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Abstract 
Epigenetics is the study of mitotically heritable changes in gene expression which do not 

cause changes to the underlying DNA sequence. Epigenetic mechanisms, including DNA 

methylation at cytosine and guanine nucleotide pair (CpG) sites, have been shown to be 

influenced by intrinsic (such as obesity and inflammation) and extrinsic (such as diet, physical 

activity and smoking) exposures serving as a link between an individual’s DNA and their 

environment. Examining DNA methylation in relation to modifiable-lifestyle risk factors may 

provide relevant information in several respects. As a molecular biomarker, DNA methylation 

could be useful in improving the detection of difficult to measure exposures or in the early 

detection of diseases. Additionally, as DNA methylation influences gene expression levels, it is 

important to examine the functional implications of these associations as they may have 

downstream effects on cardiometabolic health.  

This dissertation project examined the association between differential DNA methylation 

with several modifiable-lifestyle exposures including diet quality, metabolic health and obesity. 

In Aim 1, we evaluated the association between diet quality as measured by the Alternative 

Healthy Eating Index-2010 (AHEI-2010) and the methylome using cross-sectional data from the 

Women’s Health Initiative (WHI) and the TwinsUK cohort. We discovered that diet quality was 

associated with widespread differential methylation patterns, with several of the replicated sites 

having been previously associated with obesity, inflammation, and dysglycemia. In Aim 2, we 

evaluated the relationship between body mass index (BMI) and differential DNA methylation in 

17,034 participants from nine population based cohort studies. We discovered 1,238 CpG sites 

associated with BMI. Moreover, we found a unique methylomic profile of adiposity in individuals 

of African descent. In Aim 3, we examined whether BMI-associated methylation is influenced by 

metabolic health status. We found four CpG sites which may have a differential relationship with 

BMI in metabolically healthy vs. unhealthy individuals. These sites are located in several genes 
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related to NF-kappa-B signaling suggesting that DNA methylation may differentially regulate 

obesity-associated inflammation by metabolic health status. Ultimately, this body of work will 

help to further our understanding of the molecular dysregulation caused by poor diet, metabolic 

abnormalities and obesity. 
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CHAPTER 1 

Introduction 

Examining the molecular underpinnings associated with diseases can provide insight into 

pathogenicity and can serve as early biomarkers. Epigenetics represents one critical molecular 

mechanism contributing to gene expression and serves as a link between an individual’s DNA 

and their environment. Epigenetics is the study of mitotically heritable changes in gene expression 

which do not change the underlying DNA sequence (1). One epigenetic mechanisms is DNA 

methylation, which occurs when a methyl group attaches to the 5’ carbon of a cytosine, usually at 

a cytosine-phosphate-guanine nucleotide pair (CpG) site. DNA methylation has become an 

important marker to examine due to its dynamic nature. DNA methylation has been shown to be 

directly influenced by lifestyle exposures with consequential effects on cardiometabolic health. 

For example, smoking is one of the most widely characterized mechanisms to cause widespread 

changes in methylation, (2) which ultimately have been shown to causally influence chronic 

disease risk, including lung dysfunction (3) and inflammation (4). Like smoking, several lifestyle 

exposures have been linked to chronic diseases, including physical activity, diet, weight gain, 

environmental toxicants and chemicals. However, it is unclear whether DNA methylation may be 

mediating the relationship between these exposures and their effects on cardiometabolic disease. 

This dissertation examines three of these exposures, diet, metabolic health and obesity, and 

seeks to substantiate whether the methylome is both associated with these exposures and 

influencing the downstream risk of cardiometabolic diseases.  

Diet has been shown to substantially contribute to chronic disease risk (5-7). However, 

diet is complex with protective components (diets high in fruits, vegetables, legumes, whole 

grains, omega-3 fatty acids) and harmful components (diets high in added sugars, trans and 

saturated fats, sodium) (8). While several studies have evaluated the individual effect of nutrients 

on the methylome, including fiber (9) and dietary fats (10-12), few studies have examined how 
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overall diet quality contributes to differential DNA methylation. In chapter 4, we evaluated the 

association between diet quality as measured by the Alternative Healthy Eating Index-2010 

(AHEI-2010) and the methylome using cross-sectional data from the Women’s Health 

Initiative (WHI) and the TwinsUK cohort. We found widespread differential DNA methylation 

associated with diet with several sites replicating in an external population. Several of the diet-

related sites were also found to have previously associated with obesity. Since these sites were 

associated with diet when adjusted for BMI, this suggests that previous associations with BMI 

may represent a true relationship with diet in other populations, as diet quality tends to be 

upstream of changes in adiposity (13).   

Poor diet quality goes hand in hand with obesity in causing non-communicable disease. 

In the past thirty years, the number of deaths attributable to obesity has more than doubled (14). 

Obesity has been found to accompany a host of underlying molecular and metabolic perturbations 

including impaired cell signaling leading to perturbations in adipokines, and increased 

inflammatory factors including interleukin (IL)-6, IL-10, interferon-γ, and tumor necrosis factor-α 

(TNF- α), which lends itself to hyperlipidemia and hyperglycemia (15). Ultimately, these 

perturbations can lead to the early onset of chronic disease.  

Obesity has been shown to associate with widespread perturbations in DNA methylation 

(16-22). However, replication among these studies has been poor. Additionally, there have been 

significant differences among sites identified in the blood versus other tissues. Another important 

analytical element limiting our understanding of epigenetics is the large sample sizes required to 

conduct these analyses. Because of the significant number of tests, it is necessary to adjust for 

multiple comparisons using various analytic strategies including false discovery rate or 

Bonferroni-adjustment. Large data sets are required to maintain sufficient power to detect 

significant effects. DNA methylation in particular is prone to small effect sizes (23), with an 

average 2-10% difference between exposed and unexposed groups. With cost constraints of 

analyzing DNA methylation data, EWAS studies have lagged behind other genomic research 
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studies, such as genome-wide association studies which often include a minimum of 100K 

participants. Novel sites could be identified with large enough sample size. In chapter 5, we 

explored the association between DNA methylation and BMI with the largest EWAS meta-

analysis including 17,034 participants from 9 cohorts. With summary data from several large 

cohort studies, we are also able to disentangle race-specific methylation patterns and how they 

can contribute to differential outcomes. With the identification of novel CpG sites, we examined 

whether DNA methylation can be used to predict BMI and BMI-phenotypes, such as metabolically 

healthy vs. unhealthy obesity.  

BMI-phenotypes have come under considerable scrutiny in recent years due to the 

complex underlying pathophysiology and the risks associated with obesity. While obesity is meant 

to represent the excess of adiposity to the degree that health is adversely affected (24), it is most 

commonly measured by BMI (weight [kg]/height [m2]) ≥ 30, which does not distinguish between 

fat mass and muscle mass. The misalignment between the disease and the diagnosis becomes 

apparent when considering the pathophysiological perturbations associated with the excess of 

adiposity which ultimately leads to the adverse health associated with obesity, including increased 

inflammation, hyperlipidemia, and insulin resistance, as described above. In states where obesity 

exists in isolation of these secondary health effects (named metabolically healthy obesity), it is 

unclear whether obesity poses the risk of harm to the individual.  

Several studies have examined this unique phenotype, metabolically healthy obesity, to 

distinguish whether there is a differential risk of cardiovascular disease. Compared their healthy 

normal weight individuals, metabolically healthy obesity has been shown to associate with a null 

to moderately increased risk of cardiovascular disease. Whereas compared to unhealthy obese 

individuals, metabolically healthy obesity has a significantly lower risk (25). No studies have 

integrated these phenotypes to examine how BMI-associated methylation varies by metabolic 

health status. Particularly since DNA methylation has been shown to play a mediating role with 

obesity and cardiovascular outcomes (26), evaluating the epigenome may provide insight into 



15 
 

pathways contributing to the differences in outcomes. In chapter 6, we examined whether 

metabolic health status differentially influences the relationship between DNA methylation 

and BMI. Using two study populations, we used epigenome-wide association study of the 

interaction between metabolic health Z-score and BMI. In the significantly replicated sites, we 

examined whether DNA methylation predicted incident coronary heart disease.  

The specific aims are as follows:  

Aim 1 (Chapter 4): Examine the association between diet quality and DNA methylation using the 

Alternative Healthy Eating Index-2010 in two cohorts. 

Aim 2 (Chapter 5): Conduct the largest epigenome-wide association study of BMI in 17,034 

participants from 9 cohorts and evaluate the relationship between BMI-associated methylation 

and metabolic risk factors. 

Aim 3 (Chapter 6): Examine whether metabolically healthy obesity is associated with 

differential DNA methylation compared to metabolically unhealthy obesity. 

These findings have identified molecular biomarkers of diet and BMI, which could be 

useful in future studies when these phenotype data are not available. Moreover, these CpG sites 

may be indicative of direct pathways influenced by these exposures. For instance, we found 

several BMI and metabolic health-associated sites in Chapter 6 which were associated with 

incident myocardial infarction. This work adds to a growing body of evidence indicating the 

important role that epigenetics plays in disease pathophysiology.  

:  
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CHAPTER 2 

Background: Epigenetics in the study of lifestyle exposures 

Parts of this chapter have been adapted and is under review. 

 Whitney L Do, Jazib Gohar, Lauren E. McCullough, Lisa D. Travis, Karla I Galaviz, Karen N. 

Conneely*, K.M. Venkat Narayan*. “Examining the association between adiposity and DNA 

methylation: a systematic review and meta-analysis”. Under Review.  

 

With increasing high-throughput technological advances, the ability to examine the 

molecular underpinnings associated with exposures and diseases have substantially increased. 

Epigenetics represents one molecular mechanism which plays a critical role in gene expression 

and serves as a link to both DNA and the environment. Epigenetic is the study of mitotically 

heritable changes in gene expression which do not change the underlying DNA sequence. There 

are three primary epigenetic modifications: DNA methylation, histone modification and microRNA, 

with DNA methylation the most widely characterized. DNA methylation occurs primarily at 

cytosine-guanine nucleotide (CpG) pair sites with approximately 60-80% of CpG’s in the genome 

methylated of the roughly 28 million CpGs in the genome, though this varies depending on 

physiological state and tissue type (1, 2). Functionally, DNA methylation plays an important role 

in gene expression. In CpG islands, methylation has been shown decrease binding of 

transcription factors, thus impeding transcription. DNA methylation may also contribute to 

heterochromatin formation by recruiting chromatin remodelers and modifiers. Gene silencing 

through DNA methylation is most critical in genes on the inactive X chromosome, imprinted genes 

and germline-specific genes. Additionally, DNA methylation is enriched in transposable elements 

(3). Within gene bodies, it is not entirely clear how DNA methylation functions, as they have been 

associated with both active genes (3) and downregulation of gene expression (4). Given all of 

these roles, DNA methylation has been studied with several goals in mind. It can be used as a 
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prognostic tool or predictor of a phenotypic state. DNA methylation may provide insight into 

relevant molecular pathways that are dysregulated by DNA methylation influencing gene 

expression. Lastly, DNA methylation may be used to predict response to a given intervention.  

DNA methylation and diet and obesity have been examined in several ways. Nutrition and 

DNA methylation are linked as nutritional factors are critical coenzymes contributing to the 

generation of DNA methyltransferases (DNMT). This feature has inspired a myriad of studies 

examining individual nutritional factors relevant to one-carbon metabolism and DNA methylation. 

More recently, the role of diet and dietary factors in regulating metabolic health has motivated 

several epigenome-wide association studies (EWAS). Relatedly, in response to poor dietary 

practices and physical inactivity leading to rising rates of obesity, DNA methylation and adiposity 

have been examined in several contexts. Within this chapter, the relationship between DNA 

methylation and diet and obesity are described 

2.1 Diet and DNA methylation 

Nutrients and DNA methylation 

The study of nutritional effects on the epigenome have largely focused on one-carbon 

metabolism nutrients as S-adenosylmethionine (SAM) is the primary methyl donor in DNA 

methylation. Several nutrients are necessary for one-carbon metabolism including folate, vitamin 

B12, choline, and vitamin B2. The hypothesis that higher dietary consumption of one-carbon 

metabolism nutrients would associate with differential DNA methylation is biologically sound as 

the one-carbon metabolism pathway is the generator of methyl groups for all biological molecules 

(5). However, in practice, the evidence is inconsistent. When examining global or gene specific 

methylation, several studies have demonstrated a relationship between dietary consumption of 

these nutrients and changes in DNA methylation. A systematic review identified a significant effect 

of these nutrients on global and gene specific methylation (6). However, this review did not identify 

significant changes at CpG level methylation. The evidence in humans using genome-wide arrays 
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to identify significant sites has been less conclusive. A large scale EWAS study in 5841 

participants examining folate and vitamin B12 found six sites associated with folate and 29 sites 

associated with vitamin B12 (7). In another EWAS of 5186 participants from the Melbourne 

Collaborative Cohort Study (MCCS), all one-carbon metabolism nutrients were examined. No 

significant sites were identified at p < 1 x 10-7. They concluded that that these nutrients have little 

association with DNA methylation (8). Overall, it is clear that methylation may be affected by these 

nutrients. However, identifying the specific sites and genes influenced by methylation have not 

been determined.  

Among other nutrients, two studies have examined the effect of fat intake longitudinally on 

changes in DNA methylation. Perfilyev et al. (2017) examined the impact of a randomized-

controlled trial of high saturated fat and polyunsaturated fat intake on methylation of adipose 

tissue. Initially they examined the change in mean methylation of CpG sites within the annotated 

gene following the dietary intervention. They found 1444 genes changed. Subsequently among 

these genes, they examined individuals CpG site methylation finding 2961 sites significantly 

influenced (9). Jacobsen et al. (2012) examined the effects of high fat overfeeding on skeletal 

muscle DNA methylation. While they found some changes in broad methylation response 

(including global methylation changes), no individual changes in CpG methylation were identified 

(10). Both of these studies were likely underpowered to detect individual CpG site methylation 

changes following the dietary intervention at a genome-wide significance threshold, though a 

strength of these studies includes examining change in methylation following an intervention. 

These studies provide initial evidence that diet is likely to induce changes on the DNA methylome, 

even in short periods.  

Two studies have examined the cross sectional relationship between dietary factors and 

DNA methylation. An EWAS of dietary fat quality was conducted in preadolescents. A number of 

sites and pathways were identified to be associated with dietary fat quality independent of BMI, 
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particularly in sites that appear to regulate energy metabolism and satiety (11). Another study 

conducted an EWAS of dietary fiber in African American adolescents, finding three differentially 

methylated sites independent of obesity in genes associated with adiposity and inflammation (12). 

Diet and DNA methylation 

While nutrients are relevant metrics of diet, nutrients are consumed as a component of the 

entire diet. Diet is defined by the collection of nutrients and how they influence health overall. Diet 

quality is a metric used to score the diet based on various dietary factors and nutrients that have 

been associated with favorable and unfavorable health outcomes. While indices vary in their 

ranking, the majority have been able to quantify risks of cardiovascular disease, cancer and 

mortality (13). Since one of the goals of epigenetic studies is to identify whether methylation 

changes may be on the pathway mediating changes in exposures and health outcomes, diet 

quality may then be a more informative metric to examine given its significant relationship with 

health outcomes. 

Few studies have examined methylation and diet in the context of diet quality causal of 

non-communicable diseases in later life. Ma et al. (2020) examined two diet scores and how they 

associated with differential DNA methylation in several large population based cohorts. They 

examined diet quality using the Alternative Healthy Eating Index -2010 (AHEI-2010) and the 

Mediterranean Diet Score (MDS). They found 30 sites associated with one or both scores. 

Furthermore, of these 30 sites, 10 were moderately predictive of all-cause mortality. Six sites 

were identified to be causally associated with several cardiovascular disease risk factors through 

Mendelian Randomization (14).  

Another study examined the change in DNA methylation following a randomized-

controlled trial of the Mediterranean diet. They were underpowered to examine changes in 

individual CpG site methylation.  Nevertheless, they examined specific genes based on change 



22 
 

in mean gene methylation and found some inflammatory genes to be associated with adherence 

to the diet (15). Another study examining a physical activity and dietary intervention compared 

the control group to the intervention group. Using a region based examination, they found 154 

and 298 differentially methylated regions between intervention and control at 3 months and 9 

months post-intervention. These regions were associated with cell cycle regulation and 

carcinogenesis (16).  

Overall, these studies suggest that diet is likely a modifier of DNA methylation. However, 

none of the above studies have identified overlapping CpG sites. With many conducted in small 

sample sizes and even fewer replicating their findings in external populations, there is a need for 

further investigations of how diet interacts with the DNA methylome.   

2.2 Obesity and DNA methylation 

Obesity rates continue to rise worldwide with estimated global prevalence of 2.1 billion in 

2013 (17). Obesity is the excess accumulation of body fat leading to a host of 

pathophysiological changes, including chronic low-grade inflammation, impaired sex hormone 

balance, hypertriglyceridemia and hyperglycemia (18). Ultimately, these metabolic disturbances 

contribute to the early onset of type 2 diabetes, cardiovascular disease, kidney disease, 

osteoarthritis, and several forms of cancer (19). Understanding the molecular perturbations 

associated with obesity can help to identify potential markers of disease severity and may 

elucidate mechanisms which contribute to obesity-associated diseases.   

Increasing evidence has demonstrated significant molecular variances associated with 

obesity (20, 21). One of these perturbations includes differential epigenomic signatures, among 

which DNA methylation is the best characterized. DNAm is the addition of a methyl group on the 

cytosine-guanine nucleotide pair (CpG) site and can influence gene expression leading to 

potential downstream disease outcomes (2). Obesity has been shown to associate with 

widespread changes on the methylome through candidate gene (22, 23) and genome-wide 
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approaches (24-28), with varying replication across populations and studies. Epigenetic markers 

associated with obesity could provide utility as both biomarkers of disease severity, which may 

be useful for targeting populations for intervention, or as novel therapeutic targets potentially 

identifying epigenetic markers which may protect against obesity-associated chronic diseases.  

Several review articles have elaborated on the association between DNAm and obesity 

(29-33). However, no studies have conducted a systematic review using a recommended 

framework (34-37), such as COCHRANE (37) or Conducting Systematic Reviews and Meta-

Analyses of Observational Studies of Etiology (COSMOS-E) (36). As systematic reviews often 

represent the gold-standard of evidence; it is critical to utilize comprehensive, systematic 

methods to minimize bias and allow for replication of the findings. As epigenetic mechanisms 

represent important biomarkers and therapeutic targets of adiposity and given the limited 

overlap of findings in previous studies and the lack of previous standardized review, this study 

sought to systematically review the literature relating genome-wide DNAm to adult adiposity 

descriptively and using meta-analytic methods.  

Methods 

Data Sources and Searches 

The methodology for this systematic review was prospectively registered at PROSPERO 

(ID: CRD42020162224). We followed the Conducting Systematic Reviews and Meta-Analyses 

of Observational Studies of Etiology (COSMOS-E) guides to conduct and report this systematic 

review (36). To find relevant studies, we systematically searched PubMed, Embase, Web of 

Science and Scopus databases for articles published until January 2020 in any language. 

English and MeSH terms related to adiposity and DNA methylation and the full search string is 

listed below.   
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(CPG OR CPGs OR cytosine phosphate guanine OR cytosine phosphate guanines OR 

epigenome OR epigenomic OR epigenomics OR epigenetic OR epigenetics OR EWAS OR 

((DNA OR deoxyribonucleic acid OR ds-DNA) AND (methylate OR methylates OR methylated 

OR methylating OR methylation OR methylations))) AND (body mass index OR body mass 

indexes OR quetelet index OR quetelet indexes OR quetelet’s index OR quetelet’s indexes OR 

quetelets index OR quetelets indexes OR BMI OR BMIs OR obesity OR obesities OR obese OR 

waist circumference OR waist circumferences OR weight to height OR weight-to-height OR 

WTHR OR adipose OR adiposity OR adiposities) 

Study selection 

Study selection is defined and depicted in Table 2.1 using the PECO guidelines 

(Population, Exposure, Control and Outcome) and as follows. This review included studies of 

non-pregnant adults aged 18-75 that examined genome-wide DNA methylation and metrics of 

adiposity. Adiposity was measured by body mass index (BMI, kg/m2), body fat percentage, 

waist-to-height ratio, waist-to-hip ratio, android-gynoid fat ratio, waist circumference 

(centimeters), and weight gain/loss in cross sectional or longitudinal studies. Studies were 

considered genome-wide if they measured DNA methylation via a microarray (Illumina 27K, 

450K or EPIC array) or bisulfite sequencing (including reduced representation bisulfite 

sequencing [RRBS]). Exclusion criteria included studies in animals, analyses of the epigenetic 

clock or epigenetic aging (38), studies examining global methylation (utilizing high-performance 

liquid chromatography [HPCL] tandem mass spectrometry, luminometric methylation assay 

[LUMA] or pyrosequencing of Alu/LINE1 repeat elements), candidate gene studies and studies 

examining only secondary metabolic exposures from obesity such as metabolic syndrome, type 

2 diabetes or cardiovascular disease. Studies that did not conduct genome-wide associations 

(e.g. studies replicating previous associations) were also excluded even if they used genome-

wide arrays. We additionally excluded conference abstracts due to the preliminary nature of 
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these findings, and dissertations due to the lack of external peer review. Two authors 

independently screened literature (WD and JG). Any inconsistencies were resolved by group 

discussion (WD, JG, and KC). 

Descriptive Review 

We conducted a descriptive review of the findings by extracting information on study 

design, study population, methylation array, statistical analyses, and main findings using a 

standardized form developed for this study. As the direction of effect between DNA methylation 

and adiposity is unknown, cross sectional studies have statistically examined DNA methylation 

as both an exposure and an outcome. In the systematic review, we have reported whether DNA 

methylation was the exposure or outcome. Among studies using similar design (same tissue 

and/or same exposure), we reported overlap in the significant CpG sites that were found at a 

genome-wide level reported in more than three studies, a threshold used in similar systematic 

reviews of ‘omic’ data (39). We also provided the direction of effect in each study when 

available. Significance was defined within the individual studies. We did not include sites that 

were identified as significant in post-hoc targeted analyses.  

Assessment of Bias and Study Design Issues 

All the studies reviewed were examined for bias or issues with study design by two 

independent reviewers (WD and JG) according to the Joanna Briggs Checklist for cross 

sectional studies (40) or cohort studies (41) depending on the design of the study. Criteria 

examined included: 1. Sample: Were the criteria for inclusion in the sample clearly defined? 2. 

Exposure: Were objective, standard criteria used for measurement of the condition? 3. 

Outcome: Was DNA methylation measured in a valid and reliable way? 4. Adjustment: Were 

strategies to deal with confounding factors stated? Were the confounding variables clearly 

defined in terms of their measurement? 5. Statistical Analysis: Was there appropriate statistical 
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analysis? Did they adjust for multiple comparisons? Were there procedures to correct for 

technical variation? For each of the five categories, we coded the studies as “Low”, “Unclear” or 

“High”. If there was insufficient information available within the study to determine whether the 

findings may be prone to bias, the category was coded as “Unclear”. Comments were provided 

based on the determination if the reviewers reported “Unclear” or “High”.  

Statistical Analysis 

Meta-analysis was conducted in studies that examined the association with BMI and 

waist circumference and blood DNA methylation measured by arrays. Meta-analytic techniques 

were not employed for other tissue types, methylation measurement types, or definitions of 

adiposity due to study heterogeneity. The minimum threshold for conducting a meta-analysis 

with a CpG site was significance found in three or more studies. If the studies included stratified 

summary statistics from multiple cohorts, stratified statistics were exported and analyzed for 

meta-analysis within the CpG sites identified in three or more studies. We used the weighted 

sum of Z-score meta-analysis to analyze all studies. For studies with equivalent exposure-

outcome definition, we used inverse-variance random effect meta-analysis. In sub-group 

analyses using inverse-variance random-effect meta-analysis, three studies used the M-values 

instead of the β-value (Mendelson et al. [Framingham Heart Study 1 & 2], S. Li et al., and 

Sayols-Baixeras et al.) for DNA methylation analysis. These studies were excluded as effect 

sizes cannot be compared across methods.   

As inclusion in the meta-analysis was determined by significance of the CpG site and 

null results are rarely reported in EWAS studies, we did not examine publication bias. In the 

meta-analysis, between-study heterogeneity was examined using I2 statistics (low heterogeneity 

< 25%, moderate heterogeneity 25-70%, high heterogeneity > 70%) and Cochran’s Q test 

(significance defined by p < 0.05) (42).  Additionally, we conducted outlier exclusion tests and 

examined the change in the I2 and the Cochran’s Q test when outliers were excluded from the 
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meta-analysis. We tested for sources of heterogeneity (sex, race/ethnicity, and smoking-

adjustment) using subgroup analyses (smoking) or meta-regression (sex percentage, 

race/ethnicity: European ancestry, African ancestry, or mixed race). We only performed 

subgroup analyses on CpG sites if more than 7 studies were available to be analyzed and more 

than three studies were included per subgroup.  

Results 

We identified 13,310 titles during the initial systematic search. After duplicate removal 

(n=2,762), 10,548 titles and abstracts were screened, with 10,414 removed. Of these, 134 were 

evaluated during the full text screening with 46 studies deemed eligible for inclusion (Figure 

2.1).  

Summary of Results 

The full summary of results is included in Table 2.2. The majority of studies examined 

continuous BMI (48%, 22/46) as the exposure or outcome in cross sectional EWAS. Another 

subset of studies (46%, 21/46) compared dichotomized or categorical adiposity variables (for 

example obese vs non-obese). Among other adiposity measures, waist circumference was 

examined in 17% of studies (8/46). A smaller number of studies examined waist to hip ratio (4%, 

2/46), waist to height ratio (2%, 1/46), or fat percentage (4%, 2/46). Nine percent of studies 

dichotomized individuals based on response to an intervention (9%, 4/46). Most studies 

assayed DNA methylation using microarrays including 27K (9%, 4/46), 450K (76%, 35/46), or 

the EPIC array (2%, 1/46), while other studies used RRBS (11%, 5/46). The majority of studies 

used cohort data from the United States (30%, 14/46) followed by Spain (21%, 10/46), Sweden 

(9%, 4/46) and the UK (7%, 3/46). Racial and ethnic diversity was limited with the majority of 

studies conducted exclusively in Caucasian populations of European descent (43%, 20/45) with 

an additional 33% not mentioning the race/ethnicity of the cohort though it can be inferred that 

the sample is of European descent (15/46). Only 26% (12/46) were in ethnically diverse 
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populations, among which 11% (5/46) included African Americans or individuals of African 

descent, and 2% (1/46) were conducted in Middle Eastern, Chinese, and Japanese populations, 

respectively.  

Assessment of Bias and Study Design Issues 

Several sources of heterogeneity exist in the design and analysis of the studies. Since 

the majority of studies employed a cross-sectional analysis to examine the relationship between 

obesity and methylation, exclusion and statistical adjustment for confounders were the primary 

mechanisms to account for bias. In the bias assessment, the most common source of bias was 

confounding (Table 2.3). Thirteen studies were identified to have a “High” risk of bias based on 

adjustment for confounding. Eight studies outside of the blood (in the adipose, breast, liver and 

endometrial tissue) did not adjust for cell composition, though other tissues may not be as 

heterogeneous by cell composition as the blood. Thus we did not qualify these as significant 

bias (“High”) instead noted them as potential sources (“Unclear”). Four studies did not include 

definitions of obesity or BMI, though this is unlikely a significant source of bias, thus they were 

coded as “Unclear”. Seven studies did not provide information or did not conduct probe filtering 

protocols to reduce the incidence of false positives. Of the studies in the blood examining BMI, 

none were found to have a “High” risk of bias with five studies identified as having an “Unclear” 

risk of bias. All of the studies examining waist circumference in the blood were found to have a 

“Low” risk of bias. Based on these findings, we meta-analyzed results from studies examining 

BMI and waist circumference in DNA methylation in the blood as measured by microarray.  

Blood methylation and adiposity 

Eighteen studies examining continuous BMI were conducted in blood with DNA 

methylation measured via a microarray. The number of significant sites varied between 0 to 

7,457. Among these studies (43-60), 1,100 sites had estimates of effect and standard errors 
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reported in the studies. We found 77 common CpG sites significant in at least three studies. 

Using random effects models of studies regressing DNA methylation on BMI, we were able to 

meta-analyze 74 sites (44-47, 49-54, 57, 59, 60). On average, every one unit change in BMI 

was associated with a 0.001 change in the DNA methylation β-value (Figure 2.2). We also 

found 72 of 74 CpG sites had a consistent direction of effect in all of the meta-analyzed studies. 

In studies regressing BMI on DNA methylation (43, 48, 55, 56, 58), we were able to meta-

analyze 69 sites. On average, every 0.01 unit change in the DNA methylation β-value was 

associated with a 0.21 unit change in BMI. Forty nine of the 69 sites had a consistent direction 

of effect. In the meta-analysis including results from all 18 studies using weighted-sum of Z-

scores meta-analysis, 52 sites remained significant after FDR-adjustment (adjusted for 475K 

sites).  

We conducted several sensitivity analyses including outlier analysis and subgroup 

analyses in the studies regressing DNA methylation on BMI. Of the 74 sites, 50 sites included 

more than three studies and were examined for outliers. Only nineteen sites identified outliers. 

In these analyses, 13 sites were no longer significant (p < 0.05). However, heterogeneity 

remained high. Even with exclusion of one or two outlier studies, only eight CpG sites had I2 

values below 30% indicating low heterogeneity with four CpG sites indicating high heterogeneity 

(I2 values above 70% and Cochran’s Q test p-value < 0.05). In the meta-regression of two sites, 

both were found be heterogeneous by sex. Effect sizes were found to decrease and increase 

with the larger percentage of females in the study population for cg00574958 and cg06500161. 

None of the sites could be examined for heterogeneity by race or by adjustment for smoking 

because no sites were found to have more than three studies per subgroup. 

Seven studies examined the association between waist circumference and blood DNA 

methylation (24, 44-46, 51, 53, 55). Among these studies, 931 sites were reported to be 

significant with four overlapping CpG sites identified in three or more studies. Two were found to 
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associate with waist circumference in the meta-analyses. In these two sites, on average every 

one unit change in waist circumference was associated with a 0.0002 unit change in the DNA 

methylation β-value. All of the sites were found to have a consistent direction of effect.  

Adipose methylation and adiposity  

Several studies examined DNA methylation differences in the adipose tissue (61-68). 

Several metrics were used to examine adiposity across these studies including continuous BMI 

(61, 66, 68), dichotomized BMI categories (62, 64, 65), BMI discordance in twins (67), fat 

percentage change following an intervention (63), fat percentage (66), waist circumference (66) 

android fat mass (61), android-gynoid fat ratio (61), trunk:limb ratio (61), and waist/hip ratio (66). 

The number of significant sites ranged from 0-33,058. Among these studies, 741 CpG sites 

were reported in three or more studies with the majority having a consistent direction of effect 

(414 in a consistent direction). The high number of overlapping CpG sites may be due to the 

fact that three studies reported more than 10,000 CpG sites as differentially methylated. Given 

the heterogeneity in the design of these studies, we did not combine results from these studies 

in a meta-analysis.  

Reduced Representation Bisulfite Sequencing 

Five studies in three distinct tissue types examined methylation using RRBS (66, 69-72). 

We only examined overlapping genes, given the differential reporting of results. 12,968 unique 

genes were found to associate with adiposity in at least one study. Of these, 1,047 genes were 

reported to be significant in three or more studies with the majority (734) showing inconsistent 

direction of effect across studies. 

Other tissues and adiposity exposures 

Twenty studies examined methylation differences between categorical adiposity 

measurements across 23 tissue types (various blood cells, adipose, periprostatic adipose, 
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breast, colorectal, muscle, liver and endometrial tissue and tumor cells from several tissue 

types) (62, 64, 65, 67, 69-71, 73-85). Among the studies examined in the blood, significant sites 

ranged from 0-2,102 CpG sites including 3,310 unique CpG sites. No overlapping CpG sites 

were reported in three or more studies. 

Several studies sought to examine how weight change associated with DNA methylation 

either through an intervention with repeated measures design or based on response to a dietary 

intervention (46, 63, 72, 78, 84, 86, 87). The design varied significantly among these studies 

including in tissue type (adipose, leucocytes, whole blood, white blood cells, dried blood spot 

and mononuclear cells) and exposure (fat percentage change, BMI change, and response to 

weight loss intervention). Of the studies in the blood, 2,139 unique CpG sites were found 

significant in one study, though no overlapping CpG sites were found. When weight change 

studies in the adipose were included, no CpG sites overlapped. 

Given the prior association between several forms of cancer and obesity, two studies 

focused on normal breast tissue or breast tumor tissue (74, 88). Among these studies, one site 

overlapped in two studies, cg24527008.  

Discussion 

This study provides a synthesis of the evidence associating DNA methyation and 

adiposity. Overall, 46 studies were included in this systematic review. We identified a number of 

CpG sites which have been associated with some metric of adiposity, however significant 

heterogeneity in study design and analysis have resulted in limited overlap in many of the 

findings. Among the CpG sites identified in three or more studies, there was no overlap between 

the CpG sites in the adipose (742 sites) and the blood associated with waist circumference (4 

sites) or BMI (77 sites). This may be due in large part to heterogeneity in the studies conducted 

within the adipose tissue.  
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Of the CpG sites found significant in three or more studies, 52 CpG sites were 

significantly associated with BMI when meta-analyzed using a genome-wide threshold for 

significance. These sites have been found to associate with several metabolic health 

parameters including depression, atherosclerosis, kidney disease, blood lipids (triglycerides, 

high-density lipoproteins), hepatic disease, type 2 diabetes, insulin resistance, metabolic 

syndrome, hemoglobin A1c and Crohn’s disease/inflammatory bowel syndrome (Figure 2.3).  

These associations may represent both upstream cardiometabolic risk factors associated with 

obesity (blood lipids, blood pressure, glomerular filtration rate, insulin) and downstream 

diseases caused by obesity (atherosclerosis, hypertension, type 2 diabetes, metabolic 

syndrome and non-alcoholic fatty liver disease).  

Whether obesity is the cause of differential DNA methylation in these sites, with 

methylation mediating the outcomes discussed above, is unknown. Using Mendelian 

randomization (MR), Mendelson et al. found that of the 83 replicated CpG sites within their 

study, 16 were causally influenced by obesity, five of which were significant in our study 

(cg06500161, cg13708645, cg24678869, cg25649826 and cg26950531) (49). These results 

suggest that these CpG sites are likely influenced by obesity, but may have downstream effects 

on other diseases. cg06500161 has also been shown to be causally impacted by triglycerides 

and HDL-cholesterol, leading to reduced expression levels (89). None of the five sites have 

been identified in MR studies examining cardiovascular disease (90) or type 2 diabetes (91, 92). 

Another site identified in our study (cg00574958) has been shown to be both causally (93) and 

consequentially (89, 93) associated with blood lipids. cg00574958 was causally influenced by a 

polygenic risk score for triglycerides and blood triglycerides were also causally associated with 

cis methylation quantitative trait loci for cg00574958 (93). Given these findings, we can 

conclude that DNA methylation in these six sites are causally influenced either directly or 

indirectly by excess adiposity. Methylation may also influence changes in adiposity. Mendelson 
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et al. found cg11024682 was causally associated with BMI via two-step MR (methylation  

gene expression  BMI), as well as several adiposity related traits (49). 

Several of the BMI-associated CpG sites were found to previously associate with alcohol 

consumption, diet quality and smoking (three upstream exposures associated with obesity). 

Eleven CpG sites of the 52 significant CpG sites have been associated with alcohol 

consumption (94-96). The link between BMI and alcohol is not linear as heavy drinking is 

positively associated with weight gain, however light to moderate consumption has been shown 

to protect against weight gain (97). The CpG sites associated with alcohol may represent 

confounding by alcohol consumption, as a majority of BMI EWAS studies did not adjust for 

alcohol consumption. Two sites have been found to associate with diet quality (98). As these 

sites were previously associated with diet quality in BMI-adjusted models, these also likely 

represent the upstream effects of differential diet quality associated with obesity. Fifteen CpG 

sites have previously been associated with smoking (99-113). This may represent a significant 

confounder in the BMI-methylation association in these sites. Of the EWAS examined in our 

meta-analysis, less than half included smoking as a covariate in the EWAS models. We were 

unable to examine heterogeneity by smoking statistically.  

The fact that many of these sites are associated with one or more chronic disease is 

anticipated. BMI is not universally included as a confounder in the literature. These methylation 

sites may provide utility as early predictors of obesity-associated chronic diseases. Future 

research efforts utilizing longitudinal methylation data may also help to provide a clearer picture 

of the relationship between obesity, DNA methylation and chronic disease. 

There are several limitations in our study. While we did not restrict our study by 

language, we may not have identified studies without a title and abstract in English. 

Nevertheless, we did identify and extract information for at least one study in Spanish. Our 

quantitative results are prone to publication bias since they were extracted exclusively from sites 
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that were found to be significant in three studies. Few studies provide summary statistics on null 

associations. Of the 18 studies included in the meta-analysis, only one made full summary 

statistics of all the results publicly available.  Thus, we are not able to include the results from 

these sites in the meta-analysis. Nevertheless, only two of 77 sites meta-analyzed had an 

opposite direction of effect in one of the individual study effect sizes. This gives us confidence in 

these findings. However, future research efforts should focus on quantitative meta-analysis of 

results encompassing all CpG sites studied to more comprehensively understand this 

relationship.    

In summary, this study found widespread differences in DNA methylation in multiple 

tissue associated with adiposity. Significant heterogeneity in study design, tissue type, and 

statistical methods have ultimately yielded limited overlap of significant sites. Nevertheless, 52 

CpG sites were significantly associated with BMI using a genome-wide threshold for 

significance. These CpG sites have been shown to associate with a myriad of other obesity-

associated outcomes, suggesting their relevance as either causes or consequences of obesity.  
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Tables and Figures 

Table 2.1. PECO Guidelines of inclusion criteria. 

  

Population Non-pregnant adults aged 18-75 
Exposure/Control Adiposity measured dichotomously or continuously via body mass 

index (BMI), body fat percentage, waist-to-height ratio, waist-to-hip 
ratio, android-gynoid fat ratio, waist circumference or weight gain/loss 
in cross sectional or longitudinal trial 

 
Outcome 

DNA methylation as measured using genome-wide approaches, 
including array based measurement (27K, 450K and EPIC array) or 
bisulfite sequencing  
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Table 2.2. Studies identified examining genome-wide DNA methylation and adiposity 

Reference N Exposure Outcome Array Biological 
Sample 

Key Findings 

Agha, et al., 
2015, Int J 
Epidemiol 

106 Android fat mass, 
android-ganoid fat 
ratio, trunk:limb 
ratio, and body 
mass index (BMI) 

DNA 
methylation M-
value 

450K Adipose tissue & 
peripheral blood 
leucocytes 

Adipose tissue DNA methylation was 
associated with all four adiposity 
phenotypes. When adjusted for 
adipose cell composition, associations 
remained. In peripheral blood, DNA 
methylation not associated with any 
adiposity phenotype.  

Al Muftah, et 
al., 2016, 
Clin 
Epigenetics 

123 in Qatari 
Family Study, 810 
in TwinsUK 

DNA methylation β-
value 

Standardized 
BMI 

450K Whole Blood No sites associated with BMI in full 
EWAS. The study replicated previous 
associations in 39 sites. 8 sites 
replicated at a Bonferroni-corrected p-
value.  

Almen et al., 
2014, Gene 

46 (24 obese and 
22 lean) 

Obese (BMI ≥ 30) 
vs. Normal Weight 
(BMI <25) 

DNA 
methylation β-
value 

27K Peripheral Blood No sites associated independently with 
obesity. Examined interaction between 
age and obesity and found 8 
associations in age-associated CpG 
sites.  

Arner, et al., 
2015, Clin 
Epigenetics 

29 Obese (BMI ≥ 30) 
vs. Never-obese 
(BMI <30) 

DNA 
methylation M-
value 

450K Subcutaneous 
white adipose 
tissue 

Identified 32,724 differentially 
methylated sites. Among those sites 
linked to genes (excluding 
unannotated sites), found that 3,878 
genes were differentially expressed in 
white adipose tissue. Of those genes, 
5529 CpG sites were associated with 
2223 genes differentially expressed 
between obese cases and non-obese 
controls.  

Arpon, et al., 
2019, Genes 

474 Waist 
Circumference 

DNA 
methylation β-
value 

450K Peripheral white 
blood cells 

Found 669 sites associated with waist 
circumference. Among these sites 
when stratified by sex and examining 
differences dichotomized waist 
circumference, significant differences 
identified in 375 CpG  sites in females 
and 95 CpG sites in males.  

Aslibekyan, 
et al., 2015, 
Obesity 

GOLDN n=991, 
FHS n=2377, ARIC 
n=2106 

BMI and waist 
circumference 

DNA 
methylation β-
value 

450K CD4+ T-cells In GOLDN, 8 sites associated with BMI 
and 5 sites associated with waist 
circumference. In replication analyses, 
4 out of 8 replicated in FHS case-
control with 2 of the 4 replicating in 
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larger FHS cohort (CPT1A and 
PHGDH).  

Bollepalli, et 
al., 2018, Int 
J Obes 

19 participants in 
weight loss 
intervention, 
validation in 26 
BMI-discordant 
twins from the 
Finnish Twin 
Cohort Study 

Fat percentage DNA 
methylation  

450K Subcutaneous 
Adipose Tissue 

No genome-wide significant sites were 
identified when examining change in 
methylation from any time point in the 
weight loss intervention. Using a 
targeted approach examining only 
sites in the 69 genes where expression 
changed in the first 5 months, 28 CpG 
sites differentially correlated. Of the 5 
genes differentially expressed between 
5 to 12 months, 3 CpG sites showed 
differential correlations. Between 
baseline and 12 months, among 35 
differentially expressed genes, 23 CpG 
sites were differentially correlated. 

Campanella, 
et al., 2018, 
Int J Obes 

EPIC-Netherlands 
n=148, EPIC-Italy 
n=1274, NOWAC 
n=192, 
EnviroGenoMarker
s n=641 

BMI, waist 
circumference, 
waist to hip ratio 
and waist to height 
ratio 

DNA 
methylation β-
value 

450K Peripheral blood 
leukocytes 

In discovery analysis, 40 CpG sites 
associated with one or more adiposity 
measure. 26 sites associated with 
BMI, 12 associated with waist 
circumference, 9 waist-to-hip ratio, and 
12 for waist-to-height ratio. 
cg06500161 associated with all four 
adiposity measures. Examining 
replication by pyrosequencing, 
associations yielded a linear 
relationship.  

Cheng, et 
al., 2018, 
Clin 
Epigenetics 

10 (5 normal 
weight, 5 
overweight/obese) 

Overweight and 
Obese (BMI  ≥ 25) 
vs. Normal Weight 
(BMI < 25) 

DNA 
methylation M-
value 

450K Periprostatic 
adipose tissue 

Differential methylation was associated 
with 5526 after FDR control (adjusted 
P < 0.25).  

Crujeiras, et 
al., 2017, 
Endocr Relat 
Cancer 

Discovery: 64, 
Validation: 99 

Overweight and 
Obese (BMI  ≥25) 
vs. Normal Weight 
(BMI < 25) 

DNA 
methylation β-
value 

450K Breast tumor 
tissue 

No sites significant in EWAS. 
Subsequently examined high risk 
group (pre-menopausal normal weight 
and post-menopausal obese) vs low 
risk group (pre-menopausal obese and 
post-menopausal normal weight) 
finding 1,287 differentially methylated 
CpG sites.  

Crujeiras, et 
al., 2017, Sci 
Rep 

55 (8 adipose/10 
leucocytes non-
obese and 45 
paired 

Overweight and 
Obese (BMI ≥ 25) 
vs. Normal Weight 
(BMI ≤ 25) 

DNA 
methylation β-
value 

450K Subcutaneous 
adipose 
tissue/Leukocytes 

Found 12,043 CpG sites were 
differentially methylated in 
subcutaneous adipose tissue of obese 
vs. non-obese participants. In 
leukocytes, 4,815 CpG sites were 



46 
 

adipose/leucocytes 
obese) 

differentially methylated. 176 sites 
were common among the two 
analyses.  

Crujeiras, et 
al., 2019, Int 
J Obes 

28 Overweight and 
Obese (BMI ≥ 25) 
vs. Normal Weight 
(BMI < 25) 

DNA 
methylation β-
value 

450K Colorectal tumor 
tissue 

Identified 299 differentially methylated 
CpG sites between non-obese and 
obese patients.  

Day, et al., 
2016, Clin 
Epigenetics 

22 Obese vs. Lean Reduced 
Representation 
Bisulfite 
Sequencing 

Reduced 
Representation 
Bisulfite 
Sequencing 

Vastus lateralis 
muscle tissue 

Found 13,130 differentially methylated 
cytosines (unadjusted p <0.05). After 
FDR adjustment, no site were 
associated with the obesity.  

Day, et al., 
2017, 
Epigenetics 

20 Obese (BMI ≥ 30) 
vs. Normal Weight 
(BMI <25) 

Reduced 
Representation 
Bisulfite 
Sequencing 

Reduced 
Representation 
Bisulfite 
Sequencing 

Whole Blood Of the 5,227,488 CpG sites examined, 
52,995 were significantly different 
between groups (unadjusted p-value < 
0.05). 49 CpG sites remained 
significantly associated with obesity 
after FDR correction.  

Demerath, et 
al., 2015, 
Hum Mol 
Genet 

2097 BMI, waist 
circumference and 
BMI change 

DNA 
methylation β-
value 

450K Leucocytes In discovery analysis, BMI, waist 
circumference and BMI change were 
associated with 76, 164 and 8 CpG 
sites, respectively. In replication, 37/76 
BMI-associated sites and 8/164 waist 
circumference associated sites 
replicated in FHS and GOLDN. 
Additionally, among replicated sites, 
18 BMI-associated sites and 1 waist 
circumference associated site 
replicated in adipose tissue.   

Dhana, et 
al., 2018, 
Am J 
Epidemiol 

1450 BMI and waist 
circumference 

DNA 
methylation β-
value 

450K Peripheral whole 
blood 

In discovery analysis, 14 sites 
associated with BMI and 26 associated 
with WC. In ARIC, 12 successfully 
replicated for BMI and 13 of 26 
replicated for WC.  

Dick et al., 
2014, Lancet 

459 (20 excluded) DNA methylation β-
value 

Log-
transformed 
BMI 

450K Whole Blood Five sites associated with log-
transformed BMI. In replication 
analyses in MARTHA, three sites in 
HIF3A were significant after 
Bonferroni-adjustment. In further 
replication in KORA, all three HIF3A 
probes replicated.  

Dong, et al., 
2019, Sci 
Rep 

15 CRC patients, 
10 obese subjects 
and 15 lean 
controls 

DNA methylation Obese vs. Lean Reduced 
Representation 
Bisulfite 
Sequencing 

Whole Blood Study examining overlap between 
differential methylation associated with 
obesity and differential methylation 
associated with colorectal cancer. 
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91,809 differentially methylated sites 
associated with obesity.  

Geurts, et 
al., 2018, Int 
J Obes 

5361 (2775 control, 
2586 cases) 

Log-transformed 
BMI 

DNA 
methylation M-
value 

450K Peripheral blood 
mononuclear cells, 
dried blood spots 
and buffy coats 

Study identified novel associations in 
225 replicated sites. Results were 
consistent in 34 sites in repeated 
measures analyses of BMI change and 
DNA methylation change.    

Gomez-Uriz, 
et al., 2015, 
Hum Mol 
Genet 

24 (6 non-stroke 
non-obese, 6 
stroke non-obese, 
6 obese non-
stroke, 6 obese 
stroke patients) 

Obesity (BMI >30) 
vs Normal weight 
(BMI <25)  

DNA 
methylation β-
value 

27K White Blood Cells Between obese and control non-stroke 
patients, 96 CpG sites were 
differentially methylated (p<0.05 and 
methylation difference > 5%). Further 
examined differences in stroke 
patients. 

Gu, et al., 
2018, J 
Cancer 

2415 (883 non-
obese, 1532 
obese) 

Obesity (BMI >30) 
vs Normal weight 
(BMI <25) & BMI 

DNA 
methylation M-
value or β-value 
(unknown 
which) 

450K Tumor tissue of 15 
cancer types 

Between obese and normal weight, 3, 
1169, and 394 sites were differentially 
methylated in cholangiocarcinoma, 
colon adenocarcinoma and uterine 
corpus endometrial carcinoma, 
respectively. In BMI models, 1 site was 
differentially methylated in 
cholangiocarcinoma and colon 
adenocarcinoma.  

Hair, et al., 
2015, Breast 
Cancer Res 
Treat 

81 BMI DNA 
methylation β-
value 

450K Breast tissue 2,573 CpG sites were associated with 
BMI after adjustment for age, race, 
and alcohol use.  

Hohos, et 
al., 2018, 
Obesity 

81 Obesity (BMI >30) 
vs Normal weight 
(BMI <25) and 
visceral adipose 
tissue 

DNA 
methylation M-
value 

450K CD4+ Tcells, 
CD8+ Tcells and 
CD16+ neutrophils 

In models examining categorical BMI, 
19 sites were differentially methylated 
in CD4+ T-cells. 16 sites were 
differentially methylated in CD8+ T-
cells. No sites were differentially 
methylated in CD16+ neutrophils. In 
models examining visceral adipose 
tissue, 79 sites were differentially 
methylated in CD4+ T cells. 

Huang, et 
al., 2015, Int 
J Obes 

48 (16 in each 
group) 

Normal weight 
never obese, 
weight loss 
maintainers, and 
obese 

DNA 
methylation M-
value 

450K Peripheral blood 
mononuclear cells  

No sites were associated following 
false discovery rate adjustment. 
Subsequently examined top 20 loci.  

Krichner, et 
al., 2016, 
Mol Metab 

22 Non-obese non-
diabetic, obese 
non-diabetic, and 

DNA 
methylation M-
value 

450K Liver tissue Found 5,834 sites that were 
differentially methylated in one of the t-
test analyses.  
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obese type 2 
diabetic 

Kvaloy, et 
al., 2018, Sci 
Rep 

120 Obese (largest BMI 
in cohort) vs. Lean 
(lowest BMI in 
cohort) 

DNA 
methylation M-
value 

450K Whole Blood In fully adjusted model, 10 sites were 
differentially methylated between two 
groups. Of the 10, 3 sites replicated in 
FDR-adjusted models.  

S. Li, et al., 
2019, Int J 
Obes 

66 monozygotic 
(MZ) twins, 66 
dizygotic (DZ) 
twins and 215 of 
their sisters from 
130 families 

Self-reported 
current BMI, BMI at 
18-21 years and 
change between 
the two time points 

DNA 
methylation M-
value 

450K Dried blood spot Current BMI, BMI at age 18-21 and 
change in BMI was associated with 
nine, six and 12 CpG sites, 
respectively. Two sites associated with 
both current BMI and BMI change.  

W. Li, et al., 
2019, Int J 
Obes 

30 MZ twin pairs 
(15 male, 15 
female pairs) 

BMI DNA 
methylation M-
value 

Reduced 
Representation 
Bisulfite 
Sequencing 

Whole Blood No sites reached genome-wide 
significance. Subsequently conducted 
functional analyses of sites with p-
value < 0.05.  

Mansego, et 
al., 2014, 
Anales de la 
Real 
Academica 
Nacional de 
Farmacia 

46 obese subjects 
(28 positive 
response to weight 
loss diet [>= 5% 
weight loss in initial 
24 weeks], 20 poor 
response to weight 
loss diet [< 5% 
weight loss]) 

Positive response 
to weight loss diet 
(≥5% weight loss in 
initial 24 weeks of 
intervention) vs. 
poor response to 
weight loss (<5% 
weight loss) 

DNA 
methylation β-
value 

450K Whole Blood No sites reached genome-wide 
significance, 90 sites associated with 
p-value < 0.01. Further analyzed top 
ten sites associated with response to 
dietary intervention.  

Mansego, et 
al., 2015, Int 
J Mol Sci  

73 Low risk obesity 
(overweight or 
class I obesity; BMI 
25-35, [LRO]) and 
High risk obesity 
(class 2 and 3 
obesity; BMI ≥35, 
[HRO]) 

DNA 
methylation β-
value 

450K White Blood Cells 85 sites were differentially methylated 
between low HRO and high HRO. 
However, none were significant after 
FDR adjustment.  

Meeks, et 
al., 2017, 
Clin 
Epigenetics 

547 BMI and waist 
circumference 

DNA 
methylation M-
value 

450K Whole blood 18 sites found to associate with BMI 
and 23 sites associated with waist 
circumference.  

Mendelson, 
et al., 2017, 
PLoS Med 

Discovery: 3724, 
Replication: 4055 

BMI Inverse-normal 
DNA 
methylation 

450K Whole blood In meta-analysis, 135 CpG sites 
significantly associated with BMI. In 
replication analyses, 83 sites 
replicated with at least one cohort.  

Milagro, et 
al., 2011, 
Faseb j 

12 (6 high 
responders, 6 low 
responders) 

Positive response 
to weight loss diet 
(>=5% weight loss 

DNA 
methylation  

27K Peripheral blood 
mononuclear cells 

At baseline, 1,034 sites were 
differentially methylated between 
groups. At endpoint, 15 sites were 
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in initial 24 weeks 
of intervention) vs. 
poor response to 
weight loss (<5% 
weight loss) 

differentially methylated. When pooled, 
170 sites were differentially methylated 
as a result of the energy-restricted 
dietary intervention.  

Nagashima, 
et al., 2019, 
Sci Rep 

8 Normal weight vs 
obese 

DNA 
methylation β-
value 

EPIC Endometrial 
epithelial cells  

10,601 sites identified as differentially 
methylated with p<0.05 and slope > 
0.2.  

Ollikainen, et 
al., 2015, 
Clin 
Epigenetics 

80 (40 twin pairs) BMI-discordance in 
twins 

DNA 
methylation M-
value 

450K Whole Blood After correcting for multiple 
comparisons and applying a relevance 
cutoff (mean within-pair difference 
>=5%), no sites were differentially 
methylated among the 30 BMI-
discordant twins. However, when 
comparing discordant BMI twins with 
differing levels of liver fat (n=13 twins), 
1,236 sites were differentially 
methylated.  

Orozco, et 
al., 2018, 
Hum Mol 
Genet 

201 DNA methylation Inverse-normal 
clinical traits 

Reduced 
Representation 
Bisulfite 
Sequencing 

Subcutaneous 
Adipose Tissue 

51 associations corresponding to 21 
sites were associated with 15 unique 
phenotypes.  

Pietilaeinen, 
et al., 2016, 
Int J Obes 

37 twin pairs (26 
BMI-discordant 
twins and 11 BMI-
concordant twin 
pairs) 

BMI-discordance in 
twins 

DNA 
methylation M-
value 

450K Subcutaneous 
Adipose Tissue 

In BMI-discordant twins, 22 CpGs 
were differentially methylated.  

Ramos-
Lopez, et al., 
2018, 
Appetite 

474 BMI DNA 
methylation β-
value 

450K Peripheral white 
blood cells 

7,457 CpG sites correlated with BMI 
(adjusted FDR <0.0001) 

Rönn, 2015, 
Hum Mol 
Genet 

96 BMI DNA 
methylation M-
value 

450K Subcutaneous 
Adipose Tissue 

In male discovery cohort, 33,058 CpG 
sites significantly associated with BMI. 
In female cohort, 39,533 CpG sties 
associated with BMI. 4,979 sites 
overlapped between male and female 
cohort.  

Samblas, et 
al., 2019, 
Eur J Nutr  

47 (LR, n=31; HR, 
n=16), validation 
n=47 (LR, n=26; 
HR, n=21) 

Low responders 
(weight loss < 8% 
of initial weight) vs 
high responders 
(weight loss > 8% 
initial weight) 

DNA 
methylation β-
value 

450K White Blood Cells 2,102 sites were differentially 
methylated between HR and LR 
groups. No sites remained significant 
after FDR adjustment.  
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Sayols-
Baixeras, et 
al., 2017, 
Epigenetics 

641 (REGICOR), 
2515 (FOS) 

DNA methylation 
M-value 

BMI and waist 
circumference 

450K Whole Blood 40 sites were significantly associated 
with BMI and 7 with waist 
circumference in Model 1. In model 2, 
214 sites associated with BMI and 36 
associated with waist circumference. 
In meta-analyses, 52 sites associated 
with BMI and 26 associated waist 
circumference in model 1. In model 2, 
94 sites associated with BMI and 49 
sites associated with waist 
circumference.  

Shah, et al., 
2015, Am J 
Hum Genet 

LBC 1921: 446, 
LBC 1936:  920, 
LifeLines DEEP: 
750 

DNA methylation 
M-value 

BMI Z-score 450K Whole Blood Nine CpG sites in LBC dataset and 
five sites in LifeLines DEEP cohort 
associated with BMI. Two sites 
overlapped in each (cg06500161 and 
cg11024682).  

Sun, et al., 
2019, 
Circulation 

1485 (995 white 
and 490 black), 
Replication 480 
(252 white and 228 
black) 

BMI DNA 
methylation β-
value 

450K Whole blood In discovery analysis, 3966 and 85 
CpG sites were significantly 
associated with BMI in white and black 
participants, respectively. Among 
these, 349 and 36 sites replicated in 
the GSHS cohort.  

Wahl, et al., 
2017, Nature 

KORA F4: 1709, 
KORA F3: 485, 
LOLIPOP: 2680, 
EPICOR: 584; 
Replication: 
ALSPAC: 701, 
BIOS: 4000, 
EGCUT: 269, 
LOLIPOP: 656, 
RS: , TwinsUK: 
355, LifeLines 
Deep: , LLS 

DNA methylation β-
value 

BMI 450K Whole Blood 278 sites associated with BMI. In 
replication analyses, 187 out of 207 
replicated with directional consistency 
and epigenome-wide significance in 
meta-analysis.  

Wilson, et 
al., 2017, Int 
J Obes 

871, replication 
187 

BMI DNA 
methylation β-
value 

27K Blood In the analysis excluding women who 
later developed breast cancer (n=571), 
two sites associated BMI. When 
additionally including these cases 
(adjusting for case-status), four sites 
associated with BMI, including the 
original two sites identified.  

Xu, et al., 
2018, Biol 
Psychol 

510 BMI DNA 
methylation β-
value 

450K Whole Blood In the BMI EWAS, 20 sites were 
associated with BMI following FDR-
adjustment.  
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Table 2.3. Assessment of potential bias and other study design issues 

Reference Sample Exposure Outcomes Adjustment Statistical 
Analysis 

Agha, 2015, IJE Low Low Low Low Low 
Al Muftah, 2016, Clinical 
Epigenetics 

Low Unclear Low Unclear Low 

Almen, 2014, Gene Low Low Low Unclear Unclear 
Arner, 2015, Clinical Epigenetics Low Low Low High Low 
Arpon, et al., 2019, Genes Unclear Low Low Unclear Low 
Aslibekyan, 2015, Obesity Low Low Low Low Low 
Bollepalli, 2018, International 
Journal of Obesity 

Low Low Low Unclear Unclear 

Campanella, 2018, IJO Low Low Low Unclear Low 
Cheng, 2018, Clinical 
Epigenetics 

Low Low Low Unclear Low 

Crujeiras, 2017, Endocrine-
Related Cancer 

Low Low Low High Low 

Crujeiras, 2017, Scientific 
Reports 

Low Low Low High Low 

Crujeiras, 2019, International 
Journal of Obesity 

Low Low Low High Low 

Day, 2016, Clinical Epigenetics Low Unclear Low Unclear Low 
Day, 2017, Epigenetics Low Low Low Unclear Low 
Demerath, 2015, Human 
Molecular Genetics 

Low Low Low Low Low 

Dhana, 2018, AJE Low Low Low Low Low 
Dick, 2014, Lancet Low Low Unclear Unclear Low 
Dong, 2019, Scientific Reports Low Unclear Low High Low 
Geurts, 2018, Int J Obes Low Low Low Low Low 
Gomez-Uriz, 2015, Human 
Molecular Genetics 

Low Low Low High Unclear 

Gu, 2018, J Cancer Low Low Low High Unclear 
Hair, 2015, Breast Cancer Res 
Treat 

Low Low Low Unclear Low 

Hohos, 2018, Obesity Low Low Low Unclear Low 
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Huang, 2015, IJO Low Low Low Unclear Low 
Krichner, 2016, Molecular 
Metabolism 

Low Unclear Low High Low 

Kvaloy, 2018, Scientific Reports Low Low Low Low Low 
S. Li, 2019, IJO Low Low Low Low Low 
W. Li, 2019, IJO Low Low Low Low Low 
Mansego, 2014, Anales de la 
Real Academica Nacional de 
Farmacia 

Low Low Low Unclear Unclear 

Mansego, 2015, International 
Journal of Molecular Science 

Low Low Low Low Low 

Meeks, 2017, Clinical 
Epigenetics 

Low Low Low Low Low 

Mendelson, 2017, PLOS 
Medicine 

Low Low Low Low Low 

Milagro, 2011, FASEB J Low Low Low High Unclear 
Nagashima, 2019, Scientific 
Reports 

Low Low Low High Unclear 

Ollikainen, 2015, Clinical 
Epigenetics 

Low Low Low Low Low 

Orozco, 2018, Human Molecular 
Genetics 

Low Low Low High Low 

Pietilaeinen, 2016, IJO Low Unclear Low Unclear Unclear 
Ramos-Lopez, 2018, Appetite Low Low Low Low Low 
Rönn, 2015, Human Molecular 
Genetics 

Low Low Low Unclear Low 

Samblas, 2019, European 
Journal of Nutrition 

Low Low Low High High 

Sayols-Baixeras, 2017, 
Epigenetics 

Low Low Low Low Low 

Shah, 2015, Am J Hum Genet Low Low Low Unclear Low 
Sun, 2019, Circulation Low Low Low Low Low 
Wahl, 2017, Nature Low Low Low Low Low 
Wilson, 2017, IJO Low Low Low Low Low 
Xu, 2018, Biol Psychol Low Low Low Low Low 

 

 



53 
 

 

Figure 2.1. Flow diagram of studies 
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Figure 2.2. Random-effect meta-analysis of CpG sites that were significant in 5 or more studies.  
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Figure 2.3. Previously associations among BMI-associated sites identified within this study and 

obesity-associated biomarkers and diseases 
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CHAPTER 3 

Methods 

3.1 Study Population 

Several study populations have been included in this dissertation and are further 

discussed with the methods of each Aim. The Women’s Health Initiative (WHI) was included in 

all of the following Chapters and will be elucidated upon here.  

Women’s Health Initiative 

The WHI is a large, U.S.-based cohort study of postmenopausal women, aged 50-79 at 

time of enrollment, consisting of two study arms: the Clinical Trial (CT) and the Observational 

Study (OS). The WHI was a national study examining the most common causes of morbidity 

and mortality in women. Three randomized-controlled trials make up the CT: hormone therapy, 

dietary modification and calcium/vitamin (1). Within this dissertation, three ancillary studies from 

the WHI were included in the analyses. These include: Epigenetic Mechanisms of Particulate 

Matter-Mediated Cardiovascular Disease (EMPC), the Integrative Genomics for Risk of 

Coronary Heart Disease and Related Phenotypes in WHI cohort (BAA23), and Bladder Cancer 

and Leukocyte Methylation (AS311). EMPC (n=2200) assessed epigenetic mechanisms 

underlying associations between ambient particulate matter air pollution and cardiovascular 

disease within the WHI CT (2). A subset of women from EMPC (n=200) have DNA methylation 

measured at 3 or 6 years following their baseline sample. BAA23 was a case-control study 

assessing predictors of coronary heart disease (CHD) within the WHI CT (n=1664) and OS 

(n=443), where cases were identified using eight biomarkers of CHD. AS311 is a matched case-

control study of bladder cancer among women within the WHI CT (n = 426) and OS (n = 456).  

3.2 Data Analyses 

Expression quantitative trait methylation loci 
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Examining how DNA methylation associates with gene expression can provide insight 

into the functional implications of significant sites. In the following aims, the association between 

significant methylation sites and mRNA transcription were examined using summary statistics 

from an epigenome-wide association study (EWAS) of mRNA transcription in the Multi-Ethnic 

Study of Atherosclerosis (MESA) and the Grady Trauma Project (GTP) (2). In these studies, 

results were only reported for suggestive significance (p<1E-6) and highly significant (p<1E-11) 

associations.  
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Abstract  

Background: Diet quality is a risk factor for chronic disease and mortality. Differential DNA 

methylation across the epigenome has been associated with chronic disease risk. Whether diet 

quality is associated with differential methylation is unknown. This study assessed whether diet 

quality was associated with differential DNA methylation measured across 445,548 loci in the 

Women’s Health Initiative (WHI) and the TwinsUK cohort.  

Design: The discovery cohort consisted of 4,355 women from the WHI. The replication cohort 

consisted of 571 mono- and dizygotic twins from the TwinsUK cohort. DNA methylation was 

measured in whole blood using the Illumina Infinium HumanMethylation 450 Beadchip. Diet 

quality was assessed using the Alternative Healthy Eating Index 2010 (AHEI-2010). A meta-

analysis, stratified by study cohort, was performed using generalized linear models that 

regressed methylation on AHEI-2010, adjusting for cell composition, chip number and location, 

study characteristics, principal components of genetic relatedness, age, race/ethnicity and body 

mass index (BMI). Statistical significance was defined as a false discovery rate < 0.05. 

Significant sites were tested for replication in the TwinsUK cohort, with significant replication 

defined by p < 0.05 and a consistent direction. 

Results: Diet quality was significantly associated with differential DNA methylation at 428 

cytosine-phosphate-guanine (CpG) sites in the discovery cohort. 24 CpG sites were consistent 

with replication in the TwinsUK cohort, more than would be expected by chance (p = 2.7x10-4), 

with one replicated in both the blood and adipose tissue (cg16379999 located in the body of 

SEL1L). 
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Conclusions:  Diet quality was associated with methylation at 24 CpG sites, several of which 

have been associated with adiposity, inflammation and dysglycemia. These findings may 

provide insight into pathways through which diet influences chronic disease.  

Background 

 Poor diet quality is estimated to account for nearly half of the deaths attributable to 

coronary heart disease (CHD) and type 2 diabetes (T2DM) in the US (1). Diet influences 

metabolic conditions, independent of energy balance and adiposity, through effects on glucose-

insulin homeostasis, satiety, liver fat synthesis, adipocyte function, and metabolic expenditure 

(2). Exposure to established non-communicable disease (NCD) risk factors, such as smoking 

(3), particulate matter exposure (4), and physical activity (5), has been associated with 

differential DNA methylation (DNAm) patterns that contribute to regulation of gene expression. 

The impact of diet quality on the DNA methylome is not well understood. Given the significant 

influence of diet on NCD risk, diet could plausibly induce changes to DNAm on a causal disease 

pathway. Assessing the relationship between diet and the methylome, particularly independent 

of obesity, may reveal pathways linking diet and metabolic conditions.   

Few studies have evaluated the association between diet and the methylome among 

adults, particularly in the context of diet quality and dietary factors causally associated with 

NCDs. Three studies have examined methylation changes in dietary clinical trials including high 

fat overfeed or Mediterranean diets (6-8), finding some differences in either mean gene 

methylation or cytosine-phosphate-guanine (CpG) site-specific methylation. Two cross-sectional 

studies examined individual dietary factors, dietary fat and fiber, respectively with genome-wide 

DNAm, and reported differential methylation among genes potentially related to metabolism, 

though neither validated findings in independent samples (9, 10). While all of these studies 

report associations between dietary factors and the methylome, limitations in sample size and 

lack of replication support further investigation into the association of diet with the adult 
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methylome. Moreover, no previous studies have examined diet quality based on measures 

combining dietary factors shown to contribute to chronic disease progression. This study 

therefore evaluated the association between diet quality as measured by the Alternative Healthy 

Eating Index-2010 (AHEI-2010) and the methylome using cross-sectional data from the 

Women’s Health Initiative (WHI) and the TwinsUK cohort. 

Methods 

Study Populations 

The Women’s Health Initiative (WHI) is a large, U.S.-based cohort study of 

postmenopausal women, aged 50-79 at time of enrollment, consisting of two study arms: the 

Clinical Trial (CT) and the Observational Study (OS). Three randomized-controlled trials make 

up the CT: hormone therapy, dietary modification and calcium/vitamin D (11). The WHI ancillary 

studies in the discovery cohort included: Epigenetic Mechanisms of Particulate Matter-Mediated 

Cardiovascular Disease (EMPC), the Integrative Genomics for Risk of Coronary Heart Disease 

and Related Phenotypes in WHI cohort (BAA23), and Bladder Cancer and Leukocyte 

Methylation (AS311). EMPC (n=2200) assessed epigenetic mechanisms underlying 

associations between ambient particulate matter air pollution and cardiovascular disease within 

the WHI CT (12). BAA23 was a case-control study assessing predictors of coronary heart 

disease (CHD) within the WHI CT (n=1664) and OS (n=443), where cases were identified using 

eight biomarkers of CHD. AS311 is a matched case-control study of bladder cancer among 

women within the WHI CT (n = 426) and OS (n = 456). Diet was measured using a food 

frequency questionnaire (FFQ) designed by WHI investigators (13). 

 The replication cohort was derived from the TwinsUK cohort, a large registry of male and 

female twins between the ages of 19-82 in the United Kingdom (16). This study examined 

peripheral blood DNA methylation in 497 monozygotic (MZ) and 74 dizygotic (DZ) female twins 

(17-19). Diet was assessed using the EPIC-Norfolk FFQ (20). DNA methylation in adipose 
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tissue was also examined in 168 MZ and 232 DZ female twins (37% overlapping with blood 

methylation replication sample).  

Inclusion/Exclusion Criteria 

Participants from the WHI cohorts were included if they completed their food frequency 

questionnaire (FFQ) in the same year as the blood draw on which DNAm was measured. 

Participants were excluded if they did not have dietary information or if they reported implausible 

dietary intake (<600 kcal/day or ≥ 4000 kcal/day) (13). These criteria were only used in the 

discovery cohort. In the replication cohort, TwinsUK, some of the DNAm and diet quality 

measurements were not obtained from the same time-point (14). The replication analyses 

included female monozygotic (MZ) and dizygotic (DZ) twins from the TwinsUK from all years of 

blood sampling for DNAm profiling. In sensitivity analyses, we restricted the replication sample 

further to those individuals with diet measured within two years and one year of 2007 (the year 

of methylation measurement). 

Methylation Data 

Methylation was measured in DNA derived from whole blood samples using the Illumina 

Infinium HumanMethylation450 Beadchip. Probes on the X and Y chromosomes (11091 

probes), probes with detection p-values > 0.01 in >10% of samples, and samples with detection 

p-values > 0.01 in >1% of probes were excluded (probes excluded prior to analysis). Probe 

signals showing multiple clusters, which tend to occur when signals are driven by an underlying 

single nucleotide polymorphism (SNP) or genetic variant, were identified using the gaphunter 

function in the minfi package and removed (1567 probes in EMPC, 3069 in BAA23, and 1898 in 

AS311) (15). Additional probes were filtered based on general filtering recommendations from 

Zhou et al. (18334 probes) (16). All methylation data were normalized using beta-mixture 

quantile (BMIQ) normalization (17).   
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To examine outliers in the discovery cohort, we conducted a principal component 

analysis including a random sample of more than half the cytosine-phosphate-guanine (CpG) 

sites without any missing values (30K of 53K) and the full study sample. The first and second 

principal components explained 16% and 8.74% of the variation in methylation. Outliers were 

detected by individuals more than 4 standard deviations away from the mean. Thirteen 

individuals were identified as outliers. Sensitivity analyses excluding these individuals were 

conducted. After QC, 445,548 CpG sites were available for analysis in the discovery cohort.  

Dietary Quality Assessment 

Diet quality was assessed on a scale of 0 to 100 (lower score indicates poor diet) using 

the AHEI-2010, which evaluates foods and nutrients strongly predictive of chronic disease (18). 

AHEI-2010 was assessed through participant FFQ and is composed of dietary and nutritional 

factors including: linolenic/linoleic fatty acid ratio, vegetable servings, fruit servings, whole grain 

servings, nuts and legumes servings, sugar-sweetened beverage servings, red/processed meat 

servings, sodium intake, trans fat intake and alcohol servings. The AHEI-2010 has been 

extensively evaluated and shown to associate prospectively with CHD and T2DM within the 

WHI (19) and in other settings (18, 20).  

Data Analysis  

We used R software to conduct all analyses. The discovery analysis flow chart is 

included as Figure 4.1. Overall, 834 women were excluded due to missing dietary intake, 

implausible dietary intake or overlapping samples. The final discovery cohort included 4,355 

women. Epigenome-wide association study (EWAS) meta-analysis was conducting by 

separately regressing methylation β-values for each CpG site on continuous AHEI-2010 score 

for each ancillary study and combining through inverse-variance weighted meta-analysis. 

Models were adjusted for study specific covariates including case/control status (BAA23 and 
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AS311), study year (EMPC), randomization arm (OS vs CT) and CT participant type and 

randomization assignment (dietary modification, calcium/vitamin D trial or hormone replacement 

therapy trial). Covariates in all analyses included chip location, estimated cell type proportions, 

the top three principal components of genetic relatedness (when available), body mass index 

(BMI), smoking, age and race/ethnicity with a random effect for chip number. Significant sites 

were tested for replication in the TwinsUK cohort using generalized linear regression adjusting 

for cell composition, age, smoking and BMI as fixed effects, with random effects for chip number 

and location, genetic relatedness and zygosity. Significant sites were also explored for 

association between AHEI-2010 and adipose tissue DNAm in 400 female twins from the 

TwinsUK cohort (21). In the discovery analysis, significance was defined as a false discovery 

rate (FDR) < 0.05. In replication analyses, significance was defined as a p < 0.05 and a 

consistent direction of effect.  

Additional Post-Hoc Analyses 

To examine the degree to which each ancillary study contributed to the study, we 

examined how the results changed when excluding individual WHI studies. While associations 

between bladder cancer and diet quality are not well-established (22), if bladder cancer cases in 

AS311 have differential diet quality, it may confound the relationship between diet and 

methylation. A sensitivity analysis excluding cases from the AS311 cohort was conducted and 

compared to the full sample analysis. Additionally, to assess the degree to which adjustment for 

body mass index (BMI) may have influenced the analysis, we conducted a secondary 

epigenome-wide association study (EWAS) unadjusted for BMI. Given the potential for 

socioeconomic status (SES) to confound the relationship between diet quality and methylation, 

we conducted an EWAS adjusted for income status as a proxy for SES (3 level factor variable 

reduced from 7 level factor). In a sample of women from AS311 (n=664), no principal 

components of genetic relatedness were available and EWAS models between diet quality and 
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DNA methylation were run unadjusted for the top three principal components. We additionally 

examined results excluding these women.  

Results  

Demographic characteristics are described by quartile of AHEI-2010 (Table 4.1). Older 

women had a higher AHEI-2010 score (indicating a healthier diet) compared to younger women. 

Those with higher BMI and obesity had a lower AHEI-2010 score. White women had a higher 

AHEI-2010 score compared to African American and Hispanic women. Smoking status did not 

differ by quartile of diet quality. 

In the discovery analysis (n=4,355), AHEI-2010 was significantly associated with 

methylation levels of 428 CpG sites (Figure 4.2). On average, for every 1 SD increase in AHEI-

2010 (9.9 units), the β-values (estimated methylation proportions) decreased by 0.0003 at the 

significant sites. In the WHI population, women in quartile 4 (best diet quality) had AHEI-2010 

scores higher than 56.7 and women in quartile 1 (worst diet quality) had AHEI-2010 scores 

lower than 42.7. Women consuming the best diet had an average difference in methylation of 

0.001 at the significant sites compared to those consuming the worst diet (Figure 4.3).  

Replication in whole blood 

419 of the 428 significant sites passed QC in the TwinsUK cohort and were tested for 

replication in whole blood samples from 571 women. AHEI-2010 score was significantly 

associated with methylation at 24 sites with a p < 0.05 and a consistent direction of effect 

(Table 4.2), more sites than would be expected by chance (binomial test p = 2.7x10-4). None of 

the sites were significant after FDR adjustment. In sensitivity analyses, TwinsUK cohort was 

restricted to individuals with diet quality and methylation measures taken within two years 

(n=447) or one year (n=361). In replication analyses restricting individuals to within two years, 
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16 sites replicated, with 12 of which identified in the full analysis. In analyses restricting to within 

one year, 14 sites replicated, with 8 of which identified in the full analysis. 

Replication in adipose tissue 

421 of 428 CpG sites were examined in the adipose tissue of 400 female twins in the 

TwinsUK cohort. Diet quality was associated with 4 sites with a p < 0.05 and a consistent 

direction of effect, one of which was also replicated in the blood: cg16379999 (Table 4.3). None 

of the sites were significant after FDR adjustment.   

Enrichment  

We examined whether the sites identified in the primary analysis were expression 

quantitative trait methylation loci (eQTMs) found in a previous study of the Grady Trauma 

Project (GTP) and the Multi-Ethnic Study of Atherosclerosis (MESA) (23). The 428 CpGs 

identified in the discovery cohorts were associated with expression of 412 genes in the eQTM 

database (p < 1x10-5) (23), for a total of 1,842 CpG-transcript associations. Gene ontology 

analysis of these 412 genes revealed enrichment for 343 ontologies (FDR<0.05), which were 

primarily immune response pathways with several pathways related to metabolism including 

regulation of proteins and protein transport, response to fatty acid, and cellular response to low-

density lipoprotein particle stimulus. We next examined whether cg16379999 associated with 

expression of specific genes. In the MESA study, cg16379999 (on chromosome 14) positively 

associated with increased expression in ABHD3 gene (on chromosome 18) representing a trans 

association between methylation and expression (p=9.02 x 10-6).  

In sensitivity analyses excluding individual ancillary studies, diet quality remained 

associated with 319, 0 and 36 sites when excluding EMPC, BAA23 and AS311, respectively. 

The correlation between effect sizes for the original 428 sites from the full analysis and the 

analysis excluding EMPC, BAA23 and AS311 was 0.9841, 0.9807 and 0.9948, respectively. In 
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sensitivity analyses excluding bladder cancer cases in the AS311 study, diet quality was 

associated with differential DNA methylation at 1737 CpG sites, 315 of which were identified in 

the primary analysis, with 21 of the replicated sites. The correlation between effect sizes for the 

428 original sites was 0.9963. In analyses unadjusted for BMI, diet quality was associated with 

1851 CpG sites, which included all 428 CpG sites from the fully adjusted analyses, and the 

correlation between effect sizes from the two analyses was 0.9983. In EWAS adjusted for SES, 

22 sites were associated with diet quality, including two which replicated and were further 

reviewed in the discussion (cg01676795 and cg12458003). The correlation between effect sizes 

for the original 428 sites was 0.9980. In EWAS models excluding results unadjusted for principal 

component of genetic relatedness, 21 sites remained associated with diet quality. The 

correlation between effect sizes for the original 428 sites was 0.9951. In analyses excluding the 

thirteen outliers identified in the principal component analysis, 387 sites were found significant, 

with 372 among the original 428 sites. The correlation between effect sizes for the 428 sites 

originally identified sites was 0.9998.  

Discussion 

Diet quality was associated with 428 CpG sites in the discovery cohort of 

postmenopausal women from the WHI, with 24 sites consistent with replication, one of which 

was associated with blood and adipose tissue in a consistent direction. 

Among the 24 sites, several have been previously associated with diet-related 

outcomes. BMI has been associated with cg01101459 in an unannotated gene (24, 25), 

cg12458003 in the body of NFASC (26), cg20954977 in the transcription start site of B3GNT7 

(27), and cg01676795 in the body of POR (28). In all the above sites, methylation was 

negatively associated with diet quality (poorer diets had the highest methylation) and in previous 

studies, these sites were positively associated with BMI, aligning with our findings since poor 

diet is associated with higher BMI. cg01101459 has also been associated with chronic low 
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grade inflammation (29) with a positive association between methylation and C-reactive protein 

(CRP). CRP is another cardiometabolic risk factor playing a direct role in disease progression 

(30), which has been found to associate with diet patterns (31-34), such that poorer diets can 

lead to elevated CRP. cg01676795 has been found to associate with dysglycemia in several 

studies (28, 35). In these studies, higher methylation was positively associated with fasting 

insulin (28) and hemoglobin A1c (28, 35), which corroborate our findings as individuals with the 

poorest diet quality had the highest methylation.  

cg16379999 was found to negatively associate with diet quality in both the blood and 

adipose tissue. cg16379999 is located in the body of SEL1L. This site has been previously 

found to associate with obesity (36), air pollution (37), smoking (38) and vitamin B12 

supplementation (39). SEL1L has been shown to play a significant role in lipid metabolism as a 

regulator of lipoprotein lipase (LPL) secretion (40, 41). SEL1L knock-out mouse models have 

elevated fibroblast growth factor 21 (FGF21), a critical metabolic hormone regulating growth, 

nutrient metabolism and insulin (42), and elevated levels have been associated with obesity (43) 

and have predicted myocardial infarction (44, 45). In our study, diet quality was negatively 

associated with methylation at this site. As this site is located in the gene body, the implications 

may be difficult to infer as mixed evidence has been reported on the effects of gene body 

methylation on gene expression (46). However, a large EWAS of mRNA transcripts from the 

MESA and GTP cohorts found that gene body methylation correlated with reduced gene 

expression 61% and 72% of the time, respectively (23), which would align with our study. As 

this gene may play a protective role against metabolic disturbances, the higher methylation 

patterns found associated with poor diet would be deleterious. Methylation was also shown to 

associate with expression in ABHD gene in the MESA study. ABHD has been shown to play a 

catabolic role in medium-chain and oxidatively-truncated phospholipids (47, 48).  
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The 428 CpG sites identified in the discovery cohort were also found to associate with 

differential expression of 412 genes in blood. According to gene ontology analysis, this set of 

genes was enriched for primarily immune response pathways. This finding supports the role of 

diet quality in the immune response and potentially an upstream effect of diet on 

cardiometabolic diseases. While we adjusted for differences in cell composition (49), there are 

potentially systemic differences in rarer cell types that would not be captured using this method. 

Thus the methylation differences we identified may be due to differential inflammatory profiles 

associated with poor diet. Indeed diet quality was shown to be significantly correlated with 

natural killer cells, granulocytes and CD8 lymphocytes, even when adjusted for BMI. Improving 

diet quality has been shown to improve inflammatory profiles and decrease inflammatory 

markers such as CRP and TNFα (33, 34). Moreover, one replicated site was previously 

associated with CRP levels (29). 

We conducted several sensitivity analyses in the discovery analysis (exclusion of 

individual ancillary studies, exclusion of bladder cancer cases, and additional adjustments for 

BMI and socioeconomic status). While all of these analyses resulted in a change in the number 

of significant sites (ranging from 0-1851 CpG sites), any change in significance was likely due to 

change in power as there was very little change in the effect size (correlation of effect sizes 

between analyses was above 0.98 for all analyses).  

Several studies have evaluated the association between various aspects of diet quality 

and the methylome longitudinally (6-8) and cross-sectionally (9, 10). One study evaluated 

adipose methylation following overfeeding of saturated or polyunsaturated fats in 31 participants 

finding increased and decreased methylation at 4795 and 138 CpG sites, respectively and 

changes in gene expression with saturated fat overfeeding (6). Two studies examined 

methylation changes following a long-term Mediterranean diet in 40 participants. As neither 

study observed significant differences when applying a genome-wide significance level, they 
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subsequently filtered CpG sites based on change in methylation for an ingenuity pathway 

analysis, and reported enrichment in inflammatory pathways (7, 8). Two cross-sectional studies 

have examined metrics of diet quality via EWAS. An EWAS of dietary fat quality conducted in 

preadolescents identified a number of CpG sites and pathways associated with dietary fat 

quality (10). An EWAS of dietary fiber in African American adolescents reported three 

differentially methylated sites in genes associated with adiposity and inflammation (9). However 

results from these studies have not been replicated, and these CpGs were not significant in our 

study.  

Because the discovery analysis found small effect sizes (±0.0003 per 1 SD diet quality), 

the biological implications are difficult to infer. A recent review found that most environmental 

studies resulted in a 2-8% difference in methylation between exposed and unexposed.(50) In 

our study, the best diet had as large as a ~2% difference in β-value compared to the worst diet. 

Thus our findings are slightly below the average effect. In terms of functional implications, we do 

not know what impact this may have on gene expression. However, studies have found 

differences in expression associated with methylation effect sizes as low as 0.02 (51-53).  

Some limitations in our study are also important to note. There may be epigenetic 

differences that we were unable to discover due to a narrow distribution of diet quality in the 

discovery study population and competing effects of nutrients on the epigenome. In the 

replication analysis, we had the power to detect associations explaining >1% of variation in 

methylation; however, the partial r2 contribution of diet observed in our discovery analysis was 

only above this in 76 of the 428 sites in more than one individual ancillary study model. We 

included women from the TwinsUK cohort with methylation measured within three years of diet 

quality, which may have influenced our replication results. However, the direction of association 

did not differ in the replicated sites when we restricted the analysis to individuals with 

methylation and diet quality measured within two years or one year. The TwinsUK cohort also 
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differed from the WHI cohorts as they were younger and racially homogenous, nevertheless we 

were able to replicate 24 sites. Additionally, given that the WHI was conducted in post-

menopausal women and the TwinsUK cohort was only in women, generalizability to other 

populations may be limited. 

Another potential limitation is the use of blood-based methylation in the context of diet 

quality. To examine the biological impact of diet on the methylome, the diet associated blood 

methylation would correlate with the tissue of interest that is most impacted by diet. We 

examined adipose tissue methylation and were able to replicate one significant site. Other 

relevant tissues might include the liver and gastrointestinal cells. However, few studies have 

examined methylation in these tissues.  

In summary, diet quality was significantly associated with methylation at 24 CpG sites in 

the blood and one site in the adipose tissue among adult women. These sites may mark 

molecular pathways underlying diet and chronic disease, especially given the previous 

identification of associations between several of these sites and cardiometabolic risk factors in 

previous studies (24-29, 35, 36). Future research should utilize more precise and unbiased 

estimates of diet quality through use of dietary biomarkers and metabolomic indices to fully 

elucidate the role of diet quality on the epigenome.  
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Tables & Figures 

Table 4.1. Demographic and study characteristics by quartile of the Alternative Healthy Eating 

Index 2010 (AHEI-2010). Counts and means (standard deviation) are presented for categorical 

and continuous variables, respectively. T-test and chi-square tests were used to examine 

differences by AHEI-2010 quartile. Quartiles defined as follows: Q1 is 0 to 42.7, Q2 is 42.8 to 

49.2, Q3 is 49.3 to 56.7, and Q4 is greater than 56.7.  

  N Quartile 
1 

Quartile 
2 

Quartile 
3 

Quartile 
4 P-value 

WHI Ancillary 
Study             

EMPC  1613 421 419 400 373 
<0.0001 BAA23 1914 524 483 459 448 

AS311  828 161 176 205 297 

Clinical trial 
participant             

Yes 3536 926 918 861 831 
<0.0001 

No 819 163 170 228 258 
Case/Control 
status (BAA23)             

Case 948 267 234 239 208 
0.01 

Control 966 254 254 225 233 
Case/Control 
status (AS311)             

Case 416 78 84 106 148 
<0.0001 

Control 412 77 91 109 135 
Study Year             
Baseline 4097 1039 1028 1019 1011 

0.29 3 years 163 31 37 46 49 
6 years 95 19 23 24 29 

Age mean (SD) 64.0 
(7.11) 

62.4 
(7.1) 

64.1 
(7.1) 

64.3 
(7.0) 

65.1 
(7.0) <0.0001 

Ethnicity             
White 2495 501 639 628 727 

<0.0001 

African American  1076 369 261 252 194 
Hispanic/Latino 610 190 153 157 110 
Asian or Pacific 
Islander  105 8 18 27 52 

American Indian or 
Alaskan Native 38 13 11 12 2 

Other 30 8 6 12 4 

BMI mean (SD) 29.3 
(6.1) 

30.8 
(6.4) 

29.7 
(6.2) 

29.0 
(5.9) 

27.9 
(5.5) <0.0001 

BMI Categories             
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Underweight 23 2 5 10 6 

<0.0001 
Normal  1060 177 246 281 356 
Overweight  1506 356 380 379 391 
Obese 1735 544 449 411 331 
Smoking Status             
Former and current 2108 507 508 549 544 

0.15 
No 2204 569 570 530 535 
Income             
<$20,000 1007 326 276 222 183 

<0.0001 $20,000-$49,999 1888 481 464 488 455 
>$50,000 1196 215 275 310 396 

 

Table 4.2. Replicated CpG sites associated with diet quality in the Women’s Health Initiative 

(WHI) and TwinsUK. Models were adjusted for age, ethnicity (WHI), smoking status, body mass 

index (BMI), cell composition, top three principal components of genetic relatedness, study 

specific covariates (WHI), zygosity (TwinsUK) and batch effects.  

  WHI TwinsUK   

CpG Site Effect 
Size 

Standard 
Error p-value Effect 

Size 
Standard 
Error p-value Reference 

gene 

cg00503302 -2.60E-04 6.12E-05 1.82E-
05 

-4.58E-
03 2.34E-03 4.78E-

02   

cg01004980 -2.60E-04 5.46E-05 2.10E-
06 

-6.26E-
03 2.53E-03 1.38E-

02 PRKAR2A 

cg01101459 -2.50E-04 5.50E-05 6.78E-
06 

-7.16E-
03 2.63E-03 6.62E-

03   

cg01616956 -2.50E-04 5.14E-05 1.64E-
06 

-5.90E-
03 2.26E-03 8.56E-

03 NMUR1 

cg01676795 -3.60E-04 6.92E-05 2.75E-
07 

-7.75E-
03 2.46E-03 1.47E-

03 POR 

cg01894508 -2.10E-04 4.94E-05 2.76E-
05 

-5.48E-
03 2.54E-03 3.03E-

02 ASPRV1 

cg01944226 -1.80E-04 4.11E-05 2.00E-
05 

-7.63E-
03 3.31E-03 2.02E-

02 SLC16A3 

cg02909929 -1.10E-04 2.58E-05 4.13E-
05 

-5.08E-
03 2.44E-03 3.53E-

02 PRF1 

cg03084350 -2.20E-04 4.56E-05 2.03E-
06 

-7.46E-
03 2.91E-03 1.08E-

02 PLCD1 

cg04951476 2.25E-04 4.46E-05 4.59E-
07 

6.46E-
03 2.51E-03 1.01E-

02 FAM50B 

cg07143532 -1.70E-04 3.57E-05 2.25E-
06 

-6.41E-
03 2.96E-03 3.11E-

02 COL24A1 

cg08429256 -2.50E-04 5.49E-05 3.50E-
06 

-1.10E-
02 3.12E-03 3.68E-

04 SLC16A3 

cg12458003 -2.50E-04 5.01E-05 4.16E-
07 

-1.15E-
02 3.53E-03 1.10E-

03 NFASC 

cg12582317 -4.10E-04 1.01E-04 4.22E-
05 

-7.36E-
03 2.76E-03 8.66E-

03   
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cg14289429 -3.00E-04 7.09E-05 2.01E-
05 

-5.15E-
03 2.17E-03 1.74E-

02 FAM78A 

cg15950273 -4.40E-04 1.08E-04 4.48E-
05 

-6.69E-
03 3.24E-03 3.67E-

02 TRAF3 

cg16379999 -2.20E-04 5.07E-05 1.24E-
05 

-4.43E-
03 2.19E-03 4.55E-

02 SEL1L 

cg17207690 -1.50E-04 3.61E-05 2.11E-
05 

-8.05E-
03 2.57E-03 1.62E-

03 NMUR1 

cg17719317 -2.90E-04 6.59E-05 9.76E-
06 

-5.18E-
03 2.64E-03 4.94E-

02   

cg19116814 -1.80E-04 4.52E-05 4.65E-
05 

-9.47E-
03 3.95E-03 1.68E-

02 GPM6A 

cg20454887 -3.30E-04 7.79E-05 1.90E-
05 

-5.18E-
03 2.55E-03 4.07E-

02   

cg20954977 -3.40E-04 8.16E-05 3.64E-
05 

-6.99E-
03 2.85E-03 1.43E-

02 B3GNT7 

cg23603036 -2.20E-04 4.82E-05 5.92E-
06 

-5.75E-
03 2.24E-03 9.66E-

03 DHRS3 

cg23662178 -2.60E-04 6.30E-05 2.89E-
05 

-5.13E-
03 2.61E-03 4.79E-

02   

 

Table 4.3. Replicated sites in the adipose tissue of TwinsUK cohort. 

CpG Label Effect 
Estimate 

Standard 
Error 

T-
statistic 

P-value n FDR Reference 
Gene 

cg06563086 -0.00967 0.004329 -2.23 0.025 400 0.91 
 

cg15778054 -0.01021 0.004788 -2.13 0.033 400 0.91 KCTD14 

cg16379999 -0.00997 0.005006 -1.99 0.046 400 0.91 SEL1L 

cg19719391 -0.01046 0.005073 -2.06 0.041 400 0.91 
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Figure 4.1. Flow chart of discovery sample exclusion by ancillary study. 
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Figure 4.2. Manhattan Plot of the EWAS of diet quality. The x-axis represents chromosomal 

position and the y-axis represents P-values on the –log10 scale for each CpG site. The line 

denotes the threshold for significance P = 4.8 x 10–5. 
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Figure 4.3. Difference in β-value of replicated CpG sites comparing the best diet score (AHEI-

2010 > 56.7) to the worst diet score (AHEI-2010 < 42.7). 
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CHAPTER 5 

Epigenome perturbations associated with obesity 

Whitney L. Do, Eric Whitsel, Ellen Demerath, Weihua Guan, Shengxu Li, Wei Chen, Dianjianyi 
Sun, Steve Horvath, Tim Assimes, Parveen Bhatti, Kristina Jordahl, Peter M. Visscher, Sonia 
Shah, Roger Milne, Pierre-Antoine Dugue, Karlijn Meeks, Abedowale Adeyemo, Aryeh Stein, 
Lisa Staimez, Alicia Smith, K.M. Venkat Narayan*, Karen Conneely* 

 

Introduction 

Globally, the prevalence of obesity is rising with an estimated 600 million adults obese, 

representing 12% of the population. Obesity has been found to accompany a multitude of 

molecular and metabolic perturbations including impaired cell signaling, insulin resistance, 

hyperlipidemia, and hypertension (1-3). Ultimately these perturbations can lead to the early onset 

of chronic diseases with obesity accounting for 37% of the risk of type 2 diabetes (4) and 67-85% 

of the risk of cardiovascular disease (5). With a growing obese population, it is increasingly 

important to understand the molecular mechanisms dysregulated by obesity to further elucidate 

both early markers of disease progression and novel therapeutic targets.    

Epigenetic mechanisms are molecularly mediated changes in gene function which do not 

change the DNA sequence. DNA methylation, the most widely characterized epigenetic 

mechanism, occurs when a methyl group attaches to the cytosine in a cytosine-guanine 

nucleotide (CpG) pair (6). DNA methylation has been shown to influence gene expression by 

blocking transcription factor binding and recruiting chromatin remodelers (7). As a functional 

mechanism influencing gene expression, DNA methylation may be on a disease pathway and 

could provide insight into important therapeutic targets. DNA methylation has also become an 

important biomarker of health, for example with the development of the epigenetic clock. The 

epigenetic clock provides an estimate for an individual’s age based on the methylation status of 

several CpG sites. More importantly, individuals whose DNA methylation deviate from their actual 

chronological age, such that their epigenetically predicted age is higher than their actual age, 
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have been shown to have higher rates of cancer, cardiovascular disease, diabetes, and mortality 

(8). All of these properties may be relevant in the relationship between DNA methylation and 

obesity. 

Several studies have examined the relationship between DNA methylation and body mass 

index (BMI) (9-18). Obesity has been significantly associated with differential DNA methylation as 

both a cause and a consequence of the disease (10). While several large scale studies have 

identified a number of sites associated with obesity, examining methylation at a genome-wide 

scale requires large sample sizes as DNA methylation tends to have small effect sizes (19). Thus 

a goal of this study is to conduct the largest epigenome-wide association study (EWAS) meta-

analysis of BMI to identify novel sites associated with obesity using summary statistics from nine 

population based cohort studies. With the identification of novel sites, we may be better able to 

predict BMI as well as to reveal unique molecular signatures of various BMI phenotypes. Previous 

studies have found methylation explaining between 4.7-18% of the variance in BMI (10, 18, 20, 

21). In conducting the largest EWAS, we may have better predictive capacity by incorporating the 

novel CpG sites identified in the EWAS meta-analysis. As such, a secondary aim of this study is 

to examine whether BMI-associated CpG sites can predict BMI. As with epigenetic age, deviations 

from epigenetically predicted BMI may be associated with several relevant health outcomes, and 

could be used as an informative metric of overall health and/or a predictor of future cardiovascular 

disease. Thus we examined whether individuals whose BMI was poorly predicted by DNA 

methylation (DNA methylation over predicts their actual BMI or DNA methylation under predicts 

their actual BMI) have differential metabolic health status.  

Methods 

Participants 

We used data from 17,034 participants from six published EWAS studies of individuals of 

European descent (n=11,220), with a small minority in individuals of African descent (n=2,587) 
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and South Asians (n=2,680). This study includes data from the Atherosclerosis Risk in 

Communities (ARIC), Melbourne Collaborative Cohort Study (MCCS), Lifelines DEEP, Lothian 

Birth Cohort (LBC) 1921 and 1936, Bogalusa Heart Study (BHS), the Research on Obesity and 

Diabetes among African Migrants (RODAM) study, the Kooperative Gesundheitsforschung in der 

Region Augsburg (KORA), the London Life Sciences Prospective Population Study (LOLIPOP), 

and Italian cardiovascular component of the European Prospective Investigation into Cancer and 

Nutrition (EPICORE). ARIC includes data from 2097 African American men and women aged 45-

64 years recruited from four US communities: Forsyth County, NC; Jackson, MS; Minneapolis, 

MN; Washington County; MA. Participants were followed up for up to 5 visits. DNA methylation 

derived from visit 2. The MCCS consists of 5361 men and women aged 40-69 years from the 

Melbourne region. The study was composed of participant’s included in six prior nested case-

control studies of prostate, colorectal, lung or kidney cancer, urothelial cell carcinoma or mature 

B-cell neoplasms. Controls were matched on sex, year of birth, country of birth, baseline sample 

type and smoking status (lung cancer study only). The LBC consists of individuals born in 1921 

and 1936 living in the Lothian region. This study includes the baseline examination of 550 

individuals from LBC 1921 (average age 79) and 1091 LBC from 1936 (average age 70). Lifelines 

DEEP is a sub cohort of the LifeLines study consisting of 752 individuals from the Netherlands. 

The BHS study is a long-term cohort study focused on cardiovascular disease. This study includes 

1,485 adult participants from the study (995 non-Hispanic white and 490 African American) 

recruited during 2006-2010. The RODAM study is a study of Ghanaians recruited from Ghana, 

London, Amsterdam and Berlin. From the total study population, 736 were included in the EWAS 

of BMI. The KORA cohort is a population-based health study examining individuals living in the 

region of Augsburg in Southern Germany. The F3 and F4 surveys were follow up examinations 

of the original cohort taken in 2004-2005 and 2006-2008, respectively. DNA methylation was 

measured in 1709 participants from F4 and 285 participants from F3. The LOLIPOP study is a 

prospective cohort study of Indian Asian and European men and women recruited in West 
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London, United Kingdom between 2003 and 2008. DNA methylation was measured in 2,680 

participants free from type 2 diabetes using peripheral blood collected at enrollment. EPICOR 

was a nested case-control study from the European Prospective Investigation into Cancer and 

Nutrition (EPIC)-Italy cohort, recruited during 1994-1998. DNA methylation was measured in 

peripheral blood collected at enrollment in 292 controls.  

Secondary analyses were conducted in three ancillary studies from the Women’s Health 

Initiative (WHI): Epigenetic Mechanisms of Particulate Matter-Mediated Cardiovascular Disease 

(EMPC, aka AS315), the Integrative Genomics for Risk of Coronary Heart Disease and Related 

Phenotypes in WHI cohort (BAA23), and Bladder Cancer and Leukocyte Methylation (AS311).  

EMPC (n=2200) assessed epigenetic mechanisms underlying associations between ambient 

particulate matter air pollution and cardiovascular disease within the WHI CT. BAA23 was a case-

control study assessing predictors of coronary heart disease (CHD) within the WHI CT (n=1664) 

and OS (n=443), where cases were identified using eight biomarkers of CHD. AS311 is a matched 

case-control study of bladder cancer among women within the WHI CT (n = 426) and OS (n = 

456). In the WHI, individuals were excluded if BMI and DNA methylation were not measured within 

the same year. Extreme levels of BMI < 17 and >75 were excluded.   

BMI, DNA methylation and covariates 

BMI was defined as weight in kg/height in m2. Methodologies obtaining weight and height 

differed among the studies, however all used standard methods. One study transformed BMI 

values to obtain a normal distribution (17). In the WHI, weight was measured on a balance beam 

scale to the nearest 0.1 kg. Height was measured to the nearest 0.1 cm using a wall-mounted 

stadiometer. Relevant variables in our replication analysis will include race/ethnicity, age, physical 

activity and smoking status. Race/ethnicity, smoking and physical activity were self-reported. 

Smoking status was defined as current, former or never.  
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DNA methylation was measured in several cell types including CD4+ T-cells, leucocytes, 

mononuclear cells and the whole blood. DNA methylation in all studies was measured using the 

Illumina 450K Infinium Methylation BeadChip. DNA methylation was estimated as the proportion 

of methylated probes relative to combined unmethylated and methylated probes for a specific 

CpG sites defined as the β-value. Quality control procedures of the previous studies have been 

reported on in detail and they did not differ substantially. In the WHI data, all methylation data was 

quality controlled and normalized using beta-mixture quantile normalization. In replication 

analyses, chip and row were included as technical covariates in all models to adjust for batch 

effects. Cell composition was estimated using methods derived by Houseman et al.(22). 

Statistical Analysis 

Our primary meta-analytic method was weighted sum of Z-score meta-analysis. This 

method utilizes Z-scores and the direction of effect to determine significant sites. Significance was 

defined by p-value < 1x10-7. This was chosen as the primary method for meta-analysis since the 

studies did not all have equivalent exposure-outcome definition (DNA methylation defined as 

exposure in two studies and outcome in four studies) and BMI was transformed in one study.   

The significant sites were examined for replication within WHI. Models were stratified by 

ancillary study. Covariates in this analysis included age, race/ethnicity, cell composition, the top 

three principal components of genetic relatedness, smoking status, clinical trial arm and case-

control status (BAA23 and AS311). To account for potential chip-to-chip differences in 

measurement and to adjust for batch effects, chip was included as a random effect for each 

BeadChip in our model. Stratified analyses were combined using inverse-variance weighted 

meta-analysis. Significance will be defined by false discovery rate q-value < 0.05.  

BMI Prediction Score 
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 To examine the degree to which methylation can predict BMI and the secondary 

cardiometabolic outcomes associated with BMI, we used elastic net regression models with the 

significant sites to predict log-normalized BMI. The WHI cohorts was randomly divided into test 

and training set (75% and 25%, respectively) with an equal BMI distribution. We used elastic net 

regression on the training set with 10-fold cross validation. Predicted values were compared to 

actual BMI values. Using the significant sites and coefficients remaining in the elastic net 

regression, a DNA methylation prediction score was developed by multiplying the coefficient by 

the individual β-value and summing all the sites for an individual. The DNA methylation score 

was examined for how well it predicted obesity status (BMI ≥ 30) using the sensitivity and 

specificity.  

 Using the predicted BMI values, we examined the patterns among outliers in the prediction 

model. Individuals were split into categories based on the difference between predicted BMI and 

actual BMI. Accurately predicted individuals were defined as those whose difference between 

predicted and actual BMI between -0.08 to 0.08. To determine outliers, individuals outside of this 

were be split into two groups: difference below -0.08 (individuals whose predicted BMI is less than 

their actual BMI or low epigenetic BMI) and difference above 0.08 (individuals whose predicted 

BMI is more than their actual BMI or high epigenetic BMI). These thresholds were defined based 

on the 10% and the 90% distribution of the difference score. Using these categories, we examined 

cardiometabolic differences including waist circumference, triglycerides, HDL-cholesterol, LDL-

cholesterol, and blood glucose among these categories using linear regression models regressing 

log-normalized cardiometabolic markers on DNA methylation prediction category adjusted for 

age, race/ethnicity, smoking status and physical activity.  

Sensitivity Analyses 
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 We examined several sites for interaction by self-reported race/ethnicity and BMI using linear 

mixed-effect models adjusting for age, cell composition, smoking status, WHI study randomization 

arm, case-control status, row with a random effect for chip.  

Results 

Our discovery analysis included 17,058 participants from 9 cohorts (Table 5.1). The 

definition of BMI and DNA methylation differed with several transforming these values in the 

models. The covariates in the model also differed with all studies adjusting for age and sex, and 

the majority adjusting for cell composition and smoking status. When pooling results from all 

studies, 1265 CpG sites were associated with BMI (Figure 5.1, p < 1E-7). Of the 1265 sites, 

1254 were analyzed in WHI with 1238 replicating in WHI (FDR q-value < 0.05).  

We examined how these sites associated with differential gene expression in the GTP 

and MESA cohort. The 1238 CpG sites associated with 1103 CpG-mRNA associations in MESA 

and 79 CpG-mRNA associations in GTP. Relevant top pathways included cellular response to 

low-density lipoprotein particle stimulus, tumor necrosis factor-mediated signaling and positive 

regulation of stress activated MAPK cascade. One site associated with the same mRNA 

transcript in both cohorts (Table 5.2).  

In race stratified models, 936 and 130 CpG sites were associated with individuals from 

European and African descent, respectively. Of the 130, 43 unique sites were only significant in 

African populations. We examined these sites for interaction in the WHI EA and AA individuals. 

We found that five CpG sites had a significant interaction with BMI by race/ethnicity (Table 5.3). 

Two sites were quantitative trait methylation loci in the GTP cohort: cg25212453 negatively 

associated with TNFRSf13B and COCH and cg08122652 negatively associated with 

LGALS3BP and OTOF.  

We examined how well DNA methylation predicted BMI. After model tuning, using 

elastic-net regression, 398 sites remained in the model. These sites accounted for 32% of the 
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variance in WHI in the test set. The addition of age, ethnicity, physical activity, and cell 

composition only marginally improved the adjusted R2 (Table 5.4). In the full cohort, these sites 

accounted for 36% of the variance in BMI. We examined how well the predictors from 

Mendelson et al. (10) predicted BMI in the WHI cohort. In the full WHI cohort, the 83 CpG sites 

accounted for 29% of the variance.  

Using these 397 CpG sites to predict obesity, the sensitivity was 0.82 and the specificity 

was 0.57 with and area under the curve of 0.79 (Figure 5.2). Individuals were categorized 

based on how well methylation predicted BMI (Figure 5.3). Individuals with high epigenetic BMI 

had significantly higher blood glucose (Figure 5.4, p<2E-16) and triglycerides (Figure 5.5, 

p=9.24E-08), lower HDL-cholesterol (Figure 5.6, p=1.06E-07) and LDL-cholesterol (p=0.04) 

compared by accurate epigenetic BMI. Individuals with low epigenetic BMI had no differential 

association with metabolic health parameters as accurate epigenetic BMI.  

Discussion 

This study identified a unique methylomic signature of BMI and obesity. In the WHI, the 

majority of the sites identified in the discovery cohort were replicated and found to influence 

several metabolic and inflammatory pathways. Moreover, we found five CpG sites which are 

differentially associated with BMI between non-Hispanic whites and African Americans, two of 

which may play a significant role in gene expression of inflammatory pathways. Several sites 

were also able to predict BMI as well as several other cardiometabolic risk factors. Finally, 

individuals whose BMI was overpredicted by their methylome were found to have poorer 

metabolic health including higher blood glucose and triglycerides and lower HDL-cholesterol 

compared to accurately predicted individuals.  

The 1238 CpG sites annotated to 742 unique genes. Additionally, 147 of these genes 

were annotated to more than one CpG site with 382 CpG sites associated with 147 genes. With 

the large sample size, we were able to discover 685 novel CpG sites which had not previously 
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been identified in EWAS of BMI as well as 553 CpG sites which have previously been identified 

in the literature. The 1238 CpG sites were associated with differential gene expression in MESA 

and GTP. In the gene ontology analysis of the differentially expressed transcripts, the most 

significant pathways which enriched were immune response pathways.    

We were additionally able to examine how these associations changed when stratified by 

race/ethnicity. We examined this as epidemiological ethnic differences in adiposity have been well 

established. While African Americans have been shown to have the higher risk for cardiovascular 

diseases compared to non-Hispanic whites, they have consistently shown to have lower visceral 

adipose tissue, a potentially advantageous metabolic factor (23). Moreover, at the same level of 

BMI, African Americans tend to have lower body fat percentage compared to non-Hispanic whites 

(24). Five CpG sites were found to have a differential association with BMI between non-Hispanic 

white individuals and African Americans in the WHI cohort. Of these five sites, two CpG sites were 

associated with differential expression in four mRNA transcripts, which may regulate inflammatory 

pathways and hearing. TNFRSF13B and LGALS3BP were differentially expressed in association 

with two CpG sites. These two genes have been shown to be regulators of NF-kappa-B signaling.  

TNFRSF13B encodes a member of the TNF receptor subfamily, which is required to activate 

NFAT, AP and NF-kappa-B (25) and has been associated with metabolic syndrome (26). 

LGALS3BP is a scaffolding molecule of TRAF molecules which then influence NF-kappa-B 

signaling (27) and has been shown to be upregulated with obesity (28).  

Our study found a positive association between BMI and methylation in cg25212453 and 

cg08122652 (in WHI) and a negative association between methylation in these two sites and 

expression in LGALS3BP and TNFRSF13B (in GTP). Thus, as BMI increases in African 

Americans, gene expression may be decreasing in these sites, suggestion a potentially 

advantageous effect on inflammatory profiles in African Americans. Low-grade inflammation in 

obesity is a hallmark of the disease, which leads to significant metabolic dysregulation (29). There 
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is some epidemiological data that suggests this individuals of African descent may not be as prone 

to an increased inflammatory profile when living with obesity. TNF-α has showed no association 

with obesity in both African Americans and West Africans (30). Similarly, another study found a 

weaker association between inflammatory markers and adiposity in West Africans compared to 

European Whites (31). However, not all studies have a reduced association between obesity and 

inflammatory markers in African Americans (32). Nevertheless, our study may provide some 

mechanistic explanation to these differences in the relationship between inflammation and 

adiposity in individuals of African descent. Since expression of both LGALS3BP and TNFRSF13B 

would lead to increased inflammation, individuals of African descent may be protected from these 

effects due to methylation in cg25212453 and cg08122652, which are associated with 

downregulation as BMI increases.  

These results need to be interpreted with caution given several important limitations. In 

the discovery analysis, we stratified this analysis based on race/ethnicity as it was defined within 

each of the individual studies. This differed between studies with most based on self-report of 

race/ethnicity. Thus it is unclear whether we are identifying molecular differences due to ancestry 

or social construct. Moreover, these populations are not homogenous, with African Americans, 

Ghanians, and European-residing Ghanians. Nevertheless, our interaction and expression results 

were conducted in African American populations from the WHI and GTP. These results may only 

be generalizable for this population. The racial disparities in the US may be an underlying cause 

of these results, as opposed to differences in ancestry. For example in the US, African Americans 

are much more likely to live in poverty compared to non-Hispanic whites (33). In our results, we 

may be identifying compensatory mechanisms of social stressors which may be driven by 

environmental exposures associated with racial disparities (ambient particulate matter exposure, 

stress) as well as obesity.  
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We also found that DNA methylation was highly predictive of BMI explaining 32% of the 

variance in BMI. Previous studies have found methylation explaining between 4.7-18% of the 

variance in BMI (10, 18, 20, 21). DNA methylation has been found to be an accurate predictor of 

current BMI and poor predictor of future BMI (21). Outliers in the epigenetic BMI model 

predicted a unique phenotype. Individuals with high epigenetic BMI or whose BMI was over 

predicted by the epigenetic markers had worse cardiometabolic markers compared to 

accurately predicted. This may suggest that epigenetic BMI prediction may be identifying 

individuals with poor health regardless of their BMI and this suggests these sites may be useful 

biomarkers to examine. 

There are some limitations worth noting. In the EWAS, weighted-sum of Z-score meta-

analysis may not be stringent enough method to detect differential methylation as the underlying 

hypothesis is that one population parameter differs from the null. However, for this reason, we 

used stringent p-value for detecting significant sites (p<1E-7). Moreover, replicating in another 

population (WHI) and applying an FDR adjustment to the replication p-value give us more 

confidence in our results.  

Overall, this study had several important discoveries. We identified novel sites associated 

with BMI and found a unique molecular profile associated with obesity in individuals of African 

descent. We additionally found that epigenetic markers can predict BMI well and it may be able 

to distinguish individuals with whose metabolic health do not align with their BMI. Future studies 

should examine whether BMI-associated methylation is differential by metabolic health status.  
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Tables and Figures  

Table 5.1.  Study characteristics of discovery analyses. 

Reference Study 
Population 

N Exposure Outcome Sample Covariates 

Demerath, 
et al., 
2015, Hum 
Mol Genet 

Atherosclerosis 
Risk in 
Communities 
(ARIC) 

2097 BMI DNA 
methylation 
β-value 

Leucocytes Age, sex, study center, total white blood cell 
differentials, education, household income, 
cigarette smoking, current alcohol use, leisure 
physical activity, cell composition via Housman, 
top 10 PCs of genetic relatedness and batch 
effects (row, plate number and chip number) 

Geurts, et 
al., 2018, 
Int J Obes 

Melbourne 
Collaborative 
Cohort Study 
(MCCS) 

5361 BMI Z-
score 

DNA 
methylation 
M-values 

Mononuclear 
cells 

Age, sex, smoking status, country of birth, 
sample type, white blood cell composition 
(Houseman), and study, plate and chip included 
as random effects.  

Meeks, et 
al., 2017, 
Clin 
Epigenetics 

Research on 
Obesity and 
Diabetes 
among African 
Migrants 
(RODAM) 
study,  

541 BMI DNA 
methylation 
M-values 

Whole Blood Age, sex, recruitment site, cell composition 
(Houseman), hybridization batch, array position 
and first principal component of genetic 
relatedness 

Shah, et 
al., 2015, 
Am J Hum 
Genet 

Lothian Birth 
Cohort (LBC) 
and Lifelines 
DEEP 

2116 Log-
transformed 
DNA 
methylation  

BMI Z-
score 

Whole Blood Age, sex, batch effects, complete blood cell 
count adjusted for in sensitivity analyses 
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Sun, et al., 
2019, 
Circulation 

Bogalusa 
Heart Study 
(BHS) 

1485 BMI DNA 
methylation 
β-value 

Whole Blood Age, sex, current smoking status and estimated 
white blood cell counts included as fixed effects 
with batch array as a random effect 

Wahl, et 
al., 2017, 
Nature 

KORA, 
LOLIPOP, 
EPICORE 

5458 DNA 
methylation 
β-value 

BMI Whole Blood Top 20 principal components of control probes, 
cell composition, age, gender, smoking status, 
physical activity index and alcohol consumption 
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Table 5.2. CpG-mRNA association in both GTP and MESA 

 

 

 

 

 

 

Table 5.3. Interaction between BMI and race/ethnicity in WHI between non-Hispanic whites and 

African Americans.  

CpG Site Effect Estimate Standard Error Z-score P-value 
cg25652701 -0.00058 0.000136 -4.29275 1.76E-05 
cg25212453 0.000501 0.000164 3.050552 0.002284 
cg08122652 0.000889 0.00036 2.466811 0.013632 
cg27113059 -0.00023 9.59E-05 -2.36333 0.018112 
cg15391590 -0.00024 0.00011 -2.17865 0.029358 

 

 

Table 5.4. Predicting BMI from DNA methylation using elastic net regression 

Predictors RMSE Adjusted R2 

398 CpG sites 0.0702687 0.316954 

398 CpG sites + Age 0.0699664 0.3229309 

398 CpG sites + Age + 
Ethnicity  

0.06991631 0.3474048 

398 CpG sites + Age + 
Ethnicity + Cell Composition  

0.069918 0.3473717 

 

Table 5.5. Outliers in the prediction model compared to log-normalized cardiometabolic risk 

factors. Model adjusted for race/ethnicity, smoking status, age and physical activity.  

 Estimate SE P-value 
Waist Circumference 
(n=4356) 

   

High Epigenetic BMI 7.27E-03 8.52E-03 0.39 

Cohort CpG site Status Annotated 
Gene 

Beta SE P 

GTP cg25653947 Promoter TOP1MT 0.12576092 0.01941799 3.495e-
10 

MESA cg25653947 Promoter TOP1MT 0.223428 0.01623042 4.232e-
40 
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Low Epigenetic BMI 7.49E-03 1.06E-02 0.47 
Blood Glucose (n=3823)    
High Epigenetic BMI 1.39E-01 1.43E-02 <2E-16 
Low Epigenetic BMI -1.978E-02 2.10E-02 0.34 
Blood Triglycerides 
(n=3829) 

   

High Epigenetic BMI 1.43E-01 2.67E-02 9.24E-08 
Low Epigenetic BMI -7.36E-02 3.88E-02 0.057 
HDL-cholesterol (n=3832)    
High Epigenetic BMI -7.85E-02 1.47E-02 1.06E-07 
Low Epigenetic BMI 1.89E-02 2.11E-02 0.37 
LDL-cholesterol (n=3740)    
High Epigenetic BMI -3.38E-02 1.69E-02 0.04 
Low Epigenetic BMI 7.37E-03 2.33E-02 0.75 

 

 

Figure 5.1. Manhattan plot of the association between DNA methylation and BMI.  
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Figure 5.2. Receiver operating characteristic curve showing the performance of the DNA 

methylation prediction score identifying obesity.  AUC denotes area under the curve. Y-axis is 

the sensitivity (true positive rate) and the x-axis is 1-specificity (false positive rate). 
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Figure 5.3. Scatter plot of predicted BMI from elastic net regression of 398 CpG sites by actual 

BMI. Individuals categorized based on the residual of predicted BMI regressed on actual BMI.  

 

 

 

Figure 5.4. Boxplot of the association between epigenetic prediction category and blood 

glucose (mg/dL).  
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Figure 5.5. Boxplot of the association between epigenetic prediction category and blood 

triglycerides (mg/dL).  

 

 

 

Figure 5.6. Boxplot of the association between epigenetic prediction category and HDL-

cholesterol (mg/dL). 
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Abstract 

 
Context  

As a measure of adiposity, increasing body mass index correlates with coronary heart disease 

(CHD). However, metabolic health has been shown to modify the relationship between BMI and 

CHD. The mechanisms underlying this relationship are poorly understood. DNA methylation may 

be able to distinguish biomarkers or pathways which underlie this interaction.  

Objective 

The purpose of this study was to examine whether metabolic health influences the relationship 

between body mass index (BMI) and blood DNA methylation.  

Methods 



106 
 

The discovery study population was derived from two population based cohort studies and 

replicated in another cohort study. Metabolic health was examined continuously as a pooled Z-

score (MHZ) of the clinical measures used in the ATP-III criteria. Generalized linear models 

regressed methylation β-values on the interaction between BMI and MHZ (BMIxMHZ) adjusted 

for BMI, MHZ, cell composition, chip number and location, study characteristics, top three 

ancestry principal components, smoking, age, ethnicity, and sex. Significance was set at FDR q< 

0.05. Significant sites were replicated and examined for association with CHD.  

Results 

Among the 429,566 sites examined, BMIxMHZ was associated with differential DNAm at 22 CpG 

sites (FDR<0.05), with one site (cg18989722) replicating. Three of the 22 sites were associated 

with incident CHD. Risk of incident CHD increased by 9% and decreased by 6-11% per 0.01 unit 

increase in DNA methylation β-value at these sites.  

Conclusions 

The interaction between BMI and MHZ was associated with differential DNA methylation at 22 

sites, one of which replicated and three of which were predictive of incident CHD over 25 years. 

These sites are located in genes related to NF-kappa-B signaling, suggesting a potential role for 

inflammation between DNA methylation and BMI-associated metabolic health.   
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Background 

Obesity rates continue to rise with 41.1% of women in the United States living with obesity 

in 2016 (1). While obesity is most typically defined as body mass index (BMI) > 30 kg/m2, 

limitations in the use of BMI have been noted, including variation in associations with health 

outcomes by race/ancestry, physical activity, and age (2, 3), as well as some reports finding no 

association between higher risk categories of BMI (overweight and middle obesity) and mortality 

(4, 5). These conflicting reports have motivated several studies to examine whether differential 

phenotypes of obesity exist and whether examining BMI in isolation of additional metabolic health 

parameters is a sufficient metric of overall health. 

A growing body of evidence has found heterogeneity in obesity, with some phenotypes 

exhibiting differential risk for cardiovascular outcomes. Metabolically healthy obesity (MHO) has 

been defined as obesity with less than two or three metabolic health risk factors. Some but not all 

studies have found MHO to be associated with reduced risk of cardiovascular outcomes 

compared to metabolically unhealthy obesity (MUO) (6-11). In a recent systematic review, MHO 

had higher risk of cardiovascular events than metabolically healthy, normal weight participants 

(RR 1.45, 95% CI: 1.20-1.70), but had lower risk to metabolically unhealthy normal weight (RR: 

2.07, 95% CI: 1.62-2.65) and MUO individuals (RR: 2.31, 95% CI: 1.99-2.69) (12). These findings 

suggest that metabolic health status may differentially influence the relationship between BMI and 

health outcomes. Examining the molecular underpinnings of this phenotype may guide our 

understanding of this epidemiological phenomenon by identifying the biological mechanisms 

which may be leading to a reduction in risk of health outcomes associated with obesity. 

Additionally, identifying biomarkers of MHO, particularly if they can identify individuals more likely 

to remain in MHO, would be advantageous for more targeted interventions.  

Epigenetic mechanisms, such as DNA methylation, are important biological features to 

examine in the context of chronic diseases such as obesity and metabolic health. Changes to 

DNA methylation can induce changes in gene expression in causal disease pathways potentially 
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mediating or modifying differential health outcomes. Obesity has been widely examined and 

shown to associate with prolific methylation changes in the blood and adipose tissue (13-15). 

Similarly, metabolic syndrome and metabolic health risk factors have been found to associate 

with differential methylation (16-20). Indeed the mouse model which is used to represent MHO is 

developed from deletion of the BRD2 gene, which is a primary epigenetic regulator of histone 

acetylation (21). However, no studies have integrated these phenotypes to examine how BMI-

associated methylation varies by metabolic health status. Particularly since DNA methylation has 

been reported to mediate the relationship of obesity to increased cardiovascular outcomes (22), 

evaluating the epigenome may provide insight into pathways contributing to the differences in 

outcomes. The purpose of this study is to examine whether BMI associates with methylation 

differentially according to metabolic health status (Figure 6.1). 

Methods 

A summary of the methods is included in Figure 6.2. 

Study population 

 Two cohorts were used in the discovery phase: the Women’s Health Initiative (WHI) and the 

Atherosclerosis Risk in Communities study (ARIC). Data from three WHI ancillary studies were 

included: Epigenetic Mechanisms of Particulate Matter-Mediated Cardiovascular Disease 

(EMPC, aka AS315), the Integrative Genomics for Risk of Coronary Heart Disease and Related 

Phenotypes in WHI cohort (BAA23), and Bladder Cancer and Leukocyte Methylation (AS311).  

EMPC assessed epigenetic mechanisms underlying associations between ambient particulate 

matter air pollution and cardiovascular disease within the WHI Clinical Trials (CT, n=2200). BAA23 

was a case-control study assessing predictors of coronary heart disease (CHD) within the WHI 

CT (n=1664) and OS (n=442), where cases were identified using eight biomarkers of CHD. AS311 

is a matched case-control study of bladder cancer among women within the WHI CT (n = 405) 

and OS (n = 455) (23).  
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 ARIC included data from two ancillary studies of African Americans (AA) and European 

Americans (EA). DNA methylation was measured in 2879 and 1100 ARIC AA and EA in visit 2 

(1990-1992) or visit 3 (1993-1995). ARIC is an ongoing prospective cohort study investigating the 

etiology of CHD in four US communities: Forsyth County, NC; Jackson, MS; Minneapolis, MN; 

Washington County; MA. Participants were aged 45 to 64 and followed up for trends in coronary 

heart disease in each community over 15 years with 7 study visits (24, 25).  

 The replication cohort derived from the Multi-Ethnic Study of Atherosclerosis (MESA) study. 

MESA is a longitudinal, population cohort study designed to examine risk factors for and the 

progression of CHD. Participants aged 45-84 years without clinically apparent CHD were recruited 

between July 2000 and August 2002 from 6 regions in the US: Winston-Salem, NC; Northern New 

York, NY; Baltimore, MD; St. Paul, MN; Chicago, IL; and Los Angeles, CA. DNA methylation was 

derived from peripheral blood mononuclear cell samples at Exam 1 or Exam 5 in a random sample 

of 1,200 non-Hispanic white, African American, Hispanic and Chinese American participants (26, 

27). 

Measurements 

 In WHI, weight, height, waist circumference and blood pressure (BP) were measured at the 

physical exam. In ARIC, these measurements were taken at Visit 2 or 3. BMI was calculated as 

weight (kg)/height (m)2. Waist circumference was measured to the nearest 0.5 cm. Two BP 

measurements were collected (systolic/diastolic). Biochemical measurements were analyzed in 

blood samples collected after a 12-hour fast. These include triglycerides (TG), high-density 

lipoprotein cholesterol (HDL), and fasting glucose.   

Metabolic Health Exposures 

 Metabolic health was examined in two ways, dichotomously and continuously. Metabolic risk 

was dichotomously defined by presence of three or more components of metabolic syndrome 

using the Adult Treatment Panel III (ATP III) criteria (Table 6.1). Thus, MUO and MHO referred 

to the presence of three or more and less than three components, respectively. Metabolic health 
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was also examined continuously as a Z-score of the clinical measures used in the ATP III criteria. 

For each metabolic parameter, for example TG, the Z-score for TG was created by (TG – mean 

TG)/standard deviation (TG) of the population. Then all the clinical parameter Z-scores were 

combined to define a metabolic health Z-score (MHZ). For HDL, the inverse of HDL was used as 

a higher MHZ is indicative of poorer health. Since the association of BMI with CpG site DNA 

methylation has been shown to linear, we examined BMI continuously. Individuals were excluded 

if metabolic health parameters and DNA methylation were not measured within the same year. 

Covariates 

 Age, race/ethnicity (White, African American, Hispanic/Latino, Asian, American Indian, 

other), and smoking status (current/former or never) were self-reported. Physical activity was 

measured by the Baecke questionnaire in ARIC (28) and a self-administered questionnaire in 

WHI (29) and expressed as total energy expended from light, moderate, or vigorous intensity 

recreational physical activity which includes walking, mild, moderate and strenuous physical 

activity in kcal/week/kg (MET-hours/week).  

Outcome in Secondary Analyses 

 In significant sites identified through EWAS, DNA methylation at cytosine and guanine 

nucleotide pair (CpG) sites was examined as a predictor of incident CHD in the WHI. CHD was 

defined by incident myocardial infarction or CHD death. Medical records were reviewed and 

acute, hospitalized myocardial infarction was identified on the basis of cardiac pain, 

electrocardiogram, and biomarker data; then physician-adjudicated. Further details regarding the 

review, classification, and adjudication of CHD in WHI (31) have been described.  

DNA methylation 

 In the all cohorts, DNA was extracted from peripheral blood leucocytes collected at visit-

specific fasting blood draws (32). In the WHI and ARIC cohorts, DNA methylation was measured 

using the Illumina HM450K Infinium Methylation BeadChip. In the MESA cohort, DNA methylation 

was measured via the Illumina MethylationEPIC BeadChip array. DNA methylation was estimated 
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as the proportion of methylated probes relative to combined unmethylated and methylated probes 

for a specific CpG sites defined as the β-value (which is defined as the percentage of probes 

methylated divided by the combined methylated and unmethylated probes ranging from 0 

[unmethylated] to 1 [methylated]). All methylation data were normalized using beta-mixture 

quantile normalization (33). Technical covariates included plate, chip, and row to adjust for batch 

effects and cell composition, which was estimated using the reference-based Houseman method 

(34). Quality control procedures included exclusion of probes with multi-modal signals as detected 

by the gaphunter function in the minfi package in R (https://www.r-project.org/) excluding 54636 

probes. After quality control, 428278 probes remained in the analysis and were examined.  

Statistical Analysis 

 We used R (https://www.r-project.org/) for all analyses. We calculated means and standard 

deviations or counts and proportions for study population characteristics. In the EWAS, all models 

were stratified by cohort (EMPC, BAA23, AS311 in WHI) and race (AA and EA in ARIC) and 

pooled using inverse-variance weighted meta-analysis. BMI was examined continuously. To 

examine the differential impact of metabolic health status on BMI, linear regression models were 

used regressing the methylation β-value on the interaction term for BMI and metabolic health 

status, adjusting for each higher-level variable (BMI and metabolic health) and covariates. We 

conducted two EWAS with metabolic health status defined dichotomously (BMIxMH) and 

continuously (BMIxMHZ). Covariates in all models included cell composition, the top 3 principal 

components of genetic relatedness, race/ethnicity (WHI), sex (ARIC), smoking status 

(current/former or never) and age. Study-specific covariates included trial study and 

randomization arm (EMPC, BAA23, AS311) and case-control status (BAA23, AS311). To adjust 

for batch effects, the DNA methylation array was included as a random effect for each BeadChip 

in our model. Significant CpG sites were identified by the interaction p-value at a false discovery 

rate (FDR) q-value <0.05.  
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 Results identified in the discovery cohorts were replicated in the MESA cohort using linear 

regression models as previously described. Significant CpG sites were examined using the same 

linear regression model as above examining BMIxMHZ. Models were adjusted for DNA 

methylation array number and row location, cell composition, principal components of genetic 

relatedness, race/ethnicity, age, sex, alcohol consumption and smoking. Significant replication 

was defined at p < 0.05 and a consistent direction of effect. 

Outcomes Analyses 

 Multivariate Cox proportional hazard ratios were used to examine whether significant sites 

identified through EWAS (exposure) were associated with incident CHD in WHI. Individuals with 

a history of (or incident) myocardial infarction or coronary revascularization (angioplasty; stent; 

bypass) before measurement of DNA methylation were excluded. Covariates included age, 

race/ethnicity, smoking status, case-control status (BAA23 and AS311), DNA methylation array, 

row, and cell composition in the reduced model. In the full model, we adjusted for the covariates 

in the reduced model as well as physical activity and diet quality. Significant sites were defined 

by p < 0.05.  

Gene Expression 

 To elucidate the potential functional implications of the identified CpGs, gene expression 

information was obtained for each of the significant sites identified in the replication analysis and 

those associated with incident CHD. Specifically, for each of these CpGs, previously published 

gene expression quantitative trait methylation loci (eQTMs) summary statistics in blood from 

MESA and the Grady Trauma Project (GTP) were examined (35). This population from MESA 

had minimal overlap with the MESA population examined in replication analyses.  

Sensitivity analyses 

 As metabolic health status is constructed from a number of metabolic parameters, 

differences in methylation may be driven by individual metabolic parameters. To assess the 

degree that individual metabolic parameters influence methylation at significant sites, we 
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reanalyzed associations between BMIxMHZ status and methylation excluding individual 

metabolic parameter in the MHZ score and compared the effects to the original estimates 

obtained through EWAS. For the significant sites, we also examined changes in effect size when 

adjusting for lipid, hypertension and glycemic medication use. We additionally repeated the 

primary EWAS analysis adjusting for physical activity.  

Results 

 Demographic characteristics of the cohorts have been described in Table 6.2. Overall, 7497 

participants were included in the discovery analysis. We identified no statistically significant 

differential associations between CpG methylation and BMI by dichotomized metabolic health 

status (BMIxMH). When metabolic health status was examined continuously (MHZ), 22 CpG sites 

were associated with BMIxMHZ (FDR q-value < 0.05, Table 6.3, Figure 6.3). For ease of 

interpretation, we described the direction of effect in the 22 significant sites in the models 

examining BMIxMH. In 13 of the 22 sites, an increase in BMI was associated with an opposite 

direction of effect in the coefficient in metabolically healthy vs unhealthy individuals. In the 

replication analysis, one site associated with BMIxMHZ (p < 0.05 in a consistent direction, Table 

6.3). cg18989722 inversely associated with BMIxMHZ or the coefficient increased and decreased 

with every one unit increase BMI in metabolically healthy and metabolically unhealthy individuals, 

respectively.    

 Given the differential relationship between MHO and cardiovascular disease, we examined 

whether significant CpG sites predicted incident myocardial infarction over 25 years in the WHI. 

After excluding individuals from WHI with a history of cardiovascular disease, 3746 individuals 

remained (BAA23 n=1823, EMPC n=1775, AS311 n=148). When predicting incident myocardial 

infarction, we initially examined whether the interaction between BMIxMHZ associated with 

incident CHD, adjusting for age, smoking status and ethnicity. BMIxMHZ was significantly 

associated with incident CHD (HR: 1.014, 95% CI: 1.004, 1.03, p-value = 0.009, Figure 6.4). 

cg18989722 was not associated with incident CHD. However, when examining the 22 sites from 
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the discovery analysis, three sites were associated with incident CHD (p < 0.05, Figure 6.5, Table 

6.4).  

Among the replicated site and the three sites associated with incident CHD, we examined 

whether they were associated with differential gene expression in two cohorts, GTP and MESA. 

cg18989722 was associated with differential expression of PTGS1 and cg16461485 was 

associated with differential expression of TNFRSF13B. 

In sensitivity analyses, we examined the change in the association when adjusted for 

physical activity. No sites were significantly associated with BMIxMHZ. However, this may be due 

in part to a change in power as the correlation between effect sizes in the 22 significant sites was 

0.97 and effect sizes were generally larger in the physical activity adjusted analyses 

(Supplemental Figure 1, ARIC EA n=929, ARIC AA n=2173, EMPC n=1676, BAA23 n=1969, 

AS311 n=163). When examining the change in the effect size when leaving out one of the clinical 

parameters from the MHZ score, HDL-cholesterol was the most significantly different (effect 

estimate correlation=0.89). In the 22 sites, effect sizes and Z-scores changed minimally when 

adjusted for lipid, hypertension and glycemic medications (all correlations in effect size=0.97 and 

all correlations in Z-scores=0.95). We examined the influence of individual ancillary studies on 

the results by examining the change in significance and effect size when ancillary studies (BAA23, 

EMPC, AS311, ARIC AA and ARIC EA) were individually excluded from the analysis. Significance 

changed moderately with exclusion of each study with 30, 20, 25, 20 and 27 significant sites when 

BAA23, EMPC, AS311, ARIC AA and ARIC EA were excluded, respectively. Differences in effect 

size were minor (correlation with main analysis= 0.99) in all studies except with exclusion of ARIC 

AA (correlation with main analysis = 0.86).  

Discussion 

In this study, we found 22 CpG sites were associated with BMIxMHZ in the WHI and ARIC 

cohorts, with one site replicating in a consistent direction in MESA. Among the 22 sites, two CpG 
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sites associated inversely and one CpG site associated positively with incident CHD in the WHI 

cohort.  

The one site replicated in MESA, cg18989722, is located in the body of the TRAPPC9 

gene. TRAPPC9 has a role in NF-kappa-B signaling by activating NF-kappa-B through increased 

phosphorylation of the IKK complex (28). TRAPPC9 encodes NIBP, which binds to IKK/NIK to 

enhance NF-kappa-B activation. TRAPPC9 has recently been identified as an imprinted gene 

primarily expressing the maternal allele (29). TRAPPC9 knock-out mice exhibit a rare intellectual 

disability accompanied by an increase in fat mass and body weight (29), suggesting that 

expression of this gene may protect against obesity. Several CpG sites in TRAPPC9 have been 

identified in an EWAS of childhood adiposity (30, 31). As gene body methylation has often been 

cited as an indicator of an active gene (32), our findings are in alignment with previous reports of 

protection against obesity since individuals with lower BMIxMHZ had higher methylation in this 

site.  

This site was also associated with increased gene expression of the PTGS1 gene. PTGS1 

(also known as COX1) catalyzes the conversion of arachinodate to prostaglandin protein and is 

inhibited by anti-inflammatory drugs. In our sensitivity analysis, when adjusted for lipid medication 

use including peripheral vasodilators such as aspirin, the effect size moderately changed (-

8.36x10-5 in unadjusted models and -5.25x10-5 in adjusted models). However, the Z-score was 

smaller (-6.54 in unadjusted models and -2.55 in adjusted models). This suggests some 

attenuation in the relationship between BMIxMHZ and DNA methylation is potentially modified by 

medication use.  

Methylation in three sites was associated with incident CHD over 25 years in the WHI 

cohort: cg16461485 located in the body of SELT, cg02851049 located in the body of POLR3K, 

and cg20210586 in the body of TRIM39. None of these sites have been identified in previous 

EWAS. We also found that cg16461485 associated with reduced gene expression of 

TNFRSF13B, which encodes the tumor necrosis factor (TNF) receptor superfamily member 13B, 
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also known as the transmembrane activator and CAML interactor (TACI). This protein activates 

NFAT, AP1 and NF-kappa-B (33). TACI knock-out mice were protected against high fat diet 

induced inflammation and dysglycemia, which may be mediated by a shift in adipose tissue 

macrophages from M1 to M2, which tend to promote a phenotype of insulin sensitivity (34). These 

findings further support the role that methylation in cg16461485 exhibiting a protective effect.  

Given the molecular functions of these genes, differential inflammatory mechanisms 

(potentially mediated by the NF-kappa-B pathway) may account for the observed differences in 

health outcomes by BMIxMHZ. This is consistent with several studies which have found that MHO 

may be due to an uncoupling of obesity and insulin resistance. Indeed, MHO has been associated 

with lower inflammatory markers including CRP, TNF-α, IL-6, and plasminogen activator inhibitor-

1 (35, 36). Several studies have also observed a unique relationship between inflammatory 

markers and adiposity in individuals of African descent, where these markers do not appear to be 

as sensitive to adiposity compared to individuals of European descent (37, 38). This may explain 

the significant differences observed when we exclude the ARIC AA cohort in sensitivity analyses.  

There are several important limitations to this study. Given the cross sectional design, we 

cannot determine any causal association and may be at risk for reverse causality, if methylation 

is contributing to changes in BMI or levels of the metabolic risk factors included in our score. 

Moreover, metabolic risk factors may also be a product of duration of obesity, since several 

studies have found MHO to be a transitory state (6, 7, 39). However, understanding the CpG site 

specific differences in populations with MHO would still be advantageous to identify biological 

mechanisms that may be driving the differences in outcomes. Another limitation includes the 

potential for confounding by cell composition. Obesity and several of the metabolic health 

parameters associate with inflammation (40). While we controlled for cell composition using the 

methods of Houseman et al (41), we may not be able to account for rarer cell types and the 

identified CpG sites may be a reflection of these differences in cell composition associated with 

differential inflammatory profiles associated with these disease exposures. While we found novel 
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relationships between three CpG sites and CHD, none of these sites replicated in an external 

population, suggesting that other confounding factors may be causing the association. 

Nevertheless, the limited replication may be due in part to limited power as the replication analysis 

had the power to detect effect sizes as low as 0.01 and the effect sizes from our discovery EWAS 

were much lower (Supplemental Table 7). A strength of this study is examination of unique 

interactions between BMI and metabolic health in three population-based cohort studies and their 

impact on gene expression and CHD outcomes.  

Overall, we found four CpG sites which may have a differential relationship with BMI in 

metabolically healthy vs unhealthy individuals. Our study findings may align with several studies 

suggesting that differential inflammatory mechanisms may account for differences in metabolic 

risk factors associated with increasing BMI. Future research studies could benefit from examining 

longitudinal changes in methylation associated with change in metabolic health status to 

determine the direction of effect. 
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Tables and Figures 

Table 6.1. ATP III Clinical Identification of Metabolic Syndrome 

Clinical Measure Defining Level 
Waist Circumference ≥102 cm in men or ≥88 cm in women 
Triglycerides ≥150 mg/dL or drug treatment for elevated 

triglycerides 
High Density Lipoprotein (HDL) <40 mg/dL in men or <50 mg/dL in women or 

drug treatment for reduced HDL 
Blood Pressure ≥130/85 mmHG or drug treatment for 

hypertension  
Glucose ≥110 mg/dL or drug treatment for elevated 

glucose 
 

Table 6.2. Demographic characteristics of each ancillary study in WHI and ARIC. Means (sd) or 

proportions have been included. 
 

EMPC 
(n=1833) 

BAA23 
(n=1977) 

AS311 
(n=167) 

ARIC EA ARIC AA 

Clinical Trial Participant 
  

  
Yes 1833 1543 119 - - 
No 0 434 0 - - 
Case/Control status (BAA23) 

  
  

Case 0 987 0 - - 
Control 0 990 0 - - 
Case/Control status (AS311) 

  
  

Case 0 0 91 - - 
Control 0 0 76 - - 
Age mean (SD) 63.2 (7.1) 64.6 (7.1) 66.2 (7.2)  59.9 (5.4)  56.6 (5.9) 
Ethnicity 

   
    

White 922 944 99     
African American 474 631 49     
Hispanic/Latino 260 402 16     
Asian or Pacific 
Islander 

107 0 2     

American Indian or 
Alaskan Native 

41 0 1     

Other 29 0 0     
Smoking Status 

   
    

Former and current 853 913 99  610  1351 
Never 963 1048 67  449  1110 
Metabolic Health Status 

  
   

Metabolically Healthy 1254 1163 109  662  1177 
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Metabolically 
Unhealthy 

579 814 58  397  1284 

BMI*Metabolic Health 
Z-score mean (SD) 

2.96  
(30.38) 

2.92 (31.59) -2.5 (2.3)  0 (1)  0 (1) 

BMI mean (SD) 29.5 (5.9) 29.8 (6.1) 29.3 (6.9)  26.2 (4.3)  30.1 (6.2) 
BMI Categories 

   
    

Underweight 7 13 0  20  18 
Normal 417 420 41  435  444 
Overweight 641 680 67  429  912 
Obese 768 864 59  175  1087 
Waist Circumference 
mean (SD) 

89.5 (13.8) 90.7 (13.7) 89.1 
(15.1) 

 94.5 (12.8)  101.4 
(15.1) 

Triglycerides mean 
(SD) 

153 (88.2) 146.9 (83.4) 143.8 
(82.5) 

 140.4 
(83.6) 

 117.3 
(77.7) 

HDL-Cholesterol 
mean (SD) 

58 (15.1) 52.1 (13.2) 53.2 
(13.0) 

 52.3 (18.2)  53.3 
(17.3) 

Systolic Blood 
Pressure mean (SD) 

128 (18) 132.1 (17.8) 132.5 
(16.6) 

 118.7 
(18.0) 

 127.3 
(20.6) 

Diastolic Blood 
Pressure mean (SD) 

75.3 (9.4) 76.4 (9.3) 76.3 (8.5)  68.5 (9.7)  75.2 
(10.7) 

Blood Glucose mean 
(SD) 

103 (31.1) 108.6 (41.3) 105.2 
(37.2) 

 105.9 
(28.6) 

 129.3 
(64.3) 
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Table 6.3. CpG sites identified in the discovery cohort.  
 

WHI and ARIC MESA 
CpG site Effect 

Size 
Standar
d Error 

Zscore p-
value 

Metabolicall
y Healthy 

Metabolicall
y Unhealthy 

T.statisti
c 

P.value Holm.si
g 

FDR 

cg0086807
4 

0.00031
5 

6.90E-05 4.75338
7 

2.00E
-06 

- +  0.813911 0.41608
7 

FALSE 0.69347
9 

cg0285104
9 

-8.85E-
05 

1.04E-05 -
7.91227 

2.53E
-15 

- - -1.71765 0.08648
7 

FALSE 0.69347
9 

cg0544159
6 

-5.74E-
05 

1.11E-05 -
4.95087 

7.39E
-07 

+  - -0.04166 0.96678
6 

FALSE 0.97337 

cg0634495
2 

-9.11E-
05 

1.46E-05 -
5.78557 

7.23E
-09 

+  - 0.033399 0.97337 FALSE 0.97337 

cg0722631
7 

-9.17E-
05 

1.62E-05 -
5.15533 

2.53E
-07 

+  - 
    

cg0808229
9 

-0.0001 1.73E-05 -
5.59187 

2.25E
-08 

- - 1.122892 0.26202
8 

FALSE 0.69347
9 

cg1005784
1 

-9.86E-
05 

1.56E-05 -
5.99443 

2.04E
-09 

+  - 0.364646 0.71553
1 

FALSE 0.95404
2 

cg1155398
3 

-6.96E-
05 

1.36E-05 -
4.75996 

1.94E
-06 

+  - -0.21812 0.82742
8 

FALSE 0.97337 

cg1506222
5 

-
0.00014 

2.05E-05 -
6.52431 

6.83E
-11 

+  - -1.10901 0.26796
3 

FALSE 0.69347
9 

cg1646148
5 

-
0.00012 

2.06E-05 -
5.22882 

1.71E
-07 

+  +  0.920949 0.35752
6 

FALSE 0.69347
9 

cg1654339
0 

6.71E-
05 

1.38E-05 5.25716
8 

1.46E
-07 

+  +  0.88978 0.37401
6 

FALSE 0.69347
9 

cg1829878
5 

-8.52E-
05 

1.40E-05 -
5.57895 

2.42E
-08 

+  - -0.70114 0.48354
7 

FALSE 0.74391
8 

cg1898972
2 

-8.36E-
05 

1.20E-05 -
6.54025 

6.14E
-11 

+  - -2.04684 0.04120
1 

FALSE 0.69347
9 

cg1957284
9 

-4.99E-
05 

8.96E-06 -
5.63193 

1.78E
-08 

- - 0.551567 0.58149
4 

FALSE 0.83070
5 

cg2021058
6 

-0.0001 1.39E-05 -
6.96531 

3.28E
-12 

+  - -0.10473 0.91663
1 

FALSE 0.97337 
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cg2188044
5 

-7.90E-
05 

1.44E-05 -
5.22636 

1.73E
-07 

- - -0.95512 0.33998
2 

FALSE 0.69347
9 

cg2207614
3 

-0.0001 1.27E-05 -
7.61932 

2.55E
-14 

- +  0.874629 0.3822 FALSE 0.69347
9 

cg2446062
5 

-7.26E-
05 

1.11E-05 -
6.37718 

1.80E
-10 

- - -1.36572 0.17264
6 

FALSE 0.69347
9 

cg2472071
7 

6.22E-
05 

1.22E-05 4.94559
4 

7.59E
-07 

- +  -1.07273 0.28391
5 

FALSE 0.69347
9 

cg2482756
2 

-8.71E-
05 

9.83E-06 -
8.41337 

3.98E
-17 

+  - 0.092298 0.92649
9 

FALSE 0.97337 

cg2620668
0 

-6.13E-
05 

9.90E-06 -
5.73111 

9.98E
-09 

- - 0.9877 0.32378
2 

FALSE 0.69347
9 

cg2700463
9 

5.20E-
05 

9.14E-06 5.64408
6 

1.66E
-08 

- - 0.9877 0.32378
2 

FALSE 0.69347
9 
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Table 6.4. Significant CpG sites associated with incident CHD in WHI over 25 years 

CpG Site HR 95% CI p-value FDR 
cg02851049 0.897052 (0.812154, 

0.990825) 
0.032217 0.249169 

cg20210586 1.094975 (1.003004, 
1.19538) 

0.042661 0.249169 

cg16461485 0.941783 (0.888621, 
0.998125) 

0.043042 0.249169 

 

 

Figure 6.2. Conceptual framework research question 
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Figure 6.2. Manhattan plot of the association between the interaction of BMI and metabolic health 
Z-score and DNA methylation. Significant sites identified as those above the red line (p < 2x10-
6). 
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Figure 6.3. Probability of incident CHD by quartile of BMIxMHZ in WHI cohort over 25 years. 

 

 

A 
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Figure 6.4. Probability of incident CHD by quartile of CpG site methylation of cg20210586 (A), 
cg16461485 (B) and cg02851049 (C) over 25 years in WHI 

 

B 

C 
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CHAPTER 7 

Discussion 

DNA methylation serves as a unique biological indicator of the physiological state of a 

person. Evaluating how DNA methylation associates with both extrinsic and intrinsic exposures 

can identify relevant biomarkers of health and elucidate the molecular mechanisms contributing 

to disease progression. Examining DNA methylation has shown utility as biomarkers in several 

clinical settings, including in early cancer detection (1) and  predicting age-related disorders (2, 

3). Using Mendelian Randomization methods, several studies have also identified DNA 

methylation as a mediator between various exposures and outcomes, including as mediating 

the effect of prenatal famine on adult cardiometabolic disease (4) and smoking on inflammation 

(5). These findings support the examination of DNA methylation in association with health 

outcomes. Diet quality and obesity represent critical contributors to a host of non-communicable 

diseases including type 2 diabetes, cardiovascular disease, cancer, and osteoarthritis. DNA 

methylation may be contributing to the relationship between diet and obesity and non-

communicable disease progression. Additionally, examining DNA methylation could identify 

important biomarkers of these exposures. This dissertation evaluated whether DNA methylation 

was differentially associated with diet quality, metabolic health and obesity.  

Nutrition and diet throughout the lifespan has been well known to play a role on the 

epigenome. However, the vast majority of studies have either focused on nutritional exposures 

in utero, specific nutrients or they have been underpowered to detect significant effects in 

individual CpG sites at a genome-wide threshold for significance. In chapter 4, we investigated 

how diet quality associated with differential methylation patterns in adult women in two large 

population-based cohort studies. We found significant differences in DNA methylation 

associated with diet quality as measured by the Alternative Healthy Eating Index – 2010 (AHEI-

2010). Several of these CpG sites had previously been found to associate with cardiometabolic 
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disease risk factors including inflammation, obesity and dysglycemia. Ultimately, this study has 

established the important role of diet on the epigenome in adulthood.  

One element which may have influenced our findings is the differential effect of nutrients 

on the epigenome. It has been speculated that nutrients of one-carbon metabolism would 

influence methylation patterns due to the fact that S-adenosylmethionine (SAM) acts as a 

methyl donor to de-novo methyltransferase. Folate, vitamin B12, choline, and vitamin B2 are 

essential nutrients in one-carbon metabolism. In practice, cross-sectional and prospective 

studies have had mixed findings (6-10). However, the relationship between these nutrients and 

DNA methylation may have implications for our study. In Aim 2, components of the AHEI-2010 

comprising of these nutrients include vegetables, whole grains, nuts and legumes, and 

red/processed meats. As foods that increase one-carbon metabolism nutrients, it is plausible 

that these foods would influence methylation in the same direction. However, due to the way 

AHEI-2010 is scored where vegetables, whole grains and nuts and legumes increase AHEI-

2010 score, and red/processed meats decrease AHEI-2010 score, we may be diluting the true 

association. Future research efforts should examine the relationship between the epigenome 

and individual dietary factors alongside combined diet quality estimates to assess which dietary 

factors may be driving the relationship between DNA methylation and diet quality.  

One result from sensitivity analyses in chapter 4 was the important role that adiposity 

plays on the epigenome and how interrelated poor diet quality and obesity are. When examining 

the relationship between diet quality and the epigenome unadjusted for body mass index (BMI), 

the number of significant CpG sites rose from 400 to over 1800. This suggest adiposity has 

widespread effects on the epigenome and ultimately inspired the research in chapter 5 and 6.  

In chapter 5, we conducted the largest epigenome-wide meta-analysis of BMI with 

17,034 individuals in the discovery population. We found 1265 CpG sites were associated with 

BMI (p<1x10-7). When replicated in the Women’s Health Initiative (WHI), we found 1238 sites 
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remained associated with BMI (FDR q-value < 0.05). These included all the sites identified 

within the systematic review and meta-analysis of BMI in Chapter 2.2.  Given the important 

relationship between BMI and diet quality, we examined the overlap in the CpG sites between 

the Aim 2 and 3. Thirty eight CpG sites were associated with both diet quality (in chapter 4) and 

BMI (in chapter 5). The relationship with BMI is likely representative of confounding by diet 

quality as none of the studies from the discovery analysis were adjusted for diet quality.  

We also identified a unique signature of obesity in individuals of African descent. In this 

EWAS, 43 sites were uniquely associated in these models and not identified in EWAS of 

individuals of European descent. From these, five sites had a significantly different relationship 

with BMI between non-Hispanic whites and African Americans in the WHI. These sites may 

indicate relevant molecular pathways which differentiate how obesity influences health in this 

population. It has been well known that African Americans have a differential risk of metabolic 

risk factors and outcomes based on their BMI compared to non-Hispanic whites. For example, 

African Americans tend to have higher BMI compared to non-Hispanic whites (11). However, at 

these higher levels of BMI, they have lower body fat % compared to non-Hispanic whites or 

Asian individuals (12). This may be due to their distribution of adipose tissue in individuals of 

African descent, who tend to have higher subcutaneous and lower visceral adipose tissue (13). 

All of these findings suggest a differential relationship between BMI and metabolic risk factors 

by race. Our findings of a differential relationship between BMI and DNA methylation by race 

could be the cause or consequence of why BMI associates differentially with health outcomes in 

individuals of African descent.  

We additionally examined how these five CpG sites associate with mRNA transcription 

in the Grady Trauma Project (GTP). Two sites associated with differential gene expression of 

genes relevant to adiposity-induced inflammation. In these sites, methylation was associated 

with the downregulation of potentially deleterious genes in the inflammatory cascade. This may 
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be identifying a protective mechanism in African Americans with obesity. Methylation may be 

downregulating two genes critical in the pathway activating NF-kappa-B, NFAT and AP1. In 

alignment with this, some recent studies have found no association between TNF- α and obesity 

in African Americans (14) and West Africans (15). In a systematic review examining CRP and 

obesity by race, women and North American/European whites had the strongest relationship 

between the two, with weaker relationship in individuals of African descent (16).  

In Aim 2, we also found that DNA methylation was highly predictive of BMI with 398 sites 

accounting for 32% of the variance in BMI. The strongest risk factors and largest sources of 

variability in BMI are often cited as parental BMI and obesity in childhood (17). In models 

examining genetic predictor of BMI, genetic information accounts for around ~30% of the 

variation in BMI (17, 18). A large twin study found that genetic factors account for a large 

proportion of the variance, though this decreases with age (R2 0.75 at age 20-29 and 0.59 at 

age 80 in women). Whereas, unique environmental effects increase with age (R2 at age 20-29 

0.25 and 0.40 at age 80 in women) (19). Similar to epigenetics, a substantial proportion of 

variation remains unaccounted for when only genetic effects are included. In prior epigenetic 

prediction models, the predictive ability ranged from 4-22% (20-22). In our study we may be 

accounting for some genetic variation that has previously been identified, through methylation 

quantitative trait loci, CpG sites that have been found to act dependently on SNPs. Shah et al. 

found that combined genetic and epigenetic effects accounted for 5-7% of the variance in BMI 

and they functioned in an additive manner, suggesting that these effects function independently 

(22). In Aim 2, we had a larger sample size and included CpG sites identified from a larger 

EWAS, which may be why we could account for a significantly larger proportion of the variance 

in BMI.  

To examine whether “epigenetic BMI” could identify unique phenotypes of obesity, we 

examined outliers by their predicted BMI. Individuals whose BMI was over predicted by their 
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methylome had higher blood glucose and triglycerides and lower HDL-cholesterol compared to 

accurately predicted individuals. Similar to epigenetic age, “epigenetic BMI” could be a useful 

biomarker for more targeted interventions. Epigenetic age has been associated with a number 

of relevant exposures. Accelerated epigenetic age, when epigenetic age is higher than actual 

age, has been associated with cancer, neurological disorders, physical and cognitive health, 

and mortality (3, 23). This is a highly useful clinical biomarker that could identify individuals at 

risk of these diseases and allow for earlier intervention. “Epigenetic BMI” could similarly be a 

useful biomarker to identify metabolically healthy vs. unhealthy obese individuals.  

Metabolically healthy obesity has been characterized from a subgroup of individuals who 

do not exhibit the typical cardiometabolic abnormalities associated with obesity. Several 

biological differences have been identified between metabolically healthy obese individuals 

including lower liver and visceral fat, higher leg fat and better insulin sensitivity, inflammatory 

markers and adipose tissue function (24). Metabolically healthy obesity has also been found to 

differentially influence cardiovascular disease and mortality. In a recent systematic review, 

metabolically healthy obesity had higher risk of cardiovascular events than metabolically 

healthy, normal weight participants (RR 1.45, 95% CI: 1.20-1.70), but had lower risk to 

metabolically unhealthy normal weight (RR: 2.07, 95% CI: 1.62-2.65) and obese individuals 

(RR: 2.31, 95% CI: 1.99-2.69) (25). Understanding the molecular mechanisms associated with 

metabolically healthy obesity could provide insight into the differential outcomes associated with 

this phenotype.  

The study in Aim 3 sought to examine whether the interaction between BMI and 

metabolic health was associated with differential methylation patterns. We found that 22 sites 

were associated with the interaction between BMI and metabolic health Z-score in the WHI and 

the Atherosclerosis Risk in Communities (ARIC) cohort. When replicating the Multi-Ethnic Study 

of Atherosclerosis (MESA), one site replicated in a consistent direction, cg18989722. This study 
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also examined whether the 22 sites from the discovery analysis predicted incident coronary 

heart disease in the WHI over 25 years. Three sites were found to be predict CHD.   

As a primary aim of this study was to examine the molecular underpinnings associated 

with metabolically healthy obesity, we examined both the functions of the genes annotated to 

each CpG site as well as how the four significant CpG sites associated with differential gene 

expression in two external cohorts (MESA and the Grady Trauma Project [GTP]). As in Aim 2, 

several genes in the NF-kappa-B pathway were identified within this study. One site was located 

in TRAPPC9 which downregulates NF-kappa-B signaling and one site was associated with 

reduced gene expression of TNFRSF13B, which regulates TNF signaling in this pathway. These 

results are further reinforcing the potential relationship between DNA methylation and obesity-

associated inflammation. 

All of these findings represent important molecular signals that may be useful as 

potential biomarkers of disease or therapeutic targets in regulation of gene expression. 

However, DNA methylation represents only one epigenetic modification. Histone modifications 

and microRNA are two distinct mechanisms which have similar properties to methylation in their 

responsiveness to external signals and effects on chromatin modification. The N-terminal tails of 

histones can be prone to several modifications including acetylation, methylation, 

phosphorylation or ubiquination. Additionally, DNA methylation and histone modifications are 

biologically linked in carrying out their effects on gene expression, such that histones can direct 

DNA methylation patterns and DNA methylation may be a template for histone modifications 

(26). Similarly, DNA methylation has been shown to associate with differential microRNA 

expression, with 58 sites having been identified as causally regulating microRNA expression 

(27). Our studies were only able to examine DNA methylation as significantly fewer studies have 

assayed microRNA or histone modifications. However, future research studies should consider 
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examining these other epigenetic modifications to allow for better understanding of these 

modifications.  

The overarching goal of this research was to identify molecular markers which may 

serve as useful biomarkers of various exposures or disease states and may underlie the 

exposure-disease relationship. We made several important discoveries including the novel 

identification of CpG sites associated with diet quality and BMI, with several of these sites in 

highly relevant metabolic genes. We also found that DNA methylation may be modifying 

inflammatory pathways associated with obesity in individuals of African descent and 

metabolically healthy obesity. Furthermore, we found that epigenetic BMI can serve as a 

potential biomarker distinguishing metabolically healthy and unhealthy individuals, which may 

have some utility for identifying “at risk” individuals. Overall, this work will help to further our 

understanding of the molecular dysregulation caused by poor diet, metabolic abnormalities and 

obesity.   
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