
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis in whole or in part in all forms of media, now or hereafter
now, including display on the World Wide Web. I understand that I may select some access restric-
tions as part of the online submission of this thesis. I retain all ownership rights to the copyright
of the thesis. I also retain the right to use in future works (such as articles or books) all or part of
this thesis.

Yuwei Wu April 5, 2021

Physics-informed Deep Neural Networks for High Dimensional Integration

by

Yuwei Wu

Yuanzhe Xi
Advisor

Department of Mathematics

Yuanzhe Xi
Advisor

Manuela Manetta
Committee Member

Weihua An
Committee Member

2021

Physics-informed Deep Neural Networks for High Dimensional Integration

by

Yuwei Wu

Yuanzhe Xi
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Department of Mathematics

2021

Abstract
Physics-informed Deep Neural Networks for High Dimensional Integration

By Yuwei Wu

Monte Carlo methods are one of the most prevailing computational algorithms that use ran-
dom sampling process to generate numerical estimations for problems in various fields, including
mathematics, physical sciences, finance, etc. One of the applications of Monte-Carlo methods in
mathematics is numerical integration, in which the speed of convergence is still slow. The Quasi-
Monte Carlo method can improve the performance of the Monte Carlo method, especially in high
dimensions, by generating low-discrepancy sequences. Existing Quasi-Monte Carlo methods use
sequences such as Halton sequence, Sobol sequence, or Faure sequence that may fail to guarantee
the low discrepancy due to improper predefined parameters. In this paper, we propose a different
approach for generating low-discrepancy sequences through deep neural networks. By modeling the
sequences as dynamic molecules and minimizing the total energy of the datasets in the deep neural
networks, we are able to guarantee the low-discrepancy of the sequences that are independent of
the initial distributions. We demonstrate the effectiveness of our methods using various numerical
experiments for problems ranging from low to high dimensions.

Physics-informed Deep Neural Networks for High Dimensional Integration

By

Yuwei Wu

Yuanzhe Xi
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2021

Acknowledgements

I wholeheartedly thank Dr. Yuanzhe Xi for introducing me to the field of deep learning and
providing me with invaluable feedback through this work. I would also like to thank Drs. Manuela
Manetta, Weihua An for encouraging me and taking the time to serve on my thesis committee.
I really appreciate Dr. Difeng Cai for his experience in Pytorch and neural networks. Finally, I
would like to thank my family for supporting my studies and work at Emory.

Contents

1 Introduction 1

1.1 Backgrounds . 1

1.2 Outline of the Thesis . 2

2 Monte Carlo Methods 3

2.1 Monte Carlo Methods for Numerical Integration . 3

2.2 Quasi-Monte Carlo Methods . 4

3 Motivation from Physics 7

3.1 The Notion of Equilibrium . 7

3.2 Boltzmann Distribution . 8

4 Basics of Deep Learning 10

4.1 Multi-layer Perceptron . 10

4.2 Automatic Differentiation . 11

5 Dynamics, System Energy and Deep Neural Networks 13

5.1 Deep Learning Approach . 14

5.2 Adaptive Training Approach . 16

6 Numerical Experiments 19

6.1 Energy Functions . 19

6.2 Low Dimensional Examples . 21

6.3 Results Evaluation . 26

7 Discussion and Future Work 31

Bibliography 34

1

Chapter 1 Introduction

Integration is the process of calculating the value of a specific integral by summing infinitesimal

data over the domain. This process plays a very important role in the applications of mathematics

and physics areas. A simple example of integration in physics can be given by integrating the

acceleration function of an object with respect to its position, in which we get the function for the

velocity of the object. Integration process like this serves as foundation for researchers to improve

theories and applications in various fields.

1.1 Backgrounds

Consider a typical problem of evaluating the integral of a function f over a domain D ⊂ Rd .

I =

∫
D
f(x)dx

When the integrand f admits some specific forms, one can find the analytical solution to the inte-

gration problem. However, in most cases, we will not be able to find the analytical solution for an

integral but can only evaluate them at some points in the domain to obtain a numerical approxi-

mation for the integration result. This is because some of the functions f are too complicated to be

evaluated analytically or because the dimension of the problem is too large. In some cases, quadra-

ture rules such as trapezoid rule, Simpson’s rule, or Gaussian quadrature are used to approximate

the integration results for low dimensional problems. Results of these methods are largely based on

the sample points we select over the domain. However, problems still arise when the dimension of

the integration domain is large. This leads to an issue called “the curse of dimensionality,” in which

the number of estimations needed for evaluating the integral grows exponentially as the dimension

2

of problem increases [8]. Therefore, these quadrature methods are not suitable for high dimensional

integration problems.

To approximate high dimensional integrals, Monte Carlo methods are one of the most prevailing

classes of algorithms. In Monte Carlo integration, we produce a numerical result to approximate

the integral value through generating a group of random samples over the domain of the integral.

The convergence rate of Monte Carlo methods is independent of the dimensions involved in the

problem, which makes it very efficient for solving high dimensional problems. The main motivation

of this paper is to improve the efficiency of existing Monte Carlo integration methods for high

dimensional problems via leveraging deep learning techniques.

1.2 Outline of the Thesis

In chapter 2, we review Monte Carlo methods that we plan to improve on. In chapter 3, we

provide the background of energy potentials in physics and its connection to uniform distribution.

In chapter 4, we review the basis of deep learning, and we propose a class of novel Quasi-Monte Carlo

methods via deep neural networks in chapter 5. We demonstrate the viability and effectiveness of

the proposed methods in chapter 6 through many numerical experiments and visualization graphs.

Finally, we discuss the advantages of our methods in helping solve high dimensional problems in

general and potential future work in chapter 7.

3

Chapter 2 Monte Carlo Methods

In this section, we briefly review the classical Monte Carlo methods and the Quasi-Monte

Carlo methods. In particular, we focus on the advantages and disadvantages of these methods in

evaluating high dimensional integration problems and the potential improvements on the existing

methods. We also compare the convergence rates of these two classes of methods.

2.1 Monte Carlo Methods for Numerical Integration

Let’s reconsider the previous stated problem of evaluating an integrand f over the domain

D ⊂ Rd.

I =

∫
D
f(x)dx. (2.1)

If the dimension d of the domain is large, it is a common practice to use the Monte Carlo integration

methods, which utilize a non-deterministic approach by averaging function values evaluated on

randomly sampled points in the domain. Specifically, Monte Carlo integration methods generate

a sample of size N in D, x1, . . . , xN , and take the arithmetic mean of {f(xk)}Nk=1 as the final

approximation for the integral result:

∫
D
f(x)dx ≈ 1

N

N∑
k=1

f(xk) = IN [f]. (2.2)

In this way, Monte Carlo integration methods can yield very precise estimates when the sample

size of randomly generated samples is large. This is due to the law of the large numbers. We know

that the expectation of Monte Carlo integration results is equal to the true value of the integral.

I = lim
N→∞

1

N

N∑
k=1

f(xk). (2.3)

4

In addition, the integration error of Monte Carlo methods can be defined as the following, which

often serves as the measure in evaluating the accuracy level of different Monte Carlo integration

results:

εN [f] = I − IN [f]. (2.4)

Based on the Central Limit Theorem and the assumptions that the errors are uniformly distributed

and have an expected value of zero, we can derive the variance and root mean square error (RMSE)

which has the order of O(σN−1/2), where σ represents the constant variance of the integral f [2].

Therefore, we can see that the convergence rate of Monte Carlo methods based on uniform sampling

is O(N−1/2), meaning that if the sample size used in generating the integration results is four times

the original size, the errors calculated based on Monte Carlo methods would be halved in general

regardless of the dimension of the problem. This property reveals the most attractive feature of

Monte Carlo integration methods: the convergence rate is independent of the dimension d [6].

One drawback, however, is that the speed of convergence of Monte Carlo method is still slow.

A large number of samples is needed in order to achieve a relatively high accuracy level for the

integration results. This slow convergence rate is mainly due to the use of random sampling. For

a fixed number of samples, a better choice of samples may yield a much better accuracy in the

final average estimation of the integration result. For example, in two dimensions with domain

D = [0, 1]2, a uniform tensor grid with N points yields a much higher accuracy than N random

points sampled from the uniform distribution in D. Therefore, it is desirable for us to explore other

methods to improve the convergence rate of Monte Carlo methods.

2.2 Quasi-Monte Carlo Methods

One of the variants of Monte Carlo methods is the Quasi-Monte Carlo methods, which improve

the convergence rate of the classical Monte Carlo methods. Both methods evaluate an integral

in a quite similar way, but Quasi-Monte Carlo methods generate N samples, x1, . . . , xN , in D

deterministically for integral calculations, which is often based on low-discrepancy theory.

Low-discrepancy sequence is different from the random sequence generated by Monte Carlo

integration methods. For example, the discrepancy DN associated with a sequence x1, . . . , xN , in

5

D on the interval [0, 1] is defined as follows [7]:

DN = DN (x1, . . . , xN) = sup
0≤α≤β≤1

|A([α, β);N)

N
− (β − α)|,

where A(E;N) be a counting function that is defined to be the number of terms in the finite

sequence E and α and β are two arbitrary points in the interval [0, 1].

Discrepancy for high dimensional sequences can be defined in similar ways. Based on this

idea of discrepancy, we can say that for low discrepancy sequence, the proportion of points within

a predefined set is proportional to the measure of this set over the entire domain. In this way,

discrepancy can be used to measure the uniformity of a sequence distribution, and lower discrepancy

means better uniformity. In Quasi-Monte Carlo methods, low-discrepancy or uniform sequences

are often used in order to yield a faster speed of convergence to the integration results.

Figure 2.1: Pseudorandom Sequence and Quasi-random sequence [1].

Some common sequences used in Quasi-Monte Carlo methods include Halton sequence, Sobol

sequence, and Faure sequence, all of which utilize one or two base numbers to form predefined

sequences that are more uniformly distributed in different dimensions and help improve the inte-

gration accuracy [3]. As shown in the comparison in Figure 2.1, it is clear that randomly generated

sequence tends to cluster together disorderly, whereas quasi-random sequence is distributed much

more evenly and uniformly over the two dimensional domain, which leads to more efficient Monte

6

Carlo integration.

In Quasi-Monte Carlo methods, the convergence rate is roughly O((logN)dN−1) and is generally

faster than the O(N−1/2) convergence rate of regular Monte-Carlo methods [2]. Although Quasi-

Monte Carlo methods enjoy a faster convergence rate in most cases, it is very difficult to evaluate

the error bounds that depend on the sequence discrepancy in different approaches. Moreover,

they may fail to guarantee the low discrepancy with poorly predefined parameters and when the

dimension is extremely high.

After analyzing the regular Monte Carlo integration methods and the Quasi-Monte Carlo meth-

ods, we plan to overcome the drawbacks of Quasi-Monte Carlo methods and propose an efficient

high dimensional integration scheme with strong theoretical guarantees. The idea of this new

scheme comes from the energy potentials of physical particles which will be reviewed in the next

chapter.

7

Chapter 3 Motivation from Physics

In this chapter, we try to explain our motivation in drawing the theoretical connection between

energy potentials of physical particles in a system and the uniform distribution. Specifically, we

analyze the notion of equilibrium state in physics from different perspectives and provide insights

in utilizing the concept of equilibrium to model the sample points generated for the evaluation

of Monte Carlo integration methods. We also introduce a specific distribution in explaining the

intuition behind the proposed deep neural networks approach.

3.1 The Notion of Equilibrium

The science of statistical mechanics helps connect individual particles movement in a system

to observable properties of the entire system [10]. One of the specific areas in statistical mechanics

is the statistical thermodynamics, which uses overall physical properties (especially temperature or

energy), rather than properties of individual particles, to describe the entire system. The concept

of thermal equilibrium state in statistical thermodynamics refers to the situation when there is no

exchange of energy or potentials among particles in an isolated system [18]. In our problem, we can

treat the domain of our sampling space as an isolated system. Assuming that there is no energy

exchange between the system and any external environment, we can reach the equilibrium state

from the thermodynamics perspective when there is no energy transfer among all generated sample

particles or no particle collision in our domain.

There is a similar concept of equilibrium in molecular dynamics, since different types of forces,

either attractive or repulsive, exist among different molecules. When all forces are balanced out

among all molecules in a system and the system would not tend to change over time, we know

that the system reaches the equilibrium state from the perspective of molecular interactions. In

8

particular, we pay attention to the short-range repulsion forces between different molecules. Each

molecule has its orbitals around the surface. When two molecules come too close to each other,

there would be electrostatic repulsion forces between them, causing them to separate from each

other [16]. This leads to a non-equilibrium change in state. Again if we treat our sampling space

as a system consisting of molecules, to keep the entire system in a stationary state and achieve the

equilibrium point, we need to make sure that all molecules are properly distanced from each other

so that the forces can be minimized in the system.

Given these explanations of equilibrium, we can infer that little energy exchange and little

interactions among microscopic particles in a system typically implies that the entire system is

close to the equilibrium state. To prevent energy exchange, we can try to restrict particle collisions

in the system or minimize the attractive and repulsive forces among different particle pairs by

adjusting the locations and distance among all particles in the system. This inspires us to consider

the uniform distribution as an equilibrium state, because in uniform distribution, distance among

all particles is very well balanced so that there would be no collision or strong interactive forces

among particles in the system. Therefore, we can model the randomly generated sample points in

Monte Carlo methods as individual particles and the entire sampling domain as an isolated system.

By moving the sample points to achieve better uniformity in the domain, we are able to minimize

the energy exchange and particle interactions of the system and achieve a equilibrium state.

3.2 Boltzmann Distribution

There are other concepts that can well explain why lower energy implies more equilibrium and

uniform distribution of particles. Boltzmann distribution is a famous probability distribution in

statistical mechanics. This distribution draws the connection between the probability of a given

state of the system and the total energy of the system. To be more specific, this probability distri-

bution suggests that the probability of a system being in a certain state is inversely proportional

to the energy of the system. This is the same as saying that it is more likely for us to find particles

in the system being in lower energy states and gradually, the energy and momentum of different

particles would converge to the uniform distribution in the given space [15].

The shape of Boltzmann distributions for molecules of ideal gas at different temperature may

9

be different, i.e. the probability distribution of the energy or speed of individual molecules in a

given system may change given different temperature of the system. In general, we find that the

number of particles with higher energy, which can be represented by the speed of particles, decreases

exponentially in a system [14]. This corresponds to the notion of equilibrium state in which lower

energy implies more stable and more stationary state of particles in the system. With minimum

energy, the speed and momentum of individual particles in the system would all decrease to their

minimum level and thus resemble a uniform distribution for energy of all particles.

Therefore, the Boltzmann distribution also suggests that trying to lower the energy of individual

particles in a given system would help us effectively enter a more stable and stationary equilibrium

state in the system with the distribution of the energy and position of particles resembling an

uniform distribution. These ideas from thermodynamics and molecular interactions provide us

a great way of modeling the sample points in the Monte Carlo methods and lead to our newly

proposed neural networks approach in later chapters.

10

Chapter 4 Basics of Deep Learning

In this chapter, we introduce some basics of deep learning methods, including the multi-layer

perceptron (MLP) and automatic differentiation (AD) technique. Both the MLP structure and the

efficiency of AD technique stress the importance of utilizing deep learning approach to implementing

our idea presented in chapter 3.

4.1 Multi-layer Perceptron

Figure 4.1: Deep Neural Network Structure.

A multi-layer perceptron (MLP) is a simple feedforward artificial neural network with the

structure demonstrated in the figure 4.1. It is the most basic neural network structure and mainly

11

consists of three parts: the input layer, at least one hidden layer, and the output layer. Each node

represents certain activation function that can perform calculations on the input data and pass the

information to the following layers. Different layers are connected with different weights, which

are trained and optimized during the model training process. The multiplayer perceptrons are

very effective in detecting the features of input data and approximating any continuous function

[11]. Due to the large sample sizes and high dimensions involved in in solving high dimensional

integration problems, multi-layer perceptron becomes necessary for us in order to analyze each

sequence distribution effectively and guarantee the low discrepancy in output sequence.

In our model, we mainly utilize the leaky ReLU and sigmoid activation functions in the nodes

of our deep neural networks. First, we can add randomly generated samples {xk} into the the

input layer of deep neural networks. These input data consist of arbitrarily artificial data points

randomly generated in a chosen dimension and sample size. Multiple hidden layers in the neural

networks would then help us detect the complex distributions of input sample points and minimize

the total energy potentials and interactive forces of the input data, thus producing a low discrepancy

sequence as the output of the neural networks. The neural network structure we used often needs

to include more than 10 layers in order to process all data and minimize the total energy efficiently.

4.2 Automatic Differentiation

Another significance of using the deep learning approach to implement our idea presented in

chapter 3 is that the automatic differentiation (AD) technique can be easily applied in the neural

network algorithm.

Minimizing the total energy function and optimizing the locations of sample particles in the do-

main often requires huge computations of derivatives. Different methods that automatically calcu-

late derivatives include finite differentiation, symbolic differentiation, and automatic differentiation.

When the dimension of the problem is large, floating point errors exist in finite differentiation, and

both the finite and symbolic differentiation algorithms become slow and memory-intensive. How-

ever, automatic differentiation helps differentiate mathematical functions numerically by a com-

puter program consisting of elementary operations, which makes it highly efficient and applicable

to even very complex functions [9].

12

Specifically, AD works in two modes: the forward mode and the reverse mode. For large sample

size and high dimensional data, the reverse-mode AD is especially efficient. For each computation in

the node, AD would calculate the corresponding gradient, evaluate it numerically, and combine the

result with previously calculated results using chain rule. In this way, it can save much memory and

computations when calculating derivatives and is especially easy to implement in the deep neural

network algorithm with existing packages [9]. Details about our newly proposed deep learning

approach are introduced in the next chapter.

13

Chapter 5 Dynamics, System Energy and Deep

Neural Networks

To improve the convergence rate and robustness of Monte Carlo methods, we propose a new

framework to generate sequences that can achieve better uniformity. Inspired by the equilibrium

distribution in statistical mechanics and molecular interactions, we treat each sample as a particle of

mass in the domain D and formulate the sampling problem as simulating the equilibrium state of a

particle system. In this way, the sample sequences can be determined by searching for a distribution

that minimizes certain energy potential functions of the particle system, where each candidate

distribution can be represented by a deep neural network. This method seeks to maintain the

convergence rate of Quasi-Monte Carlo methods while overcoming the drawbacks by guaranteeing

the low-discrepancy of sequences generated.

We assume throughout the paper that the domain D = [0, 1]d, where d is the dimension of the

domain. As stated in chapter 3, to achieve the equilibrium state and better uniformity among all

sample points, we need to make sure that there is no energy exchange and interactive forces among

all samples, which means that all sample points should be well separated in the domain. Therefore,

there should be no cluster among the sample points and no close pairs of sample points in the

domain. In this case, the sample sequence would resemble the uniformly distributed sequence with

low discrepancy and thus yield more accurate Monte Carlo integration estimations. Following this

principle, we then propose two different approaches to achieve this equilibrium state in the system

of sampling domain via deep neural networks.

14

5.1 Deep Learning Approach

Based on the concept of short-range repulsive forces in molecular interactions [16], closer pair

of sample points implies larger energy. Therefore, the energy function that we aims to minimize

in the deep neural networks should be a function of the distance between two different locations

of sample points. Let’s first define an energy function U(x, y), which can measure the interaction

forces between two particles located at x and y for x 6= y ∈ Rd. In addition, let V (x) be another

potential function, such as a quadratic confining potential V (x) = 1
2 |x− c|

2 or a quartic confining

potential V (x) = 1
4 |x − c|

4, etc., where c is the center position of the domain D. The potential

function V (x) can be viewed as a regularization term that prevents particles from going too close to

the domain boundary. This type of regularization terms can serve different purposes. First, it can

be used to restrict too much movement from the input sequence {xk} to the transformed sequence

{yk} so that we may achieve a faster convergence to the integral. For example, this purpose can be

achieved by including terms like
∑n

k=1 ||yk − xk||∗ for any specific norm or squared norm. Second,

the regularization term can also help prevent the final Monte Carlo estimations using sequences

generated from deep neural networks to get too far from the original Monte Carlo approximations.

This can be achieved by using terms like wN |
∑
f(yk) −

∑
f(xk)|2 where wN is a weight that

depends on the sample size N . Since a larger N typically gives more accurate estimations in the

classical Monte Carlo methods, it should be assigned a larger weight to prevent the final estimation

from getting too different from the original estimation. In this way, wN → ∞ would yield the

baseline Monte Carlo estimation results.

There are various forms for us to measure the energy potential U(x, y) among a pair of sample

points. Let |x− y| denote the Euclidean distance between x, y and || · || denote a norm specified by

the users. The energy function U(x, y) can be a function such as a Coulomb interaction potential

function U(x, y) = 1
|x−y| , a Yukawa interaction U(x, y) = e−µ|x−y|

|x−y| where µ is a damping factor, a

negative distance function U(x, y) = −||x−y||, or a negative squared distance U(x, y) = −||x−y||2,

etc. Different forms of potential functions should be tested in order to decide which one is the most

efficient and yield fast convergence to the integration results.

Given that x1, . . . , xN is a set of samples in domain D = [0, 1]d, we aim to generate N new

samples y1, . . . , yN in D, which achieves better uniformity than {xk}Nk=1. Instead of generating

15

uniform distributed sequence directly, we aim to improve the original poor distribution of the

sample generated based on uniform sampling for regular Monte Carlo methods. This method can

be summarized in the following way:

• Input: x1, . . . , xN ∈ D

• Output: y1, . . . , yN ∈ D

• Let y = G(x;W) be a neural network with parameter W , where G : D → D. We solve:

W ∗ = arg min
W

∑
i 6=j

U(yi, yj) + δ
∑
i

V (yi)

where δ ≥ 0 is a regularization parameter;

• Define

yk = G(xk;W
∗);

• Then the Monte Carlo approximation for integration estimation is given by

IN [f] =
1

N

N∑
k=1

f(yk).

To further illustrate, this algorithm takes a set of sample sequence {xk} randomly generated

in the domain D as input, and outputs a new set of points {yk} in the domain through running

the deep neural networks and minimizing the total energy potentials of all sample pairs. Then we

can evaluate the integral on the set of output sample points and take the average of all results as

the final estimation using Monte Carlo integration methods. A simple example can be given in one

dimensional case. If there is three sample points generated on the interval [0, 1]. An equidistributed

sample set {0, 0.5, 1} can minimize the short-range interaction among all sample pairs, because all

points in this set are well-separated over the interval domain and it should also yield a very accurate

result for the integral. This one dimensional example also coincides with some of the quadrature

rules used in low dimensions.

Given this neural networks algorithm, we can then conduct numerical experiments in determin-

ing the optimal neural network structure and parameters, energy potential functions for U and V ,

16

and the best accuracy results that our methods can achieve when producing numerical approxima-

tions of different integrals. In particular, we need to check whether the output set of sample points

indeed follows a roughly uniform distribution and whether the final approximation for integrals

using the output distribution is much more accurate than the original Monte Carlo methods.

Notice that in the stated algorithm, we consider mainly the short-range repulsion force between

all the sample pairs, in which the closer the sample pair is, the larger the energy potentials between

them. Theoretically, as long as no sample points cluster together, short-range repulsion potential

is enough for us to generate a set of sample points that resembles the uniform distribution, so we

can ignore the long-range attraction potentials between each sample pair here. Let us imagine that

after we generate some random samples in the domain, there is still a large gap in the center of

the domain, meaning that all sample points are somehow distributed evenly around the periphery.

In this case, our deep neural networks would help us minimize the short-range repulsive energy by

moving some sample points to the center of the domain so that energy near the periphery further

decreases and so does the total energy of the sequence. Therefore, it is redundant for us to add

long-range attraction potentials to attract points that are far away from each other to get closer.

This may complicate the model too much and we also prove that this deep learning approach is

efficient in improving results of existing Monte Carlo methods.

To recapitulate, our goal here is to minimize the function of total energy potentials among all

sample value pairs generated in the domain via deep neural networks. Ideally, after training and

running the deep neural networks repeatedly, we hope to reach the global minimum value of total

energy potentials, which can help achieve the best uniformity among the sample points and yield

the most accurate integration estimation.

5.2 Adaptive Training Approach

One of the potential drawbacks with the deep learning approach is that deep neural networks

may incur huge computational costs, especially for high dimensional data or large sample size

involved in the input data. Therefore, we try to utilize adaptive training to reduce time complexity

and computational costs and improve the efficiency of the neural networks methods. The idea of

using deep neural networks to minimize total energy of existing samples in the domain is retained.

17

The major difference between these two approaches is that we can add the randomly generated

sample inputs step by step into the domain, instead of inputting all sample points at one time.

To be more specific, we can divide the total number of sample points into smaller groups with

similar sample size at each group. First, given the predefined sample size, we generate the first

sample group randomly over the domain. Second, we minimize the total energy of the first group of

sample points so that all points are well separated and move to their optimal locations in this stage.

The locations of the sample points in the first group are fixed afterwards. Repeatedly, we add the

following groups with predefined sizes to the domain one by one and minimize the total energy at

each group separately while considering all previous added sample points in the energy function

as well. In this way, we again minimize the total energy at each step, which is dependent on all

previous stages and has all previous added sample points held fixed in their optimal positions.

The goal of different approaches is the same. Given samples x1, . . . , xN in domain D = [0, 1]d,

we aim to generate N new samples y1, . . . , yN in D, which achieves better uniformity than {xk}Nk=1.

In the adaptive training, let’s assume that we have initial m random samples, and at each stage

we add random samples with a fixed size n to the domain D. After adding all the samples into the

domain, we have N sample points in total. This method can be summarized in the following steps

with similar deep neural networks structure as in section 5.1:

• Initial input samples: x1, . . . , xm ∈ D for k = 1, . . . ,m;

• Generate output y1, . . . , ym ∈ D such that

yk = G(xk;W
∗),

where

W ∗ = arg min
W

∑
i 6=j

U(yi, yj) + δ
∑
i

V (yi);

• Add another sample group with size n: xm+1, . . . , xm+n ∈ D;

• Generate output ym+1, . . . , ym + n ∈ D such that W ∗ is minimized for i, j = 1, 2, . . . ,m + n

under the constraint that y1, . . . , ym are fixed;

• Repeat last two steps until the total number of samples reaches the desired sample size N .

18

In the adaptive training, deep neural network structure and parameters should be adjusted

accordingly. For example, the number of layers in the neural networks and the number of epochs

that neural networks need to run at each step can be reduced to proper sizes so that it is more

suitable for smaller sample inputs. Because we minimize the total energy of samples with size m or

n at each stage separately instead of minimizing total samples with size N , this adaptive approach

can help us save much time and computational costs. However, although we may improve the

efficiency of training neural networks, we may not be able to find the global minimum of total

energy of all N samples points. Because we add randomly generated samples group by group,

samples in some groups may cluster together in specific regions of the domain. With fixed locations

of previously added sample points, movements of newly added points may be restricted around

the local minimums of energy potentials. Therefore, although the adaptive approach may have

faster convergence to the integration results, we give up finding the global minimum of total energy

of all sample points in most cases. Without concerns in the computational costs, the standard

deep learning approach is more desirable in order to achieve high accuracy levels in the integration

approximation.

19

Chapter 6 Numerical Experiments

In this chapter, we conduct numerical experiments to test the validity and effectiveness of our

methods. In particular, we test for different deep neural network architectures, energy functions

U and V , dimensions d, integrands f , and input distributions xk, etc. To test the accuracy of

the output set of sample points in the Monte Carlo integration, we also generate integrals with

varying parameters and their corresponding exact solutions. Then we compare the errors of the

original Monte Carlo methods using the randomly generated sample points and errors of Monte

Carlo methods using the output set of samples, i.e., errors calculated using {xk} and {yk} for

k = 1, 2, ..., N , to test the accuracy levels of different approaches. More specific details of the

numerical experiments are included in the following sections.

6.1 Energy Functions

Various potential functions that measure the interaction between two sample points can be

considered in the experiments in order for us to figure out the most appropriate energy form for

the loss function in the deep neural networks. Some of the common potential functions that we

have considered in the experiments are listed here.

• U(x, y) =
e−µ|x−y|

|x− y|2
with parameter µ and

W ∗ = arg min
W

∑
i 6=j

U(yi, yj)

20

• Coulomb potential[4] U(x, y) = 1
|x−y| plus quadratic potential V (x) = 1

2 |x− c|
2 with

W ∗ = arg min
W

∑
i 6=j

U(yi, yj) + δ
n∑
i=1

V (yi)

where δ is a regularization parameter.

• Yukawa potential [17] U(x, y) =
e−µ|x−y|

|x− y|
with parameter µ and

W ∗ = arg min
W

∑
i 6=j

U(yi, yj)

• Gaussian potential [12] U(x, y) = e−
|x−y|2

s2 with parameter s and

W ∗ = arg min
W

∑
i 6=j

U(yi, yj)

In the experiments, we need to choose all parameters carefully so that the smaller the distance

between each pair of sample points, the larger the energy potential between them. Different com-

binations of the potential U and V and potential functions with other forms can also be tested.

Specifically, the Coulomb potential measures the electric energy between different electric charges,

whereas the Yukawa potential measures the atomic interaction forces for particles within a short

range. When the exponential term in the numerator of the Yukawa potential function goes to zero,

the form of the potential function changes to the Coulomb potential. However, we find in the

experiments that Coulomb potential is not very appropriate, because even when the sample points

closely follow a uniform distribution, energy near the boundary of the domain is still very large,

which is far from the minimum total energy that we try to find. As a conclusion, we find that

when choosing parameters wisely, most potential functions can help reach our goal of achieving

better uniformity in the output distribution. Among the functions we tested, Yukawa potential is

the most effective one for our deep neural networks. Therefore, later examples all use the Yukawa

potential function as the loss function.

21

6.2 Low Dimensional Examples

To illustrate the effectiveness of the deep neural networks approach, we generate some examples

in lower dimensions, such as two dimensions and three dimensions for the visualization purpose.

Since neural networks are related to dynamic systems, we can give a sequence of illustrations

showing how {xk} changes into {yk} over time. In this way, we can also demonstrate how the

total energy potentials of all sample points in the domain are minimized and how sample points

gradually move into a much more uniform distribution.

The first example is the movement of 25 randomly generated sample points in the two dimen-

sions. As previously mentioned, we choose the Yukawa potential form as the loss function, which is

the most efficient one based on our experiments. Snapshots of the following scatterplots are taken

at every 2000 epochs:

Snapshot 1, {xk} Snapshot 2

Snapshot 3 Snapshot 4, {yk}

Figure 6.1: Snapshots of 25 Points in two dimensions.

22

As we can see, the initial distribution of the sample points {xk} for k = 1, 2, . . . , 25 is highly

unbalanced and asymmetric in the domain. Some points cluster together at the top right and

top left corners. There are also several large gaps in the center and lower left corner of the two

dimensional sampling space. After we finish tuning all parameters and running the deep neural

networks repeatedly, these sample points start to move around their original places, and close

sample pairs also spread out from each other gradually. By comparing the locations of sample

points at each snapshot, we find that each point only takes a very small step around its original

location towards the direction that minimizes the total potential energy of the set of samples. In

the end, the output distribution of the set of 25 sample points {yk} greatly resembles the uniform

distribution in the domain as shown in the snapshot 4, which can be used to effectively improve

the accuracy of Monte Carlo results.

Heat Maps for Inputs Heat Map for Outputs

Figure 6.2: Heat Map Comparisons.

A heat map can help us better illustrate the level of uniformity among the input and output

sequences in the same two dimensional example. Specifically, let us assume the initial energy map is

defined as U0(x) :=
∑N

k=1 U(x, xk) and the output energy map is given by U1(x) :=
∑N

k=1 U(x, yk),

in which x represents every location in the two dimensional domain and the energy function U is

represented again by the Yukawa potential function in this example. These energy maps can vividly

exhibit the balance of energy potential at every location in the domain. To be more specific, the

total energy concentrated at a specific location in the domain given its relationship to all sample

data points is calculated. These energy maps help visualize the energy concentrated at specific

23

locations in the domain with different height and color, helping us discern the uniform distribution

more efficiently.

As shown in the heap maps, we find that given the poor distribution of input data {xk}, the

energy map is highly unbalanced with high energy potential concentrating at the top right corner of

the domain, which corresponds to the Snapshot 1 in the scatterplot illustrations. This type of heat

maps implies a highly nonuniform distribution. On the other hand, in the output heat map, we

find that it shows higher energy at the center of the domain and lower energy around the periphery.

This is because center locations in the domain have closer distance to all sample points in sum and

thus high energy to nearly all the generated sample points, whereas energy at locations near the

periphery is only affected by several nearby sample points. Therefore, the second heat map gives

us a good heat map representation of uniformly distribution sequences where the energy potential

is balanced and almost symmetric with respect to all locations in the domain.

{xk} {yk}

Figure 6.3: Inputs and Outputs of 36 points in three dimensions.

Similar illustrations can be recorded in the three-dimensional space. In this example, there

are 36 sample points randomly generated in three dimensions, in which the color represents the

height of the sample points. In the initial distribution, all randomly generated sample points seem

to gather together near the center of the three dimensional domain and several pairs are very

close to each other. After running our deep neural networks repeatedly, the set of output samples

distribute much more evenly over the domain and are also well-separated from each other in any

of the three dimensions. Utilizing the output samples {yk} of our neural networks instead of {xk}

24

can significantly improve the original Monte Carlo results.

For the efficient adaptive training methods mentioned previously in Section 5.2 in which we

minimize the total energy for all existing points in the domain step by step, we can also generate

a sequence of output dynamics from the deep neural networks. For instance, randomly generated

56 sample points in the two dimensional domain may have a very poor distribution, as shown the

scatterplots. Most of the randomly generated points cluster at the top of the domain, and several

sample pairs are located too close to each other, leading to low accuracy of Monte Carlo results. To

produce a low discrepancy sequence using the adaptive approach with our deep neural networks,

we can generate an initial random sample group with size 16. After running 2000 epochs, the total

energy of these initial 16 samples is minimized, so these initial sample points are distributed evenly

in the two dimensional space, as demonstrated in the subfigure Stage 1 of Figure 6.5. Then we

fix the locations of these initial 16 samples, add 10 more sample points at the next stage, and

minimize the total energy of all existing sample points in the domain again. By adding 10 sample

points at each stage and minimizing the total energy in the domain at each stage, we are able to

move the added samples to their optimal positions at each stage. In the end, we are also able to

generate a low-discrepancy sequence as the output sequences. As we can see in the last subfigure in

Figure 8, although the output distribution {yk} still looks slightly unbalanced near the boundary

of the domain, it has a much more uniform distribution than the input distribution indicated in

Figure 7. In this adaptive approach, instead of minimizing the total energy of 56 sample points,

we minimize 16 or 10 samples each time and optimize each group of samples based on previous

conditions. Therefore, the computational costs of running our algorithm are also greatly reduced

and the energy function would converge faster to the integration results.

Figure 6.4: {xk}

25

Initial samples Stage 1

Stage 2 Stage 3

Stage 4 {yk}

Figure 6.5: Adaptive Training in Generating Low-discrepancy Sequence

26

6.3 Results Evaluation

In order to clearly compare the accuracy levels of the original Monte Carlo integration meth-

ods and the deep neural networks based Monte Carlo methods, we choose integrands with known

integration results and compare the errors in Monte Carlo results calculated using randomly gen-

erated samples x1, . . . , xN and deep neural networks outputs y1, . . . , yN . We conduct numerical

experiments and generate some sample data in the different dimensions.

Specifically, the test integrals we use in the experiments has the following form taken from

Gantner & Schwab [5], in which d represents the dimension and c and b are parameters.

g(x) = exp(c
d∑
j=1

xjj
−b) =

d∏
j=1

exp(cxjj
−b) (6.1)

Since g is a product of one-dimensional functions, we can find out the exact solution of the one-

dimensional integrals, which give us the exact value of the integral to compare with.

I(g) =

∫
[0,1]d

g(x)dx =
d∏
j=1

exp(cj−b)− 1

cj−b
, c 6= 0 (6.2)

Subscripts 1 and 2 in the tables represent errors calculated using two different test integrals, with

parameters c = 1, b = 2 and c = −1, b = 2 respectively.

All sample results are generated using the Yukawa potential form as the energy function, and

the parameter µ is chosen in a way that the larger the sample size or the dimension is, the larger the

parameter µ is in the Yukawa form. In addition, average random errors are calculated by taking the

average of errors calculated using random sample points {xk} generated with 10 different seeds and

can be viewed as a good approximate for the general errors calculated using randomly generated

samples.

27

Dimension d = 5

Sample Size Average Random Error1 DNN Error1 Average Random Error2 DNN Error2

200 0.04410483 0.008264 0.01055115 0.008505

500 0.03806009 0.006647 0.00804757 0.007664

1000 0.02332605 0.004515 0.00579373 0.003014

2000 0.01027604 0.002657 0.00271604 0.000461

5000 0.005875 0.000576 0.00144298 0.000295

Dimension d = 10

Sample Size Average Random Error1 DNN Error1 Average Random Error2 DNN Error2

500 0.03597211 0.005675 0.00817588 0.004594

1000 0.01888339 0.001806 0.0040605 0.004399

2000 0.01112589 0.001325 0.00289098 0.002894

3000 0.01121042 0.000918 0.00247913 0.00094

5000 0.00997146 0.000018 0.00182946 0.000426

Dimension d = 25

Sample Size Average Random Error1 DNN Error1 Average Random Error2 DNN Error2

800 0.01637029 0.00691 0.00342662 0.000623

1000 0.015864 0.003148 0.00360773 0.000403

2000 0.01696143 0.000811 0.00307998 0.000596

5000 0.00848933 0.0006 0.00165439 0.000136

7000 0.00762113 0.000341 0.00145294 0.00016

28

Dimension d = 50

Sample Size Average Random Error1 DNN Error1 Average Random Error2 DNN Error2

800 0.02360986 0.001241 0.00469252 0.001906

1000 0.02147316 0.000719 0.00395262 0.001701

2000 0.01291208 0.000507 0.00285905 0.000201

5000 0.01034117 0.000399 0.00218529 0.000385

8000 0.00742425 0.000135 0.00166327 0.000269

In these numerical experiments, our deep neural networks incorporate 10, 12, 13, and 15 different

layers for dimensions of 5, 10, 25, and 50, respectively. First, we can easily find that both the average

random errors and errors calculated based on deep neural networks decrease predominantly as the

sample size increases. More sample data can surely yield preciser results based on the law of large

number. Second, it is clear that in most cases, the deep neural network approach can achieve a

three-digit or four-digit level of accuracy, which means that our methods can often yield one more

digit of accuracy than original Monte Carlo integration methods.

In addition, although we test two different integrals in the experiments and errors calculated

with randomly generated sample points are quite different (errors calculated for the second integral

are much smaller than those calculated for the first integral in all presented dimensions), we find that

errors calculated with the deep neural networks approach are similar. Take the fifth dimensional

data as an example. The random errors generated with {xk} in the second integral are indeed

much smaller than errors calculated for the first integral. However, in the deep neural network

approach, errors calculated using two different integrals are quite close to each other. Although

there are some numerical discrepancies, the fractional accuracy of these DNN errors are on the same

level and this approach can always maintain the three-digit level of accuracy for both integrals.

This phenomenon suggests that the global minimum energy may be independent of the initial

distributions of randomly generated samples {xk}. Regardless of the initial random distributions,

200 random samples in the fifth dimension can always find their optimal distribution in the domain,

minimize the total energy function, and yield Monte Carlo results with errors of roughly 0.008.

Undoubtedly, the process of minimizing the total energy can depend on the initial configuration,

29

since a better sampled sequence would yield a faster convergence and achieve the minimum energy

with much fewer epochs. However, with properly tuned parameters and structure of deep neural

networks, it is convincing that deep neural networks approach can guarantee a certain level of

accuracy with a given sample size and dimension.

Figure 6.6: Convergence Rates at 10th and 50th Dimensions

We can compare the accuracy levels of both methods clearly using line graphs as illustrated.

Here we compare two pairs of errors at the 10th and 50th dimensions as examples, and the y-axis

is set at log scale. Both errors generated using original Monte Carlo methods and those produced

using deep neural network approach decrease gradually as sample size increases. In particular, errors

generated with the deep neural networks approach decrease at a much faster speed than errors of

the original Monte Carlo methods at the 10th dimension and also slightly faster at 50th dimension.

Although different parameters may produce different results and errors in each experiment, we can

confidently conclude that the neural networks methods proposed in this paper can indeed help us

improve the accuracy and efficiency of Monte Carlo methods for high dimensional data.

Together we can compare the errors we calculated from our deep learning approach in all chosen

dimensions to find out the optimal level of accuracy that our methods can help achieve in Monte

Carlo integration. As shown in the figure 6.7, errors generated with our deep neural networks seem

to be independent of the dimension of the integration problem. We can always guarantee at least

three-digit level of accuracy in the Monte Carlo integration results. As the sample size increases to

roughly 2000, we can achieve a four-digit level of accuracy in most dimensions.

30

Figure 6.7: Lowest Errors of Deep Learning Approach at Different Dimensions

31

Chapter 7 Discussion and Future Work

Based on the neural networks methods proposed in this paper and numerical experiments of

error comparisons for different approaches, we find that in many cases, our methods can achieve at

least one more digit of accuracy than the regular Monte Carlo methods. In addition, errors calcu-

lated using the deep neural network approach also decrease at a much faster speed than the errors

of the original Monte Carlo methods, which suggests that our approach can potentially improve the

convergence rate of Monte Carlo methods from O(1√
N

) to O(1
N) with properly chosen energy po-

tentials functions and parameters. Although the initial distributions of randomly generated sample

points seem to affect the speed of the decaying losses in our deep neural networks, the final results

that minimize the total energy of all sample data are independent, meaning that the deep neural

networks approach can guarantee a specific accuracy level for the Monte Carlo results regardless of

the initial distributions of {xk}. This also helps overcome the drawbacks of existing Quasi-Monte

Carlo methods, which fail to guarantee the accuracy level in high dimensions. Our deep learning

approaches have also contributed in the following ways:

General Tools for Improving Poor Distributions Because our deep neural networks can

properly model the interactions among all the samples, these methods can be used as general tools

to deal with various high dimensional problems, such as integration, sampling, inference, etc., by

improving the poor distributions of input data. Ideally, after generating uniformly distributed sets

of sample outputs by our neural networks, researchers can always transform the sequence and get

the desired set of sample outputs or specific sample distribution with a given domain D, dimension

d, and sample size N . Our neural network structure and energy potential functions provide a very

convenient way of utilizing this type of tools.

32

New Definitions for Sequence Discrepancy Our methods belong to the broad class of

Quasi-Monte Carlo methods which utilize the low-discrepancy of sequence, so we can come up

with new definitions for sequence discrepancy based on the deep learning approach. For instance,

because the energy potentials among the sample points are heavily affected by the distance among

them, the distance between each pair of sample points in the domain plays a very important part

in defining discrepancy. Let X be a set of sequence for k = 1, . . . , N in domain with dimension d.

An example of the discrepancy of the sequence can be defined as:

ΛN :=

max
1≤i≤N

δi

min
1≤i≤N

δi

where δi = min
j 6=i
|xi − xj | denotes the Euclidean distance of xi to the rest of the dataset X. This

definition of discrepancy gives the ratio of the largest distance among sample data pairs to the

smallest distance among sample pairs. Other similar definitions can also be derived from the neu-

ral networks perspective to better measure the discrepancy of a given sequence.

Admittedly, the deep learning implementation of the Quasi-Monte Carlo methods and the nu-

merical experiments we have done on the deep learning approaches are highly limited. Future work

should be conducted in the following directions to improve the proposed methods and their viability

in real applications of Monte Carlo algorithms.

More Theoretical Justification In this paper, we have proven the viability and effectiveness

of the deep learning approach and the adaptive training approach through numerical experiments

and error comparisons with the standard Monte Carlo methods. More theoretical proofs are needed

to verify that the minimum of total energy among all sample points always leads to low discrepancy

in output sequence. Theories about different types of energy potential forms are also needed to

prove the usefulness of each type in generating uniform distribution.

Function-dependent Sampling Given the effectiveness of our deep learning methods in im-

proving poor distributions of sample data, future work can explore convenient ways of utilizing our

neural network structure to implement function-dependent sampling. For example, researchers can

33

try to construct a library with proper parameters stored in it such that after users enter the domain

D, dimension d, sample size N , and ideal function f , the deep neural networks can help generate

a set of effective samples based on the underlying function.

Relation to Kinetic Monte Carlo Methods Kinetic Monte Carlo methods are stochastic

simulation algorithms that simulate the evolution of some events occurring over time and have

many applications in physics, including atom diffusion, atom disposition, or chemical reaction, etc.

[13]. They utilize the transition rates of different states as inputs and try to model the dynamic be-

haviors of particles through individual steps. Given the similar dynamics of our approach inspired

by molecule dynamics and the Kinetic Monte Carlo methods, future work can be done to explore

how the idea of equilibrium state and our neural network structure can be exploited to improve the

Kinetic Monte Carlo simulation.

34

Bibliography

[1] Juan A. Acebrón. Efficient methods for solving sdes. http://home.iscte-iul.pt/~jaats/

myweb/Efficient%20methods%20for%20solving%20SDEs.html.

[2] Russel E Caflisch et al. Monte carlo and quasi-monte carlo methods. Acta numerica, 1998:1–49,

1998.

[3] Kai-Tai Fang and Yuan Wang. Number-theoretic methods in statistics, volume 51. CRC Press,

1993.

[4] Richard Fitzpatrick. Coulomb’s law. http://farside.ph.utexas.edu/teaching/em/

lectures/node28.html.

[5] Robert N Gantner and Christoph Schwab. Computational higher order quasi-monte carlo

integration. In Monte Carlo and Quasi-Monte Carlo Methods, pages 271–288. Springer, 2016.

[6] Malvin H Kalos and Paula A Whitlock. Monte carlo methods. John Wiley & Sons, 2009.

[7] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of sequences. Courier Cor-

poration, 2012.

[8] Frances Y Kuo and Ian H Sloan. Lifting the curse of dimensionality. Notices of the AMS,

52(11):1320–1328, 2005.

[9] Charles C Margossian. A review of automatic differentiation and its efficient implementation.

Wiley interdisciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

[10] Simon McQuarrie. Boltzmann factor and partition functions. https://chem.

libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/

http://home.iscte-iul.pt/~jaats/myweb/Efficient%20methods%20for%20solving%20SDEs.html
http://home.iscte-iul.pt/~jaats/myweb/Efficient%20methods%20for%20solving%20SDEs.html
http://farside.ph.utexas.edu/teaching/em/lectures/node28.html
http://farside.ph.utexas.edu/teaching/em/lectures/node28.html
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_Partition_Functions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_Partition_Functions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_Partition_Functions

35

Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_

Partition_Functions.

[11] Tim Menzies, Ekrem Kocagüneli, Leandro Minku, Fayola Peters, and Burak Turhan. Using

goals in model-based reasoning. Sharing Data and Models in Software Engineering, page

321–353, 2015.

[12] Halil Mutuk. Asymptotic iteration and variational methods for gaussian potential. Pramana,

92(4):1–5, 2019.

[13] Steve Plimpton. Kinetic monte carlo. https://cs.sandia.gov/~sjplimp/kmc.html.

[14] David Taylor. The maxwell-boltzmann distribution. https://faculty.wcas.northwestern.

edu/~infocom/Ideas/mbdist.html.

[15] ZHENGQU WAN. The boltzmann distribution. 2017.

[16] Loren Dean Williams. Molecular interactions. https://ww2.chemistry.gatech.edu/~lw26/

structure/molecular_interactions/mol_int.html#CVN.

[17] Hideki Yukawa. On the interaction of elementary particles. i. Proceedings of the Physico-

Mathematical Society of Japan. 3rd Series, 17:48–57, 1935.

[18] Bart Van Zeghbroeck. Statistical thermodynamics. https://ecee.colorado.edu/~bart/

book/book/chapter1/ch1_4.htm#1_4_1.

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_Partition_Functions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_Partition_Functions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/17%3A_Boltzmann_Factor_and_Partition_Functions
https://cs.sandia.gov/~sjplimp/kmc.html
https://faculty.wcas.northwestern.edu/~infocom/Ideas/mbdist.html
https://faculty.wcas.northwestern.edu/~infocom/Ideas/mbdist.html
https://ww2.chemistry.gatech.edu/~lw26/structure/molecular_interactions/mol_int.html#CVN
https://ww2.chemistry.gatech.edu/~lw26/structure/molecular_interactions/mol_int.html#CVN
https://ecee.colorado.edu/~bart/book/book/chapter1/ch1_4.htm#1_4_1
https://ecee.colorado.edu/~bart/book/book/chapter1/ch1_4.htm#1_4_1

	Introduction
	Backgrounds
	Outline of the Thesis

	Monte Carlo Methods
	Monte Carlo Methods for Numerical Integration
	Quasi-Monte Carlo Methods

	Motivation from Physics
	The Notion of Equilibrium
	Boltzmann Distribution

	Basics of Deep Learning
	Multi-layer Perceptron
	Automatic Differentiation

	Dynamics, System Energy and Deep Neural Networks
	Deep Learning Approach
	Adaptive Training Approach

	Numerical Experiments
	Energy Functions
	Low Dimensional Examples
	Results Evaluation

	Discussion and Future Work
	Bibliography

