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Abstract 

 

Impact of Winter Heating on the Air Quality in China 

By Qingyang Xiao 

 

 

China suffers from severe particulate matter (PM) pollution. Previous studies 

reported that the highest PM concentrations occur in winter. This high PM 

concentration is believed to be partly due to heating. This study used both remote 

sensing techniques and ground measured air pollutant concentrations to analyze 

the impact of heating on winter air quality through standard statistical tests and 

multivariate linear regression. Both the satellite retrieved data and ground 

measured air pollutant concentrations indicate that the air pollution levels 

increase significantly during the heating period. The average adjusted AOD ratio 

and the PM10 concentration ratio increase by 2.78 (p-value<0.01) and 0.33 

(p-value<0.01) in the heating period, respectively. This increase in air pollution 

levels is significantly higher in the heating area than in the non-heating area. The 

increase in the adjusted AOD ratio and PM10 ratio is higher in the heating area 

than in the non-heating area by 2.19 (p-value<0.01) and 0.06 (p-value <0.01), 

respectively. Heating contribute significantly to the increase in the air pollution 

level in the heating period and the impact of heating on air pollution is 

immediate. The linear regression model indicates that heating demand, indicated 

by local temperature, can explain about 25% of the increase in air pollution 

levels during the heating seasons. Central heating has a pollution-control effect 

relative to individual heating. Our study furthers the understanding about 

spatiotemporal variability of PM pollution in China and provides information to 

make more effective pollution-control policies. 

 

Length:  The Abstract may not exceed one page, formatted according to the regular page 

formatting instructions (margins, spacing, font).  The text itself cannot exceed 350 

words (not counting the title etc.)  The Abstract may be single-spaced. 
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1 Introduction 

1.1 PM2.5 and its health impact 

Particulate matter (PM) is a mixture of small solid and liquid particles which are 

suspended in the atmosphere. PM can be divided into different types based on their 

aerodynamic diameters. These include coarse particles (particles with an aerodynamic 

diameter of 10 microns or less), fine particles (particles with an aerodynamic diameter 

of 2.5 microns or less), and ultrafine particles (particles with an aerodynamic diameter 

less than 0.1 micron). 

 

Previous epidemiological, physiological, and toxicological studies indicate that fine 

particles play a critical role in the negative health impact of PM pollution, because 

they contain complex chemicals and can be inhaled deeply into the lungs (Pope and 

Dockery 2006). Both rapid and sustained exposure to PM2.5 are associated with 

adverse health outcomes, such as cardiovascular disease, respiratory disorders, 

immune disorder, and cancers (Pope and Dockery 2006; JZ Zhao et al. 2013; Brook et 

al. 2010; Vineis et al. 2006). Franklin et al. (2007) reported that an increase in the 

previous day’s PM2.5 concentrations by 10 μg/m
3
 corresponded with a 1.12% (95% CI 

0.29, 2.14%) increase in all-cause mortality and a 1.78% (95% CI 0.20, 3.36%) 

increase in respiratory related mortality in 27 U.S. communities. Pope et al. (2009) 

indicated that a 10 μg/m
3
 decrease in PM2.5 concentration was associated with a 

0.61±0.20 year increase in life expectancy in 211 U.S. counties. Kan et al. (2007) 
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estimated that a 10 μg/m
3
 increase in the 2-day moving average PM2.5 concentration 

was associated with a 0.36% (95% CI 0.11, 0.61%) increase in all-cause mortality and 

a 0.95% (95% CI 0.16, 1.73%) increase in respiratory related mortality in Shanghai, 

China. Thus, some studies suggested PM2.5 as an indicator of particle pollution 

responsible for adverse health effects (Kan et al. 2007; Kappos et al. 2004; Bell et al. 

2004). 

 

Because previous studies described above provide strong epidemiological and 

toxicological evidence that PM exposure, especially fine particle exposure, has a 

significant association with negative health impacts, PM2.5 has been regarded as an 

important ambient air pollutant and been controlled in the U.S. and in other countries. 

WHO Air Quality Guidelines suggest a 24-hour PM2.5 concentration of 25 ug/m
3
 

(Organization 2006). In 2012, the U.S. Environmental Protection Agency (EPA) 

revised the annual PM2.5 standard to 12 μg/m
3
 and retained the 24-hour PM2.5 

standard of 35 μg/m
3
 (MoEPo China 2013). In contrast, PM2.5 was not listed as an 

ambient air pollutant by the Ministry of Environmental Protection of China until 2012. 

To improve air quality and public health protection, in 2012, the Ministry of 

Environmental Protection of China released the new ambient air quality standards, 

which included PM2.5 and ozone as ambient air pollutants for the first time. These 

new ambient air quality standards, which will be applied in 2016, set the 24-hour 
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average PM2.5 concentration at 75 μg/m
3
 and the annual PM2.5 concentration at 35 

μg/m
3
 (China 2012). 

 

1.2 PM2.5 in China 

PM pollution in China has drawn broad concerns. Previous studies reported severe 

particulate pollution in China. Table 1 summarizes the results of previous 

measurements of PM2.5 concentrations in China with at least a six-month monitoring 

period. The annual average of PM2.5 concentrations ranged between 191μg/m
3
 in 

Shijiazhuang and 30.3μg/m
3
 in Taipei. The PM2.5 concentrations showed largely 

spatial and temporal variability in China (Table 1). In all the cities aside from Tianjin, 

the highest PM2.5 concentrations occurred in winter or spring, ranging between 

34.5μg/m
3
 in Taipei and 227.2μg/m

3
 in Shijiazhuang, and the lowest PM2.5 

concentrations occurred in summer, ranging between 23.6μg/m
3
 in Fuzhou and 

146μg/m
3
 in Shijiazhuang. Cao et al. (2007) measured PM2.5 elemental carbon (EC) 

and organic carbon (OC) in 14 cities in China, and reported that the average EC 

concentrations in the 14 cities were 9.9μg/m
3
 and 3.6μg/m

3
 in winter and summer, 

and the corresponding OC were 38.1μg/m
3
 and 13.8μg/m

3
. Previous studies indicate 

that the high PM2.5 concentrations in winter are partly due to winter heating (Cao et al. 

2007; PS Zhao et al. 2013; He et al. 2001). 
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1.3 Central heating and its impact on winter air quality in China 

Central heating systems are widely used in cities in Northern China, transferring hot 

water or steam to homes and offices for heating. Two sources of heat are used to heat 

water: waste heat from power plants, and combustion of coal, and, rarely, natural gas 

or oil, in the heating stations, which are built and operated by local governments. In 

1955, China’s central government divided the country into central-heating and 

non-central-heating areas using the Huai River and Qin Mountains (about 32°N) as a 

natural way of separating them. Since then, it has provided funding support to local 

governments north of the Huai River and Qin Mountains in providing central heating 

(Huai-policy). The official heating period is decided by local governments based on 

the local temperature. When a city has five consecutive days with temperatures 

remaining at 5℃ or lower, the local government may start heating. Each year, from 15 

October to 15 November, cities in the heating area start providing central heating, and, 

from 15 March to the end of April, those cities end their systematic heating. As local 

economies have developed, certain local governments in the southern non-heating 

area, such as in Wuhan, also provide central-heating for residents. Households in the 

areas where central heating is not available rely on individual heating, such as from 

heat-producing air conditioner units, electric space heaters, and domestic stoves, for 

household heating (Zhou et al. 2009). 
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Heating accounts for a large percentage of energy consumption in China. The 

building energy consumption (BEC) for heating accounted for 45% of the national 

urban building energy consumption (Cai et al. 2009). Coal is the main fuel used for 

heating. In 2003, more than 85 million tonnes of coal, 1 million tonnes of oil, and 1 

billion cubic meters of gas were used for central heating in China, and the coal used 

for central heating alone accounted for more than five per cent of the total coal 

consumption in China (Committee 2004). The combustion of coal and other fossil 

fuels releases a large quantity of air pollutants, including PM. Chen et al. (2005) 

reported that the combustion of coal led to an estimated 290.24 Gg PM emission in 

2000 in China. Previous studies analyzed the sources of PM2.5 in Beijing and reported 

that coal combustion accounted for 19% of PM2.5 on an annual basis, while in the 

heating season, this source accounted for as much as 37% of PM2.5 (Song et al. 2006a; 

Song et al. 2006b). Zhang et al. (2013) monitored PM2.5 in Beijing from 2009-2010, 

and reported that coal combustion account for 18% and 57% of PM2.5 on an annual 

basis and in winter, respectively. Sustained exposure to this heating-caused severe 

particle pollution leads to negative health outcomes. Chen et al. (2013) analyzed the 

variability in total suspended particulates (TSP) concentration from 1981-2000 in 

China and reported that the ambient TSP concentrations were about 184μg/m
3
 higher 

in Northern China than in Southern China due to the central heating policy. This high 

exposure to TSP may lead to a reduction in life expectancy at birth of about 5.5 years 

for residents in the north relative to those in the south. 
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Although previous studies indicate that central heating contributes to the severe air 

pollution in Northern China in winter and estimated the health impact of this winter 

air pollution(PS Zhao et al. 2013; Chen et al. 2013), these studies analyzed data from 

limited air monitoring stations in several major cities during a relatively short time 

period. The long-term analysis conducted by Chen et al. (2013), which indicates that a 

high TSP exposure in Northern China due to the central heating policy, has several 

limitations. First, they treated central heating as the only heating method adopted in 

Northern China; however, the central heating system is only accessible in cities and 

rural areas in Northern China have no access to the central heating system. For 

households in these areas, individual heating by stoves and electric heating 

instruments is widely used. Their methods of analysis cannot distinguish the impact of 

central heating from the impact of total heating and they assumed that all of the 

difference in the air pollution levels between Northern and Southern China were due 

to the central heating, which could be inaccurate. Second, they treated the Huai River 

and Qin Mountain as the boundary of the heating and non-heating areas; however, 

some municipalities that are located south of the Huai River have access to the central 

heating system. Thus, their definition of the central heating and non-central heating 

areas is incorrect. Third, they used TSP as the target air pollutant, which is a weak 

indicator of PM pollution related adverse health impact (Pope and Dockery 2006; Kan 

et al. 2007). Long-term and large-scale analysis of temporal and spatial variability of 
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PM2.5 is needed to better understand particle pollution, its sources, and its impacts on 

public health in China. 

 

 

1.4 Ground measurement of PM concentrations and its limitations 

The continuous monitoring of PM10 in China began in 2000 in several central cities. 

There are currently 98 cities with PM10 monitoring stations in China and the historical 

daily air quality data of these cities can be tracked online. The monitoring of PM2.5 

began in 2012 and more than 100 cities have PM2.5 monitoring stations currently. 

More monitoring stations in more cities are under construction. The hourly PM2.5 

concentrations are available online. One limitation of the ground monitoring of air 

quality is that the stations are distributed unevenly across the country, with most 

located in central cities (Figure 1) and the monitoring network not covering small 

cities or rural areas. Only 15% of the about 660 cities in the continental China were 

covered by the current air quality monitoring network. This limited spatial and 

temporal coverage of the ground measurement makes it difficult to conduct 

large-scale long-term analysis. 

 

1.5 Remote sensing techniques and MODIS aerosol optical depth 

Remote sensing techniques have become useful tools to estimate ground PM2.5 

concentrations, providing various spatial resolutions, acceptable accuracy, and a 
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chance to conduct large-scale analysis (Liu et al. 2012; Hu et al. 2013; Liu 2013). 

Aerosol optical depth (AOD) is a parameter widely used to estimate ground PM2.5 

concentrations through remote sensing techniques. Several satellite sensors provide 

various kinds of AOD measurements, with different algorithms, spatial resolutions 

and temporal resolutions. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) instruments provide the most widely used aerosol products. Two identical 

MODIS instruments are onboard the NASA Earth Observing System (EOS) Terra and 

Aqua satellite, respectively. Terra passes from north to south across the study area at 

around 10:30am local time while Aqua passes from south to north across the study 

area at about 1:30pm local time. MODIS has 36 spectral bands, acquiring data in 

wavelength from 0.4 μm to 14.4 μm and providing information about atmospheric 

water vapor, surface temperature, land properties, and aerosol properties. Two 

algorithms are used to retrieve the AOD from MODIS data over land, the Dark-Target, 

which is used for dark land surface, and the Deep-Blue, which is used for bright 

ground. Previous studies reported acceptable accuracy of MODIS aerosol products in 

China (Hu et al. 2013; Song et al. 2009; Wang et al. 2007). By comparing the MODIS 

Terra retrieved AOD with ground-based AOD observation from the Chinese Sun 

Hazemeter Network (CSHN), Wang et al. obtained an annual mean correlation 

coefficient of 0.90 in China, ranging from 0.19 in Lanzhou to 0.94 in Yanting (Wang 

et al. 2007; Wang et al. 2010). Liu et al. (2012) reported that both Terra and Aqua 
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AOD in Beijing are highly related to the ground measured values reported by 

AERONET, with a correlation coefficient around 0.9.  

 

AOD is considered as a strong indicator of surface PM2.5 levels together with other 

information, such as meteorological factors and land use (Liu 2013). Tsai et al. (2011)  

reported that the correlation coefficient of relative humidity and boundary layer height 

normalized AOD and ground PM2.5 concentrations was about 0.68 in Taiwan. Thus, it 

is possible to use the satellite-retrieved data to reflect ground air pollution levels and 

analyze the temporal and spatial variability of air pollution. 

 

1.6 Study objectives and hypotheses 

The objective of this study is to analyze the impact of winter heating on particulate 

pollution in China through both remote sensing techniques and ground measurement. 

First, standard statistical tests were conducted to examine the spatiotemporal 

variability of adjusted AOD in China. Then we developed a multivariate linear 

regression model with temperature and population normalized central heating area as 

independent variables, and increase of the adjusted AOD ratio during the heating 

period as dependent variables to explain the spatial difference of adjusted AOD 

increase between the heating and non-heating seasons in each municipality. The 

statistical significance of each predictor was analyzed to estimate its impact on winter 

air pollution. Ground measured PM10 concentrations estimated from daily Air 



10 

 

 

 

Pollution Index (API) and ground measured hourly PM2.5 concentrations were also 

analyzed to describe the spatiotemporal variability of ground air pollution in China 

and support the results of adjusted AOD analysis.  

 

The hypotheses of this study are: 

1. H0: Particulate matter concentrations stay the same during the heating and 

non-heating periods; 

HA: Particulate matter concentrations increase significantly during the heating 

period; 

2. H0: Heating has no significant impact on winter air pollution in China;  

HA: Heating has a significant impact on winter air pollution in China; and 

3. H0: Central heating has the same impact as individual heating on air pollution 

level; 

HA: Central heating releases less air pollution relative to individual heating. 

 

2 Data and Methods 

The datasets used in this study consist of remote sensing data, ground measured air 

pollutant concentrations, model simulated data, and socioeconomic data. The main 

analytical methods employed in this study include a standard statistical test and 

multivariate linear regression model.  
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2.1 Study Area 

The study area of this analysis is mainland China, excluding Tibet, Xinjiang, and 

Qinghai provinces (Figure 1). Tibet and Qinghai provinces were excluded because 

they are located on the Qinghai-Tibet Plateau and the low local temperature due to 

high latitude requires year-round household heating. Xinjiang province was excluded 

because its deserts are major natural sources of particulate matters. In addition, their 

bright surfaces also make high-quality satellite AOD retrieval very difficult. 

 

2.2 Datasets and Processing 

2.2.1 Remote Sensing Dataset 

The Collection 5 level 3 MODIS AOD product at 550 nm from the Terra satellite 

(MOD08_D3, “Optical_Depth_Land_And_Ocean_Mean”) over China area (Figure 1) 

were obtained from the Goddard Space Flight Center 

(http://ladsweb.nascom.nasa.gov/data). The level 3 AOD product (1°×1° spatial 

resolution) is a global aggregation of MODIS level 2 Dark-Target AOD product (10 

km spatial resolution) (Hubanks et al. 2008). The “QA” parameter of the level 2 

product provides information about quality of the retrieved data, ranging from 0 (no 

confidence or fill) to 3 (very good confidence) (Hubanks et al. 2008). All pixels from 

level 2 AOD product with quality flag=1, 2, and 3 are used and gave equal weight to 

drive the level 3 product (Hubanks et al. 2008; Ruiz-Arias et al. 2013). Standard 

deviation derived from the level 2 pixels is also provided. Ruiz-Arias et al. (2013) 
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calibrated the validation of Terra level 3 AOD product with ground AERONET 

stations globally and reported that the error of this product was 0.03±0.14. 

Operational Terra level 3 AOD data over China area (Figure 1) from 2003 to 2010 

were obtained and processed. 

 

The quality of MODIS level 3 data was controlled by the coefficient of variability 

(CV), which is the AOD value divided by the standard deviation of AOD. Only pixels 

with CV equal to or less than 20 were included in this analysis. There are some 

missing data in the MODIS level 3 dataset due to snow cover and cloud cover. The 

missing data is distributed un-evenly across the study area; the northern part has more 

missing data than the southern part. To control the quality of the satellite dataset, two 

datasets were used for further analysis. One dataset includes all available pixels (full 

dataset), and another dataset includes all the pixels with at least one valid level 3 

AOD value per month (one-obs-per-month dataset).  

 

The AOD was normalized by absolute humidity and PBL (Equation 1) during the 

satellite passing time (Dawson et al. 2007; Alfoldy et al. 2007) because previous 

studies indicated that the correlation between AOD and PM was improved if AOD is 

normalized by daily absolute humidity and PBL (Tsai et al. 2011; Koelemeijer et al. 

2006). The absolute humidity was calculated from relative humidity and temperature 

in the corresponding time period from the GEOS-Chem dataset (Equation 2). The 
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adjusted AOD was used to describe the spatiotemporal variability of air pollution 

level in section 3.2. 

Adjusted − AOD = AOD/(AH × PBL)                             Equation 1 

AH = 6.112 × 𝑒(17.67×T)/(T+243.5) × 2.1674 × RH/(273.15 + T)       Equation 2 

Where AH=absolute humidity (g/m
3
) during satellite passing time; T= temperature 

(℃) during satellite passing time; RH=relative humidity during satellite passing time; 

PBL= planetary boundary layer thickness (km). 

 

To eliminate the interannual variability, the adjusted AOD ratio, which is the average 

adjusted AOD divided by the annual adjusted AOD, was used in the statistical test 

and multivariate linear regression.  

 

2.2.2 Ground Measured Air Pollutant Concentrations 

The daily PM10 concentration was derived from the daily API data. The daily API of 

each municipality was issued by the Ministry of Environmental Protection of the 

People’s Republic of China from 2003-2012 and are available online at the Data 

Center website (http://datacenter.mep.gov.cn/). The API is derived by ground 

measured concentrations of three ambient air pollutants: SO2, NO2, and PM10. The 

API consists of two major parameters: the primary pollutant and the API value. The 

individual API value of each of the three air pollutant is calculated by 

range-based-linear-regression separately, and the air pollutant with the highest 
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individual API value is reported as the primary air pollutant. Its individual API value 

is reported as the API value of the day. If the API value is lower than 50, the air 

quality will be reported as “Good” and no major air pollutant will be reported (Gong 

et al. 2007; Choi et al. 2008). Seventy-six municipalities in the study area with at least 

2 years API records and at least 200 valid API records in each year were included in 

this study. 

 

The PM10 concentrations derived from the daily API record were used by previous 

studies to conduct temporal and spatial analysis (Song et al. 2009; Gong et al. 2007; 

Choi et al. 2008). In the API dataset, PM10 polluted days, other air pollutant polluted 

days and good air quality days account for 76%, 4%, and 20% of the total city-days, 

respectively. To estimate the PM10 concentrations from the daily-reported API, the 

following strategies were used: for PM10 polluted days or good air quality days, the 

PM10 concentration was estimated by range-based-linear-regression (Equation 3) 

(Song et al. 2009; Choi et al. 2008). For other air pollutant polluted days, triangular 

distribution was used to estimate the PM10 individual API from the reported API. The 

distribution is described in Equation 4 and it is based on the assumption that the three 

air pollutant concentrations vary consistently. 

 

CPM 10
=

Chigh −C low

Ihigh −Ilow
×  IPM 10

− Ilow  + Clow                       Equation 3 

IPM 10
= Ireported × ƒ(x)                                      Equation 4 
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Where CPM 10
=PM10 concentration (mg/m

3
); Chigh=the highest limitation of PM10 

concentration in the corresponding PM10 range (mg/m
3
); Clow=the lowest limitation of 

PM10 concentration in the corresponding PM10 range (mg/m
3
); IPM 10

=the individual 

API of PM10; Ihigh=the highest limitation of PM10’s individual API in the 

corresponding API range; Ilow=the lowest limitation of PM10’s individual API in the 

corresponding API range; ƒ(x)=the random number from the triangular distribution 

with the following probability density function:   𝑥 = 2𝑥 

 

The monitoring of ground PM2.5 began in some major cities in December, 2012 in 

China (data are available online at the PM2.5 monitoring website 

(http://www.cnpm25.cn)). Each city has 7-8 monitoring stations, on average, which 

are operated by the local environmental protection agency. The hourly PM2.5 

concentrations, measured by the gravimetric method, are reported online. Hourly 

PM2.5 data in 2013 of 109 municipalities in the study area were used in this study. The 

daily PM2.5 data were averaged from the hourly PM2.5 from each monitoring stations. 

The daily city-level average PM2.5 concentrations were averaged from the daily PM2.5 

data from all air quality monitoring stations in each city. 

 

The daily PM concentrations were used to describe the spatiotemporal variability of 

air pollution level in section 3.5 and 3.6. To eliminate the between annual variability, 

the PM2.5 and PM10 concentrations ratio, which is the average PM concentrations 

http://www.cnpm25.cn/
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divided by the corresponding annual PM concentration, was used in the two sample 

t-test. 

  

2.2.3 Model simulated Data 

The LandScan Population Project produces ambient population distribution globally 

at 30´́ (approximately 1 km) spatial resolution through spatial data, imagery analysis 

technologies, and a multi-dimensional asymmetric modeling approach. Previous 

validations reported that in Germany, Israel, and the Southwest U.S. the simulated 

LandScan population has less than 10% difference compared with the totals of the 

official census in all the study areas in 1998 (Dobson et al. 2000). The yearly 

LandScan data over the study area from 2003 to 2010 were obtained from the Oak 

Ridge National Laboratory website (http://web.ornl.gov/sci/landscan). 

 

Goddard Earth Observing System Model, Version 5 (GEOS-5) was produced by 

the NASA Global Modeling and Assimilation Office (GMAO). GEOS-5 data at 2° 

latitude by 2.5° longitude spatial resolution, and 3-hour temporal resolution were used 

in this study to provide meteorological information, such as temperature, relative 

humidity, and planetary boundary layer thickness (PBL) within 3 sigma vertical layers. 

Local temperature at 11:00 am local time, around the satellite passing time, was 

obtained to normalize AOD. Daily temperature were calculated and used as a 

parameter in the linear regression model was. To analyze the impact of temperature 

http://web.ornl.gov/sci/landscan
http://gmao.gsfc.nasa.gov/
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on air pollution level spatially and temporally, two temperature variables were 

processed. The spatial temperature is the average of temperature during the heating 

period from 2003-2010, which reflect the spatial distribution of temperature. The 

interannual temperature is the average temperature in the heating period of each year 

minus the spatial temperature, which reflects the interannual variability of 

temperature. 

 

2.2.4 Socioeconomic Data 

The socioeconomic parameters used in this analysis, including size of the central 

heating area and thermal power generation, were obtained from the China Statistical 

Yearbook and the China Electric Power Yearbook. The China Statistical Yearbook, 

which is compiled by the National Bureau of Statistics of China and published by the 

China Statistics Press, is an annual statistical publication summarizing the 

social-economic data of China. The province-level size of central heating area data 

from 2003 to 2010 were obtained from the China Statistical Yearbook from 2004 to 

2011. The municipality-level data were estimate from the province-level data using by 

the population of each municipality as weight. The China Electric Power Yearbook, 

which is compiled by the “China Electric Power Yearbook” Editorial Committee and 

published by the China Electric Power Press, is an annual summary of the 

development, achievements, policies and events of China’s power sector. The 

province-level by-type electricity production data from 2003-2010 were from the 
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section of statistical data of the China Electric Power Yearbook. The year 2003 and 

2005 don’t have the by-type electricity generation data, so the thermal power 

generation of the two years were estimated from the total electricity generation data 

and the average percentage of thermal power over the total of the other six years.  

 

2.2.5 Data Integration 

Municipality is the unit for analysis in this study and all the data were averaged and 

assigned to municipality based on their location using the nearest neighbor approach 

through ArcGIS 10.1. There were a total of 294 municipalities in the study region, 

whose average area was 2.03×10
4
 km

2
. MODIS level 3 data were averaged from 

pixels in each municipality. Adjusted AOD values for municipalities with no pixel 

within it were estimated by the value of the nearest pixel, which was less than one 

degree away from the boundary of the municipality. Adjusted AOD values of 

municipalities with no pixel within it and the nearest pixel was more than one degree 

away from it were recorded as missing. The total population of each municipality was 

estimated as the sum of the LandScan pixels located within each municipality. 

Population density was calculated as the total population divided by the 

corresponding area of each municipality. The temperature data were averaged from 

the GEOS-5 pixels within each municipality. Temperature data of municipalities with 

no pixels within it were estimated by the value of the nearest pixel. The 

municipality-level socioeconomic data were derived from the province-level data 
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from the yearbook, weighted by the population of each municipality. Size of central 

heating area indicates municipalities’ ability to provide central heating. In this 

analysis, the size of central heating area was normalized by the local population 

(km
2
/10

4
 person) and this parameter was used to reflect the personal central heating 

source. If the total heating demands are held constant, the higher the normalized 

central heating area, the larger proportion of heating demands are met by central 

heating, and the fewer individual heating activities are conducted. This parameter was 

used in the linear regression model to analyze the impact of central heating relative to 

other heating activities.   

 

To analyze the impact of heating, we divided each year into heating and non-heating 

periods, and we divided the whole study region into heating and non-heating areas. In 

this study, we set the heating period from November 16 in each year to February 

28/29 in the next year, and the non-heating period from May 1 to October 14. Because 

the central heating start date varies in different areas and in different years, we 

exclude the dates from October 15, when the municipalities located in the furthest 

north region of China start central heating, to November 15, when the municipalities 

located near the southern boundary of the heating area start central heating. March 

and April were also excluded from the analysis because the frequent sand storms in 

spring contribute substantially to PM levels (Zhang et al. 2006). We normalized the 

parameter of air pollution level (adjusted AOD value, PM10 concentration) for each 
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municipality by the annual mean of the municipality to eliminate the impact of 

interannual variability and the spatial difference in the baseline pollution level. By 

eliminating the interannual variability, we can pool data from different years together 

to get a larger sample size. The spatial difference in the baseline pollution level 

reflects impact of temporal-constant emission sources, such as emission from industry 

and transportation. By eliminating the spatial difference in the baseline pollution level, 

we can avoid the effect of temporal-constant emission sources and emphases on the 

temporal emission sources, such as winter heating. We set the heating area as 

municipalities with the central heating area more than zero km
2
, while the non-heating 

area as municipalities with zero km
2
 central heating area. The heating and non-heating 

area may vary from year to year, because some provinces may begin or stop central 

heating during the study period. 

 

2.4 Analytical Methods 

Two sample t-tests were conducted to compare the air pollution level (adjusted AOD 

ratio, PM2.5 concentration ratio, and PM10 concentration ratio) of each municipality 

during heating and non-heating periods. Data of these eight years were pooled 

together. The hypotheses 1 and 2 described in section 1.6 were tested by the t-test 

using both satellite retrieved data and ground measured data.  
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Then, we developed a municipality-level linear regression model to explain the spatial 

difference of the elevated air pollution level in the heating period. The model structure 

can be expressed as follows:  

𝐴𝑂𝐷𝑎𝑑𝑗 = 𝛽0 + 𝛽1 × 𝑇𝑒𝑚𝑝𝐼𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙 + 𝛽2 × 𝑇𝑒𝑚𝑝𝑆𝑝𝑎𝑡𝑖𝑎𝑙 + 𝛽3 × 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 + 𝛽4 ×

𝑇𝑒𝑚𝑝𝐼𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙 × 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 + 𝛽5 × 𝑇𝑒𝑚𝑝𝑆𝑝𝑎𝑡𝑖𝑎𝑙 × 𝐻𝑒𝑎𝑡𝑖𝑛𝑔           Equation 5 

Where AODadj = adjusted AOD; TempInterannual = interannual temperature; TempSpatial = 

spatial temperature; Heating = population normalized size of central heating area. 

 

The statistical significance of each independent variable was analyzed to estimate the 

impact of heating demands, which is indicated by the temperature parameters, and 

central heating on winter air pollution in China. We also considered other predictors, 

such as electricity generation and population density; however, preliminary results 

indicated that these variables were not statistically significant; thus, we removed them 

from the final model. 

 

3 Results 

3.1 Descriptive Statistics 

The summary statistics of the two datasets properties are presented in Table 2. The 

mean of adjusted AOD of the full dataset (0.18) is slightly lower than that of the 

one-obs-per-month dataset (0.19), because the full dataset has more missing data in 

the heating period. In contrast, the difference in the adjusted AOD between the 
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heating and non-heating periods and the difference in the adjusted AOD ratio between 

the heating and non-heating periods of the full dataset are higher than those of the 

one-obs-per-month dataset. This could be the reason the full dataset includes more 

pixels in Northern China, which may have a larger increase of air pollution levels in 

the heating period than those in Southern China (Figure 2). The one-obs-per-month 

dataset has about 24% fewer pixel-years compared to the full dataset.  

 

The histograms of parameters are illustrated in Figure 3, which shows that the 

dependent variable, the change of adjusted AOD ratio, of the two datasets are 

approximately normally distributed. The two temperature parameters are 

approximately symmetrically distributed, while the distribution of normalized central 

heating area is highly right skewed. The normalized central heating area relates to 

both the Huai-policy and local development. Municipalities which are located in north 

of the Qin Mountain and Huai River, and whose economies are well developed have 

the highest normalized central heating area value. Table 2 shows that the 

municipality-level adjusted AOD ratio difference between heating and non-heating 

periods in the full dataset and the one-obs-per-month dataset is 2.32 and 1.73, 

respectively. The average interannual temperature and spatial temperature is 0±1.17 

and 3.76±7.96 degree centigrade, respectively. The spatial temperature shows larger 

variability than the interannual temperature does. The large variability of the spatial 
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temperature relates with the large range of latitude and complex geographical 

environment of China, while the interannual temperature keeps relatively stable.  

  

3.2 Spatiotemporal Variability of Adjusted AOD 

To analyze the air pollution levels, average adjusted AOD data of each municipality 

in the study area during the study period were divided into four spatiotemporal groups: 

in the heating area during heating period (HH), in the heating area during non-heating 

period (HN), in the non-heating area during heating period (NH), and in the 

non-heating area during non-heating period (NN). The yearly average adjusted AOD 

of each spatiotemporal group together with the average annual adjusted AOD over the 

whole study region (All) from 2003-2010 are shown in Figure 4. The average annual 

adjusted AOD over the whole study region slightly increased from 0.17 in 2003 to 

0.23 in 2010, with an increasing rate less than 0.01/year. However, the average 

adjusted AOD in the heating area during heating period increased almost twice from 

0.48 in 2003 to 0.85 in 2010, with an increasing rate of 0.07/year. There is a dip of 

average adjusted AOD in the HH group from 2009 to2010. Because we didn’t show 

adjusted AOD data after 2010, this dip could be interannual variability rather than 

indicating a constant trend. The average adjusted AOD value in the heating area 

during the heating period is always the highest among these spatiotemporal groups, 

and the average adjusted AOD values during heating period are always higher than 

the corresponding values during non-heating period, both in the heating and 
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non-heating areas, with an average difference of 0.40. The average difference in the 

adjusted AOD between heating and non-heating periods in the heating area was 0.66, 

which was much higher than that in the non-heating area (0.14). 

 

The spatial distribution of the annual adjusted AOD from 2003-2010 is shown in 

Figure 5. The highest annual adjusted AOD values occur in Hebei, Henan, Shandong, 

and Gansu provinces, while the lowest values occur in the furthest north region 

(Heilongjiang province and part of Inner Mongolia) and south China (Hainan, Yunnan, 

Guangdong, and Fujian provinces). This spatial pattern was stable from 2003-2010, 

and the annual adjusted AOD values increased in some areas during these eight years. 

The temporal trends vary over China. The regions with the highest adjusted AOD also 

show a largest increase of the annual adjusted AOD, while the annual adjusted AOD 

in Southern China remains the same during these eight years. 

 

Figure 6 shows the distribution of the average adjusted AOD in heating and 

non-heating period from 2003-2010. Though the average adjusted AOD in the heating 

period in some areas in Southern China, such as Yunnan, Fujian and Hainan 

provinces, were similar as those in the non-heating period; however, in most areas, 

both in the heating and non-heating areas, the average adjusted AOD during heating 

period were much higher than those in the non-heating period. Paired t-test indicates 

that the average adjusted AOD increases significantly by 0.43 during the heating 
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period (p-value<0.01). The highest increase of adjusted AOD in the heating period 

occurs in the Inner Mongolia, Hebei, Henan, and Shandong provinces.   

 

3.3 T-test Results 

To statistically compare the difference of air pollution level between the heating and 

non-heating periods in the heating and non-heating areas, several two sample t-tests 

were conducted on the adjusted AOD ratio. Adjusted AOD ratio, rather than the 

absolute value of AOD, is used in the analysis. Thus, the innterannual variability will 

not affect the comparison within each year and the increase of adjusted AOD rather 

than the annual average value will be emphasized. The heating and non-heating 

periods were divided as described previously. Two different datasets were analyzed to 

control the data quality: one dataset includes all available satellite pixels (full dataset), 

the other dataset includes satellite pixels with at least one valid observation per month 

(one-obs-per-month dataset). The summary statistics of these two datasets is shown in 

Table 2. 

 

We first compared the values of adjusted AOD ratio between heating and non-heating 

periods with the eight-year data pooled together. The t-test results indicate that there 

is a significant increase in the adjusted AOD ratio during the heating period in China, 

and the estimated difference is 2.30 and 1.72 in the full dataset and the 

one-obs-per-month dataset, respectively (p-value<0.001, Table 3). To analyze the 
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immediate impact of heating on the air pollution level, we also compared the adjusted 

AOD ratio in October 1-14, the two weeks before the central heating starts, and in 

November 16-30, the two weeks after the central heating starts. The difference in the 

monthly AOD ratios in these two months is 1.36 and 1.11 in the full dataset and the 

one-obe-per-month dataset, respectively (p-value<0.001). This difference is relatively 

small compared with the difference in adjusted AOD ratio between the heating and 

non-heating periods, because at the beginning of the heating period, the temperature is 

relatively high and the heating demands is relatively low. Thus, the air pollution 

emission due to heating activities is relatively low. We then analyzed the spatial 

difference of the change of adjusted AOD in the heating period. We calculated and 

compared the change of the AOD ratio in the heating period in the heating and 

non-heating areas. The t-test results indicate that there was a significant spatial 

difference in the increase of air pollution levels during the heating period. The 

increase of the AOD ratio in the heating area was higher than in the non-heating area 

by about 1.44 and 0.94 in the full dataset and one-obs-per-month dataset, respectively 

(Table 3). 

 

3.4 Linear Regression Model 

To further analyze the impact of central heating on winter air pollution, we developed 

the linear regression model with the change of the adjusted AOD ratio as the 

dependent variable. The two datasets described above, the full dataset and the 
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one-obs-per-month-data-set, were used to fit the model. The independent variables 

include temperature during the heating season and population normalized central 

heating area. The spatial distribution of annual average values of parameters from 

2003-2010 are shown in Figure 6, and the estimate of predictors in the model is 

shown in Table 4. 

 

The spatial distribution of parameters are different (Figure 7). The distribution of the 

population normalized central heating area and temperature during the heating period 

is related to location: municipalities that are located in Northern China have lower 

average temperatures during the heating period and larger population normalized 

central heating area than municipalities that are located in Southern China. The 

normalized central heating area is also affected by municipalities’ development: 

Beijing and Tianjin, the two major municipalities, have the highest value of the 

normalized central heating area.  

 

Totally 2144 municipality-year in the all dataset and 2190 municipality-year in the 

one-obs-per-month dataset were used to fit the model. The collinearity issue was 

considered by the variance inflation factor (VIF). None of the parameters in the above 

two models have a VIF larger than 10; thus, collinearity is not an issue in these 

models.(Mason et al. 2003; Marquard.Dw 1970) The R
2
 of the model based on the all 

dataset and one-obs-per-month dataset are 0.45 and 0.42, respectively. Thus, more 
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than 40% of the change of air pollution level during the heating period can be 

explained by our model. Both spatial and innerannual temperatures had significant 

negative relationships with the increase in air pollution level (p-value <0.05). A one 

degree decrease in interannual temperature was associated with a 0.059 unit increase 

of the adjusted AOD ratio in the heating period, and a one degree decrease in the 

spatial temperature was associated with a 0.085 unit increase of adjusted AOD ratio in 

the heating period. The interannual temperature and spatial temperature reflect the 

demand for heating. The lower the temperature is, the higher the demand for heating, 

and the higher the increase of air pollution level. The population normalized central 

heating area was significantly negatively related with the increase of the adjusted 

AOD ratio. A one-unit increase of population normalized central heating area led to 

an estimated 0.01~0.056 unit decrease in the change of the adjusted AOD ratio in the 

heating period. The spatial temperature and interannual temperature had a negative 

interaction with the population normalized central heating area. When the temperature 

in the heating period is held constant, the increase of the central heating area will 

decrease the air pollution level.  

 

3.5 Spatiotemporal Variability of PM10 

To support the results from above analysis, that the air pollution level increases 

significantly during the heating period and this increase is significantly higher in the 

heating area relative to in the non-heating area, we also analyzed the ground measured 
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PM10 data from 2003-2012. PM10 is one of the three major ambient air pollutants 

regarded by the Chinese National Ambient Air Quality Standards(1996) and is treated 

as an indicator of PM pollution.(Pope 3rd 1989) The temporal variability of PM10 

during each year from 2003-2012 is shown in Figure 8. The four spatiotemporal 

groups together with the entire study region during the study period described in 

section 3.2 were also used here. The annual PM10 concentration over the whole study 

area decreased from 109 µg/m
3
 in 2003 to 86 µg/m

3
 in 2010, with a decrease rate of 

3.3 µg/m
3
 per year. The average PM10 concentration in the heating area during the 

heating period decreased more sharply from 151 µg/m
3
 in 2003 to 115 µg/m

3
 in 2010, 

with a decrease rate of 5.1 µg/m
3
. Nineteen per cent and four per cent of the total 

municipality-day during the heating and non-heating periods reported average PM10 

concentrations exceeding the national standard (24-h average PM10 concentrations as 

150 µg/m
3
), respectively. The average PM10 concentration in the heating area during 

the heating period was always the highest among these spatiotemporal groups, with 

the average value from 2003 to 2010 being 126 µg/m
3
, while that in the non-heating 

area during the non-heating period was always the lowest, with the average value 

from 2003 to 2010 being 64 µg/m
3
. The average PM10 concentrations during the 

heating period are always higher than the corresponding values during the 

non-heating period. The increase of PM10 concentrations in the heating and 

non-heating areas was 38 and 24 µg/m
3
, respectively.  
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Figure 9 shows the spatial distribution of long-term average PM10 concentration in 

heating and non-heating period from 2003-2010. The division of heating and 

non-heating period is the same as described before. The spatial distribution pattern of 

PM10 was similar to that of adjusted AOD. The average PM10 in the heating period in 

some areas in southern China, such as Yunnan, Fujian and Hainan province, were 

similar as those in the non-heating period; however, in other areas, the average PM10 

concentration increased during the heating period. Paired t-test indicates that the 

average PM10 increases significantly by 31.9 µg/m
3 

during the heating period 

(p-value<0.01). 

 

To statistically analyze the impact of heating on the increase of PM10 concentrations 

in winter, several t-tests were conducted (Table 5). To eliminate the interannual 

variability, the PM10 concentration ratio was used in these tests. The t-test results 

indicate that the PM10 concentration increased significantly in winter (p-value<0.001) 

and the start of central heating significantly increase the PM10 concentration within 

two weeks (p-value<0.01). 

 

3.6 Spatiotemporal Variability of PM2.5 in 2013 

To calibrate the analysis results of adjusted AOD, which is an indicator of ambient 

PM2.5 concentration, we analyzed the ground measured PM2.5 data in 2013. Because 

the continuous monitoring of PM2.5 in China began at the end of 2012, we only have 
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one year entire year data of PM2.5. The spatiotemporal pattern of PM2.5 concentrations 

in 2013 in non-heating and heating periods were similar to those of adjusted AOD and 

PM10 (Figure 10), and most municipalities in Northern China reported higher PM2.5 

concentration during the heating period. Forty-eight per cent and eighteen per cent of 

the total city-day during the heating and non-heating periods reported average PM2.5 

concentrations exceeding the national PM2.5 standard (24-h average as 75 µg/m
3
), 

respectively. The paired t-test result indicates that the daily PM2.5 concentrations 

increased by 46.2 µg/m
3 

in the heating period (p-value<0.01).  

 

4 Discussion 

4.1 Spatiotemporal Variability of Air Pollution Levels 

The average adjusted AOD and average PM10 concentrations for the heating area 

during the heating period were always higher than those for other spatiotemporal 

groups. This high air pollution level may be due to the meteorological factors and 

seasonal heating. The increase in the average adjusted AOD in the heating area during 

the heating period from 0.48 in 2003 to 0.85 in 2010 may have resulted from the 

increase in residents’ ability to meet their heating demands and the increase in coal 

consumption for heating. Zhou et al. (2009) indicated that the per capita heating area 

in China increased from 7.14 to 16.17 m
2
 from 1989-2005, and the per capita coal 

consumption for home heating correspondingly increased from 159.18 to 229.70 kg 

coal equivalent. From 2003-2010, the coal used for central heating increased from 85 
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to 167 million tonnes (Committee 2004, 2011). Previous analysis of the sources of 

PM2.5 in Beijing using the positive matrix factorization (PMF) approach reported that 

the contribution of coal combustion to PM2.5 concentration in the heating season 

increased from 37% to 57% from 2000-2009 (Song et al. 2006a; Song et al. 2006b; 

Zhang et al. 2013). 

 

Our results show that the temporal trends of PM10 and adjusted AOD during the study 

period are very different (Figure 4 and Figure 8). The annual adjusted AOD in the 

entire study area keep approximately stable during this time period, while the 

corresponding annual PM10 concentrations decrease significantly. One explanation 

about this inconsistency could be that the size distribution of PM has changed in 

recent years. Adjusted AOD is highly related with PM2.5 concentrations and the 

PM2.5/PM10 ratio may increase from 203-2010. However, previous studies do not 

support this explanation and report that the PM2.5/PM10 ratio keeps stable from 

2003-2010. For example, in Beijing, the PM2.5/PM10 ratio ranged between 0.5-0.73 in 

2001-2003 (Zhang et al. 2006; Sun et al. 2004), and the ratio was about 0.44 from 

2009-2010 (Sun et al. 2011). In Nanjing, a city in Southern China, the PM2.5/PM10 

ratio ranged between 0.54-0.84 in 2001, and the ratio was 0.73 recently (Wang et al. 

2002; Shen et al. 2014).
 
Another possible reason for this inconsistency is that the 

PM10 data was measured in cities, while the AOD data cover both the urban and rural 
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areas. Because there is no study about the possible difference of the PM2.5/PM10 ratio 

between urban and rural areas, further study is needed to support this hypothesis.  

 

The t-test results indicate that the air pollution level responds to heating immediately. 

The air pollution level, indicated by the adjusted AOD value, the PM10 concentrations 

and the PM2.5 concentrations, increases significantly in two weeks after heating start. 

The spatial and temporal distribution of adjusted AOD and PM2.5 concentrations were 

similar: the highest values occur in Northeast China during heating periods. However, 

the spatial distribution of PM10 concentrations was different from the other two: the 

highest values occur in Shannxi and Shanxi provinces. This difference may be due to 

different sources of PM10 and PM2.5: Shannxi and Shanxi provinces are located on the 

Loess Plateau and suffer from frequent sand storms, a natural source of PM that 

mainly affects PM10 concentrations. Thus the size distribution of PM in these two 

provinces may be different from in other areas. Previous studies reported that in Xi’an, 

the capital of Shannxi province, about 10% of the TSP with size <2.6 micron, while in 

Beijing, about 44% of the TSP was PM2.5 (Sun et al. 2011; Cao et al. 2011). 

 

4.2 Impact of Heating and Other Possible Air Pollution Sources 

Based on the linear regression model, the increase in air pollution levels in the heating 

period is related to different factors, including temperature during the heating period, 

and the size of central heating area. Heating demands, indicated by the local 
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temperature, has a significant impact on the air pollution level. The lower the 

temperature during the heating season, the higher the heating demand, and leads to 

more heating activities and more pollution emission. When removing the two 

temperature indicators from the model, the R
2
 will drop to 0.20 in the full dataset and 

to 0.16 in the one-obs-per-month dataset. Thus, temperature, or heating demands, can 

explain about 25% of the increase in the air pollution level in the heating period.  

The population normalized size of central heating area has a significant negative 

relationship with the increase in adjusted AOD ratio. This indicates that the central 

heating system has a pollution-control effect relative to other heating activities. 

People use different ways to meet their heating demands: in the municipalities in the 

heating area, residents may use the central heating system, while in areas where 

central heating is unavailable, such as in rural areas in Northern China and Southern 

China, residents may turn to domestic stoves and electric heating instruments. All 

these heating activities lead to air pollutant emission and increase the air pollution 

level. If the total heating demand is held the same and the more central heating is 

applied, then less individual heating is needed. Because the central heating system 

uses large-capacity boilers in heating stations and power plants to provide heat, it is 

more efficient relative to household operated stoves, and the centralized control of 

emissions is allowed. About 44% of the central heating is from the power plants and 

the capacity of the coal-fired power plants is 93% in the total thermal power plants in 

China (Xu et al. 2000; MoHaU-RDo China 2013). Coal-fired power plants with 
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capacities larger than 300MWe are required to install flue gas desulfurization (FGD) 

facilities by governmental regulation and this pollution-control action is estimated to 

reduce SO2 emission by about 80% by 2010 (You and Xu 2010). Moreover, more 

than 96% of the coal-fired power plants installed electrostatic precipitators (ESP) 

facilities, which has a dust collection efficiency of more than 99% for TSP and more 

than 90% for PM2.5 (You and Xu 2010; Zhao et al. 2008). Previous studies reported 

that the emission factor of PM for domestic coal combustion ranges between 1.3-19.6 

g/kg, while the emission factor of PM for coal-fired power plants ranges between 

0.4-2.0 g/kg when ESP was applied (Zhao et al. 2008; Zhao et al. 2010). Thus, central 

heating releases less air pollutant relative to individual heating and the higher 

percentage of central heating will lead to the lower air pollutant levels, holding total 

heating demand constant.  

 

The intercept indicates a fixed increase in air pollution level in the heating period. 

This increase is believed to be associate with the change of meteorological factors: the 

heating period has a relatively slow wind speed and low boundary layer height (Yu et 

al. 2011).  

 

4.3 Limitations and Future Study Directions 

Due to snow/ice cover, there were some non-random missing data in Northern China 

during the heating period (Figure 2). To evaluate the potential bias due to the missing 
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data, two datasets were processed in this study: the full dataset and the 

one-obs-per-month dataset. The full dataset includes more MODIS pixels in Northern 

China, thus the increase rate of the adjusted AOD during the heating period is larger 

in this dataset relative to in the one-obs-per-month dataset (Table 2). Moreover, the 

full dataset provides more observations to develop the linear regression model and 

smaller p-values of predictors in the model. Because most of the non-random missing 

data occur during the heating-period, when the heating demand and the air pollution 

level are relatively high, this study may underestimate the increasing rate of the air 

pollution level in the heating period. 

 

The relationship between AOD and PM2.5 is a function of particle size distribution, 

composition, and vertical distribution, and may vary in different land use systems (Liu 

2013; Tsai et al. 2011). In our study, we assumed that the relationship between AOD 

and PM2.5 remains constant all year and we used the adjusted AOD ratio rather than 

the adjusted AOD value as target parameter to eliminate the impact of land use on the 

relationship between AOD and PM2.5. Thus we analyzed the temporal variability of 

PM2.5 concentration through analyzing the adjusted AOD ratio. The changes in 

aerosol composition, which may be due to unexpected events, such as forest fires, 

may also modify the relationship between AOD and PM2.5 and bias this analysis. We 

assumed that there are no significant changes in aerosol composition in the study 
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period; however, detailed information about aerosol competition will help improve 

the accuracy of this analysis.  

 

Due to the lack of detailed geographic and socioeconomic data, such as land use, 

motor vehicle number, and operation of local factories, we used the ratio of adjusted 

AOD to eliminate the spatial difference of the annual air pollution level and isolate 

the temporal increase of air pollution level in the heating period. Moreover, since the 

systematic monitoring of PM2.5 began in 2012, we only have data on PM2.5 

concentrations for the entire year of 2013. PM2.5 measurement data during a longer 

time period can help us develop the relationship between PM2.5 and AOD. Together 

with detailed socioeconomic data, we can conduct a further analysis including more 

independent variables and provide more information for effective air pollution 

mitigation measures.  

   

5 Conclusion 

In this study, both the satellite retrieved data and ground measured air pollutant 

concentrations indicate that the air pollution levels increase significantly during the 

heating period and this increase is significantly higher in the heating areas than in the 

non-heating areas. The average adjusted AOD ratio and the PM10 concentrations ratio 

increased 2.78 and 0.33 in the heating period (p-value<0.01), respectively. In the 

heating area, the increase in the adjusted AOD ratio and PM10 ratio were higher than 
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those in the non-heating area by 2.19 (p-value<0.01) and 0.06 (p-value <0.01), 

respectively. Heating contributes significantly to the increase in air pollution levels 

during the heating period. The linear regression model indicates that central heating 

has significant pollution control effects relative to individual heating. Our findings 

further our understanding of winter air pollution in China and provide information for 

pollution-control policy making. 
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Tables and Figures 

 

Table 1 Previous monitoring results about PM2.5 concentrations in China 

City 24-h PM2.5 Concentrations μg/m3 Reference 

Annual Spring Summer Fall Winter 

Beijing  121 89.0 76.0 112 176 He et al. (2001) 

Beijing  101 139 99.0 106 60.9 Zheng et al. (2005) 

Beijing 102 76.4 89.0 79.8 122 Duan et al. (2006) 

Beijing  64.4 76.5 60.9 63.2 74.5 Yu et al. (2011) 

Beijing  123 128 116 124 127 

PS Zhao et al. (2013) 
Tianjin  142 136 161 152 117 

Shijiazhuang  191 175 146 219 227 

Chengdu 92.4 105 67.8 74.4 123 

Zhengzhou 175 181 122 186 211 Geng et al. (2013) 

Jinan 149 143 129 135 205 Yang et al. (2012) 

Shanghai  57.9 61.7 36.8 64.8 88.6 Ye et al. (2003) 

Chengdu  165±85.1 133 114 188 226 Tian et al. (2013) 

Fuzhou  44.3±16.3 49.8 23.6 44.1 59.8 Xu et al. (2012) 
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Xiamen 86.2 89.7 62.3 83.8 109 Zhang et al. (2012) 

Taipei  30.3±16.0 34.5 26.7 27.0 32.8 Chang et al. (2010) 

 

 

 

 

Table 2 Summary statistics of meteorological and social-economic parameters 

Variable Mean 
Std. 

Dev. 
Min Max 

Municipality-level Adjusted AOD 

Ratio Difference (full) 
2.32 1.68 -0.76 23.7 

Municipality-level Adjusted AOD 

Ratio Difference (one-obs-per-month) 
1.73 0.82 -0.78 5.74 

Interannual Temperature ℃ 0 1.18 -4.89 3.56 

Spatial Temperature ℃ 3.62 7.88 -19.2 22.1 

Population Normalized Central 

Heating Area km
2
/10

4
 persons 

2.47 3.79 0 32.2 

 

Table 3 T-test results of adjusted AOD 

T-test 
Difference 

Full dataset One-obs-per-month dataset 

AOD ratio during heating period 2.30 *** 1.72 *** 
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and non-heating period 

AOD ratio before and after heating 

start 
1.36 *** 1.11 *** 

Increase of adjusted AOD ratio in 

heating period between the heating 

and non-heating areas 

1.44 *** 0.94 *** 

*** P-value<0.01 

Table 4 Estimates of parameters in the linear regression models 

Variable 

Full dataset 

N=2344 

R
2
=0.45 

One-obs-per-month 

dataset 

N=2190 

R
2
=0.42 

Intercept 2.6*** 2.1*** 

Interannual Temperature -0.059** -0.031** 

Spatial Temperature -0.098*** -0.075*** 

Population normalized 

Central Heating Area 
-0.056*** -0.010* 

Central Heat×Interannual 

Temperature 
-0.022*** 0.0018 

Central Heating×Spatial 

Temperature 
-0.020*** -0.0018* 

*p-value< 0.1 

**p-value< 0.05 

***p-value< 0.01 
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Table 5 The t-test results of PM10 concentrations 

T-test                            Difference 

PM10 ratio during heating 

period and non-heating period 
0.35*** 

PM10 ratio before and after 

heating start 
0.20*** 

Increase of PM10 ratio in 

heating period in the heating 

and non-heating areas 

0.007 

***p-value< 0.01 
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Figure 1 Study region. The western provinces (Xinjiang, Qinghai, and Tibet) were 

excluded. The red dots represent cities with ground PM10 monitors and the yellow 

dots represent cities with ground PM2.5 monitors.  

 

 

Figure 2 Temporal coverage of AOD data in the heating and non-heating periods. 
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Figure 3 Histograms of dependent and independent variables. 
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Figure 4 Average AOD in heating/non-heating periods in heating and non-heating 

areas in China All, Annual average AOD over the entire study region HH, in the 

heating area during the heating period HN, in the heating area during the non-heating 

period NH, in the non-heating area during the heating period NN, in the non-heating 

area during the non-heating period. Data of this figure was from the full dataset. 
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Figure 5 Spatial distribution of annual adjusted AOD from 2003-2010. 
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Figure 6 Spatial distribution of eight-year-average adjusted AOD during the heating 

and non-heating periods. 

 

 

Figure 7 Spatial distribution of population normalized central heating area and spatial 

temperature in China. 
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Figure 8 Average PM10 concentrations in heating/non-heating periods in 

heating/non-heating areas in China All, Annual average PM10 over the entire study 

region HH, average PM10 in the heating area during the heating period HN, average 

PM10 in the heating area during the non-heating period NH, average PM10 in the 

non-heating area during the heating period NN, average PM10 in the non-heating area 

during the non-heating period. 
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Figure 9 Average PM10 concentrations from 2003-2010 in heating and non-heating 

period. 

 

 

Figure 10 Average PM2.5 concentrations in 2013 in heating and non-heating period. 

 

 

 

  


