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Abstract

Theoretical Studies of the Vibrational Spectra and
Relaxation Dynamics of Ice and Water

By Hanchao Liu

Recently, theoretical studies of condensed phase water have been advanced in
two-fold, with the development of first the Wang-Huang-Braams-Bowman(WHBB)
ab initio potential energy(PES) and dipole moment surfaces(DMS), and second the
quantum Local-Monomer Model. The WHBB PES accurately describes the electronic
energy of arbitrary number of water monomers using a many-body representation.
The important intrinsic 2-body and 3-body interactions are permutationally
invariant fits of tens of thousands ab initio energies. Very recently, a new dipole
moment surface is reported using a spectroscopically accurate 1-body DMS and an
intrinsic 2-body DMS fit. The quantum Local-Monomer Model uses a
divide-and-conquer strategy and solves the Schrodinger equation for each water
monomer embedded in its hydrated environment. This approach effectively reduces
the formidable dimensionality of the condensed phase water to usually 3 to 6 and
up to 9 degrees of freedom. The first half of the dissertation will review and
formulate the WHBB PES and DMS and the Local-Monomer Model.

In the second half of the dissertation, we take advantage of this recent
theoretical advancement and report several fully ab initio quantum studies of the
vibrational spectra and dynamics of ice, liquid water and water hexamer. The topics
include the infrared spectra of ice Ih and amorphous ice, vibrational density of
states of neat and deuterated ice Ih and vibrational energy relaxation dynamics of
HOD diluted ice, the infrared spectra of liquid water, and the infrared spectra and

harmonic zero-point energies of HOD doped water hexamers.
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Chapter 1. Introduction

Chapter 1.

Introduction

Water is one of the most important substances on earth for enabling many
geological and climate processes, sustaining life and civilizing human beings.
Although everyone acknowledges the importance of water, no one really
understands it. The evidence is that water has so many, the so-called anomalous
behaviors.1-2 For example, its density peaks at 4 C rather than continues to decrease
as the temperature drops. It is able to carry huge amount of heat. It has unusual high
surface tension. When freezing, it expands.

One unique feature of water is its complicated hydrogen bond networks. The
traditional picture is that each water monomer is bounded to four others in
tetrahedral arrangement, by donating two and accepting two hydrogen atoms. In
liquid phase, this network constantly rearranges. This picture is supported by the
neutron-scattering experiments and theoretical studies.? The structure of the
H-bond network has been a frequently debated topic.#> In 2004, studies using X-ray
absorption spectroscopy suggest that at room temperature, only 20% of liquid

water molecules are bounded by four H-bonds, whereas the remaining water
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molecules has one strong and one weak H-bonds.# This was later disputed as an
instantaneous effect and the long timescale picture is still compatible with the
tetrahedral H-bonded liquid.>

The solid form of water, ice is perhaps even more complicated than the liquid
form. On the phase diagram, at least 15 phases can be found.® Some of them exist on
earth or in the space, whereas others are only made in lab. They differ mostly by its
lattice type and hydrogen arrangement. For example, the hexagonal ice (ice Ih) is a
hexagonal crystal with disordered proton arrangement. They are found in snow and
ice on earth. If the protons in ice Th are in order, the ice is the ice XI. There are at
least three types of amorphous ice, low-density amorphous ice, high-density
amorphous ice and very-high density amorphous ice.”

The structure, absorption and dynamics of water and ice attract many
experimental studies, mostly by various spectroscopic and scattering techniques.
Perhaps the most widely used one is the infrared spectra. The IR spectra have been
collected for from small water clusters to liquid and various phases of ice.8-° Because
the absorption features, e.g. the band frequency, are very sensitive to the structure,
IR spectra is very useful to determine the phases of ice.® Raman spectra are also
used to complement the IR spectra.l9 X-ray absorption spectra help interpretation
the structures of the H-bond networks.* Inelastic neutron scattering experiments

provide the vibrational density of states.l'12 Time-resolved pump and probe
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spectroscopy is very useful to study the dynamics of water and ice, for example, the
vibrational relaxation and the H-bond reorientation.13-14 Recently, the 2D-IR and
3D-IR spectroscopy are utilized to quantify the vibrational relaxation time.15-16 The
sum frequency generation spectra can give insights to the surface.l” High-resolution
rotational spectra have been used to characterize the low-lying isomers of water
hexamer.18

Many theoretical studies have been performed in order to understand water
and ice. The Born-Oppenheimer approximation allows the electronic and nuclear
degrees of freedom to be treated separately; nonetheless, each part is very
challenging. The first challenge is to describe the electronic energy in water.
Modeling water is a huge topic in literature; there are many models developed from
the simple fixed point-charge models to ab initio potential energy surfaces.

The simple, fixed point-charge models, such as SPC or TIP4P,1° are popular in
the field of water and hydration simulation. Originally in these models, fixed
point-charges are placed on several sites of a rigid monomer. For example, in the
TIP4P model, two positive point charges are on the two hydrogen atoms and a
negative charge is on a virtual site M. With these point charges, monomers interact

via pairwise Coulomb and Lennard-]Jones potentials.

V= EE(%[( DARICOREPIIEES

i j>i meEinEj mn

The simple function form of the TIP4P model makes it very efficient. It has been
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implemented in many popular software suits, e.g. GROMACS,20 and it is widely used
in water and hydration simulation. Subsequent reparametrizations have been done
for specific uses. For example, TIP4P-Ew model?! is for Ewald summation methods,
and TIP4P/Ice?? is for ice simulations. TIP4P/2005 is designed for all phases of bulk
water.23

One issue with the fixed point-charge models is that the monomers are rigid;
therefore it cannot be used to study the intramolecular vibration and IR spectra.
Efforts have been made to incorporate simple intramolecular potentials.[17, flexible
tip4p] Examples of such extension include q-SPC/Fw?24 and q-TIP4P/F.2> The former
installs a harmonic potential into the SPC model. The latter adds Morse potentials
for the OH stretch and harmonic potential for the monomer bend, as described by

the following equation,

1
Vmonomer = E I:VOH (7;1) + VOH (’;2) + Ekﬁ (01 - Beq )2:|

1

where
2 2 3 A 4
VOH(r)=Dr[a (r—req) -a (r—req) +Ea (r—req) ]

The gq-TIP4P/F model has been used to calculate the water IR spectra using
RPMD, CMD.2> Recently, it has been used in a joint study comparing several
dyanmics method including Local-Monomer, CMD, TRPMD.2¢6 The above studies
show that this model is unable to predict correct IR intensity.2>27 As shown

recently,?” this is because the fixed point-charge models are unable to predict
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correct dipole derivatives for the OH stretch modes; at least the 2-body dipole terms
are needed to obtain the correct derivatives. The other major issue for the fixed
point-charge models is that they miss the 3-body interactions, which have been
shown contributing about 20% of the total binding energy of water clusters and
bulk water and ice.28 It is clear that the fixed point-charge models over simplified
the complicated physics of water and one needs to go beyond that for more accurate
water simulations. Another evidence for this is that the TIP4P model fails to
accurately predict many important properties of water. For example, the TIP4P
model predicts the peak density of water at -25C.2°

One direction that the field has headed is to include polarizability. One
important example of these approaches is the TTM3-F water model.30 In this model,
the monomer potential is taken from the spectroscopically accurate
Patridge-Schwenke one.31 The pairwise interaction is describe by the Buckingham
exponential-6 potential. The parameters are optimized against the MP2/aVDZ
binding energies and the harmonic frequencies of water cluster from trimer to the
20-mer, and several other experimental properties of ice. Polarizable electrostatic

interactions are included using this effective density

1 3a. -4
V)= —- s e A

1/6

where A= (@a;)” is the polarizability tensor.

TTM3-F is a successful semi-empirical model as it improves the accuracy over
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the fixed point-charge models. A drawback of TTM3-F is that it is parametrized
against classical MD simulations and IR spectra; therefore the peak positions from
this model suffers from systematic blue-shifts. Due to the iterative induction scheme
built in this model, it can be fairly computationally demanding when dealing with
large-size systems.

Other efforts have been made to incorporate the important 3-body effects by
adding an empirical rigid model of such effects. This is in the E3B potential
developed by Skinner’s group.32-33 This model was parametrized to fit a serials of
experimental properties such as the OO radial distribution functions, diffusion
constant, rotational correlation time, liquid and ice density, surface tension and
melting point. The function form of this 3b potential is an exponential one of the
sum of two H-bond distances in each of the three scenarios of the 3b interactions
due to the H-bond network arrangement, according to their classification. An
example of one such term is showed as follow,

f(r,n)=E, et
The E3B model has been applied in various water and ice studies, usually combined
with classical MD simulations and the 1-dimensional local-mode model.343> The
applications include the IR spectra of ice3* and the H-bond switching dynamics.35

Distinct from the above empirical or semi-empirical models, an ab initio

potential energy surface has recently been reported,3® which is based on the
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many-body representation of the total potential energy of arbitrary number of

water monomers

N N N N
E= E Viboay (D) + E Viboay (6> 7) + E Viboay (05 J:K) + E Vi-body

i<j i<j<k nat
The 1-body potential uses a spectroscopically accurate one.3! The intrinsic 2-body
potential is a permutationally invariant fit of roughly 30 000 CCSD(T)/aVTZ data.
The intrinsic 3-body potential is a permutationally invariant fit of roughly 40 000
MP2/aVTZ data. The 4- and higher-body terms are polarization energies borrowed
from the TTM3-F potential. Denoted as WHBB water PES, it has been tested and
applied for many water calculations, including the successful prediction of De for up
to water 22-mer,3% and Do of the water dimer and trimer and several low-lying water
hexamers.37-3° The PES has been used to calculate the IR spectra from water dimer
up to an ice model consisting about 200-mer, along with the ab initio WHBB dipole
moment surface.#0-42 The PES has also been applied to successfully predict the
vibrational density of states of neat and deuterated [h.#3 It has also been applied to
study the vibrational energy relaxation processes for the dilute HOD monomers in
the H20/D20 ice, and provided accurate relaxation lifetime and detailed
mechanisms.** Another ab initio many-body PES is the MB-pol PES. This one follows
the WHBB PES, but with polarization terms included.#5-46

Electronic properties are also important for water simulations. Some most

relevant properties are dipole moment, polarizability and susceptibility. Perhaps the
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majority of efforts have been spent on the dipole moment due to the prevalent use
of IR spectra in both experimental and theoretical studies.?>3036 The simplest model
is a fixed dipole moment, which is derived from the rigid fixed point-charge models.
This is obviously unable to describe the IR spectra. Beyond that is the linear dipole
from the flexible fixed point-charge models, such as the q-TIP4P/F model. The linear
dipole has been used to simulate liquid water IR spectra.2>-27 The issue is that it
significantly underestimates the intensity of OH stretch, therefore predicts
qualitatively incorrect bend/stretch bands ratio. As pointed our recently, because of
the strong effect of polarization and possible partial charge transfer in the
complicated H-bond network in condensed-phase water, at least the 2-body dipole
moment is needed to account for such effects. Therefore it is not very surprising that
the linear dipole moment model fails to predict the correct IR intensity.

The TTM3-F dipole model3! uses empirical approaches to fix the above issue by
inserting artificial terms to mimic the charge transfer as the OH bond elongates
along the H-bond. This approach improves the IR intensity liquid water, although in
a heuristically way. The fully ab initio approach to describe the dipole moment of
arbitrary water monomers has been reported along with the WHBB PES in 2011.36
Like the PES, it uses a many-body representation of the dipole moment and it is
truncated at the 2-body terms. To our knowledge this was the first time the dipole

moment is described in this way. The DMS has been successful in describing the



Chapter 1. Introduction

static dipole of a series of small water clusters, and IR spectra up to 200-mer. Later
the ab initio DMS has been improved by introducing an intrinsic fit of the 2-body
dipole. The new DMS is very successful for liquid water IR spectra. Other ab initio
DMS includes the MB-mu, which closely follows the WHBB DMS.#7

The nuclear dynamics of condensed-phase water is perhaps even more
challenging than the electronic structure calculations, due to the huge degrees of
freedom. Classical MD simulation is very efficient and can be done for large systems
with a empirical force field; therefore it has been used to study a wide range of
topics including the phase transition,*8 vibrational spectra*? and vibrational energy
relaxations.>0->2 However, the classical MD simulation misses the quantum effects
such as the zero-point energy and tunneling. To incorporate the quantum effects,
many semi-classical®3°4 and approximate quantum methods have been developed.
The approximate quantum methods include two types. The first type is the
path-integral inspired molecular methods, such as centroid molecular dynamics
(CMD) and ring-polymer molecular dynamics (RPMD).2526:55-57 These methods treat
all the degrees of freedom in the same footing but in an approximate way. The
second type is reduced dimensional quantum methods, which treats a subset of the
degree of freedom exactly. Examples include the one-dimensional local-mode
methods®8-¢1 and the Local-Monomer Model.2 A review of these methods will be

given in Chapter 3.
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In this dissertation, a number of studies on water and ice will be presented.
Quantum effects are considered for both the electronic and nuclear degrees of
freedom, by using the ab initio potential and dipole moment surfaces, and the
quantum Local-Monomer approach. The dissertation is organized as follow.

Chapter 2 summarizes the WHBB ab initio potential energy and dipole moment
surfaces recently developed by our group, and presents a new dipole moment
surface with test results. Chapter 3 presents the theories for the quantum
Local-Monomer model, including the basic LMon-3 and the extended LMon-4 and
LMon-6. A comparison of the LMon model with other popular dynamics methods in
computing the IR spectra for water is also shown. Chapter 4 focuses on the
vibrational spectra and relaxation dynamics of ice. The IR spectra of ice Ih and
amorphous ice are presented, followed by the vibrational density of states of ice Ih.
The vibrational energy relaxation dynamics of dilute HOD in ice Ih is discussed at
the end of Chapter 4. In Chapter 5, the infrared spectrum of liquid water is discussed.

Chapter 6 focuses on IR spectra of HOD doped water hexamer.

10
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Chapter 2.

Ab Initio Potential Energy and

Dipole Moment Surfaces

2.1. Potential Energy Surface

As describe in detailed in Ref 1, the WHBB PES can describe arbitrary number

of water monomers using the following many-body representation

N N N N
E= E Viboay (D) + E Vi boay (6> 7) + E Viboay (B J:K) + E Vi-body

i<j i<j<k nz4

Here the 1-body terms are the monomer potential energies. The 2-body, 3-body and
n-body terms are the intrinsic many-body energies. This representation for the
potential had been shown previous to our work to be well-converged for
moderate-sized clusters at the 3-body level.l The convergence of this representation
of the electronic potential continues to be investigated for ever-larger clusters,
where of course the number of 4, 5 and higher body interactions increases.?-

The 1-body potential uses a spectroscopically accurate monomer potential due
to Patridge and Schwenke (PS).> Using this PES, the calculated fundamentals

transitions of a single water molecule are within 1 cmto the experiment.>
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An intrinsic 2-body interaction energy term is defines as

Vb0ay (12) = Viiner 1.2) = Vitonomer D = Vitonomer (2)
Using this expression, the intrinsic 2-body energies are computed at the level of
CCSD(T)/aVTZ. Roughly 30 000 ab initio energies are computed and used for fitting
an analytical potential energy function. The fitting basis is same set as for the
previous HBB2 dimer PES,® up to seven degrees of permutationally invariant
polynomials of Morse variables exp (—r;;/4), where A is fixed at 3.0 Bohrs and 7;;
is the internulcear distance of atom i and j. Detailed fitting procedures are described
in Ref.” The ab initio PES switches to the TTM3-F PES8 when the dimer OO distance
is longer than 6.5 Angstrom, in order to not only enforce the physically correct long
range behaviors but also to accelerate the computational speed.!

The PES for intrinsic 3-body energies are built by fitting roughly 40 000
MP2/aVTZ ab initio points. The permutationally invariant polynomials basis is used
as for the 2-body PES. Two sets of fitting are done, using the 5-th order and the 6-th
order polynomials. For all applications of this dissertation, the 5-th order fit is used.

The 4- and higher-body terms are polarization induced interactions, borrowed
from the TTM3-F potential.8 These terms are not used in the calculations for ice and
liquid water because these take huge computational efforts. These terms are used
for all hexamer calculations, to be consistent with previous calculations on the same

systems.%10
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The WHBB PES has been tested and applied in many studies. These include the
successful prediction of De for up to water 22-mer,! and Do of the water dimer and
trimer.1112 The ZPE-corrected most stable isomers of water hexamer are predicted
using the PES and Diffusion Monte-Carlo calculations.? The PES has been used to
calculate the IR spectra from water dimer up to an ice model consisting about
200-mer, along with the ab initio WHBB dipole moment surface.13-1> [t has recently
been used for liquid water IR spectra at 300 K.16 The PES has also been applied to
successfully predict the vibrational density of states of neat and deuterate Th.17 It
has also been applied to study the vibrational energy relaxation processes for the
dilute HOD monomers in the H20/D-0 ice, and provided accurate relaxation lifetime
and detailed mechanisms.18 Recently the intrinsic 2-body and/or 3-body water PESs
are transferred as part of the many-body PESs of several hydrated systems, e.g.
mixed HCI-H20 clusters, and successfully used for structure prediction and

frequency calculations.1?

2.2. Dipole Moment Surface

2.2.1. The WHBB Dipole Moment Surface
In the WHBB software, like the potential energy, the dipole moment of N H20

monomers are represented using a many-body expansion. The many-body
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representation of the dipole moment has not been extensively investigated. To the
best of our knowledge this was first done, by Wang et al,! who proposed a 1 and
2-body representation.! Specifically, for N monomers the total dipole moment u is

given by

N N
ITED W OLS) TR (%) (1)
i=1

i
where the first (vector) summation is just the sum of 1-body, i.e., isolated gas-phase,
dipole moments and the second summation is of intrinsic 2-body dipole moments.
The latter is obtained from the equation,

Ho b0y (57 = Bginer @ 1) = Boonomer () = Boponomer () » (2)
where u,,. (i,j)is the dipole moment of the dimer pair i, j. Clearly from this
expression MU, .. (i,j) goes to zero as the dimer pair separate to infinite distance.
As noted in the Introduction, the procedure followed in WHHB was first to fit

W (i, ) to a set of roughly 30 000 MP2/aug-cc-pVTZ (aVTZ) dipole moments

obtained over a large range of distorted monomer configurations and OO distances.

udimer = z qz({y})rl
, (3)

where the summation is over the six atoms in the water dimer, and {y} represents
the set of 12 “Morse” variables, y;;, which are defined by exp(-ri;j/A), where rj is the
internuclear distance between atoms i and j and A is a range parameter, typically
set to 2 bohr. The effective charges g; are determined by standard least-squares

fitting to the data set of dipole moments and they are, like the potential, functions of
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all the variables yi. Note the invariance under permutation in this case is different
from the potential energy surface. To see this, consider a single monomer and a
permutation of the two H atoms. The dipole moment transforms covariantly under
this permutation, the effective charges on the two H atoms interchange; however,
the charge on O atom is invariant under this permutation. This property of the
dipole moment has been incorporated into the fitting routines.! Given that the
dimer dipole moment has been precisely fit the monomer dipoles were obtained
from the fit and were shown to represent the monomer dipole moment at the
MP2/aVTZ level of theory. Further, the 1 and 2-body representation of the dipole
moment was tested for a number of water clusters ranging in size from to the
hexamer to the 20-mer and shown to be accurate to within less than 10% of directly
calculated ab initio results.! This 1-body and 2-body dipole representation has

also been shown to be accurate for other hydrated clusters.20

2.2.2. The New Dipole Moment Surface

Clearly, just the intrinsic 2-body dipole can be fit and combined with a highly
accurate monomer dipole moment surface, exactly in the spirit of representing the
potential, where the spectroscopically accurate monomer potential® is used. We
take this approach for the new dipole moment surface here. Specifically, a new fit

to the intrinsic 2-body dipole was done using the previous dataset of roughly 30 000
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configurations and dimer MP2/aVTZ dipole moments. At each configuration new
MP2 /aVTZ calculations of the two 1-body dipole moments were done and then used
in Eq. (2) to obtain the intrinsic 2-body dipole. Those data were fit using the
approach briefly reviewed above using polynomials with maximum order of five.
The RMS fitting error is a few hundreths of a Debye. A cut-off function is used in the
range of 6.5-7.5 Angstrom of the 0-O distance. As we will show later, the dipole

moment is very small beyond this range.

Table 2.1. Double-harmonic IR frequencies and intensities for an isolated H20 from
the LTP2011 dipole moment surface?! and directly from MP2/aVTZ calculations. For

consistency, the normal mode analysis is done at MP2/aVTZ level.

intensity (km/mol)
mode cm1
LTP2011 MP2/aVTZ
bend 1628 72 72
symm stretch 3822 3.5 5.6
asymm stretch 3948 57 75

For the 1-body dipole surface, we use the highly accurate one of Tennyson and
co-workers,?! denoted LTP2011, hereafter by “LTP”. This dipole moment surface

is a precise fit to a dipole moment obtained using all-electron, internally contracted
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multireference configuration interaction, including size-extensivity corrections in
the aug-cc-pCV6Z basis set done at 2628 nuclear configurations. The decision to
use this DMS is sensible in general terms, however, it was also made more
compelling by making a comparison of the IR intensities of isolated water using it
and directly from MP2/aVTZ theory. The comparison is shown in Table 2.1, and
for simplicity using the double harmonic approximation. As seen, there is very
good agreement for the bend but roughly 20% disagreement for the symmetric and
anti-symmetric stretches. This absolute level of disagreement is not severe in our
opinion, however, the unbalanced level of accuracy of MP2/aVTZ for the bend and
the stretches is a concern, as these band intensities are of major interest for the IR
spectra of liquid water and ice(s).

A detailed examination of this new DMS for water is given next. Since it
consists of a very accurate 1-body dipole surface plus a 2-body one based on
MP2/aVTZ it is not obvious how accurate the sum of these components is. That
will be assessed below; however, the expectation is that the sum, which hereafter
we will sometimes denote by DMS(1b-LTP,2b-MP2) for clarity or just DMS, should

be more accurate than the previous WHBB fit to the full MP2/aVTZ dipole moment.

2.2.3. Tests of the New DMS
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y4

Figure 2.1. The water dimer at the global minimum. The monomer on the left is the
H-bond donor and the monomer on the right is the H-bond acceptor. The H-bonded

OH stretch local normal mode of the donor is shown in this figure.

We begin by assessing the accuracy of the intrinsic MP2/aVTZ 2-body dipole
moment and also the precision of the fit to it. This is seen in Figure 2.2 where the
2-body dipole moment from direct MP2/aVTZ, CCSD(T)/aVTZ and the new fit are
plotted versus the OO distance, with the internal configurations of the two
monomers fixed at the global minimum structure (cf. Figure 2.1). As seen, there is

excellent agreement, both for the MP2/aVTZ and the fitted dipoles, with the more
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accurate CCSD(T)/aVTZ result. It is important to note that this excellent
agreement between the MP2, the fit and CCSD(T) 2-b dipole moments does not
imply that the full MP2/aVTZ dipole moment is in equally good agreement with the
CCSD(T) one; it is not. However, that the MP2/aVTZ 2-body intrinsic dipole
moment agrees well with the CCSD(T)/aVTZ one is not surprising (at least to us), as
this is a difference quantity, see Eq. (2). As seen the 2-body DMS fit is quite precise.
So, these results are quite encouraging because the full DMS(1b-LTP,2b-MP2)
contains a highly accurate 1-body term and as shown in Figure 2.2 an accurate
2-body term as well. As expected, the intrinsic 2-body dipole decays to zero, albeit
at fairly large OO distance of roughly 7 A. Note at the water dimer minimum, Roo
equals 2.92 A and there the 2-b dipole moment is roughly 0.5 D and displays a large

increase with decreasing OO distance.
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Figure 2.2. Intrinsic 2-body dipole magnitude from indicated sources for the water
dimer as a function of the 00 distance, with the monomers fixed at their internal
structures at the dimer global minimum, shown in Figure 2.1. The dashed vertical

line indicates the global minimum value of Roo.
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Figure 2.3. Intrinsic 2-body dipole cut and the effective atomic charge from the

fitting for the 2-body dipole, along 00 distance for water dimer. The directions of

the three dipole components are indicated in Figure 2.1. Results of an undistorted

monomer (the global minimum at equilibrium 0O distance) are shown on the left.

Results of a distorted example (the two local normal modes of the H-bond donor

monomer, the H-bonded OH and free OH, are stretched by 0.4 a.u. away from the

minimum) are shown on the right.

A more detailed analysis of the intrinsic 2-body dipole is shown in Figure 2.3
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where the three dipole components (top panels) and the effective atomic charges
(bottom panels) are plotted versus Roo. In considering these effective charges it
must be kept in mind that these are obtained from mathematical fitting of the
intrinsic 2-body dipole moment. Note the charge on each atom is shown, except for
one H on the acceptor monomer because it has the same charge of the other H on
the acceptor due to the symmetry. We show the results for both the undistorted
dimer (left panels) and an example of a distorted dimer (right panels), which the
donor is stretched along its local normal (lormal) modes by 0.4 a.u. for both the
H-bonded OH and free OH stretches. For the undistorted dimer, the dominant
dipole component (upper left panel) is the one approximately along the H-bond,
from the H-bonded (bridge) hydrogen pointing to the oxygen on the H-bond
acceptor. For the effective charges of the undistorted dimer (bottom left panel),
when the two monomers are close, we see some significant positive charge on the
acceptor O atom and a correspondent negative charge on the bridge (H-bonded) H
atom. This charge separation rapidly diminishes as the OO distance increases; when
the monomers are dissociated, all effective atomic charges are zero, mathematically
meaning the intrinsic 2-body dipole is zero. In literature, the dependence of
transition dipole moments on the OO distance (or in general the translational and
rotational coordinates of other monomers) has been occasionally referred to the

so-called “Non-Condon effect”.22 For the distorted dimer, the 2-body dipole
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components (top right panel) are larger than the values of the undistorted dimer.
Also the effective 2-b charges (bottom right panel) are significantly different from
the undistorted case. This observation fundamentally contrasts to the fixed

point-charge models.

Table 2.2. Dipole moment magnitude (Debye) of the water dimer, trimer and prism
hexamer. Shown in the table are the values directly from MP2/aVTZ, the values from
1-body and 2-body representation of MP2/aVTZ dipole, and the values from the

present DMS. The geometries are the ones optimized from the PES.

MP2 /aVTZ DMS(1b-LTP, 2b-MP2)
u M1b M2b W1b+2b [
dimer 2.573 1.993 0.584 2.573 2.572
trimer 1.035 1.043 0.032 1.037 1.036
wo6-prism | 2.599 2.286 0.381 2.658 2.662

Next, we examine the accuracy of the 1,2-body representation of the dipole.
This is done first by examining the dipole moment from direct MP2/aVTZ
calculations and the 1,2-body representation using MP2/aVTZ calculations of
several small water clusters, shown in Table 2.2. For the dimer, obviously the 1-

and 2-body representation yields the exact dipole. The 1-body dipole is about 77%
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while the intrinsic 2-body is about 23% of the total magnitude. For the trimer
(up-up-down configuration), because the symmetry of the three H-bonds in the
ring-like configuration, the vector sum of the three 2-body dipole moments nearly
cancel. For the prism hexamer, the 2-body dipole contributes roughly 14% of the
total dipole. For the trimer and hexamer, the 1- and 2-body representation only
has roughly 2% error compared with the direct MP2/aVTZ calculation. Also shown
in Table 2.2 are the dipole magnitudes from the new DMS. The 1- and 2-body
MP2/aVTZ dipoles agree well with the new DMS dipoles for the three clusters,

although we expect the DMS results may be the more accurate one.

Table 2.3. Double-harmonic IR frequencies and intensities for the water dimer from
the present DMS(1b-LTP,2b-MP2), from direct MP2/aVTZ and CCSD(T)-F12b/aVDZ

calculations. The normal mode analysis was done using the PES.

intensity (km/mol)

mode cm!
DMS(1b-LTP,2b-MP2) MP2/aVTZ  CCSD(T)-F12b/aVDZ
1 127 121 121 120
2 140 47 47 48
3 150 147 146 145
4 181 134 135 134
5 351 52 53 52
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6 610 95 95 95
bend 1 1650 87 87 86
bend 2 1669 39 39 40
HB OH 3758 244 265 247
symm 3828 9 11 9
asymm 3917 106 127 108
free-OH 3935 77 98 82

More relevant to IR calculations is the dipole derivative. This is examined in a
direct way by calculating the double-harmonic IR spectra of the water dimer
(results in Table 2.3) and the hexamer prism (results in Table 2.4). Since the
1,2-body representation is exact for the dimer, the comparison is free of that
approximation and in addition for that cluster efficient CCSD(T)-F12b/aVDZ
calculations are feasible and so those are presented as the benchmark ones in Table
2.3. For this comparison we use the optimized geometry and normal modes from
the WHBB PES. First, note the excellent agreement of the DMS intensities with the
CCSD(T)-F12b/aVDZ results, especially for the intramolecular modes. By contrast
the MP2/aVTZ intensities for these modes show some disagreements with the
CCSD(T)-F12b/aVDZ one. The pattern of disagreement of the MP2 intensities is

very similar to the monomer intensities shown in Table 2.1. So, the expectation of
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greater accuracy of the present DMS compared to MP2/aVTZ is borne out in this
comparison. Next, note the increased intensities of the OH-stretch modes
compared with the monomer, especially for the H-bonded OH stretch. As shown in
detail below, this large increase in the H-bonded OH stretch intensity is due to the
2-body dipole. For the six intermolecular modes, there is excellent agreement
among all the calculations. The agreement between the DMS and MP2/aVTZ
intensities is perhaps expected for these modes since the 2-body dipole is more
significant for these modes than the 1-body dipole and the former is after all just a
fit to the MP2/aVTZ 2-body dipole. That there is also excellent agreement with the
CCSD(T) intensities is not obvious. However, as shown in Figure 2.2, MP2 and
CCSD(T) give very close values for the intrinsic 2-body dipole; therefore it is not a
surprise to see such excellent agreement for the intermolecular bands in Table 2.3,

given the argument above that these modes are dominated by the 2-body dipole.

Table 2.4. Double-harmonic IR frequencies and intensities for the prism isomer of
water hexamer from the new DMS and from direct full MP2/aVTZ, and 1-body and
2-body MP2/aVTZ calculations, denoted MP2/aVTZ (1,2). The normal mode

analysis was done using MP2 /aVTZ at the MP2/aVTZ minimum.

intensity (km/mol)
mode cm1
DMS MP2/aVTZ MP2/aVTZ (1,2)
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21 501 50 48 50
22 543 222 210 221
23 560 22 21 22
24 622 352 328 353
25 648 134 126 134
26 688 205 183 204
27 731 259 236 258
28 842 42 36 42
29 892 53 51 53
30 1035 61 63 62
31 1642 184 169 185
32 1655 56 50 55
33 1664 85 76 86
34 1679 14 14 14
35 1694 113 110 110
36 1714 41 43 41
37 3195 779 889 851
38 3443 684 746 745
39 3547 161 189 185

40 3572 536 557 574
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41 3687 159 161 171
42 3701 220 234 242
43 3765 56 62 65
44 3782 413 462 478
45 3808 222 240 255
46 3891 57 80 74
47 3894 64 87 82
48 3896 78 100 96

The enhancement of the double-harmonic H-bonded OH intensity is even more
pronounced for the prism hexamer as shown in Table 2.4. The intensities of two
H-bonded OH stretches (mode 37 and 38) are about 700 km/mol, which is roughly
three times larger than for the H-bonded OH stretch of the dimer. This is a result
of the more elaborate 3D H-bonding network in the prism and therefore a larger
contribution of the intrinsic 2-body interactions. @ These double-harmonic
intensities also provide a test of the accuracy of the 1,2-body representation of the
dipole moment for IR intensities. This test is between the 1- and 2-body
MP2/aVTZ (denoted as MP2/aVTZ(1,2)) intensities versus the full MP2/aVTZ
intensities. As seen, the agreement is generally within a few percent, with the

worst agreement being around 10%. This indicates the 1- and 2-body
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representation of dipole is also accurate for dipole derivatives. Also seen in Table
2.4, the DMS OH stretch intensities are in general lower than the corresponding
MP2/aVTZ(1,2) results, while the bend intensities are quite similar. This is again
due to the LTP monomer DMS, as already discussed in the monomer and the dimer
cases. The H-bonded OH modes drop roughly 10% intensity, less than the roughly
20% drop seen in the free-OH modes, reflecting that the intensities of H-bonded OH

stretch modes are dominated by the 2-body dipole.

3> T LTP(1-body) ——
DMS(2-body) ——
31  DMS(,2) —
G-TIPAP/F wwsememon
o 25|
o)
()
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©
05 i /
0

0.7 0.8 09 R, 1 1.1 1.2
ROHb (Angstrom)

Figure 2.4. Dipole magnitude of water dimer as a function of the H-bonded
OH-stretch of the dimer at the minimum as it varies along the local normal

coordinate shown in Figure 2.1.
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To probe deeper into these double-harmonic intensities, we plot the 1-body,
2-body, and the total dipole moment magnitude from the present DMS versus the
lormal mode displacement of the H-bonded OH stretch of the dimer in Figure 2.4.
The vector of this mode is illustrated in Figure 2.1. As seen, it is mainly the H
bonded OH-stretch and so that distance (as it varies along that lormal mode) is
plotted as the abscissa. At the equilibrium OH distance of 0.964 A, the 1-body
dipole (LTP) is the major component of the total dipole. However, as the OH
distance increases (increase in the local normal mode displacement), the intrinsic
2-body dipole grows much faster than the nearly linear increase of the 1-body
dipole. Thus, the slope of the total dipole at equilibrium is mainly determined by the
larger slope of the 2-body dipole. This explains the large increase of the OH
intensity of the dimer over the monomer because the IR intensity is proportional the
square of the dipole derivative. The dipole from the q-TIP4P/F model?3 is also
plotted in Figure 2.4. This dipole is simply a sum of the two monomer fixed-charge
dipoles. In the g-TIP4P/F model (actually TIP4P), the effective charges on the
hydrogen and the oxygen atoms were empirically determined and we see in Figure
2.4 that its dipole agrees well with the new DMS dipole at equilibrium or shorter OH
distance. However, the linear dipole from q-TIP4P/F fails to predict the dipole

derivative that the present ab initio DMS predicts. Specifically the q-TIP4P/F
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dipole derivative at the equilibrium is smaller than the present DMS. Given this
underestimated dipole derivative for the H-bonded OH stretch mode, it is
understandable why q-TIP4P/F underestimates the intensity for the OH stretch

band in the IR spectrum.23-24
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Figure 2.5. Effective 2-body charges from the present DMS as a function of the

H-bonded OH-stretch of the dimer at the minimum as it varies along the local
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normal coordinate shown in Figure 2.1. Top: the monomer total charges. Bottom:
atomic charges. The atomic charge is same for the two H atoms on the acceptor

monomer due to symmetry.

To give additional insight into the intrinsic 2-body dipole, we show the effective
charges versus the same H-bond OH stretch in Figure 2.5. In this figure “Donor”
refers to the hydrogen donor as usual, which is the monomer on the left in Figure
2.1, and “Acceptor” is the monomer on the right. Again, it is worth reminding that
these effective charges are obtained from the mathematical fitting of the intrinsic

2-body dipole moment. In the top panel of Figure 2.5, the net charges on both

monomers are shown as a function of R,, . Note the sum of these adds to zero as

it should. At the global minimum where the R,, is 0.964 Angstrom, the net

charges are not equal with positive charge on the acceptor and negative charge on
the donor. This finding is in qualitative agreement with the conclusion of negative
charge transfers from the H-bond acceptor to the donor from various energy
decomposition analysis calculations. For a recent compilation results and discussion
of these see ref. 25. (Note, in this paper, the H-bond donor is referred to “electron

acceptor”.) Also, as seen R,, increases beyond the equilibrium value, the

magnitude of charge separation from the donor and the acceptor monomers

increases. This suggests that charge transfer increases as R,y increases.
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To provide more details, the effective charges of each atom of the intrinsic
2-body dipole, are shown in the bottom panel of Figure 2.5. Note at the global
minimum, the positive net charge on the acceptor monomer mainly sits on the O
atom, while the negative net charge on the donor monomer mainly sits on the
bridging donor H atom. However, as as the OH distance increases, it is primarily the
donor O atom that receives the negative charge transferred from the acceptor O
atom, whereas the bridge H atom shows a steady negative charge on it.

To summarize this subsection, new tests confirm that the total dipole of water
clusters can be accurately given by the 1-body and intrinsic 2-body representation.
Including the 2-body dipole is essential to get the correct dipole derivative, or IR
spectrum. Tests against the benchmark CCSD(T)/aVTZ results show the MP2 based
2-body DMS is accurate. The DMS describe the interaction of a monomer with others
directly from ab initio 2-body dipole calculations, which is conceptually different
from the empirical approaches that TTM3-F use. The fixed point-charge models such
as q-TIP4P/F may be inappropriate for IR calculation because the important 2-body

effect is missed.
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Chapter 3.

The Quantum Local-Monomer Model

3.1. Overview

The huge dimensionality makes it very difficult to study the nuclear dynamics of
condensed phase matter like liquid water or ice. Many methods have been applied
to study the nuclear dynamics of water, including the classical, semiclassical,
approximate quantum, and a mixture of them.

Classical MD simulation can be used to calculate the IR spectra for water by
performing the Fourier transformation to the dipole auto-correlation function. For
example, this approach has been used to parametrize the TTM3-F potential.l A
well-known issue with classical calculations is that it causes systematical blue-shift
of peak frequencies (on the order of 200 cm) because without the zero-point
energy the anharmonic region of the potential is not easily accessed. Clearly, in
order to obtain accurate vibrational spectra, one has to go beyond the classical
methods. Semiclassical initial value representation (IVR) approach has been used
for the liquid water IR spectra with the SPC/Fw and TTM3-F potentials by the Miller

group.23 Other efforts include the path integral molecular dynamics (PIMD) inspired
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methods, such as centroid molecular dynamics (CMD) and (thermostatted)
ring-polymer molecular dynamics (TRPMD).#¢ These methods have been applied
along with the fixed point-charge water models as well as the TTM3-F model, for the
liquid water IR spectra.

There are also several approximate quantum methods for vibrational spectra,
performed in a reduced space of dimensionality. The most straightforward model is
called the local-mode model, which treats the OH bond as a 1-dimensional
chromophore. This method has been applied to calculate the OH(OD) stretch IR
spectra, using thousands monomer configurations from classical MD trajectories.”-10
The limitation of this model is that it is not able to describe spectral bands other
than the OH stretch.

Beyond the 1-dimensional local-mode model is the Local-Monomer
Model(LMon).11 The LMon model couples at least three modes, the bend and two
stretches, with options to couple more modes that describing the intermolecular
vibrations. The LMon monomer Schrodinger equations are solved using the
VSCF/VCI approaches using the software MULTIMODE. LMon method has been
successfully applied, along with the WHBB ab initio PES and DMS, for IR spectra
from water dimer to an ice model of roughly 200-mer. Some non-linear features,
such as the bend overtone, have been shown to be important characteristics of the

spectra of water hexamer and ice Th.11-15
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3.2. Theory

In the Local-Monomer model (LMon), the Schroedinger equation of a water
monomer
7, +U,(Q,)-E"1¢"(Q,)=0
is solved, where f“m is the Watson kinetic operator, U,, is the potential energy of
monomer m in terms of the local normal (lormal) modes of monomer m, O, .
These modes are obtained from a lormal mode analysis of monomer m. Un is the
potential of the water cluster, only varying along lormal modes of monomer m, Qm,

with all other monomers fixed at their (perturbed) structures. If using a many-body

PES, such as the WHBB PES, the potential Uy, is given by the following expression:

N

N
Um = ‘/l—body(m) + E ‘/Z—body (m’l) + E ‘/S—body(m’i’ ])

i=1,i=m i<j,i=m,j=m

Note that while U, depends explicitly on the lormal modes of monomer m, the
potential, as seen above, depends on interactions of momoner m with other
monomers in the cluster.

The local normal modes are obtained from diagonalization of the 9 x 9
mass-scaled Hessian matrix of monomer m.  To see how this arises formally, we

write the full Hessian matrix for N momomers as
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H11 H12 HIN
H = H21 sz H2N
i HIN HzN HNN i

where the mass-scaled coordinates are arranged in terms of the monomers so that
each diagonal block is just the mass-scaled Hessian for each monomer. Thus H can
be written as H = Hy + H' where H,, is the block-diagonal matrix of monomer
Hessians and H' is the remainder. Then, if H,, diagonalized by the matrix L, we

have

where A, is the matrix of eigenvalues of H), and L% H'L, is the coupling matrix,
which if neglected gives the local monomer approximation to the full normal modes
analysis. (Note the coupling matrix or approximations to it can and have been
used to incorporate monomer-monomer coupling.l®) For a cluster of N water
monomers, there are 9N local modes and harmonic frequencies, which are obtained
from the diagonalization of N 9 x 9 Hessians, compared to diagonalizing a 9N x 9N
Hessian in the usual standard normal-mode analysis.

There are totally 9 modes for each monomer; 3 are intramolecular modes and 6
are intermolecular modes. Ideally, the LMon Schroedinger equation is solved using
all 9 lormal modes. However, because the cost grows steeply with the size of the

quantum space, a fully coupled LMon-9 calculation is costly and the total cost for say
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1000 monomer calculations becomes borderline prohibitive. The minimum
approach, denoted as LMon-3, is to couple the three intramolecular modes, the bend
and two OH stretches. LMon-3 is a powerful tool for intramolecular bands of
vibrational spectra, e.g. the OH stretch and bend. In other applications such as
vibrational energy relaxation or the low-frequency region of the IR spectra, the
intermolecular modes are important so we also developed strategies to include
them in the LMon model. Two types of extensions will be described in detail in the
next two sections.

The LMon-4 Schroedinger Eq. 4 is solved using vibrational self consistent field
(VSCF) followed by virtual state configuration interaction (VCI) methods with the
code MULTIMODE.17-19 The potential energy is treated as a many-mode expansion in
monomer’s lormal modes!’”. For LMon-3 applications, using the 3-mode
representation (3MR) is exact. For LMon applications with large quantum space
(described in next two sections), usually using up to 3MR gives converged results.
The VSCF basis functions are expanded in a primitive basis of harmonic oscillator
functions. The natural choice of method to evaluate the matrix elements over the
potential is the Gaussian-Hermite quadrature. Optimized “HEG” quadrature can be
used to further improve the efficiency.

To calculate the IR spectra, the dipole transition strength from the ground

vibrational state is obtained by the usual expression
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X,¥,Z

Ry, = E ‘<f

ty|0,,)

‘2
where 0, is the monomer ground-state wavefunction. f,, is the monomer
final-state wavefunction, and  u,,, is Cartesian component of the dipole moment
of monomer m, which depends on the lormal modes. Like the potential, we only

evaluate the dipole terms i(m) that have coordinate dependency of monomer m,

but not the full dipole

Um = I’ll—body(m) + Z lu'2—budy(m’k)

k#m

3.3. Extension 1: LMon-4

As mentioned above, some applications require some or all of the 6
intermolecular lormal modes to be included. Directly performing a 9 modes coupled
LMon-9 calculation would be very computationally expensive. Therefore, we
developed an approximate approach LMon-4, which allows us to consider all the 6
intermolecular modes, but only one mode at a time. In each LMon-4 calculation, 1
out of 6 intermolecular modes is coupled to the 3 intramolecular modes. 6 sets of
LMon-4 calculations are performed for each monomer configuration, in order to
cover all the 6 intermolecular modes. All the vibrational stats from the 6 sets of
LMon-4 calculations are collected.

To obtain the spectrum from these LMon-4 calculations requires some care, as

simply adding the spectra from the 6 sets of LMon-4 calculation would be incorrect.
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This is because each LMon-4 calculation contains the intramolecular modes but only
1 of each of the six intermolecular modes. Thus, simply adding the LMon-4 spectra
would over-count the contributions of intramolecular modes. The calculations find
that the frequency and intensity of these intramolecular bands (the stretch and bend
fundamentals and bend overtone are the bands of interest) from the 6 LMon-4
calculations are all similar and in fact similar to LMon-3 calculations (using the
subspace of only bend and two stretches). There are of course some important
differences from due to the “perturbation” of the different intermolecular modes.
A straightforward procedure is done account for this. It is to apply a weighting
factor to the IR intensity of each of the final states obtained from all the 6 sets of

LMon-4 calculations

W, ={ 1/6 intramolecular state
In 1  intermolecular state

The procedure to identify intramolecular states is almost by inspection, based on
the energy and intensity, since we are restricted to considering the portion of the IR
spectrum that contains the high-frequency stretch and bend fundamentals and bend
overtone. However, a state was assigned to be “intramolecular” based on an
examination of the VCI coefficients of eigenfunctions. For the monomer bend and
stretches the eigenfunctions contain little (but not zero of course) mixing with
intermolecular states. All other states that have non-zero quanta in the

intermolecular mode in the largest VCI coefficient, are defined as intermolecular
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states. Finally a Gaussian lineshape function is applied to each intensity-weighted
stick, usually with a FWHM of 70 cm'! and the final spectrum is then just the
weighted sum of LMon-4 spectra for each monomer for a given configuration of
monomers.

In order to compute the IR spectrum of liquid water, evolving monomer
configurations must be taken into consideration. With these, the LMon-4 IR

spectrum is obtained from this expression

T N

I(V) o< z z 2 VO_)fm (t)R()_)fm (I)meg(v - VO_)fm )

=0 m=l f, <4000cm™"

where the additional sum is over an ensemble of molecular configurations
corresponding to a thermal distribution of liquid water. For example, one can
sample monomer configurations is to use snapshots from classical MD trajectories.

As noted already, f

m

is a final state vibrational wavefunction, Vos IS the
transition frequency and R,., is the transition dipole moment. These are all

obtained from LMon-4 calculations. W, = is the weighting factor and g(v-v,_, ) is

the Gaussian lineshape function.

The above equation and related expressions are given for transitions from the
ground vibrational state. However, the LMon-4 -calculations also describe
transitions from excited initial states and the expressions for the IR spectra from

those are the obvious and usual generalization of the ones given above.
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3.4. Extension 2: LMon-6 and Wave Packet Dynamics

The standard LMon-3 and LMon-4 approaches can be further extended to study
the quantum dynamics of vibrational energy relaxation (VER). For the VER of ice
and water, we reasonably assume, as others have,20 and references therein the relaxation is
via the intramolecular modes and eventually to the intermolecular modes.
Therefore we expand the quantum space of LMon model to 6 modes, consisting 3
intra- and 3 inter-molecular modes. The LMon-6 Schrodinger equation is solved
using the same VSCF/VCI methods in the code MULTIMODE. The wavepacket
calculations are straightforward in the basis of eigenstates of the Hamiltonian, once
a choice for the wavepacket at t = 0 is made. For this a virtual state is selected that
represents the OD or OH stretch with fundamental or overtone excitation at 0 K.
This non-stationary state is then propagated in the basis of eigenstates. The details
are given is described as follow.

To start with, we write down the VCI molecular eigenstate ; as follows:

Y, = icji¢i ,

i=1

where the basis functions (/ﬁl are virtual states, N is the number of basis functions

and c; are the coefficient of the eigenvector matrix.

A non-stationary virtual state is used to represent the initial wave packet of

OD/OH excitation. It is expanded in the space of N eigenstates
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W0=4,= Yy,

i=1

Because the eigenvector matrix is orthogonal C™'=C",

The time-dependent wave packet is given by
N .
lpk (1) = Zciklpie_l&t/h
=1

1

and the auto-correlation function is given by

N

C()=(W,O)|®, (1) = Y cre ™"

i=1

C,(t)> is the population decay of the initial wave packet W,(0). In addition,

projecting W, () onto another VSCF virtual state ¢, give the cross-correlation

N
m —iEt/h
C ()= (9, O ¥, () = X c,cpe ™
i=1 .
C! (t)2 represents the time-dependent population in state ¢, . Itis easily shown

that the sum of populations in all VSCF virtual states is equal to one.

3.5. Tests and Comparisons
3.5.1. Local Harmonic Analysis

To assess the accuracy of the local harmonic analysis, we show in Figure 3.1 a
comparison of the harmonic vibrational density of states from a local-monomer and
full harmonic vibrational analysis of a 192-mer model of Ice 1h?! using the WHBB

potential. As seen, there is excellent agreement above 1500 cm; this was
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anticipated since this region is the intramolecular bend on OH-stretch region.
These modes are the three high-frequency modes of each monomer. Agreement is
good between 500 and 1000 cm-l; an examination of the normal modes?! reveals
that these modes are librational modes and these are captured by the frustrated
rotational local normal modes. Below roughly 400 cm-1, the accuracy of the local
mode model deteriorates and misses the peak at roughly 60 cm-l. The region of
discrepancy is characterized by low-frequency acoustic (~60 cm) and optical
(200-300 cm1) lattice modes, which are collective monomer translational modes. (A
detailed analysis of these modes is given in Chapter 4) Thus, these modes are not
expected to be well described by the local-monomer modes. So, for the IR (and
Raman) spectral bands corresponding to the intramolecular modes, the local
monomer approach is well justified, and even for the next lower band of

intermolecular modes it should provide good accuracy.
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Figure 3.1. Comparison of full and local-normal mode harmonic density of states for

H20 192-mer cluster with an Ice Th configuration

3.5.2. Compare Local-Monomer Model with Other Methods for Vibrational
Spectra in the Condensed Phase

Here, we perform such cross-validation, comparing the behavior of MQC, LMon,
CMD, and TRPMD when modeling a physical observable that is particularly sensitive
to the description of nuclear quantum dynamics—the infra-red absorption spectra
of hydrogen-containing compounds.#?225> We focused on prototypical
hydrogen-bonded condensed phase systems—HOD in D20 and neat

water—describing them with the inexpensive q-TIP4P/F potential,> and using the
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corresponding linear dipole moment surface (DMS) to evaluate the IR absorption.
The rationale for this simplistic choice is that we are not so much interested in
comparing with experimental data, but only to nail down differences between
methods for condensed-phase quantum dynamics. The simplicity of the potential
and the linear DMS make it possible to guarantee thorough statistical sampling and
to focus on the problem of modeling the dynamics on a complex, anharmonic
potential energy surface, rather than on the fact that CMD and (T)RPMD are much
harder to justify when computing correlation functions of nonlinear operators.26-28
It also allows us to test extensively the dependence of TRPMD, CMD, and LMon on
the precise details of the calculations. To validate the two philosophies over a broad
range of conditions, and draw conclusions that are not purely anecdotal, we
considered three very different thermodynamic regimes: ice Th at 150 K, liquid
water at 300 K, and the hot liquid at 600 K at the experimental liquid/vapor
coexistence density. To assess the importance of these approximate nuclear

quantum dynamics, we also compare our results to classical MD simulations.

CMD and TRPMD simulations were performed using the i-PI code,?® and
LAMMPS as the force back-end.3? Standard LMon-4 calculations were performed.
Note in this application, only three intermolecular modes with highest frequencies
are considered. Details of the CMD, TRPMD, MQC and LMon-4 calculations are

described in Ref [12, joint].
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Let us start by considering a single HOD molecule solvated in H20. This system
(and its counterpart, HOD in Hz0) is commonly used as a probe for studying the
local structure of liquid water theoretically and experimentally.2331 The OH stretch

is dynamically uncoupled with the environment, making this system well-suited for

both MQC and LMon calculations.20

IR
8

Figure 3.2. Comparison between the OH stretch IR absorption spectrum for a single
HOD molecule in bulk D;0, modeled using the q-TIP4P/F potential. Absorption
spectra were computed from the dipole derivative autocorrelation, using classical
molecular dynamics (green), CMD (red), and TRPMD (blue), and compared with the

results of LMon-4 calculations (black), MQC line shape (gray), and VDOS (gray
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dotted). The panels correspond, from top to bottom, to liquid water at 600 K, liquid
water at 300 K, and ice Th at 150 K. The integrated intensity of the OH stretch peak

has been normalized to the same area.

The results for classical MD, CMD, TRPMD, MQC, and LMon are shown in Figure
3.2. Starting from the highest temperature, 600 K, with a hot and compressed liquid,
we observe that classical MD is blue-shifted by around 50 cm-! with respect to all
quantum methods. Even at this high temperature nuclear quantum effects affect the
calculation of dynamical properties. The blue shift of the classical simulation gets
more pronounced by lowering the temperature, as expected, amounting to
approximately 100 cm! at 150 K. At 600 K all quantum methods show a large
blue-shift, increased band width and asymmetric or structured line shapes,
compared to those at 150 and 300 K. The LMon-4 band intensity falls-off faster than
other line shapes at the high-frequency edge of the band, and shows a sharper
maximum which is 30-50 cm?! to the “blue” of the CMD and TRPMD maxima, which
are not sharp. Considering that the influence of low-frequency intermolecular
modes, e.g., hot bands, additional dipole variation, vibrational relaxation, etc.,
becomes more important with increasing temperature and that LMon-4 is only

partially describing this coupling, the limitations in the LMon-4 theory are also
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expected to be become more apparent. The importance of inter-molecular couplings
and of the dynamics of the environment at the higher temperature is also suggested
by the large difference we observe between the MQC line shape, the Condon

approximation to the MQC line shape, and MQC vibrational density of states.

At 300 K the agreement between different quantum techniques is perhaps even
better. MQC and CMD overlap almost perfectly. The LMon peak is some 20-40 cm!
higher in frequency, and the difference between the LMon and MQC line shapes is
much less dramatic than at 600 K. At 300 K, in- homogeneous broadening effects
(i.e., effects not related to vibrational relaxation or motional narrowing) are
dominant. The TRPMD peak is further blue-shifted (by 20-40 cm-1, depending on
whether one considers the maximum or the mean position of the peak) and

artificially broadened by the strong thermostatting of non-centroid modes.

In ice [h at 150 K TRPMD and LMon still are in remarkable—although perhaps
fortuitous—agreement. CMD shows a pronounced red shift of 180 cm, which
should probably be attributed to the curvature problem.2224 The MQC peak is
red-shifted by about 60 cm! relative to LMon and TRPMD. One possible explanation
for this shift is the description of the environment based on centroid configurations
that are very close to classical. Contrary to higher temperatures, the LMon spectrum

also depends on whether the environment configurations are obtained from the
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beads of the PIMD simulation, or from the centroid. In the latter case, as when using
configurations from classical MD, the OH stretch peak is red-shifted by 25 cm1. It is
arguable which choice is more physically justified. On one hand, bead positions
provide a statistically accurate snapshot of the quantum environment. On the other
hand, centroids can be seen as a mean-field average of the quantum fluctuations of
the neighboring molecules, closer perhaps to the spirit of a quantum-classical model.
In the absence of a rigorous justification we can see this discrepancy as a sign of the
break-down of the classical model for the environment, and consider the difference
between the two spectra as an estimate of the reliability of LMon (and MQC) in this

low temperature regime.
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Figure. 3.3. Infra-red absorption spectrum of H;0 at three different thermody-
namic conditions. From top to bottom: (compressed) liquid water at 600 K, liquid
water at 300 K and ice Th at 150 K. The curves correspond to TRPMD (blue), CMD
(red), and LMon-4 calculations (black). Note in the middle panel the reduced red

shift of the OH peak in CMD compared with the results in Ref. 22.

Having compared all methods for the HOD:D20 bench- mark, we consider in
Figure 3.3. the spectra of water in the three thermodynamic regimes discussed
above. We did not perform MQC simulations, since the isolated chromophore
assumption is less justified in H20. Let us start by discussing the OH band that
shows similar trends to those observed for HOD in heavy water. At 600 K, CMD and
TRPMD are in near-perfect agreement, and the peak maxima are slightly red-shifted
relative to LMon-4 by about 50 cm-1. This is consistent with our observations in HOD
case, and the discrepancy can be attributed to the lack of homogeneous broadening
and dynamical couplings in LMon. At 300 K TRPMD and LMon-4 are close to each
other, while CMD shows a small red shift of less than 50 cm-!, which is consistent
with what we observed in HOD:D;0. In the case of low- temperature ice the CMD
peak is red shifted by 150 cm! compared to both LMon-4 and TRPMD that agree

well with each other—even though the TRPMD peak is considerably broader. The
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intensity of the stretching band is much under- estimated relative to experiments.
This is due to the linear DMS of q-TIP4P/F, as evidenced by comparison with more
sophisticated models,32 but is irrelevant for our comparison of approximate

methods for quantum dynamics.

Moving on to the bend, we observe good agreement in the peak position and
width among all the quantum methods. All predict a slight red shift with increasing
temperature (in qualitative agreement with experiment). TRPMD and CMD give
peaks positions at 1640 cm-1 at 150 K and about 1610 cm-! in at 600 K. LMon-4 gives
1640 cm1 at 150 K and 1590 at 600 K. The peak at 600 K is further lowered to 1570
cml when using LMon-3, indicating the growing importance of inter-molecular
coupling at high temperature, and suggesting that this slight discrepancy between
LMon-4 and PIMD- based methods could be resolved by increasing further the
dimensionality of the quantum subspace. Finally, in the low- frequency region CMD
and TRPMD are almost identical. In this region one cannot expect LMon-4 to yield
quantitative accuracy. The quantum sub-space does not contain the collective
modes of the hydrogen-bond network, nor the translation modes of individual

monomers.

Within the LMon scheme it is straightforward to treat effects beyond linear

absorption, and to give a clear physical attribution of specific features of the

60



Chapter 3. The Quantum Local-Monomer Model

spectrum. For in- stance, all of the spectra display a distinct bump or shoulder
around 3200 cm-!, which corresponds to the first overtone of the bend. An
interesting feature captured by LMon-4 (but not by LMon-3) is the small peak
around 2350 cm-1, which is evident at 150 K and becomes less clear-cut with raising
temperature. This feature is due to the combination band of bending and librational
modes, and demonstrates how increasing the dimensionality of the quantum
subspace progressively includes additional physical effects in LMon calculations.
Both CMD and TRPMD display non-zero absorption in this region, but further
analyses would be needed to attribute that spectral density to a precise physical

origin.

The conclusions of our comparison of approximate quantum dynamics
simulation methods are overall optimistic: all the methods we considered are
generally consistent with each other, while the difference with the position of the
OH stretching peak observed in classical molecular dynamics confirms the
importance of including nuclear quantum effects to reproduce quantitatively
spectroscopic measurements of hydrogen- containing systems. TRPMD and LMon
agree within a few tens of cm! over a range of thermodynamic conditions going
from ice Th at 150K to water at 300K and finally to the hot, compressed liquid at 600
K. So do CMD down to room temperature, and MQC in the cases where we could

apply it. Furthermore, this analysis reinforces the notion that performing
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PIMD-based and quantum-subspace simulations in tandem does not only provide a
degree of cross-validation, but also makes it possible to profit simultaneously from
the complete (albeit approximate) description of the absorption spectrum given by
the former family of methods, and from the interpretation of distinct spectral

features that is enabled by an explicit quantum treatment.33
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Chapter 4.

The Vibrational Spectra and Relaxation

Dynamics of Ice

In this chapter, we will present three applications using the ab initio WHBB PES
and DMS and the quantum Local-Monomer model on ice. Section 4.1. will focus on
the infrared spectra of ice Ih and amorphous solid water using the WHBB potential
energy and dipole moment surfaces and the Local-Monomer Model. Section 4.2 will
discuss the vibrational density of states of ice ITh and compare with inelastic neutron
scattering experiments. Section 4.3 will show the studies on vibrational energy
relaxation dynamics from the excited OD/OH stretch of in dilute HOD in ice Ih. A

detailed analysis of the relaxation pathway is presented.

4.1. Infrared Spectra of Ice Ih and Amorphous Solid Water

4.1.1. Overview
The Infrared spectra of ice have been of great interest for experimentalists1-¢

and theorists’-1° for more than half a century. It has been discovered that the IR
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spectra strongly depend on the structures of ice. Therefore, spectroscopists use IR
spectra as a probe of ice structures, often with a focus on the OH-stretching
region.3-¢ The complex hydrogen-bonding network in these systems makes it very
challenging to interpret the spectra and thus the analysis requires high-level
theoretical approaches.

In 1970-80s, Rice and co-workers modeled spectra for several condensed
phase water systems, including hexagonal ice (Ice Ih), amorphous solid water (ASW)
and liquid water.”-11 The OH stretches were treated as one-dimensional oscillators,
while the intra- and intermolecular coupling between OH bonds were described
semi-empirically. From these calculations, the intermolecular interactions were
considered as a major factor to the peak positions and shapes of ice spectra and the
calculated stretching states successfully overlapped the experimental frequency
range. Buch, Devlin and co-workers approached the condensed phase water by
focusing on large water clusters.'2-1> Using the TIP4P water potential and the
local-mode model in an exciton model to describe intermonomer OH-coupling, a
clear size dependence of the minimum cluster structure and OH-stretching IR
spectra was identified. This dependence is illustrated with both simulated and
experimental decomposed spectra of core, subsurface and surface parts of water
clusters and recently supported by an experiment.?0 Inspired by earlier work of

Buch and co-workers, Skinner and co-workers approach this research using a
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QM/MM approach where the OH-stretch of monomers (treated quantum
mechanically) are perturbed by the electric field of the surrounding monomers and
where the monomer dynamics are otherwise treated using classical molecular
dynamics with the TIP4P potential plus a semi-empirical rigid monomer 3-body
interaction, confirming the strong intermolecular coupling between OH bonds in
crystalline ice.1718 Morita and co-workers also use a QM/MM method and calculated
the sum frequency generation spectra at ice surface.1?

The fundamental of the bend appears as a prominent feature in the IR
spectrum. In addition, the bend overtone has been observed experimentally in the
IR spectra of hydrated ion clusters.21-24 The perturbed local-mode models briefly
reviewed above has the monomer bend frozen and thus are silent on these aspects
of the IR spectrum. Previous very approximate calculations concluded that the
2v, frequencies are ~200 cm higher than stretching frequencies and thus have
only has small effect to the stretching band on H20 systems, while the effect is larger
on D20 systems.?-11 However, these conclusions are limited by the approximations in
the water potential and the local-mode model. Fully coupled quantum calculations
including the three intramolecular modes are thus desired to extend the coverage

of the IR spectrum of water.

4.1.2. Ice Models
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Two ice models are considered here and their construction used two
different recipes. For the hexagonal ice Ih the initial structure of 192-mer was
taken from the model created by Hayward and Reimers,2> and then locally
optimized on the WHBB potential. As expected, the original perfectly crystalline
structure becomes disordered on the surface. The OH bonds at the surface reorient
to form H-bonds, whereas the monomers in the core still maintain a crystalline
arrangement. This structural preference is consistent with Buch’s previous results.1>

(Figure 4.1)

Ice Ih Amorphous

Figure 4.1. Local Minima structures of hexagonal and amorphous (H20)192. The

illustrative frames show the interior 105 and 100 core monomers selected in the
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hexagonal and amorphous clusters, respectively.

It should be noted that this optimization is not a global one and so the resulting
structure is not significantly different from the initial one. The second ice cluster is
an amorphous one. It was created in a three-step process. First, 192 water
molecules were place randomly in a 20A X20A X20A box, with some restrictions,
using the software Packmol.26 Second, unstable cluster was optimized using the
empirical potential energy surface, AMOEBA, provided by Tinker.27-28 Finally, this
structure was optimized using the WHBB potential. The resulting configurations
are shown in Figure 4.1, where “core” and “surface” regions for each cluster are
indicated. These are described in detail below. The potential energy of the
optimized amorphous cluster is -11.8 kcal/mol per monomer, which is slightly
lower than the surface-disordered hexagonal cluster (-11.6 kcal/mol).
Local-monomer calculations were done for each monomer in each cluster.
For each monomer IR transition intensities were calculated for the fundamental of
the two stretch modes and the bend, and also for the overtone of the bend. Thus,
for each ice cluster we obtained 768 IR intensities. As a first step in the analysis of
results, we divided each cluster into core and surface regions, shown in Figure 4.1.
To define a core of the hexagonal 192-mer, we first located the plane of a central

slice perpendicular to the c-axis, a square frame is defined such that the maximum
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number of tetrahedrally hydrogen-bonded monomers is included. Then, the 2-D
frame is extended along the c-axis through the entire cluster, containing 120
monomers. This extension over-counted the under-coordinated monomers on the
other two surfaces. After removing them, 105 monomers are left as “core
monomers”. For the amorphous cluster, according to the criteria that the distance
between the oxygen and the center of the cluster is smaller than 8.5A, 100
monomers were defined as core monomers. Corresponding spectra for will be

presented below.

4.1.3. Infrared Spectra

Next, we present local-monomer spectra and comparisons with experiment.
First, we consider the region of the intramolecular bends. An experiment has
reported this spectrum for the surface of crystalline ice at 120 K.2° The calculated
spectrum for 87 surface monomers from the hexagonal cluster, and the comparison
with experiment is shown in Figure 4.2. On the top panel, the 87 intramoleclular
bending modes from quantum calculation are shown as red sticks. To facilitate the
comparison with experiment, the stick spectrum is smoothed with Gaussian line
shapes as described above. We defer a discussion of this broadening to the end of
this section; however, broadening was done to bring the calculated spectrum into

registration with the experimental one. As seen, the calculated band center is in
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excellent agreement with the experimental band, with both peaking at roughly 1650
cml. The experimental shoulder at ~1690 cm is qualitatively reproduced.
Interestingly, the calculated spectrum does not extend as far to the blue, i.e., higher
than 1725 cm'1, as experiment. This could be evidence of combination bands of the
pure bend plus an intermolecular mode. The involvement of such modes has been
surmised in ice spectra,’* however, such combination bands are not described by

the present local-monomer calculations.

Intensity

1 | | |

1550 1600 1650 1700 1750 1800
v (cm'1)

Figure 4.2. IR spectra of intramolecular bend modes of surface hexagonal ice. a)
Local-monomer calculation for 87 monomers on the surface of 192-mer cluster. b)

Experimental surface spectra in the bending region of crystalline ice at 120 K. (Ref.
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42).

Next, consider the OH-stretch region of the IR spectra. In Figure 4.3, we
show the calculated, Gaussian-broadened IR spectra of the hexagonal 192-mer for
all, and the core and surface monomers. The decomposed spectra indicate that the
group of surface monomers contributes solely to the 3700 cm! band, while at
lower-frequencies, both groups contribute to this part of the band. Therefore, the
3700 cm1band is assigned to the mode of free OH stretching, which reaffirms the
previous assignments.?%-3% Interior monomers are considered more analogous to

water
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Figure 4.3. Total, surface and core smoothed IR spectra in the OH-stretching region

of hexagonal 192-mer.

molecules in bulk ice in terms of the local environment, since the
surface-area-to-volume ratio approaches zero as the cluster size increases from the
finite to the bulk. Therefore, core monomers are used here to characterize the
morphology of hexagonal and amorphous ice.

In Figure 4.4, we compare the calculated local-monomer spectra of core
monomers with four available experimental spectra of crystalline and amorphous

ice.235 It should be mentioned here that the experimental spectra3 in panel (b) is
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Figure 4.4. IR spectra in the OH-stretch region. (a) Theory. (b) Experimental
crystalline ice at 16 K (Ref 3). (c¢) Experimental Ice Ih at 100K (Ref 2). (d) Theory (e)
Experiment at 16K (Ref 3). (f) Experiment at 20 K (Ref 5). Blue solid lines in panels
(a) and (d) are the calculated spectra with inclusion of the bending overtone. Red
dashed lines are calculated spectra without the bending overtone. Black curves

are experimental spectra.

measured for another crystalline form, namely cubic ice, which spectra is

considered experimentally indistinguishable from hexagonal ice.!> For the
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amorphous ice, we compare our calculations with two experimental spectra, both
reported for the “Amorphous Solid Water” form of amorphous ice35 It is
important to keep in mind that the present clusters are approximations to the
experimental ice samples, which contain elements of disorder (“proton disorder” in
the case of Ih and random disorder for the amorphous ice). With this in mind, we
conclude that the experimental IR spectra are well reproduced by the present
calculations. The comparisons can be summarized as follows. 1) The calculated most
red-shifted peak in ice Ih, at around 3150 cm, agrees very well with the 16
K-experimental peak position. 2) The local-monomer IR spectrum of ice Ih is wider
than the two experimental spectra. 3) The high-frequency peak of ice Ih at ~3380
cm1and the little shoulder to its right are present in the local-monomer spectra,
although the positions are blue-shifted from experiments. 4) The relative intensity
of the three peaks of ice Ih is in agreement with experiments. 5) The calculated
spectrum for the amorphous ice shows broader and featureless characteristics,
intuitively explained by the fact that the structure of this cluster is more disordered
than Th. 6) The peak position and the broader characteristics in the calculated
spectrum for amorphous ice match the two experimental spectra at 16 K and 20 K
quite well. 7) The overtone of the bend contributes to both spectra. The range of the
bending overtone in the present calculations for Ice Ih (3200-3300 cm1) disagrees

with the assignments from Hornig! (3140 cm1) and Rice? (3430 cm1). In addition,
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the bend overtone does mix with the lower-energy stretch mode, especially in the
range 3200-3300 cm1, and so even the spectrum shown in Fig. 5a without the bend
overtone does contain the effect of this mixing.

The calculated spectrum in Fig. 5a agrees fairly well with one reported
recently by Skinner and co-workers,8 based on their coupled local-mode model,
which we reviewed briefly above. Their results and the present ones show good
overall agreement with experiment. Both sets of results focus on the strong
intermolecular perturbations, albeit from different perspectives, and both sets of
results show some differences with experiment. = Here, while the three “bumps”
are reproduced, there is roughly a 100 cm-! blue-shift in the prominent peak in the
Ih spectrum. There are several possible sources for this difference with
experiment. One is the size and structure of the ice model used in the calculations.
It is widely acknowledged that there is disorder in both ice forms considered here,
as already noted. The present calculations consider one configuration for each ice
cluster. For the amorphous ice spectrum, one could argue that a sufficient degree
of disorder is already present in the single sample considered. Indeed, calculations
we have done on smaller amorphous clusters of 96 monomers, with different
configurations, certainly support this. In addition, the absence of structure in the
calculated and experimental spectra appears to also support this argument.

However, more investigation of the effect of different configurations is clearly
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warranted as are studies with larger clusters so that the approach to the bulk can be
examined. Hopefully, these can be done in the not-too-distant future. Also, there
is the effect of temperature to consider. This can be accounted for theoretically;
however, at the experimental temperatures of 16 and 20 K it seems to us that
cluster size and configurations are more important and are of higher priority for

future work.

4.1.4. Summary

We conclude with some comments about the two features seen in the ice Th
spectrum. We examined the perturbed, intramolecular lormal modes of the core
monomers, as well as the VSCF/VCI mixing of the stretch and bend states of interest
here. Based on that, we conclude that, in general, the lower-frequency feature is
dominated by the perturbed in-phase monomer stretch mode and the bend
overtone, which are also fairly strongly coupled to each other, whereas the higher
frequency feature is dominated by the perturbed out-of-phase stretch mode. To be
sure there is significant overlap of these modes across the band and we stress that
these lormal modes and their mixings are strongly perturbed, via intermolecular
potential coupling, from the isolated monomer modes. It should be noted again
that the local-monomer model does not describe what we termed dynamical

coupling to other monomers. Thus, by definition, the lormal modes are localized to
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a single monomer. Delocalization is possible and this is incorporated
approximately in the coupled-monomer theory we formulated and applied to small
water clusters. For those clusters, delocalization was only seen for the highly
symmetric tetramer and ring hexamer. Here the similarity of the lormal and
normal mode double harmonic spectra was the evidence presented for the
validation of the former. It would be of interest to apply the local-monomer model
to D20 and/or dilute HOD in D20 where the assumption of monomer localization

would appear to be very secure.

4.2. Vibrational Density of States of Ice 1h

4.2.1. Overview

Understanding the vibrational dynamics of ice is one of the central goals in
ice research. The complexity in structures and molecular interactions, especially
through hydrogen-bond networks, makes this study challenging for both
experimentalists and theorists. Experimentally, infrared and Raman spectroscopy
are the two most popular techniques to probe the vibrational properties of ice.2.35-38
These spectroscopies are especially useful for studying the intramolecular
vibrations of ice.3738 However both techniques are limited in the low frequency
region.23%3¢ This is due to IR and Raman selection rules specifically for ice,3 and in

general, the intensities are governed by the well-known matrix elements and
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selection rules and so they do not “report” the entire vibrational density of states
(DOS). Inelastic neutron scattering (INS) spectroscopy can, in principle directly
provide the complete vibrational DOS, and thus is more direct tool for obtaining this
important quantity. The INS spectra of several phases of ice have been
measured,3°-47 including hexagonal ice (ice 1h),39-43 which is the focus of this paper.
Previous interpretations of the INS spectra were based on calculations using
empirical model water potentials, mostly using rigid monomers, from
1970s-2000s.44-50 Recently, density functional theory calculations (with several
functionals) were undertaken by Li and co-workers to obtain the vibrational DOS of
ice Ih in the range 0-3500 cm.51 These calculations used a 64-monomer super-cell
and, in part, were aimed at addressing (and contradicting) the conjecture of two
types of hydrogen bonding in ice proposed in the 1990s.4142 These calculations
“overestimate” the vibrational frequencies, that is, they are systematically
blue-shifted by roughly 100 cm relative to experiment. In addition, the
calculations show a doublet structure in the monomer bend and OH-stretch regions,
roughly 1600 and 2800-3300 cm-l, respectively, in qualitative disagreement with
experiment for those bands. Shortly after those calculations were reported, Hirata,
Xantheas and co-workers reported MP2/aug-cc-pVDZ calculations of the harmonic
vibrational DOS (and IR and Raman spectra).>®> They also employed a super-cell of

64 monomers, which was subjected to external self-consistent charged environment
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using the binary interaction method (BIM).>¢57 In this method the electronic
energy of water monomers is obtained by one and two-body interactions in a
periodic lattice, perturbed by the electric field of surrounding charges. These
calculations obtained the geometry of ice Ih in very good agreement with the value
inferred from experiment. In addition, the calculated vibrational DOS is overall in
good agreement with experiment, with the exception of not getting the sharp peak
in the experimental spectrum at roughly 60 cm'l. As expected with the harmonic
approximation, the peaks in the monomer bend and OH-stretching regions are
substantially blue-shifted relative to experiment. As these authors noted, there are
several sources of error in these state-of-the-art, direct calculations. To quote,
these are the “inherent error in MP2 theory, a moderate basis size,
embedded-fragment scheme and quasi-periodicity of the proton positions”). In
addition, the authors noted the lack of anharmonicity in their calculations. Other
important approximations of the model include 1) using a modest size cluster of 64
water monomer and 2) not explicitly including a 3-body potential. This group also
focused on the two now-“infamous” experimental peaks in the INS at 229 and 306
cm! and also concluded that they are not signatures of two types of hydrogen
bonding.

Inspired by the steps taken by Hirata, Xantheas and co-workers, we were

motivated to extend our recent study of the IR spectra of ice Ih and amorphous solid
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water in the monomer bend and “O-H stretch” regions,>® to a calculation of the
vibrational DOS of a model for ice ITh. As with the earlier calculation, we use a
192-monomer model with the ab initio WHBB potential energy surface,>® which is
briefly reviewed below. A group of 105 core monomers has been selected>® and is
also used here for the vibrational analysis. The results from this smaller core
cluster are considered under the assumption that they are the ones directly
comparable to the INS experimental data.

Specifically, we calculated the vibrational DOS in the range 0-4000 cm,
using standard and local harmonic normal-mode analysis and also using the coupled,
anharmonic local-monomer model in the range 1500-4000 cml. We use LMon-3
here and the bend and two OH stretches are coupled, as reviewed in Chapter 3. In
addition, we calculated the vibrational DOS for pure D20 and compare both spectra
with experimental INS spectra. The character of the vibrational states in different
frequency ranges is analyzed from the normal-mode eigenvectors. A short
summary and conclusions are given in the last section.

The paper is organized as follows. The computational details are given in
the next section. This consists of a brief review of the WHBB potential and the
192-model of ice Ih using it. Then details of the harmonic and coupled-anharmonic
calculations of the vibrational DOS are given. The results and comparisons with

experiment are given in Section III. An analysis of the normal mode eigenvectors is
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also given in that section with the aim of assigning the nature of the modes in four

regions of vibrational DOS spectrum.

4.2.2 Full Normal Mode Analysis

With the ab initio potential energy surface in hand, performing a
normal-mode analysis is a straightforward, almost trivial task compared to a direct
ab initio calculation of the force constant matrix (and subsequent trivial
diagonalization), e.g., the recent one carried out by He et al55 A standard
finite-difference approximation was used to evaluate the mass-weighted Hessian of
the 192-mer and 105-mer clusters. For both calculations, every monomer is
included in the Hessian calculation, so the matrix dimension is 1728 for the former
and 945 for the latter cluster. Diagonalization of the mass-weighted Hessians
generates 1728 and 945 harmonic frequencies and corresponding mass-weighted

normal mode eigenvectors, respectively.

4.2.3. Results and Discussion
Table 4.1. Geometry of the model ice Ih with standard deviation in parentheses and

comparison with experiment.

Exp? 192-mer core 105-mer
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O-Hlength(A)  0.985(0.006) 0.971 (0.007) 0.973 (0.005)

0-0 length(A) 2.75 2.77 (0.06) 2.74 (0.05)

HOH angle (deg) 106.6 (1.5) 104.8 (1.7) 104.8 (2.0)

aTaken from reference 55.

The structure of the optimized hexagonal 192-mer is shown in Figure 4.1.
The 105 monomers that define the core region are highlighted. There is
considerable relaxation at the periphery of the cluster, owing to substantial
relaxation of the free O-H stretches there. Average O-H, O-O distances and
monomer bond angles for both for the entire cluster and the 105-core region are
given in Table 4.1, along with comparisons with experiment. (Recall that the core
region consists of monomers that do not have any free O-H-stretch modes, as
described in detail in ref. 27.) The calculated results are an average over all the
monomers and the standard deviations are also given. As seen, the 192-mer and
the core 105-mer do not show significant differences. They agree reasonably well
with the experimental values, which are taken from a compilation given in ref. 55.
In considering these comparisons it is perhaps worth making several points. First,
the experimental values are for samples at non-zero temperature and thus

represent averages for zero-point plus thermal motion. Second, some adjustments
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were made to the “direct measurements” for the O-H (actually O-D) distance based
on experiments in the liquid phase. The 0-D internuclear distance for Ice Ih was
reported as 0.976 A;%0 however, after making an adjustment to account for
interference terms, by which the “the apparent O-D distance in liquid water
increases by 0.009 A.”, the reported value for Ice Ih is 0.985 A, assuming the same
“correction” applies. This is the result shown in the table. We do not question
that value; however, it may be that the standard deviation of (0.006 A) is an
underestimate of the true uncertainty. Other values for the core region are in
closer agreement with experiment. We note that the structures reported by He et
al. are in excellent agreement with the experimental values shown in the table.
Given the uncertainties in making these comparisons, we suggest caution in making
conclusions about the accuracy of one method over another. However, we do note
that WHBB does not incorporate many-body effects beyond three. It is worth
noting that for an isolated water molecule the equilibrium O-H distance and H-O-H
angle are 0.958 A and 104.5 deg, respectively.? That the equilibrium O-H distance
increases by roughly 0.02 A in ice is both significant and understandable given the

strong H-bonding interaction.
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Figure 4.5. Vibrational density of states of H20 and D20 ice Ih in the range 0-4200
cm1l: calculated 192-mer (solid green curves), calculated core 105-mer (solid red
curves), and experimental inelastic neutron scattering digitized from figure 2 of
reference 10 (dashed curves). The 192-mer and experimental intensity is

normalized to unity. The intensity of core 105-mer is in the same scale of the
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with inelastic neutron scattering experiments? in Figure 4.5. We show results
from both clusters since similarities and differences presumably reveal features of
the surface of the 192-mer cluster not present in the core. Before making detailed
comparisons between theory and experiment, we note that the INS experiments are
energy transfer cross sections over a range of scattering angles and in principle
report on all fundamental, combination, and overtone transitions in the energy
range indicated. However, the expectation is that fundamental transitions are the
most probable ones, and since the experiments were done at 15 K, contributions
from hot bands can be neglected. The calculations are for the harmonic
fundamental excitations and the thus these differences with the INS experiment
should be kept in mind when comparing theory and experiment. Also, the
calculated stick spectra are broadened by a Gaussian function in order to roughly
match the experimental widths. Finally, on the matter of normalization, we
normalized the maximum in the INS scattering intensity to 1.0. The maximum in
the 192-mer DOS is also set to 1.0, and as seen in Figure 4.5 both of these spectra
have their maximum at the lowest energy peak. However, as discussed below, we
believe that this apparent agreement may be fortuitous. The normalization of the
core 105-mer was set differently so that the DOS in the O-H stretch region agrees
roughly with 192-mer one, instead of normalizing to the lowest-frequency peak.

The reason for not doing that is we believe that peak intensity is not well converged
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for the 105-mer. This is discussed in more detail below. With these remarks in
mind, we note that the present calculations are in good agreement with experiment,
starting with the three prominent peaks in the frequency region below 400 cm-1.
The lowest frequency peak from experiment is at roughly 60 cm! and the calculated
peaks are both at roughly 70 cml. The previously-mentioned controversial
features in the region below 400 cm! are the two peaks at 229 and 306 cm 1,41.42,5455
The calculated vibrational density of states does show two peaks at 226 and 316
cm1, in fortuitously excellent agreement with experiment. More discussion of these
peaks, based on an examination of the normal modes is given later. Also, below
roughly 400 cm-! the calculated and experimental spectra of H20 and D20 are nearly
identical; this is a consequence of the nature of the normal modes in this region of
the spectra, also as discussed below and also previously in the literature.342  The
gap seen in the H20 spectrum between roughly 400 and 550 cm1is also seen in H20
INS experiment. There is a small peak between roughly 450 and 550 cm-1seen in the
calculation. In the D20 spectrum the gap is narrower with significant intensity at
roughly 400 cm? instead of roughly 550 cm-1. That the ratio of these two values is
roughly 21/Z is not an accident and signals a qualitative change in the nature of the
dominant normal modes. We return to this below. The calculated libration bands
are in good agreement with experiments. The H20 libration band starts from 510

cm! and ends at 1114 cm-1, which lines up with the experimental assigned band in
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the range 548-1008 cm1.42 The D0 libration band is narrower, extending from
368-618 cm-1, which is in good agreement with the experimental assignment of
395-710 cm-1.42  The first intramolecular vibrational band for H20 is the bend at
1550-1700 cml, followed by the O-H stretch at 3200-3800 cml. D;0 has the
expected shift to the red of about 21/2, The intramolecular bend band is at
1100-1250 cm! and stretch is at 2400-2800 cm'l. We discuss the intramolecular
vibrations in detail below.

Overall, the core 105-mer DOS are in better agreement with experiment than
the 192-mer one, except for the lowest energy peak, where the 192-mer spectrum
appears to be in better agreement with experiment. Comparing the two calculated
spectra, we note two major differences.  First, as expected, the 192-mer shows the
signature of “free-OH” states at ~3800 cm-l. Second, the 192-mer has a higher
density of states at the lowest frequency peak at roughly 60 cm-! (in fortuitously
good agreement with experiment). An inspection of the corresponding normal
modes indicates that this apparent shift in the direction of experiment is probably a
surface effect, i.e. an artifact of the less confined surface monomer. Further, it is
likely the vibrational DOS for 105-mer has not fully converged this peak. As we
shall discuss later, the modes below 400 cm are due to monomer “translations” and
librations and it likely that these converge slowly with cluster size. We examined

the vibrational DOS for a smaller 34-core cluster embedded in a 96-mer and indeed
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find that the lowest energy peak is relatively smaller in intensity than in the

105-mer core.
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Figure 4.6. Vibrational density of states of H20 and D20 ice Ih in the range 1000-
4200 cm: calculated harmonic and local-monomer from the core 105-mer (solid
curves) and experimental inelastic neutron scattering (dashed curves). INS data are
digitized from reference 10. H20 is from Figure 6, D20 is from Figure 10 with H20 <
0.5%. Some small peaks in this spectrum are due to this H20 contamination. Each

curve is normalized to one at the maximum intensity.
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Next, consider the high-frequency monomer bend and O-H stretch region.
The harmonic and local-monomer vibrational DOSs for H20 and D20 are shown in
Figure 4.6, along with comparisons to the INS experiments.  To be clear, we note
that the LMon DOS in the O-H stretch region includes only the O-H stretch
fundamentals. As seen, the harmonc, LMon and experimental peaks in bend
regions for H,0 are 1710, 1650 and 1565 cm-l, respectively. Note; however, the
large difference in the width of the calculated and experimental band. This and the
prominent experimental peak at roughly 2200 cm-! clearly indicate the presence of
combination excitations in this region in the experiment that are not included in the
calculations. Thus, these combinations excitation very likely account for the
difference in the experimental and theoretical bandwidth of the bend region.
Similar remarks apply to the D20 bend region, where the corresponding peaks are
all at roughly 1200 cm'1. In this case the experimental bandwidth is even broader
than the one for H:O0.

Consider now the the O-H and O-D stretch bands. For H:0, the LMon
two-peak band is in good agreement with experiment. The LMon peaks are 3148
and 3379 cm-l, while the experimental ones are at 3202 and 3339 cml. As
expected, the harmonic results are substantially blue-shifted relative to experiment
and the LMon peaks. Also, note the additional intensity in the experiment to the

blue of the main features, which indicates, as with the bend, substantial intensity
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from combination excitations (with low-frequency intermolecular modes), not
present in the calculations. The vibrational DOS for the O-D stretch region of D;0 is
analogous to H20 with the expected isotopic shift. The LMon calculation shows
two peaks at 2320 and 2505 cm!; the expermintal one is at ~2470 cm! and the
harmonic peaks are roughly 242 cm1blue-shifted from the LMon ones. Note that
the lower energy peak in the theoretical spectra is less pronounced than the one
seen for H20 in rough accord with experiment where the smaller peak in experiment
for H20 is evidently not resolved for D;0.

It is of interest to compare the present theoretical and published
experimental results for the vibrational DOS in these monomer bend and stretch
regions to the corresponding IR spectra. We presented a comparison of these IR
spectra recently using the 192 and 105-mer models used here.8  While these
spectra all show very similar band structures, the peak positions are, not
surprisingly, not the same. The experimental peaks are: (1565, 1653 cm1), (3202,
3131 cm1) and (3339, 3209 cm1), where the first entry in each pair is from 15 K INS
spectrum and the second is from 16 K IR spectrum. The corresponding calculated
results are: (1650, 1648 cm1), (3148, 3157 cm1) and (3379, 3365 cm1). First,
consider the experimental results. There is a ~ 90 cm! red-shift in going from the
IR to the INS results for the bend and ~45 and 130 cm-! blue-shifts for the

corresponding O-H stretch peaks. The calculated results show, in contrast, small
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shifts for the two spectra. Interestingly, the calculated peak in the bend band is
closer to the IR peak than the INS one. The difference with the INS spectrum is
probably due to the to the importance of combination excitations in the INS
spectrum that are not present in the calculated one and the IR spectrum (which
agree well in peak position and bandwidth). The calculated peak position for the
lower-frequency O-H stretch is in good agreement with both experiments but
somewhat closer to the IR one. The high-frequency O-H stretch peak is quite
different in the experiments, and the present calculations are much closer to the INS
experimental peak than to the corresponding IR one. So clearly, there is some
sensitivity in the position of this peak that perhaps warrants more investigation,

both experimentally and theoretically.
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Figure 4.7. Visualization of four eigenvectors from the core-105mer.
(representative 6-member rings are shown) (a) Acoustic “translational” mode at 67
cm1, (b) Optical “translational” mode at 229 cm-1, (c) Optical “translational” mode

at 314 cm1, (d) Librating mode at 662 cm1

Next, to give additional insight into of the nature of the vibrational modes of the
H20 core 105-mer ice model in the region below 400 cm-1, four “zoomed views” of
normal modes are depicted in Figure 4.7. These are not mass-scaled normal

modes. This “unscaling” of the eigenvectors of the mass-scaled Hessian is done to
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that the frustrated “translational” motion of each monomer is clear. It is important
to note that each of the modes involves motion of all the monomers, of which the
ones shown in the figures are representatives. = Each mode corresponds to one of
four prominent features in the spectrum peaks representative mode is selected at
each of the three prominent peaks in the region below 700 cm-1. A close inspection
of the three lowest-frequency modes indicates that each monomer is displaced in a
translational fashion; however, the collective monomer motion differs. The mode
at 67 cm1is from the first peak in the DOS and, as seen, the monomer motion is
essentially in-phase translational motion of monomers, or “acoustic mode”. The
mode at 229 cm also shows features of monomer translation. The difference is the
angle between the vectors of some neighboring monomers are greater than 90
degree. This trend becomes more prominent in the mode at 314 cm. This feature
characterizes the out-of-phase monomer translation, and corresponds to “optical
modes”. Compared with the three “translational” modes, the librational mode at 662
cm1 shows less displacement of oxygen atoms and more hydrogen atom motion.
The collective motion can be characterized as rotation of each monomer around a
axis almost through oxygen atoms. This motion is usually referred as “hindered
rotation of water molecules” because they cannot freely rotate like molecules in gas
phase due to the H-bonding constrains. This has been discussed in detail in ref. 62.

Eigenvectors for bend and stretch modes on each monomer are similar to the ones
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of gas molecules and so are not shown.
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Figure 4.8. Fraction of mass-weighted normal mode eigenvectors projections on O
and H (D) atoms for the core 105-mers as function of the corresponding harmonic

frequency.

Finally, we present a quantitative characterization of the mass-scaled normal
modes, which are all of unit norm. This is done by simply summing the squares of
the O atom and H(D) atom contributions to a given normal mode. The results are

given in Figure 4.8 for the core 105-mer for H20 and D20. At overview of these
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figures shows a clear boundary between modes dominated by 0-atom motion and
H-(D-) atom motion. For both H20 and D;0 there is a common boundary at
roughly 400 cm-1. Below roughly 400 cm-1, the normal modes are, as noted already,
essentially motion of the monomers, the mass of which is mainly given by the O
atom. (The slightly larger contribution of the D-atoms in this region compared to
H-atom is simply due to the larger contribution of the D-atoms to the monomer
mass.) Above 400 cm-1, the light atoms, H or D-atom motions dominate the normal
modes, even in the mass-weighted eigenvectors. Also, the narrower gap in the D20
DOS above 400 cm'l, seen in Figure 4.5, versus H;0 correlates exactly with the
projection gaps shown in Figure 4.8. And, as expected, the “blue-edge” of the H20
frequency-gap comes at a frequency that is roughly 21/2 the corresponding value for

D-O0.

4.2.4. Summary

The vibrational density of states of H20 and D20 ice Ih for a 192-mer and
105-mer core region have been presented, using the ab initio WHBB potential
energy surface. = The harmonic VDOS were presented in the range 0-4000 cm-!
and coupled-anharmonic DOSs were presented in the monomer bend and O-H and
O-D stretch regions. The calculated spectra show good agreement with Inelastic

Neutron Scattering experiments. In particular, the density of states from the core
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105-mer reproduce the three prominent experimental peaks below 400 cm,
however, the intensity of the lowest frequency peak is probably not well-converged.
Four examples of normal modes for H20 ice below 1000 cm! were given to illustrate
the character of monomer motions. The visual and the quantitative analyses of the
normal-mode eigenvectors shows the below 400 cm the vibrational states are
monomer translational motion, and modes above that are mainly due to hydrogen
(deuterium) motion. This is consistent with the fact that below 400 cm-! the H,0 and
D20 are nearly identical, whereas above a 21/2isotopic shift appears in spectra.
These calculations and comparisons with experiment also show that the
accuracy of the WHHB PES extends to the lowest frequencies of interest for ice Ih.
It is worth noting that the present results appear to capture the fine details of the
experimental INS spectra, e.g., the two peaks at 229 and 306 cm1, more accurately

than previous calculations using the TTM3-F semi-empirical potential.®3

4.3. Vibrational Energy Relaxation of Dilute HOD in Ice Ih

4.3.1. Overview

The dynamics and spectroscopy of vibrational excitation and relaxation in liquid
and solid water are a central research theme in Chemistry, both experimentally®4-76
and theoretically.”7-81 The ability to dope neat water with HOD in dilute amount has

opened a window on this research by isolating the excitation and relaxation to this
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dopant. This had lead to a number of important experimental and theoretical
studies of this system in particular.t’-7? Simplified interpretations of HOD
vibrational relaxation invoking two modes, e.g., the initially excited OH stretch and
the OO stretch in the H-bond network, as described by the phenomenological
Lippencott-Schroeder (L-S) potential,82 have recently been reported in connection
with state-of-the-art 3D IR experiments.’® This simplified description, which was
applied successfully, is at odds with the alternate analyses of Rey and Hynes77-78 and
Lawrence and Skinner,’? albeit in the context of relaxation in the liquid phase.
These analyses suggest a more complex relaxation pathway involving
intramolecular as well as intermolecular modes. These seminal works invoked
perturbative treatments of couplings together with experimental data to obtain
relaxation times in reasonable agreement with experiment. Ultrafast resonant
vibration-to-vibration (VV) transfer of H20 in neat water has been investigated

using a quantum harmonic model by Poulsen et al.80-81

Given the surprising success of the recent application’¢ of the two-mode L-S
potential, we undertook state-of-the-art ab initio quantum calculations of the
vibrational relaxation of HOD in ice and present the results in this Communication.
The calculations are in very good accord with experiment and elucidate the

relaxation pathways.
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4.3.2. Computational Details

We apply the LMon Model and the WHBB PES here, to study vibrational energy
relaxation. We do this considering up to six of the nine local normal modes of one
HOD monomer embedded in the ice ITh model of 116 monomers. We perform
LMon-6 calculations for the embedded HOD monomer. The formulation of LMon-6 is
described in Chapter 3. Note the position of the HOD is the center of the cluster and
thus the HOD is fully H-bonded. Experimentally there is no such uniquely defined
location, of course. We comment on this briefly at the end and describe future

work to investigate site inhomogeneity.

First, we present calculated three-(intramolecular)-mode HOD fundamental and
overtone OD and OH-stretch excitation energies in the gas phase and in ice Ih,
obtained with a small VCI basis of order 729 and compare to experiment in Table
4.2. Agreement with experiment for isolated HOD is excellent; this is expected
because the monomer potential is, as noted above, of spectroscopic accuracy for
isolated H20.82 Much more significant is the agreement with experiment for the
fundamentals of HOD in ice. This level of agreement is further validation of the
accuracy of the current approach. Note the large red-shifts (437 and 304 cm1) from
the gas-phase of OH and OD-stretch fundamentals. This is consequence of the
strong hydrogen bonding of these modes in the ice environment. It is also

important to note that the eigenstates of these fundamentals and overtone states
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are quite pure in both the gas-phase and 3-mode embedded cases. (The VCI

expansion coefficients are given in the SI.)

Having validated the approach for the HOD fundamentals and overtone in ice,
the goal is to study the vibrational relaxation. Since it is known experimentally
that this relaxation is in the sub-picosecond timescale (and clearly does not involve

a simple VV resonant relaxation), we reasonably

Table 4.2. Energy differences in cm! of gas HOD and HOD in ice Ih from 3-mode

MULTIMODE (MM) calculations and experiments.

ne; Gas MM Gasexp Icelh MM Ice Th 2D-IRa
1-0 2723 2724 2419 2415
OD(v)
2-1 2640 2640 2315 2251*
1-0 3707 3707 3270 3279
OH(v)
2-1 3536 3087 3123*

a. Ref. 12. *Estimated from the experimental band.

assume, as others have,’>78 that the relaxation is via coupling to localized
intermolecular modes and so the local monomer description of these modes should
be reasonable. The six intermolecular modes along with three intramolecular ones

are given in Figure 4.9, along with the harmonic frequencies. Including all 9 modes
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in a fully coupled calculation is too computationally intensive and so proceeded as
follows. We began by adding one intermolecular mode at time to the 3-mode
calculation and investigated the level of mixing in the eigenstates of the
corresponding Hamiltonian. Based on this approach, we found that 6-mode
calculations provide reasonably converged results. The 6-mode calculation is done
with a 24 199 VCI basis. Details of the intermolecular mode couplings are presented

in the SI.

O---HO OH-- -0 oD-- -0
N\
O-O motion at 226 cm™” | O-O along OH at 242 cm™ | O-O along OD at 258 cm’!
ipr ODw OHw
In-plane rocking at 584 cm” | OD wagging at 645 cm! OH wagging at 897 cm’!
OD OH
b /
Bend at 1448 cm"! OD stretch at 2577 cm™! OH stretch at 3564 cm'!

Figure 4.9. Depiction of all local-normal modes of the HOD monomer in ice
environment. Abbreviation at top. Full description and harmonic frequency at

bottom.

4.3.3. Vibrational Relaxation Lifetimes and Pathways
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The dynamics of OD/OH relaxation is characterized by the time-dependent
decay of the initial state population. This is shown in Figure 4.10 for the four initial
states of interest. First, note the relaxation occurs in the sub-picosecond time frame
and that the two overtones relax faster than the corresponding fundamentals. To
quantify the relaxation time, we fit the data with mono- and bi- exponential
functions, as suggested in previous experiments.’3-75> The fitted lifetimes are
summarized in Table 4.3 and compared with experiments. (Details of data fitting are
given in SI.) First, we see the lifetime for the OD and OH fundamentals agree well
with both 2D-IR and pump-probe experiments. The lifetime of the OD overtone also
agrees well with the recent 3D-IR experiment,”® which as noted above used the
2-mode L-S model potential in wavepacket calculations to “successfully” capture
this rapid decay. A fast relaxation rate on the order of 100 fs is seen for the OH
overtone. No direct measurement of this has been performed so far. However, an

estimate based on lineshape fitting also predicts extremely fast rate.”3
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Table 4.3. Lifetime (fs) of OD/OH (v=1 and v=2) from wavepacket calculations and

experiments.
nri  Thisworka 2D-IRb 3D-IR¢ Pump-probe
1-0 422,373 410 4804
OD(v)
2-1 223,296 ~200
1-0 430,447 590 420¢
OH(v)
2-1 146,64 20f

aThe two lifetimes at 0 K are obtained by fitting the population decay curves in
Figure 4.10, using both monoexponential and biexponential functions (see SI),
respectively. PBiexponential fit at 80 Kelvin, from Ref. 75. cEstimation at 258 K, from
Ref. 76. dMonoexponential fit at 25 K, from ref. 74. eMonoexponential fit at 180 K

from Ref. 73. fFrom ref. 73, an estimated value to fit the transient line shapes.

Also shown in Figure 4.10 are the populations of initially unpopulated virtual
states. The expressions to obtain these are standard, but are given in detail in the SI.
These are the detailed pathways for the vibrational relaxation. For the OH
fundamental, as seen from Figure 4.10(b), the major pathway is vou—>Vipr+2vp, and

subsequently to vop--o+3vipr+vp. This short-time decay pathway is in accord with
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Hynes?778 and Skinner’?, who proposed the relaxation of the OH stretch
fundamental to the bend overtone in liquid phase. For the OD fundamental, the
dominant relaxing pathway is the high overtone of intermolecular OD wagging
mode, as seen from Figure 4.10(a). Clearly other mixed inter and intramolecular

states contribute at longer times.

@ vop (b) von
4vopw Y ag—
08 2uopy 0.8 VOD...0+3Vjprtvp oo ]
2vopwtp 200p.-o+OVjpr
2vopwHtVop 2v,
06 4vopwtiop 0.6 VoMo
04 1 ) 0.4

C ) Py
9 ay
—h— B )\ Lo PN T g
(_U 0 100 200 300 400 500 600 700 0 200 400 600 800 1000
3 1 1
[e) () 2vop (d) 2v01
D_ Vipr+Up+Vop - 2uptugy -
08 | UpHUoH 0.8 VOH--0+2V0H =~ 7" 1
VoD--0*ViprtVp+Vop ViprtVop+VoH ~=-~
VoD---0+2V0p - 2Uipr+2Ub+UOD
0.6 - 2uiptvpp - 0.6 VOD---0+2Vp VoY 1
4vjprtvop
04 0.4

0.2

,' 0 L - - v
0 100 200 300 400 500 0 100 200 300 400 500

Time (fs)

Figure 4.10. Time-dependent populations of the four excited non-stationary states
and major population receivers. (a) OD fundamental (b) OH fundamental (c) OD

overtone (d) OH overtone.
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The relaxation pathways for the OD and OH overtones show distinctive features.
As seen from Figure 4.10(d), the decay of the OH overtone is strongly correlated
with the rise of 2vy + vgy and voy...0 + 2vgy. This clearly indicates the mixing of
the OH overtone with these two states. For the OD overtone, as shown in Figure
4.10(c), the relaxation is not due to a dominant pathway. This finding is clearly in
opposition to the simple 2-mode analysis using the L-S potential, reported by Hamm

etal.’6

4.3.4. Summary

To conclude, both intra and intermolecular couplings in HOD are responsible for
the vibrational relaxation dynamics of the OH and OD stretch excitations of HOD in
ice Th. The details of the relaxation pathways are, as expected, sensitive to whether
the excitation is fundamental or overtone and also specific to OH and OD. Further, it
is clear that such complex dynamical process cannot be described by coupling a
single OD/OH stretch with a single intermolecular mode, which has been recently
suggested in the literature.”>7¢ The calculations again demonstrate the accuracy and
extendibility of the WHBB water potential and the local monomer quantum
dynamical model in the broad research field of the dynamics and spectroscopy of

liquid water and ice. Future calculations will address spectral inhomogeneity by
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considering additional sites for HOD. Recent 2D-IR spectra’> and approximate calcu-

lations84 indicate that this broadening is of the order of 25 cm-1.
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Chapter 5.

The Infrared Spectra of Liquid Water

5.1. Overview

The IR spectrum of water at 298 K has been known since at least 1997.14 And at
the risk of oversimplifying (especially given the results herein), it is typically divided
into two regions, the intramolecular one and the intermolecular one. The former is
above roughly 1600 cm1, where two broad features are assigned as the monomer
bend (at around 1600 cm1) and the H-bonded OH-stretches (very broad feature at
around 3400 cm). This region is aptly named because the isolated water
molecule has a bend fundamental at 1595 cm'! and two stretch fundamentals at
3657 and 3756 cml. The large down-shift of the experimental “OH-stretch” band
in the liquid, relative to the gas-phase, is securely known to be due to the strong
hydrogen bonds, which in the core region of the liquid every OH-stretch in H20
experiences. Of these spectral regions, the OH-stretch region has received the
greatest attention by theorists and experimentalists because of this strong
down-shift and also because the band is so broad. A feature of these bend and

stretch bands relative to the gas phase that has not received as much attention is the
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marked differences in intensity. In the gas-phase the bend fundamental is roughly
25% more intense than the sum of the intensities of the (weak) symmetric and
anti-symmetric OH-stretch fundamentals. By contrast, in liquid water the peak in
the OH-stretch band is roughly five times as intense as the bend peak.14 Clearly
there is some important information in this observation that tells us that the dipole
moment (more specifically its variation in the bend and stretch coordinates) in the
liquid is substantially different than in the gas phase. Manolopoulos and
co-workers® noticed this, albeit indirectly, in a comparison of the calculated IR
spectrum of water using ring polymer molecular dynamics (RPMD) using a modified,
flexible version of the very popular TIP4P and SPC fixed-charged potentials. They
wrote “The relative intensities of the intramolecular bending and stretching bands
also disagree with experiment in both simulations, and this again arises from the
neglect of electronic polarization.” The suggestion here as well as widespread in
the literature that polarization of the monomers is what is “missing” in fixed
point-charge models.

As reviewed in Chapter 2 and Chapter 3, the theoretical studies have largely
relied on the fixed point-charge and empirical polarizable models; the q-SPC/Fw,
q-TIP4P/F and TTM3-F PESs and their associated dipole moment surfaces have
been used in several semi-quantum and semi-classical calculations of the IR

spectrum of water.617 Specifically, the linearized semi-classical Initial Value
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Representation (LSC-IVR) method,®” Centroid molecular dynamics (CMD),3? and
(thermostatted) ring-polymer molecular dynamics(TRPMD)>1011 have been all
applied to calculate the IR spectrum of liquid water. These have all employed the
semi-empirical TTM3-F model and either or both q-SPC/Fw and q-TIP4P/F models.
The results of those calculations will be briefly discussed later in this Chapter.
Classicall?2 and mixed quantum and classicall3-17 calculations of the OH stretch band
have also been reported. Each method has advantages and drawbacks and we
refer the reader to the literature for the discussion of these.67.11.1819 The Local
Monomer approach that we have developed!® was applied recently in a joint study?2°
that compared the performance of the CMD and RPMD and LMon methods in
calculating the IR spectra of ice at 150 K, liquid water at 300 K, and liquid-vapor
interface at 600 K. These calculations were done using the q-TIP4P/F potential
and DMS, in part because this model had been used previously in CMD and RPMD1!
and also because it is computationally fast to evaluate. The study shows pure
classical MD (which was also done) is unreliable even up to 600 K because it gives a
significant blue-shifted spectrum as a result of missing the important anharmonicity.
The CMD, TRPMD and LMon methods give consistent spectra at least for the liquid
water at 298 K, although some significant inconsistencies were seen for ice Th at 150
K.

In this Chapter, the IR spectrum of liquid water using the WHBB PES and the
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new DMS is presented and compared with the experiment and the q-TIP4P/F and
TTM3-F spectra. We will also provide a deconstruction of the spectrum and give
assignments to each spectral band. Finally, concluding remarks will be made at the

end of the Chapter.

5.2. Computational Details

The LMon-4 method is used to obtain the IR spectrum. Details description of
this method is given in Chapter 3. The Details of the classical MD sampling is given
below. In the present calculations, we use snapshots from an extensive, long-time
classical NVT molecular dynamics simulation at 300 K done by Skinner and
co-workers.22 Details of this simulations are the following. Five hundred H»0
monomers were contained in a cubic box of sides 24.6671 Angstrom, allowing the
experimental density to be reproduced. Usual periodic boundary conditions were
applied. The monomers are kept rigid, and the intermolecular interactions were
described by the E3B potential,22 which contains an empirical 2-body potential
based on TIP4P and a rigid 3-body potential. The trajectory was propagated for 300
ps using the velocity Verlet algorithm with a stepsize of 1 fs. The simulation was
performed using the GROMACS 4.5.5 software. For each snapshot, 100 monomer
configurations in the central region of the box, out of the 500 total monomer

configurations, were selected for LMon calculations. A total of ten snapshots were
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used, separated by an interval of 30 ps.
Finally, calculations using q-TIP4P/F and TTM3-F potentials follow the above
procedures with WHBB and the new dipole moment surface replaced by the

potential and dipole moment surfaces contained in those models.

5.3. Results and Discussion

One measure to assess the applicability of the LMon approach to the water
spectrum, is to compare the harmonic vibrational density of states (VDOS) from the
local normal mode analysis with a full normal mode analysis. This was done on the
core 100 monomers that are embedded in the box of 500 liquid water monomers for
each of ten equally-spaced MD snapshots. Thus, there are a total of 900 harmonic
frequencies for each snapshot. To obtain a smoothed VDOSs from these, we first
represent each mode by a stick with a height of 1 and then multiply it by a Gaussian
function with FWHM=70 cm-!. Therefore, the unit of the VDOS is number of states
per cm-L. Results for the 10 snapshots mentioned are summed in the two VDOSs.
Comparing the two in Figure 5.1, we see good agreement in the region of the OH
stretch and the bend, i.e., above 1500 cm'l. The doublet band in the OH-stretch
region is familiar from numerous other simulations. The higher frequency band
has significantly greater IR intensity and so the very good agreement between the

two VDOSs for that band is perhaps re-assuring. For the low-frequency,
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intermolecular region (below 1500 cm-), the two sets of results are in good
agreement with each other, but there are some differences. The lormal VDOS shows

a narrower peak at ~175 cm ! and also shows more density in the region of 350-650

cm-l,
16
NMA for 100 core monomers =
Lormal
14
12
10
8

VDOS(number of states per cm'1)

500 1000 1500 2000 2500 3000 3500 4000

v/cm!

Figure 5.1. Harmonic vibrational density of states from normal mode analysis of the
core 100-mer, and from local normal mode analysis of the 100 monomers. States are
summed from 10 snapshots, as described in the text. For graphical purposes,

imaginary frequencies are shown as negative numbers.

The nine lormal modes of a typical monomer in the core sample set are shown
in Figure 5.2. The three in the bottom panel are clearly identified as the monomer

bend, symmetric stretch and asymmetric stretch. The other modes are “frustrated”

119



Chapter 5. The Infrared Spectra of Liquid Water

translational and rotational modes. The latter ones are higher frequency ones and

these are more commonly referred to as the librational modes.

<
<
<

114 cm-? 133 cm-? 292 cm-1

C

337 cm-’

/

C
.

1560 cm-" 3798 cm-1 4005 cm-?

Figure 5.2. Depiction of the 9 lormal modes and frequencies of an example

monomer.

Finally, it should be noted that both sets of VDOSs contain some imaginary
frequencies, as expected, since the configurations sampled are not strict local
minima of course. These are indicated in Figure 5.1 by the negative frequencies

instead of the correct imaginary ones. For the full normal mode VDOS, 10.4%
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frequencies are imaginary, while for the lormal VDOS, the percentage is 3.6%. The
imaginary-frequency lormal modes are frustrated translational or rotational modes
and of course the motions of these modes are hindered in the liquid environment.
So, these modes are included in the LMon-4 calculations and real-valued eigenvalues
are obtained for them. The details of treating imaginary-frequency modes in
MULTIMODE are given elsewhere.?* It is perhaps worth noting that a full normal
mode VDOS using PIMD simulations with the TTM3-F potential, reported 14%
imaginary frequencies.”

Using the sample set described above, we calculated LMon-4 spectra for three
potentials and corresponding dipole moments surfaces, WHBB and DMS(1b-LTP,
2b-MP2), q-TIP4P/F and TTM3-F. For each set of MULTIMODE calculations the
first 50 eigenvalues and eigenvectors of the VCI matrix were obtain and by default
all dipole transition matrix elements were calculated numerically. This amounted
to roughly 7,000,000 dipole transition vector matrix elements for the 100
monomers and 10 snaphots. Of these, roughly 6,000,000 were used in the
thermally averaged spectrum at 300 K. For the IR spectrum from the ground

vibrational state of total of roughly 100,000 dipole matrix elements were calculated.

121



Chapter 5. The Infrared Spectra of Liquid Water
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Figure 5.3. Thermally averaged LMon-4 IR spectra of liquid water at 300K using

WHBB potential and the new DMS. The experimental spectrum is from ref 1.

122



Chapter 5. The Infrared Spectra of Liquid Water

WHBB ——
Exp .................
)
‘»
C
i3]
k=
pe)
(0]
N
S
£
[e]
Z
0 500 1000 1500 2000 2500 3000 3500 4000
v/ c:m'1
o-TIP4P/F —— N
Exp ................. i%
e {
2
k=
3
S H
N i
S
€
[} -
b4 \ A
o/ 2N 4/
2000 2500 3000 3500 4000

0 500 1000 1500
v/em™!

Normalized intensity

500 1000 1500 2000 2500 3000 3500 4000

v/em™!

Figure 5.4. LMon-4 spectra containing transitions only from the ground state using

WHBB (with the new DMS), q-TIP4P/F and TTM3-F PESs and DMSs. The
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experimental spectrum is from ref 1.

The thermally averaged spectrum from WHBB (with the new DMS), is compared
to experiment! in Figure 5.3. Theoretical and experimental spectra are normalized
to the band with the highest intensity. A cursory scan of results shows very good
agreement with experiment. The LMon-4 spectrum features three major bands:
the so-called “intermolecular band” in the range 0-1000 cm! and the well-known
bands of the bend at around 1500-1700 cm! and the OH-stretch at around
3000-3800 cm'l. We will present detailed analysis of the origins of these bands
below. We focus here the excellent agreement between the theory and the
experiment for both peak frequencies and intensity. The predicted peak positions of
the two most well known bands, the bend and the OH-stretch, are within roughly 30
cml of the experimental ones. The bend band peaks at 1645 cm! from the
experiment and 1617 from theory. The OH-stretch peaks are at 3413 cm from the
experiment and 3441 cm! from theory. Besides the well-known bend and stretch
bands, we also note the WHBB spectrum is able to well reproduce the experimental
features of the broad band at 0-1000 cm-, notably the small peak at around 260
cm! and the major one at around 600 cm'l. In addition the well-known, broad
combination band in the range 2000-2400 cm-! is accurately captured by the WHBB

spectrum. We will return to these two bands and give the molecular
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“deconstructions” for each band below. The agreement on intensity is also very good,
especially for the ratio between the bend and the stretch. We will provide detailed
discussion of the intensities also below.

Next, we compare LMon-4 IR spectra using q-TIP4P/F and TTM3-F PESs and
DMSs with experiment and WHBB. For these comparisons, we consider transitions
only from the ground vibrational state. This is done for a couple of reasons. One
is that this provides the “cleanest” comparison of the theoretical spectra. Second,
we note that WHBB spectrum in Figure 5.4a is very similar to the thermal spectrum
in Figure 5.3. This is not surprising because at 298 K the thermal populations of
hot bands is much less for the intramolecular modes, than the ground vibrational
state population. Second, transitions from the first excited vibrational states have
similar magnitudes in both the energies and transition dipole matrix moments, as
those from the ground state. So, it is reasonable to also include the experimental
spectra in each panel of this figure.

The LMon-4 spectrum using the q-TIP4P/F model is shown in Figure 5.4b from
the same LMon-4 method and sampled from the same set of configurations. The
main discrepancy to the experiment (and WHBB) is clearly the incorrect relative
intensity for the bend, the stretch and the intermolecular bands. The intensity will
be discussed extensively later. There are some other disagreements with the

experiment as well. The two small maxima at 0-300 cm-! and 2000-2400 cm! are
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present, but not as intense as the ones in experiment or in the WHBB spectrum. The
OH-stretch peak is blue-shifted from the experiment by ~60 cm'l. Note the
spectrum shown here has two differences from the previous one from the joint
work reported recently.?0 This work considers all the six intermolecular modes
while the previous joint work has only three highest frequencies intermolecular
modes. Therefore, it is reasonable to see the spectrum in this work shows slightly
more intense intermolecular band, especially for the region around 250 cm-1which
is due to the three lowest frequencies intermolecular modes. Also we notice the
peak position of the bend in this work is roughly 20 cm-1 higher than the previous
work, and the OH stretch peak is roughly 45 cm lower. Another, possibly
significant difference with that previous work is the sampling of the classical MD
configurations. Here the monomers are rigid and the potential is TIP4P plus E3B
rigid monomer, whereas the previous work uses PIMD configurations obtained with
q-TIP4P/F. To test whether the frequency shift is due to the sampling or the
LMon-4 subspace, we examined the rigid monomer MD sampled q-TIP4P/F
spectrum using the transition dipole matrix elements only from the 3 sets of LMon-4
of highest frequencies intermolecular modes and saw basically identical peak
positions to our current spectrum using all 6 sets of LMon-4. This confirms that
the sensitivity of peak position is primarily due to the different sampling in this

work and in the previous joint work. More discussion on the sampling is given in the
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Supplementary Materials of Ref. 20.

The LMon-4 spectrum using the TTM3-F model is shown in figure 5.4c. The
TTM3-F spectrum features good agreement with the experimental intensities, but
the peak positions of the three major bands all show systematic red-shifts relative to
experiment. The red-shifts for the OH-stretch, the bend and the intermolecular
bands are roughly 115, 70, and 100 cm-1, respectively. As already been pointed out
in the literature,” such systematic red-shift is due to the fact that TTM3-F is
parametrized to the experimental IR from classical MD simulations; if using classical
MD to get IR, the red-shifts are only 25 cm! for the bend and 23 cm! for the OH.” It
is a well-known issue that classical MD produce blue-shifted frequencies, relative to
accurate quantum calculations because without zero-point energy in the simulation,
the classical dynamics configurations mainly sample the harmonic region of the
potential. It is worth noting that the present red-shifts relative to experiment are
largely consistent with those reported in CMD,® RPMD,10 and LSC-IVR? calculations.
Specifically, the red-shift of the bend is 100, 76, and 35 cm-!in CMD, RPMD, and
LSC-IVR calculations, respectively, and for OH stretch the red-shift is 103, 172, and
128 cml, respectively. The combination band at roughly 2200 cm is clearly
present in the LMon-4 spectrum. This feature is also present in the LSC-IVR
calculations, but not clearly present in the classical MD and CMD calculations.” Also

seen in the TTM3-F spectrum is that each of the three main peak is narrower than
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the correspondent experimental peak.

It is gratifying to see the ab initio DMS reproduces the experimental intensity of
each spectral band with good accuracy, especially the correct relative intensity of
the bend over the OH stretch. We can conclude that the intrinsic 2-body dipole is
needed to calculate the IR spectrum of liquid water. In Chapter 2, we have already
shown that the 2-body dipole causes the dramatic increase of the OH stretch
intensity in the water dimer and the prism hexamer over the isolated water
monomer. Here in the scenario of liquid water spectrum, one sees with the 2-body
DMS included, the intensity of the OH stretch is about 5 times higher than the bend,
correctly reproducing the experiment. In contrast, the spectrum using the
q-TIP4P/F model and the same LMon method (shown in Figure 5.4b) fails to get this
intensity ratio. (Previous work using q-TIP4P/F and other dynamics methods have
shown similar intensity.>1120) The reason is that without an explicit 2-body dipole
interaction, the effects of electron polarization and partial charge transfer are
neglected in any of the fixed point-charge models. It is interesting to note that the
ratio of the bend to OH-stretch peak intensity is close to what is found for the water
monomer, cf. Table 2.1. This is not surprising of course for a fixed (monomer)
charge model.

As noted in the Introduction, the TTM3-F DMS is based on a simple

charge-transfer model of a monomer as the OH bond is stretched, and takes an
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empirical approach to incorporate this effect by modifying the gas-phase monomer
dipole moment. Since the parameters are determined to reproduce the experimental
IR intensity, albeit with classical MD simulation, it is not surprising to see good

intensity agreement with LMon method.
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Figure 5.5. Deconstruction of spectral bands, see text for more details.

Next, we deconstruct the WHHB spectrum and give the molecular origin of each

spectral band. This is done for the spectrum shown in Figure 5.4a, i.e., for
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transitions out of the ground vibrational state of all modes. The assignment is
made by analyzing the VCI states within each band, and the results are shown in
three frequency ranges in Figure 5.5. The dominant VSCF/virtual state of a VCI
eigenstate is used for the assignment. Starting from the far infrared end, the broad
band from 0-1000 cm-! is due to the fundamentals of intermolecular monomer
modes. These modes are the first six ones illustrated in Figure 5.2. The small
maximum seen in the region of 0-300 cm! is due to the three lowest frequency
intermolecular modes, which are hindered translational modes for most monomers.
The band in the region of 400-1000 cm! is due to the three highest frequency
intermolecular modes, which are hindered rotational modes for most monomers.
It is also of interest to note that the structure of this IR band is, not surprisingly,
reflected approximately in the harmonic vibrational density of states, shown in
Figure 5.1. This similarity confirms that this band is essentially due to
fundamental excitations.

The flat and less intense intermediate band from 1000-1500 cm-! is mainly due
to the overtone of intermolecular modes. This is consistent with the absence of
harmonic VDOS in this spectral region. Also, it is important to note the
combination excitations involving the intermolecular modes are not accounted for
in the present calculations and so contributions from these excitations are not

present in the LMon-4 spectra. The band from 1500-1700 cm is due
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predominantly monomer fundamental bend excitation. The well-known, spectral
feature and broad maxium in the range 2000-2400 cm! is mostly due to the
combination band of the bend and an intermolecular mode, mainly a hindered
rotational mode. Note again the absence of harmonic VDOS in this spectral range.
This analysis supports the assignment of this band given in experiments.2 The
broad band between 3000 and 4000 cm! is, as expected, dominated by the OH
stretch, as numerous previously studies have suggested and focused on.13-17
However, we found there are other contributions to this band. These include the
bend overtone, which we had previously reported in the OH stretch band in ice Th
and several isomers of water hexamer, the bend overtone plus intermolecular
modes, and OH stretch plus intermolecular modes. Note these VCI states, although
marked by their largest coefficient, are strongly mixed with major contribution from
the OH stretch VSCF state. The noticeable intensity of these VCI states also largely
come from the OH stretch VSCF /virtual state.

Overall, we believe the present results and comparison with experiment
represent a significant step forward in the fully ab initio approach to a quantitative
and robust (“the right answers for the right reasons”) description and calculation of
IR spectrum of liquid water at 298 K, where experiments have been done. We have
shown the central role of an accurate ab initio dipole moment surface, which we feel

has not been sufficiently emphasized previously. The present study of this dipole
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moment points out serious limitations of fixed-charge models. It is beyond the
scope of this Section to probe deeply into whether such a model with monomer
polarizability can correctly capture the correct physics of even the 2-body dipole,
but there is mounting evidence that it cannot. This comes even from the
pioneering work of Xantheas and co-workers (TTM3-F), who, despite incorporating
a sophisticated polarizable model for water, had to significantly modify the
monomer dipole moment surface, to achieve agreement with experimental
intensities for the water IR spectrum. Certainly, the virtually established role that
some charge-transfer occurs in the water dimer, adds to the conclusion that

long-range “induction” is not sufficient to describe the water dipole moment.
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Figure 5.6. IR spectra of 9 snapshots. The interval is 30 ps. Each spectrum is

obtained in the same way as the one in Figure 5.4a with a FWHM of 70 cm-1.
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Some remarks about the LMon-4 approach taken here are in order. First, it is
an approximate quantum treatment in several respects. It incorporates the six
intermolecular modes of each monomer, but one-by-one. This is done largely for
computational efficiency and indeed the cost of LMon-4 is modest. With WHBB
PES and the new DMS, each LMon-4 calculation takes roughly 20 minutes using a
single core on a single node of a multi-node workstation. The time is 4 min with
q-TIP4P/F PES and DMS, and 20 min with TTM3-F PES and DMS. Since all the
tasks are independent, the computations were distributed to multiple cores on
several nodes of our in-house cluster. So the typical wall-clock time for the present
calculations is roughly 1 day using 60 cores and could be much shorter if using more
cores. Of course, the scaling of the LMon approach with the number of coupled
modes is steep, and full 9-mode coupled calculations for each monomer would
certainly require at least ten times more cpu time. Another approximation of the
approach taken here is the absence of explicit time dependence. The spectrum is
obtained from samples of an MD trajectory and so no time-coherence is described
by this approximation. One understands for say elementary isomerization
dynamics that coherent beating between say two isomeric minima can introduce
coherences in the IR spectrum, e.g., fine structure such as line splitting or additional

spectral lines. It is beyond the scope of this Section to explore the possible issues
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and errors associated with this. However, it is of interest to examine the present
LMon-4 IR spectra for a series of MD “snapshots”. This is done in Figure 5.6 for the
WHBB PES and present DMS for transitions out of the ground vibrational state. As
seen the IR spectra are quite similar, although each is “noisier” than the spectrum
shown in Figure 5.4a. To us this suggests that the IR spectral bands are
dominantly inhomogeneously broadened at 298 K. The good agreement with
experiment seen in Figure 5.3 certainly supports this conclusion. However, there
has been much discussion in the literature about the spectral lines shapes of water
and it is beyond the scope of this Section to delve deeply into that issue. The
interested reader could consult the discussion of line shapes in recent joint work
comparing the IR spectra of ice and liquid water in reference 38 using four different
approaches.

The favorable aspects of the LMon approach in addition to its efficiency are that
it is fully quantum and so the description of zero-point energy, fundamentals,
combination and overtone bands is straightforwardly obtained. In addition, no
approximations are needed on the form the dipole moment, e.g., that it a linear
operator. Another advantage of the local approach is that it can be readily
extended to mixed clusters and also the direct (“on-the-fly”) calculation of the
electronic energy of a monomer embedded in a homogenous or inhomogeneous

environment of other monomers can be done fairly efficiently. This was done
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recently for mixed HCI/H20 clusters,24-26 and for the spectral signature of hydronium

in the separated ion pair of the H30*Cl-(H20)3 cluster.2?

5.4. Summary

To summarize, the IR spectrum of liquid water at 300 K was calculated using the
ab initio WHBB PES, the new DMS, and quantum LMon-4 method; very good
agreement was found for both band positions and intensities, including the
well-known combination band between the intramolecular bending and OH-stretch
bands. With the same LMon-4 method, the spectrum using q-TIP4P/F model
predicts qualitatively wrong intensity for the spectrum because of its linear dipole
as mentioned above. The spectrum using TTM3-F model shows systematic
red-shifts, because the model is based on classical simulation which misses the
important quantum effects. Intensities are much better; however, these were
adjusted by using a model dipole moment for the monomer to give good agreement
with experiment, based on a standard classical MD treatment of the IR spectrum.

Deconstruction of the spectrum shows that the simple-looking IR spectrum of
liquid water has its complicated molecular origins. Specifically, many combination
and overtone bands contribute the overall spectrum, especially in the OH-stretch
region. This also demonstrates the strength of the LMon-4 approach in studying the

condensed-phase vibrational spectra, because it is capable in describing these
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bands.
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Chapter 6.

Water Hexamer

6.1. Overview

The water hexamer has attracted the interest of chemists for more than two
decades because it is the “smallest droplet” of water.! The several low-lying isomers
with only small differences in energy and entropy have stimulated a series of
state-of-the-art spectroscopic and theoretical studies. The seminal work using
vibration-rotation tunneling spectra has identified the cage as the most stable
structure at 6 K.1 Rare-gas tagging vibrational action spectra measured at higher
temperature show that the book isomer is dominant.23 In helium nanodroplet, the
isomer form seen is the higher-energy cyclic ring, evidently because the rapid
cooling of monomers in helium surrounding prohibits the cyclic structure from
isomerizing to the low-lying forms.#> Very recently, the prism isomer of (H20)s has
been observed for the first time from broadband rotational spectroscopy,® however,
the cage isomer was reported as the dominant isomer, in agreement with previous
microwave experiments.!

Theoretically, coupled-cluster calculations with single, double and perturbative
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triple excitations, CCSD(T), using complete-basis-set extrapolation, shows the that
prism isomer has the lowest electronic energy.’-10 The energy of the cage isomer is
approximately 0.25 kcal/mol higher than the prism. A recent study using the
parametric two-electron reduced density matrix (2-RDM) method shows the cage
isomer has a 0.07 kcal/mol higher electronic energy than the prism isomer.11 The
small electronic energy difference between isomers can be compensated with the
zero-point energy and at non-zero temperature entropy, resulting in a different
free-energy ordering at different temperatures. At 0 K, including zero-point energy
(ZPE), full-dimensional diffusion Monte-Carlo (DMC) calculations using the ab initio
WHBB water potential shows the prism and cage are nearly isoenergetic.12
Replica-exchange path-integral molecular dynamics (RE-PIMD) shows the fraction
of cage versus prism isomer increases as temperature rises.1? Up to 60 K, the book
isomer has a negligible population, but becomes dominant when the temperature is
above 150 K, due to the its floppier structure and thus higher entropy.12 A recent
PIMD simulation by Babin and Paesani,!? using WHBB and their new related ab
initio PES, denoted HBB2-pol, shows that for (D:0)s the prism is dominantly
populated at temperatures below at least 30 K. This important finding, which is
understandable based on the diminished effect of ZPE, will hopefully stimulate new
experiments on the isotopologs.

There have been a number of theoretical simulations of the IR spectra of
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hexamer clusters, most recently by Tainter and Skinner,* and Wang and Bowman.1>
The latter considered the overtone of the monomer bend and showed its
importance in the “OH-stretch” portion of the spectrum. With inclusion of these
bands agreement between theory and experiment for the cyclic ring and book
isomers is very good.

Dilute mixtures of HOD in D20 and H20 have been used to decouple and thereby
isolate the spectroscopy and vibrational relaxation dynamics of the OD and OH
stretches in HOD, see for example refs. 16-18 and references therein for liquid, and
ref. 19 and references therein for ice. Simulations of the vibrational spectra of
dilute HOD in water systems have been reported.20-22 We recently reported
quantum calculations of the vibrational relaxation pathways of the OH and OD
stretches for dilute HOD in D20 and H20 Ice [h.24

In recent work by Skinner and co-workers, “dilute” HOD in the water hexamer
cage was investigated.?3 Specifically, the IR spectrum of the cage isotopolog of
HOD(D20)s in the range 3000-3800 cm' was calculated using that group’s
combined quantum and classical approach, with each OH stretch treated as a local
mode. The OH-stretch frequencies of the 12 unique sites for HOD in this cluster
were shown to be correlated with the hydrogen bonding class, based on both the
donor and acceptor H-bonding environment. By contrast for HOD in liquid and ice

D20 the calculated and experimental spectra show two seemingly simple broad
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peaks centered on the OD-stretch and the OH-stretch.

Stimulated by this work and also by the recent prediction of Babin and
Paesanil3 that the prism form of (D20)s is lower in free energy at low temperatures
than the cage isomer, we consider both the prism and cage isomers of HOD(D20)s, as
it is likely that both are significantly populated at low temperatures. We also
extend the spectral range down to 1000 cm in order to encompass all the
monomer intramolecular spectral features. In addition, we examine the energetic
site dependence of the HOD in these clusters to shed light on whether there is a
possible significant non-uniform distribution among the twelve sites. The answer
to this question may be relevant to the site distribution of dilute HOD in the liquid
and ice environments mentioned above. Finally, following our earlier calculations
on the IR spectrum of pure H20 Ice Ih,25> we present the analogous spectra for pure

D20 and pure HOD Ice Ih.

6.2. HOD Doped Cage and Prism Hexamer

In this work, as noted already we consider the prism and cage isomer and use
the structures from WHBB, which were reported in ref. 26. We systematically
hydrogenate the 12 unique positions of the cage and prism (D20)s, therefore
consider 12 HOD(D20)s isotopomers for both cage and prism.

For the present application to HOD(D20)s, the LMon calculation is
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straightforwardly performed for each monomer for the cage and prism isomers of
HOD(D20)s.

In recognition of the relaxation, we apply a Lorentzian lineshape function to each
stick. The full-width at half maximum is chosen to be 5 cm1, which corresponds to a
reasonable guesstimate of the lifetime of the order of a picosecond, which is based
on lifetimes reported for HOD in ice, see ref. 24 and references cited therein. The
resulting spectra should look a bit more like experimental ones at low temperature,
where rotational broadening of the band is quite narrow. Stick spectra are also
shown in separate figures just in the OH stretch region to assign each feature to a
site and the nature of the H-bonding.

Finally, to estimate the H-atom site energetics, harmonic zero-point energy
analysis is done for each of the 12 isotopomers. This was done by performing a full
dimensional, i.e.,, 6x9= 54, normal mode analysis for each isotopomer from which
the harmonic ZPE is then trivial to obtain for each isotopomer. The full normal
mode analysis is efficient using the PES, taking roughly 5 seconds per isotopomer,
on a single CPU of a 5-year old workstation. It is perhaps worth noting that it is not
necessary to diagonalize the Hessian to get the total harmonic ZPE, as reported

previously by Higgs.2¢6 We did not use this interesting approach, however.

6.3. IR Spectra of Prism and Cage HOD(Dz0)s
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Figure 6.1. Structure and atom numbering for the cage (top) and prism (bottom)

isomers of water hexamer.
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Figure 6.4. OH stretch band of IR spectra of the cage and prism HOD(D20)s.

The structures and atom number assignments of the cage and prism hexamers
are shown in Figure 6.1. As noted, there are 12 unique hydrogen sites for both
cage and prism isomers, so there are 12 isotopomers of HOD(D20)s . These are
numbered in the figure in ascending order by the OH-stretch frequency, based on
our calculations. The complete IR spectrum for all 12 isotopomers of the cage
HOD(D20)s in the range 1000-4000 cm-1 from LMon calculations is shown in Figure
6.2. The contributions from each “dopant” HOD and the five “solvent” D20 are also

shown in the bottom two panels. From bottom up, the spectrum of the HOD

148



Chapter 6. Water Hexamer

monomers have 4 bands: the HOD bends clustered at roughly 1500 cm, the OD
stretches in the range 2300-2750 cm1, the bend overtone at roughly 3000 cm-1, OH
stretches in the range 3150-3750 cm, and finally weak features at around 3700
cm1, due to the HOD bend plus the H-bonded OD stretch. For D:0, the bending
modes are at roughly 1200 cm-1, and the bands in the range 2300-2750 cm! include
the OD stretches and small contributions from the overtone of the D20 bend in the
range 2350-2410 cm'l. The total spectrum of HOD(D20)s, obtained by combining
the bands of both the HOD dopant and D20 solvent, is shown at the top panel of
Figure 6.2. Notice the intensities for D20 bend and OD stretch bands are larger
than those of the corresponding bands of HOD monomers; this is mainly due to the
ratio of dopant and solvent, which is 1:5. Note to obtain the overall spectrum, equal
population of the 12 isotopomers of HOD(D:0)s is assumed. In Section 3.3, we
discuss this in detail.

The corresponding spectra of the prism HOD(D20)s are shown in Figure 6.3.
Compared with the spectra of the cage in Figure 6.2, the prism spectra show the
same bands in similar frequency ranges. However, a noticeable difference from the
cage spectrum is seen in structure of the OH stretch portion of the spectrum.
Detailed discussion of these OH-stretch bands of both isomers will be presented
below. The same assumption that populations of the 12 isotopomers are equal is

applied to the prism as well.
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Next, we focus on the OH-stretch region of the IR spectra for the cage and prism
HOD(D20)s. These bands are of most interest because the OD-stretch bands in
HOD are largely masked by the D20 solvent stretch-bands. To analyze this portion
of the spectra, we present the stick spectra of the cage and the prism from LMon
calculations in Figure 6.4. There are 12 sticks for each isomer, which correspond
to the 12 unique hydrogen sites, spanning a range from 3150 to 3700 cm'l. (Note
the HOD bend overtone is below 3000 cm-1 and not shown in Figure 6.4, unlike the
case of pure H20 where the bend overtone is embedded in the OH-stretch region of
the spectrum?>).  As seen, each stick is color-coded according to the well-known
Donor (D)/Acceptor (A) classification.2 We discuss this in detail below, but first
we make a more “coarse-grained” observation about these stick spectra. It is
based on identification of two types of monomers. One is with one free-OH(D) and
one H-bonded OH(D). There are four such monomers in the cage and three in the
prism. The second monomer type is with no free-OH(D) stretches and thus with two
H-bonded OH(D) stretches. There are two of these monomers in the cage and
three in the prism. We now note that for the first type of monomer, i.e., with one
free-OH(D), the two OH-stretches spectral sticks are at the extremes of the spectral
range. The free-OH stretches, shown in blue, are the highest frequency bands in
the spectrum and the H-bonded OH-stretches, shown in red and orange, are the

lowest frequency bands of the spectrum. The OH-bands for the second type of

150



Chapter 6. Water Hexamer

monomer, which has 2 H-bonded OH-stretches, shown in green, are between the
free-OH bands and the lowest frequency H-bonded OH bands, which are assigned to
the first type of monomer. (Note the same correlation of OH stretch frequency and

monomer type is seen in the correspondent pure (H20)s.)

To go beyond this coarse-grained analysis, the D/A classification is used.
Recall a monomer with two donor H-atoms and two acceptor H atoms is labeled as
DDAA. We use this notation to indicate only the H-bonded OH-stretches and
continue to use the term “Free” to indicate free-OHs. This labeling is used in Table
6.1, where each labeled spectral line is identified by the site numbering shown in
Figure 6.1. For the cage isomer, it is straightforward to see the H-bonded
OH-stretches on the first type of monomer are either DAA or DA. The H-bonded
OH-stretches on the second type of monomer are DDA. We see the DAA
OH-stretches, shown in red sticks, are more red-shifted than the DA ones, shown in
orange sticks. For the prism, all H-bonded OH-stretches on the first type of
monomer are DAA, and the ones on the second type are DDA. To summarize, the
OH-stretch frequencies are in the order of DAA < DA < DDA < Free. This order, seen
in the cage and prism isomers, is consistent with the results of the book isomer in
pure (H20)6.2 Finally it is worthwhile to note that Ohno et al?’ and later Tainter et

al?® have analyzed the OH frequencies by considering not only the H-bond
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configurations on the donor monomer but also on the acceptor monomer, using an
“M-index”. This provides additional insights into the pattern of spectral features
and also in making connections with the condensed phase and surfaces and we refer

the reader to those papers for this insightful and detailed analysis.

Table 6.1. Monomer classification of the 12 HOD(D20)s isotopomers of the cage
and prism isomers. Hydrogen sites follow the atomic numbering in Figure 6.1.

For H-bond type, D denotes one donor and A denotes one acceptor.

Hydrogen
Cage Prism
site

1 DAA DAA
2 DAA DAA
3 DA DAA
4 DA DDA
5 DDA DDA
6 DDA DDA
7 DDA DDA
8 DDA DDA
9 Free DDA
10 Free Free

152



Chapter 6. Water Hexamer

11 Free Free

12 Free Free

Next, we compare our numerical results for the cage isomer with previous
local-mode calculations of the OH-stretch fundamental of Skinner and coworkers?3
in Table 6.2. For consistency, we show the current OH-stretch fundamentals;
however, we remind the reader that in this energy range there are also combination
states of the HOD bend plus H-bonded OD-stretch. As seen, the two calculations
are consistent with each other, but there are some differences too. First, peaks 4
and 5 from our calculations are blue-shifted by 40 cm! compared with the
local-mode ones. Second, in our calculations sticks 6,7,8 are very close in
frequencies, whereas the local-mode peaks are more dispersed. Overall it is
gratifying to see good agreement between these two calculations given that there
are significant differences in their details. Perhaps the biggest difference is the
treatment of the electronic structure, which in the local-mode calculations is
DFT-B3LYP/6-311++G** for the OH-stretch and a semi-empirical three-body
interaction and in the LMon ones, using WHHB, which is based on
CCSD(T)/aug-cc-pVTZ for the intrinsic two-body and MP2/aug-cc-pVTZ for the
intrinsic three-body interactions. A significant point in common is the explicit

consideration of the important three-body interactions.
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Table 6.2. OH stretch frequencies of the 12 sites of the cage and prism HOD(D20)s.
Also shown is the OH stretch frequencies of the cage HOD(D20)s with the local-mode
calculations from ref. 23. (The frequencies from ref. 23 were determined by us

from digitized versions Figure 6.1 in that paper.)

Cage Cage Prism
Peak this work Ref. 23 this work

1 3163 3148 3161
2 3279 3274 3251
3 3338 3330 3386
4 3439 3392 3446
5 3466 3421 3514
6 3536 3517 3539
7 3537 3547 3558
8 3542 3576 3582
9 3702 3709 3617
10 3703 3714 3694
11 3719 3727 3699

12 3726 3738 3738
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Finally, we compare the spectra of the cage and prism isomers. The most
significant difference between the two isomers is perhaps in the region above 3500
cml In this region, the spectrum of the prism is more dispersed than the cage.
This suggests that IR spectroscopy should be able to clearly distinguish the cage and

prism isomers of HOD(D20)s.

6.4. Harmonic Zero-Point Energies of Isotopomers of

Prism and Cage HOD(D:20)s

Table 6.3. Harmonic zero-point energy (ZPE) and AZPE, relative to cage (D20)e, of
the twelve HOD(D20)s isotopomers of the cage hexamer. The site labels are given

in Figure 6.1. The harmonic frequency for each OH is also shown.

Hydrogen Frequency A ZPE
ZPE (kcal/mol)
site (cm™) (kcal/mol)
1 3382 71.50 2.18
2 3503 71.48 2.16
3 3549 71.48 2.16
4 3635 71.49 2.17
5 3671 71.50 2.18
6 3727 71.46 2.14
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7 3732 71.46 2.14
8 3737 71.47 2.15
9 3893 71.33 2.00
10 3899 71.34 2.01
11 3906 71.35 2.03
12 3918 71.30 1.97

It is of interest to investigate the site-dependence of the ZPEs of the cage and prism
isotopomers of HOD(D20)s. These were obtained in the harmonic approximation,
as described above, and the results are given in Tables 6.3 and 6.4, respectively. As
seen these range from 71.30-71.50 kcal/mol for the cage and 71.56-71.73 kcal/mol
for the prism. Note these energies are relative to the potential minimum of the
corresponding isomer. It is well established that the prism minimum is below the
cage one as discussed in more detail below. From these ZPEs we define the
“hydrogenation energy” as the ZPE difference between the HOD(D:0)s and the
reference energies of cage or prism (D20)s:
AE, = E[HOD(D,0),]—- E[(D,0),]

We see this energy is of the order of 2 kcal/mol, for any of the 12 sites in the cage or
prism isomers. However, at the “free-OD” sites, AEy is about 0.15-0.2 kcal/mol

lower than AEyx at “hydrogen-bonded” positions, for both cage and prism. This
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suggests that at 0 K to about roughly 100 K hydrogenation is energetically favored
at the “free-OD” positions. We must add an important caveat to this conclusion
though. As is well known, especially by us, harmonic ZPEs are not accurate to
within 0.15-0.2 kcal/mol for a cluster this large, however, the estimate of the
difference in harmonic ZPEs is probably at least of the right sign, based on
cancellation of errors. And so, it should be reasonable guide to the site preference
of H-atom substitution. Also note this suggests the relative intensities of IR

spectral bands might be altered due to the non-equal populations of the 12 sites.

Table 6.4. Harmonic zero-point energies (ZPE) and AZPE, relative to prism (D20)s,
of the twelve HOD(D20)s isotopomers of the prism hexamer. The site labels are

given in Figure 6.1. The harmonic frequency for each OH is also shown.

Hydrogen Frequency A ZPE
ZPE (kcal/mol)
site (cm™) (kcal/mol)
1 3385 71.73 2.18
2 3473 71.72 2.16
3 3596 71.71 2.15
4 3646 71.73 2.18
5 3715 71.69 2.13
6 3730 71.69 2.13
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7 3748 71.70 2.14
8 3776 71.67 2.12
9 3805 71.66 2.11
10 3891 71.56 2.01
11 3904 71.58 2.02
12 3921 71.59 2.03

A similar analysis could be done for dilute HOD in condensed phase; however,
that would be a fairly major computational effort for a future study. However,
based on the very limited study for the hexamer which shows the largest difference
for the free-OH and the fact that there are no free-OH stretches in the core regions of
the ice or liquid it is likely that the differences in ZPEs are quite small from site to
site.

Finally, we attempt to answer the question which isomer of HOD(D20)s is more
stable at 0 K, cage or prism? The CCSD(T)/CBS calculations shows the electronic
energy of the prism is lower than the cage by 0.25 kcal/mol.? For the harmonic ZPE,
all the 12 isotopomers of the prism are higher than the highest-energy isotopomer
of the cage. The relative harmonic ZPE of the prism over cage ranges from 0.06 to
0.43 kcal/mol. Therefore, this suggests both the cage and the prism could be the

most stable isomer, depending on the hydrogen sites. These preliminary predictions
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may be tested by new experiments on the isotopologs of water hexamers.

6.5. Summary

We presented local-monomer IR spectra of the cage and prism isomers of
HOD(D20)s in the range of 1000-4000 cm1. The appearance of the bend overtone in
the region of 2700-3000 was noted. The OH stretch bands of both isomers show rich
structures, due to the abundant H-bonding environments. Also, the spectra of HOD
and D0 ice Ih were presented, and these are in good quantitative agreement with
experiment. Finally, we reported preliminary site-energetics of the 12 isotopomers

of the cage and prism HOD(D20)s based on harmonic zero-point energy analysis.
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