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Abstract 

Geostatistical Modelling and Prediction of Rift Valley Fever Seroprevalence Among 

Livestock in Uganda 

 

By: Carson Telford 

 

Background: Rift Valley Fever (RVF) is a mosquito-borne viral hemorrhagic fever 

endemic to countries throughout the African continent. Uganda is bordered by three 

endemic countries (Kenya, Tanzania, and South Sudan). Recent outbreak investigations 

in Uganda indicate the undetected circulation of the virus among both humans and 

livestock.  

 

Methods: To determine the extent of viral circulation within the country, sampling for 

antibodies to RVF was carried out among herds of domesticated livestock across 28 

districts in Uganda. Environmental variables were evaluated to determine their 

associations with RVF seroprevalence, and a final geostatistical model was fit to 

determine covariate and covariance parameters using model-based geostatistics. Model 

parameters were used to estimate RVF seroprevalence across the country for the year 

2017. A map was also produced visualizing the probability that RVF seroprevalence 

exceeded 15% in each prediction location. 

 

Results: Variables resulting in the best fit to sampling data of RVF seroprevalence 

included distance to the nearest river, distance to aquatic vegetation, standard deviation of 

enhanced vegetation index (EVI) over time, percent change in the standard deviation of 

EVI, and percent change in population density. Predicted RVF seroprevalence was 

highest in the Northwestern quadrant of the country, along with smaller regions in the 

South near the border of Rwanda and Tanzania, and in the East near the border of Kenya 

and North of Lake Victoria. There was high probability that RVF seroprevalence 

exceeded 15% in areas of high predicted seroprevalence, and low probability that RVF 

seroprevalence exceeded 15% in most locations in the Northeastern and Southwestern 

quadrants of the country. 

 

Conclusion: Elevated RVF seroprevalence was strongly associated with proximity to 

water and high variability in vegetation. Variables representing change over time in 

population density and variation in vegetation suggest a strong correlation between 

increased viral circulation and anthropogenic environmental. These results highlight 

specific locations in which future disease sampling and surveillance efforts should be 

prioritized to mitigate the risk of future RVF outbreaks.   
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Abstract 

Geostatistical Modelling and Prediction of Rift Valley Fever Seroprevalence Among 

Livestock in Uganda 

 

By: Carson Telford 

 

Background: Rift Valley Fever (RVF) is a mosquito-borne viral hemorrhagic fever 

endemic to countries throughout the African continent. Uganda is bordered by three 

endemic countries (Kenya, Tanzania, and South Sudan), and outbreak investigations 

indicate the undetected circulation of the virus among both humans and livestock.  

 

Methods: To determine the extent of viral circulation within the country, sampling for 

antibodies to RVF was carried out among herds of domesticated livestock across 28 

districts in Uganda. Environmental variables were evaluated to determine their 

associations with RVF seroprevalence, and a final geostatistical model was fit to 

determine covariate and covariance parameters using model-based geostatistics. Model 

parameters were used to estimate RVF seroprevalence across the country for the year 

2017. A map was also produced visualizing the probability that RVF seroprevalence 

exceeded 15% in each prediction location. 

 

Results: Variables resulting in the best fit to sampling data of RVF seroprevalence 

included distance to the nearest river, distance to aquatic vegetation, standard deviation of 

enhanced vegetation index (EVI) over time, percent change in the standard deviation of 

EVI, and percent change in population density. Predicted RVF seroprevalence was 

highest in the Northwestern quadrant of the country, along with smaller regions in the 

South near the border of Rwanda and Tanzania, and in the East near the border of Kenya 

and North of Lake Victoria. There was high probability that RVF seroprevalence 

exceeded 15% in areas of high predicted seroprevalence, and low probability that RVF 

seroprevalence exceeded 15% in most locations in the Northeastern and Southwestern 

quadrants of the country. 

 

Conclusion: Elevated RVF seroprevalence was strongly associated with proximity to 

water and high variability in vegetation. Variables representing change over time in 

population density and variation in vegetation suggest a strong correlation between 

increased viral circulation and anthropogenic environmental change. These results 

highlight specific locations in which future disease sampling and surveillance efforts 

should be prioritized to mitigate the risk of future RVF outbreaks.   
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Introduction 

 

Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that was discovered in the 

Great Rift Valley of Africa in the 1930’s (1). It is caused by the Rift Valley Fever virus 

(RVFV), an RNA virus in the family Bunyaviridae, genus Phlebovirus. Since its 

discovery, its geographic range has expanded throughout the African continent and its 

surrounding islands, and the middle eastern countries of Saudia Arabia and Yemen (2–4) 

and has the potential to continue to spread to new continents (5,6). 

 

RVF has important implications for both animal and human health. To domesticated 

livestock, RVF has the potential to cause large scale outbreaks with mortality rates of 5-

20% in adults and 80-100% in newborns and developing fetuses (1,3,7,8). While 

livestock vaccines have been developed and can provide immunity to inoculated animals, 

a recent survey among livestock owners in Kenya and Uganda reported several perceived 

barriers to vaccination such as monetary cost (direct and indirect), lack of access to 

information on vaccination, and excessive distance to vaccination sites (9). Infections 

among humans are usually less severe than in livestock, and thousands of asymptomatic 

or mild infections in humans likely go undetected (10,11). Common symptoms mirror 

those of influenza or malaria (12,13). Severe symptoms such as hepatitis, retinitis, 

encephalitis, or bleeding in the stool and nose occur in about 10% of human infections, 

and approximately 1% of human infections progress to hemorrhagic disease (1,3). The 

case fatality rate among humans who develop hemorrhagic disease is 50% (14).  
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Several vector and zoonotic species play important and unique roles in RVF 

transmission. Primary vectors of RVF are floodwater Aedes mosquitoes, particularly Ae. 

mcintoshi and Ae. ochraceus, which can vertically transmit the virus transovarially to 

their offspring, and horizontally by biting susceptible animals and humans (15). 

Floodwater mosquito eggs can survive for years in dry soils until heavy rainfall causes 

flooding, causing dormant mosquito eggs to hatch, some of which may carry the virus 

and infect nearby susceptible mammalian hosts that act as amplifiers to the virus (16–18). 

Secondary vectors are those that spread the virus horizontally by transferring RVFV from 

infected to susceptible hosts when taking blood meals. Culex pipiens and Culex poicilipes 

are among secondary vectors with the greatest ability to transmit the virus (19), though 

other species from the Culex, Anopheles, Mansonia, Coquillettidia, and Eretmapodites 

genera are also capable of spreading the virus (5,6,15,19). Enzootic transmission of RVF 

between biting mosquito vectors and reservoir animal hosts is known to occur at low 

levels among both domestic and wild ruminants, though infection among wild ruminants 

is less severe (17,20–22). A confirmed mammal reservoir of the virus has yet to be 

identified (17,20,21). Human RVF infection can occur from the bite of an infected 

mosquito, but more commonly occurs via zoonotic transmission through exposure to an 

infected animal or a product derived from an infected animal (14,22,23). Previously 

identified risk factors for human RVF infection include handling of livestock or animal 

products, butchering animal meats, consumption of raw milk, and contact with infected 

livestock or their aborted fetuses (4,8,14,22–26). 
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RVF transmission is associated with environmental conditions suitable for mosquito 

reproduction. Given the key role of vertical transmission in maintaining the RVF virus 

life cycle, El Niño Southern Oscillation (ENSO) patterns that cause anomalous 

precipitation and flooding are strongly associated with RVF outbreaks as they initiate the 

hatching of dormant vertically infected Aedes eggs (4,8,16,27–30). Often associated with 

ENSO patterns, enhanced vegetation index (EVI) satellite remote sensing data can be 

used to predict RVF outbreaks, as unusually high levels of “greenness” in vegetation are 

indicative of large amounts of precipitation and suitable environmental conditions for 

widespread mosquito breeding and subsequent viral transmission (27–29). Other 

considerations for optimal mosquito habitat and RVF outbreak risk include temperature, 

elevation, land gradient, soil type, land-use, wild and domesticated animal density, and 

distance to water sources (4,22,27,29–35). 

 

Uganda is not currently considered a country with endemic RVF, though it is bordered by 

the endemic countries of Tanzania, Kenya, and South Sudan (3), presenting a potential 

risk for future increases in RVF infections and establishment of the virus in the country. 

The area of highest susceptibility to large livestock outbreaks of RVF is termed the 

“Cattle Corridor,” which stretches from the Southwest corner of the country to the 

Northeast corner and contains approximately 90% of the cattle and other domesticated 

livestock in Uganda (36,37) (Figure 1). In 2016, the first laboratory confirmed outbreak 

of RVF in Uganda in 48 years was reported in the Kabale District, where two humans 

died and four were infected (14,38). In response to these identified cases, serosurveys of 

humans and animals across the Kabale District were conducted, finding RVF antibodies 
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in 12% of humans and 13% of animals. Only two humans with active infection were 

identified via polymerase chain reaction, indicating the undetected circulation of the virus 

prior to the outbreak. Between 2016-2020, 43 cases of human RVF infections have been 

confirmed, among whom 22 have died, spanning twenty districts; most in the Cattle 

Corridor (L. Nyakarahuka, personal communication, February 2, 2021).  

 

Following to the identification of RVF transmission in recent years, we sampled animals 

from herds of cattle, sheep, and goats (hereby referred to as livestock) for antibodies to 

RVF in 28 districts throughout Uganda to evaluate the current distribution of RVF. A 

geostatistical model of livestock seroprevalence and environmental predictors was used 

to estimate RVF seroprevalence on a grid of the country for the year sampling was 

conducted. A map was also created to visualize the probability that the seroprevalence of 

RVF exceeded 15%. Exceedance of 15% seroprevalence was of interest because most 

studies in endemic countries have shown an average seroprevalence range of 10-20% 

(17). Regions with high predicted prevalence can be targeted to increase surveillance for 

future incidence, prioritize livestock RVF vaccine distribution, increase community 

education, and direct future sampling efforts to validate the results of this analysis and 

gather necessary additional data to improve accuracy in areas of uncertainty.  

 

Methods 

 

Ethical Statement 
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The Uganda Virus Research Institute (UVRI) in collaboration with the Viral Special 

Pathogens Branch at the Centers for Disease Control and Prevention received permission 

from the Uganda Ministry of Health to gather blood samples from livestock to prevent 

future morbidity and mortality from RVF. Ethical approval for this study was granted 

from review by the UVRI Research Ethics Committee (UVRI REC: GC/127/16/03/551). 

Animal subjects work was conducted according to Uganda national guidelines and 

performed by officers from the Ministry of Agriculture, Animal Industries and Fisheries.  

 

Livestock Sampling Data 

 

Cross sectional sampling of livestock was conducted between February 2017 to August 

2017. Blood samples were collected from 3,181 animals selected from herds at 112 sites 

in 28 of 134 districts in Uganda. Selection of sampling locations targeted the various 

geographies within the country and border districts where importation of the virus could 

occur from neighboring endemic countries. Samples were collected by a team from 

UVRI. For each herd represented, a random sample of animals was selected from which 

to collect a blood sample for serological testing.  

 

Environmental Variables 

 

Suitable environments for RVF transmission are made up of complex interactions 

between climatic, geographic, hydrologic, and geologic variables in combination with 

anthropogenic considerations such as human and livestock density, urbanization, 
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agriculture, pastoralism, and land-use change. Spatial data on these variables were 

obtained on a raster grid of Uganda and values were extracted at sampling locations to 

determine the association between RVF seroprevalence. Covariate data were downloaded 

and analyzed at a spatial resolution of 1km2, and data unavailable for download in this 

format was resampled using bilinear interpolation or aggregated to match this resolution. 

Variables were averaged over the 8 years prior to sampling (2009-2016), with the 

assumption that this is the average lifespan of Ugandan livestock. Bioclimatic variables 

were sourced from WorldClim1 (39) and included elevation, average annual precipitation, 

average precipitation of the wettest month, average annual temperature, and average 

temperature of the coldest and warmest months. Additional hydrological variables were 

sourced from WorldPop1 (40,41) and the Famine Early Warning Systems Network Land 

Data Assimilation System2 (42); they included slope, distance to aquatic vegetation, 

distance to the nearest major waterway, distance to inland water sources, average 

monthly surface runoff and surface runoff anomalies, and monthly precipitation 

anomalies. Remote sensing EVI data were collected from NASA MODIS Terra 

Vegetation Indices3 (43), with which we created variables representing annual average 

monthly EVI, EVI during the rainy seasons, and EVI standard deviation (SD) 

(summarizing the variability of EVI at this location over time). MODIS also provides 

land cover data with 16 land type classifications (44). Consistent with Redding et al., we 

consolidated these classifications into 7 categories: forest (MODIS 1-5), shrubland 

(MODIS 6-7), savannah (MODIS 8-9), grassland (MODIS 10), wetland (MODIS 11), 

 
1 Downloaded at a spatial resolution of 30-arc seconds2 

2 Downloaded at a spatial resolution of 0.1°2  
3 Downloaded at a spatial resolution of 1km2 
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anthropogenic (MODIS 12-14), and bare (MODIS 15-16) (33). Soil data representing 

percent content of clay, silt, sand, gravel, and soil pH were ascertained from the World 

Harmonized Soil Database4 (45). Data representing livestock density (cattle, sheep, and 

goats) were obtained from the Food and Agriculture Organization5 (46). Wild animal 

density data were not available, therefore we calculated and analyzed a variable 

representing distance to the nearest wildlife reserve or sanctuary using data from the 

Open Sustainability Institute to measure the possible association between RVF 

seroprevalence and proximity to areas of higher wild animal density (47). Initial 

anthropogenic variables analyzed included human population density data which were 

adjusted to match the United Nations population estimates for Uganda sourced from 

WorldPop (48) and presence of irrigation from HarvestChoice6 (49). Previous research 

suggests that environmental changes such as deforestation and land-use change can result 

in elevated risk for transmission of vector-borne diseases (50–53). To account for these 

dynamics, we created variables representing the percent change in average annual EVI, 

the percent change in annual EVI SD, and the percent change in population density over 

an 8-year period. Percent change in EVI variables was calculated as the change between 

the average monthly EVI during the four years prior to sampling (2013-2016) and the 

four years earlier (2009-2012). Percent change in estimated population density was 

calculated as the change from the year 2012 to 2016. A small proportion of the cells for 

which percent change was calculated had outlier values due to low initial values, and a 

 
4 Downloaded at a spatial resolution of 30-arc seconds2 

5 Downloaded at spatial resolution of 5-arc minutes2 

6 Downloaded at spatial resolution of 5-arc minutes2 
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maximum percent change of 50% was allowed in any given cell to prevent excessive 

influence of these areas.  

 

Statistical Analysis 

 

Preliminary model selection utilized a non-spatial binomial generalized linear model to 

identify individual variables with the strongest associations with RVF seroprevalence 

through bivariate and multivariate analyses. A cutoff of 0.6 was used when evaluating 

correlation between variables to retain in the model. If a given model had a variance 

inflation factor of 3 or higher, it was determined that collinearity between covariates was 

present and the variable of least significance was removed from the model until no 

evidence of collinearity remained. Covariates associated with RVF (α=0.05) in the non-

spatial model were then incorporated into a Generalized Linear Geostatistical Model 

(GLGM) using Model-based Geostatistics (54). Covariates were tested to identify the 

best fitting model after accounting for the spatial data structure. Multiple models were 

compared and the final model was selected based on the log-likelihood value that 

indicated the best fit to the data. The final model included five covariates: distance to a 

major waterway (DIST WATERWAY), distance to aquatic vegetation (DIST 

AQUATIC), EVI SD, percent change in EVI SD (EVI SD % CHG), and percent change 

in population density (POP DENS % CHG). The GLGM of the probability that a given 

sampled animal had positive antibodies for RVF was then implemented in the following 

framework: 
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Log{p(x)/[1-p(x)]} = β0 + β1(DIST WATERWAY) + β2(DIST AQUATIC) + β3(EVI SD) 

+ β4(EVI SD % CHG) + β5(POP DENS % CHG) + S(xi) + Ui 

 

Where p(x) denotes the prevalence of RVF in location x, β represents the effects of the 

specified covariates at each prediction location, S(x) represents a spatial random effect 

which follows a Gaussian process with mean zero and variance σ2 and a Matern 

correlation function. The shape parameter of the Matern correlation function was 

specified as k=1, based on the profile likelihood for the shape parameter in a logit-

transformed linear Gaussian model. Covariance parameters were identified by fitting a 

semi-variogram of model residuals, which represents the decay in correlation between 

observations as distance between them increases. The “nugget effect” Ui represents the 

unstructured random variation in the outcome and is included to capture the effects of 

unmeasured explanatory variables that have little to no spatial structure.  

 

A Bayesian Markov Chain Monte Carlo (MCMC) approach was used to fit our spatial 

binomial generalized linear mixed model using 100,000 simulations within the PrevMap 

package (55) in R 1.3.1075 version (56). Prediction of RVF seroprevalence was carried 

out on a 1km2 resolution grid (168,857 total cells) of Uganda. Bayesian diffuse priors 

were used for model parameters because of the variability across the literature regarding 

associations between RVF, environmental predictors, and covariance parameters.   

 

Prevalence prediction at unsampled locations was based on covariate values in each cell 

and the correlation structure from the fitted model. Model-based geostatistics uses the 
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spatial auto-correlation of sampled locations from the empirical semi-variogram to 

weight the influence that nearby sampled locations have on the predicted values in 

prediction locations (57). In implementation, if a sampled location has an observed 

prevalence of RVF that is higher than expected given the model, a spatial smoothing 

term, S(x), serves to increase the predicted values in nearby surrounding locations, and 

vice-versa where the observed RVF seroprevalence is lower than would be expected 

given the model and neighboring values. If a location lies beyond the distance at which 

observations are correlated (per the semi-variogram), then the prevalence is predicted as 

the expected value based on the covariates without weights added or subtracted according 

to surrounding sampling points.  

 

Maps visualizing the predicted RVF seroprevalence and the probability that RVF 

seroprevalence in a given location exceeded 15% for the year of data collection (2017) 

were generated using QGIS 3.10 (58). The probability of exceeding 15% was defined as 

the proportion of times the predicted seroprevalence at a given location exceeded 15% 

across the MCMC simulations and corresponds to the posterior probability of the local 

prevalence exceeding 15%. A plot was produced using R 1.3.1075 to visualize the 

difference between the observed seroprevalence compared to the predicted prevalence in 

sampled locations by the GLGM (56). 

 

Model Validation 
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We used Monte Carlo iterations to simulate 1,000 semi-variograms given the fitted model 

to determine the validity and fit of the spatial correlation structure to the data. A 95% 

interval defining the variability of the model simulations was used to evaluate whether 

the model accurately fit the data. The null hypothesis was that the specified model was a 

good fit to the data. After the simulation, the fitted semi-variogram based on the observed 

data fell within the 95% interval of variograms estimated from the simulated data, and it 

was determined that the specified correlation structure adequately fit the data in order to 

proceed with prediction (57). Convergence of the model was evaluated using trace plots 

of the MCMC values of each model parameter and correlation plots to ensure retained 

links in the Markov Chain were not correlated after thinning. Finally, we duplicated the 

analysis using Monte Carlo Maximum Likelihood to compare to the Bayesian MCMC 

analysis and confirm consistency between statistical model fitting methods.  

 

Results 

 

Maps of the spatial distributions of each covariate show that major waterways run 

throughout the country, and that aquatic vegetation is most sparse in Northeast Uganda. 

EVI SD is generally higher in the Northern half of the country, indicating more stable 

vegetation coverage in the Southern half, while percent change in EVI SD occurred on a 

more localized scale in various regions throughout the country. Population density 

increased most in Northwestern Uganda (Figure 2). The map of predicted RVF 

seroprevalence among livestock shows notable heterogeneity across the country, and the 

highest predicted seroprevalence in the Northwestern quadrant of the country from Lake 
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Albert to the border of South Sudan (Figure 3). Other areas with high predicted 

prevalence were also located along the outskirts of the lakes in the center of the country 

(Lake Kyoga and Lake Kwania), on the Southern border near Rwanda and Tanzania, 

along the North borders of Lake Victoria, and along the border of Kenya. Conversely, the 

areas with the lowest predicted seroprevalence were in the Northeastern and 

Southwestern corners of the country, where the predicted seroprevalence generally 

ranged from 0 to 10%.  

 

The map visualizing the estimated probability that RVF seroprevalence exceeds 15% is 

presented in Figure 4. Red and orange cells represent areas where there is high 

probability that the true RVF seroprevalence exceeds 15%, while areas in dark and light 

green represent areas where this probability is low. Gray cells represent areas of 

uncertainty, where there is inadequate data to confidently determine whether the true 

RVF seroprevalence is higher or lower than 15%. Areas of uncertainty most frequently 

occurred at the intersection between high and low prevalence areas. There was very low 

probability that RVF seroprevalence exceeded 15% in most of the Northeastern and 

Southwestern quadrants of Uganda apart from scattered areas of high probability around 

the southern border and center of the country.   

 

Parameter estimates for the GLGM model in Table 1 show that there were statistically 

significant associations between RVF logit-prevalence and EVI SD (p=0.04; CI: 1.72, 

49.66), EVI SD percent change (p=0.004; CI: 0.0, 0.08), and population density percent 

change (p=0.006; CI: 0.0, 0.04). Distance to a major waterway and aquatic vegetation 
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both had inverse relationships with RVF logit-prevalence, however these relationships 

were not significant using a 95% credible interval. 

 

Some of the herds with the highest unadjusted observed prevalence were those with 

relatively low sample sizes (Figure 5). Comparing observed prevalence from herds 

sampled with small sample sizes to the model-predicted prevalence in the same locations, 

we see that predicted seroprevalence was lower in many instances, being smoothed by the 

model after accounting for environmental conditions, the spatial structure of surrounding 

sampling sites, and the standard deviation associated with fewer observations. This is 

typical behavior for spatial models of disease rates. Areas with small sample sizes yield 

unstable local rate estimates and the models borrow more information from neighboring 

sites to stabilize estimates. Most herds with an observed RVF seroprevalence of zero 

were also those with few animals sampled, and the model predicted seroprevalence was 

higher than observed in those locations as the model borrows information from 

neighboring (and often non-zero) values. 

 

Discussion 

 

This analysis provides estimates of RVF seroprevalence in Uganda in 2017 and suggests 

heterogeneous circulation of RVF throughout the country. Studies of RVF in endemic 

countries have found a seroprevalence of 10-20% (17). Our results suggest a high 

probability of RVF circulation (≥15%) in several regions of Uganda, and lower 

probability in others. The highest predicted seroprevalence was in the Northwestern 
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quadrant of the country, the focal point being Northeast of Lake Albert. Other areas of 

high predicted prevalence were around the outskirts of the lakes in the center of the 

country, on the Southern border near Rwanda and Tanzania, directly North of Lake 

Victoria, and near the border of Kenya. Comparison between the map of the Cattle 

Corridor in Figure 1 and the map of predicted RVF prevalence in Figure 3 reveals several 

areas of overlap between those with high predicted RVF seroprevalence and high 

livestock density, indicating elevated risk for livestock exposure to RVF and the potential 

for outbreaks in these locations. Several areas where sampling was not done were 

identified as locations with high probability of elevated RVF seroprevalence, given the 

environmental predictors represented in this model and the geographic proximity of 

sampling locations with elevated seroprevalence. This information can be used to direct 

future livestock sampling efforts to validate the predictions from this model, and if 

accurate, can help prioritize future mitigation efforts such as livestock vaccine 

administration campaigns and public outreach and education on risk factors for RVF 

transmission. Directing such efforts to specific geographic locations combined with an 

understanding of the distribution of livestock and temporal trends of RVF outbreaks, such 

as during ENSO years, can potentially lead to a reduction in the burden of RVF (27–

29,59).  

 

The Northwestern region of Uganda, where observed and predicted prevalence was 

highest, is the site of two national parks (Murchison Falls National Park and Paraa 

National Park) and two wildlife and game reserves (Aswa-Lolim Game Reserve and Ajai 

Wildlife Reserve). While this region does not fall within the Cattle Corridor, high RVF 
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seroprevalence in herds in this region may be attributable to virus circulation between 

mosquitoes and the high density of wild animals, which typically remain asymptomatic 

upon infection (60). Interestingly, a large increase in population density also occurred in 

this region during the years prior to sampling (Figure 2). Given the results of this model, 

one possible explanation for the elevated RVF seroprevalence in livestock is that 

increased human presence may have resulted in the opportunity for transfer of the virus 

from wild animals to newly introduced and immunologically naïve livestock by mosquito 

vectors. Alternatively, increased livestock trade could potentially have resulted in the 

importation of animals previously exposed to RVF in other geographical regions. Further 

research should be conducted to evaluate trade networks and importation of livestock in 

Northwestern Uganda to determine the location of exposure to RVFV. Analysis of 

proximity to and interaction between wild animals in nearby game reserves and national 

parks and livestock in Northwestern Uganda may also provide evidence to support the 

hypothesis of increased viral circulation in this region. Such information could be used to 

determine the importance of limiting interaction between livestock and wild animals and 

prioritizing specific interventions. The observed increase in population density in this 

region that is comprised of several protected natural areas and game reserves also merits 

further research and intervention to mitigate the risk of disease spillover events that 

typically occur as a result of environmental change from deforestation and agricultural 

expansion (61).    

 

Past research has identified strong correlations between RVF outbreaks, large amounts of 

precipitation, and high EVI. We found that variability in EVI over time, represented by 
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EVI SD, rather than average EVI or EVI during the rainy seasons, was a stronger 

indicator of elevated RVF seroprevalence. Studies that have used vegetation indices to 

successfully predict RVF outbreaks are based on anomalous levels of EVI and rainfall 

(27–29). Because seroprevalence sampling data cannot determine the time of exposure to 

RVF, it was not possible to associate specific vegetation or weather anomalies with RVF 

circulation in this study. However, areas with higher variability in EVI may be those in 

which anomalous precipitation and vegetation indices more commonly occur. Areas with 

more variability in EVI may also be at greater risk of RVF transmission because 

fluctuation in precipitation and vegetation indices throughout the year may represent 

dryer soil conditions that are more conducive to flooding during the rainy seasons. 

Percent change in EVI SD also had a strong positive association with RVF 

seroprevalence, indicating that variability in EVI increased over time in areas with higher 

seroprevalence. EVI is a measure of the level of greenness of vegetation imaged by 

satellites and does not identify specific types of vegetation or specifically differentiate 

between forested or agricultural lands. Increased variability in annual EVI may be an 

indicator of change from natural vegetation to agricultural land, as “greenness” in crops 

typically varies more throughout the year than natural vegetation (62–64).  

 

Increases in human presence over time is represented through the percent change in 

population density, which also had a significant positive association with RVF 

seroprevalence. Aside from increases in susceptible humans and livestock, population 

density change can lead to various environmental changes that lead to better habitat 

suitability for mosquitoes and elevated risk of RVF outbreaks. Land change resulting 



 

18 
 

from population growth and the introduction of irrigated agriculture can be beneficial for 

RVF circulation because the flooding of fields can cause dormant infected Aedes eggs to 

hatch, and creates large areas of stagnant water that secondary vectors can use to 

reproduce (65). Land conversion and deforestation resulting from population growth can 

also cause disruption of soil absorption and drainage networks, potentially resulting in 

flooding (66). Though percent change in EVI SD and percent change in population 

density could potentially represent similar anthropogenic changes to the environment that 

lead to increased RVF circulation, these variables had a weak correlation, suggesting 

their encompassment of unique contributions to the dynamics of RVF transmission. 

Future research should seek to identify the underlying causes of increased EVI variability 

in areas of higher RVF seroprevalence in Uganda and its relationship with increases in 

human population density and mosquito reproduction. 

 

Areas of high predicted RVF seroprevalence were identified near the borders between 

Uganda and all of its bordering countries. These findings suggest the possibility of 

geographical dispersion of RVF from currently endemic countries to Uganda. This 

possibility is supported by an RVF serosampling study done in Rwanda, which found 

RVF seroprevalence of 8-10% in districts bordering Uganda (67), though there is a lack 

of such evidence for other bordering countries. Phylogenetic analyses should be used to 

analyze viral strains from Uganda and those in surrounding countries to determine the 

existence of directionality in geographic dispersion of the virus.  
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This analysis is subject to several limitations. Livestock density was not directly 

accounted for, as this variable was found to have little to no association with RVF 

seroprevalence in the model selection process. Most areas with the highest predicted 

prevalence in Northwestern Uganda fall outside of the Cattle Corridor. This can 

potentially be explained by the fact that RVF circulates among both domesticated and 

wild animals (17,21,60). However, wild animal density was also not directly accounted 

for in this model as data were not available. Livestock density may indirectly be 

accounted for within the variables representing increases in population density and EVI 

SD, as urbanization, land-use change, deforestation, and agriculture may be associated 

with the introduction of livestock and pastoralism in new areas. Seroprevalence surveys 

are unable to account for the strong temporal trends associated with RVF outbreaks. We 

evaluated variables such as average EVI during the rainy seasons and average 

precipitation anomalies to account for the temporal trends in transmission, but the 

associations between these variables and RVF seroprevalence were less significant than 

those used in the final model. To correlate specific weather events with RVF 

seroprevalence, secondary testing should be conducted to measure changes in RVF 

seroprevalence and weather events between sampling periods. We found a strong 

association between RVF seroprevalence and the percent change in population density, 

however, these population density data are modeled estimates and not census data. To 

improve accuracy, these data are adjusted to match the United Nations population 

estimates, which are available in larger subnational units. Finally, the statistical method 

we used to estimate seroprevalence in each prediction location was multivariate kriging, 

which requires the assumption of stationarity in the disease transmission process.    
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Conclusion 

 

This analysis estimated RVF seroprevalence across Uganda in the year 2017 by fitting a 

geostatistical model to livestock sampling data and environmental predictors. The highest 

predicted seroprevalence was in the Northwestern quadrant of the country, in the South 

near the borders of Rwanda and Tanzania, and North of Lake Victoria near the border of 

Kenya. The lowest predicted seroprevalence was in the Northeastern and Southwestern 

corners of the country, which encompass a large proportion of Uganda’s Cattle Corridor. 

The variables found to be the best predictors of RVF seroprevalence included proximity 

to major waterways and aquatic vegetation, high variability in EVI, and change in EVI 

variability and population density during the 8 years prior to sampling. Variables 

representing anthropogenic change were found to be the most strongly associated with 

RVF seroprevalence (Table 1). These results can be used to guide the prioritization of 

future RVF sampling efforts to confirm our model predictions, and if accurate, the 

prioritization of surveillance and risk mitigation efforts such as RVF vaccine distribution 

and community education regarding RVF transmission prevention. 
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Figure 1. Uganda’s Cattle Corridor. Uganda’s 134 administrative districts with an overlay of the Cattle Corridor 

in yellow. The Cattle Corridor contains approximately 90% of the cattle in the country. 

Adapted from Barihaihi 2010. 
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Figure 2. Distribution maps of predictors of Rift 

Valley Fever livestock seroprevalence. Geographic 

distributions of distance to a major waterway, 

distance to aquatic vegetation, SD of 8 year monthly 

average EVI, percent change in EVI SD over 8 years, 

and percent change in population density. 
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Figure 3. Predicted seroprevalence of Rift Valley Fever among livestock across Uganda. Predictions were based on 

geostatistical model fit to livestock sampling data, distance to a major waterway, distance to aquatic vegetation, 8-year 

Enhanced Vegetation Index (EVI) monthly standard deviation, 8-year percent change in EVI, and 8-year percent change in 

population density. 
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Figure 4. Rift Valley Fever Probability Map. Probability that seroprevalence of Rift Valley Fever among Uganda 

livestock exceeds 15%. 
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Figure 5. Predicted Rift Valley Fever seroprevalence compared to observed. Predicted RVF seroprevalence at 

points of observation compared to the observed seroprevalence from sampling. Triangular points represent herds with 

low sample size and unstable data, while circular points represent herds with a larger sample size.  
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Variable 
Coefficient 

(Median) 

Standard 

Error 

0.025  

CI 

0.975 

CI 
P-value 

Intercept -5.22 1.37 -7.91 -2.53 0.0001 

Distance to Major 

Waterway 
-0.03 0.02 -0.07 0.01 0.12 

Distance to Aquatic 

Vegetation 
-0.03 0.02 -0.07 0.01 0.08 

EVI SD 25.69 12.23 1.72 49.66 0.04* 

EVI SD % Change 0.04 0.02 0.00 0.08 0.004** 

Population Density 

% Change 
0.02 0.01 0.00 0.04 0.006** 

log(sigma^2)† 0.74 0.64 -0.51 1.99 - 

log(phi)†† -0.18 0.54 -1.24 0.88 - 

log(tau^2) ††† 0.12 1.31 -2.45 2.69 - 

Table 1. Model parameter estimates. Parameter estimates for the association between Rift Valley Fever 
seroprevalence and distance to the nearest waterway, distance to aquatic vegetation, enhanced vegetation index (EVI) 
annual standard deviation (SD), EVI SD percent change, population density percent change, and covariance parameters 
from a generalized linear geostatistical model using model-based geostatistics. 
Abbreviations: EVI SD = Enhanced Vegetation Index 
†Variance of the Gaussian process 
††Scale of the spatial correlation 

†††Variance of the nugget effect 


