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Abstract

Association Study between Diseases and Human Tissue-Specific Epigenomes
By Yixin Yang

Background: Genome-wide association studies (GWAS) provide a robust methodology
for detecting genetic variations that are linked to human diseases. This information is
valuable for personalized risk assessment and precision medicine, as it enables clinicians
to tailor treatments to the specific genetic profiles of individual patients.

Objectives: By testing the enrichment of disease-related variants enrichment in
epigenomes to examine whether there is any associations between diseases and
tissue-specific epigenomes

Methods: We used single nucleotide polymorphisms’ location to retrieve corresponding
chromatin states among 127 tissue-specific epigenomes. Binomial tests were applied to
identify the enrichment of diseases- and trait-associated genetic variants in tissue-specific
epigenomes.

Results: We performed an analysis of the top 100 SNPs with the highest p-values to
investigate potential genetic associations with 186 unique diseases. Our findings revealed
significant enrichment in blood and T-cell related tissues for immune-related diseases,
such as leukemia lymphocytic chronic-BCell, type 1 diabetes mellitus, inflammatory
bowel diseases, arthritis, rheumatoid, and multiple sclerosis. Additionally, we observed
that crohn disease-related genetic variants were enriched in digestive-associated tissues,
while celiac disease-related genetic variants were enriched in muscle and lung related
tissues. These results are consistent with previous studies and provide further evidence
for the importance of tissue-specific genetic analyses in understanding disease
pathogenesis.

Conclusion: Our study provided a valuable resource for interpreting the molecular basis
of human diseases and highlight the potential of GWAS to identify sequence variants
linked to common diseases and traits. Additionally, our study demonstrates the power of
integrating epigenomic and genomic data to gain insights into the underlying biological
mechanisms of disease.
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1. Introduction

Individuals have natural variations in their DNA, which can range from single nucleotide

changes to larger structural changes in both coding and non-coding regions of the genome.

Single nucleotide polymorphisms (SNPs) are a common type of variation that refer to

single base pair changes in the DNA sequence. The occurrence of that kind of change in

the DNAwill impact the occurrence of diseases.

Understanding the genetic basis of various traits and diseases is essential, and studying an

individual's genotype can provide insights into their phenotype, which was defined as

physical or observable traits, characteristics, and predispositions to certain diseases or

conditions that result from an individual’s genotype and environment they are exposed to.

For example, eye color, height, and susceptibility to certain diseases. Many phenotypes

are quantitative in nature, and complex in etiology, with multiple environmental and

genetic causes[1]. Theoretical and experimental advances in genetics, along with

analytical developments and high-throughput genomics, have provided unprecedented

insights into the genetic architecture of complex diseases. Furthermore, the clustering of

complex traits based on genetic relatedness indicates that these traits are heritable and

influenced by genetic variants.

The primary DNA sequence can be subject to a variety of chemical modifications that

affect the interpretation and function of the genome. These modifications occur in both
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DNA and histone proteins and result in a complex regulatory network that impacts

chromatin structure and genome function[2]. The collection of these modifications across

the entire genome is referred to as the epigenomes. These modifications constitute a

critical aspect of the epigenomes and contribute to the heritability of genetic information

across generations. An example of a versatile type of epigenetic modification names the

post-translational modifications, which happen at the end of the histone proteins and

could significantly impact chromatin structure and genome function.

Therefore, gaining a deeper understanding of the molecular mechanisms underlying

human disease and other biological phenomena requires a comprehensive understanding

of how individual modifications, as well as their combinations, impact gene expression.

For example, Junli Zhou’s study revealed that difference in acetylization in Lysine

residue 9 of histone H3 lead to variations in gene expression. Their results suggested that

a combination of repressive marks weakened the positive regulatory effect of histone H3

lysine 9 acetylation (H3K9ac)[3]. Another example is Elsa Arbajian’s research. They

identified differentially methylated regions with methylation patterns associated with

differential gene expression and an neuroendocrine tumor phenotype[4].

Even though it is known that gene expression and transcription are critical for many

cellular processes and are controlled not only by DNA sequence and transcription factors

but also by epigenetic regulation, interpreting the role played by non-coding parts and
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epigenetic modifications is challenging. Annotating a given genomic locus or a set of

genomic loci is important to reveal potential functional connections between genotype

and phenotype. Based on recurrent and spatially coherent combinations of chromatin

marks, Ernst and Kellis first introduced the concept of chromatin states in 2010[5]. Ernst

and Kellis developed an innovative approach to gain insights into the functional roles of

certain epigenetic modifications and their biologically meaningful combinations. Their

method, which utilized a multivariate Hidden Markov Model, enabled the de novo

discovery of 'chromatin states' in human T cells. To execute the approach, a local

assessment was made on the existence of a mark in every 200-bp interval, and the

likelihood of detecting each mark in isolation was modeled using a Bernoulli random

variable. Their approach also incorporated modeling the likelihood of every mark

combination by utilizing a product of independent probabilities. They defined 51 distinct

chromatin states, including promoter-associated, transcription-associated, active

intergenic, large-scale repressed, and repeat-associated states. Each chromatin state

exhibited specific enrichment in functional annotations, sequence motifs, and

experimentally observed characteristics, implying distinct biological roles.

Promoters are known to be enriched in functional annotations related to transcriptional

regulation and gene expression, while enhancers are genetic elements that regulate cell

type-specific gene transcription for sequences far away from gene promoters[6].

Enhancers were identified by their specific chromatin features, which may contribute to
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the repertoire of epigenetic mechanisms responsible for cellular memory and cell

type-specific gene expression. Salvatore Spicuglia and Laurent Vanhille’s research

indicated that of all the possible regulatory regions in the genome, only a small subset is

selected for activation in a given cell type, which is probably essential for cell

differentiation[7]. Chin-Tong Ong’s study illustrated enhancers two important functions.

Their complex but largely invariant chromatin structure and the mechanisms underlying

their long-distance influence on promoters[8]. To fully understand transcriptional

regulatory networks during normal development and disease, it is crucial to differentiate

between poised enhancers that may become active and those enhancers that are already

active.

Previous studies showed that disease-associated variants are enriched in specific

regulatory chromatin states, evolutionarily conserved elements, histone marks, and

accessible regions. For example, diverse immune traits were enriched in immune cell

enhancers, a large number of metabolic trait variants are enriched in liver enhancer marks,

and fasting glucose was most enriched for pancreatic islet enhancer marks and

insulin-like growth factors in the placenta, consistent with their endocrine regulatory

roles[9].

Genome-wide association studies (GWAS) offer a powerful approach to identifying

genetic variants associated with diseases in humans, which can ultimately contribute to

https://pubmed.ncbi.nlm.nih.gov/?term=spicuglia s[Author]
https://pubmed.ncbi.nlm.nih.gov/?term=Vanhille L[Author]
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personalized risk assessment and precision medicine. The primary objective of GWAS is

to discover associations between genotypes and phenotypes by testing for differences in

the frequency of alleles in genetic variants among individuals with similar ancestry but

varying phenotypic characteristics. The outcomes of GWAS have various applications.

For instance, genetic variants associated with traits can be used as control variables in

epidemiological studies to account for confounding genetic group differences.

Additionally, these findings can be utilized to predict an individual's susceptibility to

physical and mental ailments based on their genetic profile. Recent research has

demonstrated that genomic risk prediction utilizing genome-wide polygenic risk scores

(PRSs) can identify disease risk equivalent to monogenic risk prediction strategies based

on rare, highly penetrant mutations for conditions such as coronary artery disease, atrial

fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer. Genomic risk

prediction may soon be allowed for clinical use as a stratification tool and a genetically

based biomarker.

Recently, various methods were developed to utilize genome-wide annotations to predict

causal variants and novel risk variants that are associated with complex traits. For

example, Yue Li developed a new Bayesian model for the inference of driver variants

from summary statistics across multiple traits using hundreds of epigenome

annotations[10]. Another study by Li Chen introduced a computational tool in the form of

an R package that can connect genomic intervals to phenotypes by conducting
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enrichment analyses of trait-associated SNPs within arbitrary genomic intervals. This

package offers several flexible options, including the type of background, the testing

method, and the inclusion of SNPs in linkage disequilibrium[11].

In our article, we analyzed a large data set from NIH Roadmap Consortia and PheGenI to

investigate the prevalence of disease-associated variants in 127 tissue-specific

epigenomes and their enrichment status in enhancers and promoters. To do this, we

utilized a binomial test to determine if there was an enrichment of these variants

reflecting influence corresponding to both the coding and non-coding regions of genes, as

well as modifications that occur on genes. We hypothesized that there would be no

enrichment in the tissue-specific region, and if there was, the binomial test p-value would

indicate the occurrence of this enrichment.

2. Methods

2.1 Data source

In this study, data was downloaded from PheGenI and NIH Roadmap Epigenomics

Mapping Consortium.

PheGenI is a highly useful resource for conducting phenotype-based searches, providing

researchers with access to valuable information on SNPs, chromosomal locations, and
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genes. By utilizing PheGenI, researchers can quickly locate and download pertinent

results, making it an indispensable tool for genetic research.

Another data resource is from the NIH Roadmap Epigenomics Consortium, which aims

to understand the role of epigenetic processes in human biology and disease. In a

previous study, a 15-state ChromHMM model v1.10 was utilized to capture the complex

interactions between various chromatin marks in their spatial context (chromatin states)

across 127 epigenomes. The trained model was used to compute the posterior probability

of each state for each genomic bin in each reference epigenome, and regions were labeled

using the state with the highest posterior probability. The data includes 15 different active

chromatin states (Table 1), including promoter states (Tssa, TssAFlnk), enhancer states

(Enh, EnhG), active transcription start site (TSS), actively transcribed states (Tx, TxWk),

and states associated with zinc finger protein genes (ZNF/Rpts).

Table 1. Chromatin states summary
State Number Mnemnic Description

1 TssA Active TSS
2 TssAFlnk Flanking Active TSS
3 TxFlnk Transcr. at gene 5' and 3'
4 Tx Strong transcription
5 TxWk Weak transcription
6 EnhG Genic enhancers
7 Enh Enhancers
8 ZNF/Rpts ZNF genes & repeats
9 Het Heterochromatin
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10 TssBiv Bivalent/Poised TSS
11 BivFlnk Flanking Bivalent TSS/Enh
12 EnhBiv Bivalent Enhancer
13 ReprPC Repressed PolyComb
14 ReprPCWk Weak Repressed PolyComb
15 Quies Quiescent/Low

2.2 Data analysis

For this study, We combined 127 datasets from PheGenI and a summary of variants data

in NIH Roadmap, and performed binomial test to discover the associations between

genotype and phenotype. By testing whether the retrieved results of each chromatin state

proportion for the total 15 chromatin states in every epigenome are equal to the actual

proportion of chromatin states or not, we could know the enrichment of certain chromatin

states in a total of 127 epigenomes. Further more, by combining the information of

epigenome corresponding tissue names, we could have insight on the association between

traits and epigenomes.

Data from PheGenI was eliminated. Any duplicated information was deleted in raw data

and traits that had at least 100 SNPs were selected. I extracted the top 100 rows for each

trait, which were sorted in decreasing order of their p-value.

We located a 200-bp bin based on SNPs position in PheGenI data as the center, expand to
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left and right, and computed neighboring 21 bins within the genome, including 10 left

bins, 10 right bins, and 1 middle bin, which contains the variant. Collected the

corresponding chromosome states information across 127 epigenomes and retrieved

chromatin states for each bin based on their SNP location. To account for the potential

overlap of retrieved chromatin states in the same disease in one epigenome, duplicated

data were deleted. This process allowed for a more accurate analysis of the chromatin

states associated with each SNP and ultimately the genetic basis of each disease.

Count the number of occurrences of 15 chromatin states for each disease, and repeated

for every one of the 127 epigenomes. For each of the 127 epigenomes, we calculated the

genome-wide percentage of the 15 chromatin states in Roadmap data. A one-tail binomial

test was performed to compare the tested chromatin state percentage and genome-wide

percentage. If the binomial test suggests enrichment of the chromatin states in certain

epigenomes, the binomial test p-value will be very small.

A binomial test calculates the probability of getting from a specific sample size, n, the

number of the desired outcome m as extreme or more extreme than what was observed if

the true proportion equaled the claim.

Pr m|n, p =
n!

m! (n − m)!
pm 1 − p n−m

The p-value for the upper-tailed test is
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p =
i=m

n
n
i

pi
0 1 − p0

n−i�

H0: The proportion of retrieved chromatin states in one epigenome equals genome-wide

proportion of chromatin states in one epigenome, or p = p0

Ha: The proportion of retrieved chromatin states in one epigenome not equals

genome-wide proportion of chromatin states in one epigenome, or p > p0

And then did a negative log transformation of the p-value. The magnitude of the negative

log p-value depends on the enrichment of chromatin states. A larger negative log p-value

represents a stronger correlation between chromatin states enrichment. Combined the

datasets with tissue information based on epigenomes and connected with diseases.

To investigate the relationship between diseases and tissues within each chromatin state,

heatmaps were generated using the "pheatmap" function in R. Missing values were

replaced with 0 before plotting the heatmap. The significance of the associations between

tissues and diseases was represented by negative log p-values, with higher values

indicating stronger associations.

2.3 Data validation

In Roadmap Epigenomics Consortium’s research, they used 39 diseases traits to analyze

their associations with 111 epigenomic enrichment of genetic variants. To verify match of

the exist research results visually, I selected diseases that showed up in paper, and
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generated heatmap to show up the association between diseases and tissues, tissues are

matched to corresponding epigenomes.

3. Results

3.1 Data summary

The PheGenI raw data contains 84114 rows and 17 columns of data. It includes 1005

unique traits and each trait contains a minimum of 1 SNP to a maximum of 11423 SNPs.

NIH Roadmap data contains 127 data sets for all 127 epigenomes, each of them

containing 4 columns.

After applying selection criteria in PheGenI, diseases that contain more than 100 SNPs

were filtered out. A total of 186 unique diseases were identified, resulting in a data set of

18,600 rows of data. To investigate the genetic basis of each disease, the top 100 SNPs

for each disease were extracted based on the descending p-value. Chromatin state

information was retrieved for each SNP across 21 different chromatin states and 127

epigenomes, resulting in a total of 2,100 chromatin state data points for each disease in

one epigenome. Because overlapped chromatin states were deleted, some of the diseases

have less than 2100 chromatin state data.
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To assess the significance of the associations between each chromatin state and disease

combination, a binomial test was employed to calculate the respective p-values.

Subsequently, the p-values were transformed into negative log p-values to facilitate

visualization. Heatmaps were then generated based on the negative log p-values, allowing

for easy and informative exploration of the relationships between chromatin states and

diseases.

3.2 Heatmaps and Tables

To ensure consistency with the Roadmap Epigenomics Consortium, we adopted the same

criteria for selecting diseases to include in our analysis. The diseases analyzed in our

study are presented in Table 2 and are consistent with those examined by the Roadmap

Epigenomics Consortium. Given the crucial role of promoters and enhancers in gene

regulation, our analysis focused specifically on the 2_TssAFlnk, 6_EnhG, and 7_Enh

chromatin states as representative features (Table 3, 4, 5, and Figures 1, 2, 3). We then

visualized the associations between human traits and tissue-specific epigenomes by

generating heatmaps for each of the three chromatin states.

Table 2. Traits Summary
Traits

1 Height
2 Crohn's disease
3 Chronic lymphocytic leukaemia
4 Type 1 diabetes
5 Type 1 diabetes autoantibodies
6 Platelet counts
7 Self-reported allergy
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8 Graves' disease
9 Celiac disease + rheum. arthritis
10 Rheumatoid arthritis
11 Multiple sclerosis
12 Systemic lupus erythematosus
13 Primary biliary cirrhosis
14 Red blood cell traits
15 Mean platelet volume
16 HDL cholesterol
17 Multiple myeloma
18 Adiponectin levels
19 Attention deficit hyperact. disorder
20 PR interval
21 Blood pressure
22 Aortic root size
23 Pulmonary function
24 Liver enzyme levels (g-glut tx)
25 Urate levels
26 Adv. resp. to chemth. (neutr/leuc)
27 Breast cancer
28 Type 2 diabetes
29 Insulin-Like Growth Factor Binding Protein 1
30 Fasting glucose-related traits
31 LDL cholesterol
32 Cholesterol, total
33 Lipid metabolism phenotypes
34 Metabolite levels
35 Mean corpuscular volume
36 Inflammatory bowel disease
37 Ulcerative colitis
38 Alzheimer's disease (late onset)
39 Pre-eclampsia

For several immune-related diseases, including leukemia lymphocytic chronic-BCell,

Type 1 diabetes mellitus, inflammatory bowel diseases, arthritis, rheumatoid and multiple

sclerosis, we observed significant enrichment in blood and T-cell-related tissues.
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Crohn's Disease-related genetic variants showed enrichment in digestive-associated

tissues, such as colonic mucosa, rectal mucosa, small intestine, and esophagus, which

appeared in both promoters and enhancers. We also observed enrichment in smooth

muscle tissues that are related to digestion, such as rectal smooth muscle and stomach

smooth muscle. Unexpectedly, some epithelial tissues, including foreskin keratinocytes

and breast myoepithelial cells, were also enriched.

Celiac Disease-related genetic variants were enriched in various tissues, including dermal

fibroblasts, colon smooth muscle, female skeletal muscle, HSMM skeletal muscle

myoblasts, IMR90 fetal lung fibroblasts, and NHLF lung fibroblasts, and foreskin

keratinocytes.

Lupus Erythematosus, Systemic-related genetic variants were enriched in

digestive-related tissues, such as colonic mucosa, as well as muscle-related tissues, such

as muscle satellite cells, HSMM skeletal muscle myoblasts, and bone marrow-derived

mesenchymal stem cells. Additionally, we observed enrichment in male fetal brain

tissues.
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Table 3. Enrichment of disease-associated genetic variants in tissue-specific epigenomes
in chromatin state 2_TssAFlnk

Disease Epigenome
Number

of
Count

Total
Number

Genome-Wide
Percentage

Negative
Log

P-value

Leukemia,
Lymphocytic, Chronic,
B-Cell

E124
BLD.CD14.MONO

87 1976 0.016 36.707

Crohn Disease E075 GI.CLN.MUC 39 2099 0.004 32.171
Inflammatory Bowel
Diseases

E124
BLD.CD14.MONO

84 2051 0.016 31.555

Celiac Disease E116 BLD.GM12878 74 2100 0.013 31.091
Leukemia,
Lymphocytic, Chronic,
B-Cell

E115
BLD.DND41.CNCR

54 1976 0.008 30.709

Lupus Erythematosus,
Systemic

E075 GI.CLN.MUC 37 2099 0.004 29.075

Crohn Disease
E102
GI.RECT.MUC.31

47 2099 0.006 28.932

Crohn Disease
E118
LIV.HEPG2.CNCR

58 2099 0.009 28.924

Leukemia,
Lymphocytic, Chronic,
B-Cell

E116 BLD.GM12878 69 1976 0.013 28.720

Crohn Disease
E101
GI.RECT.MUC.29

47 2099 0.006 28.692

Inflammatory Bowel
Diseases

E091 PLCNT.FET 34 2051 0.004 28.090

Crohn Disease
E103
GI.RECT.SM.MUS

39 2099 0.005 27.810

Lupus Erythematosus,
Systemic

E052 MUS.SAT 55 2099 0.009 27.189

Blood Glucose
E110
GI.STMC.MUC

26 2098 0.002 26.560

Lupus Erythematosus,
Systemic

E026
STRM.MRW.MSC

54 2099 0.008 26.534

Blood Glucose E098 PANC 31 2098 0.003 26.180

Inflammatory Bowel
Diseases

E117
CRVX.HELAS3.CN
CR

54 2051 0.009 26.103

Leukemia, E117 52 1976 0.009 25.194
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Lymphocytic, Chronic,
B-Cell

CRVX.HELAS3.CN
CR

Multiple Sclerosis
E124
BLD.CD14.MONO

76 2004 0.016 25.114

Crohn Disease E111 GI.STMC.MUS 57 2099 0.010 24.976

Table 4. Enrichment of disease-associated genetic variants in tissue-specific epigenomes
in chromatin state 6_EnhG

Disease Epigenome
Number

of
Count

Total
Number

Genome-Wide
Percentage

Negative
Log

P-value

Arthritis, Rheumatoid E046 BLD.CD56.PC 87 2100 0.006 100.340

Diabetes Mellitus, Type
1

E042
BLD.CD4.CD25M.IL
17P.PL.TPC

69 2043 0.004 93.930

Adiponectin
E032
BLD.CD19.PPC

79 2013 0.007 78.219

Crohn Disease E085 GI.S.INT.FET 86 2099 0.009 70.147
Alzheimer Disease E108 MUS.SKLT.F 63 2007 0.005 67.034
Leukemia,
Lymphocytic, Chronic,
B-Cell

E032
BLD.CD19.PPC

71 1976 0.007 65.258

Arthritis, Rheumatoid E030 BLD.CD15.PC 50 2100 0.003 63.421

Cholesterol, HDL
E102
GI.RECT.MUC.31

42 2073 0.002 58.725

Arthritis, Rheumatoid
E044
BLD.CD4.CD25.CD
127M.TREGPC

56 2100 0.004 57.449

Cholesterol, HDL
E059
SKIN.PEN.FRSK.M
EL.01

54 2073 0.004 53.720

Breast Neoplasms
E061
SKIN.PEN.FRSK.M
EL.03

65 1970 0.007 53.252

Crohn Disease E109 GI.S.INT 19 2099 0.000 52.474

Crohn Disease
E058
SKIN.PEN.FRSK.KE
R.03

65 2099 0.007 50.424

Arthritis, Rheumatoid E034 BLD.CD3.PPC 68 2100 0.008 50.381
Blood Pressure E043 59 2012 0.006 48.812
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BLD.CD4.CD25M.T
PC

Blood Pressure
E041
BLD.CD4.CD25M.IL
17M.PL.TPC

62 2012 0.007 48.395

Lupus Erythematosus,
Systemic

E081 BRN.FET.M 19 2099 0.000 45.993

Cholesterol, HDL E105 HRT.VNT.R 46 2073 0.004 45.845
Blood Pressure E038 BLD.CD4.NPC 38 2012 0.003 45.649
Adiponectin E034 BLD.CD3.PPC 63 2013 0.008 45.161

Table 5. Enrichment of disease-associated genetic variants in tissue-specific epigenomes
in chromatin state 7_Enh

Disease Epigenome
Number

of
Count

Total
Number

Genome-Wide
Percentage

Negative
Log

P-value

Diabetes Mellitus, Type
1

E128 LNG.NHLF 175 2043 0.026 93.409

Crohn Disease E079 GI.ESO 128 2099 0.017 79.064

Crohn Disease
E057
SKIN.PEN.FRSK.K
ER.02

187 2099 0.033 75.389

Inflammatory Bowel
Diseases

E051
BLD.MOB.CD34.PC
.M

186 2051 0.034 72.346

Celiac Disease
E126
SKIN.NHDFAD

213 2100 0.041 71.725

Celiac Disease
E076
GI.CLN.SM.MUS

180 2100 0.032 71.686

Celiac Disease E120 MUS.HSMM 166 2100 0.028 69.780

Multiple Sclerosis
E039
BLD.CD4.CD25M.C
D45RA.NPC

153 2004 0.028 63.756

Celiac Disease E108 MUS.SKLT.F 182 2100 0.035 63.412
Diabetes Mellitus, Type
1

E126
SKIN.NHDFAD

198 2043 0.041 61.184

Celiac Disease E017 LNG.IMR90 175 2100 0.033 60.655
Leukemia,
Lymphocytic, Chronic,

E032
BLD.CD19.PPC

156 1976 0.030 59.653
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B-Cell
Crohn Disease E027 BRST.MYO 204 2099 0.043 59.422
Inflammatory Bowel
Diseases

E036 BLD.CD34.CC 164 2051 0.031 59.381

Celiac Disease E128 LNG.NHLF 148 2100 0.026 59.076

Colitis, Ulcerative
E032
BLD.CD19.PPC

161 2090 0.030 58.902

Celiac Disease
E073
BRN.DL.PRFRNTL.
CRTX

125 2100 0.020 58.501

Colitis, Ulcerative
E031
BLD.CD19.CPC

134 2090 0.023 58.016

Celiac Disease
E057
SKIN.PEN.FRSK.K
ER.02

168 2100 0.033 56.175

Lupus Erythematosus,
Systemic

E120 MUS.HSMM 152 2099 0.028 55.265

Figure 1.Heatmap of diseases and tissues for chromatin state 2_TssAFlnk
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Figure 2. Heatmap of diseases and tissues for chromatin state 6_EnhG

Figure 3. Heatmap of diseases and tissues for chromatin state 7_Enh
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3.3 Data validation

The results have also been approved by precious studies. For example, it has been

reported by the previous study that Monocytes-CD14+ RO01746 has the most

enrichment for SNPs in inflammatory bowel disease. In similarity, the same enrichment

also showed up in our study. Multiple sclerosis, which is a potentially disabling disease of

the brain and spinal cord (central nervous system). It has the largest negative log p-value

in blood and T-cell-related tissues. I found out that the results matched the results in the

NIH Roadmap Consortia paper. Type 1 diabetes-associated genetic variants were

enriched in primary T cell helper 17 cells PMA-I stimulated that can also be verified by

prior studies.

4. Discussion

Our study involved performing GWAS analysis using PheGenI and Roadmap data, which

utilized chromatin states as a means of connecting SNPs with epigenomes and ultimately

bridging the gap between genotype and phenotype. By analyzing a large input data set,

we were able to increase the statistical power of our analysis, and our findings have been

validated by numerous prior studies. Our research has the potential to aid in the

identification of disease-associated SNPs that are enriched in tissue-specific epigenomes,

and we aim to developed a user-friendly visualization tool to facilitate data interpretation.
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This resource can be easily accessed by inputting the name of a specific disease or tissue,

allowing researchers to track tissue names in relation to disease and vice versa. The

information we have generated can serve as a valuable starting point for future studies

aimed at elucidating the molecular mechanisms underlying disease and developing

targeted therapies.

Although our results revealed significant enrichment values, we also observed false

positives. These errors suggests the possibility of errors during chromatin state retrieval.

Due to the proximity of adjacent chromatin states, enrichment may have been mistakenly

inferred. Future studies should employ more refined statistical approaches to address

these false positives.
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