive techniques. In fact, additive approaches do not require (2.21) to hold, as will

be shown later in the section about additive methods.

From the equality in (2.14) for the multiplicative approach we obtain

ΠkA(xk − xk) = Πk(b− Axk).

Therefore,

(I − ΠkH)(xk − x) = xk − ΠkHxk − x + ΠkHx

= Πkx
k − ΠkHxk − x + ΠkHx + Πkx− Πkx

= Πk(I −H)xk − Πk(I −H)x + (Πk − I)x

= ΠkAxk − ΠkAx + (Πk − I)x

= Πkb− Πkb + (Πk − I)x

= (Πk − I)x.

Since (I − ΠkH) is nonsingular from Proposition 1,

xk − x = (I − ΠkH)−1(Πk − I)x. (2.22)

By combining Equation (2.21) and Equation (2.22) we obtain

xk − x = (I − ΠkH)−1(Πk − I)(x− xk). (2.23)

Formula (2.23) displays the way the original approximation xk is potentially improved

by solving a reduced linear system on the subspace identified by the projection oper-



18

ator Πk. A desirable behavior is

‖xk − x‖ < ‖x− xk‖

with respect to some norm ‖·‖. Equation (2.23) shows that the quality of the ap-

proximation xk strongly depends on (I −ΠkH)−1(Πk − I). Therefore, the projection

operator Πk plays an essential role in constructing an effective modified fixed point

scheme. The benefit coming from the projected linear system may persist also on

successive Richardson sweeps. This would improve the convergence rate beyond the

theoretical considerations merely based on ρ(H). In order to understand what prop-

erties could be required on the linear system and the projector Πk for such a benefit,

we analyze the behavior of the first Richardson sweep after the acceleration. In partic-

ular, we analyze how the aggregation/disaggregation acceleration impacts the error.

We denote the first Richardson step after the aggregation-disaggregation updating as

xk+1 = Hxk + b = xk + (b− Axk). (2.24)

Recall that for the multiplicative aggregation we have Πkx
k = xk and Πk(b−Axk) =

0. Therefore from Equation (2.24) it follows that

Πkx
k+1 = Πkx

k + Πk(b− Axk) = xk,

which leads to

xk+1 = Hxk + b = HΠkx
k+1 + b.

This implies that (I−HΠk)x
k+1 = b, which together with the equality in (2.20) leads
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to

x− xk+1 = A−1b− (I −HΠk)
−1b

= (I −H)−1b− (I −HΠk)
−1b

= (I −HΠk)
−1H(I − Πk)(I −H)−1b

= (I −HΠk)
−1H(I − Πk)A

−1b

= (I −HΠk)
−1H(I − Πk)x.

(2.25)

Because of (2.21), it holds that

x− xk+1 = (I −HΠk)
−1H(I − Πk)(x− xk). (2.26)

Additive methods

As concerns the additive aggregation, we recall the equality in (2.15) and

Πk(r
k − Aεk) = 0.

Therefore, the Galerkin property in Equation (2.13) for additive methods leads to

(I − ΠkH)(εk − ek) = εk − ΠkHε
k − ek + ΠkHek

= Πkε
k − ΠkHε

k − ek + ΠkHek + Πke
k − Πke

k

= Πk(I −H)εk − Πk(I −H)ek + (Πk − I)ek

= ΠkAε
k − ΠkAek + (Πk − I)ek

= Πkr
k − Πkr

k + (Πk − I)ek

= (Πk − I)ek,

where ek = x− xk and it follows that

εk − ek = (I − ΠkH)−1(Πk − I)ek.
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Making use of the following chain of equalities

εk − ek = xk − xk − x + xk = xk − x,

one obtains

xk − x = (I − ΠkH)−1(Πk − I)(x− xk).

Also, for additive schemes it is desirable that ‖xk − x‖ < ‖x− xk‖ and this strongly

depends again on the matrix (I −ΠkH)−1(Πk − I). Similarly to the analysis of mul-

tiplicative approaches, also for the additive approaches we aim to understand the

behavior of the error associated with the first relaxation sweep after the aggrega-

tion/disaggregation step.

In the additive case, we define εk+1 = xk+1−xk. Using Equation (2.24) we obtain

the following chain of equalities:

εk+1 = xk+1 − xk

= Hxk − xk + b

= (I − A)(xk + εk)− xk + b

= xk − Axk + εk − Aεk − xk + b

= (I − A)εk + b− Axk.

Therefore, εk+1 is related to εk through the following equality:

εk+1 = Hεk + rk.

Combining this with the fact that Πkε
k = εk and Πk(r

k − Aεk) = 0, we have

Πkε
k+1 = Πk(I − A)εk + Πkr

k = Πkε
k + Πk(r

k − Aεk) = εk
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and consequently

εk+1 = HΠkε
k+1 + rk,

which leads to (I −HΠk)ε
k+1 = rk. Using the equality in (2.20) we obtain

ek − εk+1 = A−1rk − (I −HΠk)
−1rk

= (I −H)−1rk − (I −HΠk)
−1rk

= (I −HΠk)
−1H(I − Πk)(I −H)−1rk

= (I −HΠk)
−1H(I − Πk)A

−1rk

= (I −HΠk)
−1H(I − Πk)e

k.

Therefore, Equation (2.26) holds for the additive case as well by recalling that ek =

x− xk.

Estimation of aggregation/disaggregation accelerating factor

Since the formula in Equation (2.26) holds both for multiplicative and additive meth-

ods, it is possible to conduct a local convergence analysis of the error which applies

to both types of scheme.

Let

αk+1 =
‖x− xk+1‖
‖x− xk‖

.

From Equation (2.23), which holds for both additive and multiplicative methods, it

follows that (Πk − I)(x − xk) = (I − ΠkH)(xk − x). This allows one to obtain the
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following upper bound for the acceleration factor αk+1:

αk+1 =
‖x− xk+1‖
‖x− xk‖

=
‖(I −HΠk)

−1H(I − Πk)(x− xk)‖
‖x− xk‖

=
‖(I −HΠk)

−1H(I − Πk)(I − Πk)(x− xk)‖
‖x− xk‖

≤ ‖(I −HΠk)
−1H(I − Πk)‖‖(I − Πk)(x− xk)‖

‖x− xk‖

=
‖(I −HΠk)

−1H(I − Πk)‖‖(I − ΠkH)(xk − x)‖
‖x− xk‖

≤ ‖(I −HΠk)
−1‖‖H(I − Πk)‖‖I − ΠkH‖.

(2.27)

This chain of inequalities shows that a convergence rate improvement on the first

Richardson sweep after the acceleration can be obtained if the quantity ‖H(I −

Πk)‖ is sufficiently small. Notice that for the local convergence analysis of aggre-

gation/disaggregation methods we have not specified which vector norm and matrix

norm are adopted. The only requirement is that the matrix norm be compatible

with the vector norm. The motivation behind this is due to the fact that aggrega-

tion/disaggregation accelerations are not driven by an optimality criterion in general.

Therefore, the goal is not to optimize any quantity in particular. This allows one to

conduct the analysis with respect to a generic norm of the error.

2.3.3 Minimization methods

We are now going to address the case when the projection operator Πk is constructed

based on some optimality criterion either for the error or for the residual. We will refer

to the algorithms that follow this principle as minimization methods. The way they

work is to compute a correction εk that is combined with the current approximation

xk in an additive fashion, i.e.,

xk = xk + εk.
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Since in the rest of this work we focus on minimization methods that compute ad-

ditive corrections, Equation (2.21) does not need to hold anymore. Therefore, the

assumption that Πkx
k = xk is not going to be used from now on.

The goal of minimization methods is to accelerate the Richardson iteration through

techniques that minimize either the error or the residual on a subspace. The aggre-

gation/disaggregation step is thus replaced by the solution of a least-squares problem

of size p < n which is applied at each iteration step. Following an error analysis pre-

sented in Chapter 4, Section 4.2 of [39], a minimization method constructs a matrix

Uk ∈ Rn×p at each iteration. The columns of Uk are chosen as p linearly independent

vectors and the goal is to compute an improved approximation for the solution to

(2.1) of the form

xk = xk + Ukg
k, (2.28)

where gk ∈ Rp. This is carried out in such a way that the updated error

ek = ek − Ukgk

be reduced in some norm. Let us consider an elliptic norm, defined by

‖y‖2
G = yTGy,

where G ∈ Rn×n is symmetric positive definite. For a given G and a given Uk, the

goal is to compute gk so as to minimize the elliptic norm of the error

gk = argmin
g∈Rp

(ek − Ukg)TG(ek − Ukg). (2.29)

By introducing the twice continuously differentiable convex function φk : Rp → R

defined as

φk(g) = ‖ek − Ukg‖2
G, (2.30)
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gk is the unique stationary point of φk and it can be computed by solving the set of

p linear equations

∇gφk(g) = 0.

Here ∇g(·) denotes the gradient operator with respect to the variables of the vector

g. Since

∇gφk(g) = −2UT
k Gek + 2UT

k GUkg,

it follows that the vector gk which minimizes the elliptic norm of the error is

gk = (UT
k GUk)

−1UT
k Gek,

leading to an updated error such that

‖ek‖2
G = (ek − Ukgk)TG(ek − Ukgk)

= (ek)TGek − 2(gk)TUT
k Gek + (gk)TUT

k GUkg
k

= (ek)TGek − 2(ek)TGUk(U
T
k GUk)

−1UT
k Gek + (ek)TGUk(U

T
k GUk)

−1UT
k Gek

= (ek)TGek − (ek)TGUk(U
T
k GUk)

−1UT
k Gek

= ‖ek‖2
G − (ek)TGUk(U

T
k GUk)

−1UT
k Gek.

The difference between the elliptic norms of the error before and after the updating

is thus

‖ek‖2
G − ‖ek‖2

G = (ek)TGUk(U
T
k GUk)

−1UT
k Gek. (2.31)

The matrix used to define the elliptic norm G is constant throughout all the iter-

ations, whereas the matrix Uk is allowed to dynamically change. Without assuming

any property on A besides nonsingularity, two practical choices for G are proposed in

Chapter 4, Section 4.2 of [39]. The first one consists of taking G = ATA, the second

one consists of taking G = I. The former leads to solving a minimization problem for
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the residual `2-norm, whereas the latter leads to solving a minimization problem for

the error `2-norm. Minimization methods enforce the correction xk to be as in (2.28)

and computing the coefficient vector gk always involves a least-squares problem. In

the mathematical literature several options to choose the columns of Uk have been

explored, both for the minimization of the residual and error norm. Specific practical

choices in this respect will be discussed in the next sections. We remind the reader

that the preliminary error analysis conducted for minimization methods already re-

quires to consider a specific elliptic norm ‖·‖G. This happens because minimization

methods, differently from aggregation/disaggregation acceleration, are set up so as to

minimize a specific norm of the error by definition. Therefore, the following error and

residual analysis must be always consistent with the initial norm adopted to define

the minimization technique.

Minimization of the error

Given an updated approximation as in Equation (2.28), the goal of error minimization

methods is to compute gk such that

gk = argmin
g∈Rp

‖ek − Ukgk‖2
2, k = 1, 2, . . .

This is equivalent to computing the unique minimum point of the function φk defined

in Equation (2.30) when G = I. In this case, the minimum is attained when

gk = (UT
k Uk)

−1UT
k ek.

However, the error ek is not available. A workaround for this problem is to use a

prescribed matrix Qk ∈ Rn×p such that Uk = ATQk. Under this assumption, one has
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that

gk = (QT
kAA

TQk)
−1QT

kAek

= (QT
kAA

TQk)
−1QT

k rk.

Since the residual rk is available, the vector gk can be computed. Moreover the vector

gk is unique. In fact the matrix A is supposed to be nonsingular, which implies

that AAT is symmetric positive definite and this makes the matrix (QT
kAA

TQk)
−1

nonsingular as well. In this case Equation (2.31) turns into

‖ek‖2
2 − ‖ek‖2

2 = (rk)TQk(Q
T
kAA

TQk)
−1QT

k rk

and Equation (2.28) becomes

xk = xk + Ukg
k

= xk + Uk(U
T
k Uk)

−1UT
k ek

= xk + Uk(Q
T
kAUk)

−1QT
k rk.

(2.32)

Since Equation (2.32) is a specialization of Equation (2.11), we can say that error min-

imization methods are additive oblique projection methods where the search subspace

is

Vk = R(Uk)

and the subspace of constraints is

Wk = R(Qk) = A−TR(Uk) = A−TVk.

Minimization of the residual

Given the residual associated with the approximation in (2.28)

rk = b− Axk = rk − AUkgk,
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the goal of residual minimization methods is to find the optimal gk that minimizes

‖rk‖2, that is

gk = argmin
g∈Rp

‖rk − AUkgk‖2
2.

Since rk = Aek, then we have

‖rk‖2
2 = (ek)TATAek = ‖ek − Ukgk‖2

ATA.

Therefore computing gk so as to minimize ‖rk‖2 results in solving the minimization

problem

gk = argmin
g∈Rp

‖ek − Ukgk‖2
ATA.

This is equivalent to calculating the minimum point of the function φk defined in

Equation (2.30) when G = ATA. By defining the matrix Zk ∈ Rn×p as Zk = AUk,

the minimizing vector gk can be computed as

gk = (UT
k A

TAUk)
−1UT

k A
TAek

= (ZT
k Zk)

−1ZT
k rk.

(2.33)

Also in this case, the vector gk is unique. In fact, the matrix A is supposed to be

nonsingular, which means that ATA is symmetric positive definite and this makes the

matrix (UT
k A

TAUk)
−1 nonsingular as well. Equation (2.11) becomes

xk = xk + Ukg
k

= xk + Uk(Z
T
k Zk)

−1ZT
k rk

= xk + Uk(Z
T
k AUk)

−1ZT
k rk.

(2.34)

Therefore, residual minimization methods are additive oblique projection methods

where the search subspace is

Vk = R(Uk)
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and the left subspace is

Wk = R(Zk) = AR(Uk) = AVk.

Let us define the projection operator onto R(Zk)

Πk = Zk(Z
T
k Zk)

−1ZT
k .

Then Equation (2.31) becomes

‖ek‖2
ATA − ‖e

k‖2
ATA = ‖rk‖2

2 − ‖rk‖2
2 = (rk)TZk(Z

T
k Zk)

−1ZT
k rk = (rk)TΠkr

k. (2.35)

It follows that

(rk)TΠkr
k ≥ 0 ⇒ ‖ek‖2

ATA ≤ ‖e
k‖2

ATA

and

rk = b− Axk =
[
rk − Zk(ZT

k Zk)
−1ZT

k rk
]

= (I − Πk)r
k, (2.36)

which implies

‖rk‖2 ≤ ‖rk‖2.

This entails that the residual minimization correction guarantees a local non-increasing

trend for the residual. Furthermore, the ability of Πk to identify a subspace containing

rk affects the performance. In fact, it is preferable that Πkr
k ≈ rk.

Anderson mixing

A specific choice to construct the matrix Uk for residual minimization methods has

been proposed by Anderson in [3]. The technique presented by Anderson aims at

computing a vector

gk = (gk1 , . . . , g
k
p)T ∈ Rp
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to correct the approximation xk by specializing Equation (2.28) as follows:

xk = xk −
p∑
j=1

gkj (xk−p+j − xk−p+j−1). (2.37)

Therefore, Equation (2.37) corrects xk via a linear combination that involves the ap-

proximations computed at the previous p steps. The procedure proposed in Equation

(2.37) to compute xk is called Anderson mixing. Define

Xk = [(xk−p+1 − xk−p), (xk−p+2 − xk−p+1), . . . , (xk − xk−1)] ∈ Rn×p (2.38)

and

Rk = [(rk−p+1 − rk−p), (rk−p+2 − rk−p+1), . . . , (rk − rk−1)] ∈ Rn×p. (2.39)

Under the assumption that Rk has linearly independent columns, we can recast Equa-

tion (2.37) as

xk = xk −Xkg
k

where the optimal vector gk is computed as

gk = argmin
g∈Rp

‖b− A(xk −Xkg)‖2
2

= (RT
kRk)

−1RT
k rk.

The eventuality of linearly dependent columns of Rk is discussed in Chapter 3, Re-

mark 4.

We stress the fact that Uk = −Xk and Zk = Rk = AUk = −AXk. In particular,
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Equation (2.34) becomes

xk = xk −Xkg
k

= xk −Xk(R
T
kRk)

−1RT
k rk

= xk +Xk(R
T
kAXk)

−1RT
k rk.

(2.40)

Therefore, the subspace of corrections becomes

Vk = R(Xk)

and the subspace of constraints is

Wk = R(Rk) = AR(Xk) = AVk.

Remark 1. The Anderson mixing is sometimes described in the literature in a dif-

ferent form than Equation (2.37). In fact, an alternative definition is

xk = xk−p −
p∑
j=1

ĝkj (xk−p+j − xk−p), (2.41)

where ĝk = (ĝk1 , . . . , ĝ
k
p)T ∈ Rp. By defining the matrices X̂k ∈ Rn×p and R̂k ∈ Rn×p

as follows

X̂k = [(xk−p+1 − xk−p), (xk−p+2 − xk−p), . . . , (xk − xk−p)] ∈ Rn×p, (2.42)

R̂k = [(rk−p+1 − rk−p), (rk−p+2 − rk−p), . . . , (rk − rk−p)] ∈ Rn×p, (2.43)

Equation (2.41) is recast as

xk = xk−p − X̂kĝ
k,
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where the optimal vector ĝk is computed as

ĝk = argmin
g∈Rp

‖b− A(xk−p − X̂kg)‖2
2

= (R̂T
k R̂k)

−1R̂T
k rk−p.

Nevertheless the alternative definition of Anderson mixing in Equation (2.41) cannot

be seen as a specialization of Equation (2.28).

2.4 Anderson-Richardson method

An example of residual minimization methods is known in the literature as Anderson-

Richardson method (shortly named AR) [25,41,47,61] whose pseudo-code is described

in Algorithm 1. The main idea behind this approach is to compute an Anderson mix-

ing to accelerate the Richardson scheme at each iteration. Therefore, the algorithm

alternates a Richardson sweep with a minimization problem that involves the new

update computed through Richardson and the previous p approximations. Although

the extrapolation method of Anderson is generally used to accelerate non-linear fixed

point iterations [3], it has been proved to effectively speed-up also linear fixed point

schemes on a wide range of problems [47–49,61].

For the time being, we are going to describe the Anderson-Richardson method

by assuming that the Anderson mixing is implemented according to Equation (2.37).

An iteration of Anderson-Richardson that updates xk into xk+1 can be decomposed

into two consecutive steps as follows:

xk = xk −Xk(R
T
kRk)

−1RT
k rk (Anderson mixing) (2.44a)

xk+1 = xk + βk(b− Axk) (Richardson sweep), (2.44b)
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Algorithm 1: Anderson-Richardson (AR)

Data: x0, {βk}k=maxit
k=0 , p, tol

Result: xk+1

1 Compute r0 = b−Ax0;
2 Compute x1 = (I − β0A)x0 + b;
3 Set k = 1;

4 while
‖rk−1‖2
‖b‖2

> tol do

5 Compute ` = min{k, p};
6 Compute rk = b−Axk;

7 Set Xk = [(xk−`+1 − xk−`), . . . , (xk − xk−1)] ∈ Rn×`;
8 Set Rk = [(rk−`+1 − rk−`), . . . , (rk − rk−1)] ∈ Rn×`;
9 Determine gk = [gk1 , . . . , g

k
` ]T such that gk = argmin

g∈R`

‖rk −Rkg‖2;

10 Set xk = xk −Xkg
k;

11 Set xk+1 = xk + βk(b−Axk);
12 k = k + 1.

13 end

where βk ∈ R, ∀k ≥ 0. An equivalent expression that relates xk+1 directly to xk is

xk+1 = xk + βkr
k − (Xk + βkRk)(R

T
kRk)

−1RT
k rk. (2.45)

Therefore, Anderson-Richardson can be re-interpreted as a one level non-stationary

Richardson iteration

xk+1 = xk + Ckr
k,

where the scalar weight ω of Equation (2.6) is replaced with the matrix

Ck = βkI − (Xk + βkRk)(R
T
kRk)

−1RT
k .

Note that the matrix Ck is dynamically updated at each iteration of Anderson-

Richardson.

It is worth noticing that the monotonicity of the residual through the Anderson

mixing is not enough to guarantee the convergence of Anderson-Richardson overall.

In fact, the Richardson sweep of Equation (2.44b) does not usually reduce either the
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norm of the residual or the norm of the error.

Anderson-Richardson and the additive aggregation/disaggregation methods of

Section 2.3.2 have many similarities. In fact, they are all classified as projection

methods and they can be recast as two-level fixed point schemes. As already men-

tioned, the common feature is the presence of an underlying Richardson iteration

that is periodically accelerated through an additive correction, which is computed

by projecting the original linear system (2.1) onto a subspace. In order to under-

stand better the analogy, we focus on the sequence of residual vectors generated by

Anderson-Richardson. The residual associated with Equation (2.44b) is

rk+1 = (I − βkA)rk

= (I − βkA)(I − Πk)r
k.

(2.46)

The effectiveness of Anderson-Richardson in reducing the residual between two con-

secutive iterations is thus related to the matrix (I − βkA)(I − Πk). The more con-

tractive it can be on rk, the better. Therefore, we can conclude that the matrix

(I − βkA)(I − Πk) impacts the performance of Anderson-Richardson to the same

extent to which the matrix (I − A)(I − Πk) impacts the performance of aggrega-

tion/disaggregation methods.

We remind the reader that an alternative definition of Anderson-Richardson would

be possible if the Anderson mixing were implemented as in Equation (2.41). In this

case the iteration of Anderson-Richardson would becomexk = xk−p − X̂k(R̂
T
k R̂k)

−1R̂T
k rk−p (Anderson mixing) (2.47a)

xk+1 = xk + βk(b− Axk) (Richardson sweep). (2.47b)

However, in this case it is not possible to find a one step reinterpretation of the scheme

that directly relates xk+1 to xk as in Equation (2.45). The definition of Anderson

mixing as in Equation (2.41) is usually adopted to reinterpret Anderson-Richardson
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as a multi-secant method [25] and to analyze the connection between Anderson-

Richardson and Full GMRES. This connection is the object of the next section.

2.5 Generalized Minimum Residual Method

Given the Krylov subspace

Kk(A, r0) = span{r0, Ar0, . . . , Ak−1r0}, (2.48)

the generalized minimum residual method (GMRES) is another example of an oblique

projection method based on taking the search subspace as the Krylov subspace itself

Vk = Kk(A, r0)

and the left subspace as

Wk = AVk = AKk(A, r0).

The GMRES method provides approximate solutions to (2.1) of the form

xkG = x0 + zk,

where

zk = argmin
z∈Kk(A,r0)

‖b− A(x0 + z)‖2. (2.49)

Let us denote by PAKk
the orthogonal projector onto the subspace AKk(A, r0). From

Equation (2.49) it follows that

A(xkG − x0) = Azk = PAKk
(b− Ax0) = PAKk

r0.
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Therefore, zk = A−1PAKk
r0 and

xkG − x = x0 + A−1PAKk
r0 − x

= A−1[A(x0 − x)] + A−1PAKk
r0

= −A−1(I − PAKk
)r0.

(2.50)

Following the matrix representation of an additive method in Section 2.3.1, the

method can be expressed as in formula (2.11). However, this mathematical represen-

tation is impractical to attain an efficient performance. Indeed, the size of the ma-

trix W T
k AVk increases along with k, making the computation of the updating vector

more and more expensive. Because of this, an alternative representation is generally

adopted which resorts to the Arnoldi’s procedure to construct an orthogonal basis for

the Krylov subspace Kk(A, r0). We report the steps of this orthogonalization process

in Algorithm 2. Although there are multiple approaches to apply the orthogonaliza-

tion step at each iteration of Arnoldi’s procedure, we present only the version of the

algorithm based on modified Gram-Schmidt (MGS). Other alternative implementa-

tions may resort to Householder reflections or intermediate re-orthogonalizations.

Algorithm 2: Arnoldi MGS

Data: v1, A
Result: {wi}ki=1

1 Compute wj = Avj;
2 for j = 1, 2, . . . , k do
3 hij = (wj,vi);
4 wj = wj − hijvi
5 end
6 Compute hj+1,j = ‖wj‖2. If hj+1,j = 0 Stop

7 Compute vj+1 =
wj

hj+1,j

.

If we denote by Hk the (k + 1)× k Hessenberg matrix whose nonzero entries are

defined by Algorithm 2 and by Hk the matrix obtained from Hk by deleting the last
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row, then the following relations hold:

AVk = VkHk + wk(ek)T (2.51)

= Vk+1Hk, (2.52)

V T
k AVk = Hk. (2.53)

The second way to derive the algorithm of GMRES is to exploit Equation (2.49)

combined with Equation (2.52). Any vector x in the affine subspace x0 + Kk(A, r0)

can be written as

x = x0 + Vky,

where y ∈ Rk. Therefore, using Equation 2.52 we have

b− Ax = b− A(x0 + Vky)

= r0 − AVky

= βv1 − Vk+1Hk+1y

= Vk+1(βe1 −Hky),

where v1 denotes the first column of the matrix Vk and e1 is the first vector of the

standard basis. Since the columns of the matrix Vk+1 are orthonormal, then

‖b− A(x0 + Vky)‖ = ‖βe1 −Hky‖2. (2.54)

Combining Equation (2.49) and (2.54), we have that

xkG = x0 + Vkyk,
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where

yk = argmin
y∈Rk

‖βe1 −Hky‖2. (2.55)

The least-squares problem to solve in Equation (2.55) is usually cheap to compute,

thanks to the upper Hessenberg structure of Hk and the usually small value of k to

reach a prescribed accuracy. The pseudo-code for GMRES recast in this framework

is shown in Algorithm 3.

Algorithm 3: GMRES

Data: x0, tol
Result: xm

1 Set k = 1;
2 Compute r0 = b− Ax0;
3 Compute β = ‖r0‖2;

4 Compute v1 =
r0

β
;

5 while
‖rk−1‖2

‖b‖2

> tol do

6 Compute wk = Avk;
7 for i = 1, . . . , k do
8 hik = 〈wk,vi〉;
9 wk = wk − hikvi;

10 end
11 hk+1,k = ‖wk‖2. If hk+1,k = 0 set m = k and go to 20;

12 vk+1 =
wk

hk+1,k

;

13 Define the (k + 1)× k Hessenberg matrix Hk = {hij}1≤i≤k,1≤j≤k;

14 Compute the QR factorization of Hk via Givens rotations: Hk = QkRk;

15 Compute d
k ∈ Rk+1 such that d

k
= QT

k (βe1);

16 Compute ‖rk‖2 = |dkk+1|;
17 k = k + 1;

18 end
19 m = k − 1;

20 Compute ym, the minimizer of ‖βe1 −Hmy‖2, and xm = x0 + Vmym.
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2.5.1 Restarted and truncated versions of GMRES

The full version of GMRES is guaranteed to converge in exact arithmetic in at most

n steps, but this may become impractical for the aforementioned requirements in

memory storage and computation. The least-squares problem in Equation (2.55) can

become challenging if the prescribed accuracy is not reached for small values of k, i.e.

in a few iterations. In fact, a considerable growth in k may leads to more demanding

requirements both in terms of memory storage and computations. These memory and

computational burdens can be alleviated either by adopting restarting or truncating

techniques. The restarting approach consists of interrupting the standard GMRES

algorithm after a fixed number of iterations and restarting it over from scratch, using

the last updated approximate solution as new initial guess. By referring to m as the

fixed maximal number of iterations to run before restarting, we denote this variant

of GMRES by Restarted GMRES(m).

Algorithm 4: Restarted GMRES(m)

Data: x0, tol
Result: xm

1 Compute r0 = b− Ax0;
2 Compute β = ‖r0‖2;

3 Compute v1 =
r0

β
;

4 Generate the Arnoldi basis and the matrix Hm using the Arnoldi algorithm

starting with v1. Compute ym, the minimizer of ‖βe1 −Hmy‖2, and
xm = x0 + Vmym.

5 If satisfied then Stop, else set x0 = xm and go to 2.

A well-known drawback of this restarted variant of GMRES is that it can stagnate

and not converge if the matrix is not positive definite. We remind the reader that a

real matrix A is positive definite if its symmetric part
1

2
(A+AT ) is symmetric positive

definite.

The other attempt to limit the requirements needed is to truncate the Arnoldi

basis rather than restarting it after m iterations. A truncated variant of GMRES
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that adopts this approach is called DQGMRES [54] and it is based on replacing the

Arnoldi algorithm with an incomplete orthogonalization as described in Algorithm 5.

Only the k previous vectors of the Arnoldi process are kept at every iteration, leading

to a banded structure of Hm.

Algorithm 5: Incomplete Orthogonalization Process

Data: v1, A
Result: {wi}ki=1

1 Compute wj = Avj;
2 for j = max{1, j − k + 1}, . . . , j do
3 hij = (wj,vi);
4 wj = wj − hijvi
5 end
6 Compute hj+1,j = ‖wj‖2.

7 Compute vj+1 =
wj

hj+1,j

.

From now on, we will refer to the full, restarted and truncated variants of GMRES

as Full GMRES, Restarted GMRES and Truncated GMRES, respectively.

2.6 Comparison between GMRES and Anderson-

Richardson

Both Anderson-Richardson and GMRES aim to identify a projection subspace where

to minimize the residual associated with the approximate solution to 2.1. Because

of this, these two algorithms may be mathematically equivalent in exact arithmetic

under some hypotheses. We present here the study published in [47] as to the con-

nection between Anderson-Richardson and Full-GMRES. First, we introduce some

quantities that are employed to describe the performance of the methods. In [62] the

grade of r0 6= 0 with respect to A is defined as

ν(A, r0) = max{` ∈ N : dim(K`(A, r0)) = `}.
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Alternatively, the grade of r0 6= 0 with respect to A can also be equivalently defined

as the smallest integer ν for which there is a non-zero monic polynomial q of degree

ν such that

q(A)r0 = 0,

i.e.,

ν(A, r0) = min{` ∈ N : r0, Ar0, . . . , A`r0 are linearly dependent}.

The polynomial q is called minimum polynomial of r0 with respect to A. Clearly

ν(A, r0) ≤ n

and

K`(A, r0) = Kν(A, r0), ∀` ≥ ν = ν(A, r0).

The following result was initially introduced in [53] and it relates the convergence of

Full GMRES to ν(A, r0).

Proposition 3. [53] The Full GMRES method converges in ν(A, r0) steps in exact

arithmetic, i.e.,

xkG 6= x, for k < ν(A, r0), and xkG = x, for k ≥ ν(A, r0).

Following [47], we introduce the stagnation index as

ηG = min{` ∈ N : x`G = x`+1
G }.

We note that another way to define the stagnation is used in the literature. It

describes stagnation in Full GMRES as the situation where the residual norm does

not decrease across consecutive iterations. However, the two definitions are equivalent

for Full GMRES.
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As concerns AR, we are going to assume that p = k for the rest of this section,

which means that every Anderson mixing involves the approximations computed at

all the previous iterations. We refer to the method with this particular setting as Full

AR. Setting p = k implies that Equation (2.37) becomes

xkAR = xkAR −
k∑
i=1

gki (xiAR − xi−1
AR ), (2.56)

where

gk = (gk1 , . . . , g
k
k)T = argmin

g∈Rk

∥∥∥∥b− A[xkAR − k∑
i=1

gi(x
i
AR − xi−1

AR )

]∥∥∥∥
2

. (2.57)

In Formula (2.57) the vector xiAR represents the solution computed with Full AR at

the ith iteration. Notice that the size of the least-squares problem (and so the cost

of an iteration of Full AR) progressively increases with the iteration index.

From Equation (2.56) we have that (xkAR − xkAR) ∈ Lk, where

Lk = span{(x1
AR − x0), (x2

AR − x1
AR), . . . , (xkAR − xk−1

AR )}

= span{(x1
AR − x0), (x2

AR − x0), . . . , (xkAR − x0)}.
(2.58)

In [47] the authors introduced the index of Anderson-Richardson which is defined as

µAR(A,x0) = min{` ∈ N : (x1
AR−x0), (x2

AR−x0), . . . , (x`AR−x0) are linearly dependent}.

Notice that the linear dependence of the set of vectors

(x1
AR − x0), (x2

AR − x0), . . . , (x`AR − x0)
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is equivalent to the linear dependence of the vectors

(x1
AR − x0), (x2

AR − x1
AR), . . . , (x`AR − x`−1

AR ).

The index µAR(A,x0) is useful to describe the convergence properties of Full AR.

In fact, µAR(A,x0) can be used in the following result that establishes a close relation

between Full GMRES and Full AR. The result was first introduced in [61] assuming

that all the relaxation parameters were set to 1. The result was extended in [47] to

consider also the case of general values for the relaxation parameters βk’s. We include

also the proof since some steps of it are useful for future discussions.

Proposition 4. [47] The index µAR(A,x0) of Anderson-Richardson is always less

than or equal to the grade ν(A, r0). Moreover, the sequence of solutions {xkG} com-

puted via Full GMRES and the sequence of solutions {xkAR} computed via Full AR

satisfy the following properties:

• xk+1
AR = xkG + βk(b− AxkG), k = 0, 1, . . . , µAR(A,x0);

• xkAR = xkG, k = 0, 1, . . . , µAR(A,x0).

Proof. Let us first prove by induction that Lk ⊆ Kk(A, r0). The base case for k = 1 is

true because x1
AR−x0 = β0r

0. Therefore, now we can focus on the induction step. By

assuming that Lk ⊆ Kk(A, r0) we aim to prove that this induces Lk+1 ⊆ Kk+1(A, r0).

From the definition of the Anderson-Richardson iteration in Equations (2.44a) and

(2.44b) together with the alternate formulation of Anderson mixing in Equation (2.41)
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it follows that

xk+1
AR = xkAR + βk(b− AxkAR)

=

[
xkAR −

k∑
i=1

gki (xiAR − xi−1
AR )

]
+ βk

[
b− A

(
xkAR −

k∑
i=1

gki (xiAR − xi−1
AR )

)]

=

[
x0 −

k∑
i=1

ĝki (xiAR − x0)

]
+ βk

[
b− A

(
x0 −

k∑
i=1

ĝki (xiAR − x0)

)]

= x0 + βkr
0 − (I − βkA)

k∑
i=1

ĝki (xiAR − x0).

Therefore,

xk+1
AR ∈ Lk+1 = Lk + ALk ⊆ Kk(A, r0) + AKk(A, r0) = Kk+1(A, r0),

which completes the induction step.

Since

Lk ⊆ Kk(A, r0), k ≤ µAR(A,x0),

the linear independence of (x1
AR− x0), . . . , (xkAR− x0) always implies the linear inde-

pendence of r0, . . . , Ak−1r0. Therefore,

µAR(A,x0) ≤ ν(A, r0),

which leads to

Lk = Kk(A, r0), and dim(Kk(A, r0)) = k, for k = 1, . . . , µAR(A,x0).

The second bullet of the statement is due to the fact that both xkAR and xkG are

computed to minimize the residual on the same Euclidean subspace Kk(A, r0). Then

the first bullet follows from Equation (2.44b).
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Therefore, Full AR converges to the solution x of the linear system (2.1) if

µAR(A,x0) = ν(A, r0).

Otherwise the condition µAR(A,x0) < ν(A, r0) implies that µAR(A,x0) is precisely

the first index for which Full GMRES stagnates, meaning that µAR(A,x0) = ηG.

When a stagnation occurs, Full GMRES continues to iteratively augment the Krylov

subspace and it eventually converges to the solution x in exact arithmetic, while Full

AR stagnates from that point on without ever recovering. This can be explained

through the sequence of subspaces generated by Full AR and Full GMRES. If Full

AR and Full GMRES stagnate between the iterations with index k and k + 1, then

we obtain

xkAR = xk+1
AR = xkG = xk+1

G .

This can only occur if (xk+1
AR − x0) ∈ Lk. Therefore,

Lk+1 = Lk 6= Kk+1(A, r0),

meaning that the equivalence between Full AR and Full GMRES holds only in the

absence of stagnation.

By comparing the basis generated by Full GMRES and Full AR at each iteration,

one can see that the two bases are different. The only term in common is the first

one (up to a scaling factor), since this vector is represented by the initial residual r0.

In fact, the first normalized vector v1 of the basis generated by Full GMRES is

v1 =
r0

‖r0‖2
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whereas the first vector x1
AR − x0 of the basis generated by Full AR is

x1
AR − x0 = β0r

0.

We provide now an explicit expression of the second term of the bases for Full GMRES

and Full AR. The non-normalized second vector w1 of the basis constructed by Full

GMRES is

w1 = Av1 − (Av1,v1)v1

= Av1 − (vT1 Av1)v1

= (I − v1v
T
1 )Av1

=

[
I − r0

‖r0‖2

(
r0

‖r0‖2

)T]
Ar0

‖r0‖2

.

With regards to Full AR, we know that the Anderson correction can be defined

in two different ways, as shown in Equations (2.37) and (2.41). If one adopts the

formula in Equation (2.37), then the second term of the basis constructed by Full AR

is x2
AR−x1

AR. Otherwise the formula in Equation (2.41) leads to expanding the basis

with the vector x2
AR − x0. Here we are going to provide explicit representations of

both x2
AR − x1

AR and x2
AR − x0 in terms of r0. This allows us to directly compare the

expressions of these vectors with the one of w1 and understand whether they identify

the same direction or not. We temporarily set all the relaxation parameters βk’s to 1

for the sake of simplicity. The first iteration of Full AR is accomplished the same way

independently of the specific approach adopted to implement the method, obtaining

(see (2.38)-(2.39))

X1 = X̂1 = (x1
AR − x0) = r0

and

R1 = R̂1 = (r1
AR − r0) = −AX1 = −AX̂1 = −Ar0,
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where we used the fact that r1
AR = (I−A)r0. Once x1

AR is computed, it is required to

apply an Anderson acceleration. This produces an updated approximation x1
AR such

that

x1
AR = x0 +

(r0)TAr0

‖Ar0‖2
2

r0

and the approximation obtained by Full AR at the end of the second iteration is

x2
AR = x1

AR + (b− Ax1
AR)

= x0 +
(r0)TAr0

‖Ar0‖2
2

r0 +

[
b− A

(
x0 +

(r0)TAr0

‖Ar0‖2
2

r0

)]
= x0 +

(r0)TAr0

‖Ar0‖2
2

r0 + r0 − (r0)TAr0

‖Ar0‖2
2

Ar0.

Full AR proceeds up to this point indistinctly with respect to the use of formula (2.37)

rather than (2.41). Now, if Full AR were implemented according to the formula in

(2.37), the second term added to the basis would be the vector

x2
AR − x1

AR =
(r0)TAr0

‖Ar0‖2
2

(I − A)r0.

The vector x2
AR − x1

AR is used to build X2 based on the definition in (2.38). On the

other hand Full AR implemented through the formula in (2.41) would expand the

basis with

x2
AR − x0 = r0 +

(r0)TAr0

‖Ar0‖2
2

(I − A)r0.

The vector x2
AR − x0 is used to build X̂2 according to the definition in (2.42). This

shows that in general w1, x2
AR − x1

AR and x2
AR − x0 are not collinear, since a scalar

multiplying factor is not enough to reconstruct one of these vectors from any of the

others. The absence of collinearity among the vectors used to expand the bases
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propagates across all the successive iterations as well, causing

span{wk} 6= span{xkAR − x0},

span{wk} 6= span{xkAR − xk−1
AR },

span{xkAR − x0} 6= span{xkAR − xk−1
AR }, k ≥ 2.

Therefore, the bases generated by the two implementations of Full AR and by Full

GMRES are all different. Nevertheless, they still identify the same subspace as long

as the bases are updated with new vectors that preserve linear independence. In

particular, Full AR and Full GMRES are additive oblique projections methods that

are mathematically equivalent in absence of stagnation because

Vk = Kk(A, r0) = R(Xk) = R(X̂k), dim(Vk) = p = k

and

Wk = AKk(A, r0) = AR(Xk) = AR(X̂k) = R(Rk) = R(R̂k), dim(Wk) = p = k.

In the case of p fixed across all the iterations, the columns of the matrix Xk

and Rk (or X̂k and R̂k depending on which implementation of AR is considered) are

iteratively updated by dropping out old vectors and including new ones. This makes

AR comparable with Truncated GMRES [54]. However, the algorithms differ in the

subspace onto which the linear system in (2.1) is projected. To explain this, let us

denote with {vi}ki=1 the basis generated by the Arnoldi process in the first k iterations

of GMRES

Kk(A, r0) = span{v1, . . . ,vk},

and let us recall the definition of Lk in (2.58). We already showed that the vectors
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used by AR and GMRES to expand the bases do not coincide. In general a truncation

of the bases leads to different subspaces:

span{v`, . . . ,vk} 6= span{(x`AR − x`−1
AR ), . . . , (xkAR − xk−1

AR )}

span{v`, . . . ,vk} 6= span{(x`AR − x0), . . . , (xkAR − x0)},

span{(x`AR − x`−1
AR ), . . . , (xkAR − xk−1

AR )} 6= span{(x`AR − x0), . . . , (xkAR − x0)},

1 < ` ≤ k.

This implies that Truncated GMRES and AR with a fixed value of p (we will use the

term Truncated AR from now on) use different constraints to build the projection

subspace. Therefore, the performances of Truncated GMRES and Truncated AR do

not generally match. This will be validated also by numerical examples provided in

Section 2.7.1. Furthermore, we stress that the two implementations of Truncated AR

also differ between each other, since the two truncated bases do not identify the same

projection subspace.

In case the matrices Xk and Rk (or x̂k and R̂k) used by Anderson-Richardson

are flushed after every batch of m iterations and the procedure is restarted with the

updated residual, the performance of Anderson-Richardson is similar to Restarted

GMRES(m) [52,61]. We call Restarted AR(m) this version of Anderson-Richardson.

Although Restarted GMRES(m) and Restarted AR(m) are very similar, they are not

equivalent. In fact, Restarted AR(m) employs a least-squares problem followed by

a Richardson step at each iteration, as shown in Equations (2.44a)-(2.44b). This

entails that Restarted AR(m) and Restarted GMRES(m) would coincide only if

the last Richardson sweep at the end of each cycle of Restarted AR(m) were dis-

carded. This disparity between Restarted AR(m) and Restarted GMRES(m) may

sometimes favor the former over the latter. In fact, the last Richardson sweep in

every cycle of Restarted AR(m) may allow Restarted AR(m) to reach convergence

in those situations where Restarted GMRES(m) is known to stagnate. This fact will
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be confirmed by numerical experiments in Section 2.7.2. This discussion disproves

statements in [41,61], where the authors state the mathematical equivalence between

truncated and restarted versions of GMRES and AR.

2.6.1 Convergence Analysis for Anderson-Richardson

The mismatch between Full AR and Full GMRES when µAR < ν(A, r0) highlights

the need to come up with convergence criteria for Anderson-Richardson, since the

theory developed for Full GMRES cannot be entirely reused to this end. Several

contributions in the literature considered the use of Anderson acceleration for non-

linear problems, but less attention has been paid to the linear case. One of the works

dealing with the linear case is [60]. In this work the authors proved that Anderson-

Richardson is guaranteed to converge to the solution of (2.1) if the iteration matrix

H = I − A is such that ‖H‖2 < 1. We include here below the proof of this theorem

because it will facilitate future discussions. To do so, let us recall that a sequence

{wk} converges q-linearly with q-factor c ∈ [0, 1) to w∗ if

‖wk+1 −w∗‖ ≤ c‖wk −w∗‖,

for all k ≥ 1. We are going to assume that all the relaxation parameters βk are set to

1 for the rest of this section. In fact, if ‖H‖2 < 1, the underlying Richardson iteration

is already convergent without the use of relaxation parameters.

Theorem 2.6.1. Consider a linear system as in Equation (2.1). If the iteration

matrix H = I − A is such that ‖H‖2 = c < 1, then Anderson-Richardson converges

to the solution x of (2.1) for any choice of the parameter p, regardless of the initial

guess. The residual norm converges to zero q-linearly and the q-factor is c.

Proof. We recall the definition of xkAR as in Equation (2.37) or (2.41) for a generic
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value of p. We have

xk+1
AR = xkAR + rkAR

and

rk+1
AR = HrkAR,

where rkAR = b− AxkAR and rk+1
AR = b− Axk+1

AR . Therefore,

‖rk+1
AR ‖2 ≤ ‖H‖2‖rkAR‖2 ≤ c‖rkAR‖2.

The Anderson acceleration computes a linear mixing to minimize the residual. There-

fore, the Anderson acceleration computes an update xk+1
AR whose residual

rk+1
AR = b− Axk+1

AR

has to satisfy the following chain of inequalities:

‖rk+1
AR ‖2 ≤ ‖rk+1

AR ‖2 ≤ c‖rkAR‖2.

The last chain of equalities must hold regardless of the value of p. This proves that

the residual `2-norm converges to zero q-linearly and the q-factor is c.

This result guarantees convergence of Anderson-Richardson only under the restric-

tive assumption that ‖H‖2 < 1. Relaxing the requirement to ρ(H) < 1 already gives

room to non-normal iteration matrices that could hinder convergence. In general the

parameter p is fixed to prevent the cost of the least-squares problem from increasing.
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2.7 Numerical experiments

This section of numerical experiments aims to support the theoretical discussion con-

ducted in the previous sections of this chapter.

2.7.1 Comparison between Truncated AR and Truncated GM-

RES

In Section 2.6 we argued why Truncated GMRES and Truncated AR are not math-

ematically equivalent. We provide here some numerical experiments that validate

this fact. The matrices we consider are all taken from the SuiteSparse Matrix Col-

lection [18]. The linear systems have been solved with both Truncated GMRES and

Truncated AR, setting the truncation parameter to 10. Therefore, only the last 10

terms of the basis are kept at each iteration. The linear systems are preconditioned

via Incomplete LU factorization with zero fill-in in the factors [52] (shortly referred

as ILU(0) from now on) and a relative residual less than 10−8 is used as stopping

criterion. The solution to the linear system is generated randomly and the right hand

side is obtained multiplying the solution vector by the coefficient matrix A. The

same linear system is used for both the algorithms, so that the comparison between

performances is legitimate. The results are shown in Table 2.1. It is noticed that

the numbers of iterations employed by the algorithms are significantly different. This

provides numerical support to the theoretical claim about Truncated GMRES and

Truncated AR not being mathematically equivalent. We also show the residual trend

for both algorithms applied to a linear system with the matrix nos3 in Figure 2.1.

The algorithms behave identically for the first 10 iterations, since no truncation has

occurred yet and the subspaces constructed by Truncated AR and Truncated GM-

RES coincide. However, the residual curves start departing from each other when the

truncation of the bases takes place, since the projection subspaces differ.
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Truncated AR(p = 10) Truncated GMRES(m = 10)
Matrix size rel. error # Itr. rel. error # Itr.

chipcool0 20,082 1.70 · 10−7 177 2.80 · 10−7 87
memplus 17,758 6.60 · 10−6 426 2.30 · 10−5 305

nos3 960 9.05 · 10−7 194 9.01 · 10−7 245
saylr4 3,564 9.03 · 10−8 294 9.10 · 10−9 447

sherman3 5,005 4.50 · 10−6 203 7.30 · 10−6 246
sherman5 3,312 3.96 · 10−7 49 1.20 · 10−7 63

Table 2.1: Comparison between Truncated AR and Truncated GMRES. Experiments
with IC(0) preconditioner for symmetric positive definite matrices or ILU(0) precon-
ditioner that are not symmetric positive definite.

2.7.2 Comparison between Restarted AR and Restarted GM-

RES

At the end of Section 2.6 we mentioned the fact that Restarted AR(m) is not exactly

equivalent to Restarted GMRES(m), since an AR iteration consists of a least-squares

problem followed by a standard Richardson sweep. As already mentioned earlier, the

presence of the last Richardson sweep at the end of each cycle can favor Restarted

AR(m) over Restarted GMRES(m) in those situations where the latter stagnates

without any later recovery. This happens for examples taken from [23], where the

author demonstrates that an increase of the restarting parameter m does not neces-

sarily improve the performance of Restarted GMRES(m). The examples used in [23]

are the following two 3× 3 linear systems Aixi = bi:

A1 =


1 1 1

0 1 3

0 0 1

 , b1 =


2

−4

1

 , (2.59)

A2 =


1 2 −2

0 2 4

0 0 3

 , b2 =


3

1

1

 . (2.60)
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Figure 2.1: Truncated GMRES vs. Truncated AR. Plot of the history of relative
residual `2-norm for the matrix nos3 with IC(0) preconditioner.

One can verify that GMRES(2) stagnates on both these linear system with a

final relative residual of approximately 0.60146 and 0.29329, respectively. However,

Restarted AAR(2) converges in three iterations for Problem (2.59) and four iterations

for Problem (2.60), driving the relative residual down to machine precision. This is

due to the stagnation-recovery property of the final Richardson step.
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Chapter 3

Alternating Anderson-Richardson

3.1 Introduction

Many applications related to quantitative disciplines such as engineering, physics and

finance challenge state-of-the-art computing architectures requiring heavier computa-

tions that must be performed in a timely manner. Upcoming computers are projected

to meet this requirements by increasing the number of computational nodes compos-

ing the processors grid and thus enhancing the theoretical peak of floating point

operations per second. This increase of computational nodes in a platform causes a

significant upsurge of the cost of global communications with respect to older gener-

ation computers. Standard Krylov methods presented in Chapter 2 do not address

these new computational issues, since they are expected to incur in expensive com-

munication overheads on new computers moving towards exsscale capacities. For

instance, CG and GMRES perform inner products at each iteration, whereas AR

solves an unstructured least-squares problem at each iteration. All these tasks re-

quire global communications across all the processes, which causes severe bottlenecks

for the parallelization.

Therefore, the computer manufacturing trend urges the development of linear
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solvers that cap the amount of global communication needed to accomplish the com-

putational tasks. In this Chapter we focus on the analysis and development of linear

solvers targeted to reduce the amount of communication needed to solve a linear sys-

tem in a parallel computing framework. A recently proposed algorithm that tackles

this issue is the Alternating Anderson-Richardson method [48,49].

3.2 Alternating Anderson-Richardson method

The Alternating Anderson-Richardson method (AAR for short) computes an Ander-

son mixing after multiple Richardson steps, so that the cost of solving successive

least-squares problems is mitigated by several cheap Richardson sweeps in between.

A pseudo-code of the algorithm is provided in Algorithm 6. We present the formu-

lation of AAR assuming that the Anderson acceleration is implemented based on

Equation (2.37). The iteration of the AAR method has the form of a non-stationary

Richardson scheme

xk+1 = xk + Ckr
k,

where now the matrix Ck becomes

Ck =


ωI, k/m /∈ N

βkI − (Xk + βkRk)(R
T
kRK)−1RT

k , k/m ∈ N
.

The matrices Xk and Rk are defined as in (2.38) and (2.39), respectively. The pa-

rameter m represents the number of Richardson sweeps separating two consecutive

Anderson mixing accelerations. The other parameters are ω, {βk} and p. The first

two are relaxation parameters for the Richardson sweeps, whereas p represents the

number of columns in the n× p least-squares problem to compute the Anderson ac-

celeration. It should be noted that the least-squares problems used in this scheme
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are not structured. This is a disadvantage in comparison with other standard linear

solvers like GMRES, where the least-squares problems are cheaper to solve because

the matrices are structured as upper Hessenberg matrices. Letting m → ∞ would

reduce AAR to stationary Richardson with ω as relaxation parameter, while m = 1

would make it coincide with Anderson-Richardson where {βk} would be the sequence

of relaxation parameters. We stress the fact that an alternative would be to adopt

the definition of Anderson correction as in Equation (2.41) along with the definition

of matrices X̂k and R̂k as in (2.42) and (2.43). However, this implementation of the

Anderson acceleration does not allow us to recast the iteration of AAR so that xk+1

directly relates to xk whenever k is a multiple of m.

Algorithm 6: Alternating Anderson-Richardson (AAR)

Data: x0, ω, {βk}k=maxit
k=0 , p

Result: xk+1

1 Compute r0 = b−Ax0;
2 Compute x1 = (I − β0A)x0 + b;
3 Set k = 1;

4 while
‖rk−1‖2
‖b‖2

> tol do

5 Compute ` = min{k, p};
6 Compute rk = b−Axk;

7 Set Xk = [(xk−`+1 − xk−`), . . . , (xk − xk−1)] ∈ Rn×`;
8 Set Rk = [(rk−`+1 − rk−`), . . . , (rk − rk−1)] ∈ Rn×`;
9 if k %m 6= 0 then

10 Set xk+1 = xk + ωrk;
11 end
12 else

13 Determine gk = [gk1 , . . . , g
k
` ]T such that gk = argmin

g∈R`

‖rk −Rkg‖2;

14 Set xk = xk −Xkg
k;

15 Set xk+1 = xk + βk(b−Axk);

16 end
17 k = k + 1.

18 end
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3.2.1 Comparison between GMRES and Alternating Anderson-

Richardson

Similarly to the work in [47,61] on AR, it is possible to identify a connection between

Alternating Anderson-Richardson and GMRES [52]. Let us assume again that p = k

at first. Hence, the projection subspace for the Anderson mixing is constructed by

using all the previous approximations. From now on we refer to AAR with p = k

as Full AAR. We establish the following new result regarding the behavior of this

method.

Theorem 3.2.1. Consider Full AAR with a periodic updating interval equal to m be-

tween two consecutive Anderson mixing steps. Denote x`mAAR the approximate solution

to (2.1) provided by Full AAR after the Anderson mixing at the (`m)th iteration and

denote x`mG the solution computed via Full GMRES at the (`m)th iteration. Refer to

ν(A, r0) as the grade of r0 with respect to A and ηG as the stagnation index of Full

GMRES. Then the following relation holds in exact arithmetic:

x`mAAR = x`mG , ` = 0, 1, ... s.t. `m ≤ ηG or s.t. `m ≤ ν(A, r0). (3.1)

Moreover, if the stagnation does not occur, then

xtmAAR = x
ν(A,r0)
G = x, t ∈ N, s.t. (t− 1)m < ν(A, r0) ≤ tm. (3.2)

Proof. Without loss of generality we set ω = 1 and βk = 1, ∀k ≥ 0. Moreover, we

remind the reader of the following relation:

ηG < ν(A, r0).

Indeed, if the iteration index hit ν(A, r0), then Full GMRES would converge to the
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exact solution without stagnating. We start considering the first m Richardson sweeps

and we express the approximations to the solution of (2.1) in terms of powers of A

that multiply the initial residual r0 = b− Ax0. Our initial claim is that

xmAAR = xmG . (3.3)

The proof of this initial claim proceeds in an inductive fashion. The first Richardson

iteration yields

x1
AAR = x0 + r0,

which proves the base case. For the induction step, we assume that

xkAAR = x0 +
k−1∑
i=0

ciA
ir0, k ≤ m− 1.

The successive Richardson step generates a new approximation

xk+1
AAR = xkAAR + rk

= x0 +
k−1∑
i=0

ciA
ir0 + b− A

(
x0 +

k−1∑
i=0

ciA
ir0

)

= x0 + r0 +

( k−1∑
i=0

ciA
ir0

)
− A

( k−1∑
i=0

ciA
ir0

)

= x0 + r0 + (I − A)

( k−1∑
i=0

ciA
ir0

)
.

This leads to

xk+1
AAR = x0 + zk+1, k ≤ m− 1,

where zk+1 ∈ Kk+1(A, r0), with Km(A, r0) being the m-dimensional Krylov subspace

defined on matrix A and vector r0. After the first m Richardson sweeps, the algorithm
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performs an Anderson mixing as defined in Equation (2.41) yielding

xmAAR = x0 −
m∑
i=1

ĝmi (xiAAR − x0),

where

ĝm = (ĝm1 , . . . , ĝ
m
m)T = argmin

g∈Rm

∥∥∥∥b− A[x0 −
m∑
i=1

gi(x
i
AAR − x0)

]∥∥∥∥
2

.

The columns of the matrix X̂k (defined in Equation (2.42)) are expressed in terms of

increasing powers of A. Since we are assuming that `m < ν(A, r0), this guarantees

that matrices X̂k and R̂k (defined in Equation (2.43)) have full column rank and

R(X̂k) = Kk(A, r0), k ≤ m.

Since the least-squares problem minimizes the residual on the mth Krylov subspace

Km(A, r0), we have proved that

xmAAR = xmG .

This completes the induction proof for the first m iterations of AAR. Repeating the

same induction procedure for successive Richardson and Anderson mixing steps, one

can prove the original statement in Formula (3.1). In fact, let us assume that the

Anderson mixing at the (`− 1)mth iteration computes

x
(`−1)m
AAR = x0 + z(`−1)m, z(`−1)m ∈ K(`−1)m(A, r0)

and that X̂(`−1)m and R̂(`−1)m have full column rank. Then

R(X̂(`−1)m) = K(`−1)m(A, r0).
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The approximation x
(`−1)m+1
AAR is computed via a standard Richardson sweep,

x
(`−1)m+1
AAR = x

(`−1)m
AAR + b− Ax

(`−1)m
AAR

= x0 + z(`−1)m + b− A(x0 + z(`−1)m)

= x0 + z(`−1)m + r0 − Az(`−1)m.

Therefore,

x
(`−1)m+1
AAR ∈ K(`−1)m(A, r0) + AK(`−1)m(A, r0) = K(`−1)m+1(A, r0).

In other words, each Richardson sweep expands the Krylov subspace from which the

approximation is computed, leading eventually to

x`mAAR = x0 + z`m, z`m ∈ K`m(A, r0).

The next step requires an Anderson mixing so that

x`mAAR = x0 −
`m∑
i=1

ĝ`mi (xiAAR − x0),

where

ĝ`m = (ĝ`m1 , . . . , ĝ`m`m)T = argmin
g∈R`m

∥∥∥∥b− A[x0 −
`m∑
i=1

gi(x
i
AAR − x0)

]∥∥∥∥
2

.

Since `m ≤ ν(A, r0), this still guarantees that matrices X̂k and R̂k have full column

rank and

R(X̂k) = Kk(A, r0), k ≤ `m.

Since the least-squares problem minimizes the residual on the Krylov subspaceK`m(A, r0),
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we have that

x`mAAR = x`mG .

Now we analyze what would happen if the stagnation did not occur. If this were the

case, then the index ν(A, r0) would be either associated with a simple Richardson’s

step or with an iteration where both a Richardson’s step and an Anderson mixing are

performed. Because of this, any following Richardson’s step would not expand the

dimension of the column space of X̂k anymore, meaning that

R(X̂k) = Kν(A,r0)(A, r
0), k ≥ ν(A, r0). (3.4)

Denoting by tm ≥ ν(A, r0) the first iteration performing an Anderson mixing follow-

ing the iteration with index equal to ν(A, r0), we have

xtmAAR = x0 −
tm∑
i=1

ĝtmi (xiAAR − x0),

where

ĝtm = (ĝtm1 , . . . , ĝtmtm)T = argmin
g∈Rtm

∥∥∥∥b− A[x0 −
tm∑
i=1

gi(x
i
AAR − x0)

]∥∥∥∥
2

.

Because of the relation in (3.4), the least-squares problem minimizes the residual on

the Krylov subspace Kν(A,r0)(A, r
0). Therefore,

xtmAAR = xνG(A, r0) = x,

which means that both Full GMRES and Full AAR converge to the exact solution of

the linear system.

Note that the statement of the theorem and the proof are valid for any non-zero

value of ω and βk’s.
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Remark 2. Theorem 3.2.1 guarantees periodic equivalence (the equivalence occurs

only after every Anderson mixing) between Full AAR and Full GMRES if there is no

stagnation in the history of approximations computed by Full GMRES. This means

that in absence of stagnation, Full AAR is periodically an oblique projection method

(for more details, see pp. 129 in [52]). Therefore, at the iteration k = `m ≤ ηG we

obtain

V`m = K`m(A, r0) = R(X`m) = R(X̂`m), dim(V`m) = p = `m

and

W`m = AK`m(A, r0) = AR(X`m) = AR(X̂`m) = R(R`m) = R(R̂`m),

with dim(W`m) = p = `m.

If Full GMRES stagnates, it is known that this breaks the equivalence between

Full GMRES and Full AR, since the latter would never recover from the stagnation

(see [47] and [61] for more details). As concerns Full AAR, the situation is more

complex. Next, we are going to show that Full AAR is more robust to stagnation

than Full AR, meaning that under certain circumstances the stagnation does not

prevent Full AAR from converging to the solution of (2.1).

Theorem 3.2.2. Consider Alternating Anderson-Richardson with a periodic updating

interval between two consecutive Anderson mixing steps of length m. For an integer

s, denote by xsmAAR the approximate solution to (2.1) obtained by Full AAR after the

Anderson mixing at the (sm)th iteration and denote xsmG the solution computed via

Full GMRES at the (sm)th iteration. One of the following three cases holds:

1. if (`− 1)m = ηG and x
(`−1)m
G 6= x`mG , then

xsmAAR = xsmG , when s ≥ ` and sm < ν(A, r0),
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or

xsmAAR = x
ν(A,r0)
G = x, when s ≥ ` and sm ≥ ν(A, r0);

2. if (`− 1)m < ηG < `m and x`mG 6= x
(`+1)m
G , then

xsmAAR = xsmG , when s ≥ ` and sm < ν(A, r0),

or

xsmAAR = x
ν(A,r0)
G = x, when s ≥ ` and sm ≥ ν(A, r0);

3. if ηG = (`− 1)m and x
(`−1)m
G = x`mG , then

xsmAAR = x
(`−1)m
G , when s ≥ (`− 1) .

Proof. The three items in the statement of the theorem deal with three possible

scenarios of a stagnation in Full GMRES. Theorem 3.2.1 has already shown that in

the absence of stagnation Full AAR and Full GMRES provide the same solution at the

end of each periodic interval. The equivalence between Full GMRES and Full AAR

holds after the stagnation only if the number of consecutive Richardson sweeps in Full

AAR exceeds the extension of stagnation in Full GMRES. If Full GMRES stagnates

for a number of iterations at least equal to the number of consecutive Richardson

sweeps in Full AAR, then the equivalence between the algorithms is lost. The main

three possible scenarios are represented in Figure 3.1 and they coincide with the three

cases listed in the statement of the theorem. We are now going to address each of

these cases separately.

1. Let us assume at first that no stagnation occurs before the iteration with in-

dex k = (` − 1)m. By Theorem 3.2.1 we know that every time an Anderson



64

acceleration is computed by Full AAR the following holds:

xsmAAR = xsmG , sm ≤ ηG.

If Full GMRES stagnates between the iterations with index k = (` − 1)m and

the successive one, then

x
(`−1)m
AAR = x

(`−1)m
G

and

x
(`−1)m
G = x

(`−1)m+1
G .

Let us assume that the stagnation of Full GMRES lasts only for the successive

q iterations where q < m. Therefore

x
(`−1)m
G = x

(`−1)m+1
G = · · · = x

(`−1)m+q
G 6= · · · 6= x`mG .

Full AAR performs standard Richardson sweeps at the iterations indexed by

k = (`− 1)m+ 1, . . . , `m.

In fact, the approximation x
(`−1)m+1
AAR is

x
(`−1)m+1
AAR = x

(`−1)m
AAR + b− Ax

(`−1)m
AAR

= x0 + z(`−1)m + b− A(x0 + z(`−1)m)

= x0 + z(`−1)m + r0 − Az(`−1)m,

implying that

x
(`−1)m+1
AAR ∈ K(`−1)m(A, r0) + AK(`−1)m(A, r0) = K(`−1)m+1(A, r0).
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In other words, each Richardson sweep expands the Krylov subspace from which

the approximation is computed, leading eventually to

x`mAAR = x0 + z`m, z`m ∈ K`m(A, r0).

The next step requires an Anderson mixing so that

x`mAAR = x0 −
`m∑
i=1

ĝ`mi (xiAAR − x0),

where

ĝ`m = (ĝ`m1 , . . . , ĝ`m`m)T = argmin
g∈R`m

∥∥∥∥b− A[x0 −
`m∑
i=1

gi(x
i
AAR − x0)

]∥∥∥∥
2

.

If `m < ν(A, r0), then X̂`m has full columns rank and in particular

R(X̂k) = Kk(A, r0), k ≤ `m.

Since the least-squares problem minimizes the residual on the Krylov subspace

K`m(A, r0), we have that

x`mAAR = x`mG .

If `m ≥ ν(A, r0), then

R(X̂`m) = Kν(A,r0)(A, r
0).

This means that the least-squares problem solved at the iteration `m minimizes

the residual on the Krylov subspace Kν(A,r0)(A, r
0), leading to

x`mAAR = x
ν(A,r0)
G = x.

In the situation where `m < ν(A, r0), the performance of Full AAR after the
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(`m)th iteration is equivalent to the performance of Full AAR using directly

x`mAAR as initial guess. Therefore, from the iteration index k = `m on, Theorem

3.2.1 can be applied again using x`mAAR as initial guess, eventually proving the

conclusion for Case 1. This means that the type of stagnation considered in

Case 1 does not impact the performance of Full AAR.

2. Let us assume now that the stagnation happens in the history of Full GMRES

at an iteration with index k = (`− 1)m + q where q < m. Full AAR performs

Richardson steps from iteration k = (`− 1)m+ q through k = `m, leading thus

to

x`mAAR = x0 + z`m,

where z`m ∈ K`m(A, r0). If `m < ν(A, r0), then X̂`m has full column rank and

in particular

R(X̂k) = Kk(A, r0), k ≤ `m.

Since the least-squares problem at the (`m)th iteration minimizes the residual

on the Krylov subspace K`m(A, r0), we have that

x`mAAR = x`mG .

If `m ≥ ν(A, r0), then

R(X̂`m) = Kν(A,r0)(A, r
0).

This means that the least-squares problem solved at the iteration `m minimizes

the residual on the Krylov subspace Kν(A,r0)(A, r
0), leading to

x`mAAR = x
ν(A,r0)
G = x.

If `m < ν(A, r0), the situation is similar to Case 1 from the iteration `m on.



67

The only difference is that the iteration index is shifted forward by m. In

fact, here we have a stagnation at the iteration `m and we are assuming that

x
(`+1)m
G 6= x`mG , whereas in Case 1 we were assuming that we had a stagnation

at the iteration (` − 1)m and x`mG 6= x
(`−1)m
G . Using the same reasoning as in

Case 1 but with the indices shifted forward by m, we can prove the statement

for Case 2. Therefore, Full AAR converges to the solution of (2.1) even for the

type of stagnation considered in Case 2.

3. We now consider the most challenging case of stagnation for Full AAR. This

occurs when the stagnation in the history of Full GMRES lasts for a number

of iterations equal to q ≥ m. For ease of exposition, we are going to adopt the

definition of Anderson mixing as described in Equation (2.41). Since Full AAR

involves all the previous updates in the Anderson mixing, we know that the

formulations (2.37) and (2.41) are equivalent.

If there is no stagnation up to the iteration k = (`− 1)m, we have that

x
(`−1)m
AAR = x

(`−1)m
G .

Therefore, from the definition of Anderson mixing in Equation (2.41) it follows

that

x
(`−1)m
AAR = x0 −

(`−1)m∑
i=1

ĝ
(`−1)m
i (xiAAR − x0) = x0 + z(`−1)m,

where the vector

z(`−1)m = −
(`−1)m∑
i=1

ĝ
(`−1)m
i (xiAAR − x0) ∈ K(`−1)m(A, r0)

is computed so as to minimize the `2-norm of the residual. After computing

the solution to the least-squares problem, Full AAR performs Richardson steps
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from iteration k = (`− 1)m+ 1 through iteration k = `m. We thus obtain

x`mAAR = x0 + z`m,

where z`m ∈ K`m(A, r0). Under the hypotheses that x
(`−1)m
G = x`mG , it follows

that

`m < ν(A, r0).

Therefore, the matrix X̂`m has full column rank and in particular

R(X̂k) = Kk(A, r0), k ≤ `m.

Therefore, the least-squares problem at the iteration `m computes z`m ∈ K`m(A, r0)

such that

z`m = argmin
z∈K`m(A,r0)

‖b− A(x0 + z)‖2.

However, we are assuming that Full GMRES is still stagnating at the iteration

k = `m. Therefore,

x`mAAR = x0 + z`m = x`mG = x
(`−1)m
G = x

(`−1)m
AAR

and

x`m+1
AAR = x`mAAR + β`m+1(b− Ax`mAAR)

= x
(`−1)m
AAR + β`m+1(b− Ax

(`−1)m
AAR )

= x
(`−1)m
AAR + β`m+1(b− A(x0 + z(`−1)m))

= x
(`−1)m
AAR + β`m+1r

0 − β`m+1Az(`−1)m

= x0 + z(`−1)m + β`m+1r
0 − β`m+1Az(`−1)m

= x0 + β`m+1r
0 + (I − β`m+1A)z(`−1)m.

(3.5)
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This means that

x`m+1
AAR − x0 ∈ K(`−1)m+1(A, r0).

At each iteration with index

k = `m+ j, j = 2, . . . ,m,

a Richardson sweep is computed so that

x`m+j
AAR = x`m+j−1

AAR + ω(b− Ax`m+j−1
AAR ),

which leads to

x`m+j
AAR − x0 ∈ K(`−1)m+j, 1 ≤ j ≤ m.

Given the subspace

Lk = span{(x1
AAR − x0), (x2

AAR − x0), . . . , (xkAAR − x0)}

we have that

L`m+j = K`m(A, r0), 1 ≤ j ≤ m.

Because of this, the Anderson mixing at k = (`+ 1)m computes an approxima-

tion x
(`+1)m
AAR that minimizes the residual onto L(`+1)m = K`m(A, r0). Therefore,

x
(`+1)m
AAR = x`mAAR = x

(`−1)m
AAR .

By repeating the process for a generic periodic interval like the one described

by

k = sm+ 1, . . . , (s+ 1)m,
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we obtain

xsm+j
AAR − x0 ∈ K(`−1)m+j(A, r

0), s ≥ `− 1, 1 ≤ j ≤ m.

Therefore, Full AAR stagnates from the iteration k = `m on, without ever

recovering because

Lk = L`m 6= K`m+1(A, r0), k ≥ `m.

Hence,

xsmAAR = x
(`−1)m
AAR = x

(`−1)m
G , s ≥ `− 1,

whereas Full GMRES keeps on increasing the Krylov subspace Kk(A, r0) used

to compute xkG and it eventually converges to the solution of (2.1).

Remark 3. Theorem 3.2.2 shows that the convergence of Full AAR is not affected

by a stagnation that occurs in the equivalent Full GMRES as long as the stagnation

lasts less than m iterations. In terms of robustness against stagnation, this represents

an improvement over Full AR. In fact, a theoretical discussion in [47] and [61] shows

that Full AR cannot recover from any stagnation. This happens because Full AR

solves a least-squares problem to minimize the residual at each iteration, whereas

Full AAR solves a least-squares problem only at periodic intervals of length m. This

suggests that there are two advantages in solving least-squares problem less frequently

through the insertion of multiple relaxations steps in between. On the one hand, it

alleviates the computational burden because there is no need to solve a least-squares

problem at each iteration but only after a batch of m Richardson sweeps, which

reduces computational complexity and increases locality. On the other hand, it also

enhances the robustness against stagnation by making their occurrence less likely.
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This property of Full AAR is likely to be inherited by truncated or restarted versions

of Alternating Anderson-Richardson as well.

Although Full AAR and Full GMRES are mathematically equivalent at the end

of each periodic interval of length m, the bases constructed by the two algorithms

for the projection steps are not the same. Only the first vector is the same up to a

scaling factor. In fact, the first vector of the basis built by Full GMRES is

v1 =
r0

‖r0‖2

and the first vector of the basis built by Full AAR is

x1
AAR − x0 = ωr0.

We aim now to compare the second vector constructed by each algorithm. We recall

that the non-normalized second vector of the Full GMRES basis is

w1 =

[
I − r0

‖r0‖2

(
r0

‖r0‖2

)T]
Ar0

‖r0‖2

.

As concerns Full AAR, we need to carry out two different computations, depending on

which implementation of Anderson mixing is adopted. The approximation computed

by Full AAR at the second iteration is

x2
AAR = x1

AAR + ω(b− Ax1)

= x0 + ωr0 + ω(b− A(x0 + ωr0))

= x0 + 2ωr0 − ω2Ar0.

If the Anderson mixing were defined as in Equation (2.37), then the second vector of
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Figure 3.1: Representation of the three main cases of stagnation: case (1) at the top,
case (2) at the center and case (3) at the bottom. The x-axis displays the iteration
index k. The use of different thickness and colors for the vertical lines allows us to
differentiate the iteration based on how Full AAR updates the approximation. The
continuous thick vertical blue lines at the extremes of the figure and at the center
indicate the points where three consecutive Anderson mixing steps are performed (at
k = (` − 1)m, k = `m and k = (` + 1)m). The fine vertical black lines represent
iterations where Full AAR performs a standard Richardson sweep. As concerns Full
GMRES, it performs the same algebraic operations across any iterations. The con-
tinuous thick horizontal red segments represent the stagnation of Full GMRES and
their length coincides with the duration of the stagnation. The red lines stop where
Full GMRES recovers from the stagnation. Case (1) deals with the situation where
the stagnation starts at the iteration k = (` − 1)m and stops before the iteration
k = `m. Case (2) deals with the situation where the stagnation starts at an iteration
index between k = (` − 1)m and k = `m, extending up to another iteration index
between k = `m and k = (`+ 1)m. The third case represents the situation where the
stagnation starts at the iteration k = (` − 1)m and it lasts till the iteration k = `m
is reached.
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the basis built by Full AAR would be

x2
AAR − x1

AAR = ω(I − ωA)r0.

If the Anderson mixing were defined as in Equation (2.41) instead, this would lead

to an expansion of the basis through the vector

x2
AAR − x0 = ω(2I − ωA)r0.

It is possible to see that w1, x2
AAR−x1

AAR and x2
AAR−x0 identify different directions.

In general this difference propagates also to the other vectors used to expand the

basis leading to

span{vk} 6= span{xkAAR − xk−1
AAR},

span{vk} 6= span{xkAAR − x0},

span{xkAAR − xk−1
AAR} 6= span{xkAAR − x0}, k ≥ 2.

Therefore, in general the following holds

span{v`, . . . ,vk} 6= span{x`AAR − x`−1
AAR, . . . ,x

k
AAR − xk−1

AAR},

span{v`, . . . ,vk} 6= span{x`AAR − x0, . . . ,xkAAR − x0},

span{x`AAR − x`−1
AAR, . . . ,x

k
AAR − xk−1

AAR} 6= span{x`AAR − x0, . . . ,xkAAR − x0},

(3.6)

with 1 < ` ≤ k.

From a practical viewpoint, a fixed value of p across the iterations is recommended,

in order to alleviate the computational cost of each least-squares problem. In case of

a truncation of the basis, Alternating Anderson-Richardson leads to a variant that

resembles Truncated GMRES. We refer to this variant as Truncated AAR. However,
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the inequalities in (3.6) show that Truncated AAR and Truncated GMRES are not

equivalent in exact arithmetic, since the subspaces adopted for the projection differ.

We restrict now the attention to what happens inside a periodic interval that sep-

arates two consecutive Anderson accelerations. The goal is to explore the geometric

properties of the subspace used by AAR. For the rest of this section we discuss only

the variant of AAR that uses the Anderson mixing as in Equation (2.37). In partic-

ular, we will make considerations about the ranges of matrices Xk and Rk defined in

Formulas (2.38) and (2.39), respectively.

Assuming that k = ` is the index associated with an Anderson mixing, we have

r`+1
AAR = (I − β`A)r`AAR

= (I − β`A)(I − Π`)r
`
AAR

= r`AAR − β`Ar`AAR − Π`r
`
AAR + β`AΠ`r

`
AAR.

The vector r`+1
AAR is the residual associated with the first Richardson sweep that follows

the Anderson mixing. Therefore,

r`+1
AAR − r`AAR = −β`Ar`AAR − Π`r

`
AAR + β`AΠ`r

`
AAR

= −[Π`r
`
AAR + β`Ar`AAR − β`AΠ`r

`
AAR]

= −[Π` + β`A(I − Π`)]r
`
AAR.

We recall the relation that holds for residual vectors of consecutive relaxation sweeps:

r`AAR = (I − ωA)r`−1
AAR = · · · = (I − ωA)mr`−mAAR, (3.7)



75

and

r`AAR − r`−1
AAR = −ωAr`−1

AAR

= −ωA(I − ωA)r`−2
AAR

= · · ·

= −ωA(I − ωA)m−1r`−mAAR.

This implies that the matrix R`+1 becomes

R`+1 =
[
− ωA(I − ωA)m−p+1r`−mAAR, . . . ,−ωA(I − ωA)m−1r`−mAAR, r

`+1
AAR − r`AAR

]
,

with

r`+1
AAR − r`AAR = −[Π` − β`A(I − Π`)](In − ωA)mr`−mAAR.

Note that we use Matlab notation for columns. In particular, the explicit represen-

tation of r`+1
AAR − r`AAR in terms of r`−mAAR highlights two distinct components:

Π`(I − ωA)mr`−mAAR ∈ R(Π`),

and

β`A(I − Π`)(I − ωA)mr`−mAAR.

The second component consists of a vector lying in [R(Π`)]
⊥, which is then multiplied

by A. If the dominant eigenvalue (eigenvalue with maximum modulus) of A is semi-

simple and m sufficiently large, then the subspace [R(Πk)]
⊥ tends to be orthogonal to

the dominant eigenvector. This highlights a resemblance between AAR and Deflated

GMRES with restart (GMRES-DR for short) [14,44]. GMRES-DR aims to enrich the

standard Krylov subspace with approximations of the eigenvectors related to small

eigenvalues of A. In fact, the performance of GMRES is well known to be adversely

affected by possible eigenvalues of A close to zero and an augmentation of the Krylov

basis via eigenvectors (or their approximations) associated with small eigenvalues has
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shown significant improvements [44]. In the case of AAR, it seems this phenomenon

is already automatically occurring in an approximate form, by projecting the residual

onto the subspace [R(Π`)]
⊥ and using it to update the matrix R`+1. Therefore, it

is strongly recommended that p be taken greater than m, so that the window of

previous approximations used by the Anderson mixing is wide enough to retain some

information about [R(Π`)]
⊥.

Algorithm 7: GMRES-DR

Data: x0, p, m, tol
Result: x(`−1)m

1 ` = 1;

2 Compute r0 = b−Ax0;

3 Compute β = ‖r0‖2;

4 Compute v1 =
r0

β
;

5 while
‖r(`−1)m‖2
‖b‖2

> tol do

6 for k = 1, . . . ,m do

7 Set wk =

{
vk if k ≤ m− p
uk−m+p (eigenvector) otherwise

;

8 Compute wk = Avk;
9 for i = 1, . . . , k do

10 hik = 〈wk,vi〉;
11 wk = wk − hikvi;

12 end
13 hk+1,k = ‖wk‖2. If hk+1,k = 0 set m = k and go to 17;

14 vk+1 =
wk

hk+1,k
;

15 end

16 Define the (m+ 1)×m Hessenberg matrix H`m = {hij}1≤i≤m,1≤j≤m;

17 Compute y`m, the minimizer of ‖βe1 −H`my‖2, and x`m = x0 + V`my`m ;

18 Set x0 = x`m;

19 Compute r`m = b−Ax`m;

20 β = ‖r`m‖2;

21 Set v1 =
r`m

β
;

22 ` = `+ 1;

23 end

Besides deflation, several other approaches have been proposed in the literature

to improve the performance of Restarted GMRES. In [6] the authors attempt to

accelerate Restarted GMRES by enriching the Krylov subspace through an ad-hoc set

of linearly independent vectors, given by the difference of solution vectors computed

at the end of two consecutive restarting cycles. This strategy aims at accelerating

the convergence by increasing the angle among residual vectors at the end of every
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other cycle. The performance of these variants of GMRES is monitored in [6] through

the angles ∠(rk+m, rk) and ∠(rk+2m, rk), where m denotes the number of iterations

inside a cycle of Restarted GMRES. In fact, the angle ∠(rk+2m, rk) may be close

to zero regardless of the value attained by ∠(rk+m, rk). In particular, situations

where ∠(rk+2m, rk) is small typically exhibit a slow convergence of Restarted GMRES.

Therefore, the authors in [6] suggest that ∠(rk+m, rk) combined with ∠(rk+2m, rk) is a

better measure to monitor the performance. We are going to follow the same principle

to study the performance of Truncated AAR, stressing one more reason why p > m

is important to facilitate the convergence. We use again the index k = ` to refer to

an iteration where the Anderson mixing is performed. For the sake of simplicity, let

us temporarily assume that

m ≤ p ≤ 2m− 1.

The construction of the matrix R`+m thus leads to

R`+m(:, 1 : p−m) = [r
`−(p−m)+1
AAR − r

`−(p−m)
AAR , . . . , r`AAR − r`−1

AAR],

R`+m(:, p−m+ 1) = r`+1
AAR − r`AAR,

R`+m(:, p−m+ 2 : p) = [r`+2
AAR − r`+1

AAR, . . . , r
`+m
AAR − r`+m−1

AAR ],

where we use Matlab notation for blocks of columns. We studyR(R`+m(:, 1 : p−m))

at first. By exploiting the same chain of equalities for residual vectors of successive

Richardson steps as in (3.7) we obtain

r
`−(p−m)+1
AAR − r

`−(p−m)
AAR = −ωA(I − ωA)2m−p−1r`−m+1

AAR ,

r
`−(p−m)+2
AAR − r

`−(p−m)+1
AAR = −ωA(I − ωA)2m−pr`−m+1

AAR ,

. . .
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r`AAR − r`−1
AAR = −ωA(I − ωA)m−2r`−m+1

AAR .

Therefore,

R(R`+m(:, 1 : p−m)) = span{A(I − ωA)2m−p−1r`−m+1
AAR , . . . , A(I − ωA)m−2r`−m+1

AAR }.

The chain of equalities in (3.7) can also be used to study R(R`+m(:, p−m + 2 : p)).

In fact, the following set of equalities:

r`+2
AAR − r`+1

AAR = −ωAr`+1
AAR,

r`+3
AAR − r`+2

AAR = −ωA(I − ωA)r`+1
AAR,

. . .

r`+mAAR − r`+m−1
AAR = −ωA(I − ωA)m−2r`+1

AAR

leads to

R(R`+m(:, p−m+ 2 : p)) = AKm−1(A, r`+1).

In conclusion, we can say that

R(R`+m) ⊇ R(R`+m(:, 1 : p−m)) +R(R`+m(:, p−m+ 2 : p))

= R(R`+m(:, 1 : p−m)) + AKm−1(A, r`+1).

(3.8)

The relation (3.8) shows that R(R`+m) retains some information about r`−m+1
AAR via

R(R`+m(:, 1 : p−m)).

This facilitates the linear independence between r`−m+1
AAR and r`+m+1

AAR . Therefore, con-

vergence is favored by preventing collinearity between residuals that are separated by
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two cycles, which explains the importance of having p > m.

In a similar way to what we already did for AR, it is possible to stress an analogy

between aggregation/disaggregation methods and Alternating Anderson-Richardson.

In fact, the authors in [15] mentioned the possibility for the projection step to turn a

non-convergent Richardson sweep into a convergent one. Furthermore, if the subspace

adopted for the projection is effective, the acceleration may even benefit multiple

successive Richardson steps. Therefore, simple relaxation steps that do not define a

convergent splitting may be transformed into contractions on the current residual.

Let us denote with k = ` the iteration index associated with an Anderson mixing.

We obtain

r`+1+j =

[
(I − ωA)j(I − β`A)︸ ︷︷ ︸

Richardson sweeps

· (I − Π`)︸ ︷︷ ︸
Anderson acceleration

]
r`, j ≤ m− 1.

Then the possibility mentioned by the authors in [15] for aggregation/disaggregation

accelerations can also be stated with respect to AAR. In fact, it is possible that

(I − ωA)j(I − β`A)(I − Π`) may operate on the residual r` in a contractive way,

although the matrix (I − ωA)j(I − β`A) itself may not even generate a convergent

splitting.

Remark 4. If R` is not a full-rank matrix, thenR(R`) is A-invariant. However, using

R` to compute an Anderson mixing as in Equation (2.37) is still legitimate by solving

least-squares problems. Indeed, albeit some numerical examples presented in Section

3.3 generated a matrix R` with linearly dependent columns at some iterations, this

did not hinder convergence.

3.2.2 Convergence analysis for Alternating Anderson-Richardson

Next, we prove a convergence result for AAR analogous to the one found in [60,

Thm.2.1] for AR.
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Theorem 3.2.3. Consider a nonsingular linear system as in Equation (2.1). If the

iteration matrix H = I − A is such that ‖H‖2 = c < 1, then Alternating Anderson-

Richardson converges to the solution of (2.1) in exact arithmetic for any choice of p

and m, regardless of the initial guess. The residual norm converges to zero q-linearly

and the q-factor is c.

Proof. Denoting by xkAAR the Richardson approximation before the Anderson accel-

eration, the associated residual is

rkAAR = Hrk−1
AAR,

hence

‖rkAAR‖2 ≤ ‖H‖2‖rk−1
AAR‖2 < c‖rk−1

AAR‖2.

The Anderson mixing is computed to minimize the residual. By recalling the defini-

tion of Anderson mixing as in Equation (2.37) or (2.41) to compute xkAAR we have

rkAAR = b− AxkAAR and it holds that

‖rkAAR‖2 ≤ ‖rkAAR‖2 < c‖rk−1
AAR‖2,

regardless of the choice of p. This proves that the residual `2-norm converges to zero

q-linearly and the q-factor is c.

Similarly to what already discussed in [60] for AR, requiring ‖H‖2 < 1 for AAR to

converge is too restrictive and impractical in many cases. If the condition ‖H‖2 < 1

does not hold, Truncated AAR cannot be guaranteed to converge in general. This

motivates the possible employment of a variant of the algorithm which we call Aug-

mented Alternating Anderson-Richardson.
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3.2.3 Augmented Alternating Anderson-Richardson

In this section we discuss a way to expand the subspace of projection used by AAR

so that convergence results can be obtained for specific classes of matrices. The basic

idea behind the augmentation of the subspace that we are going to present is to split

a vector z ∈ Rn into two components

z = z1 + z2, z1, z2 ∈ Rn

so that

span{z1, z2} ⊇ span{z}.

The criterion adopted to decompose the vector of interest is guided by the search of

an expanded subspace where convergence of Truncated AAR can be guaranteed under

certain hypotheses. In this section we consider the algorithm of Truncated AAR with

p > m and we focus on the implementation of Anderson mixing as in Equation (2.37).

We denote with k = ` the iteration index where a Richardson sweep is performed to

compute x`AAR followed by an Anderson mixing to compute x`AAR. From Equation

(2.37) we obtain

x`AAR = x`AAR −X`g
`.

Then a successive Richardson step computes

x`+1
AAR = x`AAR + β`(b− Ax`AAR)

= x`AAR −X`g
` + β`(b− Ax`AAR)

= x`AAR −X`g
` + β`r

`
AAR,
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where r`AAR = b − Ax`AAR. Recalling the definition of X`+1 ∈ Rn×p in (2.38), the

vector used in Truncated AAR to update X`+1 is x`+1
AAR − x`AAR so that

X`+1 = [X`(:, 2 : p),x`+1
AAR − x`AAR] = [X`(:, 2 : p),−X`g

` + β`r
`
AAR].

A desirable property to produce convergence results would be that the direction

identified by the minimal residual r`AAR be included in the subspace of projection.

One way to obtain this is to replace the vector

−X`g
` + β`r

`
AAR

in the last column of X`+1 with the separate vectors X`g
` and r`AAR. Obviously

span{X`g
`, r`AAR} ⊇ span{−X`g

` + β`r
`
AAR},

which guarantees that no information is lost due to the separation of the original

vector in two components. This allows us to replace X`+1 with a new matrix X̃`+1

defined as follows:

X̃`+1 =


[X`(:, 2 : p), X`g

`, β`r
`
AAR] ∈ Rn×(p+1), if g`1 6= 0

[X`(:, 2 : p), β`r
`
AAR] ∈ Rn×p, if g`1 = 0

. (3.9)

The distinction of the two cases in (3.9) is driven by numerical considerations. In

fact, it is important to guarantee that X̃`+1 have full column rank. Because of the

way Anderson mixing is defined in Equation (2.37), we know that

X`g
` ∈ R(X`).
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However,

X`g
` /∈ R(X`(:, 2 : p)), if g`1 6= 0.

Therefore, the inclusion of the vector X`g
` as a column of X̃`+1 does not preclude the

full column rank property if g`1 6= 0. Moreover,

r`AAR /∈ R(X`(:, 2 : p)) + span{X`g
`},

which always legitimates the inclusion of the vector r`AAR as a column of X̃`+1. Notice

also that from (3.9) we have

R(X̃`+1) ⊇ R(X`+1).

If X̃`+1 has p + 1 columns, one may shrink it to restore the initial dimension of the

projected problem. In our numerical examples, we keep X̃`+1 with p + 1 columns if

g`1 6= 0. This choice of expanding the number of columns from p to p + 1 introduces

an additional computational cost, due to the increase of the size of the least-squares

problem to solve. Regardless of the arbitrary way to reduce from p+ 1 to p columns,

the only thing that matters is that

r`AAR ∈ R(X̃`+1).

In fact, the direction identified by r`AAR is going to play a central role in the following

convergence result of Augmented AAR for positive definite matrices.

Theorem 3.2.4. Consider a linear system as in Equation (2.1). If A is positive

definite and the parameters of Augmented AAR satisfy p ≥ m, then Augmented AAR

converges to the solution of (2.1) in exact arithmetic, regardless of the initial guess.

Proof. We denote by k = ` the iteration index where a Richardson sweep is performed
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to compute x`AAR followed by an Anderson mixing that produces x`AAR. We thus

obtain

x`AAR = x`AAR −X`g
`

and

r`AAR = b− Ax`AAR.

The proof mimics the reasoning presented in [52] (see p. 205) to prove the convergence

of Restarted GMRES(m) on positive definite matrices. In particular, if p ≥ m, then

r`AAR ∈ R(X̃`+m).

Therefore, R(X̃`+m) includes the direction of the initial residual vector at each cycle.

This means that R(X̃`+m) identifies an hyperplane which contains the direction used

by the Minimal Residual method (MR) (see p. 140 in [52]) to update the solution.

Let

µ =
λmin(A+ AT )

2
, σ = ‖A‖2.

Note that µ ≤ σ. Since Augmented AAR minimizes the residual `2-norm on the

subspace R(X̃`+m) at each Anderson mixing, the residual norm at the end of a cycle

is reduced at least as much as the result of one step of MR. Therefore, in the worst

case we obtain

r`+mAAR = r`AAR − α`Ar`AAR,

where

α` =
〈Ar`AAR, r

`
AAR〉

〈Ar`AAR, Ar`AAR〉
.
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Exploiting the definition of `2-norm of a vector, it follows that

‖r`+mAAR‖
2
2 = 〈r`AAR − α`Ar`AAR, r

`
AAR − α`Ar`AAR〉

= 〈r`AAR − α`Ar`AAR, r
`
AAR〉 − α`〈r`AAR − α`Ar`AAR, Ar`AAR〉.

By construction, it is known that

r`+mAAR ∈ [R(R̃`+m)]⊥,

where R̃`+m = −AX̃`+m. Therefore,

〈r`+mAAR, Ar`AAR〉 = 〈r`AAR − α`Ar`AAR, Ar`AAR〉 = 0,

which leads to

‖r`+mAAR‖
2
2 = 〈r`AAR − α`Ar`AAR, r

`
AAR〉

= 〈r`AAR, r`AAR〉 − α`〈Ar`AAR, r
`
AAR〉

= ‖r`AAR‖2
2

(
1− 〈Ar`AAR, r

`
AAR〉

〈r`AAR, r`AAR〉
〈Ar`AAR, r

`
AAR〉

〈Ar`AAR, Ar`AAR〉

)
= ‖r`AAR‖2

2

(
1− 〈Ar`AAR, r

`
AAR〉2

〈r`AAR, r`AAR〉2
‖r`AAR‖2

2

‖Ar`AAR‖2
2

)
.

Note that

〈Ax,x〉
〈x,x〉

≥ µ > 0, ∀x ∈ Rn

and

‖Ar`AAR‖2 ≤ ‖A‖2‖r`AAR‖2.

This guarantees a monotonic decrease of the residual norms:

‖r`+mAAR‖2 ≤
(

1− µ2

σ2

) 1
2

‖r`AAR‖2,
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and Augmented AAR converges regardless of the initial guess.

3.3 Numerical experiments

In this section we present some experiments to illustrate some of the asserts of the

previous sections or to assess the performance of the schemes described. We employ

a set of matrices selected from the SuiteSparse Matrix Collection (formerly known as

the University of Florida Sparse Matrix Collection) [18], the Matrix Market Collec-

tion [65] and a few others given by collaborators at Oak Ridge National Laboratory

(matrices sp1, sp3, sp5 which arise from the numerical solution of radiation transport

problems). In Table 3.1, we report the matrices and their most significant properties.

The performance of the linear solvers is also evaluated through performance pro-

files [19]. These graphic tools provide an immediate visual approach to compare the

performance of multiple algorithms tested on a set of benchmark problems. In order

to explain how this performance profiles are generated, let us refer to S as the set of

solvers and P as the test set. We assume that we have ns solvers and np problems.

In this paper, performance profiles are used to compare the computational times. To

this end we introduce

tp,s = computing time to solve problem p with solver s.

The comparison between the times taken by each solver is based on the performance

ratio defined as

rp,s =
tp,s

min{tp,s : s ∈ S}
.

The performance ratio allows one to compare the performance of solver s on problem

p with the best performance by any solver to address the same problem p. In case a

specific solver s does not succeed in solving problem p, then a convention is adopted
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to set rp,s = rM where rM is a maximal value. In our case we set rM = 10, 000. The

performance of one solver compared to the others’ on the whole benchmark set is

displayed by the cumulative distribution function ρs(τ) which is defined as follows:

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}.

The value ρs(τ) represents the probability that solvers s ∈ S has a performance

ratio rp,s less than or equal to the best possible ratio up to a scaling factor τ . The

cumulative distribution function is nondecreasing, piecewise constant and continuous

from the right at each discontinuity. A particular interpretation is associated with

the value ρs(1). In fact this value represents the probability that solver s outperforms

every other solver from set S in solving a generic problem from set P . The convention

adopted that prescribes rp,s = rM if solver s does not solve problem p leads to the

reasonable assumption that

rp,s ∈ [1, rM ].

Therefore, ρs(rM) = 1 and

ρ∗s = lim
τ→r−M

ρs(τ)

represents the probability that solver s succeed in solving a generic problem from set

P . In general, solvers with larger values of ρs(τ) are to be preferred. It may happen

that some solvers from set S take a considerable amount of time in solving specific

problems from set P . This consequently requires to pick a sufficiently high value for

rM and to extend the range of values of τ displayed in the performance profiles. This

may lead to graphs that are difficult to interpret, since most of the main features of

the curves may be shrunk on the far left of the graph window. Moreover, most of

the window may be occupied to describe the trend of the curves for high values of τ
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where nothing relevant happens. This motivates the replacement of ρs(τ) with

τ 7→ 1

np
size{p ∈ P : log2(rp,s) ≤ τ}.

Although using the log scale complicates the interpretation of the graph, it dedicates

most of the space to values of τ where significant trends are captured and worth being

discussed. From now on we use this quantity for each performance profile displayed.

3.3.1 Software and hardware configuration

The numerical results have been produced using the mathematical software Mat-

labR2016b with serial execution and without multithreading. The computer used

is an Intel Xeon E5-4627.

3.3.2 Stagnation of AAR

A linear system on which both Full AR and Full AAR with m < n stagnate without

ever converging is given by the cyclic permutation matrix A and the right hand side

b in Rn described as follows

A =



0 0 0 · · · · · · 1

1 0 0 0 · · · 0

0
. . .

...
. . . . . .

...

...
. . . . . . . . . . . .

...

0 · · · 0 1 0 0

0 · · · 0 · · · 1 0


, b = en =



0

...

0

1


.

In fact Full GMRES stagnates for n− 1 iterations and it eventually converges at the

nth iteration. As concerns Full AR instead, the occurrence of a stagnation causes
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Matrix Type Size Structure Positive definite Field of application

1138 bus real 1,138 symmetric yes power network

bcsstk08 real 1,074 symmetric yes structural engineering

bcsstk09 real 1,083 symmetric yes structural engineering

bcsstk10 real 1,086 symmetric yes structural engineering

crystm01 real 4,875 symmetric yes materials science

crystm02 real 13,965 symmetric yes materials science

nasa2910 real 2,910 symmetric yes structural engineering

raefsky4 real 19,779 symmetric yes structural engineering

msc01050 real 1,050 symmetric yes structural engineering

msc01440 real 1,440 symmetric yes structural engineering

msc23052 real 23,052 symmetric yes structural engineering

pwtk real 217,918 symmetric yes structural engineering

ex10 real 2,410 symmetric yes computational fluid dynamics

ex10hs real 2,548 symmetric yes computational fluid dynamics

ex15 real 6,867 symmetric yes computational fluid dynamics

cfd1 real 70,656 symmetric yes computational fluid dynamics

cfd2 real 123,440 symmetric yes computational fluid dynamics

qa8fm real 66,127 symmetric yes acoustics

nos3 real 960 symmetric yes structural engineering

fidap029 real 2,870 nonsymmetric yes computational fluid dynamics

fidapm37 real 9,152 nonsymmetric yes computational fluid dynamics

raefsky5 real 6,316 nonsymmetric yes structural engineering

sp1 real 18,207 nonsymmetric yes nuclear engineering

sp3 real 36,414 nonsymmetric yes nuclear engineering

sp5 real 54,621 nonsymmetric yes nuclear engineering

bcsstk29 real 13,992 symmetric no structural engineering

sherman3 real 5,005 nonsymmetric no computational fluid dynamics

sherman5 real 3,312 nonsymmetric no computational fluid dynamics

fidap008 real 3,096 nonsymmetric no computational fluid dynamics

chipcool0 real 20,082 nonsymmetric no model reduction problem

e20r0000 real 4,241 nonsymmetric no computational fluid dynamics

spmsrtls real 29,995 nonsymmetric no statistics/mathematics

III Stokes real 20,896 nonsymmetric no computational fluid dynamics

garon1 real 3,175 nonsymmetric no computational fluid dynamics

garon2 real 13,535 nonsymmetric no computational fluid dynamics

memplus real 17,758 nonsymmetric no electronic circuit design

saylr4 real 3,564 nonsymmetric no oil reservoir modeling

xenon1 real 48,600 nonsymmetric no materials science

xenon2 real 157,464 nonsymmetric no materials science

venkat01 real 62,424 nonsymmetric no computational fluid dynamics

QC2534 complex 2,534 non-Hermitian no electromagnetics

mplate complex 5,962 non-Hermitian no acoustic science

waveguide3 complex 21,306 non-Hermitian no electromagnetics

ABACUS shell hd complex 23,412 non-Hermitian no model reduction

light in tissue complex 29,282 non-Hermitian no electromagnetrics

kim1 complex 38,415 non-Hermitian no 2D/3D problem

chevron2 complex 90,249 non-Hermitian no 2D/3D problem

Table 3.1: AAR: list of matrices used for numerical experiments in Matlab.
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the algorithm to stagnate without ever recovering. The same pathological behavior is

detected also for Full AAR if m is smaller than n. The only way to prevent stagnation

in Full AAR on this problem requires setting m equal to n. However, this implies

solving a least-squares problem where the matrix is full and of size n× n. Therefore,

the computational cost of the whole procedure for Full AAR would be higher than to

solve the original linear system with Full GMRES.

3.3.3 Experiments to support Theorem 3.2.2

In this section we consider a linear system built on purpose to create a situation

where Full GMRES periodically stagnates. The goal is to show that Full AAR is

robust against the stagnation in this condition if a proper value of m is chosen,

differently from Full AR that does not converge.

For a specified value b, we build a block-diagonal system with b diagonal blocks,

the kth of which is a 2k × 2k circulant matrix. The right hand side is constructed

so that , with zero initial guess, Full GMRES makes progress on even-numbered

iterations and stagnates on odd-numbered ones. The interval of stagnation in this

case has length equal to one. Full AR never converges in this situation, whereas Full

AAR with m > 1 attains the prescribed accuracy in a finite number of iterations.

Changing the length of the stagnation, say `, requires building diagonal blocks of

size `k × `k. For different choices of the value ` to tune the length of the stagnation,

we verified that Full AR never converges whereas Full AAR with m > ` always attains

the prescribed accuracy in a finite number of iterations.

3.3.4 Error mode analysis for AAR

Most of this work has been focused on studying analogies between Anderson-accelerated

Richardson schemes and GMRES. However, because of the multilevel nature of both

AR and AAR, it is possible to find analogies with multigrid methods [13]. Indeed, the
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alternation of Richardson sweeps and Anderson mixing appears to efficiently damp

high frequency error components with the former and low frequency error compo-

nents with the latter. In order to investigate this property, we consider a 1D Laplace

problem on the interval (0, 1) with homogeneous Dirichlet boundary conditions. The

operator is discretized using second order centered finite differences with 100 internal

nodes. We solve the 100 × 100 linear system with AAR, setting the Richardson re-

laxation parameter ω = 0.5, the Anderson mixing weights βk = 1, the history length

p = 10, the length of the periodic interval for relaxation sweeps m = 6 and no precon-

ditioning. The behavior of the error is monitored across several iterations. The first

six steps of the Jacobi relaxation damp efficiently the components of the error associ-

ated with high frequencies, leaving the low frequency components mostly unchanged.

In Figure 3.2 we show the error behavior from iteration 7 through iteration 13. It

is noticed that the Richardson relaxation cannot operate efficiently on the remaining

frequencies of the error which are very smooth. In fact, smooth components of the

error are associated with low frequencies. However, the Anderson mixing significantly

contributes in modifying the error profile when the Anderson acceleration is applied at

iteration 13. This confirms that the Anderson acceleration effectively damps also low

frequencies of the error. Therefore, the least-squares problem operates similarly to a

coarse grid correction in the multigrid framework, lowering components of the error

that a simple one level fixed point scheme cannot efficiently treat. However, saying

that the Jacobi preconditioner and the Anderson mixing address separate components

of the error is not accurate. In Figure 3.3 we show the error plot across the discretized

domain at the sixth and seventh iteration. The error curve at the seventh iteration

suggests that the Anderson mixing has also regularizing (or smoothing) properties on

high frequency error components. In fact, high frequencies of the error are efficiently

smoothed from iteration 6 to iteration 7. Therefore, Anderson acceleration can damp

error components associated with the whole spectrum.
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3.3.5 Comparison between Truncated AR and Truncated AAR

In order to illustrate the advantages of periodic alternation between standard Richard-

son sweeps and least-squares problem, we provide here results comparing the per-

formance of Truncated AR versus Truncated AAR. The check has been conducted

without preconditioner, with the diagonal preconditioner, ILU(0) and ILUT(10−4) or

IC(0) and ICT(10−4) for symmetric positive definite matrices.

Results without preconditioner are reported in Table 3.2. For most of the test

cases Truncated AAR(6,10) outperforms Truncated AR(10) in terms of computa-

tional time to reach a prescribed accuracy. The only exceptions are the matrices

e20r0000, garon1 and garon2. A possible explanation to this exceptions may be

the inefficacy of Richardson sweeps in Truncated AAR(6,10) to generate a proper

projection subspace, whereas solving a least-square problem at each iteration may

facilitate Truncated AR(10) to construct a more efficient subspace. Moreover, Trun-

cated AAR(6,10) succeeds in converging for some numerical tests where Truncated

AR(10) never converges, such as for the matrices pwtk, sherman5, ABACUS shell hd

and chevron2. The conclusion about Truncated AAR(6,10) converging faster than

Truncated AR(10) can also be drawn via the performance profile in Figure 3.4. In

fact, the continuous line associated with Trunctaed AAR(6,10) is always higher than

the dashed line for Truncated AR(10).

Results for the use of a diagonal preconditioner are reported in Table 3.3. The

diagonal preconditioner is very simple to apply but does not always decrease the

computational time with respect to no use of preconditioners. However, Truncated

AAR(6,10) still performs better Truncated AR(10), as it is also confirmed by the

performance profile in Figure 3.5.

Numerical results when ILU(0) or IC(0) is used as a preconditioner are displayed

in Table 3.4. Results are shown only for those cases that allow a stable construc-

tion of the preconditioner. We highlight the fact that Truncated AR(10) succeeds in
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converging on linear systems with the matrix mplate, whereas Truncated AAR(6,10)

does not. The difference between the timings spent by Truncated AR(10) and Trun-

cated AAR(6,10) is less pronounced in this case because the quality of P−1 facilitates

the convergence of the linear solver, albeit Truncated AAR(6,10) generally converges

in less time than Truncated AR(10) in this case too. The fact that the performances

between the two linear solvers are not neatly separated as before is also visible in the

performance profile in Figure 3.6. Indeed, the two curves eventually overlap on the

right side of the graph.

The results for the the use of ILUT(10−4) or ICT(10−4) are shown in Table 3.5. In

this case as well, Truncated AAR(6,10) outperforms Truncated AR(10), as confirmed

by the performance profile in Figure 3.7.

Summarizing the results for different problems and different preconditioners, we

can conclude that inserting multiple relaxation steps between consecutive least-squares

problems significantly decreases the time to compute a solution to given accuracy.

3.3.6 Comparison between Preconditioned Conjugate Gra-

dient and Truncated AAR

In this section we compare the performance of Truncated AAR on symmetric positive

definite matrices with the (preconditioned) conjugate gradient (PCG) method [36].

Tests have been run without preconditioner, with a diagonal preconditioner, with

IC(0) and with ICT(10−4). As concerns the use of IC(0) or ICT(10−4), simulations

have been run only on cases that allow a numerically stable construction of the precon-

ditioner. Results in Table 3.6 correspond to no use of the preconditioner. Although

there is no clear evidence of a method prevailing over the other for all the problems

considered, the performance profile in Figure 3.8 shows that CG performs better than

Truncated AAR(6,10) overall. This can be explained in part with the different prin-

ciples adopted by the two algorithms to update the approximate solution. In fact,
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Truncated AR(p = 10) Truncated AAR(m = 6, p = 10)

Matrix Time (s) rel. error # Itr. Time (s) rel. error # Itr.

1138 bus 1.63 2.72 · 10−3 3,565 0.96 2.25 · 10−3 2,992

bcsstk08 3.73 4.11 · 10−3 11,008 0.19 6.51 · 10−5 395

bcsstk09 0.92 2.17 · 10−5 2,579 0.20 9.25 · 10−6 352

bcsstk10 7.18 3.26 · 10−4 2,154 0.94 2.95 · 10−4 3,008

crystm01 0.29 1.10 · 10−6 191 0.12 4.36 · 10−7 103

crystm02 54.09 0.01 10,348 11.5 0.01 2,699

nasa2910 63.35 1.05 · 10−3 6,995 3.89 7.94 · 10−4 6,072

raefsky4 978.60 0.20 124,940 217.69 0.19 40,829

msc01050 33.07 0.03 1,009 3.17 0.04 16,736

msc01440 41.08 2.06 · 10−3 88,922 1.84 1.83 · 10−3 5,458

msc23052 265.16 0.12 30,748 110.47 0.12 20,245

pwtk - - - 1,415.02 0.02 22,813

ex10 15.97 0.37 23,635 13.13 0.42 6,042

ex10hs 12.18 0.40 17,019 1.91 0.45 4,144

ex15 22.70 0.57 13,121 2.33 0.57 2,000

cfd1 981.88 3.01 · 10−4 31,731 18.30 1.79 · 10−4 1,222

cfd2 465.68 1.70 · 10−4 9,246 61.66 7.13 · 10−4 2,377

qa8fm 2.13 4.16 · 10−7 78 1.14 1.58 · 10−7 67

fidap029 0.22 1.45 · 10−6 146 0.12 7.89 · 10−7 124

fidapm37 559.72 0.04 151,540 176.01 0.04 16,464

raefsky5 1.66 0.68 1,142 0.21 0.64 205

sp1 1.86 3.05 · 10−7 291 0.52 2.05 · 10−7 157

sp3 4.08 2.61 · 10−7 305 1.06 2.08 · 10−7 179

sp5 5.84 2.37 · 10−7 295 1.67 1.90 · 10−7 173

bcsstk29 - - - - - -

sherman3 21.01 0.46 15,865 5.33 0.46 7,202

sherman5 - - - 4.37 1.58 · 10−5 8,057

fidap008 401.87 0.12 387,130 3.65 0.09 6,487

chipcool0 170.50 3.32 · 10−3 28,168 15.40 3.03 · 10−3 4,774

e20r0000 8.42 7.45 · 10−3 6,579 199.13 1.25 · 10−3 195,460

spmsrtls - - - - - -

III Stokes 91.26 0.09 13,636 20.59 0.09 6,570

garon1 19.23 5.46 · 10−3 21,501 59.13 2.71 · 10−3 106,900

garon2 169.54 8.30 · 10−3 38,114 747.91 7.44 · 10−3 222,743

memplus 8.12 1.88 · 10−5 1,464 3.53 9.84 · 10−6 1,366

saylr4 42.34 8.89 · 10−3 40,596 1.25 9.16 · 10−3 2,025

xenon1 52.09 4.64 · 10−5 2,998 6.06 4.66 · 10−5 700

xenon2 140.28 4.95 · 10−5 2,405 23.55 6.97 · 10−5 734

venkat01 - - - - - -

QC2534 - - - - - -

mplate - - - - - -

waveguide3 903.28 1.60 · 10−5 51,060 93.10 1.18 · 10−5 10,587

ABACUS shell hd - - - 844.82 0.68 91,130

light in tissue 50.75 1.63 · 10−5 2,348 4.22 1.10 · 10−5 379

kim1 3,258.94 1.38 · 10−4 87,439 92.74 1.24 · 10−5 5,476

chevron2 - - - 3,135.26 1.57 · 10−5 46,917

Table 3.2: Truncated AR(10) vs. Truncated AAR(6,10). Experiments without pre-
conditioner.
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Truncated AR(p = 10) Truncated AAR(m = 6, p = 10)

Matrix Time (s) rel. error # Itr. Time (s) rel. error # Itr.

1138 bus 33.65 4.01 · 10−5 76,618 3.66 9.80 · 10−4 20,802

bcsstk08 0.69 6.82 · 10−5 1,810 0.19 6.51 · 10−5 395

bcsstk09 0.47 3.76 · 10−5 1,089 0.19 4.14 · 10−5 352

bcsstk10 0.36 2.68 · 10−5 762 0.27 2.46 · 10−5 665

crystm01 0.16 1.58 · 10−7 51 0.06 5.17 · 10−8 49

crystm02 34.84 0.02 5,624 7.02 0.01 2,240

nasa2910 2.13 4.66 · 10−4 2,123 1.11 5.62 · 10−4 1,798

raefsky4 - - - 8.33 0.11 169

msc01050 10.41 0.21 30,815 5.64 0.20 22,695

msc01440 6.34 5.08 · 10−5 13,931 0.39 4.92 · 10−5 753

msc23052 - - - 104.07 0.16 13,372

pwtk - - - 114.27 0.04 1,847

ex10 - - - 92.75 0.35 202,890

ex10hs - - - 77.55 0.34 161,780

ex15 - - - 243.36 0.91 185,360

cfd1 - - - 17.41 2.32 · 10−4 1,309

cfd2 - - - 61.44 8.51 · 10−4 2,265

qa8fm 1.89 1.42 · 10−7 49 0.82 3.67 · 10−8 49

fidap029 0.07 5 · 10−9 26 0.05 8.07 · 10−7 26

fidapm37 106.69 0.01 31,432 11.93 0.01 7,075

raefsky5 0.14 9.98 · 10−9 24 0.08 7.19 · 10−9 25

sp1 1.05 1.60 · 10−7 143 0.46 2.39 · 10−7 120

sp3 2.06 2.70 · 10−7 153 0.86 3.16 · 10−7 129

sp5 3.15 2.06 · 10−7 163 1.50 3.04 · 10−7 137

bcsstk29 - - - - - -

sherman3 5.08 1.10 · 10−4 2,944 1.40 1.12 · 10−4 1,346

sherman5 0.42 1.64 · 10−6 308 0.24 1.57 · 10−6 261

fidap008 - - - 71.57 0.06 129,410

chipcool0 5.12 6.10 · 10−7 770 1.67 5.92 · 10−7 506

e20r0000 104.39 3 · 10−3 84,627 4.09 2.70 · 10−3 6,988

spmsrtls - - - - - -

III Stokes 67.98 0.09 11,741 17.15 0.09 6,256

garon1 160.65 1.15 · 10−3 183,129 8.07 1.05 · 10−3 18,196

garon2 - - - 47.18 4.31 · 10−3 27,195

memplus 29.98 3.51 · 10−5 1,678 1.03 3.66 · 10−5 380

saylr4 8.45 9.56 · 10−3 7,850 6.21 9.59 · 10−3 1,684

xenon1 24.45 2.32 · 10−5 1,581 6.85 2.55 · 10−5 781

xenon2 82.12 8.02 · 10−5 1,436 26.88 6.58 · 10−5 818

venkat01 - - - 1,352.34 2.43 · 10−4 78,742

QC2534 - - - - - -

mplate - - - - - -

waveguide3 1,299.81 5.58 · 10−5 7,540 138.09 9.95 · 10−6 14,134

ABACUS shell hd - - - - - -

light in tissue 11.75 1.31 · 10−5 449 5.08 5.21 · 10−6 361

kim1 4.95 3.37 · 10−7 158 2.49 3.55 · 10−7 145

chevron2 318.79 1.16 · 10−5 4,241 275.81 9.14 · 10−6 6,783

Table 3.3: Truncated AR(10) vs. Truncated AAR(6,10). Experiments with diagonal
preconditioner.
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Truncated AR(p = 10) Truncated AAR(m = 6, p = 10)

Matrix Time (s) rel. error # Itr. Time (s) rel. error # Itr.

1138 bus 0.99 7.44 · 10−6 1,868 0.84 7.24 · 10−6 2,508

bcsstk08 0.08 7.08 · 10−7 54 0.07 3.46 · 10−7 53

bcsstk09* ∗ ∗ ∗ ∗ ∗ ∗
bcsstk10* ∗ ∗ ∗ ∗ ∗ ∗
crystm01 0.04 7.24 · 10−9 4 0.04 1.38 · 10−12 7

crystm02 34.22 0.02 5,429 3.94 0.02 794

nasa2910* ∗ ∗ ∗ ∗ ∗ ∗
raefsky4* ∗ ∗ ∗ ∗ ∗ ∗

msc01050* ∗ ∗ ∗ ∗ ∗ ∗
msc01440* ∗ ∗ ∗ ∗ ∗ ∗
msc23052* ∗ ∗ ∗ ∗ ∗ ∗

pwtk* ∗ ∗ ∗ ∗ ∗ ∗
ex10* ∗ ∗ ∗ ∗ ∗ ∗
ex10hs ∗ ∗ ∗ ∗ ∗ ∗
ex15 ∗ ∗ ∗ ∗ ∗ ∗
cfd1 17,48 4.23 · 10−5 658 3.94 5.13 · 10−5 538

cfd2* ∗ ∗ ∗ ∗ ∗ ∗
qa8fm 0.27 1.43 · 10−9 10 0.34 9.41 · 10−8 13

fidap029 0.05 8 · 10−11 8 0.01 4.60 · 10−13 19

fidapm37* ∗ ∗ ∗ ∗ ∗ ∗
raefsky5 0.04 2.55 · 10−11 6 0.05 2.05 · 10−10 7

sp1 0.38 3.05 · 10−8 44 0.29 3.51 · 10−8 53

sp3 0.72 5.61 · 10−8 46 0.57 2.97 · 10−8 43

sp5 1.04 4.94 · 10−8 45 0.72 2.72 · 10−8 43

bcsstk29* ∗ ∗ ∗ ∗ ∗ ∗
sherman3 0.76 4.13 · 10−6 339 0.38 4.28 · 10−9 263

sherman5 0.17 3.40 · 10−7 83 0.23 1.88 · 10−7 61

fidap008* - - - - - -

chipcool0 1.42 2.2 · 10−7 183 0.52 8.43 · 10−8 117

e20r0000* ∗ ∗ ∗ ∗ ∗ ∗
spmsrtls 0.07 7.65 · 10−14 3 0.09 1.69 · 10−13 7

III Stokes* ∗ ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗ ∗
garon2* ∗ ∗ ∗ ∗ ∗ ∗
memplus 3.98 9.2 · 10−6 720 1.02 1.22 · 10−5 360

saylr4 0.24 5.5 · 10−9 146 0.15 7.98 · 10−9 123

xenon1* - - - - - -

xenon2* - - - - - -

venkat01 12.05 7.82 · 10−7 470 7.94 7.98 · 10−7 379

QC2534 151.11 1.01 · 10−5 31,426 350.57 9.58 · 10−3 90,685

mplate 349.96 0.11 73,701 - - -

waveguide3 - - - - - -

ABACUS shell hd - - - - - -

light in tissue 4.57 9.15 · 10−7 142 1.73 4.86 · 10−7 114

kim1 0.47 1.78 · 10−9 13 0.33 7.72 · 10−9 14

chevron2 161.55 9.66 · 10−7 1,385 44.88 9.30 · 10−7 867

Table 3.4: Truncated AR(10) vs. Truncated AAR(6,10). Experiments with IC(0) pre-
conditioner for real symmetric positive definite matrices and ILU(0) preconditioner for real
matrices that are not symmetric positive definite.
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Truncated AR(p = 10) Truncated AAR(m = 6, p = 10)

Matrix Time (s) rel. error # Itr. Time (s) rel. error # Itr.

1138 bus 0.06 2.71 · 10−8 26 0.04 3.34 · 10−8 25

bcsstk08* 0.07 2.22 · 10−8 13 0.04 1.93 · 10−8 13

bcsstk09 0.06 6.16 · 10−9 9 0.06 6.16 · 10−9 9

bcsstk10 0.07 5.72 · 10−9 11 0.04 5.73 · 10−10 13

crystm01 0.06 1.94 · 10−11 5 0.04 1.52 · 10−11 7

crystm02* ∗ ∗ ∗ ∗ ∗ ∗
nasa2910* 0.09 5.13 · 10−8 29 0.08 2.64 · 10−8 30

raefsky4* 121.41 1.04 · 10−5 5,410 108.64 1.04 · 10−5 5,410

msc01050 0.06 0.1 16 0.04 0.10 19

msc01440 0.09 4.64 · 10−7 35 0.04 0.10 19

msc23052* ∗ ∗ ∗ ∗ ∗ ∗
pwtk* ∗ ∗ ∗ ∗ ∗ ∗
ex10* ∗ ∗ ∗ ∗ ∗ ∗

ex10hs* ∗ ∗ ∗ ∗ ∗ ∗
ex15* ∗ ∗ ∗ ∗ ∗ ∗
cfd1* ∗ ∗ ∗ ∗ ∗ ∗
cfd2* ∗ ∗ ∗ ∗ ∗ ∗
qa8fm 0.12 1.61 · 10−11 5 0.14 1.28 · 10−11 7

fidap029 0.07 9.58 · 10−12 5 0.06 7.48 · 10−12 7

fidapm37* ∗ ∗ ∗ ∗ ∗ ∗
rafesky5 0.06 8.60 · 10−11 5 0.04 1.92 · 10−11 7

sp1 0.11 3.97 · 10−12 6 0.13 1.20 · 10−9 7

sp3 0.18 2.28 · 10−9 7 0.16 2.14 · 10−9 7

sp5 0.26 2.89 · 10−9 7 0.22 6.85 · 10−9 8

bcsstk29* ∗ ∗ ∗ ∗ ∗ ∗
sherman3 0.10 5.23 · 10−9 11 0.10 2.52 · 10−10 13

sherman5 0.08 1.05 · 10−9 13 0.08 1.84 · 10−9 13

fidap008 - - - - - -

chipcool0 0.28 3.59 · 10−9 14 0.29 6.72 · 10−9 16

e20r0000 0.16 4.65 · 10−6 25 0.16 1.11 · 10−5 27

spmsrtls 0.07 1.38 · 10−10 5 0.07 5.24 · 10−11 7

III Stokes 0.50 8.44 · 10−5 24 0.60 8.34 · 10−5 36

garon1 0.14 2.18 · 10−8 22 0.11 7.24 · 10−8 22

garon2 0.82 1.26 · 10−8 35 0.82 1.36 · 10−7 37

memplus 0.12 5.77 · 10−9 11 0.09 4.05 · 10−10 13

saylr4 0.28 1.23 · 10−6 173 0.13 1.35 · 10−6 107

xenon1 1.01 9.10 · 10−9 26 0.91 9.16 · 10−10 25

xenon2 4.31 1.87 · 10−8 29 2.99 1.95 · 10−8 27

venkat01 1.64 4.96 · 10−8 15 1.94 3.17 · 10−10 19

QC2534 0.10 5.41 · 10−9 9 0.14 1.11 · 10−11 13

mplate 56.62 0.02 4,566 16.41 0.04 2,048

waveguide3 0.73 6.23 · 10−9 12 0.76 6.16 · 10−9 13

ABACUS shell hd 1.07 6.90 40 1.14 9.05 72

light in tissue 0.41 3.31 · 10−9 13 0.34 7.31 · 10−9 15

kim1 0.24 3.87 · 10−9 10 0.23 3.87 · 10−9 7

chevron2 6.39 6.00 · 10−8 57 4.56 3.19 · 10−8 61

Table 3.5: Truncated AR(10) vs. Truncated AAR(6,10). Experiments with ICT(10−4)
preconditioner for real symmetric positive definite matrices and ILUT(10−4) preconditioner
for real matrices that are not symmetric positive definite.
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Truncated AAR(6,10) aims to reduce the `2-norm of the residual on a projection

subspace, whereas CG aims to minimize the A-norm of the error. Therefore, the

performances of the two algorithms are not entirely comparable, since they operate

according to different optimality criteria. Moreover, the stopping criterion based on

the relative residual `2-norm favors Truncated AAR over PCG. Regardless of this fact,

the situation becomes more neat with the diagonal preconditioner. In fact numerical

results in Table 3.7 clearly show PCG outperforming Truncated AAR(6,10). This is

easily noticed also through the performance profile in Figure 3.9, where the curve of

PCG is always above the curve of Truncated AAR(6,10). Similarly, results in Table

3.8 for the IC(0) preconditioner and in Table 3.9 for the ICT(10−4) preconditioner

favor PCG over Truncated AAR(6,10), as highlighted also by the performance profile

in Figures 3.10 and 3.11. Although the number of iteration taken by Truncated AAR

to converge may seem too high according to reasonable standards, we remind the

reader that the computational cost and efficiency are not the same for each iteration.

In fact, the least-squares problem is computed periodically after a batch of multiple

Richardson iterations. The relaxation steps have the advantage of being easy to com-

pute, but they do not necessarily minimize any quantity with respect to an optimality

criterion. Therefore, it is reasonable to expect the number of iterations for AAR to

be higher than for any standard Krylov method.

3.3.7 Comparison between Truncated AAR and Restarted

GMRES

In this section we compare Truncated AAR with Restarted GMRES. The comparison

is again carried out without preconditioners, with a diagonal preconditioner, with

ILU(0) and with ILUT(10−4). Results with ILU(0) and ILUT(10−4) are reported

only if the preconditioner can be constructed in a numerically stable way.

The length m of the cycle in Restarted GMRES is set to m = 10 and m = 30.



99

CG Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. Time (s) rel. error # Itr.
1138 bus 0.42 8.88 · 10−3 2,058 0.96 2.25 · 10−3 2,992
bcsstk08 0.61 7.70 · 10−4 2,932 2.73 7.21 · 10−3 9,292
bcsstk09 0.07 1.95 · 10−7 271 0.20 9.25 · 10−6 352
bcsstk10 0.59 2.21 · 10−5 2,812 0.94 2.95 · 10−4 3,008
crystm01 0.78 1.48 · 10−7 94 0.12 4.36 · 10−7 103
crystm02 29.13 0.01 3,344 11.5 0.01 2,699
nasa2910 29.06 3.18 · 10−5 5,230 3.89 7.94 · 10−4 6,072
raefsky4 27.83 0.07 2,868 217.69 0.19 40,829

msc01050 1.27 0.02 5,738 3.17 0.04 16,736
msc01440 0.94 1.68 · 10−4 4,567 1.84 1.83 · 10−3 5,458
msc23052 1,678.6 0.05 156,313 110.47 0.12 20,245

pwtk 2,840.03 0.01 58,159 1,415.02 0.02 22,813
ex10 0.31 0.18 2.67 13.13 0.42 6,042

ex10hs 0.26 0.20 1,025 1.91 0.45 4,144
ex15 7,74 0.57 1,454 2.33 0.57 2,000
cfd1 26.37 4.11 · 10−6 1,417 18.30 1.79 · 10−4 1,222
cfd2 103.79 3.15 · 10−5 3,824 61.66 7.13 · 10−4 2,377

qa8fm 1.23 1.29 · 10−7 62 1.14 1.58 · 10−7 67

Table 3.6: CG vs. Truncated AAR(6,10) on real symmetric positive definite matrices.
Experiments without preconditioner.
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PCG Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. Time (s) rel. error # Itr.
1138 bus 0.15 9.04 · 10−6 883 3.66 9.80 · 10−4 20,802
bcsstk08 0.02 1.67 · 10−5 130 0.19 6.51 · 10−5 395
bcsstk09 0.05 1.77 · 10−7 249 0.19 4.14 · 10−5 352
bcsstk10 0.09 1.35 · 10−5 564 0.27 2.46 · 10−5 665
crystm01 0.15 9.05 · 10−8 41 0.06 5.17 · 10−8 49
crystm02 24.56 0.01 2,641 7.02 0.01 2,240
nasa2910 7.39 1.43 · 10−5 1,191 1.11 5.62 · 10−4 1,798
raefsky4 8.19 0.11 437 8.33 0.11 169

msc01050 0.13 0.203 556 5.64 0.20 22,697
msc01440 0.16 2.61 · 10−5 558 0.39 4.92 · 10−5 753
msc23052 123.92 0.03 12,162 104.07 0.16 13,372

pwtk 305.20 0.02 6,503 114.27 0.04 1,847
ex10 0.94 0.16 2,945 92.75 0.35 202,890

ex10hs 0.91 0.14 2,756 77.55 0.34 161,780
ex15 5.94 0.71 915 243.36 0.91 185,360
cfd1 29.82 2.12 · 10−6 1,470 17.41 2.32 · 10−4 1,309
cfd2 99.28 3.46 · 10−5 3,701 61.44 8.51 · 10−4 2,265

qa8fm 0.98 6.73 · 10−8 41 0.82 3.67 · 10−8 49

Table 3.7: PCG vs. Truncated AAR(6,10) on real symmetric positive definite matri-
ces. Experiments with diagonal preconditioner.
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PCG Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. Time (s) rel. error # Itr.
1138 bus 0.03 2.47 · 10−6 128 0.84 7.24 · 10−6 2,508
bcsstk08 0.01 7.39 · 10−6 24 0.07 3.46 · 10−7 53
bcsstk09* ∗ ∗ ∗ ∗ ∗ ∗
bcsstk10* ∗ ∗ ∗ ∗ ∗ ∗
crystm01 0.03 1.15 · 10−8 2 0.04 1.38 · 10−12 7
crystm02 3.38 0.02 283 3.94 0.02 794
nasa2910* ∗ ∗ ∗ ∗ ∗ ∗
raefsky4* ∗ ∗ ∗ ∗ ∗ ∗

msc01050* ∗ ∗ ∗ ∗ ∗ ∗
msc01440* ∗ ∗ ∗ ∗ ∗ ∗
msc23052* ∗ ∗ ∗ ∗ ∗ ∗

pwtk* ∗ ∗ ∗ ∗ ∗ ∗
ex10* ∗ ∗ ∗ ∗ ∗ ∗

ex10hs* ∗ ∗ ∗ ∗ ∗ ∗
ex15 ∗ ∗ ∗ ∗ ∗ ∗
cfd1 8.84 5.48 · 10−6 402 9.37 5.13 · 10−5 538
cfd2* ∗ ∗ ∗ ∗ ∗ ∗
qa8fm 0.24 2.73 · 10−8 6 0.34 9.41 · 10−8 13

Table 3.8: PCG vs. Truncated AAR(6,10) on real symmetric positive definite matri-
ces. Experiments with IC(0) preconditioner.
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PCG Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. Time (s) rel. error # Itr.
1138 bus 0.01 3.44 · 10−5 12 0.05 8.23 · 10−8 26
bcsstk08 0.01 7.99 · 10−7 9 0.04 2.22 · 10−8 13
bcsstk09* ∗ ∗ ∗ ∗ ∗ ∗
bcsstk10* ∗ ∗ ∗ ∗ ∗ ∗
crystm01 0.02 6.02 · 10−8 2 0.06 1.94 · 10−11 5
crystm02* ∗ ∗ ∗ ∗ ∗ ∗
nasa2910* 0.19 1.44 · 10−6 16 0.13 5.13 · 10−8 29
raefsky4 0.93 0.80 37 107.28 1.04 · 10−5 5,410

msc01050 0.01 0.10 9 0.06 0.10 16
msc01440 0.02 6.29 · 10−6 22 0.08 4.64 · 10−7 35
msc23052* ∗ ∗ ∗ ∗ ∗ ∗

pwtk* ∗ ∗ ∗ ∗ ∗ ∗
ex10* ∗ ∗ ∗ ∗ ∗ ∗

ex10hs* ∗ ∗ ∗ ∗ ∗ ∗
ex15 ∗ ∗ ∗ ∗ ∗ ∗
cfd1* ∗ ∗ ∗ ∗ ∗ ∗
cfd2* ∗ ∗ ∗ ∗ ∗ ∗
qa8fm 0.09 3.24 · 10−8 2 0.15 1.61 · 10−11 5

Table 3.9: PCG vs. Truncated AAR(6,10) on real symmetric positive definite matri-
ces. Experiments with ICT(10−4) preconditioner.



103

Different tables are displayed for each linear solver (Truncated AAR(6,10), Restarted

GMRES(10) and Restarted GMRES(30)). Each table shows the averaged time, the

averaged relative error attained, the averaged number of iterations and the value of

the angles ∠(rk+m, rk) and ∠(rk+2m, rk). With regards to the angles, the averaging

accounts both for the numbers of runs and the number of iterations per run needed

to converge.

In Tables 3.10, 3.11 and 3.12 we report the results without preconditioner. All

the test cases show Truncated AAR outperforming both Restarted GMRES(10) and

Restarted GMRES(30) in terms of computational time, except for the matrix chevron2

where the situation is flipped. In particular, Truncated AAR(6,10) is the only solver to

converge on the matrices fidapm37, fidap008, garon1, garon2 and ABACUS shell hd.

Although the iteration count for AAR is usually higher than for the other linear

solvers, the reader must remember that the computational cost for each iteration

of AAR is not the same. In fact, most of the iterations are simply relaxation

sweeps which are far cheaper than least-squares. The fact that Truncated AAR(6,10)

takes less than Restarted GMRES(10) may be explained by the values of the angle

∠(rk+2m, rk), which are higher for Truncated AAR(6,10) than for Restarted GM-

RES(10). Therefore, Truncated AAR(6,10) seems to favor linear independence be-

tween residual vectors after every other cycle. As concerns the comparison with

Restarted GMRES(30), the situation is more complex. In fact, timings for Restarted

GMRES(30) are higher than for Truncated AAR(6,10) although Restarted GM-

RES(30) produces a sequence of residual vectors that leads to higher values of ∠(rk+2m, rk).

A plausible explanation is that Truncated AAR(6,10) still outperforms Restarted GM-

RES(30) because of the simplicity of Richardson sweeps. In fact, the cheapness of the

relaxation step may compensate for the need to run more iterations due to a lower

value of ∠(rk+2m, rk).

The situation is similar when a diagonal preconditioner is used. Results in Tables
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Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.12 7.89 · 10−7 124 50.76 73.47
fidapm37 176.01 0.04 16,464 3.19 5.19
raefsky5 0.21 0.64 205 54.29 72.68

sp1 0.52 2.05 · 10−7 157 39.55 64.25
sp3 1.06 2.08 · 10−7 179 36.88 60.95
sp5 1.67 1.91 · 10−7 173 37.23 61.31

bcsstk29 - - - - -
sherman3 5.33 0.46 7,202 6.37 10.21
sherman5 4.37 1.58 · 10−5 8,057 7.71 11.06
fidap008 3.65 0.09 6,487 2.98 5.39
chipcool0 15.40 3.42 · 10−3 4,774 65.72 65.55
e20r0000 199.13 1.25 · 10−3 195,460 0.35 0.66
spmsrtls - - - - -

III Stokes 20.59 0.09 6,570 3.82 6.82
garon1 59.13 2.71 · 10−3 106,900 0.63 1.10
garon2 747.91 7.44 · 10−3 222,743 87.95 80.36

memplus 3.53 9.84 · 10−6 1,366 16.89 25.75
saylr4 1.25 9.16 · 10−3 2,025 88.53 89.79
xenon1 6.06 4.66 · 10−5 700 19.12 30.57
xenon2 23.55 6.97 · 10−5 734 18.65 29.78

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 93.10 1.18 · 10−5 10,587 4.85 8.07
ABACUS shell hd 703.22 0.68 91,130 0.38 0.69

light in tissue 4.01 1.10 · 10−5 379 24.85 39.88
kim1 92.75 1.24 · 10−5 5,476 70.19 70.85

chevron2 3,135.26 1.57 · 10−5 46,917 64.47 48.27

Table 3.10: Truncated AAR(6,10). Experiments without preconditioner.
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Restarted GMRES(m = 10)
Matrix Time (s) rel. error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.20 1.57 · 10−6 137 71.44 30.12
fidapm37 - - - - -
raefsky5 0.27 0.64 96 75.77 61.42

sp1 1.09 3.14 · 10−7 200 62.80 24.70
sp3 1.67 2.78 · 10−7 217 61.14 22.48
sp5 2.64 2.89 · 10−7 231 59.56 20.87

bcsstk29 - - - - -
sherman3 - - - - -
sherman5 - - - - -
fidap008 - - - - -
chipcool0 - - - - -
e20r0000 - - - - -
spmsrtls - - - - -

III Stokes - - - - -
garon1 - - - - -
garon2 - - - - -

memplus 48.81 2.52 · 10−5 13,555 7.34 0.51
saylr4 63.55 8.81 · 10−3 5,425 2.39 0.13
xenon1 76.95 7.24 · 10−5 7,378 9.94 1.27
xenon2 250.85 9.43 · 10−5 6,686 9.53 1.29

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 487.38 6.67 · 10−6 45,945 3.16 2.48
ABACUS shell hd - - - - -

light in tissue 20.73 1.64 · 10−5 2,276 16.04 5.90
kim1 289.47 1.26 · 10−5 22,018 4.09 6.65

chevron2 1946.30 1.14 · 10−5 73,160 2.78 4.03

Table 3.11: Restarted GMRES(10). Experiments without preconditioner.
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Restarted GMRES(m = 30)
Matrix Time (s) rel. error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.18 1.15 · 10−6 89 89.64 88.23
fidapm37 - - - - -
raefsky5 0.21 0.68 54 89.99 -

sp1 0.78 2.21 · 10−7 134 88.10 89.81
sp3 1.75 2.07 · 10−7 138 87.52 62.57
sp5 2.67 2.07 · 10−7 144 87.77 69.99

bcsstk29 - - - - -
sherman3 60.76 0.46 32,594 5.18 0.13
sherman5 22.45 2.89 · 10−5 21,862 9.33 5.26
fidap008 - - - - -
chipcool0 515.9 3.33 · 10−3 81,673 3.58 0.25
e20r0000 46.34 7.39 · 10−3 26,505 7.39 0.41
spmsrtls - - - - -

III Stokes 428.11 0.09 63,661 3.85 1.95
garon1 - - - - -
garon2 - - - - -

memplus 21.93 2.51 · 10−5 4,001 23.19 3.93
saylr4 20.17 8.82 · 10−3 15,017 7.96 1.23
xenon1 39.12 7.15 · 10−5 2,295 28.75 8.51
xenon2 137.89 9.37 · 10−5 2,394 27.29 8.15

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 221.74 7.70 · 10−6 18,654 9.56 10.95
ABACUS shell hd - - - - -

light in tissue 14.09 1.61 · 10−5 829 40.16 19.40
kim1 246.59 1.27 · 10−5 12,828 9.14 14.72

chevron2 666.78 1.35 · 10−5 18,690 9.53 13.22

Table 3.12: Restarted GMRES(30). Experiments without preconditioner.
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3.13, 3.14 and 3.15 show Truncated AAR(6,10) outperforming both Restarted GM-

RES(10) and Restarted GMRES(30). Moreover, AAR is the only method to converge

(albeit very slowly) on the matrices fidapm37, fidap008, garon2 and venkat01. As

concerns Truncated AAR(6,10) vs. Restarted GMRES(10), the former does a better

job in preserving linear independence as confirmed by the average values of the angles.

On the other hand, Restarted GMRES(30), still takes longer to converge because of

more expensive operations to perform in each cycle.

As concerns the use of ILU(0) as a preconditioner, results are reported in Tables

3.16, 3.17 and 3.18 only for matrices that allow a numerically stable construction of

the preconditioner. The trend displayed in the tables is similar to the one already

discussed in case of no preconditioner or diagonal preconditioner. In fact, Truncated

AAR(6,10) outperforms Restarted GMRES(10) as well as Restarted GMRES(30).

This is evident also in the performance profile in Figure 3.14. Through a comparison

between Truncated AAR(6,10) and Restarted GMRES(10), it is possible to see that

the former produces higher values of the average angles which explains the faster

convergence. As concerns Restarted GMRES(30), the slower convergence than for

Truncated AAR(6,10) is due to a more costly cycle between each restart.

The details about the performance of Truncated AAR(6,10), Restarted GM-

RES(10) and Restarted GMRES(30) when ILUT(10−4) is used as a preconditioner

are shown in Tables 3.19, 3.20 and 3.21. Also in this case, Truncated AAR(6,10) per-

forms better than Restarted GMRES(10) and Restarted GMRES(30), as confirmed

also by the performance profile in Figure 3.15. The discrepancies between the timings

is not as accentuated as for the other preconditioning techniques, since the efficiency

of ILUT(10−4) is expected to cope with some deficiency of the solver itself. However,

even for this highly efficient preconditioner, the reader can notice that there is still

a test case where Truncated AAR(6,10) succeeds in converging, whereas Restarted

GMRES(10) and Restarted GMRES(30) do not. This test case of interest is the
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Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel. error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.05 8.07 · 10−7 26 63.09 73.81
fidapm37 11.93 0.01 7,075 8.75 7.82
raefsky5 0.08 7.19 · 10−9 25 28.68 1.02

sp1 0.46 2.39 · 10−7 120 50.84 72.03
sp3 0.86 3.16 · 10−7 129 43.08 65.56
sp5 1.50 3.04 · 10−7 137 41.81 63.83

bcsstk29 - - - - -
sherman3 1.41 1.12 · 10−4 1,346 6.99 10.02
sherman5 0.24 1.57 · 10−6 261 35.26 51.72
fidap008 71.57 0.06 129,410 0.17 0.22
chipcool0 1.67 6.21 · 10−7 506 26.45 37.81
e20r0000 4.09 2.70 · 10−3 6,988 4.84 7.51
spmsrtls - - - - -

III Stokes 17.15 0.09 6,256 5.10 7.90
garon1 8.07 1.05 · 10−3 18,196 2.57 4.10
garon2 47.18 4.31 · 10−3 27,195 1.80 2.84

memplus 1.03 3.66 · 10−5 380 22.02 34.72
saylr4 6.21 9.63 · 10−3 1,684 13.56 20.11
xenon1 6.85 2.61 · 10−5 781 19.32 29.65
xenon2 26.88 6.58 · 10−5 818 20.32 30.63

venkat01 1,352.34 2.43 · 10−4 78,742 1.18 1.65
QC2534 - - - - -
mplate - - - - -

waveguide3 138.09 9.95 · 10−6 14,134 4.40 6.98
ABACUS shell hd - - - - -

light in tissue 5.08 5.21 · 10−6 361 31.19 45.08
kim1 2.49 3.55 · 10−7 145 47.07 63.46

chevron2 318.79 9.14 · 10−6 6,783 6.19 9.35

Table 3.13: Truncated AAR(6,10). Experiments with diagonal preconditioner.
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Restarted GMRES(m = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.05 1.31 · 10−8 31 15.04 9.04
fidapm37 - - - - -
raefsky5 0.07 1.03 · 10−8 19 2.64 -

sp1 0.71 3.81 · 10−7 132 68.48 37.14
sp3 1.14 5.44 · 10−7 154 62.44 30.88
sp5 2.14 5.43 · 10−7 171 60.58 39.33

bcsstk29 - - - - -
sherman3 20.39 1.63 · 10−4 4,684 4.76 0.88
sherman5 0.71 2.82 · 10−6 596 36.99 25.90
fidap008 - - - - -
chipcool0 6.07 1.34 · 10−5 1,407 44.99 11.62
e20r0000 - - - - -
spmsrtls - - - - -

III Stokes - - - - -
garon1 - - - - -
garon2 - - - - -

memplus 3.17 5.13 · 10−5 808 12.82 5.52
saylr4 - - - - -
xenon1 35.53 3.12 · 10−5 3,033 14.83 7.80
xenon2 132.85 9.39 · 10−5 3,746 13.27 4.10

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 481.38 6.72 · 10−6 51,370 2.75 2.44
ABACUS shell hd - - - - -

light in tissue 14.05 2.05 · 10−5 1,457 20.52 11.67
kim1 5.83 3.07 · 10−7 440 28.74 48.82

chevron2 247.19 8.57 · 10−6 11,059 7.24 10.27

Table 3.14: Restarted GMRES(10). Experiments with diagonal preconditioner.
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Restarted GMRES(m = 30)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.04 7.08 · 10−9 21 - -
fidapm37 - - - - -
raefsky5 0.07 6.6 · 10−9 20 - -

sp1 0.64 2.95 · 10−7 104 83 86.97
sp3 1.38 3.89 · 10−7 111 87.38 87.77
sp5 2.16 4.16 · 10−7 118 86.1 88

bcsstk29 - - - - -
sherman3 12.05 1.75 · 10−4 1,448 9.44 10.37
sherman5 0.73 1.84 · 10−7 123 68.47 44.18
fidap008 - - - - -
chipcool0 3.60 5 · 10−5 558 35.59 31.63
e20r0000 59.78 3.45 · 10−3 33,769 11.25 3.93
spmsrtls - - - - -

III Stokes 200.41 0.09 26,562 6.65 3.58
garon1 128.32 1.43 · 10−3 85,426 4.20 1.35
garon2 - - - - -

memplus 1.38 5 · 10−5 286 67.95 33.43
saylr4 15.36 9.44 · 10−3 11,328 10.85 4.75
xenon1 25.64 3 · 10−5 1,610 36.27 20.23
xenon2 111.51 9.56 · 10−5 1,872 29.17 10.23

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 254.93 7.97 · 10−6 19,731 9.44 10.87
ABACUS shell hd - - - - -

light in tissue 13.58 2.03 · 10−5 1,006 40.63 17.19
kim1 6.81 2.10 · 10−7 390 68.23 72.88

chevron2 165.98 9.35 · 10−6 4,254 17.00 22.72

Table 3.15: Restarted GMRES(30). Experiments with diagonal preconditioner.
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Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.01 4.6 · 10−13 19 0.13 -

fidapm37* - - - - -
raefsky5 0.07 2.39 · 10−11 7 88.03 -

sp1 0.29 3.51 · 10−8 53 66.94 82.05
sp3 0.57 2.97 · 10−8 56 67.31 87.38
sp5 0.72 2.72 · 10−8 43 65.59 85.72

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.38 4.28 · 10−9 263 36.66 46.72
sherman5 0.23 1.88 · 10−7 61 59.34 78.51
fidap008* - - - - -
chipcool0 0.52 8.43 · 10−8 117 40.19 44.44
e20r0000* ∗ ∗ ∗ ∗ ∗
spmsrtls* 0.09 1.69 · 10−13 7 89.80 89.01

III Stokes* ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
memplus 1.02 1.22 · 10−5 360 22.47 34.57

saylr4 0.15 7.98 · 10−9 123 19.82 21.22
xenon1* - - - - -
xenon2* - - - - -
venkat01 7.94 7.98 · 10−7 379 33.46 49.52
QC2534 350.57 9.48 · 10−3 90,685 - -
mplate - - - - -

waveguide3 253.67 9.98 · 10−7 18,211 4.76 6.98
ABACUS shell hd - - - - -

light in tissue 1.73 4.86 · 10−7 114 53.48 73.18
kim1 0.33 7.73 · 10−9 14 46.91 89.40

chevron2 44.88 9.30 · 10−7 867 20.35 30.70

Table 3.16: Truncated AAR(6,10). Experiments with ILU(0) preconditioner.



112

Restarted GMRES(m = 10)
Matrix Time (s) rel. error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.02 3.66 · 10−9 6 - -

fidapm37* - - - - -
raefsky5 0.03 3.98 · 10−11 4 - -

sp1 0.17 4.36 · 10−7 40 78.45 78.40
sp3 1.08 4.4 · 10−8 41 82.91 88.47
sp5 2.12 5.38 · 10−8 39 82.67 88.07

sherman3 1.24 7.42 · 10−6 644 25.22 12.28
sherman5 0.14 4.36 · 10−7 86 73.66 57.57
fidap008* - - - - -
chipcool0 1.54 2.55 · 10−7 190 75.51 39.68
e20r0000* ∗ ∗ ∗ ∗ ∗
spmsrtls* 0.03 5.99 · 10−14 1 ∗ ∗

III Stokes* ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
garon2* ∗ ∗ ∗ ∗ ∗
memplus 4.63 1.37 · 10−5 813 19.35 6.79

saylr4 0.54 1.22 · 10−8 317 46.69 20.25
xenon1* - - - - -
xenon2* - - - - -
venkat01 11.85 7.75 · 10−7 336 47.38 65.30
QC2534* - - - - -
mplate - - - - -

waveguide3 - - - - -
ABACUS shell hd - - - - -

light in tissue 4.80 1.89 · 10−6 264 49.14 24.72
kim1 0.49 5.69 · 10−9 13 88.03 -

chevron2 59.70 7.35 · 10−7 1,179 16.75 23.38

Table 3.17: Restarted GMRES(10). Experiments with ILU(0) preconditioner.
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Restarted GMRES(m = 30)
Matrix Time (s) rel. error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.02 2.42 · 10−9 6 - -

fidapm37* - - - - -
raefsky5 0.03 3.98 · 10−11 4 - -

sp1 0.62 4.46 · 10−8 39 89.03 -
sp3 1.27 5.67 · 10−8 36 87.93 -
sp5 2.12 4.97 · 10−8 35 89.30 -

bcsstk29* * * * * *
sherman3 0.58 4.15 · 10−6 228 52.63 39.70
sherman5 0.12 1.94 · 10−7 33 83.47 -
fidap008* - - - - -
chipcool0 0.92 8.1 · 10−7 79 86.40 89.74
e20r0000* ∗ ∗ ∗ ∗ ∗
spmsrtls* 0.03 5.99 · 10−14 1 - -
III Stokes ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
garon2* ∗ ∗ ∗ ∗ ∗
memplus 2.69 1.69 · 10−5 344 47.10 26.96

saylr4 0.24 2.53 · 10−6 135 3.59 3.46
xenon1* - - - - -
xenon2* - - - - -
venkat01 13.94 7.67 · 10−7 318 71.37 75.54
QC2534* - - - - -
mplate - - - - -

waveguide3 - - - - -
ABACUS shell hd - - - - -

light in tissue 3.72 1− 35 · 10−6 192 82.72 52.15
kim1 0.49 5.69 · 10−9 13 - -

chevron2 171.75 8.75 · 10−7 2.610 13.08 23.21

Table 3.18: Restarted GMRES(30). Experiments with ILU(0) preconditioner.
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matrix ABACUS shell hd.

3.3.8 Comparison between Truncated AAR and Augmented

AAR

The analysis of Truncated AAR(6,10), Restarted GMRES(10) and Restarted GM-

RES(30) has revealed empirical evidence that Truncated AAR can be competitive

against Restarted GMRES on a broad class of problems and for different precondi-

tioners as well. In this section we aim to compare Truncated AAR with Augmented

AAR, setting m = 6 and using two different values of p. In particular, we consider

the cases when p = 10 and p = 12. The results are presented again as average over 10

runs. The solution is generated as a random vector for each run and the right hand

side is consequently obtained multiplying the solution vector by the coefficient ma-

trix A. The convergence check is still based on the relative residual `2-norm smaller

than 10−8. Experiments are run without preconditioner, with a diagonal precondi-

tioner, with ILU(0) and with ILUT(10−4). Results for ILU(0) and ILUT(10−4) as a

preconditioner are shown if the preconditioner can be constructed in a numerically

stable way. For ease of exposition, we will refer to the variants of the algorithms

used here as Truncated AAR(6,10), Truncated AAR(6,12), Augmented AAR(6,10)

and Augmented AAR(6,12).

Results for Truncated AAR(6,12) are displayed in Tables 3.22, 3.23 and 3.24. A

comparison between the results for Truncated AAR(6,12) and Truncated AAR(6,10)

reveals similar performances for most of the test cases.

Results for Augmented AAR(6,10) are shown in Tables 3.26, 3.27, 3.28 and 3.29.

The performance of Augmented AAR(6,10) is generally similar to the one of Trun-

cated AAR(6,12). However, a significant deterioration of the performance is identi-

fied for the matrix sherman3 without preconditioner. Indeed Augmented AAR(6,10)

takes almost one thousand times as Truncated AAR(6,10) and Truncated AAR(6,12)
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Truncated AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.06 7.48 · 10−12 7 87.34 89.31

fidapm37* ∗ ∗ ∗ ∗ ∗
rafesky5 0.04 1.92 · 10−11 7 78.12 85.13

sp1 0.13 1.20 · 10−9 7 83.65 88.54
sp3 0.16 2.14 · 10−9 7 86.42 85.35
sp5 0.22 6.85 · 10−9 8 81.85 87.60

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.10 2.52 · 10−10 13 3.17 89.56
sherman5 0.08 1.84 · 10−9 13 2.58 89.96
fidap008* - - - - -
chipcool0 0.29 6.72 · 10−9 16 47.35 89.79
e20r0000 0.16 1.11 · 10−5 27 58.14 37.68
spmsrtls 0.07 5.24 · 10−11 7 4.56 89.55

III Stokes 0.60 8.34 · 10−5 36 4.69 1.82
garon1 0.11 7.24 · 10−8 22 48.45 22.95
garon2 0.82 1.36 · 10−7 37 35.95 38.54

memplus 0.09 4.05 · 10−10 13 3.65 89.87
saylr4 0.13 1.35 · 10−6 107 48.44 67.22
xenon1 0.91 9.16 · 10−10 25 63.22 89.12
xenon2 2.99 1.95 · 10−8 27 66.85 89.23

venkat01 1.94 3.17 · 10−10 19 82.56 88.58
QC2534 0.14 1.11 · 10−11 13 4.32 89.93
mplate 16.41 0.04 2,048 12.24 18.02

waveguide3 0.76 6.16 · 10−9 13 57.60 82.78
ABACUS shell hd 1.14 9.05 72 37.58 30.41

light in tissue 0.34 7.31 · 10−9 15 45.19 89.99
kim1 0.23 3.87 · 10−9 7 56.12 87.23

chevron2 4.56 3.19 · 10−8 61 58.29 74.70

Table 3.19: Truncated AAR(6,10). Experiments with ILUT(10−4) preconditioner.
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Restarted GMRES(m = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.01 1.27 · 10−11 3 - -

fidapm37* - - - - -
raefsky5 0.03 1.34 · 10−10 3 - -

sp1 0.08 6.20 · 10−9 4 - -
sp3 0.20 2.09 · 10−10 5 - -
sp5 0.29 1.99 · 10−10 5 - -

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.04 2.03 · 10−9 8 - -
sherman5 0.02 2.31 · 10−9 8 - -
fidap008* - - - - -
chipcool0 0.48 7.56 · 10−9 12 89.99 -
e20r0000 0.22 8.39 · 10−5 26 89.94 87.74
spmsrtls 0.05 1.05 · 10−10 3 - -

III Stokes 1.32 0.06 30 88.72 89.99
garon1 0.15 2.70 · 10−8 17 89.99 -
garon2 1.15 2.13 · 10−7 34 89.45 89.53

memplus 0.06 2.86 · 10−9 8 - -
saylr4 0.53 3.09 · 10−6 289 42.52 17.95
xenon1 1.40 1.26 · 10−8 18 89.99 -
xenon2 5.38 1.90 · 10−8 25 89.98 -

venkat01 2.63 5.51 · 10−8 12 89.99 -
QC2534 0.07 4.10 · 10−9 10 - -
mplate 191.99 0.05 13,935 7.32 8.39

waveguide3 1.30 6.09 · 10−9 14 83.83 -
ABACUS shell hd - - - - -

light in tissue 0.39 1.14 · 10−8 13 88.78 -
kim1 0.33 9.70 · 10−10 8 - -

chevron2 14.74 2.87 · 10−8 139 73.69 64.99

Table 3.20: Restarted GMRES(10). Experiments with ILUT(10−4) preconditioner.
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Restarted GMRES(m = 30)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.01 1.27 · 10−11 3 - -

fidapm37* - - - - -
raefsky5 0.03 1.34 · 10−10 3 - -

sp1 0.08 6.20 · 10−9 4 - -
sp3 0.20 2.09 · 10−10 5 - -
sp5 0.29 1.99 · 10−10 5 - -

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.04 2.03 · 10−9 8 - -
sherman5 0.02 2.31 · 10−9 8 - -
fidap008* - - - - -
chipcool0 0.44 2.95 · 10−9 11 - -
e20r0000 0.13 4.82 · 10−5 16 - -
spmsrtls 0.05 1.05 · 10−10 3 - -

III Stokes 0.84 3.94 · 10−4 15 - -
garon1 0.12 2.74 · 10−8 15 - -
garon2 1.00 1.61 · 10−7 26 - -

memplus 0.06 2.86 · 10−9 8 - -
saylr4 0.15 1.21 · 10−7 47 89.99 -
xenon1 1.27 7.33 · 10−9 17 - -
xenon2 5.13 1.44 · 10−8 20 - -

venkat01 2.36 4.48 · 10−8 12 - -
QC2534 0.07 4.10 · 10−9 10 - -
mplate 33.51 0.05 2,574 24.80 25.64

waveguide3 1.15 6.72 · 10−9 14 - -
ABACUS shell hd - - - - -

light in tissue 0.37 6.08 · 10−9 13 - -
kim1 0.33 9.70 · 10−10 8 - -

chevron2 6.33 3.17 · 10−8 57 87.72 89.72

Table 3.21: Restarted GMRES(30). Experiments with ILUT(10−4) preconditioner.
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Truncated AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.08 8.78 · 10−7 114 52.36 74.94
fidapm37 59.55 0.04 16,175 3.58 5.61
raefsky5 0.18 0.67 127 54.35 72.77

sp1 0.78 2.11 · 10−7 135 42.34 65.56
sp3 1.91 1.68 · 10−7 140 40.81 64.08
sp5 3.10 1.85 · 10−7 144 40.81 64.08

bcsstk29 - - - - -
sherman3 3.44 0.46 5,397 6.31 10.28
sherman5 10.48 2.13 · 10−5 17,630 4.89 7.04
fidap008 3.88 0.09 6,549 4.21 6.91
chipcool0 27.15 3.07 · 10−3 4,698 65.01 65.44
e20r0000 24.1 7, 45 · 10−3 2,024 8.24 13.58
spmsrtls - - - - -

III Stokes 21.13 0.09 7,263 4.11 6.90
garon1 3.30 6.50 · 10−3 6,378 4.66 7.80
garon2 35.73 8.27 · 10−3 10,235 2.94 4.89

memplus 4.45 1.80 · 10−5 1,108 18.35 27.79
saylr4 1.03 9.15 · 10−3 1,853 88.61 89.94
xenon1 13.49 3.77 · 10−5 703 19.54 31.03
xenon2 25.59 6.08 · 10−5 737 19.19 30.45

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 93.70 1.33 · 10−5 9,189 4.85 8.07
ABACUS shell hd 878.56 0.07 86,710 - -

light in tissue 4.19 8.64 · 10−6 342 25.88 41.43
kim1 132.09 1.24 · 10−5 4,928 76.10 77.54

chevron2 1,034.22 2.00 · 10−5 20,959 67.66 51.61

Table 3.22: Truncated AAR(6,12). Experiments without preconditioner.
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Truncated AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.07 3.91 · 10−9 25 73.58 89.51
fidapm37 15.42 0.01 5,992 15.84 15.57
raefsky5 0.07 2.38 · 10−9 25 81.15 81.59

sp1 0.62 2.99 · 10−7 119 55.52 75.13
sp3 1.14 3.67 · 10−7 127 53.21 73.22
sp5 1.88 3.02 · 10−7 134 50.94 70.88

bcsstk29 - - - - -
sherman3 2.04 1.47 · 10−4 1,819 3.68 5.67
sherman5 0.21 1.63 · 10−6 245 33.64 51.64
fidap008 60.60 0.09 120,760 0.58 0.95
chipcool0 1.64 1.13 · 10−5 386 0.40 0.65
e20r0000 3.75 3.16 · 10−3 5,704 2.98 4.56
spmsrtls - - - - -

III Stokes 17,76 0.08 6,551 4.66 7.14
garon1 7.04 1.16 · 10−3 14,495 2.63 4.13
garon2 42.81 4.41 · 10−3 19,539 2.26 3.51

memplus 1.31 4.51 · 10−5 333 34.34 46.75
saylr4 1.18 9.71 · 10−3 1,878 13.55 20.32
xenon1 9.15 4.40 · 10−5 782 20.69 31.22
xenon2 32.86 6.45 · 10−5 822 20.34 30.66

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 178.02 1.68 · 10−5 13,148 3.88 6.16
ABACUS shell hd - - - - -

light in tissue 6.87 5.04 · 10−6 360 31.17 45.04
kim1 3.20 2.30 · 10−7 139 48.79 67.16

chevron2 257.63 1.23 · 10−5 4,164 8.39 12.72

Table 3.23: Truncated AAR(6,12). Experiments with diagonal preconditioner.
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Truncated AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.04 1.80 · 10−12 13 1.99 89.99

fidapm37* - - - - -
raefsky5 0.07 2.05 · 10−10 7 87.13 -

sp1 0.28 1.08 · 10−8 43 70.41 89.44
sp3 0.48 4.48 · 10−8 44 68.10 88.59
sp5 0.76 3.67 · 10−8 43 69.36 88.20

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.26 4.27 · 10−6 206 41.99 61.19
sherman5 0.10 2.86 · 10−7 52 64.36 85.49
fidap008* - - - - -
chipcool0 0.58 6.80 · 10−7 102 56.61 76.39
e20r0000* ∗ ∗ ∗ ∗ ∗
spmsrtls* 0.11 6.54 · 10−14 7 23.19 86.54

III Stokes* ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
garon2* ∗ ∗ ∗ ∗ ∗
memplus 1.19 1.08 · 10−5 330 33.45 47.70

saylr4 0.13 1.74 · 10−6 116 54.15 76.42
xenon1* - - - - -
xenon2* - - - - -
venkat01 11.14 7.50 · 10−7 364 33.86 49.28
QC2534 332.67 0.01 88,672 1.30 2.21
mplate - - - - -

waveguide3 181.35 1.81 · 10−6 13,551 5.56 7.94
ABACUS shell hd - - - - -

light in tissue 2.54 3.77 · 10−7 111 53.53 73.23
kim1 0.37 7.73 · 10−9 14 46.91 89.40

chevron2 44.91 9.20 · 10−7 839 20.91 31.46

Table 3.24: Truncated AAR(6,12). Experiments with ILU(0) preconditioner.
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Truncated AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.07 7.48 · 10−12 7 87.21 89.71

fidapm37* - - - - -
raefsky5 0.07 2.05 · 10−10 7 82.34 89.10

sp1 0.15 1.20 · 10−9 7 80.32 89.43
sp3 0.17 2.14 · 10−9 7 84.11 89.56
sp5 0.40 6.85 · 10−9 8 81.10 89.73

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.11 2.55 · 10−10 13 3.17 89.56
sherman5 0.08 1.84 · 10−9 13 2.58 89.96
fidap008* - - - - -
chipcool0 0.32 6.71 · 10−9 16 47.35 89.79
e20r0000 0.17 4.98 · 10−6 26 58.14 33.97
spmsrtls 0.10 5.23 · 10−11 7 83.21 89.45

III Stokes 0.64 6.22 · 10−5 29 6.94 3.48
garon1 0.13 1.65 · 10−8 19 48.45 22.86
garon2 0.70 6.81 · 10−8 37 42.61 30.86

memplus 0.12 1.31 · 10−10 13 3.57 89.16
saylr4 0.17 1.09 · 10−6 82 56.40 78.29
xenon1 1.21 8.31 · 10−10 25 61.45 89.92
xenon2 4.01 5.91 · 10−9 30 65.60 89.53

venkat01 2.04 6.90 · 10−10 19 82.56 88.58
QC2534 0.16 1.11 · 10−11 13 4.32 89.93
mplate 81.63 0.03 99,484 8.22 13.09

waveguide3 0.80 6.16 · 10−9 13 57.60 82.78
ABACUS shell hd 1.15 13.55 53 42.84 27.68

light in tissue 0.43 7.31 · 10−9 15 45.19 89.99
kim1 0.22 3.87 · 10−9 7 78.21 89.59

chevron2 4.44 3.24 · 10−8 56 52.80 65.90

Table 3.25: Truncated AAR(6,12). Experiments with ILU(10−4) preconditioner.
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to converge. The worsening of the performance is validated by the averaged values

of the angles ∠(rk, rk+m) and ∠(rk, rk+2m) that are less than 1. The performance

is significantly worsened also for the matrix garon2, since the timing increases by a

factor of 10 with respect to Truncated AAR(6,10) and Truncated AAR(6,12).

The performance of Augmented AAR(6,12) is shown in Tables 3.30, 3.31, 3.32

and 3.33. In general Augmented AAR(6,12) outperforms any other version of AAR

employed in this section. Differently from Augmented AAR(6,10), the performance

of Augmented AAR(6,12) is significantly improved for the matrix sherman3 without

preconditioner. In fact the time recorded for Augmented AAR(6,12) is comparable

with Truncated AAR(6,10) and Truncated AAR(6,12).

To efficiently summarize the comparison between the performance of Trunctaed

AAR(6,10), Trunctaed AAR(6,12), Augmented AAR(6,10) and Augmented AAR(6,12)

we show the performance profiles in Figures 3.16, 3.17, 3.18 and 3.19 for no use of

preconditioner, diagonal preconditioner, ILU(0) and ILUT(10−4). Based on the evi-

dence displayed in this graphs, we propose Augmented AAR(6,12) as the variant of

Alternating Anderson-Richardson to adopt. The motivations behind this choice are

essentially two. Firstly, Augmented AAR(6,12) usually outperforms any other version

of AAR tested. Secondly, it allows to reduce the number of parameters that the user

has to tune, since in this case p = 2m. Therefore, this version of the algorithm is

more practical to use.

3.4 Conclusions and future work

In this chapter we have explored different techniques that can be used to acceler-

ate one-level standard relaxation algorithms. The techniques that have been broadly

studied in the literature are aggregation-disaggregation (including multigrid) algo-

rithms and Anderson mixing. Although Anderson mixing is widely recognized as
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Augmented AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.10 1.01 · 10−6 115 51.79 74.83
fidapm37 33.36 0.04 16,949 3.68 5.78
raefsky5 0.18 0.67 135 52.72 70.46

sp1 0.50 1.84 · 10−7 144 41.85 66.73
sp3 1.24 2.09 · 10−7 158 41.09 65.06
sp5 1.49 1.80 · 10−7 151 41.42 65.55

bcsstk29 - - - - -
sherman3 176.72 0.46 255,484 0.57 0.59
sherman5 4.22 1.53 · 10−5 10,233 5.88 8.40
fidap008 3.70 0.08 8,677 3.46 6.13
chipcool0 14.54 3.33 · 10−3 5,214 71.53 68.23
e20r0000 6.05 6.74 · 10−3 10,090 3.77 6.29
spmsrtls - - - - -

III Stokes 21.05 0.09 6,666 4.34 7.39
garon1 24.02 5.17 · 10−3 58,338 0.60 1.05
garon2 359.34 8.30 · 10−3 148,348 0.36 0.61

memplus 2.55 1.25 · 10−5 1,227 17.13 25.91
saylr4 1.16 9.10 · 10−3 2,531 87.88 81.89
xenon1 6.41 3.68 · 10−5 702 20.64 32.93
xenon2 33.39 6.94 · 10−5 723 21.43 33.22

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 105.33 1.19 · 10−5 10,200 4.44 7.38
ABACUS shell hd - - - - -

light in tissue 3.94 1.13 · 10−5 360 26.68 43.77
kim1 102.09 1.26 · 10−5 55,546 73.38 71.44

chevron2 2,530.65 1.57 · 10−5 46,352 75.96 60.83

Table 3.26: Augmented AAR(6,10). Experiments without preconditioner.
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Augmented AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.06 4.00 · 10−9 25 69.69 89.42
fidapm37 15.63 9.97 · 10−3 6,240 15.35 18.98
raefsky5 0.10 4.01 · 10−9 25 77.69 87.86

sp1 0.71 2.28 · 10−7 122 51.71 73.73
sp3 0.90 3.20 · 10−7 128 51.33 72.10
sp5 1.84 3.06 · 10−7 135 49.63 70.61

bcsstk29 - - - - -
sherman3 1.37 1.47 · 10−4 1,434 14.34 21.93
sherman5 0.22 1.57 · 10−6 266 32.01 50.76
fidap008 136.18 0.08 271,222 0.41 0.68
chipcool0 1.98 8.24 · 10−6 491 25.63 38.35
e20r0000 4.45 2.56 · 10−3 7,390 3.03 4.67
spmsrtls - - - - -

III Stokes 21.28 0.09 6,069 4.83 7.59
garon1 9.71 1.12 · 10−3 22,741 1.70 2.70
garon2 61.23 4.42 · 10−3 34,065 1.17 2.80

memplus 1.33 5.27 · 10−5 369 30.87 43.29
saylr4 0.96 9.70 · 10−3 1,615 13.34 20.04
xenon1 8.20 4.37 · 10−5 777 21.22 32.19
xenon2 28.90 6.54 · 10−5 818 20.68 31.44

venkat01 1,764.26 4.34 · 10−4 93,814 1.33 1.84
QC2534 - - - - -
mplate - - - - -

waveguide3 128.03 1.00 · 10−5 14,372 4.25 6.77
ABACUS shell hd - - - - -

light in tissue 5.88 5.01 · 10−6 361 31.22 45.44
kim1 2.89 2.86 · 10−7 145 50.46 67.16

chevron2 316.31 9.53 · 10−6 6,692 6.39 9.70

Table 3.27: Augmented AAR(6,10). Experiments with diagonal preconditioner.
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Augmented AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.08 1.81 · 10−12 13 1.99 89.99

fidapm37* - - - - -
raefsky5 0.04 3.39 · 10−10 7 88.01 -

sp1 0.26 1.38 · 10−8 43 70.53 89.16
sp3 0.49 4.03 · 10−8 43 68.95 89.19
sp5 0.71 3.00 · 10−8 43 68.55 87.91

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.40 4.17 · 10−6 250 41.30 60.31
sherman5 0.07 9.83 · 10−8 63 59.81 85.54
fidap008* - - - - -
chipcool0 0.61 9.33 · 10−7 127 46.96 68.54
e20r0000* ∗ ∗ ∗ ∗ ∗
spmsrtls* 0.07 9.48 · 10−14 7 89.10 -

III Stokes* ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
garon2* ∗ ∗ ∗ ∗ ∗
memplus 1.28 1.19 · 10−5 357 31.89 46.92

saylr4 0.13 2.35 · 10−6 125 45.82 68.09
xenon1* - - - - -
xenon2* - - - - -
venkat01 6.31 7.76 · 10−7 379 34.33 50.54
QC2534 329.21 0.03 91,283 0.38 0.65
mplate - - - - -

waveguide3 271.71 1.03 · 10−6 17,011 5.35 7.85
ABACUS shell hd - - - - -

light in tissue 1.71 5.40 · 10−7 113 53.14 73.80
kim1 0.34 7.18 · 10−9 14 46.85 89.31

chevron2 37.25 8.90 · 10−7 867 20.33 30.77

Table 3.28: Augmented AAR(6,10). Experiments with ILU(0) preconditioner.
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Augmented AAR(m = 6, p = 10)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.07 7.48 · 10−12 7 84.12 89.21

fidapm37* - - - - -
raefsky5 0.04 1.40 · 10−12 7 88.01 -

sp1 0.14 1.20 · 10−9 7 88.34 88.43
sp3 0.15 2.14 · 10−9 7 85.76 89.99
sp5 0.20 6.85 · 10−9 8 81.13 89.01

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.09 2.38 · 10−10 13 2.39 89.99
sherman5 0.08 2.23 · 10−9 13 2.58 89.99
fidap008* - - - - -
chipcool0 0.37 6.26 · 10−9 16 47.34 89.75
e20r0000* 0.17 3.42 · 10−5 73 59.51 27.89
spmsrtls* 0.10 5.24 · 10−11 7 84.55 89.13
III Stokes 0.75 1.55 · 10−5 43 2.61 2.02

garon1 0.13 6.34 · 10−8 20 32.78 28.47
garon2 0.75 2.14 · 10−8 43 44.10 45.54

memplus 0.11 1.30 · 10−10 13 3.65 89.86
saylr4 0.17 1.78 · 10−6 107 51.50 67.46
xenon1 1.00 1.14 · 10−9 25 60.71 83.74
xenon2 4.03 7.43 · 10−9 31 66.52 89.36

venkat01 2.00 3.68 · 10−10 19 82.73 88.48
QC2534 0.13 2.27 · 10−10 13 4.32 89.92
mplate 15.21 0.04 2,031 13.28 21.80

waveguide3 0.79 5.85 · 10−9 13 29.67 82.11
ABACUS shell hd 1.20 17.35 65 38.34 32.43

light in tissue 0.32 7.34 · 10−9 15 45.19 89.99
kim1 0.19 3.84 · 10−9 7 89.33 89.92

chevron2 4.41 2.93 · 10−8 60 56.14 57.56

Table 3.29: Augmented AAR(6,10). Experiments with ILUT(10−4) preconditioner.



127

Augmented AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.06 9.34 · 10−7 114 53.02 75.39
fidapm37 58.69 0.04 16,902 3.63 5.73
raefsky5 0.15 0.67 129 54.22 72.20

sp1 0.78 2.19 · 10−7 140 42.08 67.32
sp3 1.95 1.68 · 10−7 140 40.75 65.58
sp5 3.16 2.10 · 10−7 147 41.06 66.09

bcsstk29 - - - - -
sherman3 3.43 0.46 5,522 6.43 10.69
sherman5 4.41 1.58 · 10−5 10,730 6.59 9.53
fidap008 3.25 0.09 6,212 4.41 7.13
chipcool0 12.30 3.21 · 10−3 4,570 79.57 79.12
e20r0000 0.93 7.36 · 10−3 1,237 7.96 12.95
spmsrtls - - - - -

III Stokes 23.35 0.09 6,804 4.39 7.24
garon1 6.03 5.76 · 10−3 12,287 4.51 7.51
garon2 30.93 8.61 · 10−3 12,616 1.94 3.20

memplus 3.30 1.38 · 10−5 1,148 17.82 27.44
saylr4 0.99 9.14 · 10−3 1,868 88.00 89.61
xenon1 7.81 4.25 · 10−5 675 21.74 33.71
xenon2 28.28 6.52 · 10−5 707 21.69 33.60

venkat01 - - - - -
QC2534 - - - - -
mplate - - - - -

waveguide3 132.87 1.18 · 10−5 10,107 4.59 7.58
ABACUS shell hd 882.64 0.68 92,773 0.31 0.51

light in tissue 4.42 1.10 · 10−5 355 26.90 43.91
kim1 66.03 1.24 · 10−5 4,128 73.98 75.10

chevron2 1,098.16 1.95 · 10−5 21,680 72.16 59.46

Table 3.30: Augmented AAR(6,12). Experiments without preconditioner.
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Augmented AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.02 3.97 · 10−9 25 69.69 89.42
fidapm37 14.66 8.62 · 10−3 5,711 16.84 20.55
raefsky5 0.04 2.43 · 10−9 25 79.08 -87.52

sp1 0.56 2.12 · 10−7 121 52.06 73.64
sp3 1.06 3.58 · 10−7 129 51.54 72.11
sp5 1.78 3.27 · 10−7 136 50.17 71.10

bcsstk29 - - - - -
sherman3 1.48 1.56 · 10−4 1,285 14.08 21.27
sherman5 0.16 1.61 · 10−6 260 35.32 54.05
fidap008 98.62 0.08 185,850 0.40 0.65
chipcool0 2.04 1.01 · 10−5 474 26.59 39.46
e20r0000 4.39 2.64 · 10−3 6,137 2.52 3.87
spmsrtls - - - - -

III Stokes 26.83 0.09 8,033 4.11 6.33
garon1 19.82 1.19 · 10−3 31,173 1.96 3.11
garon2 77.18 4.49 · 10−3 32,595 2.12 3.32

memplus 1.47 5.10 · 10−5 386 30.52 42.51
saylr4 1.35 9.41 · 10−3 2,471 13.43 20.35
xenon1 8.78 4.06 · 10−5 782 20.19 31.39
xenon2 33.39 6.42 · 10−5 818 20.80 31.49

venkat01 1,641.37 8.36 · 10−4 83,587 3.21 5.43
QC2534 - - - - -
mplate - - - - -

waveguide3 158.63 1.64 · 10−5 11,813 4.41 6.98
ABACUS shell hd - - - - -

light in tissue 4.80 5.00 · 10−5 360 31.55 45.62
kim1 3.05 3.01 · 10−7 134 52.38 71.46

chevron2 198.33 1.20 · 10−5 4,819 8.09 12.36

Table 3.31: Augmented AAR(6,12). Experiments with diagonal preconditioner.
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an efficient acceleration for non-linear problems, studies have confirmed that it ben-

efits also linear fixed point iterations. Standard approaches in this respect alter-

nate a Richardson sweep and an Anderson mixing at each iteration as in Anderson-

Richardson. All the variants of this scheme are comparable with either Full GMRES

or Truncated GMRES. However, a drawback of these techniques is that they do not

address issues such as the avoidance of global communications to leverage the per-

formance on next generation computers. A recent step in this direction has been

taken with the introduction of Alternating Anderson-Richardson. The idea behind

this algorithm is to relax the frequency of Anderson mixings at periodic intervals,

enhancing the computational locality and providing a path to an efficient paralleliza-

tion. Theoretical equivalence between Full AAR and Full GMRES in exact arithmetic

has been proved in this chapter. Numerical experiments in Section 3.3.5 show that

truncated variants of AAR are competitive against truncated variants of AR, validat-

ing the claim that solving the least-squares problem at fewer iterations can benefit

the computational time. Moreover, a study of the basis generated by AAR shows

that the algorithm is more robust than AR against stagnation. This has been val-

idated as well by ad-hoc numerical tests shown in Section 3.3.3. Results in Section

3.3.6 clearly show that AAR cannot compete with CG on symmetric positive definite

systems. However, preliminary results on nonsymmetric or indefinite system with

different choices of preconditioners suggest that AAR may be an appealing alterna-

tive to Restarted GMRES as to reduction of both time and global communications,

as shown in numerical examples in Section 3.3.7. In Section 3.2.3 we introduced

a new variant of AAR, called Augmented AAR. This variant has the advantage of

guaranteeing convergence on linear systems with positive definite matrices. In addi-

tion, numerical experiments in Section 3.3.8 confirm that the augmented variant does

not deteriorate the performance with respect to the unaugmented version introduced

by P. Suryanarayana and collaborators. Therefore, it seems that Augmented AAR
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can be favored over Truncated AAR because of a more robust convergence analysis

without negative impacts on the performance.

In the future a deeper mathematical analysis of AAR is needed, by exploring the

properties of the projection subspaces used for the Anderson mixing and by assessing

the performance sensitivity to quantities like relaxation parameters, periodic interval

length and number of iterations involved in the mixing. Furthermore, a parallel

implementation of the algorithm that could run on extreme scale machines is required,

so that the possibility to reduce communication (leading to enhanced concurrency)

and to require less memory than Restarted GMRES can be confirmed.
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Figure 3.2: Error behavior for AAR solving a 1D Laplace problem without precon-
ditioner. The iterations represented are the Richardson sweeps (Iterations from 8 to
12) and the successive Anderson mixing (Iteration 13).

Figure 3.3: Error behavior for AAR solving a 1D Laplace without preconditioner.
The iterations represented are the last of the first batch of Richardson sweeps and
the first Anderson mixing.
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Figure 3.4: Performance profile in a log2 scale for Truncated AR(10) and Truncated
AAR(6,10) on [0, 13]. Experiments without preconditioner.

Figure 3.5: Performance profile in a log2 scale for Truncated AR(10) and Truncated
AAR(6,10) on [0, 13]. Experiments with diagonal preconditioner.
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Figure 3.6: Performance profile in a log2 scale for Truncated AR(10) and Truncated
AAR(6,10) on [0, 5]. Experiments with IC(0) preconditioner for real symmetric pos-
itive definite matrices and ILU(0) preconditioner for real matrices that are not sym-
metric positive definite.

Figure 3.7: Performance profile in a log2 scale for Truncated AR(10) and Truncated
AAR(6,10) on [0, 2]. Experiments with IC(10−4) preconditioner for real symmetric
positive definite matrices and ILUT(10−4) preconditioner for real matrices that are
not symmetric positive definite.
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Figure 3.8: Performance profile in a log2 scale for Truncated AAR(6,10) and CG on [0,
7]. Real symmetric positive definite matrices. Experiments without preconditioner.

Figure 3.9: Performance profile in a log2 scale for Truncated AAR(6,10) and CG
on [0, 8]. Real symmetric positive definite matrices. Experiments with diagonal
preconditioner.



135

Figure 3.10: Performance profile in a log2 scale for Truncated AAR(6,10) and CG on
[0, 6]. Real symmetric positive definite matrices. Experiments with IC(0) precondi-
tioner.

Figure 3.11: Performance profile in a log2 scale for Truncated AAR(6,10) and CG
on [0, 3]. Real symmetric positive definite matrices. Experiments with ICT(10−4)
preconditioner.
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Figure 3.12: Performance profile in a log2 scale for Truncated AAR(6,10), Restarted
GMRES(10) and Restarted GMRES(30) on [0, 13]. Experiments without precondi-
tioner.

Figure 3.13: Performance profile in a log2 scale for Truncated AAR(6,10), Restarted
GMRES(10) and Restarted GMRES(30) on [0, 13]. Experiments with diagonal pre-
conditioner.
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Figure 3.14: Performance profile in a log2 scale for Truncated AAR(6,10), Restarted
GMRES(10) and Restarted GMRES(30) on [0, 4]. Experiments with ILU(0) precon-
ditioner.

Figure 3.15: Performance profile in a log2 scale for Truncated AAR(6,10), Restarted
GMRES(10) and Restarted GMRES(30) on [0, 5]. Experiments with ILUT(10−4)
preconditioner.
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Augmented AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.01 1.81 · 10−12 13 1.99 89.99

fidapm37* - - - - -
raefsky5* 0.06 2.37 · 10−11 7 89.43 -

sp1 0.22 1.05 · 10−8 43 70.49 89.30
sp3 0.40 4.53 · 10−8 43 68.96 89.41
sp5 0.69 2.88 · 10−8 43 68.80 88.20

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.27 5.00 · 10−6 245 40.39 58.70
sherman5 0.06 1.11 · 10−7 62 61.01 85.54
fidap008* - - - - -
chipcool0 0.59 4.82 · 10−7 109 53.37 75.16
e20r0000* ∗ ∗ ∗ ∗ ∗
spmsrtls* 0.08 6.55 · 10−14 7 89.21 -

III Stokes* ∗ ∗ ∗ ∗ ∗
garon1* ∗ ∗ ∗ ∗ ∗
garon2* ∗ ∗ ∗ ∗ ∗
memplus 0.97 1.15 · 10−5 360 31.82 46.67

saylr4 0.13 2.19 · 10−6 110 52.78 76.20
xenon1* - - - - -
xenon2* - - - - -
venkat01 7.52 7.97 · 10−7 366 27.36 40.94
QC2534 334.36 1.28 · 10−5 93,915 1.27 2.08
mplate 179.32 6.91 22,657 1.62 2.54

waveguide3 206.15 1.48 · 10−6 13,225 5.94 8.59
ABACUS shell hd - - - - -
light in tissue 1.93 4.50 · 10−7 112 53.26 73.84

kim1 0.33 7.18 · 10−9 14 46.85 89.31
chevron2 47.49 8.74 · 10−7 837 21.10 31.83

Table 3.32: Augmented AAR(6,12). Experiments with ILU(0) preconditioner.
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Augmented AAR(m = 6, p = 12)
Matrix Time (s) rel.error # Itr. ∠(rk, rk+m) ∠(rk, rk+2m)
fidap029 0.05 6.34 · 10−12 7 89.32 -

fidapm37* - - - - -
raefsky5 0.06 1.92 · 10−11 7 88.12 -

sp1 0.11 1.20 · 10−9 7 89.02 -
sp3 0.14 2.14 · 10−9 7 87.35 -
sp5 0.22 6.85 · 10−9 8 83.47 -

bcsstk29* ∗ ∗ ∗ ∗ ∗
sherman3 0.06 7.63 · 10−11 13 3.17 89.50
sherman5 0.05 4.38 · 10−11 13 2.58 89.94
fidap008* - - - - -
chipcool0 0.36 6.24 · 10−9 16 47.34 89.75
e20r0000 0.15 1.13 · 10−5 24 59.51 34.65
spmsrtls 0.07 5.24 · 10−11 7 89.01 -

III Stokes 0.85 6.91 · 10−5 29 4.91 3.02
garon1 0.13 9.66 · 10−9 19 30.09 22.39
garon2 0.64 1.11 · 10−7 34 44.70 50.64

memplus 0.09 1.30 · 10−10 13 3.65 89.96
saylr4 0.13 1.37 · 10−6 85 50.49 68.45
xenon1 0.92 7.95 · 10−10 25 60.71 87.71
xenon2 4.07 5.68 · 10−9 30 64.95 89.44

venkat01 1.98 4.56 · 10−10 19 65.39 88.47
QC2534 0.09 1.11 · 10−11 13 4.32 89.92
mplate 13.50 0.04 1,774 16.38 26.63

waveguide3 0.76 6.16 · 10−9 13 29.67 82.12
ABACUS shell hd 1.20 9.05 72 31.06 21.91

light in tissue 0.35 7.31 · 10−9 15 45.19 89.99
kim1 0.24 3.87 · 10−9 7 86.21 -

chevron2 4.54 1.90 · 10−8 55 52.50 63.94

Table 3.33: Augmented AAR(6,12). Experiments with ILUT(10−4) preconditioner.
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Figure 3.16: Performance profile in a log2 scale for Truncated AAR(6,10), Truncated
AAR(6,12), Augmented AAR(6,10) and Augmented AAR(6,12) on [0, 7]. Experi-
ments without preconditioner.

Figure 3.17: Performance profile in a log2 scale for Truncated AAR(6,10), Truncated
AAR(6,12), Augmented AAR(6,10) and Augmented AAR(6,12) on [0, 3]. Experi-
ments with diagonal preconditioner.



141

Figure 3.18: Performance profile in a log2 scale for Truncated AAR(6,10), Truncated
AAR(6,12), Augmented AAR(6,10) and Augmented AAR(6,12) on [0, 4]. Experi-
ments with ILU(0) preconditioner.

Figure 3.19: Performance profile in a log2 scale for Truncated AAR(6,10), Truncated
AAR(6,12), Augmented AAR(6,10) and Augmented AAR(6,12) on [0, 4]. Experi-
ments with ILUT(10−4) preconditioner.
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Chapter 4

Distributed memory parallelization

of Alternating

Anderson-Richardson

4.1 Introduction

This chapter assesses the performance of Alternating Anderson-Richardson in a multi-

core computational environment. This analysis is conducted to motivate the use

of this algorithm to solve large scale sparse linear systems in a High Performance

Computing framework. Indeed, P. Suryanarayana and collaborators presented AAR

as a linear solver suitable for next generation computing architectures due to the

potential reduction of the inter-processor communication. Preliminary experiments

in a multi-core environment have been shown by P. Suryanarayana and collaborators

in [48] and [49]. In these works, the authors analyzed the performance of AAR

to solve discretized elliptic partial differential equations described by a self-adjoint

operator. Our goal is to extend this type of analysis to a broader class of linear

systems, not necessarily focusing just on those arising from the discretization of PDEs.
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We thus verify that the interprocessor communication can be significantly reduced

using AAR in lieu of a standard Krylov method for linear systems associated with

diverse applications, with a consequent benefit for the computational time. A strong

scaling analysis of the algorithm is performed in this respect.

In Section 4.2 we describe the implementation of AAR used to run the experi-

ments, followed by a description of the hardware adopted in Section 4.3. The nu-

merical experiments conducted on a set of problems with different preconditioning

techniques is described in Section 4.4. Section 4.5 analyzes the memory storage re-

quirements for the different variants of AAR implemented, whereas the results of the

experiments are discussed in Section 4.6. In conclusion, we comment the results based

on the implementation of the code and we discuss possible future developments to

improve the performance in Section 4.7.

4.2 Implementation in MPI

The code used to produce the numerical experiments of this chapter is written in

C language. The library used to handle numerical linear algebra operations (e.g.

storage of matrices, vectors, execution of matrix-vector multiplies and linear systems

solving) is the PETSc library [66]. The matrix associated with the linear systems of

interest is imported from a file written in binary format. The solution to the linear

system is generated as a random vector and the right-hand side vector is constructed

multiplying the solution vector by the coefficient matrix. The least-squares problems

in Algorithm 6 of Chapter 3 to compute the Anderson mixing are solved according to

two different approaches. Indeed, a version of AAR solves the least-squares problem

via LSQR [46], whereas another version explicitly builds the normal equation

(RT
kRk)g

k = RT
k rk. (4.1)



144

The normal equation (4.1) is solved independently by each processor computing the

pseudo-inverse of the matrixRT
kRk. This task is accomplished using the LAPACKE dgelsd

routine inside the LAPACK library [64]. Although we are aware that the ill-conditioning

of the least-squares problem can be severely affected by explicitly building the normal

equation (4.1), this seems to be the most convenient option to carry out the project

in the short term. These two approaches were the only feasible ones according to the

software resources provided. Indeed, PETSc does not currently allow one to compute

the QR-factorization of a rectangular matrix. Moreover, the options available were

restricted to the libraries installed on the cluster, preventing us from linking external

libraries (e.g. SCALAPACK). Although the numerical properties of Equation (4.1) can

negatively impact the accuracy of the least-squares solving, we remind the reader

that this drawback can be controlled by combining the use of AAR with an efficient

preconditioner. Moreover, the explicit construction of the normal equation has ap-

pealing properties from a parallelism perspective. Indeed, the data structures needed

for linear algebra operations such as matrices and vectors are distributed row-wise

across the MPI processes. For the sake of simplicity, let us temporarily assume that

the number of rows is a multiple of the number of the MPI processes instantiated and

that the number of rows owned by each process is equal to nloc. If an MPI process

with ID equal to b owns rows from index [(b − 1) · nloc + 1] to [b · nloc], then each

process can locally compute

[
(Rloc

k,b)
TRloc

k,b

]
and (Rloc

k,b)
T rkloc,b, (4.2)

where Rloc
k,b is the submatrix of Rk obtained by extracting the rows with indices from

[(b − 1) · nloc + 1] to [b · nloc] and rkloc,b is the subvector of rk with indices from

[(b−1) ·nloc +1] to [b ·nloc]. The matrices
[
(Rloc

k,b)
TRloc

k,b

]
and (Rloc

k,b)
T rkloc,b are computed

independently by each process without any interprocessor communication needed.
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The only interaction among processes is needed to reconstruct the global quantities to

obtain Equation (4.1). In particular, only an MPI Allreduce operation is employed

using the sum as global reduction operation to reconstruct (RT
kRk) and RT

k rk as

follows:

(RT
kRk) =

nproc∑
b=1

[
(Rloc

k,b)
TRloc

k,b

]
, RT

k rk =

nproc∑
b=1

(Rloc
k,b)

T rkloc,b,

where nproc is the total number of MPI processes instantiated. Once (RT
kRk) and

RT
k rk are reconstructed and locally stored on each processor, the solution to the

least-squares problem is locally computed by solving Equation (4.1). We recall that

if Truncated AAR(m,p) is used, then the matrix (RT
kRk) has size p×p, and generally p

does not exceed 10. Therefore, the normal equation that has to be solved sequentially

by each process is computationally cheap. By adopting this approach to compute the

vector gk for the Anderson mixing, we minimize the amount of global communications

needed to execute the Algorithm 6. Indeed, the only global communication needed is

the reducing sum for the construction of the matrix (RT
kRk) and of the vector RT

k rk.

Therefore, if a proper preconditioner is combined with AAR in order to cap the ill-

conditioning of the normal equation, this implementation is supposed to considerably

leverage the parallelism in a multi-core environment with respect to standard Krylov

methods.

4.3 Hardware configuration

The numerical experiments are run on the mps queue provided by the Partnership

for an Advanced Computing Environment (PACE) at Georgia Institute of Technol-

ogy. The mps queue provides access to a 23 node cluster featuring 64 cores (4x AMD

Opteron(tm) Processor 6378) and 128 GB RAM per node, with a memory per core ra-

tio of 2GB. In total, the cluster offers 1,472 cores interconnected with QDR InfiniBand

for a total of almost 3 terabytes of RAM. However, not all the 23 nodes composing
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the mps queue have the same hardware features. Because of this, we employ only the

16 nodes which share the following configuration: Altus 1804i Server - 4P Interlagos

Node, Quad AMD Opteron 6276, 16C, 2.3 GHz, 128GB, DDR3- 1333 ECC, 80GB

SSD, MLC, 2.5” HCA, Mellanox ConnectX 2, 1-port QSFP, QDR, memfree, CentOS,

Version 5, and connected through InfiniBand cable.

4.4 Preconditioning approaches

The PETSc library provides several options as preconditioners. However, only some

of them can be run in a parallel computational environment. The ones we focus on

for the numerical experiments of this chapter are:

• Block Incomplete LU factorization with zero fill-in (Block-ILU(0) for short)

• Restricted Additive Schwarz (RAS for short)

• Incomplete LU factorization with thresholding, (ILUT(τ) for short)

• Sparse Approximate Inverse (SPAI for short)

• Algebraic Multigrid (AMG for short)

As concerns Block-ILU(0) and RAS preconditioners, the total number of subdomains

is set to 1,024. This choice is dictated by the fact that 1,024 is the maximal number

of MPI processes that can be instantiated on the cluster used for the experiments.

With regards to the RAS preconditioner, ILU(0) is used as a local solver on each

subdomain. The subdomain solver adopted for RAS is ILU(0).

With regards to the SPAI preconditioner, the implementation provided in PETSc is

based on the method described in [30]. The threshold to control the fill-in in ILUT(τ)

is set to τ = 10−4, whereas the threshold to control the fill-in in SPAI preconditioners

is set to 0.01 with a number of levels equal to 2. The number of levels coincide with

the power of the coefficient matrix adopted to control the sparsity pattern.
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The algebraic multigrid preconditioner is constructed so that a V-cycle is adopted

at each application of the preconditioner. The total number of levels in the multigrid

hierarchy is set to 5 and the coarsening factor is equal to 3. Chebyshev smoothers are

adopted at each level and a direct solver is employed at the coarse level. Unsmoothed

aggregation is applied to transfer the residual across the hierarchy.

4.5 Memory storage requirements

As applications in science and engineering are increasing at scale, memory require-

ments are becoming an issue. Indeed, state-of-the-art computers are progressively

optimized in terms of performance (i.e. increasing FLOPS), but the manufacturers

have reached a memory cap due to space limitations in the transistors. Therefore, the

memory requirements of future applications are supposed to challenge current mem-

ory capabilities. Because of this, new linear solvers must be conscientiously developed

in order to minimize the memory storage needed to perform algebraic operations. In

this context we quantify the memory storage using the scalar value stored in double

precision as a unit.

As concerns solving the least-squares problem using the LSQR algorithm, the

process resorts to the Golub-Kahan bidiagonalization technique (GKB for short).

Therefore, at each iteration of the GKB algorithm, an approximate factorization of

Rk is computed as:

Rk ≈ UkBkV
T
k ,

where Bk ∈ Rk×k, Uk ∈ Rn×k and Vk ∈ Rp×k. The matrices Uk and Vk have orthogonal

columns. In a least-squares framework, the matrix Uk does not need to be stored.

Therefore, only Bk and Vk are needed. The memory requirement associated with the
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GKB algorithm at the kth iteration amounts to

memory storage required by GKB at the kth iteration = k(2 + p).

When LSQR is used to solve the least-squares problem, the maximum number of

iterations allowed is set equal to the number of columns of Rk, that is p. Therefore,

in the worst case scenario where p iterations are performed, the maximum memory

storage needed is

memory storage required by GKB at the pth iteration = p(2 + p).

This amount of memory can be equally split among all the processes employed.

As concerns solving the least-squares problem computing the SVD on the matrix

RT
kRk, the goal is to decompose the matrix RT

kRk as

RT
kRK = WkΣkZ

T
k ,

where Σk ∈ Rp×p is a diagonal matrix, whereas Wk ∈ Rp×p and Zk ∈ Rp×p are

orthogonal. In this case, the total amount of memory required on each processor is

memory storage required by SVD computed on each processor = p(2p+ 1).

Therefore, the memory required on each processor by the AAR algorithm using the

SVD is bigger than the one required by the AAR using LSQR to solve the least-square

problem. However, we remind the reader that p is at the order of O(10). Hence the

memory storage is still affordable.
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4.6 Numerical experiments

The numerical experiments aim to compare the performance of Restarted GMRES(10)

and Restarted GMRES(30) with two different implementations of Truncated AAR(6,10).

The first implementation uses the PETSc version of LSQR to solve the least-squares

problem, whereas the second implementation of AAR explicitly builds the normal

equation and solves it on each processor via the SVD decomposition. When the

LSQR is adopted to iteratively compute the Anderson mixing vector gk, the maxi-

mum number of iterations allowed is set to p, i.e. the number of columns of Rk.

The test cases have been taken from the SuiteSparse Matrix Collection [18] and

are described in Table 4.1. The experiments are run for no use of the preconditioner,

Block-ILU(0), Restricted Additive Schwarz, ILUT(10−4), SPAI and Algebraic Multi-

grid. The specifics about the set-up of the preconditioners are as described in Section

4.4. All the preconditioners are applied as left-preconditioners. The stopping criterion

requires that the relative `2-norm of the preconditioned residual be less than 10−8 and

the maximum number of iterations allowed is set to 105. The results averaged over 5

runs. For each run, the solution vector has been generated as a random vector and

the right hand side has been computed via the matrix vector multiply between the

coefficient matrix and the solution vector. The time limit for the simulations to run

and complete their task (i.e. construction of the preconditioner and execution of 5

runs per linear solver) was set to 7 CPU hours. The numerical experiments have been

run for 32, 64, 128, 256 and 512 CPU cores. The option with 1,024 CPU cores has not

been explored because communication overhead already impacted the performance of

the linear solvers for 512 CPU cores, as shown by the tables described as follows.

The tables include only those cases where the preconditioner could be constructed

in a numerically stable way and that allowed at least one of the linear solvers to

converge. The use of the world ”Overtime” that sometimes is used in the Tables

refers to situations where the construction of the preconditioner took longer than two
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hours.

The results for Block-ILU(0) are displayed in Table 4.2. The Block-ILU(0) precon-

ditioner cannot be constructed in a numerically stable way for the matrices Freescale1

and FullChip and for the matrix dielFilterV2real none of the linear solvers con-

sidered converges to the prescribed accuracy. For the remaining test cases where

convergence has been achieved, it can be noticed that the implementation of AAR

using LSQR is not competitive against Restarted GMRES. This can be mainly ex-

plained by the fact that LSQR itself employs inner products to iteratively compute

the solution to a least-squares problem. Therefore, LSQR is very likely to cause bot-

tlenecks for the parallelization by introducing significant communication overheads.

However, the AAR implementation that resort the the normal equation exhibits very

promising results. Indeed, the computational locality of the preconditioner accom-

modates the strong scalability of the overall iterative procedure up to 256 cores. In

this context, AAR using the normal equation performs better than Restarted GM-

RES(10) and Restarted GMRES(30). The performance deteriorates going up to 512

cores because of non-negligible communication overheads.

In Table 4.3 we report the results for the use of Restricted Additive Schwarz. In

general, the use of a RAS as a preconditioner rather than Block-ILU(0) should improve

the performance of the linear solver, since an overlap across the subdomain generally

facilitates the convergence. However, this does not occur for the matrix CurlCurl4.

Indeed, RAS does not allow convergence for this test case on any of the linear solvers

tested. Analogously, the RAS preconditioner does not allow convergence on the matri-

ces Freescale1, FullChip and dielFilterV2real. As for the remaining test cases,

we still have Truncated AAR(6,10) with LSQR perform worse than any implementa-

tion of Restarted GMRES, whereas Truncated AAR(6,10) with the normal equation

performs comparably to Restarted GMRES for atmosmodl and circuit5M dc and it

clearly outperforms Restarted GMRES on the matrix Transport.
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As concerns ILUT(10−4), results are displayed in Table 4.4. The construction of

the preconditioner exceeded two hours for the matrices circuit5M dc and dielFilterV2real,

leading us to interrupt the analysis for these test cases. Moreover, none of the linear

solvers attained the prescribed accuracy on the matrices Freescale1 and FullChip.

As concerns the remaining matrices, the performance of the linear solvers relative

to each other is similar to what experienced for the previous preconditioning tech-

niques. Indeed, Truncated AAR(6,10) using LSQR is the linear solver that performed

the worst, whereas Truncated AAR with the normal equation converged faster than

Restarted GMRES(10) and Restarted GMRES(30). The performance of the linear

solvers for the matrices CurlCurl4 and atmosmodl is not reported for 512 processes

because the construction of the preconditioner exceeded the time allowed of two hours.

The results for the use of SPAI as a preconditioner are shown in Table 4.5. The

set-up phase of the preconditioner did not finish in two hours for dielFilterV2real.

As concerns Freescale1, FullChip and CurlCurl4 instead, none of the linear solvers

achieved convergence. With regards to the other test cases, we still have Truncated

AAR(6,10) with LSQR take longer than any other linear solver, whereas Truncated

AAR(6,10) with the normal equation succeeds in outperforming both the versions of

Restarted GMRES tested.

The use of Algebraic Multigrid preconditioners lead to results in Table 4.6. The

construction of the preconditioner brokedown for circuit5M dc, whereas it exceeded

two hours for Freescale1 and FullChip. The algebraic multigrid preconditioner is

the only approach that makes the linear solvers converge with dielFilterV2real.

For this test case, the version of Truncated AAR(6,10) using the normal equation is

still the linear solver that performs the best. However, for the matrices atmosmodl

and Transport the situation changes. Indeed, the two versions of Restarted GMRES

converge faster than both the implementations of AAR for these problems.
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Matrix Type Size Structure Positive definite Field of application

atmosmodl real 1,489,752 nonsymmetric no computational fluid dynamics

circuit5M dc real 3,523,317 nonsymmetric no circuit simulation

Freescale1 real 3,428,755 nonsymmetric no circuit simulation

FullChip real 2,987,012 nonsymmetric no circuit simulation

CurlCurl 4 real 2,380,515 symmetric no model reduction problem

dielFilterV2real real 1,157,456 symmetric no electromagnetics

Transport real 1,602,111 nonsymmetric no structural engineering

Table 4.1: MPI experiments. List of matrices used for numerical experiments.

Block-ILU(0) preconditioner

atmosmodl Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 18.48 (s) 10.00 (s) 4.28 (s) 6.27 (s) 19.03 (s)
TR AAR NE(6,10) 5.87 (s) 2.71 (s) 1.28 (s) 0.80 (s) 0.72 (s)

Restarted GMRES(10) 4.99 (s) 2.52 (s) 1.24 (s) 0.78 (s) 0.70 (s)
Restarted GMRES(30) 4.98 (s) 2.29 (s) 1.27 (s) 0.70 (s) 0.59 (s)

circuit5M dc Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 12.62 (s) 7.49 (s) 4.30 (s) 3.91 (s) 5.81 (s)
TR AAR NE(6,10) 4.90 (s) 2.63 (s) 1.51 (s) 1.35 (s) 1.30 (s)

Restarted GMRES(10) 3.11 (s) 1.83 (s) 1.31 (s) 1.34 (s) 1.37 (s)
Restarted GMRES(30) 3.12 (s) 1.82 (s) 1.40 (s) 1.38 (s) 1.39 (s)

Freescale1(RCM reordering) Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 1,865.75 (s) 967.27 (s) 613.60 (s) 663.63 (s) 1,009.82 (s)
TR AAR NE(6,10) 757.23 (s) 378.20 (s) 243.45 (s) 254.71 (s) 270.59 (s)

Restarted GMRES(10) - - - - -
Restarted GMRES(30) - - - - -

CurlCurl4 Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 270.83 (s) 141.87 (s) 81.53 (s) 66.38 (s) 160.55 (s)
TR AAR NE(6,10) 107.59 (s) 51.41 (s) 26.31 (s) 15.42 (s) 14.35 (s)

Restarted GMRES(10) 466.85 (s) 261.19 (s) 125.71 (s) 97.47 (s) 88.43 (s)
Restarted GMRES(30) 459.79 (s) 260.29 (s) 126.22 (s) 97.11 (s) 91.23 (s)

Transport Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 334.20 (s) 180.32 (s) 94.88 (s) 107.32 (s) 310.34 (s)
TR AAR NE(6,10) 121.61 (s) 59.48 (s) 34.60 (s) 22.26 (s) 40.70 (s)

Restarted GMRES(10) 590.42 (s) 270.52 (s) 158.32 (s) 121.90 (s) 171.39 (s)
Restarted GMRES(30) 591.14 (s) 269.04 (s) 163.27 (s) 121.09 (s) 167.50 (s)

Table 4.2: MPI experiments. Block-ILU(0) preconditioner.
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Restricted Additive Schwarz

atmosmodl Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 11.63 (s) 6.58 (s) 3.65 (s) 3.80 (s) 8.24 (s)
TR AAR NE(6,10) 5.20 (s) 3.01 (s) 1.69 (s) 0.89 (s) 0.57 (s)

Restarted GMRES(10) 4.00 (s) 2.52 (s) 1.48 (s) 0.89 (s) 0.67 (s)
Restarted GMRES(30) 4.02 (s) 2.57 (s) 1.39 (s) 0.82 (s) 0.79 (s)

circuit5M dc Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 8.02 (s) 4.61 (s) 2.94 (s) 2.72 (s) 3.59 (s)
TR AAR NE(6,10) 3.56 (s) 1.92 (s) 1.24 (s) 1.17 (s) 1.09 (s)

Restarted GMRES(10) 2.20 (s) 1.27 (s) 0.97 (s) 0.90 (s) 0.89 (s)
Restarted GMRES(30) 2.21 (s) 1.29 (s) 0.90 (s) 0.90 (s) 0.86 (s)

Transport Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 140.42 (s) 78.68 (s) 35.04 (s) 36.65 (s) 67.08 (s)
TR AAR NE(6,10) 75.29 (s) 39.54 (s) 24.80 (s) 14.59 (s) 9.58 (s)

Restarted GMRES(10) 155.79 (s) 74.23 (s) 53.71 (s) 30.38 (s) 27.65 (s)
Restarted GMRES(30) 155.74 (s) 74.10 (s) 53.34 (s) 31.91 (s) 21.28 (s)

Table 4.3: MPI experiments. Restricted Additive Schwarz preconditioner with overlap
layer equal to 1.

Incomplete LU factorization with Thresholding

atmosmodl Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 20.01 (s) 14.43 (s) 6.76 (s) 6.34 (s) Overtime
TR AAR NE(6,10) 6.83 (s) 5.90 (s) 2.81 (s) 1.63 (s) Overtime

Restarted GMRES(10) 5.14 (s) 8.19 (s) 4.86 (s) 1.96 (s) Overtime
Restarted GMRES(30) 5.13 (s) 8.24 (s) 4.60 (s) 2.04 (s) Overtime

CurlCurl4 Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 1,207.72 (s) 1,523.01 (s) 797.01 (s) 588.11 (s) Overtime
TR AAR NE(6,10) 428.23 (s) 383.26 (s) 189.23 (s) 121.32 (s) Overtime

Restarted GMRES(10) 779.39 (s) 330.43 (s) 205.56 (s) 152.88 (s) Overtime
Restarted GMRES(30) 779.43 (s) 329.84 (s) 207.04 (s) 151.33 (s) Overtime

Transport Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 144.38 (s) 78.68 (s) 35.04 (s) 36.65 (s) 67.08 (s)
TR AAR NE(6,10) 100.50 (s) 39.54 (s) 24.80 (s) 14.59 (s) 9.58 (s)

Restarted GMRES(10) 142.81 (s) 74.23 (s) 53.71 (s) 30.38 (s) 27.65 (s)
Restarted GMRES(30) 142.65 (s) 74.10 (s) 53.34 (s) 31.91 (s) 21.28 (s)

Table 4.4: MPI experiments. ILUT(10−4) preconditioner.
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Sparse Approximate Inverse

atmosmodl Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 11.70 (s) 6.18 (s) 3.07 (s) 3.88 (s) 8.74 (s)
TR AAR NE(6,10) 5.09 (s) 2.61 (s) 1.40 (s) 0.90 (s) 0.84 (s)

Restarted GMRES(10) 3.84 (s) 2.04 (s) 1.11 (s) 0.67 (s) 0.79 (s)
Restarted GMRES(30) 3.83 (s) 1.97 (s) 1.11 (s) 0.74 (s) 0.86 (s)

circuit5M dc Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 3.97 (s) 2.64 (s) 1.37 (s) 1.25 (s) 2.28 (s)
TR AAR NE(6,10) 1.37 (s) 0.71 (s) 0.48 (s) 0.46 (s) 0.60 (s)

Restarted GMRES(10) 0.65 (s) 0.36 (s) 0.29 (s) 0.30 (s) 0.56 (s)
Restarted GMRES(30) 0.65 (s) 0.38 (s) 0.28 (s) 0.28 (s) 0.59 (s)

Transport Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 128.14 (s) 88.88 (s) 45.31 (s) 52.27 (s) 136.83 (s)
TR AAR NE(6,10) 63.95 (s) 29.23 (s) 16.27 (s) 9.95 (s) 16.35 (s)

Restarted GMRES(10) 157.93 (s) 87.76 (s) 52.60 (s) 36.17 (s) 80.85 (s)
Restarted GMRES(30) 157.79 (s) 86.89 (s) 51.53 (s) 38.97 (s) 95.92 (s)

Table 4.5: MPI experiments. SPAI(0.01) preconditioner with 2 levels.

4.7 Conclusions and future work

In this chapter we have described two different ways to implement AAR in C using

the PETSc library as a support to perform linear algebra operations. One possibil-

ity allowed by the routines in PETSc is to solve the least-squares problem for the

Anderson mixing using the iterative method LSQR. The other approach presented

requires explicitly building the normal equation. Despite the explicit construction of

the normal equation can lead to ill-conditioned leas-squares problems, it has appeal-

ing computational properties from a parallelization perspective. Indeed, the use of

the normal equation to solve the least-squares problem would minimize the global

communication required across the MPI processes. Therefore, the concurrency of

the algorithm may be significantly increased. This is confirmed by the numerical re-

sults obtained. In fact, the implementation of Truncated AAR(6,10) with the normal

equation generally outperforms all the other linear solvers tested. For all the precon-
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Algebraic Multigrid

atmosmodl Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 3.50 (s) 2.02 (s) 1.41 (s) 1.37 (s) 3.46 (s)
TR AAR NE(6,10) 2.97 (s) 1.72 (s) 1.11 (s) 1.24 (s) 2.67 (s)

Restarted GMRES(10) 1.16 (s) 0.78 (s) 0.45 (s) 0.48 (s) 1.19 (s)
Restarted GMRES(30) 1.15 (s) 0.77 (s) 0.45 (s) 0.50 (s) 1.17 (s)

CurlCurl4 Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 152.07 (s) 93.17 (s) 51.44 (s) 33.64 (s) 49.49 (s)
TR AAR NE(6,10) 89.01 (s) 58.73 (s) 30.78 (s) 18.76 (s) 18.12 (s)

Restarted GMRES(10) 120.34 (s) 61.42 (s) 32.62 (s) 21.19 (s) 20.29 (s)
Restarted GMRES(30) 120.33 (s) 61.74 (s) 32.22 (s) 20.73 (s) 20.34 (s)

dielFilterV2real Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) - 1,340.90 (s) 975.99 (s) 832.11 (s) 1,386.38 (s)
TR AAR NE(6,10) 1,039.92 (s) 721.01 (s) 560.64 (s) 474.52 (s) 545.67 (s)

Restarted GMRES(10) - 1,233.76 (s) 816.01 (s) 907.48 (s) 925.95 (s)
Restarted GMRES(30) - 1,219.00 (s) 882.62 (s) 940.95 (s) 929.63 (s)

Transport Number of processes
Linear solver 32 64 128 256 512

TR AAR LSQR(6,10) 21.25 (s) 12.24 (s) 7.05 (s) 6.94 (s) 14.66 (s)
TR AAR NE(6,10) 14.89 (s) 8.20 (s) 4.69 (s) 4.53 (s) 7.44 (s)

Restarted GMRES(10) 8.31 (s) 5.77 (s) 3.37 (s) 3.17 (s) 5.22 (s)
Restarted GMRES(30) 8.30 (s) 5.92 (s) 3.11 (s) 2.89 (s) 5.10 (s)

Table 4.6: MPI experiments. AMG preconditioner with a V-cycle made of 5 levels
and a coarsening factor equal to 3.
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ditioning options explored, some of the problems do not allow the construction of a

numerically stable preconditioner or do not allow convergence for the linear solvers

tested. This factor limits the impact of the conclusion that can be drawn from the

numerical experiments of this chapter. However, the results obtained are promising

enough to encourage further studies in this respect.

A significant limitation we encountered is the fact that the matrix has to be

imported by reading it from a file. A more efficient approach may be to directly

interface the code of the linear solver with the code that takes care of generating the

problem. This way, the time consuming writing/reading steps to import the matrix

can be circumvented.

Moreover, an object-oriented implementation of the code in C++ may be of in-

terest. In fact, this would allow the user to exploit HPC numerical linear algebra

libraries written in C++ such as Trilinos [67].
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Chapter 5

Monte Carlo Linear Solvers

This chapter essentially coincide with the work published in [8].

5.1 Introduction

The next generation of computational science applications will require numerical

solvers that are both reliable and capable of high performance on projected exas-

cale platforms. In order to meet these goals, solvers must be resilient to soft and hard

system failures, provide high concurrency on heterogeneous hardware configurations,

and retain numerical accuracy and efficiency. In this chapter we focus on the solution

of large sparse systems of linear equations, for example of the kind arising from the

discretization of partial differential rquations (PDEs). A possible approach is to try

to adapt existing solvers (such as preconditioned Krylov subspace or multigrid meth-

ods) to the new computational environments, and indeed several efforts are under

way in this direction; see, e.g., [1, 26, 37, 50, 58] and references therein. An alterna-

tive approach is to investigate new algorithms that can address issues of resiliency,

particularly fault tolerance and hard processor failures, naturally. An example is pro-

vided by the recently proposed Monte Carlo Synthetic Acceleration Methods (MCSA),

see [24, 55]. In these methods, an underlying (deterministic) stationary Richardson
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iterative method is combined with a stochastic, Monte Carlo-based “acceleration”

scheme. Ideally, the accelerated scheme will converge to the solution of the linear

system in far fewer (outer) iterations than the basic scheme without Monte Carlo

acceleration, with the added advantage that most of the computational effort is now

relegated to the Monte Carlo portion of the algorithm, which is highly parallel and

offers a more straightforward path to resiliency than standard, deterministic solvers.

In addition, a careful combination of the Richardson and Monte Carlo parts of the

algorithm allows to circumvent the well known problem of slow Monte Carlo error

reduction; see [24].

Numerical evidence presented in [24] suggests that MCSA can be competitive,

for certain classes of problems, with established deterministic solvers such as precon-

ditioned conjugate gradients and Generalized Minimum Residual (GMRES). So far,

however, no theoretical analysis of the convergence properties of these solvers has

been carried out. In particular, it is not clear a priori whether the method, applied

to a particular linear system, will converge. Indeed, the convergence of the underly-

ing preconditioned Richardson iteration is not sufficient, in general, to guarantee the

convergence of the MCSA-accelerated iteration. In other words, it is quite possible

that the stochastic “acceleration” part of the algorithm may actually cause the hybrid

method to diverge or stagnate.

In this chapter we address this fundamental issue, discussing both necessary and

sufficient conditions for convergence. We also discuss the choice of splitting, or pre-

conditioner, and illustrate our findings by means of numerical experiments.

The chapter is organized as follows. In Section 5.2 we provide an overview of

existing Monte Carlo linear solver algorithms. In Section 5.3 we will discuss the con-

vergence behavior of stochastic solvers, including a discussion of classes of matrices

for which convergence can be guaranteed. Section 5.4 provides some numerical re-

sults illustrating properties of the various approaches and in Section 5.5 we give our
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conclusions.

5.2 Stochastic linear solvers

Linear solvers based on stochastic techniques have a long history, going back to the

famed 1928 paper by Courant, Friedrichs, and Lewy on finite difference schemes

for PDEs [16]. Many authors have considered linear solvers based on Monte Carlo

techniques, with important early contributions by Curtiss [17] and by Forsythe and

Leibler [28]. More recent works include [2, 34], and [20], among others. Until re-

cently, these methods have had mixed success at best, due to their generally inferior

performance when compared to state-of-the-art deterministic solvers like multigrid

or preconditioned Krylov methods. Current interest in resilient solvers, where some

performance may be traded off for increased robustness in the presence of faults, has

prompted a fresh look at methods incorporating Monte Carlo ideas [24,55,56].

As mentioned in [20], Monte Carlo methods may be divided into two broad classes:

direct methods, such as those described in [20,21], and iterative methods, which refer to

techniques such as those presented in [33,34]; see also [24,56]. The first type consists

of purely stochastic schemes, therefore the resulting error with respect to the exact

solution is made of just a stochastic component. In contrast, the iterative Monte

Carlo methods utilize more traditional iterative algorithms alongside the stochastic

approach, generating two types of error: a stochastic one and a systematic one. In

practice, it may be difficult to separate the two components; nevertheless, awareness

of this intrinsic structure is useful, as it allows algorithm designers some flexibility

in the choice of what part of the algorithm to target for refinement (e.g., trading

off convergence speed for resilience by balancing the number of “deterministic” outer

iterations against the number of random walks to be used within each iteration).

Consider a nonsingular linear system as in Equation (2.1), which Equation (2.1)
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can be recast as a fixed point problem as in Equation (2.3). Assuming that the

spectral radius ρ(H) < 1, the solution to (2.3) can be written in terms of a power

series in H (Neumann series):

x =
∞∑
`=0

H`f .

Denoting the kth partial sum by x(k), the sequence of approximate solutions {x(k)}∞k=0

converges to the exact solution regardless of the initial guess x0.

By restricting the attention to a single component of x we obtain

xi = fi +
∞∑
`=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k`=1

Hi,k1Hk1,k2 · · ·Hk`−1,k`fk` . (5.1)

The last equation can be reinterpreted as the realization of an estimator defined on a

random walk. Let us start considering a random walk whose state space S is labeled

by the set of indices of the forcing term f :

S = {1, 2, . . . , n} ⊂ N.

Each ith step of the random walk has a random variable ki associated with it. The

realization of ki represents the index of the component of f which is visited in the

current step of the random walk. The construction of random walks is accomplished

considering the directed graph associated with the matrix H. The nodes of this graph

are labeled 1 through n, and there is a directed edge from node i to node j if and only if

Hi,j 6= 0. Starting from a given node, the random walk consists of a sequence of nodes

obtained by jumping from one node to the next along directed edges, choosing the next

node at random according to a transition probability distribution matrix constructed

from H or from HT , see below. Note that it may happen that a row of H (or of HT )

is all zero; this happens when there are no out-going (respectively, in-coming) edges

from (respectively, to) the corresponding node. In this case, that particular random
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walk is terminated and another node is selected as the starting point for the next

walk. The transition probabilities and the selection of the initial state of the random

walk can be accomplished according to different modalities, leading to two distinct

methods: the forward and adjoint methods. These methods are described next.

5.2.1 Forward method

Given a functional J , the goal is to compute its action on a vector x by constructing

a statistical estimator whose expected value equals J(x). Each statistical sampling is

represented by a random walk and it contributes to build an estimate of the expected

value. Towards this goal, it is necessary to introduce an initial probability distribution

and a transition matrix so that random walks are well defined. Recalling Riesz’s

representation theorem one can write

J(x) = 〈h,x〉 =
n∑
i=1

hixi,

where h ∈ Rn is the Riesz representative in Rn of the functional J . Such a represen-

tative can be used to build the initial probability p̃ : S → [0, 1] of the random walk

as

p̃(k0 = i) = p̃k0 =
|hi|∑n
i=1|hi|

.

It is important to highlight that the role of vector h is confined to the construction

of the initial probability, and that h is not used afterwards in the stochastic process.

A possible choice for the transition probability matrix P can be

p(k` = j | k`−1 = i) = Pij =
|Hij|∑n
k=1|Hik|

.

where

p(·, i) : S → [0, 1], ∀i ∈ S
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and k` ∈ S represents the state reached at a generic `th step of the random walk. A

related sequence of random variables wij can be defined as

wij =
Hij

Pij
.

The probability distribution of the random variables wij is represented by the tran-

sition matrix that governs the stochastic process. The wij quantities just introduced

can be used to build one more sequence of random variables. At first we introduce

quantities W`

W0 =
hk0
p̃k0

, W` = W`−1wk`−1,k` .

In probability theory, a random walk is itself envisioned as a random variable that can

assume multiple values consisting of different realizations. Indeed, given a starting

point, there are in general many choices (one for each nonzero in the corresponding row

of P ) to select the second state and from there on recursively. The actual feasibility

of a path and the frequency with which it is selected depend on the initial probability

and on the transition matrix. By introducing ν as a realization of a random walk, we

define

X(ν) =
∞∑
`=0

W`fk`

as the random variable associated with a specific realization ν. We can thus define

the estimator θ as

θ = E[X] =
∑
ν

PνX(ν),

where ν ranges over all possible realizations. Pν is the probability associated with a

specific realization of the random walk. It can be proved (see [33] and [34]) that

E[W`fk` ] =
〈
h, H`f

〉
, ` = 0, 1, 2, . . .
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and

θ = E

[ ∞∑
`=0

W`fk`

]
= 〈h,x〉 .

A possible choice for h is a vector of the standard basis, h = ei. This would

correspond to setting the related initial probability to a Kronecker delta:

p̃(k0 = j) = δij.

By doing so, we have k0 = i and

θ = xi = fi +
∞∑
l=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k`=1

Pi,k1Pk1,k2 · · ·Pk`−1,k`wi,k1wk1,k2 · · ·wk`−1,k`fk` . (5.2)

As regards the variance, we recall the following relation:

V ar

[ ∞∑
`=0

W`fk`

]
= E

[ ∞∑
`=0

W 2
` f

2
k`

]
−
(
E

[ ∞∑
`=0

W`fk`

])2

. (5.3)

Hence, the variance can be computed as the difference between the second mo-

ment of the random variable and the square of its first moment.

In order to apply the Central Limit Theorem (CLT) to the estimators defined

above, we must require that the estimators have both finite expected value and finite

variance. This is equivalent to checking the finiteness of the expected value and

second moment. Therefore, we have to impose the following conditions:

E

[ ∞∑
`=0

W`fk`

]
<∞, (5.4)

E

[ ∞∑
`=0

W 2
` f

2
k`

]
<∞. (5.5)

The forward method presented above, however, has the limitation of employing
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an entire set of realizations to estimate just a single entry of the solution at a time.

Hence, in order to estimate the entire solution vector for Eq. (2.1), we have to employ

a separate set of realizations for each entry in the solution vector. This limitation

can be circumvented by the adjoint method which we describe below.

Remark 5. It is important to note that in order to construct the random walks,

access to the individual entries of H is required. Hence, H needs to be formed

explicitly and therefore must be sparse in order to have a practical algorithm.

5.2.2 Adjoint method

A second Monte Carlo method can be derived by considering the linear system adjoint

to (2.1):

ATy = d, (5.6)

where y and d are the adjoint solution and source term. Equation (5.6) can be recast

in a manner similar to (2.4):

y = HTy + d.

Note that ρ(HT ) = ρ(H) < 1, hence convergence of the Neumann series (fixed point

iteration) for (2.1) guarantees convergence for the adjoint system (5.6).

Exploiting the following inner product equivalence:

〈
ATy,x

〉
= 〈y, Ax〉 ,

it follows that

〈x,d〉 = 〈y, f〉 . (5.7)
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By writing the Neumann series for the solution to (5.6) we have:

y =
∞∑
`=0

(HT )`d,

and focusing on a single entry of the solution vector:

yi = di +
∞∑
`=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k`=1

HT
i,k1
HT
k1,k2
· · ·HT

k`−1,k`
dk` .

The undetermined quantities in the dual problem (5.6) are y and d. Therefore,

two constraints are required: the first constraint is Eq. (5.7) and as a second constraint

we select d to be one of the standard basis vectors. Applying this choice of d to (5.7)

we get:

〈y, f〉 = 〈x,d〉 = xi.

In order to give a stochastic interpretation of the adjoint method similar to the

one obtained for the forward method, we introduce the initial probability:

p̃(k0 = i) =
|fi|
‖f‖1

and the initial weight:

W0 = ‖f‖1
fi
|fi|

.

The transition probability is defined as

p(k` = j|k`−1 = i) = Pij =
|HT

ij |∑n
k=1|HT

ik|
=

|Hji|∑n
k=1|Hki|

and the sequence of weights as follows:

wij =
Hji

Pij
.
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By reformulating the fixed point scheme in its statistical interpretation, the follow-

ing formula holds for the estimator of the solution vector associated with the adjoint

method: it is the vector θ ∈ Rn such that

θi = E

[∑∞
`=0W`δk`,i

]
=
∞∑
`=0

n∑
k0=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k`=1

fk0Pk0,k1Pk1,k2 · · ·Pk`−1,K`
wk0,k1 · · ·wk`−1,k`δk`,i.

(5.8)

This estimator is known in literature as collision estimator.

The forward method adds a contribution to the component of the solution vector

where the random walk began, based on the value of the source vector in the state

in which the walk currently resides. The adjoint method, on the other hand, adds a

contribution to the component of the solution vector where the random walk currently

resides based on the value of the source vector in the state in which the walk began.

The Kronecker delta at the end of the series (5.8) represents a filter, indicating that

only a subset of realizations contribute to the jth component of the solution vector.

The variance is given by

V ar

[ ∞∑
`=0

W`δk`,i

]
= E

[ ∞∑
`=0

W 2
` δk`,i

]
−
(
E

[ ∞∑
`=0

W`δk`,i

])2

, i = 1, . . . , n. (5.9)

Along the same lines as the development for the forward method, we must im-

pose finiteness of the expected value and second moment. Therefore, the following

conditions must be verified:

E

[ ∞∑
`=0

W`δk`,i

]
<∞ i = 1, . . . , n (5.10)

and

E

[ ∞∑
`=0

W 2
` δk`,i

]
<∞, i = 1, . . . , n. (5.11)

The main advantage of this method, compared to the forward one, consists in the
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fact that a single set of realizations is used to estimate the entire solution vector.

Unless only a small portion of the problem is of interest, this property often leads

to the adjoint method being favored over the forward method. In other terms, the

adjoint method should be preferred when approximating the solution globally over

the entire computational domain, while the forward method is especially useful when

approximating the solution locally.

In literature another estimator is employed along with the adjoint Monte Carlo

method, the so called expected value estimator. Its formulation is as follows: it is the

vector θ ∈ Rn such that

θi = E

[
fi +

∑∞
`=0W`H

T
k`,i

]
= fi +

∞∑
`=0

n∑
k0=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k`=1

fk0Pk0,k1Pk1,k2 · · ·Pk`−1,k`wk0,k1 · · ·wk`−1,k`H
T
k`,i
.

(5.12)

Hence, the expected value estimator averages the deterministic contribution of the

iteration matrix over all the potential states j that might be reached from the current

state `. The variance in this case becomes:

V ar

[ ∞∑
`=0

W`H
T
k`,i

]
= E

[ ∞∑
`=0

W 2
`H

T
k`,i

]
−
(
E

[ ∞∑
`=0

W`H
T
k`,i

])2

, i = 1, . . . , n.

(5.13)

5.2.3 Hybrid stochastic/deterministic methods

The direct methods described in Sections 5.2.1 and 5.2.2 suffer from a slow rate of

convergence due to the 1√
N

behavior dictated by the central limit theorem (N here

is the number of random walks used to estimate the solution). Furthermore, when

the spectral radius of the iteration matrix is close to unity, each individual random

walk may require a large number of transitions to approximate the corresponding

components in the Neumann series. To offset the slow convergence of the central
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limit theorem, schemes have been proposed which combine traditional fixed point

iterative methods with the stochastic solvers. The first such method, due to Halton,

was termed the Sequential Monte Carlo (SMC) method, and can be written as follows.

Algorithm 8: Sequential Monte Carlo

Data: H, b, x0

Result: xnum
1 l = 0;
2 while not reached convergence do
3 rl = b− Axl;
4 δxl+1 ≈ (I −H)−1rl; % Computed via Standard MC;
5 xl+1 = xl + δxl+1;
6 l = l + 1;

7 end
8 xnum = xl+1;

The Monte Carlo linear solver method is used to compute the update δxl. This

algorithm is equivalent to a Richardson iteration accelerated by a correction obtained

by approximately solving the error-residual equation

(I −H)δxl+1 = rl. (5.14)

If this equation were to be solved exactly, the corresponding approximation xl+1 =

xl + δxl+1 would be the exact solution to the linear system. This is of course im-

practical, since solving (5.14) is equivalent to solving the original linear system (2.1).

Instead, the correction is obtained by solving (5.14) only approximately, using a

Monte Carlo method. Because Monte Carlo is only applied within a single iteration,

the central limit theorem is only applicable within that iteration rather than to the

overall convergence behavior of the algorithm. This allows a trade-off between the

amount of time and effort spent on the inner (stochastic) and outer (deterministic)

iterations, which can take into account the competing goals of reliability and rapid

convergence.
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A further extension of Halton’s method, termed Monte Carlo Synthetic Acceler-

ation (MCSA), has been recently introduced in [56] and [24]. The MCSA algorithm

can be written as:

Algorithm 9: Monte Carlo Synthetic Acceleration

Data: H, b, x0

Result: xnum
1 l = 0;
2 while not reached convergence do

3 xl+
1
2 = Hxl + b;

4 rl+
1
2 = b− Axl+

1
2 ;

5 δxl+
1
2 ≈ (I −H)−1rl+

1
2 ; % Computed via Standard MC;

6 xl+1 = xl+
1
2 + δxl+

1
2 ;

7 l = l + 1;

8 end
9 xnum = xl+1;

As with SMC, a Monte Carlo linear solver is used to compute the updating con-

tribution δxl+
1
2 . In this approach, an extra step of Richardson iteration is added to

smooth out some of the high-frequency noise introduced by the Monte Carlo pro-

cess. This way, the deterministic and stochastic components of the algorithm act in

a complementary fashion.

Obviously, a minimum requirement is that the linear system can be written in the

form (2.4) with ρ(H) < 1. This is typically achieved by preconditioning. That is, we

find an invertible matrix P such that H = I−P−1A satisfies ρ(H) < 1, and we apply

the method to the fixed point problem (2.4) where H = I − P−1A and f = P−1b.

In other words, the underlying deterministic iteration is a preconditioned Richardson

iteration. Various choices of the preconditioner are possible; a detailed discussion of

this issue is deferred until Section 5.3.5. Here we note only that because we need

explicit knowledge of the entries of H, not all preconditioning choices are viable; in

particular, P needs to be such that H = I − P−1A retains a high degree of sparsity.

Unless otherwise specified, below we assume that the transformation of the original
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linear system (2.1) to the fixed point form (2.4) with ρ(H) < 1 has already been

carried out.

5.3 Convergence behavior of stochastic methods

Interestingly, the convergence requirements imposed by the Monte Carlo estimator

and the corresponding variance can be reformulated in a purely deterministic set-

ting. For instance, the condition of finiteness of the expected value turns out to be

equivalent to requiring

ρ(H) < 1, (5.15)

where H is the iteration matrix of the fixed point scheme. Indeed, we can see from

(5.2) and (5.8) that the expected value is expressed in terms of power series of H,

and the condition ρ(H) < 1 is a necessary and sufficient condition for the Neumann

series to converge.

Next, we address the finiteness requirement for the second moment. Equations

(5.3) and (5.9) for the forward and the adjoint method, respectively, show that the

second moment can be reinterpreted as a power series with respect to the matrices

defined as follows:

Ĥij =
H2
ij

Pij
- Forward Method

and

Ĥij =
H2
ji

Pij
- Adjoint Method.

In order for the corresponding power series to converge, we must require

ρ(Ĥ) < 1. (5.16)

Hence, condition (5.15) is required for a generic fixed point scheme to reach conver-
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gence, whereas the extra condition (5.16) is typical of the stochastic schemes studied

in this work. Moreover, since the finiteness of the variance automatically entails the

finiteness of the expected value, we can state that (5.16) implicitly entails (5.15),

whereas the converse is not true in general.

5.3.1 Necessary and sufficient conditions

Here we report some results presented in [57] and [35], concerning necessary conditions

and sufficient conditions for convergence. In particular, these papers discuss suitable

choices for constructing the transition probability matrix, P .

The construction of the transition probability must obviously satisfy the following

constraints (called transition conditions):


Pij ≥ 0∑N

j=1 Pij = 1 .

One additional requirement relates the sparsity pattern of H to that of the transition

probabilities:

Forward Method: Hij 6= 0⇒ Pij 6= 0,

Adjoint Method: Hji 6= 0⇒ Pij 6= 0.

The following auxiliary result can be found in [35].

Lemma 1. Consider a generic vector g = (g1, g2, . . . , gN)T where at least one element

is nonzero, gk 6= 0 for some k ∈ {1, . . . , N}. Then, the following statements hold:

(i) for any probability distribution vector β = (β1, β2, . . . , βN)T satisfying the tran-

sition conditions,
N∑
k=1

g2
k

βk
≥
( N∑

k=1

|gk|
)2

; moreover, the lower bound is attained
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for the probability vector defined by βk =
|gk|∑N
k=1|gk|

;

(ii) there always exists a probability vector β such that
N∑
k=1

g2
k

βk
≥ c, for all c > 1.

Consider now a generic realization of a random walk, truncated at a certain kth

step:

νk : r0 → r1 → r2 → · · · → rk,

and the corresponding statistical estimator associated with the Forward Monte Carlo

method:

X(νk) =
Hr0,r1Hr1,r2 · · ·Hrk−1,rk

Pr0,r1Pr1,r2 · · ·Prk−1,rk

frk .

Then, the following result presented in [35] holds.

Theorem 5.3.1. (Forward method version) Let H ∈ Rn×n be such that ‖H‖∞ <

1. Consider νk as the realization of a random walk ν truncated at the kth step.

Then, there always exists a transition matrix P such that V ar
(
X(νk)

)
→ 0 and

V ar
(∑

ν X(νk)
)

is bounded as k →∞.

If we introduce the estimator associated with the Adjoint Monte Carlo:

X(νk) =
HT
r0,r1

HT
r1,r2
· · ·HT

rk−1,rk

Pr0,r1Pr1,r2 · · ·Prk−1,rk

sign(fr0)‖f‖1,

then we can state a theorem analogous to 5.3.1.

Theorem 5.3.2. (Adjoint method version) Let H ∈ Rn×n with ‖H‖1 < 1. Consider

νk as the realization of a random walk ν truncated at the kth step. Then, there always

exists a transition matrix P such that V ar
(
X(νk)

)
→ 0 and V ar

(∑
ν X(νk)

)
is

bounded as k →∞.

These results represent sufficient (but not necessary) conditions for the conver-

gence of the forward and adjoint Monte Carlo and can be easily verified if H is
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explicitly available. However, in many cases the conditions ‖H‖∞ < 1 or ‖H‖1 < 1

may be too restrictive.

The connection between Lemma 1 and Theorems 5.3.1-5.3.2 will be explained in

the next section, dedicated to the definition of transition probabilities.

5.3.2 Construction of transition probabilities

The way the transition probability is defined has a significant impact on the proper-

ties of the resulting algorithm, and in many circumstances the choice can make the

difference between convergence or divergence of the stochastic scheme. Two main

approaches have been considered in the literature: uniform probabilities and weighted

probabilities. We discuss these next.

Uniform probabilities

With this approach, the transition matrix P is such that all the transitions corre-

sponding to each row have equal probability of occurring:

Forward : Pij =


0 if Hij = 0,

1
#(non-zeros in row i of H)

if Hij 6= 0;

Adjoint : Pij =


0 if Hji = 0,

1
#(non-zeros in column i of H)

if Hji 6= 0.

The Monte Carlo approach resorting to this definition of the transition matrix, in

accordance to [2], is called Uniform Monte Carlo (UM).
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Weighted probabilities

An alternative definition of transition matrices aims to associate nonzero probability

to the nonzero entries of H accordingly to their magnitude. For instance, we may

employ the following definition:

Forward : p(ki = j | ki−1 = i) = Pij =
|Hij|p∑n
k=1|Hik|p,

and

Adjoint : p(ki = j | ki−1 = i) = Pij =
|Hji|p∑n
k=1|Hki|p

,

where p ∈ N. The case p = 1 is called Monte Carlo Almost Optimal (MAO). The

reason for the “almost optimal” designation can be understood looking at Lemma 1,

as the quantity
∑N

k=1

g2k
βk

is minimized when the probability vector is defined as βk =

|gk|∑N
k=1|gk|

. Indeed, Lemma 1 implies that the almost optimal probability minimizes

the∞-norm of Ĥ for the forward method and the 1-norm of Ĥ for the adjoint method,

since the role of g in Lemma 1 is played by the rows of H in the former case and by the

columns of H in the latter one. This observation provides us with easily computable

upper bounds for ρ(Ĥ).

5.3.3 Classes of matrices with guaranteed convergence

On the one hand, sufficient conditions for convergence of Monte Carlo linear solvers

are very restrictive; see, e.g., [57] and [35]. On the other hand, the necessary and

sufficient condition in [35] requires knowledge of ρ(Ĥ), which is not readily available.

Note that explicit computation of ρ(Ĥ) is quite expensive, comparable to the cost

of solving the original linear system. While ensuring that ρ(H) < 1 (by means of

appropriate preconditioning) is in many cases possible, guaranteeing that ρ(Ĥ) < 1

is generally much more problematic.
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Here we identify matrix types for which both conditions can be satisfied by an

appropriate choice of splitting, so that convergence of the Monte Carlo scheme is

guaranteed.

SDD matrices

One of these categories is represented by strictly diagonally dominant (SDD) matrices.

We investigate under which conditions diagonal preconditioning is enough to ensure

convergence. We recall the following definitions.

Definition 1. A matrix A ∈ Rn×n is strictly diagonally dominant by rows if

|aij| >
n∑
i=1
i 6=j

|aij|. (5.17)

Definition 2. A matrix A ∈ Rn×n is strictly diagonally dominant by columns if AT

is strictly diagonally dominant by rows, i.e.,

|aij| >
n∑
j=1
j 6=i

|aij|. (5.18)

Suppose A is SDD by rows. Then we can apply left diagonal (Jacobi) precondition-

ing, obtaining an iteration matrix H = I − P−1A such that ‖H‖∞ < 1. Introducing

a MAO transition probability for the forward method:

Pij =
|Hij|∑n
k=1|Hik|

we have that the entries of Ĥ are defined as follows:

Ĥij =
H2
ij

Pij
= |Hij|

( n∑
k=1

|Hik|
)
.



176

Consequently,

n∑
j=1

|Ĥij| =
n∑
j=1

Ĥij =

( n∑
j=1

|Hij|
)( n∑

k=1

|Hik|
)

=

( n∑
j=1

|Hij|
)2

< 1, ∀i = 1, · · · , n.

This implies that ρ(Ĥ) ≤ ‖Ĥ‖∞ < 1, guaranteeing the forward Monte Carlo con-

verges. However, nothing can be said a priori about the convergence of the adjoint

method.

On the other hand, if (5.18) holds, we can apply right diagonal (Jacobi) precon-

ditioning, which results in an iteration matrix H = I − AP−1 such that ‖H‖1 < 1.

In this case, by a similar reasoning we conclude that the adjoint method converges,

owing to ‖Ĥ‖1 < 1; however, nothing can be said a priori about the forward method.

Finally, it is clear that if A is SDD by rows and by columns, then a (left or right)

diagonal preconditioning will result in the convergence of both the forward and the

adjoint Monte Carlo schemes.

GDD matrices

Another class of matrices for which the convergence of MC solvers is ensured is that of

generalized diagonally dominant (GDD) matrices. We recall the following definition.

Definition 3. A square matrix A ∈ Cn×n is said to be generalized diagonally domi-

nant if

|aii|di ≥
n∑
j=1
j 6=i

|aij|dj, i = 1, . . . , n,

for some positive vector d = (d1, . . . , dn)T .

A proper subclass of the class of GDD matrices is represented by the nonsingular

M -matrices. Recall that A is a nonsingular M -matrix if it is of the form A = rI −B

where B is nonnegative and r > ρ(B). It can be shown (see, e.g., [11]) that a matrix

A ∈ Rn×n is a nonsingular M -matrix if and only if there exists a positive diagonal
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matrix ∆ such that A∆ is SDD by rows. Clearly, every nonsingular M -matrix is

GDD.

It is well known (see, e.g., [5]) that the classical Jacobi, Block Jacobi and Gauss–

Seidel splittings are convergent if A is a nonsingular M -matrix. However, this is not

enough to ensure the convergence of MC schemes based on the corresponding fixed

point (preconditioned Richardson) iteration, since in general we cannot expect that

ρ(Ĥ) < 1.

Nevertheless, if A is an M -matrix, there exist efficient methods to determine a

diagonal scaling of A so that the resulting matrix is SDD by rows. Note that the

scaled matrix is still an M -matrix, therefore applying left Jacobi preconditioning to

this matrix will guarantee that both ρ(H) < 1 and ρ(Ĥ) < 1.

In [40], the author presents a procedure to determine whether a given matrix

A ∈ Cn×n is GDD (in which case the diagonal scaling that makes A SDD is produced),

or not. The algorithm can be described as follows.

This procedure, which in practice converges very fast, turns a generalized diago-

nally dominant matrix (in particular, a nonsingular M -matrix) into a strictly diago-

nally dominant matrix by rows. By replacing Si =
n∑
j=1
j 6=i

|aij| at step 1 with Sj =
n∑
i=1
i 6=j

|aij|

and by replacing aji = aji · di with aji = aji · dj, we obtain the algorithm that turns

a GDD matrix into a matrix that is SDD by columns.

Once we have applied this transformation to the original matrix A the Monte

Carlo scheme combined with diagonal preconditioning is ensured to converge.

Block diagonally dominant matrices

In this section we analyze situations in which block diagonal preconditioning can

produce a convergent Monte Carlo linear solver. Assume that A has been partitioned

into p×p block form, and that each diagonal block has size ni with n1 + · · ·+np = n.

Assume further that each diagonal block Aii is nonsingular. The iteration matrix
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Algorithm 10: Algorithm to determine whether a matrix is GDD

Data: matrix A, aii 6= 0, i = 1, . . . , n
Result: di, i = 1, . . . , n

1 Compute Si =
n∑
j=1
j 6=i

|aij|, i = 1, . . . , n

2 Set t = 0
3 for i = 1, . . . , n do
4 if |aii| > Si then
5 t = t+ 1
6 end

7 end
8 if t = 0 then
9 print “A is not GDD”

10 else if t = n then
11 print “A is GDD”
12 else
13 for i = 1, . . . , n do
14 di = Si+ε

|aii|+ε ε > 0, j = 1, . . . , n

15 aji = aji · di
16 end
17 Go to step 1

18 end

H ∈ Rn×n resulting from a block diagonal left preconditioning is

H =



0n1×n1 −A−1
11 A12 · · · · · · −A−1

11 A1p

−A−1
22 A21 0n2×n2 −A−1

22 A23 · · · −A−1
22 A2p

...
...

. . .
...

...

...
...

...
. . .

...

−A−1
pp Ap1 · · · · · · −A−1

pp Ap,p−1 0np×np


.

Below, we denote with “i|m” the modulo operation applied to the integers i and

m. The symbol “b·c” stands for the floor function, as usual.

Consider first the forward method. Assuming (for ease of notation) that all the

blocks have the same size m = n/p, the entries of the MAO transition probability
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matrix become:

Pij =
|Hij|∑n
k=1|Hik|

=

∣∣∣∣([Ab i
m
cb i

m
c]
−1Ab i

m
cb j

m
c

)
i|m,j|m

∣∣∣∣
n∑
k=1
k 6=i

∣∣∣∣([Ab i
m
cb i

m
c]
−1Ab i

m
cb k

m
c

)
i|m,k|m

∣∣∣∣
.

Consequently, the entries of Ĥ are given by

Ĥij = |Hij|
(∑n

k=1|Hik|
)

=

∣∣∣∣([Ab i
m
cb i

m
c]
−1Ab i

m
cb j

m
c

)
i|m,j|m

∣∣∣∣ n∑
k=1
k 6=i

∣∣∣∣([Ab i
m
cb i

m
c]
−1Ab i

m
cb k

m
c

)
i|m,k|m

∣∣∣∣.
Computing the sum over a generic row of Ĥ, we obtain

n∑
j=1

|Ĥij| =
n∑
j=1

Ĥij =

( n∑
j=1
j 6=i

∣∣∣∣([Ab i
m
cb i

m
c]
−1Ab i

m
cb j

m
c

)
i|m,j|m

∣∣∣∣)2

.

Consider now the quantity ‖Ĥ‖∞. Clearly,

‖Ĥ‖∞ < 1⇔
n∑
j=1
j 6=i

∣∣∣∣([Ab i
m
cb i

m
c]
−1Ab i

m
cb j

m
c

)
i|m,j|m

∣∣∣∣ < 1, ∀i = 1, . . . , n.

A sufficient condition for this to happen is that

p∑
k=1
k 6=h

‖A−1
hhAhk‖∞ < 1, ∀h = 1, . . . , p. (5.19)
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Introducing the matrix H̃ ∈ Rp×p defined as

H̃ =



0 ‖A−1
11 A12‖∞ · · · · · · ‖A−1

11 A1p‖∞

‖A−1
22 A21‖∞ 0 ‖A−1

22 A23‖∞ . . . ‖A−1
22 A2p‖∞

...
...

. . .
...

...

...
...

...
. . .

...

‖A−1
pp Ap1‖∞ · · · · · · ‖A−1

pp Ap,p−1‖∞ 0


we can formulate a sufficient condition on the convergence of the forward Monte Carlo

scheme:

‖H̃‖∞ < 1⇒ ‖Ĥ‖∞ < 1. (5.20)

Note that (5.19) also implies that ‖H‖∞ < 1.

We now turn our attention to the adjoint method. Analogously to the forward

method, we can define

(Ĥ)Tij = |HT
ij |
( n∑

k=1

|HT
ik|
)

= |Hji|
( n∑

k=1

|Hki|
)
.

This allows us to formulate a sufficient condition for the convergence of the adjoint

Monte Carlo method with block diagonal preconditioning. Letting

H̃ =



0 ‖A−1
11 A12‖1 · · · · · · ‖A−1

11 A1p‖1

‖A−1
22 A21‖1 0 ‖A−1

22 A23‖1 · · · ‖A−1
22 A2p‖1

...
...

. . .
...

...

...
...

...
. . .

...

‖A−1
pp Ap1‖1 · · · · · · ‖A−1

pp Ap,p−1‖1 0


,
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a sufficient condition is that ‖H̃‖1 < 1, i.e.,

p∑
h=1
h6=k

‖A−1
hhAhk‖1 < 1, ∀k = 1, . . . , p. (5.21)

Again, this condition also implies that ‖H‖1 < 1.

We say that A is strictly block diagonally dominant by rows (columns) with respect

to a given block partition if condition (5.19) (respectively, (5.21)) is satisfied relative to

that particular block partition. Note that a matrix may be strictly block diagonally

dominant with respect to one partition and not to another. We note that these

definitions of block diagonal dominance are different from those found in, e.g., [27],

and they are easier to check in practice since they do not require computing the

2-norm of the blocks of H.

5.3.4 Adaptive methods

In formulas (5.2) and (5.8), the estimation of the solution to the linear system (2.1)

involves infinite sums, which in actual computation have to be truncated. In the

following we discuss criteria to decide the number of steps to be taken in a single

random walk as well as the number of random walks that need to be performed at

each Richardson iteration.

History length

We first consider criteria to terminate an individual random walk, effectively deciding

how many terms of the Neumann series will be considered. One possibility is to set

a predetermined history length, at which point all histories are terminated. This

approach, however, presents two difficulties. First, it is difficult to determine a priori

how many steps on average will be necessary to achieve a specified tolerance. Second,

due to the stochastic nature of the random walks, some histories will retain important
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information longer than others. Truncating histories at a predetermined step runs

the risk of either prematurely truncating important histories, leading to larger errors,

or continuing unimportant histories longer than necessary, leading to computational

inefficiency.

Our goal is to apply a cutoff via an automatic procedure, without requiring any

user intervention. We would like to determine an integer m such that

θ̃ = E

[∑m
`=0 W`fk`

]
= fi +

m∑
`=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k`=1

Pi,k1Pk1,k2 · · ·Pk`−1,k`wk0,k1wk1,k2 · · ·wk`−1,k`fk`

and

θ̃i = E

[∑m
`=0W`δk`,j

]
=

m∑
`=0

n∑
k1

n∑
k2

· · ·
n∑
k`

fk0Pk0,k1Pk1,k2 · · ·Pk`−1,K`
wk0,k1 · · ·wk`−1,k`δk`,i

are good approximations of (5.2) and (5.8), respectively.

In [55] a criterion was given which is applicable to both forward and adjoint

methods. It requires to set up a relative weight cutoff threshold Wc and to look for a

step m such that

Wm ≤ WcW0 . (5.22)

In (5.22), W0 is the value of the weight at the initial step of the random walk and

Wm is the value of the weight after m steps. We will adopt a similar strategy in this

work.

Number of random walks

We now consider the selection of the number of random walks that should be per-

formed to achieve a given accuracy. Unlike the termination of histories, this is a
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subject that has not been discussed in the Monte Carlo linear solver literature, as all

previous studies have considered the simulation of a prescribed number of histories.

The expression for the variance of the forward method is given by formula (5.3).

In this context, a reasonable criterion to determine the number Ñi of random walks

to be run is to set a threshold ε1 and determine Ñi such that

√
V ar[θi]

|E[θi]|
< ε1, i = 1, . . . , n. (5.23)

The dependence of V ar[θi] and E[θi] on Ñi is due to the fact that θi is estimated

by performing a fixed number of histories. Therefore, we are controlling the relative

standard deviation, requiring it not to be too large. In other words, we are aiming

for an approximate solution in which the uncertainty factor is small relative to the

expected value. This simple adaptive approach can be applied for the estimation

of each component xi. Hence, a different number of histories may be employed to

compute different entries of the solution vector.

As concerns the adjoint method, the estimation of the variance is given in formula

(5.9). A possible criterion for the adaptive selection of the number Ñ of random walk,

in this situation, is that it satisfies the condition

‖σÑ‖1

‖x‖1

< ε1, (5.24)

where σ is a vector whose entries are σÑi = V ar[θi] and x is a vector whose entries

are xi = E[θi].

The criteria introduced above can be exploited to build an a posteriori adaptive

algorithm, capable of identifying the minimal value of Ñ that verifies (5.23) or (5.24),

respectively. Algorithms 11 and 12 describe the Monte Carlo approaches with the

adaptive criteria.

The use of the adaptive approach for the selection of the number of histories has
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Algorithm 11: A posteriori adaptive Forward Monte Carlo

Data: N , ε1

Result: Ñi, σi, xi
1 for i = 1, . . . , n do

2 Ñi = N ;
3 compute xi;
4 compute σi;
5 while σi

|xi| < ε1 do

6 Ñ = Ñ +N ;
7 compute xi;
8 compute σi;

9 end

10 end

Algorithm 12: A posteriori adaptive Adjoint Monte Carlo

Data: N , ε1

Result: Ñ , σ, x
1 Ñ = N ;
2 compute x;
3 compute σ;

4 while ‖σ‖1‖x‖1 < ε1 do

5 Ñ = Ñ +N ;
6 compute x;
7 compute σ;

8 end

a dual purpose. First, it guarantees that the update computed with the Monte Carlo

step is accurate enough to preserve convergence. Second, it provides the user with

a tuning parameter to distribute the computation between the deterministic and the

stochastic part of the algorithm. Lowering the value of the threshold for the relative

standard deviation increases the number of histories per iteration. This results in a

more accurate stochastic updating and reduces the iterations necessary to converge.

While guessing an a priori fixed number of histories may lead to a smaller number

of Monte Carlo histories overall, it might either hinder the convergence or distribute

too much computation on the deterministic side of the scheme (or both). Generally

speaking, the adaptive approach is more robust and more useful, especially when
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ρ(H) is close to 1, since in this case the Richardson step is less effective in dampening

the uncertainty coming from the previous iterations.

5.3.5 Preconditioning

As noted at the end of Section 5.2, left preconditioning can be incorporated into

any Monte Carlo linear solver algorithm by simply substituting A with P−1A and

b with P−1b in (2.1); i.e., we set H = I − P−1A and f = P−1b in (2.4). Right

preconditioning can also be incorporated by rewriting (2.1) as AP−1y = b, with

y = Px; i.e., we set H = I − AP−1 and replace x by y in (2.4). The solution x to

the original system (2.1) is then given by x = P−1y. Likewise, split (left and right)

preconditioning can also be used. The Monte Carlo process, however, imposes some

constraints on the choice of preconditioner. Most significantly, because the transition

probabilities are built based on the values of the iteration matrix H, it is necessary to

have access to the entries of the preconditioned matrix P−1A (or AP−1). Therefore,

we are limited to preconditioners that enable explicitly forming the preconditioned

matrix while retaining some of the sparsity of the original matrix.

One possible preconditioning approach involves either diagonal or block diagonal

preconditioning (with blocks of small or moderate size). Diagonal preconditioning

does not alter the sparsity of the original coefficient matrix, whereas block diagonal

preconditioning will incur a moderate amount of fill-in in the preconditioned matrix

if the blocks are not too large. From the discussions in Section 5.3.3 and 18, select-

ing a diagonal or block diagonal preconditioner guarantees convergence of the Monte

Carlo schemes for matrices that are strictly diagonally dominant or block diagonally

dominant, respectively. In addition, M -matrices that are not strictly or block diago-

nally dominant can also be dealt with by first rescaling A so that it becomes strictly

diagonally dominant, as discussed in Section 5.3.3.

In principle, other standard preconditioning approaches can also be used in an
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attempt to achieve both ρ(H) < 1 and ρ(Ĥ) < 1 while still retaining sparsity in

the preconditioned matrix. One possibility is the use of incomplete LU factorizations

[7, 52]. If P = LU is the preconditioner with sparse triangular factors L and U ,

then P−1A can in principle be formed explicitly provided that the sparsity in L,

U and A is carefully exploited in the forward and back substitutions needed to form

(LU)−1 = U−1(L−1A). In general, however, this results in a rather full preconditioned

matrix; sparsity needs to be preserved by dropping small entries in the resulting

matrix.

Another class of preconditioners that are potentially of interest for use with Monte

Carlo linear solvers are approximate inverse preconditioners [7]. In these algorithms,

an approximation to the inverse of A is generated directly and the computation of

the preconditioned matrix reduces to one or more sparse matrix-matrix products,

a relatively straightforward task. As with ILU factorizations, multiple versions of

approximate inverse preconditioning exist which may have different behavior in terms

of effectiveness of the preconditioner versus the resulting reduction in sparsity.

A downside of the use of ILU or approximate inverse preconditioning is that the

quality of preconditioner needed to achieve both ρ(H) < 1 and ρ(Ĥ) < 1 is difficult

to determine. Indeed, in some situations it may happen that modifying the precondi-

tioner so as to reduce ρ(H) may actually lead to an increase in ρ(Ĥ), decreasing the

effectiveness of the Monte Carlo process on the system or even causing it to diverge.

In other words, for both ILU and sparse approximate inverse preconditioning it seems

to be very difficult to guarantee convergence of the Monte Carlo linear solvers a priori.

5.3.6 Considerations about computational complexity

Providing an analysis of the computational complexity for the aforementioned al-

gorithms is not entirely straightforward because of their stochastic nature. Indeed,

different statistical samplings can produce estimates with different uncertainty levels,



187

requiring a proper tuning of the number of samplings computed to reach a prescribed

accuracy. Moreover, we already mentioned that the asymptotic analysis of MC con-

vergence assumes random walks with infinitely many steps and N →∞, where N is

the number of random walks. However, in practice each history must be truncated

to a finite number of steps and the number of statistical samplings must be finite

as well. The actual value of N and the length of the histories affect the accuracy

of the statistical estimation, thus influencing the number of iterations in a hybrid

algorithm, since the uncertainty propagates to subsequent iterations. Therefore, here

we can only provide a tentative analysis of the complexity of the forward and adjoint

Monte Carlo methods, assuming a specific history length and a fixed number N of

statistical samplings.

Recalling formula (5.2) for the entry-wise estimate for the solution with the for-

ward method, the cost of reconstructing the entire solution vector is

Forward: O(N · k` · n), (5.25)

where N is the number of histories, k` is the length of each random walk, and n is

the number of unknowns. As concerns the adjoint method, formula (5.8) leads to

Adjoint: O(N · k`). (5.26)

The operation count for the hybrid schemes can thus be obtained by combining the

cost of the Richardson scheme with the complexity of standard MC techniques.

Regarding the Sequential Monte Carlo algorithm, the standard MC scheme is

combined with the computation of the residual at each iteration. The cost of the

residual computation is essentially that of a sparse matrix-vector product, which

is O(n) for a sparse system. Therefore, the complexity of a single Sequential MC
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iteration is

Sequential MC with forward MC update: O((n+ 1) ·N · k`) (5.27)

using the forward MC as an inner solver, and

Sequential MC with adjoint MC update: O(n+N · k`) (5.28)

using the adjoint MC as an inner solver.

A single iteration of MCSA requires computing the residual, applying a matrix-

vector product using H, and applying an MC update. The complexity of an MCSA

iteration using the forward MC is therefore

MCSA with forward MC update: O((2n+ 1) ·N · k`), (5.29)

whereas using the adjoint MC we find

MCSA with adjoint MC update: O(2n+N · k`). (5.30)

Note that these estimates require nnz(H) ≈ nnz(A), in the sense that both H and

A contain O(n) nonzeros. The actual values attained by N and k` depend on the

thresholds employed to truncate a single history and to determine the number of

random walks to use. In general, the higher N and k`, the lower the number of outer

iterations to achieve a prescribed accuracy. Finally, the total cost will depend also

on the number of iterations, which is difficult to predict in practice.
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Type of problem n ρ(H) Forward ρ(Ĥ) Adjoint ρ(Ĥ)
1D reaction-diffusion 50 0.4991 0.9827 0.9827

2D Laplacian 900 0.9949 0.994 0.9945
2D advection-diffusion 1089 0.9836 0.983 0.983

Marshak problem 1600 0.6009 0.3758 0.3815

Table 5.1: Properties of the matrices employed for the checks on adaptivity.

5.4 Numerical results

In this section we discuss the results of numerical experiments. The main goal of

these experiments is to gain some insight into the behavior of adaptive techniques,

and to test different preconditioning options within the Monte Carlo approach.

5.4.1 Numerical tests with adaptive methods

In this subsection we study experimentally the adaptive approaches discussed in Sec-

tion 5.3.4. For this purpose, we restrict our attention to standard Monte Carlo linear

solvers.

For these tests we limit ourselves to small matrices, primarily because the numeri-

cal experiments are being computed on a standard laptop and the computational cost

of Monte Carlo methods rapidly becomes prohibitive on such machines. The smallest

of these matrices represents a finite difference discretization of a 1D reaction-diffusion

equation, the second one is a discrete 2D Laplacian with zero Dirichlet boundary

conditions, the third a steady 2D advection-diffusion operator discretized by quadri-

lateral linear finite elements using the IFISS package [22], and the fourth one results

from a finite volume discretization of a thermal radiation diffusion equation (Marshak

problem). The first and the last of these matrices are strictly diagonally dominant by

both rows and columns. For all the problems, left diagonal preconditioning is applied.

Details about these matrices are given in Table 5.1.

We present results for both the Forward and the Adjoint Monte Carlo methods.
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Type of problem Relative Error Nb. Histories
1D reaction-diffusion 0.003 5, 220

2D Laplacian 0.1051 262, 350
2D advection-diffusion 0.022 1, 060, 770

Marshak problem 0.0012 1, 456, 000

Table 5.2: Forward Monte Carlo. Adaptive selection of histories, ε1 = 0.1.

As concerns the Forward method, we set the maximum number of histories per entry

to 107. In Tables 5.2 and 5.3 we show results for values of the adaptive threshold

(5.23) equal to ε1 = 0.1 and ε1 = 0.01, respectively. A batch size of two is used

at each adaptive check to verify the magnitude of the apparent relative standard

deviation. As expected, results are aligned with the convergence rate predicted by

the Central Limit Theorem. Indeed, decreasing by a factor of 10 the tolerance ε1 we

see that the relative error undergoes a decrease of the same order, requiring roughly

one hundred times more histories. In the case of the 2D Laplacian we actually have

an increase of a factor close to 400 in the number of histories, but the relative error is

decreased by more than thirty times. For this particular example, the forward method

overestimates the number of histories needed to satisfy a prescribed reduction on the

standard deviation.

As regards the Adjoint Monte Carlo, at each adaptive check the number of random

walks employed is increased by ten. A maximum number of histories equal to 1010

is set. Tables 5.4, 5.5 and 5.6 show results for the different test cases using adaptive

thresholds (5.24) with values ε1 = 0.1, ε1 = 0.01 and ε1 = 0.001, respectively. By

comparing the reported errors, it is clear that a decrease in the value of the threshold

induces a reduction of the relative error of the same order of magnitude. This confirms

the effectiveness of the adaptive selection of histories with an error reduction goal.

Each decrease in the error by an order of magnitude requires an increase in the total

number of histories employed by two orders of magnitude, as expected.

The same simulations can be run resorting to the expected value estimator. Re-
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Type of problem Relative Error Nb. Histories
1D reaction-diffusion 4 · 10−4 512, 094

2D Laplacian 0.0032 108, 551, 850
2D advection-diffusion 0.0023 105, 476, 650

Marshak problem 5.8 · 10−4 144, 018, 700

Table 5.3: Forward Monte Carlo. Adaptive selection of histories, ε1 = 0.01.

Type of problem Relative Error Nb. Histories
1D reaction-diffusion 0.08 1820

2D Laplacian 0.136 570
2D advection-diffusion 0.08 2400

Marshak problem 0.288 880

Table 5.4: Collision estimator – Adjoint Monte Carlo. Adaptive selection of histories,
ε1 = 0.1.

Type of problem Relative Error Nb. Histories
1D reaction-diffusion 0.0082 185, 400

2D Laplacian 0.0122 126, 800
2D advection-diffusion 0.0093 219, 293

Marshak problem 0.0105 650, 040

Table 5.5: Collision estimator – Adjoint Monte Carlo. Adaptive selection of histories,
ε1 = 0.01.

Type of problem Relative Error Nb. Histories
1D reaction-diffusion 9.56 · 10−4 15,268,560

2D Laplacian 0.001 12, 600, 000
2D advection-diffusion 0.0011 23, 952, 000

Marshak problem 0.0011 80, 236, 000

Table 5.6: Collision estimator – Adjoint Monte Carlo. Adaptive selection of histories,
ε1 = 0.001.

Type of problem Relative Error Nb. Histories
1D reaction-diffusion 0.0463 1000

2D Laplacian 0.1004 900
2D advection-diffusion 0.0661 1300

Marshak problem 0.0526 2000

Table 5.7: Expected value estimator – Adjoint Monte Carlo. Adaptive selection of
histories, ε1 = 0.1
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Type of problem Relative Error Nb. Histories
1D reaction-diffusion 0.004 100, 600

2D Laplacian 0.0094 83, 700
2D advection-diffusion 0.0088 124, 400

Marshak problem 0.0056 166, 000

Table 5.8: Expected value estimator – Adjoint Monte Carlo. Adaptive selection of
histories, ε1 = 0.01.

Type of problem Relative Error Nb. Histories
1D reaction-diffusion 0.004 10, 063, 300

2D Laplacian 9.31 · 10−4 8, 377, 500
2D advection-diffusion 0.0013 12, 435, 000

Marshak problem 7.79 · 10−4 16, 537, 000

Table 5.9: Expected value estimator – Adjoint Monte Carlo. Adaptive selection of
histories, ε1 = 0.001.

sults are shown in the Tables 5.7, 5.8 and 5.9 for the threshold values of ε1 = 0.1,

ε1 = 0.01 and ε1 = 0.001 respectively. As it can be noticed, in terms of error scaling

the results are quite similar to the ones obtained with the collision estimator. As

regards the number of histories needed to reach a prescribed accuracy, the orders

of magnitude are the same for both the collision and the expected value estimators.

However, the expected value estimator requires in most cases a smaller number of

realizations. This behavior becomes more pronounced as the value of the threshold

decreases, making the computation increasingly cost-effective.

5.4.2 Preconditioning approaches

In this subsection we examine the effect of different preconditioners on the values

attained by the spectral radii ρ(H) and ρ(Ĥ). For this purpose, we focus on the 2D

discrete Laplacian and the 2D discrete advection diffusion operator from the previous

section.

The values of the two spectral radii with diagonal preconditioning have already

been shown in Table 5.4. Here we consider the effect of block diagonal preconditioning
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Block size nnz(H)
nnz(A)

ρ(H) ρ(Ĥ)

5 2.6164 0.9915 0.9837
10 5.6027 0.9907 0.9861
30 16.3356 0.9898 0.9886

Table 5.10: Behavior of ρ(H) and ρ(Ĥ) for the 2D Laplacian with block diagonal
preconditioning.

Block size nnz(H)
nnz(A)

ρ(H) ρ(Ĥ)

3 1.4352 0.9804 0.9531
9 3.0220 0.9790 0.9674
33 9.8164 0.9783 0.9774

Table 5.11: Behavior of ρ(H) and ρ(Ĥ) for the 2D advection-diffusion problem with
block diagonal preconditioning.

for different block sizes, and the use of the factorized sparse approximate inverse

preconditioner AINV [9,10] for different values of the drop tolerance (which controls

the sparsity in the approximate inverse factors). Intuitively, with these two types of

preconditioners both ρ(H) and ρ(Ĥ) should approach zero for increasing block size

and decreasing drop tolerance, respectively; however, the convergence need not be

monotonic in general, particularly for ρ(Ĥ). This somewhat counterintuitive behavior

is shown in Tables 5.10 and 5.11, where an increase in the size of the blocks used for

the block diagonal preconditioner results in an increase of ρ(Ĥ) for both test problems.

Note also the very slow rate of decrease in ρ(H) for increasing block size, which is

more than offset by the rapid increase in the density of H, which of course implies

much higher costs. We mention that for a block size of 30 the 2D discrete Laplacian is

block diagonally dominant, but not for smaller block sizes. The 2D discrete advection-

diffusion operator is not block diagonally dominant for any of the three reported block

sizes.

In Tables 5.12 and 5.13 the values of the spectral radii are shown for the AINV

preconditioner with two different values of the drop tolerance [9,10]. It is interesting

to point out that, for the two-dimensional Laplacian, a drop tolerance τ = 0.05
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Drop tolerance nnz(H)
nnz(A)

ρ(H) ρ(Ĥ)

0.05 8.2797 0.9610 1.0231
0.01 33.1390 0.8668 0.8279

Table 5.12: Behavior of ρ(H) and ρ(Ĥ) for the 2D Laplacian with AINV precondi-
tioning.

Drop tolerance nnz(H)
nnz(A)

ρ(H) ρ(Ĥ)

0.05 3.8392 0.9396 0.9069
0.01 15.1798 0.7964 0.6361

Table 5.13: Behavior of ρ(H) and ρ(Ĥ) for the 2D advection-diffusion problem with
AINV preconditioning.

entails ρ(H) < 1 but the same does not hold for Ĥ. Both convergence conditions are

satisfied by reducing the drop tolerance, but at the price of very high fill-in in the

preconditioned matrix.

In summary, we conclude that it is generally very challenging to guarantee the

convergence of Monte Carlo linear solvers a priori. Simple (block) diagonal precon-

ditioners may work even if A is not strictly (block) diagonally dominant, but it is

hard to know beforehand if a method will converge, especially due to lack of a priori

bounds on ρ(Ĥ). Moreover, the choice of the block sizes in the block diagonal case

is not an easy matter. Sparse approximate inverses are a possibility but the amount

of fill-in required to satisfy the convergence conditions could be unacceptably high.

These observations suggest that it is difficult to use Monte Carlo linear solvers in

the case of linear systems arising from the discretization of steady-state PDEs, which

typically are not strictly diagonally dominant. As we shall see later, the situation is

more favorable in the case of time-dependent problems.

5.4.3 Hybrid methods

Next, we present results for hybrid methods, combining a deterministic Richardson

iteration with Monte Carlo acceleration. We recall that the convergence conditions are
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the same as for the direct stochastic approaches, therefore the concluding observations

from the previous section still apply.

Poisson problem

Consider the standard 2D Poisson model problem:


−∆u = f in Ω,

u = 0 on ∂Ω,

(5.31)

where Ω = (0, 1) × (0, 1). For the numerical experiments we use as the right-hand

side a sinusoidal distribution in both x and y directions:

f(x, y) = sin(πx) sin(πy).

We discretize problem (5.31) using standard 5-point finite differences. For N = 32

nodes in each direction, we obtain the 900 × 900 linear system already used in the

previous section.

Consider the iteration matrix H corresponding to (left) diagonal preconditioning.

It is well known that ρ(H) < 1, and indeed we can see from Table 5.1 that ρ(H) ≈

0.9949. It is also easy to see that ‖H‖1 = 1. In order for the Adjoint Monte Carlo

method to converge, it is necessary to have ρ(Ĥ) < 1, too. If an almost optimal

probability is used, the Adjoint Monte Carlo method leads to a Ĥ matrix such that

‖Ĥ‖1 ≤‖H‖2
1 = 1.

This condition by itself is not enough to guarantee that ρ(Ĥ) < 1. However, the

iteration matrix H has zero-valued entries on the main diagonal and it has:

• four entries equal to 1
4

on the rows associated with a node which is not adjacent
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to the boundary;

• two entries equal to 1
4

on the rows associated with nodes adjacent to the corner

of the square domain;

• three entries equal to 1
4

on the rows associated with nodes adjacent to the

boundary on an edge of the square domain.

Recalling the definition of Ĥ in terms of the entries of the iteration matrix H and

the transition probability P , we see that

Ĥ = D̃H,

where D̃ is a diagonal matrix with diagonal entries equal to 1, 1
2

or 3
4
. In particular,

d̃i = diag(D̃)i = 1 if the ith row of the discretized Laplacian is associated with a node

which is not adjacent to the boundary, d̃i = diag(D̃)i = 1
2

if the row is associated with

a node of the grid adjacent to the corner of the boundary, and d̃i = diag(D̃)i = 3
4

if

the associated node of the grid is adjacent to the boundary of the domain far from

a corner. Since H is an irreducible nonnegative matrix and D̃ is a positive definite

diagonal matrix, we can invoke a result in [29] to conclude that

ρ(Ĥ) = ρ(D̃H) ≤ ρ(D̃)ρ(H).

Since ρ(D̃) = 1, then ρ(Ĥ) ≤ ρ(H) < 1. Therefore, diagonal preconditioning

always guarantees convergence for the Monte Carlo linear solver applied to any 2D

Laplace operator discretized with 5-point finite differences. Similar arguments apply

to the d-dimensional Laplacian, for any d.

Results of numerical experiments are reported in Table 5.14. We compare the

purely deterministic Richardson iteration (Jacobi’s method in this case) with two hy-

brid methods, Halton’s sequential Monte Carlo and MCSA using the Adjoint method.
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The threshold for the adaptive selection of the random walks is set to ε1 = 0.1. Con-

vergence is attained when the initial residual has been reduced by at least eight orders

of magnitude, starting from a zero initial guess. Note that, as expected, the diag-

onally preconditioned Richardson iteration converges very slowly, since the spectral

radius of H is very close to 1. Halton’s Sequential Monte Carlo performs quite well

on this problem, but even better results are obtained by the Adjoint MCSA method,

which converges in one iteration less than Sequential Monte Carlo while requiring far

less Monte Carlo histories per iteration. This might be explained by the fact that

within each outer iteration, the first relaxation step in the MCSA algorithm refines

the accuracy of the solution coming from the previous iteration, before using it as the

input for the MC solver at the current iterate. In particular, its effect is to dampen

the statistical noise produced by the Monte Carlo linear solver in the estimation of

the update δxl+
1
2 performed at the previous iteration. Therefore, the refinement, or

smoothing, accomplished by the Richardson relaxation decreases the number of ran-

dom walks needed for a prescribed accuracy. This hypothesis is validated by the fact

that at the first iteration both Sequential Monte Carlo and MCSA use the same num-

ber of histories. Their behaviors start differing from the second iteration on, when

the statistical noise is introduced in the estimation of the correction to the current

iterate; see Figures 5.1 and 5.2. It can be seen that in all the numerical tests presented

in this section there is a sharp increase (from O(103)–O(105) to O(106)–O(107)) in

the number of histories when going from the first to subsequent iterations. This is

due to the introduction of statistical noise coming from the Monte Carlo updating

of the solution. Indeed, the stochastic noise, introduced from the second iteration

on, increases the uncertainty associated with the estimate of the solution. Therefore,

the adaptive criterion forces the algorithm to perform a higher number of histories to

achieve a prescribed accuracy.
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Figure 5.1: Sequential MC - Poisson problem. Number of random walks employed at
each iteration. The number for the first iteration is 2000.

Figure 5.2: MCSA - Poisson problem. Number of random walks employed at each
iteration. The number for the first iteration is 2000.
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algorithm relative err. # iterations average # histories per iteration
Richardson 9.8081 · 10−8 3133 -

Sequential MC 7.9037 · 10−8 9 8.264,900
Adjoint MCSA 8.0872 · 10−8 8 1,738,250

Table 5.14: Numerical results for the Poisson problem.

algorithm relative err. # iterations average # histories per iteration
Richardson 9.073 · 10−8 634 -

Sequential MC 8.415 · 10−8 8 12,391,375
Adjoint MCSA 6.633 · 10−8 7 3,163,700

Table 5.15: Numerical results for the diffusion reaction problem.

Reaction-diffusion problem

Here we consider the simple reaction-diffusion problem


−∆u+ σu = f in Ω,

u = 0 on ∂Ω,

(5.32)

where Ω = (0, 1) × (0, 1), σ = 0.1 and f ≡ 1. A 5-point finite difference scheme

is applied to discretize the problem. The number of nodes on each direction of the

domain is 100, so that h ≈ 0.01. The discretized problem is n × n with n = 9604.

A left diagonal preconditioning is again applied to the coefficient matrix obtained

from the discretization, which is strictly diagonally dominant. The 1-norm of the

iteration matrix is ‖H‖1 ≈ 0.9756. This automatically guarantees the convergence

of the Adjoint Monte Carlo linear solver. In Table 5.15 a comparison between the

deterministic Richardson iteration, Sequential Monte Carlo and MCSA is provided.

The results are similar to those for the Poisson equation. The number of histories

per iteration for Sequential Monte Carlo and MCSA is shown in Figures 5.3 and 5.4.
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Figure 5.3: Sequential MC - Reaction-diffusion problem. Number of random walks
employed at each iteration. The number first the first iteration is 36,000.

Figure 5.4: MCSA - Reaction-diffusion problem. Number of random walks employed
at each iteration. The number first the first iteration is 36,000.
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Parabolic problem

Here we consider the following time-dependent problem:



∂u
∂t
− µ∆u+ β(x) · ∇u = 0, x ∈ Ω, t ∈ (0, T ]

u(x, 0) = u0, x ∈ Ω

u(x, t) = uD(x), x ∈ ∂Ω, t ∈ (0, T ],

(5.33)

where Ω = (0, 1) × (0, 1), T > 0, µ = 3
200

, β(x) = [2y(1 − x2), −2x(1 − y2)]T , and

uD = 0 on {{x = 0} × (0, 1)}, {(0, 1)× {y = 0}}, {(0, 1)× {y = 1}}.

Implicit discretization in time (backward Euler scheme) with time step ∆t and a

spatial discretization with quadrilateral linear finite elements using the IFISS toolbox

[22] leads to a sequence of linear systems of the form

(
1

∆t
M + A

)
uk+1 = fk, k = 0, 1, . . .

Here we restrict our attention to a single generic time step. The right-hand side is

chosen so that the exact solution to the linear system for the specific time step chosen

is the vector of all ones. For the experiments we use a uniform discretization with

mesh size h = 2−8 and we let ∆t = 10h. The resulting linear system has n = 66, 049

unknowns.

We use the factorized sparse approximate inverse AINV [10] as a right precon-

ditioner, with drop tolerance τ = 0.05 for both inverse factors. With this choice,

the spectral radius of the iteration matrix H = I − AP−1 is ρ(H) ≈ 0.9218 and

the spectral radius of Ĥ for the Adjoint Monte Carlo is ρ(Ĥ) ≈ 0.9148. The MAO

transition probability is employed. Resorting to a uniform probability in this case

would have impeded the convergence, since in this case ρ(Ĥ) ≈ 1.8401. This is an
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algorithm relative err. # iterations average # histories per iteration
Richardson 6.277 · 10−7 178 -

Sequential MC 1.918 · 10−9 8 51,535,375
Adjoint MCSA 1.341 · 10−9 6 16,244,000

Table 5.16: Numerical results for the parabolic problem.

example demonstrating how the MAO probability can improve the behavior of the

stochastic algorithm, outperforming the uniform one.

The fill-in ratio is given by nnz(H)
nnz(A)

= 4.26, therefore the relative number of nonzero

elements in H is still acceptable in terms of storage and computational costs.

As before, the threshold for the check on the relative residual is set to ε = 10−8,

while the threshold for the adaptive selection of the random walks is set to ε1 = 0.1.

The results for all three methods are shown in Table 5.16. As one can see, both

Sequential Monte Carlo and MCSA dramatically reduce the number of iterations

with respect to the purely deterministic preconditioned Richardson iteration, with

MCSA oupterforming Sequential Monte Carlo. Of course each iteration is now more

expensive due to the Monte Carlo calculations required at each Richardson iteration,

but we stress that Monte Carlo is an embarrassingly parallel method. Monte Carlo

calculations are also expected to be more robust in the presence of faults, which is

one of the main motivations for the present work.

Finally, Figures 5.5 and 5.6 show the number of Monte Carlo histories per iteration

for Sequential Monte Carlo and for MCSA, respectively.

5.5 Conclusions and future work

In this chapter we have reviewed known convergence conditions for Monte Carlo linear

solvers and established a few new sufficient conditions. In particular, we have deter-

mined classes of matrices for which the method is guaranteed to converge. The main

focus has been on the recently proposed MCSA algorithm, which clearly outperforms
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Figure 5.5: Sequential Monte Carlo - Parabolic problem. Number of random walks
employed at each iteration. The number for the first iteration is 505,000.

Figure 5.6: MCSA - Parabolic problem. Number of random walks employed at each
iteration. The number for the first iteration is 505,000.
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previous approaches. This method combines a deterministic fixed point iteration (pre-

conditioned Richardson method) with a Monte Carlo acceleration scheme, typically

an Adjoint Monte Carlo estimator. Various types of preconditioners have been tested,

including diagonal, block diagonal, and sparse approximate inverse preconditioning.

Generally speaking, it is difficult to ensure a priori that the hybrid solver will

converge. In particular, convergence of the underlying preconditioned Richardson

iteration is necessary, but not sufficient. The application of hybrid solvers to non-

diagonally dominant, steady-state problems presents a challenge and may require

some trial-and-error in the choice of tuning parameters, such as the block size or drop

tolerances; convergence can be guaranteed for some standard model problems but in

general it is difficult to enforce. This is an inherent limitation of hybrid deterministic-

stochastic approaches of the kind considered in this paper. It is of course possible in

many cases to obtain convergence by combining the MCSA algorithm with a flexi-

ble Krylov subspace method like Flexible GMRES. However, this entails additional

costs, decreased parallelism and increased storage requirements, as well as a possible

reduction in the resilience of the algorithm due to the need for orthogonalization and

the attendant additional communication needed.

On a positive note, numerical experiments show that these methods are quite

promising for solving strictly diagonally dominant linear systems arising from time-

dependent simulations, such as unsteady diffusion and advection-diffusion type equa-

tions. Problems of this type are quite important in practice, as they are often the

most time-consuming part of many large-scale Computational Fluid Dynamics and

radiation transport simulations. Linear systems with such properties also arise in

other application areas, such as network science and data mining.

In this paper we have not attempted to analyze the algorithmic scalability of

the hybrid solvers. A difficulty is the fact that these methods contain a number of

tuneable parameters, each one of which can have great impact on performance and
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convergence behavior: the choice of preconditioner, the stopping criteria used for the

Richardson iteration, the criteria for the number and length of Monte Carlo histories

to be run at each iteration, the particular estimator used, and possibly others. While

the cost per iteration is linear in the number n of unknowns, it is not clear how

to predict the rate of convergence of the outer iterations, since it depends strongly

on the amount of work done in the Monte Carlo acceleration phase, which is also

not known a priori except for some rather conservative upper bounds. Clearly, the

scaling behavior of hybrid methods with respect to problem size needs to be further

investigated.

Future work should also focus on testing hybrid methods on large parallel archi-

tectures and on evaluating their resiliency in the presence of simulated faults. Efforts

in this direction are currently under way.
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Chapter 6

Remarks and future developments

In this thesis we explore different techniques to accelerate Richardson’s iterations to

solve sparse linear systems. The nature of the acceleration (deterministic or stochas-

tic) varies according to the properties to be strengthened. Indeed, deterministic

accelerations are adopted to obtain efficiency and scalability, whereas stochastic ac-

celerations are meant to increase the resilience of the scheme.

Chapter 2 mainly describes standard techniques to solve sparse linear systems. A

general discussion about two-level methods is provided, with particular attention to

minimization techniques. This category includes the Anderson-Richardson method

(AR), which alternates relaxation sweeps and Anderson mixing steps to update the

approximate solution. AR has some properties in common with the Generalized Min-

imum Residual methods (GMRES). However, we disproved earlier statements in the

literature showing that restarted ad truncated versions of AR differ from restarted

and truncated versions of GMRES. Analogously to GMRES, AR struggles in ad-

dressing issues arising from new computational platforms as much as other Krylov

methods. This is due to algebraic operations like inner products and leas-squares

problem which involve global communications in a parallel computing framework.

Chapter 3 describes a method, namely Alternating Anderson-Richardson (AAR),
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that performs a deterministic acceleration of the Richardson’s scheme based on the

Anderson mixing. However, differently from Anderson-Richardson, AAR has the

potential to significantly increase concurrency and reduce global communications via

computational locality in a parallel environment. We conduct a theoretical analysis

of AAR in exact arithmetic, comparing its convergence properties with the GMRES.

These studies show that AAR is more robust against stagnation than other AR. This

allows us to highlight the utility of computing multiple Richardson’s steps without

any extra computation in between. Firstly, they provide a fast way to identify a

projection subspace where to solve the reduced problem and compute the acceleration.

Secondly, they can efficiently damp high frequency components of the error in the

same fashion as relaxation sweeps in multigrid algorithms. Lastly, performing multiple

Richardson’s steps without solving least-squares problems enhances the robustness

against stagnation. Numerical results obtained in Matlab for problem of different

nature and with different preconditioners show that truncated variants of AAR are

competitive against different versions of Restarted GMRES. Moreover, an augmented

variant of the algorithm is proposed that guarantees convergence on positive definite

matrices. This achievement is obtained without affecting the performance of AAR, as

confirmed by numerical experiments at the end of the chapter. In the future, a deeper

analysis of the geometric properties of the projection subspace identified by AAR is

recommended. This could shed light to some inherent properties of the algorithm

that could justify its use through a more rigorous geometric description.

Chapter 4 describes an implementation of AAR in C that employs up to 512 CPU

cores to solve sparse linear systems with O(106) unknowns in an MPI environment.

Numerical linear algebra operations are handled using the PETSc library. Two imple-

mentations of Truncated AAR(6,10) are tested. The first implementation solves the

least-squares problem needed for the Anderson mixing via a parallel implementation

of LSQR. The second version of AAR explicitly builds the normal equation associ-
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ated with the least-squares problem and solves it independently on each process using

the SVD decomposition. The performance of these two implementations of AAR is

compared with Restarted GMRES(10) and Restarted GMRES(30) according to dif-

ferent preconditioning approaches. Although constructing the normal equation may

severely impact the conditioning of the problem and thus the attainable accuracy, the

numerical results show that this approach can be competitive against both the version

of AAR using LSQR and Restarted GMRES. With regards to future developments,

an objected oriented implementation of the algorithm is recommended, possibly com-

bining distributed memory and GPU parallelization. In fact, the MPI environment

could efficiently parallelize the least-square solving as the GPU parallelization may

accelerate the computation of relaxation sweeps.

Chapter 5 deals with stochastic techniques to enhance resilience in stationary

Richardson’s iterations. The procedures presented in this chapter stochastically esti-

mate the fixed point iterations via Monte Carlo samplings defined on random walks.

In the context of Monte Carlo linear solvers (MCLS) we propose an adaptive pro-

cedure to select the number of statistical samplings needed to achieve a prescribed

accuracy. These adaptive selection is based on the apparent relative standard de-

viation of the Monte Carlo estimator. The transition matrix adopted to define the

random walks is strictly related to the iteration matrix of the deterministic fixed

point scheme. However, statistical requirements over the finiteness of the expected

value and the variance of the estimator impose stringent spectral conditions on the

iteration matrix of the fixed point scheme to guarantee convergence. For instance,

there are situations where the deterministic fixed point scheme is guaranteed to con-

verge but its stochastic reinterpretation does not. This delicate situation makes the

choice of the preconditioner crucial. On the one hand, the preconditioner must cap

the fill-in effect since the iteration matrix must be explicitly built and stored. On the

other hand, the preconditioner must be efficient enough to have the statistical require-
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ments satisfied. To this goal, we generalize an earlier definition found in literature of

block diagonally dominant matrices. According to the generalized definition that we

adopt, a block diagonal preconditioner applied on a block diagonally dominant matrix

would always guarantee the convergence of the Monte Carlo linear solver. Although

not supported by any theoretical results, our numerical experiments show that sparse

approximate inverse preconditioners easily accommodate the stochastic convergence

criteria on parabolic partial differential equations. As for the future, the search of

other classes of problems and preconditioners that could guarantee the convergence

of MCLS is recommended.

Although the deterministic and stochastic accelerations analyzed in this thesis are

employed to address different issues, a possible development may lead to their com-

bination into a single iterative scheme. Indeed, convergence requirements for MCLS

could be relaxed, since MC steps would be used as a preconditioner on an iterative

scheme already accelerated via Anderson mixing. Currently, it is not clear whether

one can avoid the explicit construction of the iteration matrix to employ MCLS. How-

ever, the use of block preconditioners may allow the distribution of this task across

processors in an efficient and resilient manner. The final result can potentially lead

to the construction of a linear solver that alternates Anderson and MC accelerations

to simultaneously cope with inter-processor communications and system failures.
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